repo_name
stringclasses
1 value
pr_number
int64
4.12k
11.2k
pr_title
stringlengths
9
107
pr_description
stringlengths
107
5.48k
author
stringlengths
4
18
date_created
unknown
date_merged
unknown
previous_commit
stringlengths
40
40
pr_commit
stringlengths
40
40
query
stringlengths
118
5.52k
before_content
stringlengths
0
7.93M
after_content
stringlengths
0
7.93M
label
int64
-1
1
TheAlgorithms/Python
4,927
[mypy] Fix type annotations for data_structures->linked_list directory files
```Shell $ python -m mypy -V mypy 0.910 $ python -m mypy data_structures/linked_list/ Success: no issues found in 14 source files ``` Related Issue: #4052 ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
ParthSatodiya
"2021-10-02T18:42:18Z"
"2021-10-07T15:18:23Z"
d654806eae5dc6027911424ea828e566a64641fd
d324f91fe75cc859335ee1f7c9c6307d958d0558
[mypy] Fix type annotations for data_structures->linked_list directory files. ```Shell $ python -m mypy -V mypy 0.910 $ python -m mypy data_structures/linked_list/ Success: no issues found in 14 source files ``` Related Issue: #4052 ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
63,13,28,75,0,23,14,8,0,76,22,89,12,4,13,14,69,16,24,69,29,4,18,23,69,69,59,14,69,11,14,4,29,18
63,13,28,75,0,23,14,8,0,76,22,89,12,4,13,14,69,16,24,69,29,4,18,23,69,69,59,14,69,11,14,4,29,18
-1
TheAlgorithms/Python
4,927
[mypy] Fix type annotations for data_structures->linked_list directory files
```Shell $ python -m mypy -V mypy 0.910 $ python -m mypy data_structures/linked_list/ Success: no issues found in 14 source files ``` Related Issue: #4052 ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
ParthSatodiya
"2021-10-02T18:42:18Z"
"2021-10-07T15:18:23Z"
d654806eae5dc6027911424ea828e566a64641fd
d324f91fe75cc859335ee1f7c9c6307d958d0558
[mypy] Fix type annotations for data_structures->linked_list directory files. ```Shell $ python -m mypy -V mypy 0.910 $ python -m mypy data_structures/linked_list/ Success: no issues found in 14 source files ``` Related Issue: #4052 ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations from typing import Callable class DoubleLinkedListNode: """ Double Linked List Node built specifically for LRU Cache """ def __init__(self, key: int, val: int): self.key = key self.val = val self.next = None self.prev = None class DoubleLinkedList: """ Double Linked List built specifically for LRU Cache """ def __init__(self): self.head = DoubleLinkedListNode(None, None) self.rear = DoubleLinkedListNode(None, None) self.head.next, self.rear.prev = self.rear, self.head def add(self, node: DoubleLinkedListNode) -> None: """ Adds the given node to the end of the list (before rear) """ temp = self.rear.prev temp.next, node.prev = node, temp self.rear.prev, node.next = node, self.rear def remove(self, node: DoubleLinkedListNode) -> DoubleLinkedListNode: """ Removes and returns the given node from the list """ temp_last, temp_next = node.prev, node.next node.prev, node.next = None, None temp_last.next, temp_next.prev = temp_next, temp_last return node class LRUCache: """ LRU Cache to store a given capacity of data. Can be used as a stand-alone object or as a function decorator. >>> cache = LRUCache(2) >>> cache.set(1, 1) >>> cache.set(2, 2) >>> cache.get(1) 1 >>> cache.set(3, 3) >>> cache.get(2) # None returned >>> cache.set(4, 4) >>> cache.get(1) # None returned >>> cache.get(3) 3 >>> cache.get(4) 4 >>> cache CacheInfo(hits=3, misses=2, capacity=2, current size=2) >>> @LRUCache.decorator(100) ... def fib(num): ... if num in (1, 2): ... return 1 ... return fib(num - 1) + fib(num - 2) >>> for i in range(1, 100): ... res = fib(i) >>> fib.cache_info() CacheInfo(hits=194, misses=99, capacity=100, current size=99) """ # class variable to map the decorator functions to their respective instance decorator_function_to_instance_map = {} def __init__(self, capacity: int): self.list = DoubleLinkedList() self.capacity = capacity self.num_keys = 0 self.hits = 0 self.miss = 0 self.cache = {} def __repr__(self) -> str: """ Return the details for the cache instance [hits, misses, capacity, current_size] """ return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__(self, key: int) -> bool: """ >>> cache = LRUCache(1) >>> 1 in cache False >>> cache.set(1, 1) >>> 1 in cache True """ return key in self.cache def get(self, key: int) -> int | None: """ Returns the value for the input key and updates the Double Linked List. Returns None if key is not present in cache """ if key in self.cache: self.hits += 1 self.list.add(self.list.remove(self.cache[key])) return self.cache[key].val self.miss += 1 return None def set(self, key: int, value: int) -> None: """ Sets the value for the input key and updates the Double Linked List """ if key not in self.cache: if self.num_keys >= self.capacity: key_to_delete = self.list.head.next.key self.list.remove(self.cache[key_to_delete]) del self.cache[key_to_delete] self.num_keys -= 1 self.cache[key] = DoubleLinkedListNode(key, value) self.list.add(self.cache[key]) self.num_keys += 1 else: node = self.list.remove(self.cache[key]) node.val = value self.list.add(node) @staticmethod def decorator(size: int = 128): """ Decorator version of LRU Cache """ def cache_decorator_inner(func: Callable): def cache_decorator_wrapper(*args, **kwargs): if func not in LRUCache.decorator_function_to_instance_map: LRUCache.decorator_function_to_instance_map[func] = LRUCache(size) result = LRUCache.decorator_function_to_instance_map[func].get(args[0]) if result is None: result = func(*args, **kwargs) LRUCache.decorator_function_to_instance_map[func].set( args[0], result ) return result def cache_info(): return LRUCache.decorator_function_to_instance_map[func] cache_decorator_wrapper.cache_info = cache_info return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
from __future__ import annotations from typing import Callable class DoubleLinkedListNode: """ Double Linked List Node built specifically for LRU Cache """ def __init__(self, key: int, val: int): self.key = key self.val = val self.next = None self.prev = None class DoubleLinkedList: """ Double Linked List built specifically for LRU Cache """ def __init__(self): self.head = DoubleLinkedListNode(None, None) self.rear = DoubleLinkedListNode(None, None) self.head.next, self.rear.prev = self.rear, self.head def add(self, node: DoubleLinkedListNode) -> None: """ Adds the given node to the end of the list (before rear) """ temp = self.rear.prev temp.next, node.prev = node, temp self.rear.prev, node.next = node, self.rear def remove(self, node: DoubleLinkedListNode) -> DoubleLinkedListNode: """ Removes and returns the given node from the list """ temp_last, temp_next = node.prev, node.next node.prev, node.next = None, None temp_last.next, temp_next.prev = temp_next, temp_last return node class LRUCache: """ LRU Cache to store a given capacity of data. Can be used as a stand-alone object or as a function decorator. >>> cache = LRUCache(2) >>> cache.set(1, 1) >>> cache.set(2, 2) >>> cache.get(1) 1 >>> cache.set(3, 3) >>> cache.get(2) # None returned >>> cache.set(4, 4) >>> cache.get(1) # None returned >>> cache.get(3) 3 >>> cache.get(4) 4 >>> cache CacheInfo(hits=3, misses=2, capacity=2, current size=2) >>> @LRUCache.decorator(100) ... def fib(num): ... if num in (1, 2): ... return 1 ... return fib(num - 1) + fib(num - 2) >>> for i in range(1, 100): ... res = fib(i) >>> fib.cache_info() CacheInfo(hits=194, misses=99, capacity=100, current size=99) """ # class variable to map the decorator functions to their respective instance decorator_function_to_instance_map = {} def __init__(self, capacity: int): self.list = DoubleLinkedList() self.capacity = capacity self.num_keys = 0 self.hits = 0 self.miss = 0 self.cache = {} def __repr__(self) -> str: """ Return the details for the cache instance [hits, misses, capacity, current_size] """ return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__(self, key: int) -> bool: """ >>> cache = LRUCache(1) >>> 1 in cache False >>> cache.set(1, 1) >>> 1 in cache True """ return key in self.cache def get(self, key: int) -> int | None: """ Returns the value for the input key and updates the Double Linked List. Returns None if key is not present in cache """ if key in self.cache: self.hits += 1 self.list.add(self.list.remove(self.cache[key])) return self.cache[key].val self.miss += 1 return None def set(self, key: int, value: int) -> None: """ Sets the value for the input key and updates the Double Linked List """ if key not in self.cache: if self.num_keys >= self.capacity: key_to_delete = self.list.head.next.key self.list.remove(self.cache[key_to_delete]) del self.cache[key_to_delete] self.num_keys -= 1 self.cache[key] = DoubleLinkedListNode(key, value) self.list.add(self.cache[key]) self.num_keys += 1 else: node = self.list.remove(self.cache[key]) node.val = value self.list.add(node) @staticmethod def decorator(size: int = 128): """ Decorator version of LRU Cache """ def cache_decorator_inner(func: Callable): def cache_decorator_wrapper(*args, **kwargs): if func not in LRUCache.decorator_function_to_instance_map: LRUCache.decorator_function_to_instance_map[func] = LRUCache(size) result = LRUCache.decorator_function_to_instance_map[func].get(args[0]) if result is None: result = func(*args, **kwargs) LRUCache.decorator_function_to_instance_map[func].set( args[0], result ) return result def cache_info(): return LRUCache.decorator_function_to_instance_map[func] cache_decorator_wrapper.cache_info = cache_info return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# NguyenU def find_max(nums): """ >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_max(nums) == max(nums) True True True True """ max_num = nums[0] for x in nums: if x > max_num: max_num = x return max_num def main(): print(find_max([2, 4, 9, 7, 19, 94, 5])) # 94 if __name__ == "__main__": main()
from __future__ import annotations def find_max(nums: list[int | float]) -> int | float: """ >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_max(nums) == max(nums) True True True True >>> find_max([2, 4, 9, 7, 19, 94, 5]) 94 >>> find_max([]) Traceback (most recent call last): ... ValueError: find_max() arg is an empty sequence """ if len(nums) == 0: raise ValueError("find_max() arg is an empty sequence") max_num = nums[0] for x in nums: if x > max_num: max_num = x return max_num if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Divide and Conquer algorithm def find_max(nums, left, right): """ find max value in list :param nums: contains elements :param left: index of first element :param right: index of last element :return: max in nums >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] >>> find_max(nums, 0, len(nums) - 1) == max(nums) True """ if left == right: return nums[left] mid = (left + right) >> 1 # the middle left_max = find_max(nums, left, mid) # find max in range[left, mid] right_max = find_max(nums, mid + 1, right) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] assert find_max(nums, 0, len(nums) - 1) == 10
from __future__ import annotations # Divide and Conquer algorithm def find_max(nums: list[int | float], left: int, right: int) -> int | float: """ find max value in list :param nums: contains elements :param left: index of first element :param right: index of last element :return: max in nums >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_max(nums, 0, len(nums) - 1) == max(nums) True True True True >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] >>> find_max(nums, 0, len(nums) - 1) == max(nums) True >>> find_max([], 0, 0) Traceback (most recent call last): ... ValueError: find_max() arg is an empty sequence >>> find_max(nums, 0, len(nums)) == max(nums) Traceback (most recent call last): ... IndexError: list index out of range >>> find_max(nums, -len(nums), -1) == max(nums) True >>> find_max(nums, -len(nums) - 1, -1) == max(nums) Traceback (most recent call last): ... IndexError: list index out of range """ if len(nums) == 0: raise ValueError("find_max() arg is an empty sequence") if ( left >= len(nums) or left < -len(nums) or right >= len(nums) or right < -len(nums) ): raise IndexError("list index out of range") if left == right: return nums[left] mid = (left + right) >> 1 # the middle left_max = find_max(nums, left, mid) # find max in range[left, mid] right_max = find_max(nums, mid + 1, right) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def find_min(nums): """ Find Minimum Number in a List :param nums: contains elements :return: min number in list >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_min(nums) == min(nums) True True True True """ min_num = nums[0] for num in nums: if min_num > num: min_num = num return min_num def main(): assert find_min([0, 1, 2, 3, 4, 5, -3, 24, -56]) == -56 if __name__ == "__main__": main()
from __future__ import annotations def find_min(nums: list[int | float]) -> int | float: """ Find Minimum Number in a List :param nums: contains elements :return: min number in list >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_min(nums) == min(nums) True True True True >>> find_min([0, 1, 2, 3, 4, 5, -3, 24, -56]) -56 >>> find_min([]) Traceback (most recent call last): ... ValueError: find_min() arg is an empty sequence """ if len(nums) == 0: raise ValueError("find_min() arg is an empty sequence") min_num = nums[0] for num in nums: if min_num > num: min_num = num return min_num if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Divide and Conquer algorithm def find_min(nums, left, right): """ find min value in list :param nums: contains elements :param left: index of first element :param right: index of last element :return: min in nums >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] >>> find_min(nums, 0, len(nums) - 1) == min(nums) True """ if left == right: return nums[left] mid = (left + right) >> 1 # the middle left_min = find_min(nums, left, mid) # find min in range[left, mid] right_min = find_min(nums, mid + 1, right) # find min in range[mid + 1, right] return left_min if left_min <= right_min else right_min if __name__ == "__main__": nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] assert find_min(nums, 0, len(nums) - 1) == 1
from __future__ import annotations # Divide and Conquer algorithm def find_min(nums: list[int | float], left: int, right: int) -> int | float: """ find min value in list :param nums: contains elements :param left: index of first element :param right: index of last element :return: min in nums >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_min(nums, 0, len(nums) - 1) == min(nums) True True True True >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] >>> find_min(nums, 0, len(nums) - 1) == min(nums) True >>> find_min([], 0, 0) Traceback (most recent call last): ... ValueError: find_min() arg is an empty sequence >>> find_min(nums, 0, len(nums)) == min(nums) Traceback (most recent call last): ... IndexError: list index out of range >>> find_min(nums, -len(nums), -1) == min(nums) True >>> find_min(nums, -len(nums) - 1, -1) == min(nums) Traceback (most recent call last): ... IndexError: list index out of range """ if len(nums) == 0: raise ValueError("find_min() arg is an empty sequence") if ( left >= len(nums) or left < -len(nums) or right >= len(nums) or right < -len(nums) ): raise IndexError("list index out of range") if left == right: return nums[left] mid = (left + right) >> 1 # the middle left_min = find_min(nums, left, mid) # find min in range[left, mid] right_min = find_min(nums, mid + 1, right) # find min in range[mid + 1, right] return left_min if left_min <= right_min else right_min if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import math def fx(x: float, a: float) -> float: return math.pow(x, 2) - a def fx_derivative(x: float) -> float: return 2 * x def get_initial_point(a: float) -> float: start = 2.0 while start <= a: start = math.pow(start, 2) return start def square_root_iterative( a: float, max_iter: int = 9999, tolerance: float = 0.00000000000001 ) -> float: """ Square root is aproximated using Newtons method. https://en.wikipedia.org/wiki/Newton%27s_method >>> all(abs(square_root_iterative(i)-math.sqrt(i)) <= .00000000000001 ... for i in range(500)) True >>> square_root_iterative(-1) Traceback (most recent call last): ... ValueError: math domain error >>> square_root_iterative(4) 2.0 >>> square_root_iterative(3.2) 1.788854381999832 >>> square_root_iterative(140) 11.832159566199232 """ if a < 0: raise ValueError("math domain error") value = get_initial_point(a) for i in range(max_iter): prev_value = value value = value - fx(value, a) / fx_derivative(value) if abs(prev_value - value) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
import math def fx(x: float, a: float) -> float: return math.pow(x, 2) - a def fx_derivative(x: float) -> float: return 2 * x def get_initial_point(a: float) -> float: start = 2.0 while start <= a: start = math.pow(start, 2) return start def square_root_iterative( a: float, max_iter: int = 9999, tolerance: float = 0.00000000000001 ) -> float: """ Square root is aproximated using Newtons method. https://en.wikipedia.org/wiki/Newton%27s_method >>> all(abs(square_root_iterative(i)-math.sqrt(i)) <= .00000000000001 ... for i in range(500)) True >>> square_root_iterative(-1) Traceback (most recent call last): ... ValueError: math domain error >>> square_root_iterative(4) 2.0 >>> square_root_iterative(3.2) 1.788854381999832 >>> square_root_iterative(140) 11.832159566199232 """ if a < 0: raise ValueError("math domain error") value = get_initial_point(a) for i in range(max_iter): prev_value = value value = value - fx(value, a) / fx_derivative(value) if abs(prev_value - value) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 20: https://projecteuler.net/problem=20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! """ def factorial(num: int) -> int: """Find the factorial of a given number n""" fact = 1 for i in range(1, num + 1): fact *= i return fact def split_and_add(number: int) -> int: """Split number digits and add them.""" sum_of_digits = 0 while number > 0: last_digit = number % 10 sum_of_digits += last_digit number = number // 10 # Removing the last_digit from the given number return sum_of_digits def solution(num: int = 100) -> int: """Returns the sum of the digits in the factorial of num >>> solution(100) 648 >>> solution(50) 216 >>> solution(10) 27 >>> solution(5) 3 >>> solution(3) 6 >>> solution(2) 2 >>> solution(1) 1 """ nfact = factorial(num) result = split_and_add(nfact) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
""" Problem 20: https://projecteuler.net/problem=20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! """ def factorial(num: int) -> int: """Find the factorial of a given number n""" fact = 1 for i in range(1, num + 1): fact *= i return fact def split_and_add(number: int) -> int: """Split number digits and add them.""" sum_of_digits = 0 while number > 0: last_digit = number % 10 sum_of_digits += last_digit number = number // 10 # Removing the last_digit from the given number return sum_of_digits def solution(num: int = 100) -> int: """Returns the sum of the digits in the factorial of num >>> solution(100) 648 >>> solution(50) 216 >>> solution(10) 27 >>> solution(5) 3 >>> solution(3) 6 >>> solution(2) 2 >>> solution(1) 1 """ nfact = factorial(num) result = split_and_add(nfact) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 7: https://projecteuler.net/problem=7 10001st prime By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? References: - https://en.wikipedia.org/wiki/Prime_number """ def isprime(number: int) -> bool: """ Determines whether the given number is prime or not >>> isprime(2) True >>> isprime(15) False >>> isprime(29) True """ for i in range(2, int(number ** 0.5) + 1): if number % i == 0: return False return True def solution(nth: int = 10001) -> int: """ Returns the n-th prime number. >>> solution(6) 13 >>> solution(1) 2 >>> solution(3) 5 >>> solution(20) 71 >>> solution(50) 229 >>> solution(100) 541 >>> solution(3.4) 5 >>> solution(0) Traceback (most recent call last): ... ValueError: Parameter nth must be greater than or equal to one. >>> solution(-17) Traceback (most recent call last): ... ValueError: Parameter nth must be greater than or equal to one. >>> solution([]) Traceback (most recent call last): ... TypeError: Parameter nth must be int or castable to int. >>> solution("asd") Traceback (most recent call last): ... TypeError: Parameter nth must be int or castable to int. """ try: nth = int(nth) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int.") from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one.") primes = [] num = 2 while len(primes) < nth: if isprime(num): primes.append(num) num += 1 else: num += 1 return primes[len(primes) - 1] if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 7: https://projecteuler.net/problem=7 10001st prime By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? References: - https://en.wikipedia.org/wiki/Prime_number """ def isprime(number: int) -> bool: """ Determines whether the given number is prime or not >>> isprime(2) True >>> isprime(15) False >>> isprime(29) True """ for i in range(2, int(number ** 0.5) + 1): if number % i == 0: return False return True def solution(nth: int = 10001) -> int: """ Returns the n-th prime number. >>> solution(6) 13 >>> solution(1) 2 >>> solution(3) 5 >>> solution(20) 71 >>> solution(50) 229 >>> solution(100) 541 >>> solution(3.4) 5 >>> solution(0) Traceback (most recent call last): ... ValueError: Parameter nth must be greater than or equal to one. >>> solution(-17) Traceback (most recent call last): ... ValueError: Parameter nth must be greater than or equal to one. >>> solution([]) Traceback (most recent call last): ... TypeError: Parameter nth must be int or castable to int. >>> solution("asd") Traceback (most recent call last): ... TypeError: Parameter nth must be int or castable to int. """ try: nth = int(nth) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int.") from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one.") primes = [] num = 2 while len(primes) < nth: if isprime(num): primes.append(num) num += 1 else: num += 1 return primes[len(primes) - 1] if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Given an array-like data structure A[1..n], how many pairs (i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are called inversions. Counting the number of such inversions in an array-like object is the important. Among other things, counting inversions can help us determine how close a given array is to being sorted In this implementation, I provide two algorithms, a divide-and-conquer algorithm which runs in nlogn and the brute-force n^2 algorithm. """ def count_inversions_bf(arr): """ Counts the number of inversions using a a naive brute-force algorithm Parameters ---------- arr: arr: array-like, the list containing the items for which the number of inversions is desired. The elements of `arr` must be comparable. Returns ------- num_inversions: The total number of inversions in `arr` Examples --------- >>> count_inversions_bf([1, 4, 2, 4, 1]) 4 >>> count_inversions_bf([1, 1, 2, 4, 4]) 0 >>> count_inversions_bf([]) 0 """ num_inversions = 0 n = len(arr) for i in range(n - 1): for j in range(i + 1, n): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def count_inversions_recursive(arr): """ Counts the number of inversions using a divide-and-conquer algorithm Parameters ----------- arr: array-like, the list containing the items for which the number of inversions is desired. The elements of `arr` must be comparable. Returns ------- C: a sorted copy of `arr`. num_inversions: int, the total number of inversions in 'arr' Examples -------- >>> count_inversions_recursive([1, 4, 2, 4, 1]) ([1, 1, 2, 4, 4], 4) >>> count_inversions_recursive([1, 1, 2, 4, 4]) ([1, 1, 2, 4, 4], 0) >>> count_inversions_recursive([]) ([], 0) """ if len(arr) <= 1: return arr, 0 else: mid = len(arr) // 2 P = arr[0:mid] Q = arr[mid:] A, inversion_p = count_inversions_recursive(P) B, inversions_q = count_inversions_recursive(Q) C, cross_inversions = _count_cross_inversions(A, B) num_inversions = inversion_p + inversions_q + cross_inversions return C, num_inversions def _count_cross_inversions(P, Q): """ Counts the inversions across two sorted arrays. And combine the two arrays into one sorted array For all 1<= i<=len(P) and for all 1 <= j <= len(Q), if P[i] > Q[j], then (i, j) is a cross inversion Parameters ---------- P: array-like, sorted in non-decreasing order Q: array-like, sorted in non-decreasing order Returns ------ R: array-like, a sorted array of the elements of `P` and `Q` num_inversion: int, the number of inversions across `P` and `Q` Examples -------- >>> _count_cross_inversions([1, 2, 3], [0, 2, 5]) ([0, 1, 2, 2, 3, 5], 4) >>> _count_cross_inversions([1, 2, 3], [3, 4, 5]) ([1, 2, 3, 3, 4, 5], 0) """ R = [] i = j = num_inversion = 0 while i < len(P) and j < len(Q): if P[i] > Q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(P) - i R.append(Q[j]) j += 1 else: R.append(P[i]) i += 1 if i < len(P): R.extend(P[i:]) else: R.extend(Q[j:]) return R, num_inversion def main(): arr_1 = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = ", num_inversions_bf) # testing an array with zero inversion (a sorted arr_1) arr_1.sort() num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) # an empty list should also have zero inversions arr_1 = [] num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) if __name__ == "__main__": main()
""" Given an array-like data structure A[1..n], how many pairs (i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are called inversions. Counting the number of such inversions in an array-like object is the important. Among other things, counting inversions can help us determine how close a given array is to being sorted In this implementation, I provide two algorithms, a divide-and-conquer algorithm which runs in nlogn and the brute-force n^2 algorithm. """ def count_inversions_bf(arr): """ Counts the number of inversions using a a naive brute-force algorithm Parameters ---------- arr: arr: array-like, the list containing the items for which the number of inversions is desired. The elements of `arr` must be comparable. Returns ------- num_inversions: The total number of inversions in `arr` Examples --------- >>> count_inversions_bf([1, 4, 2, 4, 1]) 4 >>> count_inversions_bf([1, 1, 2, 4, 4]) 0 >>> count_inversions_bf([]) 0 """ num_inversions = 0 n = len(arr) for i in range(n - 1): for j in range(i + 1, n): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def count_inversions_recursive(arr): """ Counts the number of inversions using a divide-and-conquer algorithm Parameters ----------- arr: array-like, the list containing the items for which the number of inversions is desired. The elements of `arr` must be comparable. Returns ------- C: a sorted copy of `arr`. num_inversions: int, the total number of inversions in 'arr' Examples -------- >>> count_inversions_recursive([1, 4, 2, 4, 1]) ([1, 1, 2, 4, 4], 4) >>> count_inversions_recursive([1, 1, 2, 4, 4]) ([1, 1, 2, 4, 4], 0) >>> count_inversions_recursive([]) ([], 0) """ if len(arr) <= 1: return arr, 0 else: mid = len(arr) // 2 P = arr[0:mid] Q = arr[mid:] A, inversion_p = count_inversions_recursive(P) B, inversions_q = count_inversions_recursive(Q) C, cross_inversions = _count_cross_inversions(A, B) num_inversions = inversion_p + inversions_q + cross_inversions return C, num_inversions def _count_cross_inversions(P, Q): """ Counts the inversions across two sorted arrays. And combine the two arrays into one sorted array For all 1<= i<=len(P) and for all 1 <= j <= len(Q), if P[i] > Q[j], then (i, j) is a cross inversion Parameters ---------- P: array-like, sorted in non-decreasing order Q: array-like, sorted in non-decreasing order Returns ------ R: array-like, a sorted array of the elements of `P` and `Q` num_inversion: int, the number of inversions across `P` and `Q` Examples -------- >>> _count_cross_inversions([1, 2, 3], [0, 2, 5]) ([0, 1, 2, 2, 3, 5], 4) >>> _count_cross_inversions([1, 2, 3], [3, 4, 5]) ([1, 2, 3, 3, 4, 5], 0) """ R = [] i = j = num_inversion = 0 while i < len(P) and j < len(Q): if P[i] > Q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(P) - i R.append(Q[j]) j += 1 else: R.append(P[i]) i += 1 if i < len(P): R.extend(P[i:]) else: R.extend(Q[j:]) return R, num_inversion def main(): arr_1 = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = ", num_inversions_bf) # testing an array with zero inversion (a sorted arr_1) arr_1.sort() num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) # an empty list should also have zero inversions arr_1 = [] num_inversions_bf = count_inversions_bf(arr_1) _, num_inversions_recursive = count_inversions_recursive(arr_1) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = ", num_inversions_bf) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Lychrel numbers Problem 55: https://projecteuler.net/problem=55 If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown to require over fifty iterations before producing a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits). Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is 4994. How many Lychrel numbers are there below ten-thousand? """ def is_palindrome(n: int) -> bool: """ Returns True if a number is palindrome. >>> is_palindrome(12567321) False >>> is_palindrome(1221) True >>> is_palindrome(9876789) True """ return str(n) == str(n)[::-1] def sum_reverse(n: int) -> int: """ Returns the sum of n and reverse of n. >>> sum_reverse(123) 444 >>> sum_reverse(3478) 12221 >>> sum_reverse(12) 33 """ return int(n) + int(str(n)[::-1]) def solution(limit: int = 10000) -> int: """ Returns the count of all lychrel numbers below limit. >>> solution(10000) 249 >>> solution(5000) 76 >>> solution(1000) 13 """ lychrel_nums = [] for num in range(1, limit): iterations = 0 a = num while iterations < 50: num = sum_reverse(num) iterations += 1 if is_palindrome(num): break else: lychrel_nums.append(a) return len(lychrel_nums) if __name__ == "__main__": print(f"{solution() = }")
""" Lychrel numbers Problem 55: https://projecteuler.net/problem=55 If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown to require over fifty iterations before producing a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits). Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is 4994. How many Lychrel numbers are there below ten-thousand? """ def is_palindrome(n: int) -> bool: """ Returns True if a number is palindrome. >>> is_palindrome(12567321) False >>> is_palindrome(1221) True >>> is_palindrome(9876789) True """ return str(n) == str(n)[::-1] def sum_reverse(n: int) -> int: """ Returns the sum of n and reverse of n. >>> sum_reverse(123) 444 >>> sum_reverse(3478) 12221 >>> sum_reverse(12) 33 """ return int(n) + int(str(n)[::-1]) def solution(limit: int = 10000) -> int: """ Returns the count of all lychrel numbers below limit. >>> solution(10000) 249 >>> solution(5000) 76 >>> solution(1000) 13 """ lychrel_nums = [] for num in range(1, limit): iterations = 0 a = num while iterations < 50: num = sum_reverse(num) iterations += 1 if is_palindrome(num): break else: lychrel_nums.append(a) return len(lychrel_nums) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance""" def jaro_winkler(str1: str, str2: str) -> float: """ Jaro–Winkler distance is a string metric measuring an edit distance between two sequences. Output value is between 0.0 and 1.0. >>> jaro_winkler("martha", "marhta") 0.9611111111111111 >>> jaro_winkler("CRATE", "TRACE") 0.7333333333333334 >>> jaro_winkler("test", "dbdbdbdb") 0.0 >>> jaro_winkler("test", "test") 1.0 >>> jaro_winkler("hello world", "HeLLo W0rlD") 0.6363636363636364 >>> jaro_winkler("test", "") 0.0 >>> jaro_winkler("hello", "world") 0.4666666666666666 >>> jaro_winkler("hell**o", "*world") 0.4365079365079365 """ def get_matched_characters(_str1: str, _str2: str) -> str: matched = [] limit = min(len(_str1), len(_str2)) // 2 for i, l in enumerate(_str1): left = int(max(0, i - limit)) right = int(min(i + limit + 1, len(_str2))) if l in _str2[left:right]: matched.append(l) _str2 = f"{_str2[0:_str2.index(l)]} {_str2[_str2.index(l) + 1:]}" return "".join(matched) # matching characters matching_1 = get_matched_characters(str1, str2) matching_2 = get_matched_characters(str2, str1) match_count = len(matching_1) # transposition transpositions = ( len([(c1, c2) for c1, c2 in zip(matching_1, matching_2) if c1 != c2]) // 2 ) if not match_count: jaro = 0.0 else: jaro = ( 1 / 3 * ( match_count / len(str1) + match_count / len(str2) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters prefix_len = 0 for c1, c2 in zip(str1[:4], str2[:4]): if c1 == c2: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
"""https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance""" def jaro_winkler(str1: str, str2: str) -> float: """ Jaro–Winkler distance is a string metric measuring an edit distance between two sequences. Output value is between 0.0 and 1.0. >>> jaro_winkler("martha", "marhta") 0.9611111111111111 >>> jaro_winkler("CRATE", "TRACE") 0.7333333333333334 >>> jaro_winkler("test", "dbdbdbdb") 0.0 >>> jaro_winkler("test", "test") 1.0 >>> jaro_winkler("hello world", "HeLLo W0rlD") 0.6363636363636364 >>> jaro_winkler("test", "") 0.0 >>> jaro_winkler("hello", "world") 0.4666666666666666 >>> jaro_winkler("hell**o", "*world") 0.4365079365079365 """ def get_matched_characters(_str1: str, _str2: str) -> str: matched = [] limit = min(len(_str1), len(_str2)) // 2 for i, l in enumerate(_str1): left = int(max(0, i - limit)) right = int(min(i + limit + 1, len(_str2))) if l in _str2[left:right]: matched.append(l) _str2 = f"{_str2[0:_str2.index(l)]} {_str2[_str2.index(l) + 1:]}" return "".join(matched) # matching characters matching_1 = get_matched_characters(str1, str2) matching_2 = get_matched_characters(str2, str1) match_count = len(matching_1) # transposition transpositions = ( len([(c1, c2) for c1, c2 in zip(matching_1, matching_2) if c1 != c2]) // 2 ) if not match_count: jaro = 0.0 else: jaro = ( 1 / 3 * ( match_count / len(str1) + match_count / len(str2) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters prefix_len = 0 for c1, c2 in zip(str1[:4], str2[:4]): if c1 == c2: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" In a multi-threaded download, this algorithm could be used to provide each worker thread with a block of non-overlapping bytes to download. For example: for i in allocation_list: requests.get(url,headers={'Range':f'bytes={i}'}) """ from __future__ import annotations def allocation_num(number_of_bytes: int, partitions: int) -> list[str]: """ Divide a number of bytes into x partitions. :param number_of_bytes: the total of bytes. :param partitions: the number of partition need to be allocated. :return: list of bytes to be assigned to each worker thread >>> allocation_num(16647, 4) ['1-4161', '4162-8322', '8323-12483', '12484-16647'] >>> allocation_num(50000, 5) ['1-10000', '10001-20000', '20001-30000', '30001-40000', '40001-50000'] >>> allocation_num(888, 999) Traceback (most recent call last): ... ValueError: partitions can not > number_of_bytes! >>> allocation_num(888, -4) Traceback (most recent call last): ... ValueError: partitions must be a positive number! """ if partitions <= 0: raise ValueError("partitions must be a positive number!") if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!") bytes_per_partition = number_of_bytes // partitions allocation_list = [] for i in range(partitions): start_bytes = i * bytes_per_partition + 1 end_bytes = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}") return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
""" In a multi-threaded download, this algorithm could be used to provide each worker thread with a block of non-overlapping bytes to download. For example: for i in allocation_list: requests.get(url,headers={'Range':f'bytes={i}'}) """ from __future__ import annotations def allocation_num(number_of_bytes: int, partitions: int) -> list[str]: """ Divide a number of bytes into x partitions. :param number_of_bytes: the total of bytes. :param partitions: the number of partition need to be allocated. :return: list of bytes to be assigned to each worker thread >>> allocation_num(16647, 4) ['1-4161', '4162-8322', '8323-12483', '12484-16647'] >>> allocation_num(50000, 5) ['1-10000', '10001-20000', '20001-30000', '30001-40000', '40001-50000'] >>> allocation_num(888, 999) Traceback (most recent call last): ... ValueError: partitions can not > number_of_bytes! >>> allocation_num(888, -4) Traceback (most recent call last): ... ValueError: partitions must be a positive number! """ if partitions <= 0: raise ValueError("partitions must be a positive number!") if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!") bytes_per_partition = number_of_bytes // partitions allocation_list = [] for i in range(partitions): start_bytes = i * bytes_per_partition + 1 end_bytes = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}") return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Python program to implement Morse Code Translator # Dictionary representing the morse code chart MORSE_CODE_DICT = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", '"': ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", # Exclamation mark is not in ITU-R recommendation "!": "-.-.--", } def encrypt(message: str) -> str: cipher = "" for letter in message: if letter != " ": cipher += MORSE_CODE_DICT[letter] + " " else: cipher += "/ " # Remove trailing space added on line 64 return cipher[:-1] def decrypt(message: str) -> str: decipher = "" letters = message.split(" ") for letter in letters: if letter != "/": decipher += list(MORSE_CODE_DICT.keys())[ list(MORSE_CODE_DICT.values()).index(letter) ] else: decipher += " " return decipher def main() -> None: message = "Morse code here" result = encrypt(message.upper()) print(result) message = result result = decrypt(message) print(result) if __name__ == "__main__": main()
# Python program to implement Morse Code Translator # Dictionary representing the morse code chart MORSE_CODE_DICT = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", '"': ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", # Exclamation mark is not in ITU-R recommendation "!": "-.-.--", } def encrypt(message: str) -> str: cipher = "" for letter in message: if letter != " ": cipher += MORSE_CODE_DICT[letter] + " " else: cipher += "/ " # Remove trailing space added on line 64 return cipher[:-1] def decrypt(message: str) -> str: decipher = "" letters = message.split(" ") for letter in letters: if letter != "/": decipher += list(MORSE_CODE_DICT.keys())[ list(MORSE_CODE_DICT.values()).index(letter) ] else: decipher += " " return decipher def main() -> None: message = "Morse code here" result = encrypt(message.upper()) print(result) message = result result = decrypt(message) print(result) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://en.wikipedia.org/wiki/Simulated_annealing import math import random from .hill_climbing import SearchProblem def simulated_annealing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, start_temperate: float = 100, rate_of_decrease: float = 0.01, threshold_temp: float = 1, ) -> SearchProblem: """ Implementation of the simulated annealing algorithm. We start with a given state, find all its neighbors. Pick a random neighbor, if that neighbor improves the solution, we move in that direction, if that neighbor does not improve the solution, we generate a random real number between 0 and 1, if the number is within a certain range (calculated using temperature) we move in that direction, else we pick another neighbor randomly and repeat the process. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the minimum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. start_temperate: the initial temperate of the system when the program starts. rate_of_decrease: the rate at which the temperate decreases in each iteration. threshold_temp: the threshold temperature below which we end the search Returns a search state having the maximum (or minimum) score. """ search_end = False current_state = search_prob current_temp = start_temperate scores = [] iterations = 0 best_state = None while not search_end: current_score = current_state.score() if best_state is None or current_score > best_state.score(): best_state = current_state scores.append(current_score) iterations += 1 next_state = None neighbors = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to index = random.randint(0, len(neighbors) - 1) # picking a random neighbor picked_neighbor = neighbors.pop(index) change = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: change = change * -1 # in case we are finding minimum if change > 0: # improves the solution next_state = picked_neighbor else: probability = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability next_state = picked_neighbor current_temp = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor search_end = True else: current_state = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return best_state if __name__ == "__main__": def test_f1(x, y): return (x ** 2) + (y ** 2) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x ** 2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"{local_min.score()}" ) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"{local_min.score()}" )
# https://en.wikipedia.org/wiki/Simulated_annealing import math import random from .hill_climbing import SearchProblem def simulated_annealing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, start_temperate: float = 100, rate_of_decrease: float = 0.01, threshold_temp: float = 1, ) -> SearchProblem: """ Implementation of the simulated annealing algorithm. We start with a given state, find all its neighbors. Pick a random neighbor, if that neighbor improves the solution, we move in that direction, if that neighbor does not improve the solution, we generate a random real number between 0 and 1, if the number is within a certain range (calculated using temperature) we move in that direction, else we pick another neighbor randomly and repeat the process. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the minimum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. start_temperate: the initial temperate of the system when the program starts. rate_of_decrease: the rate at which the temperate decreases in each iteration. threshold_temp: the threshold temperature below which we end the search Returns a search state having the maximum (or minimum) score. """ search_end = False current_state = search_prob current_temp = start_temperate scores = [] iterations = 0 best_state = None while not search_end: current_score = current_state.score() if best_state is None or current_score > best_state.score(): best_state = current_state scores.append(current_score) iterations += 1 next_state = None neighbors = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to index = random.randint(0, len(neighbors) - 1) # picking a random neighbor picked_neighbor = neighbors.pop(index) change = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: change = change * -1 # in case we are finding minimum if change > 0: # improves the solution next_state = picked_neighbor else: probability = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability next_state = picked_neighbor current_temp = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor search_end = True else: current_state = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return best_state if __name__ == "__main__": def test_f1(x, y): return (x ** 2) + (y ** 2) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x ** 2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"{local_min.score()}" ) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"{local_min.score()}" )
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from collections import defaultdict from graphs.minimum_spanning_tree_prims import PrimsAlgorithm as mst def test_prim_successful_result(): num_nodes, num_edges = 9, 14 # noqa: F841 edges = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] adjancency = defaultdict(list) for node1, node2, cost in edges: adjancency[node1].append([node2, cost]) adjancency[node2].append([node1, cost]) result = mst(adjancency) expected = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: edge = tuple(answer[:2]) reverse = tuple(edge[::-1]) assert edge in result or reverse in result
from collections import defaultdict from graphs.minimum_spanning_tree_prims import PrimsAlgorithm as mst def test_prim_successful_result(): num_nodes, num_edges = 9, 14 # noqa: F841 edges = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] adjancency = defaultdict(list) for node1, node2, cost in edges: adjancency[node1].append([node2, cost]) adjancency[node2].append([node1, cost]) result = mst(adjancency) expected = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: edge = tuple(answer[:2]) reverse = tuple(edge[::-1]) assert edge in result or reverse in result
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Champernowne's constant Problem 40 An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 """ def solution(): """Returns >>> solution() 210 """ constant = [] i = 1 while len(constant) < 1e6: constant.append(str(i)) i += 1 constant = "".join(constant) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[999]) * int(constant[9999]) * int(constant[99999]) * int(constant[999999]) ) if __name__ == "__main__": print(solution())
""" Champernowne's constant Problem 40 An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 """ def solution(): """Returns >>> solution() 210 """ constant = [] i = 1 while len(constant) < 1e6: constant.append(str(i)) i += 1 constant = "".join(constant) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[999]) * int(constant[9999]) * int(constant[99999]) * int(constant[999999]) ) if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 8: https://projecteuler.net/problem=8 Largest product in a series The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? """ from functools import reduce N = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def solution(n: str = N) -> int: """ Find the thirteen adjacent digits in the 1000-digit number n that have the greatest product and returns it. >>> solution("13978431290823798458352374") 609638400 >>> solution("13978431295823798458352374") 2612736000 >>> solution("1397843129582379841238352374") 209018880 """ return max( reduce(lambda x, y: int(x) * int(y), n[i : i + 13]) for i in range(len(n) - 12) ) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 8: https://projecteuler.net/problem=8 Largest product in a series The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? """ from functools import reduce N = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def solution(n: str = N) -> int: """ Find the thirteen adjacent digits in the 1000-digit number n that have the greatest product and returns it. >>> solution("13978431290823798458352374") 609638400 >>> solution("13978431295823798458352374") 2612736000 >>> solution("1397843129582379841238352374") 209018880 """ return max( reduce(lambda x, y: int(x) * int(y), n[i : i + 13]) for i in range(len(n) - 12) ) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 85: https://projecteuler.net/problem=85 By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles.  Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the nearest solution. Solution: For a grid with side-lengths a and b, the number of rectangles contained in the grid is [a*(a+1)/2] * [b*(b+1)/2)], which happens to be the product of the a-th and b-th triangle numbers. So to find the solution grid (a,b), we need to find the two triangle numbers whose product is closest to two million. Denote these two triangle numbers Ta and Tb. We want their product Ta*Tb to be as close as possible to 2m. Assuming that the best solution is fairly close to 2m, We can assume that both Ta and Tb are roughly bounded by 2m. Since Ta = a(a+1)/2, we can assume that a (and similarly b) are roughly bounded by sqrt(2 * 2m) = 2000. Since this is a rough bound, to be on the safe side we add 10%. Therefore we start by generating all the triangle numbers Ta for 1 <= a <= 2200. This can be done iteratively since the ith triangle number is the sum of 1,2, ... ,i, and so T(i) = T(i-1) + i. We then search this list of triangle numbers for the two that give a product closest to our target of two million. Rather than testing every combination of 2 elements of the list, which would find the result in quadratic time, we can find the best pair in linear time. We iterate through the list of triangle numbers using enumerate() so we have a and Ta. Since we want Ta * Tb to be as close as possible to 2m, we know that Tb needs to be roughly 2m / Ta. Using the formula Tb = b*(b+1)/2 as well as the quadratic formula, we can solve for b: b is roughly (-1 + sqrt(1 + 8 * 2m / Ta)) / 2. Since the closest integers to this estimate will give product closest to 2m, we only need to consider the integers above and below. It's then a simple matter to get the triangle numbers corresponding to those integers, calculate the product Ta * Tb, compare that product to our target 2m, and keep track of the (a,b) pair that comes the closest. Reference: https://en.wikipedia.org/wiki/Triangular_number https://en.wikipedia.org/wiki/Quadratic_formula """ from __future__ import annotations from math import ceil, floor, sqrt def solution(target: int = 2000000) -> int: """ Find the area of the grid which contains as close to two million rectangles as possible. >>> solution(20) 6 >>> solution(2000) 72 >>> solution(2000000000) 86595 """ triangle_numbers: list[int] = [0] idx: int for idx in range(1, ceil(sqrt(target * 2) * 1.1)): triangle_numbers.append(triangle_numbers[-1] + idx) # we want this to be as close as possible to target best_product: int = 0 # the area corresponding to the grid that gives the product closest to target area: int = 0 # an estimate of b, using the quadratic formula b_estimate: float # the largest integer less than b_estimate b_floor: int # the largest integer less than b_estimate b_ceil: int # the triangle number corresponding to b_floor triangle_b_first_guess: int # the triangle number corresponding to b_ceil triangle_b_second_guess: int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1): b_estimate = (-1 + sqrt(1 + 8 * target / triangle_a)) / 2 b_floor = floor(b_estimate) b_ceil = ceil(b_estimate) triangle_b_first_guess = triangle_numbers[b_floor] triangle_b_second_guess = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a) < abs( target - best_product ): best_product = triangle_b_first_guess * triangle_a area = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a) < abs( target - best_product ): best_product = triangle_b_second_guess * triangle_a area = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 85: https://projecteuler.net/problem=85 By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles.  Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the nearest solution. Solution: For a grid with side-lengths a and b, the number of rectangles contained in the grid is [a*(a+1)/2] * [b*(b+1)/2)], which happens to be the product of the a-th and b-th triangle numbers. So to find the solution grid (a,b), we need to find the two triangle numbers whose product is closest to two million. Denote these two triangle numbers Ta and Tb. We want their product Ta*Tb to be as close as possible to 2m. Assuming that the best solution is fairly close to 2m, We can assume that both Ta and Tb are roughly bounded by 2m. Since Ta = a(a+1)/2, we can assume that a (and similarly b) are roughly bounded by sqrt(2 * 2m) = 2000. Since this is a rough bound, to be on the safe side we add 10%. Therefore we start by generating all the triangle numbers Ta for 1 <= a <= 2200. This can be done iteratively since the ith triangle number is the sum of 1,2, ... ,i, and so T(i) = T(i-1) + i. We then search this list of triangle numbers for the two that give a product closest to our target of two million. Rather than testing every combination of 2 elements of the list, which would find the result in quadratic time, we can find the best pair in linear time. We iterate through the list of triangle numbers using enumerate() so we have a and Ta. Since we want Ta * Tb to be as close as possible to 2m, we know that Tb needs to be roughly 2m / Ta. Using the formula Tb = b*(b+1)/2 as well as the quadratic formula, we can solve for b: b is roughly (-1 + sqrt(1 + 8 * 2m / Ta)) / 2. Since the closest integers to this estimate will give product closest to 2m, we only need to consider the integers above and below. It's then a simple matter to get the triangle numbers corresponding to those integers, calculate the product Ta * Tb, compare that product to our target 2m, and keep track of the (a,b) pair that comes the closest. Reference: https://en.wikipedia.org/wiki/Triangular_number https://en.wikipedia.org/wiki/Quadratic_formula """ from __future__ import annotations from math import ceil, floor, sqrt def solution(target: int = 2000000) -> int: """ Find the area of the grid which contains as close to two million rectangles as possible. >>> solution(20) 6 >>> solution(2000) 72 >>> solution(2000000000) 86595 """ triangle_numbers: list[int] = [0] idx: int for idx in range(1, ceil(sqrt(target * 2) * 1.1)): triangle_numbers.append(triangle_numbers[-1] + idx) # we want this to be as close as possible to target best_product: int = 0 # the area corresponding to the grid that gives the product closest to target area: int = 0 # an estimate of b, using the quadratic formula b_estimate: float # the largest integer less than b_estimate b_floor: int # the largest integer less than b_estimate b_ceil: int # the triangle number corresponding to b_floor triangle_b_first_guess: int # the triangle number corresponding to b_ceil triangle_b_second_guess: int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1): b_estimate = (-1 + sqrt(1 + 8 * target / triangle_a)) / 2 b_floor = floor(b_estimate) b_ceil = ceil(b_estimate) triangle_b_first_guess = triangle_numbers[b_floor] triangle_b_second_guess = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a) < abs( target - best_product ): best_product = triangle_b_first_guess * triangle_a area = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a) < abs( target - best_product ): best_product = triangle_b_second_guess * triangle_a area = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 8: https://projecteuler.net/problem=8 Largest product in a series The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? """ import sys N = """73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450""" def str_eval(s: str) -> int: """ Returns product of digits in given string n >>> str_eval("987654321") 362880 >>> str_eval("22222222") 256 """ product = 1 for digit in s: product *= int(digit) return product def solution(n: str = N) -> int: """ Find the thirteen adjacent digits in the 1000-digit number n that have the greatest product and returns it. """ largest_product = -sys.maxsize - 1 substr = n[:13] cur_index = 13 while cur_index < len(n) - 13: if int(n[cur_index]) >= int(substr[0]): substr = substr[1:] + n[cur_index] cur_index += 1 else: largest_product = max(largest_product, str_eval(substr)) substr = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 8: https://projecteuler.net/problem=8 Largest product in a series The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? """ import sys N = """73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450""" def str_eval(s: str) -> int: """ Returns product of digits in given string n >>> str_eval("987654321") 362880 >>> str_eval("22222222") 256 """ product = 1 for digit in s: product *= int(digit) return product def solution(n: str = N) -> int: """ Find the thirteen adjacent digits in the 1000-digit number n that have the greatest product and returns it. """ largest_product = -sys.maxsize - 1 substr = n[:13] cur_index = 13 while cur_index < len(n) - 13: if int(n[cur_index]) >= int(substr[0]): substr = substr[1:] + n[cur_index] cur_index += 1 else: largest_product = max(largest_product, str_eval(substr)) substr = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 7: https://projecteuler.net/problem=7 10001st prime By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? References: - https://en.wikipedia.org/wiki/Prime_number """ import itertools import math def prime_check(number: int) -> bool: """ Determines whether a given number is prime or not >>> prime_check(2) True >>> prime_check(15) False >>> prime_check(29) True """ if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) def prime_generator(): """ Generate a sequence of prime numbers """ num = 2 while True: if prime_check(num): yield num num += 1 def solution(nth: int = 10001) -> int: """ Returns the n-th prime number. >>> solution(6) 13 >>> solution(1) 2 >>> solution(3) 5 >>> solution(20) 71 >>> solution(50) 229 >>> solution(100) 541 """ return next(itertools.islice(prime_generator(), nth - 1, nth)) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 7: https://projecteuler.net/problem=7 10001st prime By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? References: - https://en.wikipedia.org/wiki/Prime_number """ import itertools import math def prime_check(number: int) -> bool: """ Determines whether a given number is prime or not >>> prime_check(2) True >>> prime_check(15) False >>> prime_check(29) True """ if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) def prime_generator(): """ Generate a sequence of prime numbers """ num = 2 while True: if prime_check(num): yield num num += 1 def solution(nth: int = 10001) -> int: """ Returns the n-th prime number. >>> solution(6) 13 >>> solution(1) 2 >>> solution(3) 5 >>> solution(20) 71 >>> solution(50) 229 >>> solution(100) 541 """ return next(itertools.islice(prime_generator(), nth - 1, nth)) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Breadth-first search shortest path implementations. doctest: python -m doctest -v bfs_shortest_path.py Manual test: python bfs_shortest_path.py """ demo_graph = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def bfs_shortest_path(graph: dict, start, goal) -> list[str]: """Find shortest path between `start` and `goal` nodes. Args: graph (dict): node/list of neighboring nodes key/value pairs. start: start node. goal: target node. Returns: Shortest path between `start` and `goal` nodes as a string of nodes. 'Not found' string if no path found. Example: >>> bfs_shortest_path(demo_graph, "G", "D") ['G', 'C', 'A', 'B', 'D'] >>> bfs_shortest_path(demo_graph, "G", "G") ['G'] >>> bfs_shortest_path(demo_graph, "G", "Unknown") [] """ # keep track of explored nodes explored = set() # keep track of all the paths to be checked queue = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue path = queue.pop(0) # get the last node from the path node = path[-1] if node not in explored: neighbours = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: new_path = list(path) new_path.append(neighbour) queue.append(new_path) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(node) # in case there's no path between the 2 nodes return [] def bfs_shortest_path_distance(graph: dict, start, target) -> int: """Find shortest path distance between `start` and `target` nodes. Args: graph: node/list of neighboring nodes key/value pairs. start: node to start search from. target: node to search for. Returns: Number of edges in shortest path between `start` and `target` nodes. -1 if no path exists. Example: >>> bfs_shortest_path_distance(demo_graph, "G", "D") 4 >>> bfs_shortest_path_distance(demo_graph, "A", "A") 0 >>> bfs_shortest_path_distance(demo_graph, "A", "Unknown") -1 """ if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 queue = [start] visited = set(start) # Keep tab on distances from `start` node. dist = {start: 0, target: -1} while queue: node = queue.pop(0) if node == target: dist[target] = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(adjacent) queue.append(adjacent) dist[adjacent] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
"""Breadth-first search shortest path implementations. doctest: python -m doctest -v bfs_shortest_path.py Manual test: python bfs_shortest_path.py """ demo_graph = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def bfs_shortest_path(graph: dict, start, goal) -> list[str]: """Find shortest path between `start` and `goal` nodes. Args: graph (dict): node/list of neighboring nodes key/value pairs. start: start node. goal: target node. Returns: Shortest path between `start` and `goal` nodes as a string of nodes. 'Not found' string if no path found. Example: >>> bfs_shortest_path(demo_graph, "G", "D") ['G', 'C', 'A', 'B', 'D'] >>> bfs_shortest_path(demo_graph, "G", "G") ['G'] >>> bfs_shortest_path(demo_graph, "G", "Unknown") [] """ # keep track of explored nodes explored = set() # keep track of all the paths to be checked queue = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue path = queue.pop(0) # get the last node from the path node = path[-1] if node not in explored: neighbours = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: new_path = list(path) new_path.append(neighbour) queue.append(new_path) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(node) # in case there's no path between the 2 nodes return [] def bfs_shortest_path_distance(graph: dict, start, target) -> int: """Find shortest path distance between `start` and `target` nodes. Args: graph: node/list of neighboring nodes key/value pairs. start: node to start search from. target: node to search for. Returns: Number of edges in shortest path between `start` and `target` nodes. -1 if no path exists. Example: >>> bfs_shortest_path_distance(demo_graph, "G", "D") 4 >>> bfs_shortest_path_distance(demo_graph, "A", "A") 0 >>> bfs_shortest_path_distance(demo_graph, "A", "Unknown") -1 """ if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 queue = [start] visited = set(start) # Keep tab on distances from `start` node. dist = {start: 0, target: -1} while queue: node = queue.pop(0) if node == target: dist[target] = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(adjacent) queue.append(adjacent) dist[adjacent] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 import os from typing import Iterator URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master" def good_file_paths(top_dir: str = ".") -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(top_dir): dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): yield os.path.join(dir_path, filename).lstrip("./") def md_prefix(i): return f"{i * ' '}*" if i else "\n##" def print_path(old_path: str, new_path: str) -> str: old_parts = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if i + 1 > len(old_parts) or old_parts[i] != new_part: if new_part: print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") return new_path def print_directory_md(top_dir: str = ".") -> None: old_path = "" for filepath in sorted(good_file_paths(top_dir)): filepath, filename = os.path.split(filepath) if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") filename = os.path.splitext(filename.replace("_", " ").title())[0] print(f"{md_prefix(indent)} [{filename}]({url})") if __name__ == "__main__": print_directory_md(".")
#!/usr/bin/env python3 import os from typing import Iterator URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master" def good_file_paths(top_dir: str = ".") -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(top_dir): dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): yield os.path.join(dir_path, filename).lstrip("./") def md_prefix(i): return f"{i * ' '}*" if i else "\n##" def print_path(old_path: str, new_path: str) -> str: old_parts = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if i + 1 > len(old_parts) or old_parts[i] != new_part: if new_part: print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") return new_path def print_directory_md(top_dir: str = ".") -> None: old_path = "" for filepath in sorted(good_file_paths(top_dir)): filepath, filename = os.path.split(filepath) if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") filename = os.path.splitext(filename.replace("_", " ").title())[0] print(f"{md_prefix(indent)} [{filename}]({url})") if __name__ == "__main__": print_directory_md(".")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Sum of digits sequence Problem 551 Let a(0), a(1),... be an integer sequence defined by: a(0) = 1 for n >= 1, a(n) is the sum of the digits of all preceding terms The sequence starts with 1, 1, 2, 4, 8, ... You are given a(10^6) = 31054319. Find a(10^15) """ ks = [k for k in range(2, 20 + 1)] base = [10 ** k for k in range(ks[-1] + 1)] memo = {} def next_term(a_i, k, i, n): """ Calculates and updates a_i in-place to either the n-th term or the smallest term for which c > 10^k when the terms are written in the form: a(i) = b * 10^k + c For any a(i), if digitsum(b) and c have the same value, the difference between subsequent terms will be the same until c >= 10^k. This difference is cached to greatly speed up the computation. Arguments: a_i -- array of digits starting from the one's place that represent the i-th term in the sequence k -- k when terms are written in the from a(i) = b*10^k + c. Term are calulcated until c > 10^k or the n-th term is reached. i -- position along the sequence n -- term to calculate up to if k is large enough Return: a tuple of difference between ending term and starting term, and the number of terms calculated. ex. if starting term is a_0=1, and ending term is a_10=62, then (61, 9) is returned. """ # ds_b - digitsum(b) ds_b = sum(a_i[j] for j in range(k, len(a_i))) c = sum(a_i[j] * base[j] for j in range(min(len(a_i), k))) diff, dn = 0, 0 max_dn = n - i sub_memo = memo.get(ds_b) if sub_memo is not None: jumps = sub_memo.get(c) if jumps is not None and len(jumps) > 0: # find and make the largest jump without going over max_jump = -1 for _k in range(len(jumps) - 1, -1, -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: max_jump = _k break if max_jump >= 0: diff, dn, _kk = jumps[max_jump] # since the difference between jumps is cached, add c new_c = diff + c for j in range(min(k, len(a_i))): new_c, a_i[j] = divmod(new_c, 10) if new_c > 0: add(a_i, k, new_c) else: sub_memo[c] = [] else: sub_memo = {c: []} memo[ds_b] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _diff, terms_jumped = next_term(a_i, k - 1, i + dn, n) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _diff, terms_jumped = compute(a_i, k, i + dn, n) diff += _diff dn += terms_jumped jumps = sub_memo[c] # keep jumps sorted by # of terms skipped j = 0 while j < len(jumps): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(j, (diff, dn, k)) return (diff, dn) def compute(a_i, k, i, n): """ same as next_term(a_i, k, i, n) but computes terms without memoizing results. """ if i >= n: return 0, i if k > len(a_i): a_i.extend([0 for _ in range(k - len(a_i))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) start_i = i ds_b, ds_c, diff = 0, 0, 0 for j in range(len(a_i)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 addend = ds_c + ds_b diff += addend ds_c = 0 for j in range(k): s = a_i[j] + addend addend, a_i[j] = divmod(s, 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a_i, k, addend) return diff, i - start_i def add(digits, k, addend): """ adds addend to digit array given in digits starting at index k """ for j in range(k, len(digits)): s = digits[j] + addend if s >= 10: quotient, digits[j] = divmod(s, 10) addend = addend // 10 + quotient else: digits[j] = s addend = addend // 10 if addend == 0: break while addend > 0: addend, digit = divmod(addend, 10) digits.append(digit) def solution(n: int = 10 ** 15) -> int: """ returns n-th term of sequence >>> solution(10) 62 >>> solution(10**6) 31054319 >>> solution(10**15) 73597483551591773 """ digits = [1] i = 1 dn = 0 while True: diff, terms_jumped = next_term(digits, 20, i + dn, n) dn += terms_jumped if dn == n - i: break a_n = 0 for j in range(len(digits)): a_n += digits[j] * 10 ** j return a_n if __name__ == "__main__": print(f"{solution() = }")
""" Sum of digits sequence Problem 551 Let a(0), a(1),... be an integer sequence defined by: a(0) = 1 for n >= 1, a(n) is the sum of the digits of all preceding terms The sequence starts with 1, 1, 2, 4, 8, ... You are given a(10^6) = 31054319. Find a(10^15) """ ks = [k for k in range(2, 20 + 1)] base = [10 ** k for k in range(ks[-1] + 1)] memo = {} def next_term(a_i, k, i, n): """ Calculates and updates a_i in-place to either the n-th term or the smallest term for which c > 10^k when the terms are written in the form: a(i) = b * 10^k + c For any a(i), if digitsum(b) and c have the same value, the difference between subsequent terms will be the same until c >= 10^k. This difference is cached to greatly speed up the computation. Arguments: a_i -- array of digits starting from the one's place that represent the i-th term in the sequence k -- k when terms are written in the from a(i) = b*10^k + c. Term are calulcated until c > 10^k or the n-th term is reached. i -- position along the sequence n -- term to calculate up to if k is large enough Return: a tuple of difference between ending term and starting term, and the number of terms calculated. ex. if starting term is a_0=1, and ending term is a_10=62, then (61, 9) is returned. """ # ds_b - digitsum(b) ds_b = sum(a_i[j] for j in range(k, len(a_i))) c = sum(a_i[j] * base[j] for j in range(min(len(a_i), k))) diff, dn = 0, 0 max_dn = n - i sub_memo = memo.get(ds_b) if sub_memo is not None: jumps = sub_memo.get(c) if jumps is not None and len(jumps) > 0: # find and make the largest jump without going over max_jump = -1 for _k in range(len(jumps) - 1, -1, -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: max_jump = _k break if max_jump >= 0: diff, dn, _kk = jumps[max_jump] # since the difference between jumps is cached, add c new_c = diff + c for j in range(min(k, len(a_i))): new_c, a_i[j] = divmod(new_c, 10) if new_c > 0: add(a_i, k, new_c) else: sub_memo[c] = [] else: sub_memo = {c: []} memo[ds_b] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _diff, terms_jumped = next_term(a_i, k - 1, i + dn, n) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _diff, terms_jumped = compute(a_i, k, i + dn, n) diff += _diff dn += terms_jumped jumps = sub_memo[c] # keep jumps sorted by # of terms skipped j = 0 while j < len(jumps): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(j, (diff, dn, k)) return (diff, dn) def compute(a_i, k, i, n): """ same as next_term(a_i, k, i, n) but computes terms without memoizing results. """ if i >= n: return 0, i if k > len(a_i): a_i.extend([0 for _ in range(k - len(a_i))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) start_i = i ds_b, ds_c, diff = 0, 0, 0 for j in range(len(a_i)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 addend = ds_c + ds_b diff += addend ds_c = 0 for j in range(k): s = a_i[j] + addend addend, a_i[j] = divmod(s, 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a_i, k, addend) return diff, i - start_i def add(digits, k, addend): """ adds addend to digit array given in digits starting at index k """ for j in range(k, len(digits)): s = digits[j] + addend if s >= 10: quotient, digits[j] = divmod(s, 10) addend = addend // 10 + quotient else: digits[j] = s addend = addend // 10 if addend == 0: break while addend > 0: addend, digit = divmod(addend, 10) digits.append(digit) def solution(n: int = 10 ** 15) -> int: """ returns n-th term of sequence >>> solution(10) 62 >>> solution(10**6) 31054319 >>> solution(10**15) 73597483551591773 """ digits = [1] i = 1 dn = 0 while True: diff, terms_jumped = next_term(digits, 20, i + dn, n) dn += terms_jumped if dn == n - i: break a_n = 0 for j in range(len(digits)): a_n += digits[j] * 10 ** j return a_n if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN","BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY","CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE","CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS","GLORIA","EVELYN","JEAN","CHERYL","MILDRED","KATHERINE","JOAN","ASHLEY","JUDITH","ROSE","JANICE","KELLY","NICOLE","JUDY","CHRISTINA","KATHY","THERESA","BEVERLY","DENISE","TAMMY","IRENE","JANE","LORI","RACHEL","MARILYN","ANDREA","KATHRYN","LOUISE","SARA","ANNE","JACQUELINE","WANDA","BONNIE","JULIA","RUBY","LOIS","TINA","PHYLLIS","NORMA","PAULA","DIANA","ANNIE","LILLIAN","EMILY","ROBIN","PEGGY","CRYSTAL","GLADYS","RITA","DAWN","CONNIE","FLORENCE","TRACY","EDNA","TIFFANY","CARMEN","ROSA","CINDY","GRACE","WENDY","VICTORIA","EDITH","KIM","SHERRY","SYLVIA","JOSEPHINE","THELMA","SHANNON","SHEILA","ETHEL","ELLEN","ELAINE","MARJORIE","CARRIE","CHARLOTTE","MONICA","ESTHER","PAULINE","EMMA","JUANITA","ANITA","RHONDA","HAZEL","AMBER","EVA","DEBBIE","APRIL","LESLIE","CLARA","LUCILLE","JAMIE","JOANNE","ELEANOR","VALERIE","DANIELLE","MEGAN","ALICIA","SUZANNE","MICHELE","GAIL","BERTHA","DARLENE","VERONICA","JILL","ERIN","GERALDINE","LAUREN","CATHY","JOANN","LORRAINE","LYNN","SALLY","REGINA","ERICA","BEATRICE","DOLORES","BERNICE","AUDREY","YVONNE","ANNETTE","JUNE","SAMANTHA","MARION","DANA","STACY","ANA","RENEE","IDA","VIVIAN","ROBERTA","HOLLY","BRITTANY","MELANIE","LORETTA","YOLANDA","JEANETTE","LAURIE","KATIE","KRISTEN","VANESSA","ALMA","SUE","ELSIE","BETH","JEANNE","VICKI","CARLA","TARA","ROSEMARY","EILEEN","TERRI","GERTRUDE","LUCY","TONYA","ELLA","STACEY","WILMA","GINA","KRISTIN","JESSIE","NATALIE","AGNES","VERA","WILLIE","CHARLENE","BESSIE","DELORES","MELINDA","PEARL","ARLENE","MAUREEN","COLLEEN","ALLISON","TAMARA","JOY","GEORGIA","CONSTANCE","LILLIE","CLAUDIA","JACKIE","MARCIA","TANYA","NELLIE","MINNIE","MARLENE","HEIDI","GLENDA","LYDIA","VIOLA","COURTNEY","MARIAN","STELLA","CAROLINE","DORA","JO","VICKIE","MATTIE","TERRY","MAXINE","IRMA","MABEL","MARSHA","MYRTLE","LENA","CHRISTY","DEANNA","PATSY","HILDA","GWENDOLYN","JENNIE","NORA","MARGIE","NINA","CASSANDRA","LEAH","PENNY","KAY","PRISCILLA","NAOMI","CAROLE","BRANDY","OLGA","BILLIE","DIANNE","TRACEY","LEONA","JENNY","FELICIA","SONIA","MIRIAM","VELMA","BECKY","BOBBIE","VIOLET","KRISTINA","TONI","MISTY","MAE","SHELLY","DAISY","RAMONA","SHERRI","ERIKA","KATRINA","CLAIRE","LINDSEY","LINDSAY","GENEVA","GUADALUPE","BELINDA","MARGARITA","SHERYL","CORA","FAYE","ADA","NATASHA","SABRINA","ISABEL","MARGUERITE","HATTIE","HARRIET","MOLLY","CECILIA","KRISTI","BRANDI","BLANCHE","SANDY","ROSIE","JOANNA","IRIS","EUNICE","ANGIE","INEZ","LYNDA","MADELINE","AMELIA","ALBERTA","GENEVIEVE","MONIQUE","JODI","JANIE","MAGGIE","KAYLA","SONYA","JAN","LEE","KRISTINE","CANDACE","FANNIE","MARYANN","OPAL","ALISON","YVETTE","MELODY","LUZ","SUSIE","OLIVIA","FLORA","SHELLEY","KRISTY","MAMIE","LULA","LOLA","VERNA","BEULAH","ANTOINETTE","CANDICE","JUANA","JEANNETTE","PAM","KELLI","HANNAH","WHITNEY","BRIDGET","KARLA","CELIA","LATOYA","PATTY","SHELIA","GAYLE","DELLA","VICKY","LYNNE","SHERI","MARIANNE","KARA","JACQUELYN","ERMA","BLANCA","MYRA","LETICIA","PAT","KRISTA","ROXANNE","ANGELICA","JOHNNIE","ROBYN","FRANCIS","ADRIENNE","ROSALIE","ALEXANDRA","BROOKE","BETHANY","SADIE","BERNADETTE","TRACI","JODY","KENDRA","JASMINE","NICHOLE","RACHAEL","CHELSEA","MABLE","ERNESTINE","MURIEL","MARCELLA","ELENA","KRYSTAL","ANGELINA","NADINE","KARI","ESTELLE","DIANNA","PAULETTE","LORA","MONA","DOREEN","ROSEMARIE","ANGEL","DESIREE","ANTONIA","HOPE","GINGER","JANIS","BETSY","CHRISTIE","FREDA","MERCEDES","MEREDITH","LYNETTE","TERI","CRISTINA","EULA","LEIGH","MEGHAN","SOPHIA","ELOISE","ROCHELLE","GRETCHEN","CECELIA","RAQUEL","HENRIETTA","ALYSSA","JANA","KELLEY","GWEN","KERRY","JENNA","TRICIA","LAVERNE","OLIVE","ALEXIS","TASHA","SILVIA","ELVIRA","CASEY","DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE","SONJA","LILA","LANA","DARLA","MAY","MINDY","ESSIE","MANDY","LORENE","ELSA","JOSEFINA","JEANNIE","MIRANDA","DIXIE","LUCIA","MARTA","FAITH","LELA","JOHANNA","SHARI","CAMILLE","TAMI","SHAWNA","ELISA","EBONY","MELBA","ORA","NETTIE","TABITHA","OLLIE","JAIME","WINIFRED","KRISTIE","MARINA","ALISHA","AIMEE","RENA","MYRNA","MARLA","TAMMIE","LATASHA","BONITA","PATRICE","RONDA","SHERRIE","ADDIE","FRANCINE","DELORIS","STACIE","ADRIANA","CHERI","SHELBY","ABIGAIL","CELESTE","JEWEL","CARA","ADELE","REBEKAH","LUCINDA","DORTHY","CHRIS","EFFIE","TRINA","REBA","SHAWN","SALLIE","AURORA","LENORA","ETTA","LOTTIE","KERRI","TRISHA","NIKKI","ESTELLA","FRANCISCA","JOSIE","TRACIE","MARISSA","KARIN","BRITTNEY","JANELLE","LOURDES","LAUREL","HELENE","FERN","ELVA","CORINNE","KELSEY","INA","BETTIE","ELISABETH","AIDA","CAITLIN","INGRID","IVA","EUGENIA","CHRISTA","GOLDIE","CASSIE","MAUDE","JENIFER","THERESE","FRANKIE","DENA","LORNA","JANETTE","LATONYA","CANDY","MORGAN","CONSUELO","TAMIKA","ROSETTA","DEBORA","CHERIE","POLLY","DINA","JEWELL","FAY","JILLIAN","DOROTHEA","NELL","TRUDY","ESPERANZA","PATRICA","KIMBERLEY","SHANNA","HELENA","CAROLINA","CLEO","STEFANIE","ROSARIO","OLA","JANINE","MOLLIE","LUPE","ALISA","LOU","MARIBEL","SUSANNE","BETTE","SUSANA","ELISE","CECILE","ISABELLE","LESLEY","JOCELYN","PAIGE","JONI","RACHELLE","LEOLA","DAPHNE","ALTA","ESTER","PETRA","GRACIELA","IMOGENE","JOLENE","KEISHA","LACEY","GLENNA","GABRIELA","KERI","URSULA","LIZZIE","KIRSTEN","SHANA","ADELINE","MAYRA","JAYNE","JACLYN","GRACIE","SONDRA","CARMELA","MARISA","ROSALIND","CHARITY","TONIA","BEATRIZ","MARISOL","CLARICE","JEANINE","SHEENA","ANGELINE","FRIEDA","LILY","ROBBIE","SHAUNA","MILLIE","CLAUDETTE","CATHLEEN","ANGELIA","GABRIELLE","AUTUMN","KATHARINE","SUMMER","JODIE","STACI","LEA","CHRISTI","JIMMIE","JUSTINE","ELMA","LUELLA","MARGRET","DOMINIQUE","SOCORRO","RENE","MARTINA","MARGO","MAVIS","CALLIE","BOBBI","MARITZA","LUCILE","LEANNE","JEANNINE","DEANA","AILEEN","LORIE","LADONNA","WILLA","MANUELA","GALE","SELMA","DOLLY","SYBIL","ABBY","LARA","DALE","IVY","DEE","WINNIE","MARCY","LUISA","JERI","MAGDALENA","OFELIA","MEAGAN","AUDRA","MATILDA","LEILA","CORNELIA","BIANCA","SIMONE","BETTYE","RANDI","VIRGIE","LATISHA","BARBRA","GEORGINA","ELIZA","LEANN","BRIDGETTE","RHODA","HALEY","ADELA","NOLA","BERNADINE","FLOSSIE","ILA","GRETA","RUTHIE","NELDA","MINERVA","LILLY","TERRIE","LETHA","HILARY","ESTELA","VALARIE","BRIANNA","ROSALYN","EARLINE","CATALINA","AVA","MIA","CLARISSA","LIDIA","CORRINE","ALEXANDRIA","CONCEPCION","TIA","SHARRON","RAE","DONA","ERICKA","JAMI","ELNORA","CHANDRA","LENORE","NEVA","MARYLOU","MELISA","TABATHA","SERENA","AVIS","ALLIE","SOFIA","JEANIE","ODESSA","NANNIE","HARRIETT","LORAINE","PENELOPE","MILAGROS","EMILIA","BENITA","ALLYSON","ASHLEE","TANIA","TOMMIE","ESMERALDA","KARINA","EVE","PEARLIE","ZELMA","MALINDA","NOREEN","TAMEKA","SAUNDRA","HILLARY","AMIE","ALTHEA","ROSALINDA","JORDAN","LILIA","ALANA","GAY","CLARE","ALEJANDRA","ELINOR","MICHAEL","LORRIE","JERRI","DARCY","EARNESTINE","CARMELLA","TAYLOR","NOEMI","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA","TANISHA","KATY","JULIANNE","JOHN","LAKISHA","EDWINA","MARICELA","MARGERY","KENYA","DOLLIE","ROXIE","ROSLYN","KATHRINE","NANETTE","CHARMAINE","LAVONNE","ILENE","KRIS","TAMMI","SUZETTE","CORINE","KAYE","JERRY","MERLE","CHRYSTAL","LINA","DEANNE","LILIAN","JULIANA","ALINE","LUANN","KASEY","MARYANNE","EVANGELINE","COLETTE","MELVA","LAWANDA","YESENIA","NADIA","MADGE","KATHIE","EDDIE","OPHELIA","VALERIA","NONA","MITZI","MARI","GEORGETTE","CLAUDINE","FRAN","ALISSA","ROSEANN","LAKEISHA","SUSANNA","REVA","DEIDRE","CHASITY","SHEREE","CARLY","JAMES","ELVIA","ALYCE","DEIRDRE","GENA","BRIANA","ARACELI","KATELYN","ROSANNE","WENDI","TESSA","BERTA","MARVA","IMELDA","MARIETTA","MARCI","LEONOR","ARLINE","SASHA","MADELYN","JANNA","JULIETTE","DEENA","AURELIA","JOSEFA","AUGUSTA","LILIANA","YOUNG","CHRISTIAN","LESSIE","AMALIA","SAVANNAH","ANASTASIA","VILMA","NATALIA","ROSELLA","LYNNETTE","CORINA","ALFREDA","LEANNA","CAREY","AMPARO","COLEEN","TAMRA","AISHA","WILDA","KARYN","CHERRY","QUEEN","MAURA","MAI","EVANGELINA","ROSANNA","HALLIE","ERNA","ENID","MARIANA","LACY","JULIET","JACKLYN","FREIDA","MADELEINE","MARA","HESTER","CATHRYN","LELIA","CASANDRA","BRIDGETT","ANGELITA","JANNIE","DIONNE","ANNMARIE","KATINA","BERYL","PHOEBE","MILLICENT","KATHERYN","DIANN","CARISSA","MARYELLEN","LIZ","LAURI","HELGA","GILDA","ADRIAN","RHEA","MARQUITA","HOLLIE","TISHA","TAMERA","ANGELIQUE","FRANCESCA","BRITNEY","KAITLIN","LOLITA","FLORINE","ROWENA","REYNA","TWILA","FANNY","JANELL","INES","CONCETTA","BERTIE","ALBA","BRIGITTE","ALYSON","VONDA","PANSY","ELBA","NOELLE","LETITIA","KITTY","DEANN","BRANDIE","LOUELLA","LETA","FELECIA","SHARLENE","LESA","BEVERLEY","ROBERT","ISABELLA","HERMINIA","TERRA","CELINA","TORI","OCTAVIA","JADE","DENICE","GERMAINE","SIERRA","MICHELL","CORTNEY","NELLY","DORETHA","SYDNEY","DEIDRA","MONIKA","LASHONDA","JUDI","CHELSEY","ANTIONETTE","MARGOT","BOBBY","ADELAIDE","NAN","LEEANN","ELISHA","DESSIE","LIBBY","KATHI","GAYLA","LATANYA","MINA","MELLISA","KIMBERLEE","JASMIN","RENAE","ZELDA","ELDA","MA","JUSTINA","GUSSIE","EMILIE","CAMILLA","ABBIE","ROCIO","KAITLYN","JESSE","EDYTHE","ASHLEIGH","SELINA","LAKESHA","GERI","ALLENE","PAMALA","MICHAELA","DAYNA","CARYN","ROSALIA","SUN","JACQULINE","REBECA","MARYBETH","KRYSTLE","IOLA","DOTTIE","BENNIE","BELLE","AUBREY","GRISELDA","ERNESTINA","ELIDA","ADRIANNE","DEMETRIA","DELMA","CHONG","JAQUELINE","DESTINY","ARLEEN","VIRGINA","RETHA","FATIMA","TILLIE","ELEANORE","CARI","TREVA","BIRDIE","WILHELMINA","ROSALEE","MAURINE","LATRICE","YONG","JENA","TARYN","ELIA","DEBBY","MAUDIE","JEANNA","DELILAH","CATRINA","SHONDA","HORTENCIA","THEODORA","TERESITA","ROBBIN","DANETTE","MARYJANE","FREDDIE","DELPHINE","BRIANNE","NILDA","DANNA","CINDI","BESS","IONA","HANNA","ARIEL","WINONA","VIDA","ROSITA","MARIANNA","WILLIAM","RACHEAL","GUILLERMINA","ELOISA","CELESTINE","CAREN","MALISSA","LONA","CHANTEL","SHELLIE","MARISELA","LEORA","AGATHA","SOLEDAD","MIGDALIA","IVETTE","CHRISTEN","ATHENA","JANEL","CHLOE","VEDA","PATTIE","TESSIE","TERA","MARILYNN","LUCRETIA","KARRIE","DINAH","DANIELA","ALECIA","ADELINA","VERNICE","SHIELA","PORTIA","MERRY","LASHAWN","DEVON","DARA","TAWANA","OMA","VERDA","CHRISTIN","ALENE","ZELLA","SANDI","RAFAELA","MAYA","KIRA","CANDIDA","ALVINA","SUZAN","SHAYLA","LYN","LETTIE","ALVA","SAMATHA","ORALIA","MATILDE","MADONNA","LARISSA","VESTA","RENITA","INDIA","DELOIS","SHANDA","PHILLIS","LORRI","ERLINDA","CRUZ","CATHRINE","BARB","ZOE","ISABELL","IONE","GISELA","CHARLIE","VALENCIA","ROXANNA","MAYME","KISHA","ELLIE","MELLISSA","DORRIS","DALIA","BELLA","ANNETTA","ZOILA","RETA","REINA","LAURETTA","KYLIE","CHRISTAL","PILAR","CHARLA","ELISSA","TIFFANI","TANA","PAULINA","LEOTA","BREANNA","JAYME","CARMEL","VERNELL","TOMASA","MANDI","DOMINGA","SANTA","MELODIE","LURA","ALEXA","TAMELA","RYAN","MIRNA","KERRIE","VENUS","NOEL","FELICITA","CRISTY","CARMELITA","BERNIECE","ANNEMARIE","TIARA","ROSEANNE","MISSY","CORI","ROXANA","PRICILLA","KRISTAL","JUNG","ELYSE","HAYDEE","ALETHA","BETTINA","MARGE","GILLIAN","FILOMENA","CHARLES","ZENAIDA","HARRIETTE","CARIDAD","VADA","UNA","ARETHA","PEARLINE","MARJORY","MARCELA","FLOR","EVETTE","ELOUISE","ALINA","TRINIDAD","DAVID","DAMARIS","CATHARINE","CARROLL","BELVA","NAKIA","MARLENA","LUANNE","LORINE","KARON","DORENE","DANITA","BRENNA","TATIANA","SAMMIE","LOUANN","LOREN","JULIANNA","ANDRIA","PHILOMENA","LUCILA","LEONORA","DOVIE","ROMONA","MIMI","JACQUELIN","GAYE","TONJA","MISTI","JOE","GENE","CHASTITY","STACIA","ROXANN","MICAELA","NIKITA","MEI","VELDA","MARLYS","JOHNNA","AURA","LAVERN","IVONNE","HAYLEY","NICKI","MAJORIE","HERLINDA","GEORGE","ALPHA","YADIRA","PERLA","GREGORIA","DANIEL","ANTONETTE","SHELLI","MOZELLE","MARIAH","JOELLE","CORDELIA","JOSETTE","CHIQUITA","TRISTA","LOUIS","LAQUITA","GEORGIANA","CANDI","SHANON","LONNIE","HILDEGARD","CECIL","VALENTINA","STEPHANY","MAGDA","KAROL","GERRY","GABRIELLA","TIANA","ROMA","RICHELLE","RAY","PRINCESS","OLETA","JACQUE","IDELLA","ALAINA","SUZANNA","JOVITA","BLAIR","TOSHA","RAVEN","NEREIDA","MARLYN","KYLA","JOSEPH","DELFINA","TENA","STEPHENIE","SABINA","NATHALIE","MARCELLE","GERTIE","DARLEEN","THEA","SHARONDA","SHANTEL","BELEN","VENESSA","ROSALINA","ONA","GENOVEVA","COREY","CLEMENTINE","ROSALBA","RENATE","RENATA","MI","IVORY","GEORGIANNA","FLOY","DORCAS","ARIANA","TYRA","THEDA","MARIAM","JULI","JESICA","DONNIE","VIKKI","VERLA","ROSELYN","MELVINA","JANNETTE","GINNY","DEBRAH","CORRIE","ASIA","VIOLETA","MYRTIS","LATRICIA","COLLETTE","CHARLEEN","ANISSA","VIVIANA","TWYLA","PRECIOUS","NEDRA","LATONIA","LAN","HELLEN","FABIOLA","ANNAMARIE","ADELL","SHARYN","CHANTAL","NIKI","MAUD","LIZETTE","LINDY","KIA","KESHA","JEANA","DANELLE","CHARLINE","CHANEL","CARROL","VALORIE","LIA","DORTHA","CRISTAL","SUNNY","LEONE","LEILANI","GERRI","DEBI","ANDRA","KESHIA","IMA","EULALIA","EASTER","DULCE","NATIVIDAD","LINNIE","KAMI","GEORGIE","CATINA","BROOK","ALDA","WINNIFRED","SHARLA","RUTHANN","MEAGHAN","MAGDALENE","LISSETTE","ADELAIDA","VENITA","TRENA","SHIRLENE","SHAMEKA","ELIZEBETH","DIAN","SHANTA","MICKEY","LATOSHA","CARLOTTA","WINDY","SOON","ROSINA","MARIANN","LEISA","JONNIE","DAWNA","CATHIE","BILLY","ASTRID","SIDNEY","LAUREEN","JANEEN","HOLLI","FAWN","VICKEY","TERESSA","SHANTE","RUBYE","MARCELINA","CHANDA","CARY","TERESE","SCARLETT","MARTY","MARNIE","LULU","LISETTE","JENIFFER","ELENOR","DORINDA","DONITA","CARMAN","BERNITA","ALTAGRACIA","ALETA","ADRIANNA","ZORAIDA","RONNIE","NICOLA","LYNDSEY","KENDALL","JANINA","CHRISSY","AMI","STARLA","PHYLIS","PHUONG","KYRA","CHARISSE","BLANCH","SANJUANITA","RONA","NANCI","MARILEE","MARANDA","CORY","BRIGETTE","SANJUANA","MARITA","KASSANDRA","JOYCELYN","IRA","FELIPA","CHELSIE","BONNY","MIREYA","LORENZA","KYONG","ILEANA","CANDELARIA","TONY","TOBY","SHERIE","OK","MARK","LUCIE","LEATRICE","LAKESHIA","GERDA","EDIE","BAMBI","MARYLIN","LAVON","HORTENSE","GARNET","EVIE","TRESSA","SHAYNA","LAVINA","KYUNG","JEANETTA","SHERRILL","SHARA","PHYLISS","MITTIE","ANABEL","ALESIA","THUY","TAWANDA","RICHARD","JOANIE","TIFFANIE","LASHANDA","KARISSA","ENRIQUETA","DARIA","DANIELLA","CORINNA","ALANNA","ABBEY","ROXANE","ROSEANNA","MAGNOLIA","LIDA","KYLE","JOELLEN","ERA","CORAL","CARLEEN","TRESA","PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE","CARINA","NOVA","MELINA","MARQUERITE","MARGARETTE","JOSEPHINA","EVONNE","DEVIN","CINTHIA","ALBINA","TOYA","TAWNYA","SHERITA","SANTOS","MYRIAM","LIZABETH","LISE","KEELY","JENNI","GISELLE","CHERYLE","ARDITH","ARDIS","ALESHA","ADRIANE","SHAINA","LINNEA","KAROLYN","HONG","FLORIDA","FELISHA","DORI","DARCI","ARTIE","ARMIDA","ZOLA","XIOMARA","VERGIE","SHAMIKA","NENA","NANNETTE","MAXIE","LOVIE","JEANE","JAIMIE","INGE","FARRAH","ELAINA","CAITLYN","STARR","FELICITAS","CHERLY","CARYL","YOLONDA","YASMIN","TEENA","PRUDENCE","PENNIE","NYDIA","MACKENZIE","ORPHA","MARVEL","LIZBETH","LAURETTE","JERRIE","HERMELINDA","CAROLEE","TIERRA","MIRIAN","META","MELONY","KORI","JENNETTE","JAMILA","ENA","ANH","YOSHIKO","SUSANNAH","SALINA","RHIANNON","JOLEEN","CRISTINE","ASHTON","ARACELY","TOMEKA","SHALONDA","MARTI","LACIE","KALA","JADA","ILSE","HAILEY","BRITTANI","ZONA","SYBLE","SHERRYL","RANDY","NIDIA","MARLO","KANDICE","KANDI","DEB","DEAN","AMERICA","ALYCIA","TOMMY","RONNA","NORENE","MERCY","JOSE","INGEBORG","GIOVANNA","GEMMA","CHRISTEL","AUDRY","ZORA","VITA","VAN","TRISH","STEPHAINE","SHIRLEE","SHANIKA","MELONIE","MAZIE","JAZMIN","INGA","HOA","HETTIE","GERALYN","FONDA","ESTRELLA","ADELLA","SU","SARITA","RINA","MILISSA","MARIBETH","GOLDA","EVON","ETHELYN","ENEDINA","CHERISE","CHANA","VELVA","TAWANNA","SADE","MIRTA","LI","KARIE","JACINTA","ELNA","DAVINA","CIERRA","ASHLIE","ALBERTHA","TANESHA","STEPHANI","NELLE","MINDI","LU","LORINDA","LARUE","FLORENE","DEMETRA","DEDRA","CIARA","CHANTELLE","ASHLY","SUZY","ROSALVA","NOELIA","LYDA","LEATHA","KRYSTYNA","KRISTAN","KARRI","DARLINE","DARCIE","CINDA","CHEYENNE","CHERRIE","AWILDA","ALMEDA","ROLANDA","LANETTE","JERILYN","GISELE","EVALYN","CYNDI","CLETA","CARIN","ZINA","ZENA","VELIA","TANIKA","PAUL","CHARISSA","THOMAS","TALIA","MARGARETE","LAVONDA","KAYLEE","KATHLENE","JONNA","IRENA","ILONA","IDALIA","CANDIS","CANDANCE","BRANDEE","ANITRA","ALIDA","SIGRID","NICOLETTE","MARYJO","LINETTE","HEDWIG","CHRISTIANA","CASSIDY","ALEXIA","TRESSIE","MODESTA","LUPITA","LITA","GLADIS","EVELIA","DAVIDA","CHERRI","CECILY","ASHELY","ANNABEL","AGUSTINA","WANITA","SHIRLY","ROSAURA","HULDA","EUN","BAILEY","YETTA","VERONA","THOMASINA","SIBYL","SHANNAN","MECHELLE","LUE","LEANDRA","LANI","KYLEE","KANDY","JOLYNN","FERNE","EBONI","CORENE","ALYSIA","ZULA","NADA","MOIRA","LYNDSAY","LORRETTA","JUAN","JAMMIE","HORTENSIA","GAYNELL","CAMERON","ADRIA","VINA","VICENTA","TANGELA","STEPHINE","NORINE","NELLA","LIANA","LESLEE","KIMBERELY","ILIANA","GLORY","FELICA","EMOGENE","ELFRIEDE","EDEN","EARTHA","CARMA","BEA","OCIE","MARRY","LENNIE","KIARA","JACALYN","CARLOTA","ARIELLE","YU","STAR","OTILIA","KIRSTIN","KACEY","JOHNETTA","JOEY","JOETTA","JERALDINE","JAUNITA","ELANA","DORTHEA","CAMI","AMADA","ADELIA","VERNITA","TAMAR","SIOBHAN","RENEA","RASHIDA","OUIDA","ODELL","NILSA","MERYL","KRISTYN","JULIETA","DANICA","BREANNE","AUREA","ANGLEA","SHERRON","ODETTE","MALIA","LORELEI","LIN","LEESA","KENNA","KATHLYN","FIONA","CHARLETTE","SUZIE","SHANTELL","SABRA","RACQUEL","MYONG","MIRA","MARTINE","LUCIENNE","LAVADA","JULIANN","JOHNIE","ELVERA","DELPHIA","CLAIR","CHRISTIANE","CHAROLETTE","CARRI","AUGUSTINE","ASHA","ANGELLA","PAOLA","NINFA","LEDA","LAI","EDA","SUNSHINE","STEFANI","SHANELL","PALMA","MACHELLE","LISSA","KECIA","KATHRYNE","KARLENE","JULISSA","JETTIE","JENNIFFER","HUI","CORRINA","CHRISTOPHER","CAROLANN","ALENA","TESS","ROSARIA","MYRTICE","MARYLEE","LIANE","KENYATTA","JUDIE","JANEY","IN","ELMIRA","ELDORA","DENNA","CRISTI","CATHI","ZAIDA","VONNIE","VIVA","VERNIE","ROSALINE","MARIELA","LUCIANA","LESLI","KARAN","FELICE","DENEEN","ADINA","WYNONA","TARSHA","SHERON","SHASTA","SHANITA","SHANI","SHANDRA","RANDA","PINKIE","PARIS","NELIDA","MARILOU","LYLA","LAURENE","LACI","JOI","JANENE","DOROTHA","DANIELE","DANI","CAROLYNN","CARLYN","BERENICE","AYESHA","ANNELIESE","ALETHEA","THERSA","TAMIKO","RUFINA","OLIVA","MOZELL","MARYLYN","MADISON","KRISTIAN","KATHYRN","KASANDRA","KANDACE","JANAE","GABRIEL","DOMENICA","DEBBRA","DANNIELLE","CHUN","BUFFY","BARBIE","ARCELIA","AJA","ZENOBIA","SHAREN","SHAREE","PATRICK","PAGE","MY","LAVINIA","KUM","KACIE","JACKELINE","HUONG","FELISA","EMELIA","ELEANORA","CYTHIA","CRISTIN","CLYDE","CLARIBEL","CARON","ANASTACIA","ZULMA","ZANDRA","YOKO","TENISHA","SUSANN","SHERILYN","SHAY","SHAWANDA","SABINE","ROMANA","MATHILDA","LINSEY","KEIKO","JOANA","ISELA","GRETTA","GEORGETTA","EUGENIE","DUSTY","DESIRAE","DELORA","CORAZON","ANTONINA","ANIKA","WILLENE","TRACEE","TAMATHA","REGAN","NICHELLE","MICKIE","MAEGAN","LUANA","LANITA","KELSIE","EDELMIRA","BREE","AFTON","TEODORA","TAMIE","SHENA","MEG","LINH","KELI","KACI","DANYELLE","BRITT","ARLETTE","ALBERTINE","ADELLE","TIFFINY","STORMY","SIMONA","NUMBERS","NICOLASA","NICHOL","NIA","NAKISHA","MEE","MAIRA","LOREEN","KIZZY","JOHNNY","JAY","FALLON","CHRISTENE","BOBBYE","ANTHONY","YING","VINCENZA","TANJA","RUBIE","RONI","QUEENIE","MARGARETT","KIMBERLI","IRMGARD","IDELL","HILMA","EVELINA","ESTA","EMILEE","DENNISE","DANIA","CARL","CARIE","ANTONIO","WAI","SANG","RISA","RIKKI","PARTICIA","MUI","MASAKO","MARIO","LUVENIA","LOREE","LONI","LIEN","KEVIN","GIGI","FLORENCIA","DORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER","TOMIKA","SHARITA","RANA","NIKOLE","NEOMA","MARGARITE","MADALYN","LUCINA","LAILA","KALI","JENETTE","GABRIELE","EVELYNE","ELENORA","CLEMENTINA","ALEJANDRINA","ZULEMA","VIOLETTE","VANNESSA","THRESA","RETTA","PIA","PATIENCE","NOELLA","NICKIE","JONELL","DELTA","CHUNG","CHAYA","CAMELIA","BETHEL","ANYA","ANDREW","THANH","SUZANN","SPRING","SHU","MILA","LILLA","LAVERNA","KEESHA","KATTIE","GIA","GEORGENE","EVELINE","ESTELL","ELIZBETH","VIVIENNE","VALLIE","TRUDIE","STEPHANE","MICHEL","MAGALY","MADIE","KENYETTA","KARREN","JANETTA","HERMINE","HARMONY","DRUCILLA","DEBBI","CELESTINA","CANDIE","BRITNI","BECKIE","AMINA","ZITA","YUN","YOLANDE","VIVIEN","VERNETTA","TRUDI","SOMMER","PEARLE","PATRINA","OSSIE","NICOLLE","LOYCE","LETTY","LARISA","KATHARINA","JOSELYN","JONELLE","JENELL","IESHA","HEIDE","FLORINDA","FLORENTINA","FLO","ELODIA","DORINE","BRUNILDA","BRIGID","ASHLI","ARDELLA","TWANA","THU","TARAH","SUNG","SHEA","SHAVON","SHANE","SERINA","RAYNA","RAMONITA","NGA","MARGURITE","LUCRECIA","KOURTNEY","KATI","JESUS","JESENIA","DIAMOND","CRISTA","AYANA","ALICA","ALIA","VINNIE","SUELLEN","ROMELIA","RACHELL","PIPER","OLYMPIA","MICHIKO","KATHALEEN","JOLIE","JESSI","JANESSA","HANA","HA","ELEASE","CARLETTA","BRITANY","SHONA","SALOME","ROSAMOND","REGENA","RAINA","NGOC","NELIA","LOUVENIA","LESIA","LATRINA","LATICIA","LARHONDA","JINA","JACKI","HOLLIS","HOLLEY","EMMY","DEEANN","CORETTA","ARNETTA","VELVET","THALIA","SHANICE","NETA","MIKKI","MICKI","LONNA","LEANA","LASHUNDA","KILEY","JOYE","JACQULYN","IGNACIA","HYUN","HIROKO","HENRY","HENRIETTE","ELAYNE","DELINDA","DARNELL","DAHLIA","COREEN","CONSUELA","CONCHITA","CELINE","BABETTE","AYANNA","ANETTE","ALBERTINA","SKYE","SHAWNEE","SHANEKA","QUIANA","PAMELIA","MIN","MERRI","MERLENE","MARGIT","KIESHA","KIERA","KAYLENE","JODEE","JENISE","ERLENE","EMMIE","ELSE","DARYL","DALILA","DAISEY","CODY","CASIE","BELIA","BABARA","VERSIE","VANESA","SHELBA","SHAWNDA","SAM","NORMAN","NIKIA","NAOMA","MARNA","MARGERET","MADALINE","LAWANA","KINDRA","JUTTA","JAZMINE","JANETT","HANNELORE","GLENDORA","GERTRUD","GARNETT","FREEDA","FREDERICA","FLORANCE","FLAVIA","DENNIS","CARLINE","BEVERLEE","ANJANETTE","VALDA","TRINITY","TAMALA","STEVIE","SHONNA","SHA","SARINA","ONEIDA","MICAH","MERILYN","MARLEEN","LURLINE","LENNA","KATHERIN","JIN","JENI","HAE","GRACIA","GLADY","FARAH","ERIC","ENOLA","EMA","DOMINQUE","DEVONA","DELANA","CECILA","CAPRICE","ALYSHA","ALI","ALETHIA","VENA","THERESIA","TAWNY","SONG","SHAKIRA","SAMARA","SACHIKO","RACHELE","PAMELLA","NICKY","MARNI","MARIEL","MAREN","MALISA","LIGIA","LERA","LATORIA","LARAE","KIMBER","KATHERN","KAREY","JENNEFER","JANETH","HALINA","FREDIA","DELISA","DEBROAH","CIERA","CHIN","ANGELIKA","ANDREE","ALTHA","YEN","VIVAN","TERRESA","TANNA","SUK","SUDIE","SOO","SIGNE","SALENA","RONNI","REBBECCA","MYRTIE","MCKENZIE","MALIKA","MAIDA","LOAN","LEONARDA","KAYLEIGH","FRANCE","ETHYL","ELLYN","DAYLE","CAMMIE","BRITTNI","BIRGIT","AVELINA","ASUNCION","ARIANNA","AKIKO","VENICE","TYESHA","TONIE","TIESHA","TAKISHA","STEFFANIE","SINDY","SANTANA","MEGHANN","MANDA","MACIE","LADY","KELLYE","KELLEE","JOSLYN","JASON","INGER","INDIRA","GLINDA","GLENNIS","FERNANDA","FAUSTINA","ENEIDA","ELICIA","DOT","DIGNA","DELL","ARLETTA","ANDRE","WILLIA","TAMMARA","TABETHA","SHERRELL","SARI","REFUGIO","REBBECA","PAULETTA","NIEVES","NATOSHA","NAKITA","MAMMIE","KENISHA","KAZUKO","KASSIE","GARY","EARLEAN","DAPHINE","CORLISS","CLOTILDE","CAROLYNE","BERNETTA","AUGUSTINA","AUDREA","ANNIS","ANNABELL","YAN","TENNILLE","TAMICA","SELENE","SEAN","ROSANA","REGENIA","QIANA","MARKITA","MACY","LEEANNE","LAURINE","KYM","JESSENIA","JANITA","GEORGINE","GENIE","EMIKO","ELVIE","DEANDRA","DAGMAR","CORIE","COLLEN","CHERISH","ROMAINE","PORSHA","PEARLENE","MICHELINE","MERNA","MARGORIE","MARGARETTA","LORE","KENNETH","JENINE","HERMINA","FREDERICKA","ELKE","DRUSILLA","DORATHY","DIONE","DESIRE","CELENA","BRIGIDA","ANGELES","ALLEGRA","THEO","TAMEKIA","SYNTHIA","STEPHEN","SOOK","SLYVIA","ROSANN","REATHA","RAYE","MARQUETTA","MARGART","LING","LAYLA","KYMBERLY","KIANA","KAYLEEN","KATLYN","KARMEN","JOELLA","IRINA","EMELDA","ELENI","DETRA","CLEMMIE","CHERYLL","CHANTELL","CATHEY","ARNITA","ARLA","ANGLE","ANGELIC","ALYSE","ZOFIA","THOMASINE","TENNIE","SON","SHERLY","SHERLEY","SHARYL","REMEDIOS","PETRINA","NICKOLE","MYUNG","MYRLE","MOZELLA","LOUANNE","LISHA","LATIA","LANE","KRYSTA","JULIENNE","JOEL","JEANENE","JACQUALINE","ISAURA","GWENDA","EARLEEN","DONALD","CLEOPATRA","CARLIE","AUDIE","ANTONIETTA","ALISE","ALEX","VERDELL","VAL","TYLER","TOMOKO","THAO","TALISHA","STEVEN","SO","SHEMIKA","SHAUN","SCARLET","SAVANNA","SANTINA","ROSIA","RAEANN","ODILIA","NANA","MINNA","MAGAN","LYNELLE","LE","KARMA","JOEANN","IVANA","INELL","ILANA","HYE","HONEY","HEE","GUDRUN","FRANK","DREAMA","CRISSY","CHANTE","CARMELINA","ARVILLA","ARTHUR","ANNAMAE","ALVERA","ALEIDA","AARON","YEE","YANIRA","VANDA","TIANNA","TAM","STEFANIA","SHIRA","PERRY","NICOL","NANCIE","MONSERRATE","MINH","MELYNDA","MELANY","MATTHEW","LOVELLA","LAURE","KIRBY","KACY","JACQUELYNN","HYON","GERTHA","FRANCISCO","ELIANA","CHRISTENA","CHRISTEEN","CHARISE","CATERINA","CARLEY","CANDYCE","ARLENA","AMMIE","YANG","WILLETTE","VANITA","TUYET","TINY","SYREETA","SILVA","SCOTT","RONALD","PENNEY","NYLA","MICHAL","MAURICE","MARYAM","MARYA","MAGEN","LUDIE","LOMA","LIVIA","LANELL","KIMBERLIE","JULEE","DONETTA","DIEDRA","DENISHA","DEANE","DAWNE","CLARINE","CHERRYL","BRONWYN","BRANDON","ALLA","VALERY","TONDA","SUEANN","SORAYA","SHOSHANA","SHELA","SHARLEEN","SHANELLE","NERISSA","MICHEAL","MERIDITH","MELLIE","MAYE","MAPLE","MAGARET","LUIS","LILI","LEONILA","LEONIE","LEEANNA","LAVONIA","LAVERA","KRISTEL","KATHEY","KATHE","JUSTIN","JULIAN","JIMMY","JANN","ILDA","HILDRED","HILDEGARDE","GENIA","FUMIKO","EVELIN","ERMELINDA","ELLY","DUNG","DOLORIS","DIONNA","DANAE","BERNEICE","ANNICE","ALIX","VERENA","VERDIE","TRISTAN","SHAWNNA","SHAWANA","SHAUNNA","ROZELLA","RANDEE","RANAE","MILAGRO","LYNELL","LUISE","LOUIE","LOIDA","LISBETH","KARLEEN","JUNITA","JONA","ISIS","HYACINTH","HEDY","GWENN","ETHELENE","ERLINE","EDWARD","DONYA","DOMONIQUE","DELICIA","DANNETTE","CICELY","BRANDA","BLYTHE","BETHANN","ASHLYN","ANNALEE","ALLINE","YUKO","VELLA","TRANG","TOWANDA","TESHA","SHERLYN","NARCISA","MIGUELINA","MERI","MAYBELL","MARLANA","MARGUERITA","MADLYN","LUNA","LORY","LORIANN","LIBERTY","LEONORE","LEIGHANN","LAURICE","LATESHA","LARONDA","KATRICE","KASIE","KARL","KALEY","JADWIGA","GLENNIE","GEARLDINE","FRANCINA","EPIFANIA","DYAN","DORIE","DIEDRE","DENESE","DEMETRICE","DELENA","DARBY","CRISTIE","CLEORA","CATARINA","CARISA","BERNIE","BARBERA","ALMETA","TRULA","TEREASA","SOLANGE","SHEILAH","SHAVONNE","SANORA","ROCHELL","MATHILDE","MARGARETA","MAIA","LYNSEY","LAWANNA","LAUNA","KENA","KEENA","KATIA","JAMEY","GLYNDA","GAYLENE","ELVINA","ELANOR","DANUTA","DANIKA","CRISTEN","CORDIE","COLETTA","CLARITA","CARMON","BRYNN","AZUCENA","AUNDREA","ANGELE","YI","WALTER","VERLIE","VERLENE","TAMESHA","SILVANA","SEBRINA","SAMIRA","REDA","RAYLENE","PENNI","PANDORA","NORAH","NOMA","MIREILLE","MELISSIA","MARYALICE","LARAINE","KIMBERY","KARYL","KARINE","KAM","JOLANDA","JOHANA","JESUSA","JALEESA","JAE","JACQUELYNE","IRISH","ILUMINADA","HILARIA","HANH","GENNIE","FRANCIE","FLORETTA","EXIE","EDDA","DREMA","DELPHA","BEV","BARBAR","ASSUNTA","ARDELL","ANNALISA","ALISIA","YUKIKO","YOLANDO","WONDA","WEI","WALTRAUD","VETA","TEQUILA","TEMEKA","TAMEIKA","SHIRLEEN","SHENITA","PIEDAD","OZELLA","MIRTHA","MARILU","KIMIKO","JULIANE","JENICE","JEN","JANAY","JACQUILINE","HILDE","FE","FAE","EVAN","EUGENE","ELOIS","ECHO","DEVORAH","CHAU","BRINDA","BETSEY","ARMINDA","ARACELIS","APRYL","ANNETT","ALISHIA","VEOLA","USHA","TOSHIKO","THEOLA","TASHIA","TALITHA","SHERY","RUDY","RENETTA","REIKO","RASHEEDA","OMEGA","OBDULIA","MIKA","MELAINE","MEGGAN","MARTIN","MARLEN","MARGET","MARCELINE","MANA","MAGDALEN","LIBRADA","LEZLIE","LEXIE","LATASHIA","LASANDRA","KELLE","ISIDRA","ISA","INOCENCIA","GWYN","FRANCOISE","ERMINIA","ERINN","DIMPLE","DEVORA","CRISELDA","ARMANDA","ARIE","ARIANE","ANGELO","ANGELENA","ALLEN","ALIZA","ADRIENE","ADALINE","XOCHITL","TWANNA","TRAN","TOMIKO","TAMISHA","TAISHA","SUSY","SIU","RUTHA","ROXY","RHONA","RAYMOND","OTHA","NORIKO","NATASHIA","MERRIE","MELVIN","MARINDA","MARIKO","MARGERT","LORIS","LIZZETTE","LEISHA","KAILA","KA","JOANNIE","JERRICA","JENE","JANNET","JANEE","JACINDA","HERTA","ELENORE","DORETTA","DELAINE","DANIELL","CLAUDIE","CHINA","BRITTA","APOLONIA","AMBERLY","ALEASE","YURI","YUK","WEN","WANETA","UTE","TOMI","SHARRI","SANDIE","ROSELLE","REYNALDA","RAGUEL","PHYLICIA","PATRIA","OLIMPIA","ODELIA","MITZIE","MITCHELL","MISS","MINDA","MIGNON","MICA","MENDY","MARIVEL","MAILE","LYNETTA","LAVETTE","LAURYN","LATRISHA","LAKIESHA","KIERSTEN","KARY","JOSPHINE","JOLYN","JETTA","JANISE","JACQUIE","IVELISSE","GLYNIS","GIANNA","GAYNELLE","EMERALD","DEMETRIUS","DANYELL","DANILLE","DACIA","CORALEE","CHER","CEOLA","BRETT","BELL","ARIANNE","ALESHIA","YUNG","WILLIEMAE","TROY","TRINH","THORA","TAI","SVETLANA","SHERIKA","SHEMEKA","SHAUNDA","ROSELINE","RICKI","MELDA","MALLIE","LAVONNA","LATINA","LARRY","LAQUANDA","LALA","LACHELLE","KLARA","KANDIS","JOHNA","JEANMARIE","JAYE","HANG","GRAYCE","GERTUDE","EMERITA","EBONIE","CLORINDA","CHING","CHERY","CAROLA","BREANN","BLOSSOM","BERNARDINE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA","YON","YESSENIA","TOBI","TASIA","SYLVIE","SHIRL","SHIRELY","SHERIDAN","SHELLA","SHANTELLE","SACHA","ROYCE","REBECKA","REAGAN","PROVIDENCIA","PAULENE","MISHA","MIKI","MARLINE","MARICA","LORITA","LATOYIA","LASONYA","KERSTIN","KENDA","KEITHA","KATHRIN","JAYMIE","JACK","GRICELDA","GINETTE","ERYN","ELINA","ELFRIEDA","DANYEL","CHEREE","CHANELLE","BARRIE","AVERY","AURORE","ANNAMARIA","ALLEEN","AILENE","AIDE","YASMINE","VASHTI","VALENTINE","TREASA","TORY","TIFFANEY","SHERYLL","SHARIE","SHANAE","SAU","RAISA","PA","NEDA","MITSUKO","MIRELLA","MILDA","MARYANNA","MARAGRET","MABELLE","LUETTA","LORINA","LETISHA","LATARSHA","LANELLE","LAJUANA","KRISSY","KARLY","KARENA","JON","JESSIKA","JERICA","JEANELLE","JANUARY","JALISA","JACELYN","IZOLA","IVEY","GREGORY","EUNA","ETHA","DREW","DOMITILA","DOMINICA","DAINA","CREOLA","CARLI","CAMIE","BUNNY","BRITTNY","ASHANTI","ANISHA","ALEEN","ADAH","YASUKO","WINTER","VIKI","VALRIE","TONA","TINISHA","THI","TERISA","TATUM","TANEKA","SIMONNE","SHALANDA","SERITA","RESSIE","REFUGIA","PAZ","OLENE","NA","MERRILL","MARGHERITA","MANDIE","MAN","MAIRE","LYNDIA","LUCI","LORRIANE","LORETA","LEONIA","LAVONA","LASHAWNDA","LAKIA","KYOKO","KRYSTINA","KRYSTEN","KENIA","KELSI","JUDE","JEANICE","ISOBEL","GEORGIANN","GENNY","FELICIDAD","EILENE","DEON","DELOISE","DEEDEE","DANNIE","CONCEPTION","CLORA","CHERILYN","CHANG","CALANDRA","BERRY","ARMANDINA","ANISA","ULA","TIMOTHY","TIERA","THERESSA","STEPHANIA","SIMA","SHYLA","SHONTA","SHERA","SHAQUITA","SHALA","SAMMY","ROSSANA","NOHEMI","NERY","MORIAH","MELITA","MELIDA","MELANI","MARYLYNN","MARISHA","MARIETTE","MALORIE","MADELENE","LUDIVINA","LORIA","LORETTE","LORALEE","LIANNE","LEON","LAVENIA","LAURINDA","LASHON","KIT","KIMI","KEILA","KATELYNN","KAI","JONE","JOANE","JI","JAYNA","JANELLA","JA","HUE","HERTHA","FRANCENE","ELINORE","DESPINA","DELSIE","DEEDRA","CLEMENCIA","CARRY","CAROLIN","CARLOS","BULAH","BRITTANIE","BOK","BLONDELL","BIBI","BEAULAH","BEATA","ANNITA","AGRIPINA","VIRGEN","VALENE","UN","TWANDA","TOMMYE","TOI","TARRA","TARI","TAMMERA","SHAKIA","SADYE","RUTHANNE","ROCHEL","RIVKA","PURA","NENITA","NATISHA","MING","MERRILEE","MELODEE","MARVIS","LUCILLA","LEENA","LAVETA","LARITA","LANIE","KEREN","ILEEN","GEORGEANN","GENNA","GENESIS","FRIDA","EWA","EUFEMIA","EMELY","ELA","EDYTH","DEONNA","DEADRA","DARLENA","CHANELL","CHAN","CATHERN","CASSONDRA","CASSAUNDRA","BERNARDA","BERNA","ARLINDA","ANAMARIA","ALBERT","WESLEY","VERTIE","VALERI","TORRI","TATYANA","STASIA","SHERISE","SHERILL","SEASON","SCOTTIE","SANDA","RUTHE","ROSY","ROBERTO","ROBBI","RANEE","QUYEN","PEARLY","PALMIRA","ONITA","NISHA","NIESHA","NIDA","NEVADA","NAM","MERLYN","MAYOLA","MARYLOUISE","MARYLAND","MARX","MARTH","MARGENE","MADELAINE","LONDA","LEONTINE","LEOMA","LEIA","LAWRENCE","LAURALEE","LANORA","LAKITA","KIYOKO","KETURAH","KATELIN","KAREEN","JONIE","JOHNETTE","JENEE","JEANETT","IZETTA","HIEDI","HEIKE","HASSIE","HAROLD","GIUSEPPINA","GEORGANN","FIDELA","FERNANDE","ELWANDA","ELLAMAE","ELIZ","DUSTI","DOTTY","CYNDY","CORALIE","CELESTA","ARGENTINA","ALVERTA","XENIA","WAVA","VANETTA","TORRIE","TASHINA","TANDY","TAMBRA","TAMA","STEPANIE","SHILA","SHAUNTA","SHARAN","SHANIQUA","SHAE","SETSUKO","SERAFINA","SANDEE","ROSAMARIA","PRISCILA","OLINDA","NADENE","MUOI","MICHELINA","MERCEDEZ","MARYROSE","MARIN","MARCENE","MAO","MAGALI","MAFALDA","LOGAN","LINN","LANNIE","KAYCE","KAROLINE","KAMILAH","KAMALA","JUSTA","JOLINE","JENNINE","JACQUETTA","IRAIDA","GERALD","GEORGEANNA","FRANCHESCA","FAIRY","EMELINE","ELANE","EHTEL","EARLIE","DULCIE","DALENE","CRIS","CLASSIE","CHERE","CHARIS","CAROYLN","CARMINA","CARITA","BRIAN","BETHANIE","AYAKO","ARICA","AN","ALYSA","ALESSANDRA","AKILAH","ADRIEN","ZETTA","YOULANDA","YELENA","YAHAIRA","XUAN","WENDOLYN","VICTOR","TIJUANA","TERRELL","TERINA","TERESIA","SUZI","SUNDAY","SHERELL","SHAVONDA","SHAUNTE","SHARDA","SHAKITA","SENA","RYANN","RUBI","RIVA","REGINIA","REA","RACHAL","PARTHENIA","PAMULA","MONNIE","MONET","MICHAELE","MELIA","MARINE","MALKA","MAISHA","LISANDRA","LEO","LEKISHA","LEAN","LAURENCE","LAKENDRA","KRYSTIN","KORTNEY","KIZZIE","KITTIE","KERA","KENDAL","KEMBERLY","KANISHA","JULENE","JULE","JOSHUA","JOHANNE","JEFFREY","JAMEE","HAN","HALLEY","GIDGET","GALINA","FREDRICKA","FLETA","FATIMAH","EUSEBIA","ELZA","ELEONORE","DORTHEY","DORIA","DONELLA","DINORAH","DELORSE","CLARETHA","CHRISTINIA","CHARLYN","BONG","BELKIS","AZZIE","ANDERA","AIKO","ADENA","YER","YAJAIRA","WAN","VANIA","ULRIKE","TOSHIA","TIFANY","STEFANY","SHIZUE","SHENIKA","SHAWANNA","SHAROLYN","SHARILYN","SHAQUANA","SHANTAY","SEE","ROZANNE","ROSELEE","RICKIE","REMONA","REANNA","RAELENE","QUINN","PHUNG","PETRONILA","NATACHA","NANCEY","MYRL","MIYOKO","MIESHA","MERIDETH","MARVELLA","MARQUITTA","MARHTA","MARCHELLE","LIZETH","LIBBIE","LAHOMA","LADAWN","KINA","KATHELEEN","KATHARYN","KARISA","KALEIGH","JUNIE","JULIEANN","JOHNSIE","JANEAN","JAIMEE","JACKQUELINE","HISAKO","HERMA","HELAINE","GWYNETH","GLENN","GITA","EUSTOLIA","EMELINA","ELIN","EDRIS","DONNETTE","DONNETTA","DIERDRE","DENAE","DARCEL","CLAUDE","CLARISA","CINDERELLA","CHIA","CHARLESETTA","CHARITA","CELSA","CASSY","CASSI","CARLEE","BRUNA","BRITTANEY","BRANDE","BILLI","BAO","ANTONETTA","ANGLA","ANGELYN","ANALISA","ALANE","WENONA","WENDIE","VERONIQUE","VANNESA","TOBIE","TEMPIE","SUMIKO","SULEMA","SPARKLE","SOMER","SHEBA","SHAYNE","SHARICE","SHANEL","SHALON","SAGE","ROY","ROSIO","ROSELIA","RENAY","REMA","REENA","PORSCHE","PING","PEG","OZIE","ORETHA","ORALEE","ODA","NU","NGAN","NAKESHA","MILLY","MARYBELLE","MARLIN","MARIS","MARGRETT","MARAGARET","MANIE","LURLENE","LILLIA","LIESELOTTE","LAVELLE","LASHAUNDA","LAKEESHA","KEITH","KAYCEE","KALYN","JOYA","JOETTE","JENAE","JANIECE","ILLA","GRISEL","GLAYDS","GENEVIE","GALA","FREDDA","FRED","ELMER","ELEONOR","DEBERA","DEANDREA","DAN","CORRINNE","CORDIA","CONTESSA","COLENE","CLEOTILDE","CHARLOTT","CHANTAY","CECILLE","BEATRIS","AZALEE","ARLEAN","ARDATH","ANJELICA","ANJA","ALFREDIA","ALEISHA","ADAM","ZADA","YUONNE","XIAO","WILLODEAN","WHITLEY","VENNIE","VANNA","TYISHA","TOVA","TORIE","TONISHA","TILDA","TIEN","TEMPLE","SIRENA","SHERRIL","SHANTI","SHAN","SENAIDA","SAMELLA","ROBBYN","RENDA","REITA","PHEBE","PAULITA","NOBUKO","NGUYET","NEOMI","MOON","MIKAELA","MELANIA","MAXIMINA","MARG","MAISIE","LYNNA","LILLI","LAYNE","LASHAUN","LAKENYA","LAEL","KIRSTIE","KATHLINE","KASHA","KARLYN","KARIMA","JOVAN","JOSEFINE","JENNELL","JACQUI","JACKELYN","HYO","HIEN","GRAZYNA","FLORRIE","FLORIA","ELEONORA","DWANA","DORLA","DONG","DELMY","DEJA","DEDE","DANN","CRYSTA","CLELIA","CLARIS","CLARENCE","CHIEKO","CHERLYN","CHERELLE","CHARMAIN","CHARA","CAMMY","BEE","ARNETTE","ARDELLE","ANNIKA","AMIEE","AMEE","ALLENA","YVONE","YUKI","YOSHIE","YEVETTE","YAEL","WILLETTA","VONCILE","VENETTA","TULA","TONETTE","TIMIKA","TEMIKA","TELMA","TEISHA","TAREN","TA","STACEE","SHIN","SHAWNTA","SATURNINA","RICARDA","POK","PASTY","ONIE","NUBIA","MORA","MIKE","MARIELLE","MARIELLA","MARIANELA","MARDELL","MANY","LUANNA","LOISE","LISABETH","LINDSY","LILLIANA","LILLIAM","LELAH","LEIGHA","LEANORA","LANG","KRISTEEN","KHALILAH","KEELEY","KANDRA","JUNKO","JOAQUINA","JERLENE","JANI","JAMIKA","JAME","HSIU","HERMILA","GOLDEN","GENEVIVE","EVIA","EUGENA","EMMALINE","ELFREDA","ELENE","DONETTE","DELCIE","DEEANNA","DARCEY","CUC","CLARINDA","CIRA","CHAE","CELINDA","CATHERYN","CATHERIN","CASIMIRA","CARMELIA","CAMELLIA","BREANA","BOBETTE","BERNARDINA","BEBE","BASILIA","ARLYNE","AMAL","ALAYNA","ZONIA","ZENIA","YURIKO","YAEKO","WYNELL","WILLOW","WILLENA","VERNIA","TU","TRAVIS","TORA","TERRILYN","TERICA","TENESHA","TAWNA","TAJUANA","TAINA","STEPHNIE","SONA","SOL","SINA","SHONDRA","SHIZUKO","SHERLENE","SHERICE","SHARIKA","ROSSIE","ROSENA","RORY","RIMA","RIA","RHEBA","RENNA","PETER","NATALYA","NANCEE","MELODI","MEDA","MAXIMA","MATHA","MARKETTA","MARICRUZ","MARCELENE","MALVINA","LUBA","LOUETTA","LEIDA","LECIA","LAURAN","LASHAWNA","LAINE","KHADIJAH","KATERINE","KASI","KALLIE","JULIETTA","JESUSITA","JESTINE","JESSIA","JEREMY","JEFFIE","JANYCE","ISADORA","GEORGIANNE","FIDELIA","EVITA","EURA","EULAH","ESTEFANA","ELSY","ELIZABET","ELADIA","DODIE","DION","DIA","DENISSE","DELORAS","DELILA","DAYSI","DAKOTA","CURTIS","CRYSTLE","CONCHA","COLBY","CLARETTA","CHU","CHRISTIA","CHARLSIE","CHARLENA","CARYLON","BETTYANN","ASLEY","ASHLEA","AMIRA","AI","AGUEDA","AGNUS","YUETTE","VINITA","VICTORINA","TYNISHA","TREENA","TOCCARA","TISH","THOMASENA","TEGAN","SOILA","SHILOH","SHENNA","SHARMAINE","SHANTAE","SHANDI","SEPTEMBER","SARAN","SARAI","SANA","SAMUEL","SALLEY","ROSETTE","ROLANDE","REGINE","OTELIA","OSCAR","OLEVIA","NICHOLLE","NECOLE","NAIDA","MYRTA","MYESHA","MITSUE","MINTA","MERTIE","MARGY","MAHALIA","MADALENE","LOVE","LOURA","LOREAN","LEWIS","LESHA","LEONIDA","LENITA","LAVONE","LASHELL","LASHANDRA","LAMONICA","KIMBRA","KATHERINA","KARRY","KANESHA","JULIO","JONG","JENEVA","JAQUELYN","HWA","GILMA","GHISLAINE","GERTRUDIS","FRANSISCA","FERMINA","ETTIE","ETSUKO","ELLIS","ELLAN","ELIDIA","EDRA","DORETHEA","DOREATHA","DENYSE","DENNY","DEETTA","DAINE","CYRSTAL","CORRIN","CAYLA","CARLITA","CAMILA","BURMA","BULA","BUENA","BLAKE","BARABARA","AVRIL","AUSTIN","ALAINE","ZANA","WILHEMINA","WANETTA","VIRGIL","VI","VERONIKA","VERNON","VERLINE","VASILIKI","TONITA","TISA","TEOFILA","TAYNA","TAUNYA","TANDRA","TAKAKO","SUNNI","SUANNE","SIXTA","SHARELL","SEEMA","RUSSELL","ROSENDA","ROBENA","RAYMONDE","PEI","PAMILA","OZELL","NEIDA","NEELY","MISTIE","MICHA","MERISSA","MAURITA","MARYLN","MARYETTA","MARSHALL","MARCELL","MALENA","MAKEDA","MADDIE","LOVETTA","LOURIE","LORRINE","LORILEE","LESTER","LAURENA","LASHAY","LARRAINE","LAREE","LACRESHA","KRISTLE","KRISHNA","KEVA","KEIRA","KAROLE","JOIE","JINNY","JEANNETTA","JAMA","HEIDY","GILBERTE","GEMA","FAVIOLA","EVELYNN","ENDA","ELLI","ELLENA","DIVINA","DAGNY","COLLENE","CODI","CINDIE","CHASSIDY","CHASIDY","CATRICE","CATHERINA","CASSEY","CAROLL","CARLENA","CANDRA","CALISTA","BRYANNA","BRITTENY","BEULA","BARI","AUDRIE","AUDRIA","ARDELIA","ANNELLE","ANGILA","ALONA","ALLYN","DOUGLAS","ROGER","JONATHAN","RALPH","NICHOLAS","BENJAMIN","BRUCE","HARRY","WAYNE","STEVE","HOWARD","ERNEST","PHILLIP","TODD","CRAIG","ALAN","PHILIP","EARL","DANNY","BRYAN","STANLEY","LEONARD","NATHAN","MANUEL","RODNEY","MARVIN","VINCENT","JEFFERY","JEFF","CHAD","JACOB","ALFRED","BRADLEY","HERBERT","FREDERICK","EDWIN","DON","RICKY","RANDALL","BARRY","BERNARD","LEROY","MARCUS","THEODORE","CLIFFORD","MIGUEL","JIM","TOM","CALVIN","BILL","LLOYD","DEREK","WARREN","DARRELL","JEROME","FLOYD","ALVIN","TIM","GORDON","GREG","JORGE","DUSTIN","PEDRO","DERRICK","ZACHARY","HERMAN","GLEN","HECTOR","RICARDO","RICK","BRENT","RAMON","GILBERT","MARC","REGINALD","RUBEN","NATHANIEL","RAFAEL","EDGAR","MILTON","RAUL","BEN","CHESTER","DUANE","FRANKLIN","BRAD","RON","ROLAND","ARNOLD","HARVEY","JARED","ERIK","DARRYL","NEIL","JAVIER","FERNANDO","CLINTON","TED","MATHEW","TYRONE","DARREN","LANCE","KURT","ALLAN","NELSON","GUY","CLAYTON","HUGH","MAX","DWAYNE","DWIGHT","ARMANDO","FELIX","EVERETT","IAN","WALLACE","KEN","BOB","ALFREDO","ALBERTO","DAVE","IVAN","BYRON","ISAAC","MORRIS","CLIFTON","WILLARD","ROSS","ANDY","SALVADOR","KIRK","SERGIO","SETH","KENT","TERRANCE","EDUARDO","TERRENCE","ENRIQUE","WADE","STUART","FREDRICK","ARTURO","ALEJANDRO","NICK","LUTHER","WENDELL","JEREMIAH","JULIUS","OTIS","TREVOR","OLIVER","LUKE","HOMER","GERARD","DOUG","KENNY","HUBERT","LYLE","MATT","ALFONSO","ORLANDO","REX","CARLTON","ERNESTO","NEAL","PABLO","LORENZO","OMAR","WILBUR","GRANT","HORACE","RODERICK","ABRAHAM","WILLIS","RICKEY","ANDRES","CESAR","JOHNATHAN","MALCOLM","RUDOLPH","DAMON","KELVIN","PRESTON","ALTON","ARCHIE","MARCO","WM","PETE","RANDOLPH","GARRY","GEOFFREY","JONATHON","FELIPE","GERARDO","ED","DOMINIC","DELBERT","COLIN","GUILLERMO","EARNEST","LUCAS","BENNY","SPENCER","RODOLFO","MYRON","EDMUND","GARRETT","SALVATORE","CEDRIC","LOWELL","GREGG","SHERMAN","WILSON","SYLVESTER","ROOSEVELT","ISRAEL","JERMAINE","FORREST","WILBERT","LELAND","SIMON","CLARK","IRVING","BRYANT","OWEN","RUFUS","WOODROW","KRISTOPHER","MACK","LEVI","MARCOS","GUSTAVO","JAKE","LIONEL","GILBERTO","CLINT","NICOLAS","ISMAEL","ORVILLE","ERVIN","DEWEY","AL","WILFRED","JOSH","HUGO","IGNACIO","CALEB","TOMAS","SHELDON","ERICK","STEWART","DOYLE","DARREL","ROGELIO","TERENCE","SANTIAGO","ALONZO","ELIAS","BERT","ELBERT","RAMIRO","CONRAD","NOAH","GRADY","PHIL","CORNELIUS","LAMAR","ROLANDO","CLAY","PERCY","DEXTER","BRADFORD","DARIN","AMOS","MOSES","IRVIN","SAUL","ROMAN","RANDAL","TIMMY","DARRIN","WINSTON","BRENDAN","ABEL","DOMINICK","BOYD","EMILIO","ELIJAH","DOMINGO","EMMETT","MARLON","EMANUEL","JERALD","EDMOND","EMIL","DEWAYNE","WILL","OTTO","TEDDY","REYNALDO","BRET","JESS","TRENT","HUMBERTO","EMMANUEL","STEPHAN","VICENTE","LAMONT","GARLAND","MILES","EFRAIN","HEATH","RODGER","HARLEY","ETHAN","ELDON","ROCKY","PIERRE","JUNIOR","FREDDY","ELI","BRYCE","ANTOINE","STERLING","CHASE","GROVER","ELTON","CLEVELAND","DYLAN","CHUCK","DAMIAN","REUBEN","STAN","AUGUST","LEONARDO","JASPER","RUSSEL","ERWIN","BENITO","HANS","MONTE","BLAINE","ERNIE","CURT","QUENTIN","AGUSTIN","MURRAY","JAMAL","ADOLFO","HARRISON","TYSON","BURTON","BRADY","ELLIOTT","WILFREDO","BART","JARROD","VANCE","DENIS","DAMIEN","JOAQUIN","HARLAN","DESMOND","ELLIOT","DARWIN","GREGORIO","BUDDY","XAVIER","KERMIT","ROSCOE","ESTEBAN","ANTON","SOLOMON","SCOTTY","NORBERT","ELVIN","WILLIAMS","NOLAN","ROD","QUINTON","HAL","BRAIN","ROB","ELWOOD","KENDRICK","DARIUS","MOISES","FIDEL","THADDEUS","CLIFF","MARCEL","JACKSON","RAPHAEL","BRYON","ARMAND","ALVARO","JEFFRY","DANE","JOESPH","THURMAN","NED","RUSTY","MONTY","FABIAN","REGGIE","MASON","GRAHAM","ISAIAH","VAUGHN","GUS","LOYD","DIEGO","ADOLPH","NORRIS","MILLARD","ROCCO","GONZALO","DERICK","RODRIGO","WILEY","RIGOBERTO","ALPHONSO","TY","NOE","VERN","REED","JEFFERSON","ELVIS","BERNARDO","MAURICIO","HIRAM","DONOVAN","BASIL","RILEY","NICKOLAS","MAYNARD","SCOT","VINCE","QUINCY","EDDY","SEBASTIAN","FEDERICO","ULYSSES","HERIBERTO","DONNELL","COLE","DAVIS","GAVIN","EMERY","WARD","ROMEO","JAYSON","DANTE","CLEMENT","COY","MAXWELL","JARVIS","BRUNO","ISSAC","DUDLEY","BROCK","SANFORD","CARMELO","BARNEY","NESTOR","STEFAN","DONNY","ART","LINWOOD","BEAU","WELDON","GALEN","ISIDRO","TRUMAN","DELMAR","JOHNATHON","SILAS","FREDERIC","DICK","IRWIN","MERLIN","CHARLEY","MARCELINO","HARRIS","CARLO","TRENTON","KURTIS","HUNTER","AURELIO","WINFRED","VITO","COLLIN","DENVER","CARTER","LEONEL","EMORY","PASQUALE","MOHAMMAD","MARIANO","DANIAL","LANDON","DIRK","BRANDEN","ADAN","BUFORD","GERMAN","WILMER","EMERSON","ZACHERY","FLETCHER","JACQUES","ERROL","DALTON","MONROE","JOSUE","EDWARDO","BOOKER","WILFORD","SONNY","SHELTON","CARSON","THERON","RAYMUNDO","DAREN","HOUSTON","ROBBY","LINCOLN","GENARO","BENNETT","OCTAVIO","CORNELL","HUNG","ARRON","ANTONY","HERSCHEL","GIOVANNI","GARTH","CYRUS","CYRIL","RONNY","LON","FREEMAN","DUNCAN","KENNITH","CARMINE","ERICH","CHADWICK","WILBURN","RUSS","REID","MYLES","ANDERSON","MORTON","JONAS","FOREST","MITCHEL","MERVIN","ZANE","RICH","JAMEL","LAZARO","ALPHONSE","RANDELL","MAJOR","JARRETT","BROOKS","ABDUL","LUCIANO","SEYMOUR","EUGENIO","MOHAMMED","VALENTIN","CHANCE","ARNULFO","LUCIEN","FERDINAND","THAD","EZRA","ALDO","RUBIN","ROYAL","MITCH","EARLE","ABE","WYATT","MARQUIS","LANNY","KAREEM","JAMAR","BORIS","ISIAH","EMILE","ELMO","ARON","LEOPOLDO","EVERETTE","JOSEF","ELOY","RODRICK","REINALDO","LUCIO","JERROD","WESTON","HERSHEL","BARTON","PARKER","LEMUEL","BURT","JULES","GIL","ELISEO","AHMAD","NIGEL","EFREN","ANTWAN","ALDEN","MARGARITO","COLEMAN","DINO","OSVALDO","LES","DEANDRE","NORMAND","KIETH","TREY","NORBERTO","NAPOLEON","JEROLD","FRITZ","ROSENDO","MILFORD","CHRISTOPER","ALFONZO","LYMAN","JOSIAH","BRANT","WILTON","RICO","JAMAAL","DEWITT","BRENTON","OLIN","FOSTER","FAUSTINO","CLAUDIO","JUDSON","GINO","EDGARDO","ALEC","TANNER","JARRED","DONN","TAD","PRINCE","PORFIRIO","ODIS","LENARD","CHAUNCEY","TOD","MEL","MARCELO","KORY","AUGUSTUS","KEVEN","HILARIO","BUD","SAL","ORVAL","MAURO","ZACHARIAH","OLEN","ANIBAL","MILO","JED","DILLON","AMADO","NEWTON","LENNY","RICHIE","HORACIO","BRICE","MOHAMED","DELMER","DARIO","REYES","MAC","JONAH","JERROLD","ROBT","HANK","RUPERT","ROLLAND","KENTON","DAMION","ANTONE","WALDO","FREDRIC","BRADLY","KIP","BURL","WALKER","TYREE","JEFFEREY","AHMED","WILLY","STANFORD","OREN","NOBLE","MOSHE","MIKEL","ENOCH","BRENDON","QUINTIN","JAMISON","FLORENCIO","DARRICK","TOBIAS","HASSAN","GIUSEPPE","DEMARCUS","CLETUS","TYRELL","LYNDON","KEENAN","WERNER","GERALDO","COLUMBUS","CHET","BERTRAM","MARKUS","HUEY","HILTON","DWAIN","DONTE","TYRON","OMER","ISAIAS","HIPOLITO","FERMIN","ADALBERTO","BO","BARRETT","TEODORO","MCKINLEY","MAXIMO","GARFIELD","RALEIGH","LAWERENCE","ABRAM","RASHAD","KING","EMMITT","DARON","SAMUAL","MIQUEL","EUSEBIO","DOMENIC","DARRON","BUSTER","WILBER","RENATO","JC","HOYT","HAYWOOD","EZEKIEL","CHAS","FLORENTINO","ELROY","CLEMENTE","ARDEN","NEVILLE","EDISON","DESHAWN","NATHANIAL","JORDON","DANILO","CLAUD","SHERWOOD","RAYMON","RAYFORD","CRISTOBAL","AMBROSE","TITUS","HYMAN","FELTON","EZEQUIEL","ERASMO","STANTON","LONNY","LEN","IKE","MILAN","LINO","JAROD","HERB","ANDREAS","WALTON","RHETT","PALMER","DOUGLASS","CORDELL","OSWALDO","ELLSWORTH","VIRGILIO","TONEY","NATHANAEL","DEL","BENEDICT","MOSE","JOHNSON","ISREAL","GARRET","FAUSTO","ASA","ARLEN","ZACK","WARNER","MODESTO","FRANCESCO","MANUAL","GAYLORD","GASTON","FILIBERTO","DEANGELO","MICHALE","GRANVILLE","WES","MALIK","ZACKARY","TUAN","ELDRIDGE","CRISTOPHER","CORTEZ","ANTIONE","MALCOM","LONG","KOREY","JOSPEH","COLTON","WAYLON","VON","HOSEA","SHAD","SANTO","RUDOLF","ROLF","REY","RENALDO","MARCELLUS","LUCIUS","KRISTOFER","BOYCE","BENTON","HAYDEN","HARLAND","ARNOLDO","RUEBEN","LEANDRO","KRAIG","JERRELL","JEROMY","HOBERT","CEDRICK","ARLIE","WINFORD","WALLY","LUIGI","KENETH","JACINTO","GRAIG","FRANKLYN","EDMUNDO","SID","PORTER","LEIF","JERAMY","BUCK","WILLIAN","VINCENZO","SHON","LYNWOOD","JERE","HAI","ELDEN","DORSEY","DARELL","BRODERICK","ALONSO"
"MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN","BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY","CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE","CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS","GLORIA","EVELYN","JEAN","CHERYL","MILDRED","KATHERINE","JOAN","ASHLEY","JUDITH","ROSE","JANICE","KELLY","NICOLE","JUDY","CHRISTINA","KATHY","THERESA","BEVERLY","DENISE","TAMMY","IRENE","JANE","LORI","RACHEL","MARILYN","ANDREA","KATHRYN","LOUISE","SARA","ANNE","JACQUELINE","WANDA","BONNIE","JULIA","RUBY","LOIS","TINA","PHYLLIS","NORMA","PAULA","DIANA","ANNIE","LILLIAN","EMILY","ROBIN","PEGGY","CRYSTAL","GLADYS","RITA","DAWN","CONNIE","FLORENCE","TRACY","EDNA","TIFFANY","CARMEN","ROSA","CINDY","GRACE","WENDY","VICTORIA","EDITH","KIM","SHERRY","SYLVIA","JOSEPHINE","THELMA","SHANNON","SHEILA","ETHEL","ELLEN","ELAINE","MARJORIE","CARRIE","CHARLOTTE","MONICA","ESTHER","PAULINE","EMMA","JUANITA","ANITA","RHONDA","HAZEL","AMBER","EVA","DEBBIE","APRIL","LESLIE","CLARA","LUCILLE","JAMIE","JOANNE","ELEANOR","VALERIE","DANIELLE","MEGAN","ALICIA","SUZANNE","MICHELE","GAIL","BERTHA","DARLENE","VERONICA","JILL","ERIN","GERALDINE","LAUREN","CATHY","JOANN","LORRAINE","LYNN","SALLY","REGINA","ERICA","BEATRICE","DOLORES","BERNICE","AUDREY","YVONNE","ANNETTE","JUNE","SAMANTHA","MARION","DANA","STACY","ANA","RENEE","IDA","VIVIAN","ROBERTA","HOLLY","BRITTANY","MELANIE","LORETTA","YOLANDA","JEANETTE","LAURIE","KATIE","KRISTEN","VANESSA","ALMA","SUE","ELSIE","BETH","JEANNE","VICKI","CARLA","TARA","ROSEMARY","EILEEN","TERRI","GERTRUDE","LUCY","TONYA","ELLA","STACEY","WILMA","GINA","KRISTIN","JESSIE","NATALIE","AGNES","VERA","WILLIE","CHARLENE","BESSIE","DELORES","MELINDA","PEARL","ARLENE","MAUREEN","COLLEEN","ALLISON","TAMARA","JOY","GEORGIA","CONSTANCE","LILLIE","CLAUDIA","JACKIE","MARCIA","TANYA","NELLIE","MINNIE","MARLENE","HEIDI","GLENDA","LYDIA","VIOLA","COURTNEY","MARIAN","STELLA","CAROLINE","DORA","JO","VICKIE","MATTIE","TERRY","MAXINE","IRMA","MABEL","MARSHA","MYRTLE","LENA","CHRISTY","DEANNA","PATSY","HILDA","GWENDOLYN","JENNIE","NORA","MARGIE","NINA","CASSANDRA","LEAH","PENNY","KAY","PRISCILLA","NAOMI","CAROLE","BRANDY","OLGA","BILLIE","DIANNE","TRACEY","LEONA","JENNY","FELICIA","SONIA","MIRIAM","VELMA","BECKY","BOBBIE","VIOLET","KRISTINA","TONI","MISTY","MAE","SHELLY","DAISY","RAMONA","SHERRI","ERIKA","KATRINA","CLAIRE","LINDSEY","LINDSAY","GENEVA","GUADALUPE","BELINDA","MARGARITA","SHERYL","CORA","FAYE","ADA","NATASHA","SABRINA","ISABEL","MARGUERITE","HATTIE","HARRIET","MOLLY","CECILIA","KRISTI","BRANDI","BLANCHE","SANDY","ROSIE","JOANNA","IRIS","EUNICE","ANGIE","INEZ","LYNDA","MADELINE","AMELIA","ALBERTA","GENEVIEVE","MONIQUE","JODI","JANIE","MAGGIE","KAYLA","SONYA","JAN","LEE","KRISTINE","CANDACE","FANNIE","MARYANN","OPAL","ALISON","YVETTE","MELODY","LUZ","SUSIE","OLIVIA","FLORA","SHELLEY","KRISTY","MAMIE","LULA","LOLA","VERNA","BEULAH","ANTOINETTE","CANDICE","JUANA","JEANNETTE","PAM","KELLI","HANNAH","WHITNEY","BRIDGET","KARLA","CELIA","LATOYA","PATTY","SHELIA","GAYLE","DELLA","VICKY","LYNNE","SHERI","MARIANNE","KARA","JACQUELYN","ERMA","BLANCA","MYRA","LETICIA","PAT","KRISTA","ROXANNE","ANGELICA","JOHNNIE","ROBYN","FRANCIS","ADRIENNE","ROSALIE","ALEXANDRA","BROOKE","BETHANY","SADIE","BERNADETTE","TRACI","JODY","KENDRA","JASMINE","NICHOLE","RACHAEL","CHELSEA","MABLE","ERNESTINE","MURIEL","MARCELLA","ELENA","KRYSTAL","ANGELINA","NADINE","KARI","ESTELLE","DIANNA","PAULETTE","LORA","MONA","DOREEN","ROSEMARIE","ANGEL","DESIREE","ANTONIA","HOPE","GINGER","JANIS","BETSY","CHRISTIE","FREDA","MERCEDES","MEREDITH","LYNETTE","TERI","CRISTINA","EULA","LEIGH","MEGHAN","SOPHIA","ELOISE","ROCHELLE","GRETCHEN","CECELIA","RAQUEL","HENRIETTA","ALYSSA","JANA","KELLEY","GWEN","KERRY","JENNA","TRICIA","LAVERNE","OLIVE","ALEXIS","TASHA","SILVIA","ELVIRA","CASEY","DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE","SONJA","LILA","LANA","DARLA","MAY","MINDY","ESSIE","MANDY","LORENE","ELSA","JOSEFINA","JEANNIE","MIRANDA","DIXIE","LUCIA","MARTA","FAITH","LELA","JOHANNA","SHARI","CAMILLE","TAMI","SHAWNA","ELISA","EBONY","MELBA","ORA","NETTIE","TABITHA","OLLIE","JAIME","WINIFRED","KRISTIE","MARINA","ALISHA","AIMEE","RENA","MYRNA","MARLA","TAMMIE","LATASHA","BONITA","PATRICE","RONDA","SHERRIE","ADDIE","FRANCINE","DELORIS","STACIE","ADRIANA","CHERI","SHELBY","ABIGAIL","CELESTE","JEWEL","CARA","ADELE","REBEKAH","LUCINDA","DORTHY","CHRIS","EFFIE","TRINA","REBA","SHAWN","SALLIE","AURORA","LENORA","ETTA","LOTTIE","KERRI","TRISHA","NIKKI","ESTELLA","FRANCISCA","JOSIE","TRACIE","MARISSA","KARIN","BRITTNEY","JANELLE","LOURDES","LAUREL","HELENE","FERN","ELVA","CORINNE","KELSEY","INA","BETTIE","ELISABETH","AIDA","CAITLIN","INGRID","IVA","EUGENIA","CHRISTA","GOLDIE","CASSIE","MAUDE","JENIFER","THERESE","FRANKIE","DENA","LORNA","JANETTE","LATONYA","CANDY","MORGAN","CONSUELO","TAMIKA","ROSETTA","DEBORA","CHERIE","POLLY","DINA","JEWELL","FAY","JILLIAN","DOROTHEA","NELL","TRUDY","ESPERANZA","PATRICA","KIMBERLEY","SHANNA","HELENA","CAROLINA","CLEO","STEFANIE","ROSARIO","OLA","JANINE","MOLLIE","LUPE","ALISA","LOU","MARIBEL","SUSANNE","BETTE","SUSANA","ELISE","CECILE","ISABELLE","LESLEY","JOCELYN","PAIGE","JONI","RACHELLE","LEOLA","DAPHNE","ALTA","ESTER","PETRA","GRACIELA","IMOGENE","JOLENE","KEISHA","LACEY","GLENNA","GABRIELA","KERI","URSULA","LIZZIE","KIRSTEN","SHANA","ADELINE","MAYRA","JAYNE","JACLYN","GRACIE","SONDRA","CARMELA","MARISA","ROSALIND","CHARITY","TONIA","BEATRIZ","MARISOL","CLARICE","JEANINE","SHEENA","ANGELINE","FRIEDA","LILY","ROBBIE","SHAUNA","MILLIE","CLAUDETTE","CATHLEEN","ANGELIA","GABRIELLE","AUTUMN","KATHARINE","SUMMER","JODIE","STACI","LEA","CHRISTI","JIMMIE","JUSTINE","ELMA","LUELLA","MARGRET","DOMINIQUE","SOCORRO","RENE","MARTINA","MARGO","MAVIS","CALLIE","BOBBI","MARITZA","LUCILE","LEANNE","JEANNINE","DEANA","AILEEN","LORIE","LADONNA","WILLA","MANUELA","GALE","SELMA","DOLLY","SYBIL","ABBY","LARA","DALE","IVY","DEE","WINNIE","MARCY","LUISA","JERI","MAGDALENA","OFELIA","MEAGAN","AUDRA","MATILDA","LEILA","CORNELIA","BIANCA","SIMONE","BETTYE","RANDI","VIRGIE","LATISHA","BARBRA","GEORGINA","ELIZA","LEANN","BRIDGETTE","RHODA","HALEY","ADELA","NOLA","BERNADINE","FLOSSIE","ILA","GRETA","RUTHIE","NELDA","MINERVA","LILLY","TERRIE","LETHA","HILARY","ESTELA","VALARIE","BRIANNA","ROSALYN","EARLINE","CATALINA","AVA","MIA","CLARISSA","LIDIA","CORRINE","ALEXANDRIA","CONCEPCION","TIA","SHARRON","RAE","DONA","ERICKA","JAMI","ELNORA","CHANDRA","LENORE","NEVA","MARYLOU","MELISA","TABATHA","SERENA","AVIS","ALLIE","SOFIA","JEANIE","ODESSA","NANNIE","HARRIETT","LORAINE","PENELOPE","MILAGROS","EMILIA","BENITA","ALLYSON","ASHLEE","TANIA","TOMMIE","ESMERALDA","KARINA","EVE","PEARLIE","ZELMA","MALINDA","NOREEN","TAMEKA","SAUNDRA","HILLARY","AMIE","ALTHEA","ROSALINDA","JORDAN","LILIA","ALANA","GAY","CLARE","ALEJANDRA","ELINOR","MICHAEL","LORRIE","JERRI","DARCY","EARNESTINE","CARMELLA","TAYLOR","NOEMI","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA","TANISHA","KATY","JULIANNE","JOHN","LAKISHA","EDWINA","MARICELA","MARGERY","KENYA","DOLLIE","ROXIE","ROSLYN","KATHRINE","NANETTE","CHARMAINE","LAVONNE","ILENE","KRIS","TAMMI","SUZETTE","CORINE","KAYE","JERRY","MERLE","CHRYSTAL","LINA","DEANNE","LILIAN","JULIANA","ALINE","LUANN","KASEY","MARYANNE","EVANGELINE","COLETTE","MELVA","LAWANDA","YESENIA","NADIA","MADGE","KATHIE","EDDIE","OPHELIA","VALERIA","NONA","MITZI","MARI","GEORGETTE","CLAUDINE","FRAN","ALISSA","ROSEANN","LAKEISHA","SUSANNA","REVA","DEIDRE","CHASITY","SHEREE","CARLY","JAMES","ELVIA","ALYCE","DEIRDRE","GENA","BRIANA","ARACELI","KATELYN","ROSANNE","WENDI","TESSA","BERTA","MARVA","IMELDA","MARIETTA","MARCI","LEONOR","ARLINE","SASHA","MADELYN","JANNA","JULIETTE","DEENA","AURELIA","JOSEFA","AUGUSTA","LILIANA","YOUNG","CHRISTIAN","LESSIE","AMALIA","SAVANNAH","ANASTASIA","VILMA","NATALIA","ROSELLA","LYNNETTE","CORINA","ALFREDA","LEANNA","CAREY","AMPARO","COLEEN","TAMRA","AISHA","WILDA","KARYN","CHERRY","QUEEN","MAURA","MAI","EVANGELINA","ROSANNA","HALLIE","ERNA","ENID","MARIANA","LACY","JULIET","JACKLYN","FREIDA","MADELEINE","MARA","HESTER","CATHRYN","LELIA","CASANDRA","BRIDGETT","ANGELITA","JANNIE","DIONNE","ANNMARIE","KATINA","BERYL","PHOEBE","MILLICENT","KATHERYN","DIANN","CARISSA","MARYELLEN","LIZ","LAURI","HELGA","GILDA","ADRIAN","RHEA","MARQUITA","HOLLIE","TISHA","TAMERA","ANGELIQUE","FRANCESCA","BRITNEY","KAITLIN","LOLITA","FLORINE","ROWENA","REYNA","TWILA","FANNY","JANELL","INES","CONCETTA","BERTIE","ALBA","BRIGITTE","ALYSON","VONDA","PANSY","ELBA","NOELLE","LETITIA","KITTY","DEANN","BRANDIE","LOUELLA","LETA","FELECIA","SHARLENE","LESA","BEVERLEY","ROBERT","ISABELLA","HERMINIA","TERRA","CELINA","TORI","OCTAVIA","JADE","DENICE","GERMAINE","SIERRA","MICHELL","CORTNEY","NELLY","DORETHA","SYDNEY","DEIDRA","MONIKA","LASHONDA","JUDI","CHELSEY","ANTIONETTE","MARGOT","BOBBY","ADELAIDE","NAN","LEEANN","ELISHA","DESSIE","LIBBY","KATHI","GAYLA","LATANYA","MINA","MELLISA","KIMBERLEE","JASMIN","RENAE","ZELDA","ELDA","MA","JUSTINA","GUSSIE","EMILIE","CAMILLA","ABBIE","ROCIO","KAITLYN","JESSE","EDYTHE","ASHLEIGH","SELINA","LAKESHA","GERI","ALLENE","PAMALA","MICHAELA","DAYNA","CARYN","ROSALIA","SUN","JACQULINE","REBECA","MARYBETH","KRYSTLE","IOLA","DOTTIE","BENNIE","BELLE","AUBREY","GRISELDA","ERNESTINA","ELIDA","ADRIANNE","DEMETRIA","DELMA","CHONG","JAQUELINE","DESTINY","ARLEEN","VIRGINA","RETHA","FATIMA","TILLIE","ELEANORE","CARI","TREVA","BIRDIE","WILHELMINA","ROSALEE","MAURINE","LATRICE","YONG","JENA","TARYN","ELIA","DEBBY","MAUDIE","JEANNA","DELILAH","CATRINA","SHONDA","HORTENCIA","THEODORA","TERESITA","ROBBIN","DANETTE","MARYJANE","FREDDIE","DELPHINE","BRIANNE","NILDA","DANNA","CINDI","BESS","IONA","HANNA","ARIEL","WINONA","VIDA","ROSITA","MARIANNA","WILLIAM","RACHEAL","GUILLERMINA","ELOISA","CELESTINE","CAREN","MALISSA","LONA","CHANTEL","SHELLIE","MARISELA","LEORA","AGATHA","SOLEDAD","MIGDALIA","IVETTE","CHRISTEN","ATHENA","JANEL","CHLOE","VEDA","PATTIE","TESSIE","TERA","MARILYNN","LUCRETIA","KARRIE","DINAH","DANIELA","ALECIA","ADELINA","VERNICE","SHIELA","PORTIA","MERRY","LASHAWN","DEVON","DARA","TAWANA","OMA","VERDA","CHRISTIN","ALENE","ZELLA","SANDI","RAFAELA","MAYA","KIRA","CANDIDA","ALVINA","SUZAN","SHAYLA","LYN","LETTIE","ALVA","SAMATHA","ORALIA","MATILDE","MADONNA","LARISSA","VESTA","RENITA","INDIA","DELOIS","SHANDA","PHILLIS","LORRI","ERLINDA","CRUZ","CATHRINE","BARB","ZOE","ISABELL","IONE","GISELA","CHARLIE","VALENCIA","ROXANNA","MAYME","KISHA","ELLIE","MELLISSA","DORRIS","DALIA","BELLA","ANNETTA","ZOILA","RETA","REINA","LAURETTA","KYLIE","CHRISTAL","PILAR","CHARLA","ELISSA","TIFFANI","TANA","PAULINA","LEOTA","BREANNA","JAYME","CARMEL","VERNELL","TOMASA","MANDI","DOMINGA","SANTA","MELODIE","LURA","ALEXA","TAMELA","RYAN","MIRNA","KERRIE","VENUS","NOEL","FELICITA","CRISTY","CARMELITA","BERNIECE","ANNEMARIE","TIARA","ROSEANNE","MISSY","CORI","ROXANA","PRICILLA","KRISTAL","JUNG","ELYSE","HAYDEE","ALETHA","BETTINA","MARGE","GILLIAN","FILOMENA","CHARLES","ZENAIDA","HARRIETTE","CARIDAD","VADA","UNA","ARETHA","PEARLINE","MARJORY","MARCELA","FLOR","EVETTE","ELOUISE","ALINA","TRINIDAD","DAVID","DAMARIS","CATHARINE","CARROLL","BELVA","NAKIA","MARLENA","LUANNE","LORINE","KARON","DORENE","DANITA","BRENNA","TATIANA","SAMMIE","LOUANN","LOREN","JULIANNA","ANDRIA","PHILOMENA","LUCILA","LEONORA","DOVIE","ROMONA","MIMI","JACQUELIN","GAYE","TONJA","MISTI","JOE","GENE","CHASTITY","STACIA","ROXANN","MICAELA","NIKITA","MEI","VELDA","MARLYS","JOHNNA","AURA","LAVERN","IVONNE","HAYLEY","NICKI","MAJORIE","HERLINDA","GEORGE","ALPHA","YADIRA","PERLA","GREGORIA","DANIEL","ANTONETTE","SHELLI","MOZELLE","MARIAH","JOELLE","CORDELIA","JOSETTE","CHIQUITA","TRISTA","LOUIS","LAQUITA","GEORGIANA","CANDI","SHANON","LONNIE","HILDEGARD","CECIL","VALENTINA","STEPHANY","MAGDA","KAROL","GERRY","GABRIELLA","TIANA","ROMA","RICHELLE","RAY","PRINCESS","OLETA","JACQUE","IDELLA","ALAINA","SUZANNA","JOVITA","BLAIR","TOSHA","RAVEN","NEREIDA","MARLYN","KYLA","JOSEPH","DELFINA","TENA","STEPHENIE","SABINA","NATHALIE","MARCELLE","GERTIE","DARLEEN","THEA","SHARONDA","SHANTEL","BELEN","VENESSA","ROSALINA","ONA","GENOVEVA","COREY","CLEMENTINE","ROSALBA","RENATE","RENATA","MI","IVORY","GEORGIANNA","FLOY","DORCAS","ARIANA","TYRA","THEDA","MARIAM","JULI","JESICA","DONNIE","VIKKI","VERLA","ROSELYN","MELVINA","JANNETTE","GINNY","DEBRAH","CORRIE","ASIA","VIOLETA","MYRTIS","LATRICIA","COLLETTE","CHARLEEN","ANISSA","VIVIANA","TWYLA","PRECIOUS","NEDRA","LATONIA","LAN","HELLEN","FABIOLA","ANNAMARIE","ADELL","SHARYN","CHANTAL","NIKI","MAUD","LIZETTE","LINDY","KIA","KESHA","JEANA","DANELLE","CHARLINE","CHANEL","CARROL","VALORIE","LIA","DORTHA","CRISTAL","SUNNY","LEONE","LEILANI","GERRI","DEBI","ANDRA","KESHIA","IMA","EULALIA","EASTER","DULCE","NATIVIDAD","LINNIE","KAMI","GEORGIE","CATINA","BROOK","ALDA","WINNIFRED","SHARLA","RUTHANN","MEAGHAN","MAGDALENE","LISSETTE","ADELAIDA","VENITA","TRENA","SHIRLENE","SHAMEKA","ELIZEBETH","DIAN","SHANTA","MICKEY","LATOSHA","CARLOTTA","WINDY","SOON","ROSINA","MARIANN","LEISA","JONNIE","DAWNA","CATHIE","BILLY","ASTRID","SIDNEY","LAUREEN","JANEEN","HOLLI","FAWN","VICKEY","TERESSA","SHANTE","RUBYE","MARCELINA","CHANDA","CARY","TERESE","SCARLETT","MARTY","MARNIE","LULU","LISETTE","JENIFFER","ELENOR","DORINDA","DONITA","CARMAN","BERNITA","ALTAGRACIA","ALETA","ADRIANNA","ZORAIDA","RONNIE","NICOLA","LYNDSEY","KENDALL","JANINA","CHRISSY","AMI","STARLA","PHYLIS","PHUONG","KYRA","CHARISSE","BLANCH","SANJUANITA","RONA","NANCI","MARILEE","MARANDA","CORY","BRIGETTE","SANJUANA","MARITA","KASSANDRA","JOYCELYN","IRA","FELIPA","CHELSIE","BONNY","MIREYA","LORENZA","KYONG","ILEANA","CANDELARIA","TONY","TOBY","SHERIE","OK","MARK","LUCIE","LEATRICE","LAKESHIA","GERDA","EDIE","BAMBI","MARYLIN","LAVON","HORTENSE","GARNET","EVIE","TRESSA","SHAYNA","LAVINA","KYUNG","JEANETTA","SHERRILL","SHARA","PHYLISS","MITTIE","ANABEL","ALESIA","THUY","TAWANDA","RICHARD","JOANIE","TIFFANIE","LASHANDA","KARISSA","ENRIQUETA","DARIA","DANIELLA","CORINNA","ALANNA","ABBEY","ROXANE","ROSEANNA","MAGNOLIA","LIDA","KYLE","JOELLEN","ERA","CORAL","CARLEEN","TRESA","PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE","CARINA","NOVA","MELINA","MARQUERITE","MARGARETTE","JOSEPHINA","EVONNE","DEVIN","CINTHIA","ALBINA","TOYA","TAWNYA","SHERITA","SANTOS","MYRIAM","LIZABETH","LISE","KEELY","JENNI","GISELLE","CHERYLE","ARDITH","ARDIS","ALESHA","ADRIANE","SHAINA","LINNEA","KAROLYN","HONG","FLORIDA","FELISHA","DORI","DARCI","ARTIE","ARMIDA","ZOLA","XIOMARA","VERGIE","SHAMIKA","NENA","NANNETTE","MAXIE","LOVIE","JEANE","JAIMIE","INGE","FARRAH","ELAINA","CAITLYN","STARR","FELICITAS","CHERLY","CARYL","YOLONDA","YASMIN","TEENA","PRUDENCE","PENNIE","NYDIA","MACKENZIE","ORPHA","MARVEL","LIZBETH","LAURETTE","JERRIE","HERMELINDA","CAROLEE","TIERRA","MIRIAN","META","MELONY","KORI","JENNETTE","JAMILA","ENA","ANH","YOSHIKO","SUSANNAH","SALINA","RHIANNON","JOLEEN","CRISTINE","ASHTON","ARACELY","TOMEKA","SHALONDA","MARTI","LACIE","KALA","JADA","ILSE","HAILEY","BRITTANI","ZONA","SYBLE","SHERRYL","RANDY","NIDIA","MARLO","KANDICE","KANDI","DEB","DEAN","AMERICA","ALYCIA","TOMMY","RONNA","NORENE","MERCY","JOSE","INGEBORG","GIOVANNA","GEMMA","CHRISTEL","AUDRY","ZORA","VITA","VAN","TRISH","STEPHAINE","SHIRLEE","SHANIKA","MELONIE","MAZIE","JAZMIN","INGA","HOA","HETTIE","GERALYN","FONDA","ESTRELLA","ADELLA","SU","SARITA","RINA","MILISSA","MARIBETH","GOLDA","EVON","ETHELYN","ENEDINA","CHERISE","CHANA","VELVA","TAWANNA","SADE","MIRTA","LI","KARIE","JACINTA","ELNA","DAVINA","CIERRA","ASHLIE","ALBERTHA","TANESHA","STEPHANI","NELLE","MINDI","LU","LORINDA","LARUE","FLORENE","DEMETRA","DEDRA","CIARA","CHANTELLE","ASHLY","SUZY","ROSALVA","NOELIA","LYDA","LEATHA","KRYSTYNA","KRISTAN","KARRI","DARLINE","DARCIE","CINDA","CHEYENNE","CHERRIE","AWILDA","ALMEDA","ROLANDA","LANETTE","JERILYN","GISELE","EVALYN","CYNDI","CLETA","CARIN","ZINA","ZENA","VELIA","TANIKA","PAUL","CHARISSA","THOMAS","TALIA","MARGARETE","LAVONDA","KAYLEE","KATHLENE","JONNA","IRENA","ILONA","IDALIA","CANDIS","CANDANCE","BRANDEE","ANITRA","ALIDA","SIGRID","NICOLETTE","MARYJO","LINETTE","HEDWIG","CHRISTIANA","CASSIDY","ALEXIA","TRESSIE","MODESTA","LUPITA","LITA","GLADIS","EVELIA","DAVIDA","CHERRI","CECILY","ASHELY","ANNABEL","AGUSTINA","WANITA","SHIRLY","ROSAURA","HULDA","EUN","BAILEY","YETTA","VERONA","THOMASINA","SIBYL","SHANNAN","MECHELLE","LUE","LEANDRA","LANI","KYLEE","KANDY","JOLYNN","FERNE","EBONI","CORENE","ALYSIA","ZULA","NADA","MOIRA","LYNDSAY","LORRETTA","JUAN","JAMMIE","HORTENSIA","GAYNELL","CAMERON","ADRIA","VINA","VICENTA","TANGELA","STEPHINE","NORINE","NELLA","LIANA","LESLEE","KIMBERELY","ILIANA","GLORY","FELICA","EMOGENE","ELFRIEDE","EDEN","EARTHA","CARMA","BEA","OCIE","MARRY","LENNIE","KIARA","JACALYN","CARLOTA","ARIELLE","YU","STAR","OTILIA","KIRSTIN","KACEY","JOHNETTA","JOEY","JOETTA","JERALDINE","JAUNITA","ELANA","DORTHEA","CAMI","AMADA","ADELIA","VERNITA","TAMAR","SIOBHAN","RENEA","RASHIDA","OUIDA","ODELL","NILSA","MERYL","KRISTYN","JULIETA","DANICA","BREANNE","AUREA","ANGLEA","SHERRON","ODETTE","MALIA","LORELEI","LIN","LEESA","KENNA","KATHLYN","FIONA","CHARLETTE","SUZIE","SHANTELL","SABRA","RACQUEL","MYONG","MIRA","MARTINE","LUCIENNE","LAVADA","JULIANN","JOHNIE","ELVERA","DELPHIA","CLAIR","CHRISTIANE","CHAROLETTE","CARRI","AUGUSTINE","ASHA","ANGELLA","PAOLA","NINFA","LEDA","LAI","EDA","SUNSHINE","STEFANI","SHANELL","PALMA","MACHELLE","LISSA","KECIA","KATHRYNE","KARLENE","JULISSA","JETTIE","JENNIFFER","HUI","CORRINA","CHRISTOPHER","CAROLANN","ALENA","TESS","ROSARIA","MYRTICE","MARYLEE","LIANE","KENYATTA","JUDIE","JANEY","IN","ELMIRA","ELDORA","DENNA","CRISTI","CATHI","ZAIDA","VONNIE","VIVA","VERNIE","ROSALINE","MARIELA","LUCIANA","LESLI","KARAN","FELICE","DENEEN","ADINA","WYNONA","TARSHA","SHERON","SHASTA","SHANITA","SHANI","SHANDRA","RANDA","PINKIE","PARIS","NELIDA","MARILOU","LYLA","LAURENE","LACI","JOI","JANENE","DOROTHA","DANIELE","DANI","CAROLYNN","CARLYN","BERENICE","AYESHA","ANNELIESE","ALETHEA","THERSA","TAMIKO","RUFINA","OLIVA","MOZELL","MARYLYN","MADISON","KRISTIAN","KATHYRN","KASANDRA","KANDACE","JANAE","GABRIEL","DOMENICA","DEBBRA","DANNIELLE","CHUN","BUFFY","BARBIE","ARCELIA","AJA","ZENOBIA","SHAREN","SHAREE","PATRICK","PAGE","MY","LAVINIA","KUM","KACIE","JACKELINE","HUONG","FELISA","EMELIA","ELEANORA","CYTHIA","CRISTIN","CLYDE","CLARIBEL","CARON","ANASTACIA","ZULMA","ZANDRA","YOKO","TENISHA","SUSANN","SHERILYN","SHAY","SHAWANDA","SABINE","ROMANA","MATHILDA","LINSEY","KEIKO","JOANA","ISELA","GRETTA","GEORGETTA","EUGENIE","DUSTY","DESIRAE","DELORA","CORAZON","ANTONINA","ANIKA","WILLENE","TRACEE","TAMATHA","REGAN","NICHELLE","MICKIE","MAEGAN","LUANA","LANITA","KELSIE","EDELMIRA","BREE","AFTON","TEODORA","TAMIE","SHENA","MEG","LINH","KELI","KACI","DANYELLE","BRITT","ARLETTE","ALBERTINE","ADELLE","TIFFINY","STORMY","SIMONA","NUMBERS","NICOLASA","NICHOL","NIA","NAKISHA","MEE","MAIRA","LOREEN","KIZZY","JOHNNY","JAY","FALLON","CHRISTENE","BOBBYE","ANTHONY","YING","VINCENZA","TANJA","RUBIE","RONI","QUEENIE","MARGARETT","KIMBERLI","IRMGARD","IDELL","HILMA","EVELINA","ESTA","EMILEE","DENNISE","DANIA","CARL","CARIE","ANTONIO","WAI","SANG","RISA","RIKKI","PARTICIA","MUI","MASAKO","MARIO","LUVENIA","LOREE","LONI","LIEN","KEVIN","GIGI","FLORENCIA","DORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER","TOMIKA","SHARITA","RANA","NIKOLE","NEOMA","MARGARITE","MADALYN","LUCINA","LAILA","KALI","JENETTE","GABRIELE","EVELYNE","ELENORA","CLEMENTINA","ALEJANDRINA","ZULEMA","VIOLETTE","VANNESSA","THRESA","RETTA","PIA","PATIENCE","NOELLA","NICKIE","JONELL","DELTA","CHUNG","CHAYA","CAMELIA","BETHEL","ANYA","ANDREW","THANH","SUZANN","SPRING","SHU","MILA","LILLA","LAVERNA","KEESHA","KATTIE","GIA","GEORGENE","EVELINE","ESTELL","ELIZBETH","VIVIENNE","VALLIE","TRUDIE","STEPHANE","MICHEL","MAGALY","MADIE","KENYETTA","KARREN","JANETTA","HERMINE","HARMONY","DRUCILLA","DEBBI","CELESTINA","CANDIE","BRITNI","BECKIE","AMINA","ZITA","YUN","YOLANDE","VIVIEN","VERNETTA","TRUDI","SOMMER","PEARLE","PATRINA","OSSIE","NICOLLE","LOYCE","LETTY","LARISA","KATHARINA","JOSELYN","JONELLE","JENELL","IESHA","HEIDE","FLORINDA","FLORENTINA","FLO","ELODIA","DORINE","BRUNILDA","BRIGID","ASHLI","ARDELLA","TWANA","THU","TARAH","SUNG","SHEA","SHAVON","SHANE","SERINA","RAYNA","RAMONITA","NGA","MARGURITE","LUCRECIA","KOURTNEY","KATI","JESUS","JESENIA","DIAMOND","CRISTA","AYANA","ALICA","ALIA","VINNIE","SUELLEN","ROMELIA","RACHELL","PIPER","OLYMPIA","MICHIKO","KATHALEEN","JOLIE","JESSI","JANESSA","HANA","HA","ELEASE","CARLETTA","BRITANY","SHONA","SALOME","ROSAMOND","REGENA","RAINA","NGOC","NELIA","LOUVENIA","LESIA","LATRINA","LATICIA","LARHONDA","JINA","JACKI","HOLLIS","HOLLEY","EMMY","DEEANN","CORETTA","ARNETTA","VELVET","THALIA","SHANICE","NETA","MIKKI","MICKI","LONNA","LEANA","LASHUNDA","KILEY","JOYE","JACQULYN","IGNACIA","HYUN","HIROKO","HENRY","HENRIETTE","ELAYNE","DELINDA","DARNELL","DAHLIA","COREEN","CONSUELA","CONCHITA","CELINE","BABETTE","AYANNA","ANETTE","ALBERTINA","SKYE","SHAWNEE","SHANEKA","QUIANA","PAMELIA","MIN","MERRI","MERLENE","MARGIT","KIESHA","KIERA","KAYLENE","JODEE","JENISE","ERLENE","EMMIE","ELSE","DARYL","DALILA","DAISEY","CODY","CASIE","BELIA","BABARA","VERSIE","VANESA","SHELBA","SHAWNDA","SAM","NORMAN","NIKIA","NAOMA","MARNA","MARGERET","MADALINE","LAWANA","KINDRA","JUTTA","JAZMINE","JANETT","HANNELORE","GLENDORA","GERTRUD","GARNETT","FREEDA","FREDERICA","FLORANCE","FLAVIA","DENNIS","CARLINE","BEVERLEE","ANJANETTE","VALDA","TRINITY","TAMALA","STEVIE","SHONNA","SHA","SARINA","ONEIDA","MICAH","MERILYN","MARLEEN","LURLINE","LENNA","KATHERIN","JIN","JENI","HAE","GRACIA","GLADY","FARAH","ERIC","ENOLA","EMA","DOMINQUE","DEVONA","DELANA","CECILA","CAPRICE","ALYSHA","ALI","ALETHIA","VENA","THERESIA","TAWNY","SONG","SHAKIRA","SAMARA","SACHIKO","RACHELE","PAMELLA","NICKY","MARNI","MARIEL","MAREN","MALISA","LIGIA","LERA","LATORIA","LARAE","KIMBER","KATHERN","KAREY","JENNEFER","JANETH","HALINA","FREDIA","DELISA","DEBROAH","CIERA","CHIN","ANGELIKA","ANDREE","ALTHA","YEN","VIVAN","TERRESA","TANNA","SUK","SUDIE","SOO","SIGNE","SALENA","RONNI","REBBECCA","MYRTIE","MCKENZIE","MALIKA","MAIDA","LOAN","LEONARDA","KAYLEIGH","FRANCE","ETHYL","ELLYN","DAYLE","CAMMIE","BRITTNI","BIRGIT","AVELINA","ASUNCION","ARIANNA","AKIKO","VENICE","TYESHA","TONIE","TIESHA","TAKISHA","STEFFANIE","SINDY","SANTANA","MEGHANN","MANDA","MACIE","LADY","KELLYE","KELLEE","JOSLYN","JASON","INGER","INDIRA","GLINDA","GLENNIS","FERNANDA","FAUSTINA","ENEIDA","ELICIA","DOT","DIGNA","DELL","ARLETTA","ANDRE","WILLIA","TAMMARA","TABETHA","SHERRELL","SARI","REFUGIO","REBBECA","PAULETTA","NIEVES","NATOSHA","NAKITA","MAMMIE","KENISHA","KAZUKO","KASSIE","GARY","EARLEAN","DAPHINE","CORLISS","CLOTILDE","CAROLYNE","BERNETTA","AUGUSTINA","AUDREA","ANNIS","ANNABELL","YAN","TENNILLE","TAMICA","SELENE","SEAN","ROSANA","REGENIA","QIANA","MARKITA","MACY","LEEANNE","LAURINE","KYM","JESSENIA","JANITA","GEORGINE","GENIE","EMIKO","ELVIE","DEANDRA","DAGMAR","CORIE","COLLEN","CHERISH","ROMAINE","PORSHA","PEARLENE","MICHELINE","MERNA","MARGORIE","MARGARETTA","LORE","KENNETH","JENINE","HERMINA","FREDERICKA","ELKE","DRUSILLA","DORATHY","DIONE","DESIRE","CELENA","BRIGIDA","ANGELES","ALLEGRA","THEO","TAMEKIA","SYNTHIA","STEPHEN","SOOK","SLYVIA","ROSANN","REATHA","RAYE","MARQUETTA","MARGART","LING","LAYLA","KYMBERLY","KIANA","KAYLEEN","KATLYN","KARMEN","JOELLA","IRINA","EMELDA","ELENI","DETRA","CLEMMIE","CHERYLL","CHANTELL","CATHEY","ARNITA","ARLA","ANGLE","ANGELIC","ALYSE","ZOFIA","THOMASINE","TENNIE","SON","SHERLY","SHERLEY","SHARYL","REMEDIOS","PETRINA","NICKOLE","MYUNG","MYRLE","MOZELLA","LOUANNE","LISHA","LATIA","LANE","KRYSTA","JULIENNE","JOEL","JEANENE","JACQUALINE","ISAURA","GWENDA","EARLEEN","DONALD","CLEOPATRA","CARLIE","AUDIE","ANTONIETTA","ALISE","ALEX","VERDELL","VAL","TYLER","TOMOKO","THAO","TALISHA","STEVEN","SO","SHEMIKA","SHAUN","SCARLET","SAVANNA","SANTINA","ROSIA","RAEANN","ODILIA","NANA","MINNA","MAGAN","LYNELLE","LE","KARMA","JOEANN","IVANA","INELL","ILANA","HYE","HONEY","HEE","GUDRUN","FRANK","DREAMA","CRISSY","CHANTE","CARMELINA","ARVILLA","ARTHUR","ANNAMAE","ALVERA","ALEIDA","AARON","YEE","YANIRA","VANDA","TIANNA","TAM","STEFANIA","SHIRA","PERRY","NICOL","NANCIE","MONSERRATE","MINH","MELYNDA","MELANY","MATTHEW","LOVELLA","LAURE","KIRBY","KACY","JACQUELYNN","HYON","GERTHA","FRANCISCO","ELIANA","CHRISTENA","CHRISTEEN","CHARISE","CATERINA","CARLEY","CANDYCE","ARLENA","AMMIE","YANG","WILLETTE","VANITA","TUYET","TINY","SYREETA","SILVA","SCOTT","RONALD","PENNEY","NYLA","MICHAL","MAURICE","MARYAM","MARYA","MAGEN","LUDIE","LOMA","LIVIA","LANELL","KIMBERLIE","JULEE","DONETTA","DIEDRA","DENISHA","DEANE","DAWNE","CLARINE","CHERRYL","BRONWYN","BRANDON","ALLA","VALERY","TONDA","SUEANN","SORAYA","SHOSHANA","SHELA","SHARLEEN","SHANELLE","NERISSA","MICHEAL","MERIDITH","MELLIE","MAYE","MAPLE","MAGARET","LUIS","LILI","LEONILA","LEONIE","LEEANNA","LAVONIA","LAVERA","KRISTEL","KATHEY","KATHE","JUSTIN","JULIAN","JIMMY","JANN","ILDA","HILDRED","HILDEGARDE","GENIA","FUMIKO","EVELIN","ERMELINDA","ELLY","DUNG","DOLORIS","DIONNA","DANAE","BERNEICE","ANNICE","ALIX","VERENA","VERDIE","TRISTAN","SHAWNNA","SHAWANA","SHAUNNA","ROZELLA","RANDEE","RANAE","MILAGRO","LYNELL","LUISE","LOUIE","LOIDA","LISBETH","KARLEEN","JUNITA","JONA","ISIS","HYACINTH","HEDY","GWENN","ETHELENE","ERLINE","EDWARD","DONYA","DOMONIQUE","DELICIA","DANNETTE","CICELY","BRANDA","BLYTHE","BETHANN","ASHLYN","ANNALEE","ALLINE","YUKO","VELLA","TRANG","TOWANDA","TESHA","SHERLYN","NARCISA","MIGUELINA","MERI","MAYBELL","MARLANA","MARGUERITA","MADLYN","LUNA","LORY","LORIANN","LIBERTY","LEONORE","LEIGHANN","LAURICE","LATESHA","LARONDA","KATRICE","KASIE","KARL","KALEY","JADWIGA","GLENNIE","GEARLDINE","FRANCINA","EPIFANIA","DYAN","DORIE","DIEDRE","DENESE","DEMETRICE","DELENA","DARBY","CRISTIE","CLEORA","CATARINA","CARISA","BERNIE","BARBERA","ALMETA","TRULA","TEREASA","SOLANGE","SHEILAH","SHAVONNE","SANORA","ROCHELL","MATHILDE","MARGARETA","MAIA","LYNSEY","LAWANNA","LAUNA","KENA","KEENA","KATIA","JAMEY","GLYNDA","GAYLENE","ELVINA","ELANOR","DANUTA","DANIKA","CRISTEN","CORDIE","COLETTA","CLARITA","CARMON","BRYNN","AZUCENA","AUNDREA","ANGELE","YI","WALTER","VERLIE","VERLENE","TAMESHA","SILVANA","SEBRINA","SAMIRA","REDA","RAYLENE","PENNI","PANDORA","NORAH","NOMA","MIREILLE","MELISSIA","MARYALICE","LARAINE","KIMBERY","KARYL","KARINE","KAM","JOLANDA","JOHANA","JESUSA","JALEESA","JAE","JACQUELYNE","IRISH","ILUMINADA","HILARIA","HANH","GENNIE","FRANCIE","FLORETTA","EXIE","EDDA","DREMA","DELPHA","BEV","BARBAR","ASSUNTA","ARDELL","ANNALISA","ALISIA","YUKIKO","YOLANDO","WONDA","WEI","WALTRAUD","VETA","TEQUILA","TEMEKA","TAMEIKA","SHIRLEEN","SHENITA","PIEDAD","OZELLA","MIRTHA","MARILU","KIMIKO","JULIANE","JENICE","JEN","JANAY","JACQUILINE","HILDE","FE","FAE","EVAN","EUGENE","ELOIS","ECHO","DEVORAH","CHAU","BRINDA","BETSEY","ARMINDA","ARACELIS","APRYL","ANNETT","ALISHIA","VEOLA","USHA","TOSHIKO","THEOLA","TASHIA","TALITHA","SHERY","RUDY","RENETTA","REIKO","RASHEEDA","OMEGA","OBDULIA","MIKA","MELAINE","MEGGAN","MARTIN","MARLEN","MARGET","MARCELINE","MANA","MAGDALEN","LIBRADA","LEZLIE","LEXIE","LATASHIA","LASANDRA","KELLE","ISIDRA","ISA","INOCENCIA","GWYN","FRANCOISE","ERMINIA","ERINN","DIMPLE","DEVORA","CRISELDA","ARMANDA","ARIE","ARIANE","ANGELO","ANGELENA","ALLEN","ALIZA","ADRIENE","ADALINE","XOCHITL","TWANNA","TRAN","TOMIKO","TAMISHA","TAISHA","SUSY","SIU","RUTHA","ROXY","RHONA","RAYMOND","OTHA","NORIKO","NATASHIA","MERRIE","MELVIN","MARINDA","MARIKO","MARGERT","LORIS","LIZZETTE","LEISHA","KAILA","KA","JOANNIE","JERRICA","JENE","JANNET","JANEE","JACINDA","HERTA","ELENORE","DORETTA","DELAINE","DANIELL","CLAUDIE","CHINA","BRITTA","APOLONIA","AMBERLY","ALEASE","YURI","YUK","WEN","WANETA","UTE","TOMI","SHARRI","SANDIE","ROSELLE","REYNALDA","RAGUEL","PHYLICIA","PATRIA","OLIMPIA","ODELIA","MITZIE","MITCHELL","MISS","MINDA","MIGNON","MICA","MENDY","MARIVEL","MAILE","LYNETTA","LAVETTE","LAURYN","LATRISHA","LAKIESHA","KIERSTEN","KARY","JOSPHINE","JOLYN","JETTA","JANISE","JACQUIE","IVELISSE","GLYNIS","GIANNA","GAYNELLE","EMERALD","DEMETRIUS","DANYELL","DANILLE","DACIA","CORALEE","CHER","CEOLA","BRETT","BELL","ARIANNE","ALESHIA","YUNG","WILLIEMAE","TROY","TRINH","THORA","TAI","SVETLANA","SHERIKA","SHEMEKA","SHAUNDA","ROSELINE","RICKI","MELDA","MALLIE","LAVONNA","LATINA","LARRY","LAQUANDA","LALA","LACHELLE","KLARA","KANDIS","JOHNA","JEANMARIE","JAYE","HANG","GRAYCE","GERTUDE","EMERITA","EBONIE","CLORINDA","CHING","CHERY","CAROLA","BREANN","BLOSSOM","BERNARDINE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA","YON","YESSENIA","TOBI","TASIA","SYLVIE","SHIRL","SHIRELY","SHERIDAN","SHELLA","SHANTELLE","SACHA","ROYCE","REBECKA","REAGAN","PROVIDENCIA","PAULENE","MISHA","MIKI","MARLINE","MARICA","LORITA","LATOYIA","LASONYA","KERSTIN","KENDA","KEITHA","KATHRIN","JAYMIE","JACK","GRICELDA","GINETTE","ERYN","ELINA","ELFRIEDA","DANYEL","CHEREE","CHANELLE","BARRIE","AVERY","AURORE","ANNAMARIA","ALLEEN","AILENE","AIDE","YASMINE","VASHTI","VALENTINE","TREASA","TORY","TIFFANEY","SHERYLL","SHARIE","SHANAE","SAU","RAISA","PA","NEDA","MITSUKO","MIRELLA","MILDA","MARYANNA","MARAGRET","MABELLE","LUETTA","LORINA","LETISHA","LATARSHA","LANELLE","LAJUANA","KRISSY","KARLY","KARENA","JON","JESSIKA","JERICA","JEANELLE","JANUARY","JALISA","JACELYN","IZOLA","IVEY","GREGORY","EUNA","ETHA","DREW","DOMITILA","DOMINICA","DAINA","CREOLA","CARLI","CAMIE","BUNNY","BRITTNY","ASHANTI","ANISHA","ALEEN","ADAH","YASUKO","WINTER","VIKI","VALRIE","TONA","TINISHA","THI","TERISA","TATUM","TANEKA","SIMONNE","SHALANDA","SERITA","RESSIE","REFUGIA","PAZ","OLENE","NA","MERRILL","MARGHERITA","MANDIE","MAN","MAIRE","LYNDIA","LUCI","LORRIANE","LORETA","LEONIA","LAVONA","LASHAWNDA","LAKIA","KYOKO","KRYSTINA","KRYSTEN","KENIA","KELSI","JUDE","JEANICE","ISOBEL","GEORGIANN","GENNY","FELICIDAD","EILENE","DEON","DELOISE","DEEDEE","DANNIE","CONCEPTION","CLORA","CHERILYN","CHANG","CALANDRA","BERRY","ARMANDINA","ANISA","ULA","TIMOTHY","TIERA","THERESSA","STEPHANIA","SIMA","SHYLA","SHONTA","SHERA","SHAQUITA","SHALA","SAMMY","ROSSANA","NOHEMI","NERY","MORIAH","MELITA","MELIDA","MELANI","MARYLYNN","MARISHA","MARIETTE","MALORIE","MADELENE","LUDIVINA","LORIA","LORETTE","LORALEE","LIANNE","LEON","LAVENIA","LAURINDA","LASHON","KIT","KIMI","KEILA","KATELYNN","KAI","JONE","JOANE","JI","JAYNA","JANELLA","JA","HUE","HERTHA","FRANCENE","ELINORE","DESPINA","DELSIE","DEEDRA","CLEMENCIA","CARRY","CAROLIN","CARLOS","BULAH","BRITTANIE","BOK","BLONDELL","BIBI","BEAULAH","BEATA","ANNITA","AGRIPINA","VIRGEN","VALENE","UN","TWANDA","TOMMYE","TOI","TARRA","TARI","TAMMERA","SHAKIA","SADYE","RUTHANNE","ROCHEL","RIVKA","PURA","NENITA","NATISHA","MING","MERRILEE","MELODEE","MARVIS","LUCILLA","LEENA","LAVETA","LARITA","LANIE","KEREN","ILEEN","GEORGEANN","GENNA","GENESIS","FRIDA","EWA","EUFEMIA","EMELY","ELA","EDYTH","DEONNA","DEADRA","DARLENA","CHANELL","CHAN","CATHERN","CASSONDRA","CASSAUNDRA","BERNARDA","BERNA","ARLINDA","ANAMARIA","ALBERT","WESLEY","VERTIE","VALERI","TORRI","TATYANA","STASIA","SHERISE","SHERILL","SEASON","SCOTTIE","SANDA","RUTHE","ROSY","ROBERTO","ROBBI","RANEE","QUYEN","PEARLY","PALMIRA","ONITA","NISHA","NIESHA","NIDA","NEVADA","NAM","MERLYN","MAYOLA","MARYLOUISE","MARYLAND","MARX","MARTH","MARGENE","MADELAINE","LONDA","LEONTINE","LEOMA","LEIA","LAWRENCE","LAURALEE","LANORA","LAKITA","KIYOKO","KETURAH","KATELIN","KAREEN","JONIE","JOHNETTE","JENEE","JEANETT","IZETTA","HIEDI","HEIKE","HASSIE","HAROLD","GIUSEPPINA","GEORGANN","FIDELA","FERNANDE","ELWANDA","ELLAMAE","ELIZ","DUSTI","DOTTY","CYNDY","CORALIE","CELESTA","ARGENTINA","ALVERTA","XENIA","WAVA","VANETTA","TORRIE","TASHINA","TANDY","TAMBRA","TAMA","STEPANIE","SHILA","SHAUNTA","SHARAN","SHANIQUA","SHAE","SETSUKO","SERAFINA","SANDEE","ROSAMARIA","PRISCILA","OLINDA","NADENE","MUOI","MICHELINA","MERCEDEZ","MARYROSE","MARIN","MARCENE","MAO","MAGALI","MAFALDA","LOGAN","LINN","LANNIE","KAYCE","KAROLINE","KAMILAH","KAMALA","JUSTA","JOLINE","JENNINE","JACQUETTA","IRAIDA","GERALD","GEORGEANNA","FRANCHESCA","FAIRY","EMELINE","ELANE","EHTEL","EARLIE","DULCIE","DALENE","CRIS","CLASSIE","CHERE","CHARIS","CAROYLN","CARMINA","CARITA","BRIAN","BETHANIE","AYAKO","ARICA","AN","ALYSA","ALESSANDRA","AKILAH","ADRIEN","ZETTA","YOULANDA","YELENA","YAHAIRA","XUAN","WENDOLYN","VICTOR","TIJUANA","TERRELL","TERINA","TERESIA","SUZI","SUNDAY","SHERELL","SHAVONDA","SHAUNTE","SHARDA","SHAKITA","SENA","RYANN","RUBI","RIVA","REGINIA","REA","RACHAL","PARTHENIA","PAMULA","MONNIE","MONET","MICHAELE","MELIA","MARINE","MALKA","MAISHA","LISANDRA","LEO","LEKISHA","LEAN","LAURENCE","LAKENDRA","KRYSTIN","KORTNEY","KIZZIE","KITTIE","KERA","KENDAL","KEMBERLY","KANISHA","JULENE","JULE","JOSHUA","JOHANNE","JEFFREY","JAMEE","HAN","HALLEY","GIDGET","GALINA","FREDRICKA","FLETA","FATIMAH","EUSEBIA","ELZA","ELEONORE","DORTHEY","DORIA","DONELLA","DINORAH","DELORSE","CLARETHA","CHRISTINIA","CHARLYN","BONG","BELKIS","AZZIE","ANDERA","AIKO","ADENA","YER","YAJAIRA","WAN","VANIA","ULRIKE","TOSHIA","TIFANY","STEFANY","SHIZUE","SHENIKA","SHAWANNA","SHAROLYN","SHARILYN","SHAQUANA","SHANTAY","SEE","ROZANNE","ROSELEE","RICKIE","REMONA","REANNA","RAELENE","QUINN","PHUNG","PETRONILA","NATACHA","NANCEY","MYRL","MIYOKO","MIESHA","MERIDETH","MARVELLA","MARQUITTA","MARHTA","MARCHELLE","LIZETH","LIBBIE","LAHOMA","LADAWN","KINA","KATHELEEN","KATHARYN","KARISA","KALEIGH","JUNIE","JULIEANN","JOHNSIE","JANEAN","JAIMEE","JACKQUELINE","HISAKO","HERMA","HELAINE","GWYNETH","GLENN","GITA","EUSTOLIA","EMELINA","ELIN","EDRIS","DONNETTE","DONNETTA","DIERDRE","DENAE","DARCEL","CLAUDE","CLARISA","CINDERELLA","CHIA","CHARLESETTA","CHARITA","CELSA","CASSY","CASSI","CARLEE","BRUNA","BRITTANEY","BRANDE","BILLI","BAO","ANTONETTA","ANGLA","ANGELYN","ANALISA","ALANE","WENONA","WENDIE","VERONIQUE","VANNESA","TOBIE","TEMPIE","SUMIKO","SULEMA","SPARKLE","SOMER","SHEBA","SHAYNE","SHARICE","SHANEL","SHALON","SAGE","ROY","ROSIO","ROSELIA","RENAY","REMA","REENA","PORSCHE","PING","PEG","OZIE","ORETHA","ORALEE","ODA","NU","NGAN","NAKESHA","MILLY","MARYBELLE","MARLIN","MARIS","MARGRETT","MARAGARET","MANIE","LURLENE","LILLIA","LIESELOTTE","LAVELLE","LASHAUNDA","LAKEESHA","KEITH","KAYCEE","KALYN","JOYA","JOETTE","JENAE","JANIECE","ILLA","GRISEL","GLAYDS","GENEVIE","GALA","FREDDA","FRED","ELMER","ELEONOR","DEBERA","DEANDREA","DAN","CORRINNE","CORDIA","CONTESSA","COLENE","CLEOTILDE","CHARLOTT","CHANTAY","CECILLE","BEATRIS","AZALEE","ARLEAN","ARDATH","ANJELICA","ANJA","ALFREDIA","ALEISHA","ADAM","ZADA","YUONNE","XIAO","WILLODEAN","WHITLEY","VENNIE","VANNA","TYISHA","TOVA","TORIE","TONISHA","TILDA","TIEN","TEMPLE","SIRENA","SHERRIL","SHANTI","SHAN","SENAIDA","SAMELLA","ROBBYN","RENDA","REITA","PHEBE","PAULITA","NOBUKO","NGUYET","NEOMI","MOON","MIKAELA","MELANIA","MAXIMINA","MARG","MAISIE","LYNNA","LILLI","LAYNE","LASHAUN","LAKENYA","LAEL","KIRSTIE","KATHLINE","KASHA","KARLYN","KARIMA","JOVAN","JOSEFINE","JENNELL","JACQUI","JACKELYN","HYO","HIEN","GRAZYNA","FLORRIE","FLORIA","ELEONORA","DWANA","DORLA","DONG","DELMY","DEJA","DEDE","DANN","CRYSTA","CLELIA","CLARIS","CLARENCE","CHIEKO","CHERLYN","CHERELLE","CHARMAIN","CHARA","CAMMY","BEE","ARNETTE","ARDELLE","ANNIKA","AMIEE","AMEE","ALLENA","YVONE","YUKI","YOSHIE","YEVETTE","YAEL","WILLETTA","VONCILE","VENETTA","TULA","TONETTE","TIMIKA","TEMIKA","TELMA","TEISHA","TAREN","TA","STACEE","SHIN","SHAWNTA","SATURNINA","RICARDA","POK","PASTY","ONIE","NUBIA","MORA","MIKE","MARIELLE","MARIELLA","MARIANELA","MARDELL","MANY","LUANNA","LOISE","LISABETH","LINDSY","LILLIANA","LILLIAM","LELAH","LEIGHA","LEANORA","LANG","KRISTEEN","KHALILAH","KEELEY","KANDRA","JUNKO","JOAQUINA","JERLENE","JANI","JAMIKA","JAME","HSIU","HERMILA","GOLDEN","GENEVIVE","EVIA","EUGENA","EMMALINE","ELFREDA","ELENE","DONETTE","DELCIE","DEEANNA","DARCEY","CUC","CLARINDA","CIRA","CHAE","CELINDA","CATHERYN","CATHERIN","CASIMIRA","CARMELIA","CAMELLIA","BREANA","BOBETTE","BERNARDINA","BEBE","BASILIA","ARLYNE","AMAL","ALAYNA","ZONIA","ZENIA","YURIKO","YAEKO","WYNELL","WILLOW","WILLENA","VERNIA","TU","TRAVIS","TORA","TERRILYN","TERICA","TENESHA","TAWNA","TAJUANA","TAINA","STEPHNIE","SONA","SOL","SINA","SHONDRA","SHIZUKO","SHERLENE","SHERICE","SHARIKA","ROSSIE","ROSENA","RORY","RIMA","RIA","RHEBA","RENNA","PETER","NATALYA","NANCEE","MELODI","MEDA","MAXIMA","MATHA","MARKETTA","MARICRUZ","MARCELENE","MALVINA","LUBA","LOUETTA","LEIDA","LECIA","LAURAN","LASHAWNA","LAINE","KHADIJAH","KATERINE","KASI","KALLIE","JULIETTA","JESUSITA","JESTINE","JESSIA","JEREMY","JEFFIE","JANYCE","ISADORA","GEORGIANNE","FIDELIA","EVITA","EURA","EULAH","ESTEFANA","ELSY","ELIZABET","ELADIA","DODIE","DION","DIA","DENISSE","DELORAS","DELILA","DAYSI","DAKOTA","CURTIS","CRYSTLE","CONCHA","COLBY","CLARETTA","CHU","CHRISTIA","CHARLSIE","CHARLENA","CARYLON","BETTYANN","ASLEY","ASHLEA","AMIRA","AI","AGUEDA","AGNUS","YUETTE","VINITA","VICTORINA","TYNISHA","TREENA","TOCCARA","TISH","THOMASENA","TEGAN","SOILA","SHILOH","SHENNA","SHARMAINE","SHANTAE","SHANDI","SEPTEMBER","SARAN","SARAI","SANA","SAMUEL","SALLEY","ROSETTE","ROLANDE","REGINE","OTELIA","OSCAR","OLEVIA","NICHOLLE","NECOLE","NAIDA","MYRTA","MYESHA","MITSUE","MINTA","MERTIE","MARGY","MAHALIA","MADALENE","LOVE","LOURA","LOREAN","LEWIS","LESHA","LEONIDA","LENITA","LAVONE","LASHELL","LASHANDRA","LAMONICA","KIMBRA","KATHERINA","KARRY","KANESHA","JULIO","JONG","JENEVA","JAQUELYN","HWA","GILMA","GHISLAINE","GERTRUDIS","FRANSISCA","FERMINA","ETTIE","ETSUKO","ELLIS","ELLAN","ELIDIA","EDRA","DORETHEA","DOREATHA","DENYSE","DENNY","DEETTA","DAINE","CYRSTAL","CORRIN","CAYLA","CARLITA","CAMILA","BURMA","BULA","BUENA","BLAKE","BARABARA","AVRIL","AUSTIN","ALAINE","ZANA","WILHEMINA","WANETTA","VIRGIL","VI","VERONIKA","VERNON","VERLINE","VASILIKI","TONITA","TISA","TEOFILA","TAYNA","TAUNYA","TANDRA","TAKAKO","SUNNI","SUANNE","SIXTA","SHARELL","SEEMA","RUSSELL","ROSENDA","ROBENA","RAYMONDE","PEI","PAMILA","OZELL","NEIDA","NEELY","MISTIE","MICHA","MERISSA","MAURITA","MARYLN","MARYETTA","MARSHALL","MARCELL","MALENA","MAKEDA","MADDIE","LOVETTA","LOURIE","LORRINE","LORILEE","LESTER","LAURENA","LASHAY","LARRAINE","LAREE","LACRESHA","KRISTLE","KRISHNA","KEVA","KEIRA","KAROLE","JOIE","JINNY","JEANNETTA","JAMA","HEIDY","GILBERTE","GEMA","FAVIOLA","EVELYNN","ENDA","ELLI","ELLENA","DIVINA","DAGNY","COLLENE","CODI","CINDIE","CHASSIDY","CHASIDY","CATRICE","CATHERINA","CASSEY","CAROLL","CARLENA","CANDRA","CALISTA","BRYANNA","BRITTENY","BEULA","BARI","AUDRIE","AUDRIA","ARDELIA","ANNELLE","ANGILA","ALONA","ALLYN","DOUGLAS","ROGER","JONATHAN","RALPH","NICHOLAS","BENJAMIN","BRUCE","HARRY","WAYNE","STEVE","HOWARD","ERNEST","PHILLIP","TODD","CRAIG","ALAN","PHILIP","EARL","DANNY","BRYAN","STANLEY","LEONARD","NATHAN","MANUEL","RODNEY","MARVIN","VINCENT","JEFFERY","JEFF","CHAD","JACOB","ALFRED","BRADLEY","HERBERT","FREDERICK","EDWIN","DON","RICKY","RANDALL","BARRY","BERNARD","LEROY","MARCUS","THEODORE","CLIFFORD","MIGUEL","JIM","TOM","CALVIN","BILL","LLOYD","DEREK","WARREN","DARRELL","JEROME","FLOYD","ALVIN","TIM","GORDON","GREG","JORGE","DUSTIN","PEDRO","DERRICK","ZACHARY","HERMAN","GLEN","HECTOR","RICARDO","RICK","BRENT","RAMON","GILBERT","MARC","REGINALD","RUBEN","NATHANIEL","RAFAEL","EDGAR","MILTON","RAUL","BEN","CHESTER","DUANE","FRANKLIN","BRAD","RON","ROLAND","ARNOLD","HARVEY","JARED","ERIK","DARRYL","NEIL","JAVIER","FERNANDO","CLINTON","TED","MATHEW","TYRONE","DARREN","LANCE","KURT","ALLAN","NELSON","GUY","CLAYTON","HUGH","MAX","DWAYNE","DWIGHT","ARMANDO","FELIX","EVERETT","IAN","WALLACE","KEN","BOB","ALFREDO","ALBERTO","DAVE","IVAN","BYRON","ISAAC","MORRIS","CLIFTON","WILLARD","ROSS","ANDY","SALVADOR","KIRK","SERGIO","SETH","KENT","TERRANCE","EDUARDO","TERRENCE","ENRIQUE","WADE","STUART","FREDRICK","ARTURO","ALEJANDRO","NICK","LUTHER","WENDELL","JEREMIAH","JULIUS","OTIS","TREVOR","OLIVER","LUKE","HOMER","GERARD","DOUG","KENNY","HUBERT","LYLE","MATT","ALFONSO","ORLANDO","REX","CARLTON","ERNESTO","NEAL","PABLO","LORENZO","OMAR","WILBUR","GRANT","HORACE","RODERICK","ABRAHAM","WILLIS","RICKEY","ANDRES","CESAR","JOHNATHAN","MALCOLM","RUDOLPH","DAMON","KELVIN","PRESTON","ALTON","ARCHIE","MARCO","WM","PETE","RANDOLPH","GARRY","GEOFFREY","JONATHON","FELIPE","GERARDO","ED","DOMINIC","DELBERT","COLIN","GUILLERMO","EARNEST","LUCAS","BENNY","SPENCER","RODOLFO","MYRON","EDMUND","GARRETT","SALVATORE","CEDRIC","LOWELL","GREGG","SHERMAN","WILSON","SYLVESTER","ROOSEVELT","ISRAEL","JERMAINE","FORREST","WILBERT","LELAND","SIMON","CLARK","IRVING","BRYANT","OWEN","RUFUS","WOODROW","KRISTOPHER","MACK","LEVI","MARCOS","GUSTAVO","JAKE","LIONEL","GILBERTO","CLINT","NICOLAS","ISMAEL","ORVILLE","ERVIN","DEWEY","AL","WILFRED","JOSH","HUGO","IGNACIO","CALEB","TOMAS","SHELDON","ERICK","STEWART","DOYLE","DARREL","ROGELIO","TERENCE","SANTIAGO","ALONZO","ELIAS","BERT","ELBERT","RAMIRO","CONRAD","NOAH","GRADY","PHIL","CORNELIUS","LAMAR","ROLANDO","CLAY","PERCY","DEXTER","BRADFORD","DARIN","AMOS","MOSES","IRVIN","SAUL","ROMAN","RANDAL","TIMMY","DARRIN","WINSTON","BRENDAN","ABEL","DOMINICK","BOYD","EMILIO","ELIJAH","DOMINGO","EMMETT","MARLON","EMANUEL","JERALD","EDMOND","EMIL","DEWAYNE","WILL","OTTO","TEDDY","REYNALDO","BRET","JESS","TRENT","HUMBERTO","EMMANUEL","STEPHAN","VICENTE","LAMONT","GARLAND","MILES","EFRAIN","HEATH","RODGER","HARLEY","ETHAN","ELDON","ROCKY","PIERRE","JUNIOR","FREDDY","ELI","BRYCE","ANTOINE","STERLING","CHASE","GROVER","ELTON","CLEVELAND","DYLAN","CHUCK","DAMIAN","REUBEN","STAN","AUGUST","LEONARDO","JASPER","RUSSEL","ERWIN","BENITO","HANS","MONTE","BLAINE","ERNIE","CURT","QUENTIN","AGUSTIN","MURRAY","JAMAL","ADOLFO","HARRISON","TYSON","BURTON","BRADY","ELLIOTT","WILFREDO","BART","JARROD","VANCE","DENIS","DAMIEN","JOAQUIN","HARLAN","DESMOND","ELLIOT","DARWIN","GREGORIO","BUDDY","XAVIER","KERMIT","ROSCOE","ESTEBAN","ANTON","SOLOMON","SCOTTY","NORBERT","ELVIN","WILLIAMS","NOLAN","ROD","QUINTON","HAL","BRAIN","ROB","ELWOOD","KENDRICK","DARIUS","MOISES","FIDEL","THADDEUS","CLIFF","MARCEL","JACKSON","RAPHAEL","BRYON","ARMAND","ALVARO","JEFFRY","DANE","JOESPH","THURMAN","NED","RUSTY","MONTY","FABIAN","REGGIE","MASON","GRAHAM","ISAIAH","VAUGHN","GUS","LOYD","DIEGO","ADOLPH","NORRIS","MILLARD","ROCCO","GONZALO","DERICK","RODRIGO","WILEY","RIGOBERTO","ALPHONSO","TY","NOE","VERN","REED","JEFFERSON","ELVIS","BERNARDO","MAURICIO","HIRAM","DONOVAN","BASIL","RILEY","NICKOLAS","MAYNARD","SCOT","VINCE","QUINCY","EDDY","SEBASTIAN","FEDERICO","ULYSSES","HERIBERTO","DONNELL","COLE","DAVIS","GAVIN","EMERY","WARD","ROMEO","JAYSON","DANTE","CLEMENT","COY","MAXWELL","JARVIS","BRUNO","ISSAC","DUDLEY","BROCK","SANFORD","CARMELO","BARNEY","NESTOR","STEFAN","DONNY","ART","LINWOOD","BEAU","WELDON","GALEN","ISIDRO","TRUMAN","DELMAR","JOHNATHON","SILAS","FREDERIC","DICK","IRWIN","MERLIN","CHARLEY","MARCELINO","HARRIS","CARLO","TRENTON","KURTIS","HUNTER","AURELIO","WINFRED","VITO","COLLIN","DENVER","CARTER","LEONEL","EMORY","PASQUALE","MOHAMMAD","MARIANO","DANIAL","LANDON","DIRK","BRANDEN","ADAN","BUFORD","GERMAN","WILMER","EMERSON","ZACHERY","FLETCHER","JACQUES","ERROL","DALTON","MONROE","JOSUE","EDWARDO","BOOKER","WILFORD","SONNY","SHELTON","CARSON","THERON","RAYMUNDO","DAREN","HOUSTON","ROBBY","LINCOLN","GENARO","BENNETT","OCTAVIO","CORNELL","HUNG","ARRON","ANTONY","HERSCHEL","GIOVANNI","GARTH","CYRUS","CYRIL","RONNY","LON","FREEMAN","DUNCAN","KENNITH","CARMINE","ERICH","CHADWICK","WILBURN","RUSS","REID","MYLES","ANDERSON","MORTON","JONAS","FOREST","MITCHEL","MERVIN","ZANE","RICH","JAMEL","LAZARO","ALPHONSE","RANDELL","MAJOR","JARRETT","BROOKS","ABDUL","LUCIANO","SEYMOUR","EUGENIO","MOHAMMED","VALENTIN","CHANCE","ARNULFO","LUCIEN","FERDINAND","THAD","EZRA","ALDO","RUBIN","ROYAL","MITCH","EARLE","ABE","WYATT","MARQUIS","LANNY","KAREEM","JAMAR","BORIS","ISIAH","EMILE","ELMO","ARON","LEOPOLDO","EVERETTE","JOSEF","ELOY","RODRICK","REINALDO","LUCIO","JERROD","WESTON","HERSHEL","BARTON","PARKER","LEMUEL","BURT","JULES","GIL","ELISEO","AHMAD","NIGEL","EFREN","ANTWAN","ALDEN","MARGARITO","COLEMAN","DINO","OSVALDO","LES","DEANDRE","NORMAND","KIETH","TREY","NORBERTO","NAPOLEON","JEROLD","FRITZ","ROSENDO","MILFORD","CHRISTOPER","ALFONZO","LYMAN","JOSIAH","BRANT","WILTON","RICO","JAMAAL","DEWITT","BRENTON","OLIN","FOSTER","FAUSTINO","CLAUDIO","JUDSON","GINO","EDGARDO","ALEC","TANNER","JARRED","DONN","TAD","PRINCE","PORFIRIO","ODIS","LENARD","CHAUNCEY","TOD","MEL","MARCELO","KORY","AUGUSTUS","KEVEN","HILARIO","BUD","SAL","ORVAL","MAURO","ZACHARIAH","OLEN","ANIBAL","MILO","JED","DILLON","AMADO","NEWTON","LENNY","RICHIE","HORACIO","BRICE","MOHAMED","DELMER","DARIO","REYES","MAC","JONAH","JERROLD","ROBT","HANK","RUPERT","ROLLAND","KENTON","DAMION","ANTONE","WALDO","FREDRIC","BRADLY","KIP","BURL","WALKER","TYREE","JEFFEREY","AHMED","WILLY","STANFORD","OREN","NOBLE","MOSHE","MIKEL","ENOCH","BRENDON","QUINTIN","JAMISON","FLORENCIO","DARRICK","TOBIAS","HASSAN","GIUSEPPE","DEMARCUS","CLETUS","TYRELL","LYNDON","KEENAN","WERNER","GERALDO","COLUMBUS","CHET","BERTRAM","MARKUS","HUEY","HILTON","DWAIN","DONTE","TYRON","OMER","ISAIAS","HIPOLITO","FERMIN","ADALBERTO","BO","BARRETT","TEODORO","MCKINLEY","MAXIMO","GARFIELD","RALEIGH","LAWERENCE","ABRAM","RASHAD","KING","EMMITT","DARON","SAMUAL","MIQUEL","EUSEBIO","DOMENIC","DARRON","BUSTER","WILBER","RENATO","JC","HOYT","HAYWOOD","EZEKIEL","CHAS","FLORENTINO","ELROY","CLEMENTE","ARDEN","NEVILLE","EDISON","DESHAWN","NATHANIAL","JORDON","DANILO","CLAUD","SHERWOOD","RAYMON","RAYFORD","CRISTOBAL","AMBROSE","TITUS","HYMAN","FELTON","EZEQUIEL","ERASMO","STANTON","LONNY","LEN","IKE","MILAN","LINO","JAROD","HERB","ANDREAS","WALTON","RHETT","PALMER","DOUGLASS","CORDELL","OSWALDO","ELLSWORTH","VIRGILIO","TONEY","NATHANAEL","DEL","BENEDICT","MOSE","JOHNSON","ISREAL","GARRET","FAUSTO","ASA","ARLEN","ZACK","WARNER","MODESTO","FRANCESCO","MANUAL","GAYLORD","GASTON","FILIBERTO","DEANGELO","MICHALE","GRANVILLE","WES","MALIK","ZACKARY","TUAN","ELDRIDGE","CRISTOPHER","CORTEZ","ANTIONE","MALCOM","LONG","KOREY","JOSPEH","COLTON","WAYLON","VON","HOSEA","SHAD","SANTO","RUDOLF","ROLF","REY","RENALDO","MARCELLUS","LUCIUS","KRISTOFER","BOYCE","BENTON","HAYDEN","HARLAND","ARNOLDO","RUEBEN","LEANDRO","KRAIG","JERRELL","JEROMY","HOBERT","CEDRICK","ARLIE","WINFORD","WALLY","LUIGI","KENETH","JACINTO","GRAIG","FRANKLYN","EDMUNDO","SID","PORTER","LEIF","JERAMY","BUCK","WILLIAN","VINCENZO","SHON","LYNWOOD","JERE","HAI","ELDEN","DORSEY","DARELL","BRODERICK","ALONSO"
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 6: https://projecteuler.net/problem=6 Sum square difference The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ def solution(n: int = 100) -> int: """ Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. >>> solution(10) 2640 >>> solution(15) 13160 >>> solution(20) 41230 >>> solution(50) 1582700 """ sum_of_squares = 0 sum_of_ints = 0 for i in range(1, n + 1): sum_of_squares += i ** 2 sum_of_ints += i return sum_of_ints ** 2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 6: https://projecteuler.net/problem=6 Sum square difference The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ def solution(n: int = 100) -> int: """ Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. >>> solution(10) 2640 >>> solution(15) 13160 >>> solution(20) 41230 >>> solution(50) 1582700 """ sum_of_squares = 0 sum_of_ints = 0 for i in range(1, n + 1): sum_of_squares += i ** 2 sum_of_ints += i return sum_of_ints ** 2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
JFIF``ExifMM*;HasiJ >5454 2019:07:22 20:20:362019:07:22 20:20:36Has http://ns.adobe.com/xap/1.0/<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x="adobe:ns:meta/"><rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"><rdf:Description rdf:about="uuid:faf5bdd5-ba3d-11da-ad31-d33d75182f1b" xmlns:dc="http://purl.org/dc/elements/1.1/"/><rdf:Description rdf:about="uuid:faf5bdd5-ba3d-11da-ad31-d33d75182f1b" xmlns:xmp="http://ns.adobe.com/xap/1.0/"><xmp:CreateDate>2019-07-22T20:20:36.543</xmp:CreateDate></rdf:Description><rdf:Description rdf:about="uuid:faf5bdd5-ba3d-11da-ad31-d33d75182f1b" xmlns:dc="http://purl.org/dc/elements/1.1/"><dc:creator><rdf:Seq xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"><rdf:li>Has</rdf:li></rdf:Seq> </dc:creator></rdf:Description></rdf:RDF></x:xmpmeta> <?xpacket end='w'?>C   '!%"."%()+,+ /3/*2'*+*C  ***************************************************" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?F(((((((((((((((((((((((((((((((((((((((((((((((*GhwڜK4vV\<p])bw'P+$|9 m$4hkHDχ&d^&d2FA|z+_I1>%v@!Rd60J((((((h^#-y5kH٫| %Ǩ Mv+Nm-:W}ιL1$f3EQEQEQEQ\<n>%\%-of/b;xvsEPEPEPEPEw oX{a2CU-p8d2 "EPEPEPE 徟c=m,p2I> :45=;+LSrA#QE#f=fx?i \{oU>I]~)h(ޥ=n$#X11Zhngiqե "3u=Y((( VfM{F B9Z1 Q@xǚo4+^xo1j;A;q(5h6\mM 99?ǥe~<t/{h1%Sm븖t tQET7}$!¢($* YAqY\b#lA]((((((((($cĿ-/#>1O?F<K^23?A7oi6!,wKֺm?5^2Ӵx>GUm3̲,H[m9 `8k+ǜ>2QB \xn@om{[KT˲ӭ2~C$'k UgK j<X\7wm\7 c~+GsgGZ}m iG*C.ebO =7J|QQ}"Xc-.FЬ${P5:ڶU˂2Ngj2IWK^!Ht?]isjaFAoI) k:uZl5oܖU.@R#5?0_%-m_ďKGm ==kdmbb)DM.pskΤodzNӨ귑[~D rY8>3~&o4fd6r7DW=#>CC¿}Y-M‡w0v"FdSMȗj e8]_$SNhw@*tB-m&I0rqҼxs+QԠԼSYv 9>bI=64Ue 0AK4 2`<rsPQ ǯh־ZKX0pDBc}y;9?R*pۊ</'{OC[U\]x5"]JT9k(n<Ospmߦ{qZMu׌].l%_i)@ls$+ξiƫwм.sis җMb~.7F9=#z0ĉ9Uˍ<79T8RI})>Ν ~\z$4PVRV-w%$ l='k^~?容ӟΞz/764}3R)8BpӽjK[xWtK#m껾u6I@kj϶.|t& !ҹs2 ށwh21@ ڹ:e3~1fwq|[qmn]+,%YFDs^ELjU'jmRF֮#rFyNN w>̚狇S k2h.z0NS8<Ә/퇫n nT U[Ů֕:MZByG- ;c@}h;_kEYTfC 8>+M'|E^xg^yYݶ;| pN<P7_`kXǖ<@Fԡ볛|C⿈MYJV[8 yr,1][5_Gӥx50Lq*60 `#C5/JK8l09ўw<]|Cм;]qpʤï3wy><]<V1{ě#& =js][J^LV!%؍LIjm\(<c@tU` z䏏M;<~"xYu.9 !\n@*H0A9W~`%ߎAMz@:[+gyyjPGt2c ~aj;q8*Z={~`h#bvȁ;Xv"x:T6RԴd$22~^r>2x/: 11Ն{p{ٺwixX ]FX"3#ֽ*ź&{ ܭ \8k⒫|=⼟DZO'I$O?Ql>PfhkSĒav{ۏ}خ7ͷtK95*I)oo2l.8cm5O ǫZٍ@ncq+ 6* %֯E!e/}[/žŒQn ǙOsɣ<ҵ17>6L;3OH־sz5|&נoxcP]D,QnYi_Z1#}\աROߒ>*d7bj<yq㶚[Ef 1ڪj_tX|0s9  +ZH>Z:zl! =OuQ[R(ӵ mWL,%Z³C #TWukcjQ[K{ ձcbsb|#$N_*O%)5z߈:?goh& -.)@ٛ(%sY/"ѡ׬WR.&qĨ8BLn/}z}+~s+G"GtC֬EYTmK,LFb;ЏQW'y??ʼ!'wrsL?<3Ǽ@0/L%]K=,v (bAx[|1enޗaKY1yk>Ꭳ%퍵ăXCK ɇkcicg ek ǥVO>M^m>K+cK .CXנ=9'zk;6aR3^`IP3\{c񷺵Y>V}H7|K׆5xz/ ZQ\I`r*8^(I|dOpe 6= }=[W+p%E=WĹ #7ZXwo8S4ψ7PKM|?hhc,c#q@O~/xbNX{䐰`e?<G}ºK\-؈B0+ưi\â#ÌDwn`ӕvr:X\#Ʒǫ5/ Yռ?nTVW2Ӑ>^oi0ݦJd\B A#Mkz]-;2K;{xrGڿXgr˻NOPs޻<+Eד\u I(HQ7G88;20y uXj&au3Om]¡,0'rtS o|-|K$QiwܼUW%ǧ$`8C۪ji7_5]Q"SGTm@U|K?_鑾 5Ȃ#ϵݖ=p2xO<) Д⿴my+5%.{{|>ǩOzq8?ir<8Ok9+۪i65ե.ke8ٴwq JOtn+S[jwQ[a(+"3kSǞ- ֍x^^`G_|pq+>!Z߳ﭤ09D1W>RzO}jnbK6>|m;h:·O^z.I\fIX6qcwNqݛ"Q_8?WƍKeڕݬ $['>VP #R 99O k#:h3Y]@N@^a) V$TOOZd9Y9m°;[@+ny-jȱd9Ƹm77ɦBKP6f?6=IlYI w^JLn/}u/"ѡ׬WR.&qĨ8O_xZR*&-J @ \Eoٮe`Hnw^_j=M"Y~VA\0U||,9xe.4 2EѓpA` xxx)/?[0-,>gǮ0N=yyOUѧe025L ${֓MV}k+]]i{$ u+댎1w>iOqmZŜOHzr:gֽ΀<ƿ|9Ax{Zu5n&K\p,8=W>|M:NH#DyR@ 3C~7BxV)kBpd|@>^Yv~5 H<ۑ $n8q( ( ( ( (3|Cx6wrkx=RBχm-]m,69Z4P?+Hռe&:̲a@`AƏx+HiZIBʓftϨ_?hL%]ۆއ%^6޸~èeuw=!w%6 M =xFJ죽E&x=#G洨.gh嶩m̳d:p'Ƴ׊ }k{pnx-p@w4P & I@n*pq;WE/ i :.,΢WcSZGWP"LQk7\zj/:65_h̚ H]G=P?eza0-dPa{ݭVm_[Դn5˟$ fGaj(:OXUf4SJOz/xO6?fYiyR3Ğ< MttP <p|Y?yfgӊi6qj\aeXy<(!~|.Xnx_ӌ7] \vG6>ŌByktPEP?ְu]f;EF`W<~K*{ {eEs4wEl<>LIbPv>#ڱ|#G^ #t)翇>Ls1dc03z |l{̗v1^NIdR22IqJ@?ohz[j=kmw*׮3&(+A [h:bȶ6јi$U'>Y7y+z/#rh2tn|7esAJ(<w%ٯi<m`a9ȏlWU|=|&ܡ g1gk35еses G}QҴ ᥶Y\~<x=k^~>n[q[ǫ4*DӴX,dPĸU5nű𖑧xS%KT8$ 3Qu="V(ݪX[o+0﷭mQ@^0vJUI.qVuXoCcq GlEgZ-4=MQۘ(ޥt}gFCky- pJ:lպ(ᯇnh?T '|%~ղ-Y?y^_ZPW<9Gv-a0ŎO~X֣(e*zKEs 6 m/é2[Mp,&yUT~$/4}L;Z^Fb#mb (~(Z[k^W.7t̅$~9^+{v:u%\Ln!^\ЙUO8:sxwG5ص6P}Amw|9-+{9I'ishommu۸pF}G5OI1Z5m:xgIᙥf-!<jh}S&Ko>M=kcxj_ &IH؞)o`Wq h WI+(f8I$ʶ( ᇆ4_R If/igyb`=+<F]ZԣkWoɒ(9.yr+(0<cǚ2i${xGV#p 1s\v<DΠh㾟̍HdWQ@ Hm# 9W8涽D0lGsqdg^Erí[ 0h jw(ZkźOci,QG~Q@~xo[K\n@y#=Ϩ8Wz^XfH@>ʣ+*jm^w8%Jckᯇnh?T '|%~@o <"e=M]7xϮOM>x| }D'rŕՎQtPO8u&+ֻ>ýJxb9_Z]Pz_)xr }뾢9O|4#?˞a[+MǠWWEo<]kwSO-n.d$}O#?h>+]Kv'b,=k ( ( ( ( (zWבi m~и2I3+>|PXm~/uT̚F̰;G SY?~-j~;4q嚬a?ۂ=’@Ex .ƚτL,tKGB)uVW 0ՙ|Y^f=[Iִ#BXE=I##@O Kk(u4(͵9\0hgM ߄1g X+!yQ8C:w>< a/ßfF=,<#i=6_-z}@$ dt3Z G^J#iH- <*2NIIapȡ xi.5n3 7@XMކ{Jfg`]m`HC sP?<񧎯ii~a<CĐk7>V(4+4;r0{g|&hԴt,7k̪ddd`0$A*ppzRttiLWgK3a 6Ìj>p2zUf<?mhr3W~:t߇k{M.WXo]]Ļ㓜s'ImkKӛE[EgG$^6u7|9׵x⺸UuFTd*0 'SyRMĹww'|^<!i I4yo <_ "j0m_joh5ǖ+:&:u~YNw{|t5 v>H.iCcdh$ i~9GĖ:]KT(dc7~|Qީ Ťk*Of*=^^ow[MrxݞO [>ڭ~I+4[zS!FIWU`s }|9յ6nn#Sn PY79!wd;PSExZ:/__:HT*y i'ᵕƴoo lЀF@S~x*+ĵ|K]ui{4sP892 jh h<r(tu9 "HeH#$p}+{;ޭ{ImeKۣ^y>=LJ|?ͯixbC+Zw\$9Ҁ;;<a?XjpFVd"':cz |_-,t\+按eډ$ᇍ|Ms_xR[j:Mmtt#u S7W Gҭmb{Cf(N8?tGOO{ .^Vo܈ C,Jyza gþf״<1!-r.S_^@ωd|5`ѯoǹ-Qϧ͟])`Xd7-g^<ΑZZAzt'+k+J_MZKuG<FVEc )HB78 dހ>|%mOomo`hca1ڶ7>)Gƣo]$nP=+Y<a:u˃io C 탂pɜ`ezψ)02մ:E}omnl!W8y9~!&mfG H=WZ@PFGQxfV:}j(]S;^`LyG³[Sk?ƬRD]UA.c(Z+ļ[n< }sNv$w,zWrXs'zgAhtRjqNȳXm|v9$t:PCE:|:-Jc¯,!8,Yz-{5rxSQ=2y+ʭm'8 v=\&ύO5gw mcq<p-\|V?ZkTݯ.m"c~Sӷvx>3y7zP&QT4Xx|F)K#]5y-f/gF4:)(evX %'N|ah:ckRB6 $U 1!yfZ+>>4㦷tY mT:::ҸĩMK~"4Dzd]1T9Ҁ>''PTA?1Sm43ZiNEdo9qF#rwdVr <miwsZ(xۑր;( ԼO7|Go:]ʫ}#iD9nTW['46cdw+| Axx'}>_nN>P~@yW3x6<<4k`ǘ5sx=oOO)z0WORMd bY3x7nJa#j+ƼE_Im=eCylH$ ͎zd ;Co|'oNw =jZXZ6Pi c)Q@X 8=ik]|FMŤZd3edV24#s@O|;o&{OjmUaGCn=AfE^<E\"RE#h@Rgn@x/㽿[ $K;z0<*#s^8 Fr W_}cy/5-cOow )1.ݵr\Ojxv4_ϚᵿUPEy׌↭v shU*Ϩ$y9*a1ۿ^S7I!Ŵ"wlVul@v Q^N|ah:ckRB6 $U 1!yfx^4 㧶մtY mT:::Ҁ=Nj||KCi.ā>O|F񶯤|5t}_"TJIU`F2: _Y~ԗ0xPԵ%NnmەPtQEQEQEQEQE|Zկqi?(WOϮOtlZeeOHwa]䷆YXcy!%vPLd ;'11́ȡe PY]etEVۼ qHGp3x[ j_ }J/]x7y-Ēu(DȔ9 q޾e X`:RYb ɱϩ\`zΟ jz5]Mxӌ75iR rۺ@AZ%"<t1Ok&IW+F '5aźg</uk2F3;rOWR SY>^O '|@,cٞ;z}3ݍ}!Oi3ކ=TV*xS7OT mkogs@?@׌~#>.:z,Wm̱F18@:|ᯆ4]ͧzֆFwQp01_H)t].}Aol\mx1 Fjy_as}jB2U`g'sKec>*6=ƣ&3C3sשH`#JDҴ7e1/n{s~Dtq*|Hkܭm.qHG)XZ[$mk +1- 0N:c/JC%Iu8r܀@t <k/]Oj}[\Zi+I]z;f [BDT~]h=غln.IGq#4?;_X5ϲj3Em"Y= N YytOciu}mgo Q4r(eo4]N >;[E4M]OB cxzg|%ukֲ]iV+IvIS_۷~q U :`Hph}SZŏ\|ծWXX-#?8;quΨ~|~<M YÞ$H1<l{^e:d6K'$7ԁZ92x?zOoK6jGH@Kz=N47;X{bN4)Yt>_,a@)^#b5.Ԛ%|>o[G؅ܷ$)ݍ|9sQ\Z_Ŧ٥Clf<_<2j<2q^xЁ%{ VJ6Z8—>O' gjvЭ̋8R8|xC:č~u |"݄g)1dqֺ߆7־ h-ޫo^5`G:}=E{B:r_Izw Wa[4-:LçYD[q5Ϯ@)_ⷄχh;$;s5uJ=KQk4cXH~_U~]eR;𷉵%S5ߖ̪#Obg6$ '03<>R6pR~b2%=mΡ᫦613V8 sZݨm 8#>q U_Tu۳iWeÞ(:aմ厥d <t!@kmllch쭡Fm̰߁SPkV{] ]8,"!3Ww_wOvRZ]Y,4LV܏hu+lcz5ݛM* h\O{V F IɎx~b<?p+=NZuiHA q>L7V_ψiuƗriI:F9O.} ⾅ӭOQ*KK6?4+:#O;۝/Ɠ\ڭHHQHYCn7nǭtֽ}ziⶻx,on'<ڽ"F]ښmϹMMC ,q¢P|]Rg- zK m<8 E@!IDL}UΣlmی}_31 !yk_ ^WR]ig1vz?_rmt={x#jnY\HF 8o>o>x#NTvIm,Fp1SJcSSZm'Ko.#R;zPicg^aԦ׆AKJtDV$|Ñz/ς?IEsKY],}.I###z |%Ѵww 1h.e{#*n:Fn`:}vA)wDq€<w4D?7W?:6z4v0G +[Y%{[haytaLԑzvO+KlblKj~ ᮷b3f{Do /!#pp9`q_Q-^=[B2.טFH~UY"]@_ɥY=9-n@}wc4?ٚRuԄvw*`MW7dW_Tnjqh|7bxH 0zc[;iuIͼ o\ kqk(vDpv_B׉x[IPxիCqtc/ &r͡_t:FȎ(8?x%kggWo:h>)n-82,n 1R<`@N0k,l-hW a~[K{vʁվ@>PƟ;mVkt5,qkw?h$G p`*#cmgc$V\q52OZ0Y>žIO'ٿ{[B.J3ycy,fkhd/r`}Q@#Ww/okKmk-U6G<=kw~kDĚo䱒ƒ#8aAǭz}g[}F IɊx?B1Me,m1%|zm(:5j :90HHgw9+.iz~ EYF,`\(j<?<x>ػySL/FC#g)]3?.lmtkN#-װz_cI ϧr%\r{:5U6SE5ͬ3K fʓӠS|B{7;O ^׆>S^9T# _Wi]$6:<8/t KѱUQ* []Da_M=Cígx_N@aI^^f+GS!$u<-^=[B2.טFH~T >W'玄}j>CczqKGjW÷ɴB(,20ҽ*+󝒠aGlflKy1r(((((~?xi1J˵cWM,K>*֟6ln-/f_p$A' Pp(ğuwwi\ɽlq#~#x<Ih*]aUT@P^! XgꗒMl]p,E*'8"_3Ks{Ydӭv,5$z{Q@W7{/^%K{tX؂{IEq?o/>n2O<Ϙ%&j((((T|// fjbm_ٟ_~$?lѱ|+;wgf+s=/%:],NUфlAr=f{ЯuKˋ۩~Oq+H1$>_>:񦣻>幍,`ϔٶu Ex-s>{ڴ^K> ԒpW<pW+(㷋O ?L{Sވ0f,== h|#x7SFIoݘ$p`rŇNzQ@}KR.Q.LvO;:djpp=zQEQEQEQEQEVwx|/K r%̎HCc\7NWAj׷7-<᧹r zPQEQEQEbx/D 0ֶپ>흹x3@tUM'ض_>O^F|7h߷<vqVšqNxLPcLR Bp'k(֩]x0i:券6L-h|O=+[Yn.G(]U$Uփx㤚.֓AZZsme22y$ &򏃞=Ե7]<m8mg4W7,7 dORkt|tS?%bh4KB|mFO$@D^YSƺmxcyn~4Ǭ钡HpT&N +~j_67v坚8sRpku|r]N@@EPEPEPEPE5G;*I_x▪u6vjm|*g <dNh(#]u}".kY^3(ZQEQEQEQEQE߁߈oַi[5fa7ٷoGZ̏\|RR+CrdXTlTm\S|6xƗz_n{}kRyc個,H'Zws:%th<5hy,͐H'h 3\vQ4k-ae9nm+þQaqkkcZо!|F--LKg,͜}k[Duj_l4<SsF[/ U$!$A¨ojO.:Iy{3A6'F8OV4>Ϥ%A8֢m>~zmKf,2DcFd?mB~i­xďt[߳]%3&/O-Oj?f[/6"I$bqQ;nbU]#ǿ4-. Tk>[ o  l)铸gڀ=ៈo|UGh+)p6 cvi~''WnSVf͜,Wps qĪ.y<皃Ze޳_4:x`p]@<Oz-ҵ}W\)8*xg=__5#e~dI%czc5S*/JܷqPqrX6|}kG9tމ⋡.C$GyN"=4[xé>")CkrjǕ "t801^H~*ӵrHQ697u8@XtA|RokIHsh @#[+[&]I5]"K gm18Ȣߌ^e⋝BFYΈdQPrAPx❥A/Jծug*UąAg=3xX< 5 3Ll$?4l@~62O8^е_㧀D4ZX?ۈeuL8$#@W/^O뚖#m>}yT_:G|+ꯨ7yte7jK fw{Wwzƻ\i|qit!M *_ÚNJ>Aa QS#$(I?zyO!4n^ '\r1zjo:_ve-\Xܚ:ǫ|'poQ26bFjm'g^2W=;xF^w.g,-!l99|Sx#{6mVPFT.޹,JxW]x0n|LͰ h+$_M]Es?xLF@Ms^{{mXO{}2AmoK,pdWWF|?D5I,`%d<3ƸxIJG oQQK눀_#S_⎽>Ne6J8d%evn>$ɥh-]7IH# O{e|LxRY4-y.:{%Xۂ|폅~v-WVS[XຸW@$Œ@<I~ k-b(X>܊ڿEoؖ{ RBQ3_ZG%/;TWPI#ncv5x~.>kV}I( @;q瞃^<ᾷ:dM?Rʽ <P_k]Hz|(@!lv듚o>*ZxOO v,EdsQL^oI6i3; ' 6 t jZ~.M^զִCy]\F?!'crZxǟ-u_R]*Y kYp\€p2}}"AOkdn{'b@T<7h^1uZAkGq2y ?:L^χVY0ۉp}vBVu 2O+#Nݳ;NI'C5M?g/FңHR loגjMW3xC2Zh6HB,[Ze!ZK]rM$:Frw}ֽ&dqV_ϊ<%O ~hⲱ-fyMnzTsNy'5q.sd#v8 >|?u^xQ)2I'S(.FpŸ]?dt.o\Yټ!Yn=sZ?o&o%.0!9 ('ٺѼS~sxh^Q`sdf`T;y K[i۽{XmtBŲ$QT99.߬-Ry zfk&ˣP>67m>KBiy~֢m3R&(7cM) 6][Wؽb썒l-dӜۥt=7.?kV*⎛7޳}NmFvJ6)'AҺzτ:ne-sL P_} /x[Qѧvo`hpcl|=+ļ)J-jR"ĭHfw%b<Cuxg> K|z-ٴ;:B8 ?W4W׾>%pYm'8gcß|]V}rrlBY`C/3/ /mh}κ}r$oPv[%c>Q2}pUs|ix«j2#xh>嶻")*Csvzߊ~WfTʷR lnrTx|kSu65 {{[!bOϺľ!ht&0\B}hǚcΛeKZkkgkjZIrĜyk_Ïxg4?\557h׀& G;N=7= 5vV 6k:i"X+яLouEmf|v ƒڣx )aͩiۛ%(" \Vyt町Hr31zs<1^sa4z]10%`ߕ&bψ }&I#r.0_΀<Ƕk|sbs[HEx89Fk<CxBY[]o{q(6b7@qW_ɬhIq[ \Xg ƷxW[w;}3ħmўIxoc P[Pׇ~o Tq#kw>mNY~mSFia|Ӥ]\-gVx%csLWMśJ"HbT|3}vNd9z8ɠ Y>,e6t/CWέKp$|!wWԼaϯxc> NpN]3\^cΩg'>:sa8 p @ߵ'@ t_CWW-7S<R'돴!C$9f*<g'ğ&SC|CqzAvV> @ۿoM5}3g5k #kp+EcYҿ[k }w (*1@ |S_iͩi֖NvFgH8$ xZ#YգCcЍ c=y$T|E+~zTw m,c#1W%־ |F՝/ xok=U }x GCTwVUh^dƒZ[ebˎp@z۵<cS6xBo xy7Mq6A ``g$1/^5h8-;&!OWLw׶Z O|`~ MSZK%O\*`x!1pHm2+xH]M֑F$W'@8`C/|A?Уnd&;_P9/qG^wRvR$GcrŀQ5 m&T`k#v0QI'*ޱH}Zzr u9%_νR0|mOFI& 9{Y8(w ׇ|ua<U쮯 }QDYBv q_E]=,Ѱuo 0%l0H\Ҁ<ėڤ7vzHr9Jfz#|EQjkךP$ * Sg<[sGTѯ:k9^3h(((((((((((((((((((((((ikz\;$W[;'Uu*H$om#@4B[k1oI䞟^EyjuNO 8䜱өףQEQEQEQEQEQEQEyz?|5nedE4gwF۞0yxSoKKmzv.yc<# 돯cPbb#LE 2sQEQEQEQEQEQEQEQEy5?hOŲ[4o5wO5tQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@W|7/|FtmQ퍥HG9#NSKM'z)Hw2wǺqmspYwD3'1svCn +.{om8w3OŒj;H1cuq8v =U{9Y;ovTW#xWG4FЫ/V?,,B'p~wrqf:dɻ ZQTz$DdȮMupѵ"[P89*T[Ԯ;+?L״`隅ċ |V&WQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQER;jY*$")AQMD6y*$*;k{̖ #dPQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEG_,_Kk? vaST},w!UFI'yƣtE .8i_"_n:סwk%]Z A;em +QF~ N*WW0YIxg*1 \rDo닅+  HTU:}WK' `ߍi5-4P-#P#T%Jcrj%Ck7-l=*POB@#Y\@ɍb۞w8^Ez/|xg{II%i]XYᏇ[Xy_3R rtm{%bFi !Mu6|'KԜdm5[Eqh.bt(Tq1ü>}4IV%IYHp9D\qVsWzm#@M QqDQZj|='wOsgmngyX@XWES9&Z'{(̠(((((((((((((((((Ğ|O 1G.cY @~1aVrʲc OkSߊ#ҭ+\ޭԮӾ7קNyy 5 (yF37|bI<iݿ O6u{3$nAs\wt_ӴRH(䑑$nsqWCom7MNkQW <65OH Ѯ;[%aitLq"g y~\žhd.deu\D (((((((((((((((((((> fߛF^h+%Y~ok*§z(Š((((((((((((((((((((( ~"Z.{iik᭦̏\d+77wlYIe}o61iU+Qo6]3i6*tVڊ,XIJio^SZ|, _g26x<1iz} msoI?:q=T [w_Bx2Oұy:\<<y3msoI?:qGž9|_=};<` CHs8sC1ǧ5.&"*8E;( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( mga揂Yц0©*|q>;N~3m9w>VWQEQEQEQEQEQEQEQEQEA},K%"irI+W|6[!ݴpp3ұz 4Cf+]y֛W/&^vEdx_[!𽖪is؂AU^+XK[NJbe/u^XAsǙEq |k7;f},H vR)(Q@Q@Q@Q@Q@Q@Q@TX[5+'7Wڗ0o4n~U2^i{m}g2M CןR+GVj 6Y T_zL,Ï3_|O}NΛ4Í௮sځ!46q,ϯG6o~Yǎ ڀ&-H.ۉ|kwǯ%L=X|\~hGijVo}Cҡ߷4s*>Q6:U>&E[#&ʃ:L\3/n:ۚmŽob %wQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEO,C V7mD-_[Wk? vPODaS㉯D'Qwvez+ ⽇~)M\'_G#R/_O&/uE`}? > ]o@bOo.x7[PؼSA}?^)M/_O&/uE`}? > ]o@bOo.x7[PؼSA}?zuNlءϮwԢ Kɒcy$l*sSSd%VS ^.-du,FM'ĺw=ZK}@]N[?::qڽ +OImam *~ Sn4}6nnlmzHGCIǕn_sΟ>KRDF1'3GxLjHV4`S$ y֪oRtGw8?z֙?* P,̌:ꥶagq$p,.պr3 ԹX?qM>#5/_O&~0> ]bOo. x7GؼSA}?(^)M/_O&~/t}? ߢ0> ]bOo. x7GؼSA}?(^)M/_O&~/u >"[gMXIrG륦Mw@<xkß.<{ux:izxY"}s[ $+5Œ ~Xvֽ-QQBQ+<)5͘׮Yw}U2@N%}iĻMՄ,u߷_jV|!;Z|?,tߎ =Eb6=hhq'KoOL 1j_趯iH<?l~/iPn=;C?:L<3luǦo[LkٌD*?OM4xfn:\[|LkYD-T|Jh(((((((((((((((((()k:΁KÒW:́:W~fo`9XccaZ.@|EǼ-Pz7e;|]nN鼱lsSEyGXQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWR;GVH 6_YeAפW:ݪk^)үo#.P`zt@6gtas>阋NapW=sՕ/4K]:TAL2OxCeӬK[{(Jdހ5ZZ]y黮GbL?yqzj:L4;P6y\l~uqiPY=r(OMstxxg_\t|Z@y"W[:mu8V7.-~&xq䭽;d((((((((((((((((((( #dqa+~kO S"sгx߆Sumf N脖'#d|Bkju9!%(ݦ{%kQ o9X]wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wOqo  :6D_r5k-?nO N[-ʮs'_=7N8?;6D_rX.+jvo{E$N0esW1xkRЭ&{)<{0ʠ9&X?ckNm(J/,a#9<Qϥgx:g^b!obg %pZƵ5I~O!-o'~v?>"5O*6}YdOZ.z(Gz4O\}Umm ƊY<zΦsP3:0ybjQvWI]䖧]Eax3]>"\W+*1ۑz[%(.V:%J{(2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( φ"_W_Q%zy/`(JGWE; FE; 9\m 0(aqS(NFE; 9\m 0(aqS(NFE)j *;7}\|3wrZvPARZ v8^vQ5xͪim-r[׭T5CW:i#;Y[oZJdOݛOIP,sY"G#*KO0u xL!ۀpo=8溏+|ڪGR[PF>wOxtY{k8j8BINZ7+9&9.A}ERQEQEQEQEQEQEQEQEQEW;_*>-{J諝׽%\7w5PK {&v :{}8.0Nb4UFtcg%$$RZ*hT|^͜7Լ=Rua:ʝFm]!&H)`Hǵz=PKQu{iCzqUtzt; TU+JK֗_+|QEjpQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@y$kϾȅo_w=0:(Q@Q@Q@Q@Q@Q@Q@Q@ 4N4؃'j!^}VjS}" Ρ=^EJWly<)uX^vؤLMGzNRԡȺą#-6׫#YA##+*èaE%u|ٜbRaR8?Z'G7eVs*:T`zQMgi:6>d7*G|6<ZRA<k(CR 2 }J2f 15mꝿsp>'_Jcq*pN_-#PFoDLj`t5F`̠HIi`n(AEPEPEPEPEPEPEPEPEP\+w¿T|[^? pE!EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP^M zÞ^41htt!f^Ep?O?9+xO5Q@'#oƏNG 'SwP [*BT]r?W? hЭ?}Ep?O?9+xO5Q@'#ƏNG 'SwP [*BT]r?V? hЭ?}Ep?O?9+xO5Q@W? hƻ*ySO?8_*\.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'St' kHjDʑ,HI,Oֳ-m -,m};l2< 8vSb*ֽWMݽ U,0d?rE XK6ֽZ hj^(=>=zs_mLWȎ;u:+/AݤLfW>կN?W? j+QW(f>\Fʇp03sֽtT'WFr qRTG'+O5G" '+O55/_~,a_* ';OjZt+>.kJj)QEB ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (8J87^kU4}SDu]MuuYBG #p z]lEDIWە`A9ϰ>cy77RsBQ]cpy 8eN{-,I|[;y-o/+l_gpq|>ֽ"–7"-=uw|ϕ2zt<t.)Epko0%Ƒg>@J k[~Ϧ[3i=) lC*mf?oq@ǜ˩xN4ߵ%lj.s}o1(uqOiOq?:T\t@<IwW;dtuY~n qLWBs|~Ib;s^MlV1obe;( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Z_j*VXt |*eHz []_j>)F4<ϕ2@Cl~ϥñ|qFqm&v?/6ޏ ~Md緽Os~f8ۓހ. SV_p%=G{7t+qG֔E*#8ޓ?|ҡ)|t~\y|}kQ^|LlV/ت,!oqSֱ|un#*,QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWNPUo)\32|>|Uo)i\4*eH=h}M~=-4xrg>FǏ3zP[]~k.v?Eo'LH䗔y\憎 [J|**GOu_iPVnhGNr&luϧ5ۨ>&xKu+Uv %lN>w>V[ZvV?-ԬbT%wQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE|SO]~}y*eOG<k.kN5мK-^-ZO4n=@#G.l?y!D8uz˧?NC6F{fZ554}GP49-3HrI=YԢ«gT O4u_ۘt6ofgأJ}̶SG88hũc=TC^c?:^ w̑$CEBq@S.mb qlbs9Kh)4V$S`䢸8#txOëI&9ft'1#>5>[]>vv nOj((((((((((((((((((((((((((((((((((((((((((,Bi3< 4;msIK{rʳyzA] 0A\ufӼk3iA2ۡ_.inx?{9ʊ&<lris;og+szuƧ&m6+R^L!~b1Һ(g% mzMnEp#z*O ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (?
JFIF``ExifMM*;HasiJ >5454 2019:07:22 20:20:362019:07:22 20:20:36Has http://ns.adobe.com/xap/1.0/<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x="adobe:ns:meta/"><rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"><rdf:Description rdf:about="uuid:faf5bdd5-ba3d-11da-ad31-d33d75182f1b" xmlns:dc="http://purl.org/dc/elements/1.1/"/><rdf:Description rdf:about="uuid:faf5bdd5-ba3d-11da-ad31-d33d75182f1b" xmlns:xmp="http://ns.adobe.com/xap/1.0/"><xmp:CreateDate>2019-07-22T20:20:36.543</xmp:CreateDate></rdf:Description><rdf:Description rdf:about="uuid:faf5bdd5-ba3d-11da-ad31-d33d75182f1b" xmlns:dc="http://purl.org/dc/elements/1.1/"><dc:creator><rdf:Seq xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"><rdf:li>Has</rdf:li></rdf:Seq> </dc:creator></rdf:Description></rdf:RDF></x:xmpmeta> <?xpacket end='w'?>C   '!%"."%()+,+ /3/*2'*+*C  ***************************************************" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?F(((((((((((((((((((((((((((((((((((((((((((((((*GhwڜK4vV\<p])bw'P+$|9 m$4hkHDχ&d^&d2FA|z+_I1>%v@!Rd60J((((((h^#-y5kH٫| %Ǩ Mv+Nm-:W}ιL1$f3EQEQEQEQ\<n>%\%-of/b;xvsEPEPEPEPEw oX{a2CU-p8d2 "EPEPEPE 徟c=m,p2I> :45=;+LSrA#QE#f=fx?i \{oU>I]~)h(ޥ=n$#X11Zhngiqե "3u=Y((( VfM{F B9Z1 Q@xǚo4+^xo1j;A;q(5h6\mM 99?ǥe~<t/{h1%Sm븖t tQET7}$!¢($* YAqY\b#lA]((((((((($cĿ-/#>1O?F<K^23?A7oi6!,wKֺm?5^2Ӵx>GUm3̲,H[m9 `8k+ǜ>2QB \xn@om{[KT˲ӭ2~C$'k UgK j<X\7wm\7 c~+GsgGZ}m iG*C.ebO =7J|QQ}"Xc-.FЬ${P5:ڶU˂2Ngj2IWK^!Ht?]isjaFAoI) k:uZl5oܖU.@R#5?0_%-m_ďKGm ==kdmbb)DM.pskΤodzNӨ귑[~D rY8>3~&o4fd6r7DW=#>CC¿}Y-M‡w0v"FdSMȗj e8]_$SNhw@*tB-m&I0rqҼxs+QԠԼSYv 9>bI=64Ue 0AK4 2`<rsPQ ǯh־ZKX0pDBc}y;9?R*pۊ</'{OC[U\]x5"]JT9k(n<Ospmߦ{qZMu׌].l%_i)@ls$+ξiƫwм.sis җMb~.7F9=#z0ĉ9Uˍ<79T8RI})>Ν ~\z$4PVRV-w%$ l='k^~?容ӟΞz/764}3R)8BpӽjK[xWtK#m껾u6I@kj϶.|t& !ҹs2 ށwh21@ ڹ:e3~1fwq|[qmn]+,%YFDs^ELjU'jmRF֮#rFyNN w>̚狇S k2h.z0NS8<Ә/퇫n nT U[Ů֕:MZByG- ;c@}h;_kEYTfC 8>+M'|E^xg^yYݶ;| pN<P7_`kXǖ<@Fԡ볛|C⿈MYJV[8 yr,1][5_Gӥx50Lq*60 `#C5/JK8l09ўw<]|Cм;]qpʤï3wy><]<V1{ě#& =js][J^LV!%؍LIjm\(<c@tU` z䏏M;<~"xYu.9 !\n@*H0A9W~`%ߎAMz@:[+gyyjPGt2c ~aj;q8*Z={~`h#bvȁ;Xv"x:T6RԴd$22~^r>2x/: 11Ն{p{ٺwixX ]FX"3#ֽ*ź&{ ܭ \8k⒫|=⼟DZO'I$O?Ql>PfhkSĒav{ۏ}خ7ͷtK95*I)oo2l.8cm5O ǫZٍ@ncq+ 6* %֯E!e/}[/žŒQn ǙOsɣ<ҵ17>6L;3OH־sz5|&נoxcP]D,QnYi_Z1#}\աROߒ>*d7bj<yq㶚[Ef 1ڪj_tX|0s9  +ZH>Z:zl! =OuQ[R(ӵ mWL,%Z³C #TWukcjQ[K{ ձcbsb|#$N_*O%)5z߈:?goh& -.)@ٛ(%sY/"ѡ׬WR.&qĨ8BLn/}z}+~s+G"GtC֬EYTmK,LFb;ЏQW'y??ʼ!'wrsL?<3Ǽ@0/L%]K=,v (bAx[|1enޗaKY1yk>Ꭳ%퍵ăXCK ɇkcicg ek ǥVO>M^m>K+cK .CXנ=9'zk;6aR3^`IP3\{c񷺵Y>V}H7|K׆5xz/ ZQ\I`r*8^(I|dOpe 6= }=[W+p%E=WĹ #7ZXwo8S4ψ7PKM|?hhc,c#q@O~/xbNX{䐰`e?<G}ºK\-؈B0+ưi\â#ÌDwn`ӕvr:X\#Ʒǫ5/ Yռ?nTVW2Ӑ>^oi0ݦJd\B A#Mkz]-;2K;{xrGڿXgr˻NOPs޻<+Eד\u I(HQ7G88;20y uXj&au3Om]¡,0'rtS o|-|K$QiwܼUW%ǧ$`8C۪ji7_5]Q"SGTm@U|K?_鑾 5Ȃ#ϵݖ=p2xO<) Д⿴my+5%.{{|>ǩOzq8?ir<8Ok9+۪i65ե.ke8ٴwq JOtn+S[jwQ[a(+"3kSǞ- ֍x^^`G_|pq+>!Z߳ﭤ09D1W>RzO}jnbK6>|m;h:·O^z.I\fIX6qcwNqݛ"Q_8?WƍKeڕݬ $['>VP #R 99O k#:h3Y]@N@^a) V$TOOZd9Y9m°;[@+ny-jȱd9Ƹm77ɦBKP6f?6=IlYI w^JLn/}u/"ѡ׬WR.&qĨ8O_xZR*&-J @ \Eoٮe`Hnw^_j=M"Y~VA\0U||,9xe.4 2EѓpA` xxx)/?[0-,>gǮ0N=yyOUѧe025L ${֓MV}k+]]i{$ u+댎1w>iOqmZŜOHzr:gֽ΀<ƿ|9Ax{Zu5n&K\p,8=W>|M:NH#DyR@ 3C~7BxV)kBpd|@>^Yv~5 H<ۑ $n8q( ( ( ( (3|Cx6wrkx=RBχm-]m,69Z4P?+Hռe&:̲a@`AƏx+HiZIBʓftϨ_?hL%]ۆއ%^6޸~èeuw=!w%6 M =xFJ죽E&x=#G洨.gh嶩m̳d:p'Ƴ׊ }k{pnx-p@w4P & I@n*pq;WE/ i :.,΢WcSZGWP"LQk7\zj/:65_h̚ H]G=P?eza0-dPa{ݭVm_[Դn5˟$ fGaj(:OXUf4SJOz/xO6?fYiyR3Ğ< MttP <p|Y?yfgӊi6qj\aeXy<(!~|.Xnx_ӌ7] \vG6>ŌByktPEP?ְu]f;EF`W<~K*{ {eEs4wEl<>LIbPv>#ڱ|#G^ #t)翇>Ls1dc03z |l{̗v1^NIdR22IqJ@?ohz[j=kmw*׮3&(+A [h:bȶ6јi$U'>Y7y+z/#rh2tn|7esAJ(<w%ٯi<m`a9ȏlWU|=|&ܡ g1gk35еses G}QҴ ᥶Y\~<x=k^~>n[q[ǫ4*DӴX,dPĸU5nű𖑧xS%KT8$ 3Qu="V(ݪX[o+0﷭mQ@^0vJUI.qVuXoCcq GlEgZ-4=MQۘ(ޥt}gFCky- pJ:lպ(ᯇnh?T '|%~ղ-Y?y^_ZPW<9Gv-a0ŎO~X֣(e*zKEs 6 m/é2[Mp,&yUT~$/4}L;Z^Fb#mb (~(Z[k^W.7t̅$~9^+{v:u%\Ln!^\ЙUO8:sxwG5ص6P}Amw|9-+{9I'ishommu۸pF}G5OI1Z5m:xgIᙥf-!<jh}S&Ko>M=kcxj_ &IH؞)o`Wq h WI+(f8I$ʶ( ᇆ4_R If/igyb`=+<F]ZԣkWoɒ(9.yr+(0<cǚ2i${xGV#p 1s\v<DΠh㾟̍HdWQ@ Hm# 9W8涽D0lGsqdg^Erí[ 0h jw(ZkźOci,QG~Q@~xo[K\n@y#=Ϩ8Wz^XfH@>ʣ+*jm^w8%Jckᯇnh?T '|%~@o <"e=M]7xϮOM>x| }D'rŕՎQtPO8u&+ֻ>ýJxb9_Z]Pz_)xr }뾢9O|4#?˞a[+MǠWWEo<]kwSO-n.d$}O#?h>+]Kv'b,=k ( ( ( ( (zWבi m~и2I3+>|PXm~/uT̚F̰;G SY?~-j~;4q嚬a?ۂ=’@Ex .ƚτL,tKGB)uVW 0ՙ|Y^f=[Iִ#BXE=I##@O Kk(u4(͵9\0hgM ߄1g X+!yQ8C:w>< a/ßfF=,<#i=6_-z}@$ dt3Z G^J#iH- <*2NIIapȡ xi.5n3 7@XMކ{Jfg`]m`HC sP?<񧎯ii~a<CĐk7>V(4+4;r0{g|&hԴt,7k̪ddd`0$A*ppzRttiLWgK3a 6Ìj>p2zUf<?mhr3W~:t߇k{M.WXo]]Ļ㓜s'ImkKӛE[EgG$^6u7|9׵x⺸UuFTd*0 'SyRMĹww'|^<!i I4yo <_ "j0m_joh5ǖ+:&:u~YNw{|t5 v>H.iCcdh$ i~9GĖ:]KT(dc7~|Qީ Ťk*Of*=^^ow[MrxݞO [>ڭ~I+4[zS!FIWU`s }|9յ6nn#Sn PY79!wd;PSExZ:/__:HT*y i'ᵕƴoo lЀF@S~x*+ĵ|K]ui{4sP892 jh h<r(tu9 "HeH#$p}+{;ޭ{ImeKۣ^y>=LJ|?ͯixbC+Zw\$9Ҁ;;<a?XjpFVd"':cz |_-,t\+按eډ$ᇍ|Ms_xR[j:Mmtt#u S7W Gҭmb{Cf(N8?tGOO{ .^Vo܈ C,Jyza gþf״<1!-r.S_^@ωd|5`ѯoǹ-Qϧ͟])`Xd7-g^<ΑZZAzt'+k+J_MZKuG<FVEc )HB78 dހ>|%mOomo`hca1ڶ7>)Gƣo]$nP=+Y<a:u˃io C 탂pɜ`ezψ)02մ:E}omnl!W8y9~!&mfG H=WZ@PFGQxfV:}j(]S;^`LyG³[Sk?ƬRD]UA.c(Z+ļ[n< }sNv$w,zWrXs'zgAhtRjqNȳXm|v9$t:PCE:|:-Jc¯,!8,Yz-{5rxSQ=2y+ʭm'8 v=\&ύO5gw mcq<p-\|V?ZkTݯ.m"c~Sӷvx>3y7zP&QT4Xx|F)K#]5y-f/gF4:)(evX %'N|ah:ckRB6 $U 1!yfZ+>>4㦷tY mT:::ҸĩMK~"4Dzd]1T9Ҁ>''PTA?1Sm43ZiNEdo9qF#rwdVr <miwsZ(xۑր;( ԼO7|Go:]ʫ}#iD9nTW['46cdw+| Axx'}>_nN>P~@yW3x6<<4k`ǘ5sx=oOO)z0WORMd bY3x7nJa#j+ƼE_Im=eCylH$ ͎zd ;Co|'oNw =jZXZ6Pi c)Q@X 8=ik]|FMŤZd3edV24#s@O|;o&{OjmUaGCn=AfE^<E\"RE#h@Rgn@x/㽿[ $K;z0<*#s^8 Fr W_}cy/5-cOow )1.ݵr\Ojxv4_ϚᵿUPEy׌↭v shU*Ϩ$y9*a1ۿ^S7I!Ŵ"wlVul@v Q^N|ah:ckRB6 $U 1!yfx^4 㧶մtY mT:::Ҁ=Nj||KCi.ā>O|F񶯤|5t}_"TJIU`F2: _Y~ԗ0xPԵ%NnmەPtQEQEQEQEQE|Zկqi?(WOϮOtlZeeOHwa]䷆YXcy!%vPLd ;'11́ȡe PY]etEVۼ qHGp3x[ j_ }J/]x7y-Ēu(DȔ9 q޾e X`:RYb ɱϩ\`zΟ jz5]Mxӌ75iR rۺ@AZ%"<t1Ok&IW+F '5aźg</uk2F3;rOWR SY>^O '|@,cٞ;z}3ݍ}!Oi3ކ=TV*xS7OT mkogs@?@׌~#>.:z,Wm̱F18@:|ᯆ4]ͧzֆFwQp01_H)t].}Aol\mx1 Fjy_as}jB2U`g'sKec>*6=ƣ&3C3sשH`#JDҴ7e1/n{s~Dtq*|Hkܭm.qHG)XZ[$mk +1- 0N:c/JC%Iu8r܀@t <k/]Oj}[\Zi+I]z;f [BDT~]h=غln.IGq#4?;_X5ϲj3Em"Y= N YytOciu}mgo Q4r(eo4]N >;[E4M]OB cxzg|%ukֲ]iV+IvIS_۷~q U :`Hph}SZŏ\|ծWXX-#?8;quΨ~|~<M YÞ$H1<l{^e:d6K'$7ԁZ92x?zOoK6jGH@Kz=N47;X{bN4)Yt>_,a@)^#b5.Ԛ%|>o[G؅ܷ$)ݍ|9sQ\Z_Ŧ٥Clf<_<2j<2q^xЁ%{ VJ6Z8—>O' gjvЭ̋8R8|xC:č~u |"݄g)1dqֺ߆7־ h-ޫo^5`G:}=E{B:r_Izw Wa[4-:LçYD[q5Ϯ@)_ⷄχh;$;s5uJ=KQk4cXH~_U~]eR;𷉵%S5ߖ̪#Obg6$ '03<>R6pR~b2%=mΡ᫦613V8 sZݨm 8#>q U_Tu۳iWeÞ(:aմ厥d <t!@kmllch쭡Fm̰߁SPkV{] ]8,"!3Ww_wOvRZ]Y,4LV܏hu+lcz5ݛM* h\O{V F IɎx~b<?p+=NZuiHA q>L7V_ψiuƗriI:F9O.} ⾅ӭOQ*KK6?4+:#O;۝/Ɠ\ڭHHQHYCn7nǭtֽ}ziⶻx,on'<ڽ"F]ښmϹMMC ,q¢P|]Rg- zK m<8 E@!IDL}UΣlmی}_31 !yk_ ^WR]ig1vz?_rmt={x#jnY\HF 8o>o>x#NTvIm,Fp1SJcSSZm'Ko.#R;zPicg^aԦ׆AKJtDV$|Ñz/ς?IEsKY],}.I###z |%Ѵww 1h.e{#*n:Fn`:}vA)wDq€<w4D?7W?:6z4v0G +[Y%{[haytaLԑzvO+KlblKj~ ᮷b3f{Do /!#pp9`q_Q-^=[B2.טFH~UY"]@_ɥY=9-n@}wc4?ٚRuԄvw*`MW7dW_Tnjqh|7bxH 0zc[;iuIͼ o\ kqk(vDpv_B׉x[IPxիCqtc/ &r͡_t:FȎ(8?x%kggWo:h>)n-82,n 1R<`@N0k,l-hW a~[K{vʁվ@>PƟ;mVkt5,qkw?h$G p`*#cmgc$V\q52OZ0Y>žIO'ٿ{[B.J3ycy,fkhd/r`}Q@#Ww/okKmk-U6G<=kw~kDĚo䱒ƒ#8aAǭz}g[}F IɊx?B1Me,m1%|zm(:5j :90HHgw9+.iz~ EYF,`\(j<?<x>ػySL/FC#g)]3?.lmtkN#-װz_cI ϧr%\r{:5U6SE5ͬ3K fʓӠS|B{7;O ^׆>S^9T# _Wi]$6:<8/t KѱUQ* []Da_M=Cígx_N@aI^^f+GS!$u<-^=[B2.טFH~T >W'玄}j>CczqKGjW÷ɴB(,20ҽ*+󝒠aGlflKy1r(((((~?xi1J˵cWM,K>*֟6ln-/f_p$A' Pp(ğuwwi\ɽlq#~#x<Ih*]aUT@P^! XgꗒMl]p,E*'8"_3Ks{Ydӭv,5$z{Q@W7{/^%K{tX؂{IEq?o/>n2O<Ϙ%&j((((T|// fjbm_ٟ_~$?lѱ|+;wgf+s=/%:],NUфlAr=f{ЯuKˋ۩~Oq+H1$>_>:񦣻>幍,`ϔٶu Ex-s>{ڴ^K> ԒpW<pW+(㷋O ?L{Sވ0f,== h|#x7SFIoݘ$p`rŇNzQ@}KR.Q.LvO;:djpp=zQEQEQEQEQEVwx|/K r%̎HCc\7NWAj׷7-<᧹r zPQEQEQEbx/D 0ֶپ>흹x3@tUM'ض_>O^F|7h߷<vqVšqNxLPcLR Bp'k(֩]x0i:券6L-h|O=+[Yn.G(]U$Uփx㤚.֓AZZsme22y$ &򏃞=Ե7]<m8mg4W7,7 dORkt|tS?%bh4KB|mFO$@D^YSƺmxcyn~4Ǭ钡HpT&N +~j_67v坚8sRpku|r]N@@EPEPEPEPE5G;*I_x▪u6vjm|*g <dNh(#]u}".kY^3(ZQEQEQEQEQE߁߈oַi[5fa7ٷoGZ̏\|RR+CrdXTlTm\S|6xƗz_n{}kRyc個,H'Zws:%th<5hy,͐H'h 3\vQ4k-ae9nm+þQaqkkcZо!|F--LKg,͜}k[Duj_l4<SsF[/ U$!$A¨ojO.:Iy{3A6'F8OV4>Ϥ%A8֢m>~zmKf,2DcFd?mB~i­xďt[߳]%3&/O-Oj?f[/6"I$bqQ;nbU]#ǿ4-. Tk>[ o  l)铸gڀ=ៈo|UGh+)p6 cvi~''WnSVf͜,Wps qĪ.y<皃Ze޳_4:x`p]@<Oz-ҵ}W\)8*xg=__5#e~dI%czc5S*/JܷqPqrX6|}kG9tމ⋡.C$GyN"=4[xé>")CkrjǕ "t801^H~*ӵrHQ697u8@XtA|RokIHsh @#[+[&]I5]"K gm18Ȣߌ^e⋝BFYΈdQPrAPx❥A/Jծug*UąAg=3xX< 5 3Ll$?4l@~62O8^е_㧀D4ZX?ۈeuL8$#@W/^O뚖#m>}yT_:G|+ꯨ7yte7jK fw{Wwzƻ\i|qit!M *_ÚNJ>Aa QS#$(I?zyO!4n^ '\r1zjo:_ve-\Xܚ:ǫ|'poQ26bFjm'g^2W=;xF^w.g,-!l99|Sx#{6mVPFT.޹,JxW]x0n|LͰ h+$_M]Es?xLF@Ms^{{mXO{}2AmoK,pdWWF|?D5I,`%d<3ƸxIJG oQQK눀_#S_⎽>Ne6J8d%evn>$ɥh-]7IH# O{e|LxRY4-y.:{%Xۂ|폅~v-WVS[XຸW@$Œ@<I~ k-b(X>܊ڿEoؖ{ RBQ3_ZG%/;TWPI#ncv5x~.>kV}I( @;q瞃^<ᾷ:dM?Rʽ <P_k]Hz|(@!lv듚o>*ZxOO v,EdsQL^oI6i3; ' 6 t jZ~.M^զִCy]\F?!'crZxǟ-u_R]*Y kYp\€p2}}"AOkdn{'b@T<7h^1uZAkGq2y ?:L^χVY0ۉp}vBVu 2O+#Nݳ;NI'C5M?g/FңHR loגjMW3xC2Zh6HB,[Ze!ZK]rM$:Frw}ֽ&dqV_ϊ<%O ~hⲱ-fyMnzTsNy'5q.sd#v8 >|?u^xQ)2I'S(.FpŸ]?dt.o\Yټ!Yn=sZ?o&o%.0!9 ('ٺѼS~sxh^Q`sdf`T;y K[i۽{XmtBŲ$QT99.߬-Ry zfk&ˣP>67m>KBiy~֢m3R&(7cM) 6][Wؽb썒l-dӜۥt=7.?kV*⎛7޳}NmFvJ6)'AҺzτ:ne-sL P_} /x[Qѧvo`hpcl|=+ļ)J-jR"ĭHfw%b<Cuxg> K|z-ٴ;:B8 ?W4W׾>%pYm'8gcß|]V}rrlBY`C/3/ /mh}κ}r$oPv[%c>Q2}pUs|ix«j2#xh>嶻")*Csvzߊ~WfTʷR lnrTx|kSu65 {{[!bOϺľ!ht&0\B}hǚcΛeKZkkgkjZIrĜyk_Ïxg4?\557h׀& G;N=7= 5vV 6k:i"X+яLouEmf|v ƒڣx )aͩiۛ%(" \Vyt町Hr31zs<1^sa4z]10%`ߕ&bψ }&I#r.0_΀<Ƕk|sbs[HEx89Fk<CxBY[]o{q(6b7@qW_ɬhIq[ \Xg ƷxW[w;}3ħmўIxoc P[Pׇ~o Tq#kw>mNY~mSFia|Ӥ]\-gVx%csLWMśJ"HbT|3}vNd9z8ɠ Y>,e6t/CWέKp$|!wWԼaϯxc> NpN]3\^cΩg'>:sa8 p @ߵ'@ t_CWW-7S<R'돴!C$9f*<g'ğ&SC|CqzAvV> @ۿoM5}3g5k #kp+EcYҿ[k }w (*1@ |S_iͩi֖NvFgH8$ xZ#YգCcЍ c=y$T|E+~zTw m,c#1W%־ |F՝/ xok=U }x GCTwVUh^dƒZ[ebˎp@z۵<cS6xBo xy7Mq6A ``g$1/^5h8-;&!OWLw׶Z O|`~ MSZK%O\*`x!1pHm2+xH]M֑F$W'@8`C/|A?Уnd&;_P9/qG^wRvR$GcrŀQ5 m&T`k#v0QI'*ޱH}Zzr u9%_νR0|mOFI& 9{Y8(w ׇ|ua<U쮯 }QDYBv q_E]=,Ѱuo 0%l0H\Ҁ<ėڤ7vzHr9Jfz#|EQjkךP$ * Sg<[sGTѯ:k9^3h(((((((((((((((((((((((ikz\;$W[;'Uu*H$om#@4B[k1oI䞟^EyjuNO 8䜱өףQEQEQEQEQEQEQEyz?|5nedE4gwF۞0yxSoKKmzv.yc<# 돯cPbb#LE 2sQEQEQEQEQEQEQEQEy5?hOŲ[4o5wO5tQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@W|7/|FtmQ퍥HG9#NSKM'z)Hw2wǺqmspYwD3'1svCn +.{om8w3OŒj;H1cuq8v =U{9Y;ovTW#xWG4FЫ/V?,,B'p~wrqf:dɻ ZQTz$DdȮMupѵ"[P89*T[Ԯ;+?L״`隅ċ |V&WQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQER;jY*$")AQMD6y*$*;k{̖ #dPQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEG_,_Kk? vaST},w!UFI'yƣtE .8i_"_n:סwk%]Z A;em +QF~ N*WW0YIxg*1 \rDo닅+  HTU:}WK' `ߍi5-4P-#P#T%Jcrj%Ck7-l=*POB@#Y\@ɍb۞w8^Ez/|xg{II%i]XYᏇ[Xy_3R rtm{%bFi !Mu6|'KԜdm5[Eqh.bt(Tq1ü>}4IV%IYHp9D\qVsWzm#@M QqDQZj|='wOsgmngyX@XWES9&Z'{(̠(((((((((((((((((Ğ|O 1G.cY @~1aVrʲc OkSߊ#ҭ+\ޭԮӾ7קNyy 5 (yF37|bI<iݿ O6u{3$nAs\wt_ӴRH(䑑$nsqWCom7MNkQW <65OH Ѯ;[%aitLq"g y~\žhd.deu\D (((((((((((((((((((> fߛF^h+%Y~ok*§z(Š((((((((((((((((((((( ~"Z.{iik᭦̏\d+77wlYIe}o61iU+Qo6]3i6*tVڊ,XIJio^SZ|, _g26x<1iz} msoI?:q=T [w_Bx2Oұy:\<<y3msoI?:qGž9|_=};<` CHs8sC1ǧ5.&"*8E;( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( mga揂Yц0©*|q>;N~3m9w>VWQEQEQEQEQEQEQEQEQEA},K%"irI+W|6[!ݴpp3ұz 4Cf+]y֛W/&^vEdx_[!𽖪is؂AU^+XK[NJbe/u^XAsǙEq |k7;f},H vR)(Q@Q@Q@Q@Q@Q@Q@TX[5+'7Wڗ0o4n~U2^i{m}g2M CןR+GVj 6Y T_zL,Ï3_|O}NΛ4Í௮sځ!46q,ϯG6o~Yǎ ڀ&-H.ۉ|kwǯ%L=X|\~hGijVo}Cҡ߷4s*>Q6:U>&E[#&ʃ:L\3/n:ۚmŽob %wQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEO,C V7mD-_[Wk? vPODaS㉯D'Qwvez+ ⽇~)M\'_G#R/_O&/uE`}? > ]o@bOo.x7[PؼSA}?^)M/_O&/uE`}? > ]o@bOo.x7[PؼSA}?zuNlءϮwԢ Kɒcy$l*sSSd%VS ^.-du,FM'ĺw=ZK}@]N[?::qڽ +OImam *~ Sn4}6nnlmzHGCIǕn_sΟ>KRDF1'3GxLjHV4`S$ y֪oRtGw8?z֙?* P,̌:ꥶagq$p,.պr3 ԹX?qM>#5/_O&~0> ]bOo. x7GؼSA}?(^)M/_O&~/t}? ߢ0> ]bOo. x7GؼSA}?(^)M/_O&~/u >"[gMXIrG륦Mw@<xkß.<{ux:izxY"}s[ $+5Œ ~Xvֽ-QQBQ+<)5͘׮Yw}U2@N%}iĻMՄ,u߷_jV|!;Z|?,tߎ =Eb6=hhq'KoOL 1j_趯iH<?l~/iPn=;C?:L<3luǦo[LkٌD*?OM4xfn:\[|LkYD-T|Jh(((((((((((((((((()k:΁KÒW:́:W~fo`9XccaZ.@|EǼ-Pz7e;|]nN鼱lsSEyGXQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWR;GVH 6_YeAפW:ݪk^)үo#.P`zt@6gtas>阋NapW=sՕ/4K]:TAL2OxCeӬK[{(Jdހ5ZZ]y黮GbL?yqzj:L4;P6y\l~uqiPY=r(OMstxxg_\t|Z@y"W[:mu8V7.-~&xq䭽;d((((((((((((((((((( #dqa+~kO S"sгx߆Sumf N脖'#d|Bkju9!%(ݦ{%kQ o9X]wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wW o9G,moֿm@wOqo  :6D_r5k-?nO N[-ʮs'_=7N8?;6D_rX.+jvo{E$N0esW1xkRЭ&{)<{0ʠ9&X?ckNm(J/,a#9<Qϥgx:g^b!obg %pZƵ5I~O!-o'~v?>"5O*6}YdOZ.z(Gz4O\}Umm ƊY<zΦsP3:0ybjQvWI]䖧]Eax3]>"\W+*1ۑz[%(.V:%J{(2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( φ"_W_Q%zy/`(JGWE; FE; 9\m 0(aqS(NFE; 9\m 0(aqS(NFE)j *;7}\|3wrZvPARZ v8^vQ5xͪim-r[׭T5CW:i#;Y[oZJdOݛOIP,sY"G#*KO0u xL!ۀpo=8溏+|ڪGR[PF>wOxtY{k8j8BINZ7+9&9.A}ERQEQEQEQEQEQEQEQEQEW;_*>-{J諝׽%\7w5PK {&v :{}8.0Nb4UFtcg%$$RZ*hT|^͜7Լ=Rua:ʝFm]!&H)`Hǵz=PKQu{iCzqUtzt; TU+JK֗_+|QEjpQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@y$kϾȅo_w=0:(Q@Q@Q@Q@Q@Q@Q@Q@ 4N4؃'j!^}VjS}" Ρ=^EJWly<)uX^vؤLMGzNRԡȺą#-6׫#YA##+*èaE%u|ٜbRaR8?Z'G7eVs*:T`zQMgi:6>d7*G|6<ZRA<k(CR 2 }J2f 15mꝿsp>'_Jcq*pN_-#PFoDLj`t5F`̠HIi`n(AEPEPEPEPEPEPEPEPEP\+w¿T|[^? pE!EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP^M zÞ^41htt!f^Ep?O?9+xO5Q@'#oƏNG 'SwP [*BT]r?W? hЭ?}Ep?O?9+xO5Q@'#ƏNG 'SwP [*BT]r?V? hЭ?}Ep?O?9+xO5Q@W? hƻ*ySO?8_*\.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'SwQȂ J'Sԯ?E.pԯ? J'St' kHjDʑ,HI,Oֳ-m -,m};l2< 8vSb*ֽWMݽ U,0d?rE XK6ֽZ hj^(=>=zs_mLWȎ;u:+/AݤLfW>կN?W? j+QW(f>\Fʇp03sֽtT'WFr qRTG'+O5G" '+O55/_~,a_* ';OjZt+>.kJj)QEB ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (8J87^kU4}SDu]MuuYBG #p z]lEDIWە`A9ϰ>cy77RsBQ]cpy 8eN{-,I|[;y-o/+l_gpq|>ֽ"–7"-=uw|ϕ2zt<t.)Epko0%Ƒg>@J k[~Ϧ[3i=) lC*mf?oq@ǜ˩xN4ߵ%lj.s}o1(uqOiOq?:T\t@<IwW;dtuY~n qLWBs|~Ib;s^MlV1obe;( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Z_j*VXt |*eHz []_j>)F4<ϕ2@Cl~ϥñ|qFqm&v?/6ޏ ~Md緽Os~f8ۓހ. SV_p%=G{7t+qG֔E*#8ޓ?|ҡ)|t~\y|}kQ^|LlV/ت,!oqSֱ|un#*,QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEWNPUo)\32|>|Uo)i\4*eH=h}M~=-4xrg>FǏ3zP[]~k.v?Eo'LH䗔y\憎 [J|**GOu_iPVnhGNr&luϧ5ۨ>&xKu+Uv %lN>w>V[ZvV?-ԬbT%wQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE|SO]~}y*eOG<k.kN5мK-^-ZO4n=@#G.l?y!D8uz˧?NC6F{fZ554}GP49-3HrI=YԢ«gT O4u_ۘt6ofgأJ}̶SG88hũc=TC^c?:^ w̑$CEBq@S.mb qlbs9Kh)4V$S`䢸8#txOëI&9ft'1#>5>[]>vv nOj((((((((((((((((((((((((((((((((((((((((((,Bi3< 4;msIK{rʳyzA] 0A\ufӼk3iA2ۡ_.inx?{9ʊ&<lris;og+szuƧ&m6+R^L!~b1Һ(g% mzMnEp#z*O ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (?
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""For more information about the Binomial Distribution - https://en.wikipedia.org/wiki/Binomial_distribution""" from math import factorial def binomial_distribution(successes: int, trials: int, prob: float) -> float: """ Return probability of k successes out of n tries, with p probability for one success The function uses the factorial function in order to calculate the binomial coefficient >>> binomial_distribution(3, 5, 0.7) 0.30870000000000003 >>> binomial_distribution (2, 4, 0.5) 0.375 """ if successes > trials: raise ValueError("""successes must be lower or equal to trials""") if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers") if not isinstance(successes, int) or not isinstance(trials, int): raise ValueError("the function is defined for non-negative integers") if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0") probability = (prob ** successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! coefficient = float(factorial(trials)) coefficient /= factorial(successes) * factorial(trials - successes) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
"""For more information about the Binomial Distribution - https://en.wikipedia.org/wiki/Binomial_distribution""" from math import factorial def binomial_distribution(successes: int, trials: int, prob: float) -> float: """ Return probability of k successes out of n tries, with p probability for one success The function uses the factorial function in order to calculate the binomial coefficient >>> binomial_distribution(3, 5, 0.7) 0.30870000000000003 >>> binomial_distribution (2, 4, 0.5) 0.375 """ if successes > trials: raise ValueError("""successes must be lower or equal to trials""") if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers") if not isinstance(successes, int) or not isinstance(trials, int): raise ValueError("the function is defined for non-negative integers") if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0") probability = (prob ** successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! coefficient = float(factorial(trials)) coefficient /= factorial(successes) * factorial(trials - successes) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tOcJ/m P&{cI"j` <  c > k G ^2{F+} J6|f \ClA8P)mV1pH9  U !2!!""b"##S##$($w$%%^%&&E&&' 'O''((Z(()9))* *R**+<+|++,;,|,--g-..F../;//00\001E112'2k22363o344M445(5y566Z667 7l788U889-9m99:H::;;Z;;</<m<==g=>>8>>? ?i?@@O@@AApABBKBBC"C]CCDFDDEEgEEF:FFG(G{GH(HmHHIFIIwbt[?5]~oY T11ɤi[#0H yyc18, qT/oG. e(*~%҄ [mpS "{bl60OZ$*i;ƆcvOt!Z_%3$µ} :H%B[oH<L~B[ACHW)$\/DT0xu Gu(Wʖ<9u*!vC0,TZGF&Z1d^,_I!&y7>!?c%w%g]1DTIʌy(>ޜMٰEE2Y\IhLfwXR ĘBzɺM^N%W`t8`:)TY[ mj;>WZ -Ծ+v_,Zinn tVM].QKN~~5^8VCYbޯŒhb_švM ߬L_ \gʯuܲ`)ȣ ,|2`6uaf /Y[Œڢq]טe"<6l0=":m;-y7I^v? ps3+̛%r!-t!Bcݨ{?SQުstSGv4F@ 1)} V^IBK;p$qx ooaPrivxk6Ȧă<z",(x~ 4#fRdLKɔJ*3ynv0,z9K2{RחV)>nq pŒڦ- J8b!3{FmU݊<+8-NJYuKZu+D I:ȇu)02drfVΏwHֈ 7h6tЋtUZ qd]pܔXtAUD<)\"#lI"6$ V]c&]SC* ƄuR}<VI7ӛ"'V};| sx3]y"M2Kʗ~+1:j@_5PCV+ןb\eY87$%,crmJNj)Bt4߭ U _]Ii"!\"}˫yDO6=վ*d= P<q#%L!Zu҅FFAΘO*pc'+6ek1I*6wdXp|phzCbJp%V:Sޗ dI^puIv`N>A?c` VHN⧥ ;'.YK,ÏdRM?` -|Q-[y>C( S J(so di ǻb9綥t5u]%-:iQ@OxBbÁ'  NhV 7N$V5J5d_Qu]6x)h߿!)(Q9f0}$4[hBD_X'/A'fQDn5,|5{ Bh?-;yPD/o!30m #se5`Bw)ȩ<OlO@ bAҾ ´d/_pCRp]ָ%|}G@b/( r< H)9Q4Id.? FvEpT9 wnSlg"VpU2\_=Tx/X8"q[7@:-Y[4_ hcA:A^<ym)(mro'<`c+Z8:D5t`~h=!zI0ViF!wߊq.w4olbdq:=UK{itE RW/ vhЯ8%yq{Pj'rTװ'_s f--R + 1 3r : !_OJkYr~}ofݑO[kvr;F/kWXf ,d{%V -6z|+N72ުs|55%ciUث\Y' 3u+7F<dOxc@"c ]j+jU|Ӈu.`]BU?&4?P{F4P:T eի'Q}b;x^ĂӭҬQ(Jṟ;[ 'bmj>e\Ü/\Ǝg#ǒ4Hɏw N*nYizUH_[X0`<ۤ&y5 !$Йdhv8=cfvp 0jyev5S>c͙2O0Յb̿jjfvb8!3f h*T~l5]xj%d,uLu+mjt#j@CWQh3,;7$ {ܘ⇌d`P 7r4sU PGRz艋Ւ:~˟=C@m (:clѪ!a<5ȨpoXqB^ܬZpO ;*T8*-Fm{{}FN9NrܐX4SjPGg<*Lj&y n|/dJA fS "O9d۪U+!:)Ӛ p-c#5Ī\$8գ -ݺ)= (9NO-hyAV"-$?T =JQJi1]T愝IG9]nLminDi;Jzwy rMJ#^sɿa 6q7&g>'fx1\Y 9YOƽB(W#<3@dX^>Q}w6.=Ki>"hȑ:?jή ?^ -8 h?qBwNC0SBMCLJ~b2I} 0*DDzTxJĶvT<UEOx~跙|oȢ2G v1s@+Hjȃ= 6dLr!疹/۶OVh opH2WoVHF&R[ioC+.1\L"_JeiNz[a!ĉ]"j JM%B asa㏘*:P蝟E |MC\\R s$ DI~F%,0J\tVӨI;p!0ى{7xu8ӯnYI]*26mZ` EiF+=_:PKi{vڳƸxғ-ac:& D6`aU<3Նdf##xDy+~SwXqGXV ! ޶*U"K'sTnO-ZN2bU-wD [pPsHzӦcUhOC^H6`{tsl ޽_fqK5O CΊ)dǟӫ E{s#~JExT-eTjge2iy?7؛g||Q=`ټfjQ a%+n82^P޵@[L3Hfa^I{%k[UP+4DͽiLZ ƛBW]N|NK!$c~gP2IBXN$Dh 3^3J7)̯UV# 2:83Iܼ},d!礼.+ڄ XfB8leu~[0df|̎ɼP]O6ŋ\/ȫT/az68*畐2eNK'(X6KU&_헮 /* -` \;?Zi" 4L(I?xUX5$邩nJ<P]Qzk"4Չt8 eC H.R^DLLW&=́oBW`)nR^9 0؉k3PWq~P^2E34*3 aߑZTe3IY'>,e24V1=7D\_& tkL2<?(Q͕#ÃZ==xzi3ɦb]В@$nZf^yЋ̘JBwSv]t@)3H/3np7_hfBZHw5Kpr^yHf(ftfoI=h=XAjTTWiy跶Ӥ\g-59U'"g7VDWZ5XWΰv~c.0_H#$\8%h sc ֲ{e-5/gaaIt4ȶl>yK{;ٮmГ^qbLF0) poN!2>/Wqv= txZْqv (%ou:2J̢(e+Gx.P1AYY!h0:ncR>䃤6'/kڎ)J,:W/ᧅϵت?.%ߓŭ8msfb͘Kb|bNwI{%)g (!z6꘹yF039,Ж[m s[VREz'"6958 F[Zt2mDeܶ{oDZC0 Ϊ{n ɰ?KW&7j mdl (i']F<t0W. H`za̔VCdPԷa쒈=jx=4-èIKϫ[%ˊW'I;ͬŤ6OϫI91%BƗ{x,P$Y; G>T8JJ$>* !̸7";ΰŨot?@ьjjMhEcei(GSKsrl HaMtNw69IV`JOORoDCP?Ard8" vTޘ]<LAٶt{S}Зq :k r.(m8zL_+pB'Fs)>qf^ԟ8]iSI> }s~> |\<VkݯD_`f)Q«#1K-zwj(G{s-3giq=j?Gwb9ߏ{Luؿy%\6̽uWtTԛn틛a# f"Y_,'FZv-+cvubO(Zۮʧvb%dh_nu$ZpA/*!G;G N\N~;D՛*,J5EݻQ[nFsVFץn=ȫ#})s.$#2Ar (7C9EHV (7hy:`()OKr2.guO{R\R7z2OyRj5rkMKݦTn6%`+4%6s(3ED 0:<~O9"?.*,)T}q4jU9A=OU?Wr*,a3:t%ı6AD 4IvPi?ݥ}I.d3NʾgKۚhĒxGS'/&p<>BzZI a{- aZV/Ǝؚ`5%]7TB8E#b)+xeA&0#ݴEB<e 3Wj|rv)gGPWp*(5h]6KNKg8Wheđ85Ip߂JOi8_pP踜mUl}avw=tlYvе G52IprL@ ҳ@@qU3[!ڂ_z;'d&Qs6&SMz9]@&ua7ua]3. ,Џ8}&EWWѾgJr)nHmY_ozA~$MsԏAEڳڭ!Đ; ++誏i 297yN椳, /4Skv$nhΛH)OM%iBVž^7Cn @B"2<. 2pY=d[_m(1^ OaKk.)V#fS& OdaO9I&n >;X%l4\T/C4N„st;ŏWod178, ?=I^gjo8 H^.ŧjGX'o'3Kv-bT$\YJm]^U{|+4rWKĠ݁hpFq{$uK}<g-#m2˫ٍWg8kqg9؟bƍb }LF#/KwRT V \j.[qV߶y{kBoTᆂ|~|1p*b\W Á4x9itKI=; ݬ#+V=aV5~ dІs?D0E?Hn/أݒp"C˚$qyq~u&V 4.g̯x(xۛ{T;5d_SS+hνZR\^x}OC3h7eB?e2;E-5}k oҼ~{S.z`Gp1#ƿLf&4I;2E+!3-׀ *n,t\J4vC i) DP~8 ѥbUL5N# o/y9nj\k#lp_uZMRCvD[JxZxl'رێQO HHN p$Nj2!fSna$ d&K]a8OE&9ǢuWP-1 +RK2EG6<)S>Fo|^EU@*́?ܧzKd},KK1*+]fGz0XMmwwXӤ3PY;9^p Z;Hal쟺Z!TJ=bS,{5/edG%cnj!isSi:e7HL֪WofP[p&6gf\n@0 h-,fu'-rTh7c%3 ľ; l[u;n Kş=nh.6W.Fq3a r t,$bx, ͨ/p {L)iot0&7|*v́-yqcʸ"@+%" *1Z*<pÀdf֕2+?G,b|AHEnd-]ϹEGл]1n"ѻNo?|.,' t\t w26a<;t+ <xP3}^ԌG:GN Wi 57 襵vXBģ1n9#.(Jmِ)IVn2պ)v~i~ ^V)`m _k`ZzDj^׷Z7LkkN(dV@g@buSz~=Ǒk 6B 2j ɠ_6cz5ȲuKɲ: ock0oa)b>I7+pxwOpbijsl͚pirߌ0DEabCv)Oeb"bߺ_޽<{0ޓ*c*mG:R@k|tIˬɛr%Cusq'\<({?B7J  c<0D`0s+ug-FỲmY(Rd ^QpVW ;%Jdl׌vFե r*kuHb_ۏa9Y^ E@U#,3}ۡbaN5;SOU/Ά:8asop+n ͅ&5_-AQ Ot'UJg'z O 'v*l9,@ǥP@!B̩-΀⡺K}כ\SqdQP  N4f[I2Q=}FQT9\}vqJT h׾rP_́?UsGDjMvh<' PY!Wv_QIދKM<L!] neK`1$ŅV^ 7&&P.;}g@M6x 5(HaWjI )W'SsR")?82ҋN-^1Kemx42&"d(D6;82lN_J8:/rQY;UL3-='z="] "@ l6 ݥk5 JM?JjM^;DFJI^z\{DLM9?0NZ״U"biNǐ_rqA"_ ,ONPY3cO?Ѡ03|0ޒP^(b~Qe[d|^R9ιNv;$ZRoMoRDv5Wpu0$*S n+9$hØXYE( +9{ZovhG|a`:[a#]WQ).^5oBBO枒^n bav)Ʉ[o7@-5C9DE@DaxFWkz 2Bx٪ DV)իx ST Qɣ1[]zQ6(ȪtM^l|(CN9<ЕĹi-]ĈhZUOCK3zqA![#7&Y]zAӻX/l51gx"QONWkZ+p,5ݔwZOrFN {e#׵*o|̨sxDEyB> J6~K'L]+~R+,b>jC_UdSpYUA81K}:(!KO6e]5B.W $Hp{./hH^D"dZ6L$`Лu6CHAN(ur $ǂz(Oc[s JB<5}TN՜M͸!b6%Lysٽƒj"x̄TҬ6 JJVuYy/#۬nX((Rę )$03Vh[֗wd&O+ĺ.Sa6 t}B]H0DS$2=z#,;\cȕ/O bMKoGWk)5Wc -9)aiTpVk;fl")Iu5qjʍM)a .R7'ԝ<xS$f6ODB|8b,;2Sp5Y6.WhWղ=/t|T;gH? _f3 =}] uc8Ռ"7b:ud~G>@DuijskF 2Kw|0B^<4c{"mg?ZG"%фHx4]RqSF]Kt1]HW; MX%kF5^B1uOj(T9օr6!DԎbu"x({`UՃā## J+HDJU$``Ҝ<~0OS$v((Hjg&(ץL)-/KZέ*У 0"zk~v9-X|f#S/Jr'\Enbޑ @f9D'1ͷz El%ac]H19BՎ/ֻU.JYlN,Nxשd!^ͩL]O8mq3ț5>XGP*<:d$*NAPYR2yNߵb#dNc tR;q ` Slވ9PSᑀwej`UWIvc#@Y ϔ;\N!"Z}v>]#`< *oN_YN# a 0K (]JPeԲ2^ET)ehp*\SؘC@}qAr9wcr(y7<\Vr,>Bbn>5t3EGRj²}mp}*(ߟ???lm.#V:;1N#OCËwI> g=,5}1j;e3u(0ܲTzWIZ%M>@gӠD-1)cf+g, }/1H{:2vo#҈eÁKͶ4z\<D4|]tpíG SUaxWW)@HHjH@h`,C<`9I"/운Ɖ6!ݥ'wem'?k63(Ο1v J8r}}A\6JI\u3@P°}am.Q DȖ.&[A;PKF' Y) [pLDUHtݛo>akzGڹ;=ς6 (;~4,kΈ:bVrp'THC]vY,4&S0cSoP&;=Qr1P$L{Cn%fVtvaJ.U#ThK9TW;}c&9L>Hѻeԙ.M~X7x=vM):/㚫 s`V}iZF<1U`e~5U'>˗p㔓YOK8= H[dҁʠE)k)|wE%4h#I* S^3&IxJXҚnT|!ss;47(76p_UXX8 y+U PnApIɆ Z td(o )خepcMwi@щdqx+Q&ãG/A/8)@:|pײ!t1zߜ\!qs"M=uVNgYA{3 B=%8])X!<BFݦe'LbZ"IY*tB ߺ$;@^{t +t.DZ%N?#"U2+BK.F\ -n`5+vҥ 1Pd EPᲾ^mDR<2X4 =8w)#<:y0iܯ fv@ 6i]$)T9hBTl]/kӫ5E<ݬ/GTC7F4<򲚚͙Y=G*8hPۥE3Ofa%T zzkVYdԉե?\BEmg"r jѶatӺw |jʫcI7 9,NIBe_ \T}ntvkI7t={xC/9kQu3uR{(v)|5^q-z:S| GoGıveޱnNڂP1#݋ +~[|?ѳqS.iD{WqO/M5ñ#fÊNa0gO}+N="gjXu=?З%2\X,xlȩVy\*scF#=-bK܍-eա6qϙo.NSCP.{,Yסk}dmAنrjZx?Ý{!ʹ|ibۻX3B莛V+oTηO XCi\;!.n҂3 vns}sJ|6|>(TsL$WF[e3nf{gjQ I2 Em #վT ,8 4>1ИMȻZ;%f*84I~xyv4kl !/Ev@Ec/ӔlF"z Cy&חBT;3 ;\RbT^n{&W4cU$ؒhJ)S!,:SP0PO~ȟM I#`S X۞( )VŪ;ϩ̡r\vET-" E^D(q<~wb:ˆwPhvԂ2䓲CC7R nlVsPWܥؚ Vl&-#_ '٥ -'A: a vq+AW]~ Mu9 pșح휔 =jZ_< Β$ad- Kڱ i)t8mQ=\ 5)Ϡl^["-] m*g4A- ZzusHV ٫o,uF aq;u. , p=#7`cb TSn+d0 IT/:aڞZ_" M_|OyuM ?t;#S? "gzjkx_ &CNw )ZOGr%( 04 4F ozc {R 2ӈ<z͙EC [ 5 cKU4_. 9arZ<Eo1/ 9# rJGW :Vg5E <Cx8 2h >6)RAbR JM >Rx82 C]ԵԆ J^ b(8<(δ&m K d;4 LZ?TɐF T2H[ڌ TxC5 eZc$*)$ f͍W=W k3-x_vC&8 uoь eUNlB {Rva2B+c 8f%F:p=c o^$rNq 9:TF\14!~ YK]=K9N"0; LRc? RWY ,!tbl|^3h( UCv~>_WkF Irg̿ǫ,r\17% i5.f^  D%:h0"MӸ,~ o%YXZ\ hz U2sa?(C j,9 !${$+ IEzd4EȻ0\ ҇#`/3 < #w|0__Si ^AΏ8Z7ʴ Y>3UH 7 ((HrU\gS_nW ߷c4HΞ5գ YT-yv% oޛjqt+4Wj yK)9Kg y <b^ToQ& ?OS+Snr7 %! :{NuHz `ރl)Gx& 蝅pUV*2 !oi7eEBH ˨-pؽ"""e ²!.* 5Vg i dMZ8/V,@ v`EVzφ ̶<L@|hv{h? k#R*k\1ɭ Wh|, !dPAcғʨUγR Z&%2LX_u KJAr Gs׼,8jw  T" V'$ܣ/t& P^~sg y3s03 UZP%CuF+ o"hkAS EhM]n I^*$,ָ k-97B 듔WR$: R7o>l؆@<H.9 A'6V u js)Uh̄ (JSժc6*Tr1_ )NKġQQ1[i )D(ղc{ 43li[:p3I AA/&Mɽ BBPy54ew? C_UͺJ> Co@{ ET*h8 f64!U G} sHPJ{c Gq.+9j>i^ Oq!i#fւWnQb V!y&=`8> W+,C0Z,+) X٠Z8VI; aIZ&Xѫ htt͛]@b #3 xJ)NQr> }8zޅͩBf'w ~`@Ѭw02 (4 B/@ 1=+`b ј8WrS ]m,$hrMeֺz E,vӝ- .敼OWp2` 8!iz\b jM4 `Ry[=?= Br0M$Go  7_cCPZZn zDb\5fE |ihC =,} j BAhX M=vYAqU_ u^#)}m)E &8(@E -4IqlUR ݂ ZjYF2 zFn d{z6: g&Ɵiʕ vIӏ꼻Jcwɇ 6kUgkMv]*& 5,KKj? kμp4K?$z )O+ yK<G,k/J ՛Nk/)&vj 7ȚC>?Պ? ݞK1G9x6 Fx `~eV)E{;X3 !.d\iAmQ? ^wPm]B JFz5,o 3Wd>m^#)vQ DN[ B BmR /Vf$NϺ}< vrvGbkA T)kͤjh>i l\60O UTR /V>z:2Ғ *qGdpzT5 ЁKJUjfHs 5 JV2ڽ j|44p6  <q7TYs7ՠ# G8E3ZL?ĚlDH JG2 #Ie} &SD/Sw/h)au 'IشaD Ĺ &1alW$Jf s |,b (DX +" [xfysj ]Ϲ ,dFQlOd .(@X]?, 4w g*nC 6k -,O ;:,c.Yw Ax ᨁnߚ_ BJ-p&MHZy( DL'o G:cd*Rȋ.8 T6âقv[A戋^L WsBMAJP XD6k^i!ݥpo YGovq [ ] 'cP^${ў̤ax ]xᘂp`WkIj ^xGb[1bl_j ba̘ȅ]QEi fY-i!mgzrB(| hcZ:Ϗ&(ѐ l;LZOh@F v\"vvM#o ykP_[X|=`V }:\ Ye> Xïduf IKb%<sf0  mpΠn@,, . V=g;O5d7st n`8YVoh 7 Uc7'ED V,YL Cg E6CU^V(t Lhh&pFH DvzRd5isDӞ Fs[ Utg` : 0f5Q׏ vL]^ M7 tP_ʹvI XͦO"Y9@XKX {A]dMʴV!Y j~izϓpQXp :sdÚQe iI^{Jur 3=u\LLn ږӓ6(U jo#X3c\ τ[d=75 ! ˣbvzpNF) $qвPrwpkB ռGNa}D _wr}-r &h4l  V Z׾5y GP^kFwDwR wm|rs- -7s*/N~ # `Oh@ՀHFN.f nkZ1Yֲ4+u ̄K)E& enEQ>-L pתJK5 5MA$n$F_ U)Q+,@_ JJtjW & 4e4 , !Slyp\#w.` %o$fX)YCc 0xm R) s@G 4Y~gd0L@ 5iHC(> <-GʒT ?3FO O}9cx` ?NO'v-Pts @7!ݨZ-[c B( ky# 3 IX*p.NϦ S^93o&|+ WjSnj^;%w \} 0|:V]Be#ث _0,%as N _$81djʯ2Q bP1L**T5'4 c2W(d 0+ fb'2T/oA# fYsL>[,1 jLYE6R}%E k'#d_ oTHSq t"ޤK{8$| u,r+>tj^F w1ﯻC׿B c#1 ys Vp)e G |_t3Fr@SV: |Ǎ=N h_87Д? ̮_̡W1 ؿ=ұnh uَ)~+ U/7 a|)Ƣ{0a:  )Q9 F=%;6_b 9 xllDCl Idvԍ/ HKZP 󾠯F 'Juj`8O9 0009 .ޕZ J8fwm 1>k}$Gp0 E!L 6 z<% v]Ev ِ7 j?p1,^.O וxQ{" K >YiH-W(شS` ťuERHJ6BD R+ï ,@i` w!N=; !<@ДkLvr ؝hEj2`2` ٚF*P(S&<sPE{ + S^ \, ݒl5j cFsE0C ª 9X-}Jɶ- hHQ DD^V# k浐/0mTÀ} Qc9}pqL$ (T _.: 򯲾S ,*r%0 }{ڂ#z 2 B^‰i wD4RX e- u ;m28&Nb)[ vCiKٮ4Tp "9F2(ƌ Rzo?i'  |'zЋ6G psѸ"qG1x brFH 'b3G+ɷ0c.+ ./pK+% /60U J 1O5-Xy9&I 2M竜5M?`FZ 5@7XD)+ 6` U^}O@ <Xld*> Ak;Ja#kCs: ClSѴΛ D <aHau Iׅ lt K=8l'+(K L;1t((O\_" O k7q9&1 Q9&% Ǩ7]d; YAL7Ł({3ú _ԥ'P⥃Olu aSoêK։m a aWegL( d! x3bĕra (P^? CϭţԐ9:O `)2ʈ[rD@/@ @gZf#ͭ{mIi 9fgD Xp! ,PgQH1m*9 W5 _0bT`9 sX״J>y-e: +R Ч\TGFf:: Tk.6@̜'}Z E6",D: Wzof&&}X 'ܘBPzsAN kvvL%^>aM1 Q[-~O{ 8B'e <}ADd9 0UeJQ/Nѧ -pUeN>!C}S Ќ@m*)Bn J7Ung'c!h zЉixm`D \ ko3>̈́TǣS +ąq,bq 'Dr{oBև 3i 'UKv\/ ԂXG J]|V*XTq8 CΎnёym Bs "r'zax? ߙlV$1R`X LmnI>ASL0 l69 ִ!|!-8} DbDLMDk ,EF "w:%ah. J@,:zi둿 u';ī\[:1 biV&L>i }n3av;]i ԑd0>?4.²2WDzK rLzRPR4HWF 85ۈ<uN5y$M4mKbUGp`X_ûOR cJ5#,̦XV'uT{i}" ͥ=<pj̖%@ ]N;:*H*$ͧA&>I+^Rsi4XB]H!|-k)c G|+A޶%CP.jo$!/H 01D䂠17WRm8֫y 3:!oeRLN3A͏nPq/j3W51G@Q]ʒK Ӕ3bY`@ܥp5Bh58-\jf HD6|mH!<꙰wj8}O45ĵ!49ggÛB[:>ԋ/iL?g?(pJhTD+*n?HV}hN#lmD17><3{dDd5<xd^2kVxrYPO,?Y)6M?\ioc*`Z2{h̹4Eae*~duGPvecce5%-Jˉ 6Qbd&VNf,s6zh!!E`qU?dS8kFX?ghǯl>5Wq anPVCM5rܢ fLBZdtD)M" %`K_J=vv(1{BkIYK{w3͉ԲUxRrX7{96:f}DxjS/V7~M5c'qy;~~PŃ>Uke!I d[ ;"SF7t! q( 9UqJ@̌aJTG$ਖ਼ [A(dˈ󘶓Y N(j}093,r[ zKA p#\1CwC`r7*:`O9t0sJѹRD>Ս9yu-E4>@ޣ6_sU63T(G =5@XR ZL`y-<%Z$>6r)mL"OL/)|m ~'0m'MkN_9f`L<WAE" c?As)rϙʭg6N.aԄ㊯f>W)v);ڮ<(ՓuK2H;ܽ\<m;L Dր2 ))ׁc.7\4n+`mf,&2V -8(`cIrkNgy;QbDq@52ރs;+$_f&䳚qn7p\?I 12e5s?H?ejOB p\.ˆW^5K "MJzWCwN"g4;5_i :0iv2]V̫s_[9wftAؚtܚb? H%S#_4dó+BGƄN[+(G(1la"FCϩ9&戶 NTc SP>MN] 8nP[= z'2oԜLaؓ]3]'* `ȶӊ) E~n]%/P:]rnFע l%r~jE_+.XI3z=*!}4nŐҢIƺ!|N]`"px`;iK#}7}dhVrȰ$fOUP*`'aqLb/3D.LO)T4{vZ`)p./,'ѽ1̑~2aM̒9` O}1f5񮣣/4cosg6H㊜cH4㣫\568_Q?)PѭS.]F:Y~_9EzN\F=\v֣  oA$A6Dmp[L7B!MaO9Й0I>O :9(tm2(㢑J;L[V6 \ELm(|"dBxrMjjV<3m,TNQ$_3[O3ӂtQ)mF ɺWh\Q?џRa*q=V\<PP]䄓CѦzW?c>jj(_]pAT7%g}@w^6վ~0drv~."^7H ᆤ<+BxL=[_ TA#teݔbŤeݔ[eJQ Yז%.짐g ]Y2,@~1h{Ƌo /\:%=p H8Zsc髕+)>s{*wV\B\dJ1yuyvsU4)"@k&Zwn[|70xjU<b$n->=m{{ Ig}䟆U|i@ \5*}ki!6K|@]Eni+ƜKEi2 SMx2- KKLX_e6[F"86٫ٚ~+EN B F|Xnr+HAx5~ZZY>Sꭉ^̓Jh pMJi!p_Ĵ\Vs6 E(M8HCoYEVh*q&d49xN)la?Z@Qz,۶z%t4}'`WAL ( {w]U飡>*Q_߇x`[DζSsvR)燾ɉ_E;2nOwѐt-x:ϻ 4 4Hu1;"̱3X-nb c;izM>W;ud%-6 ь]la>yTڑq) _)ؔ`t VRٺ1S9J'T9@ך'k{*dƾJbMT-j4M?H9~¤E6IG/@'Zebu8T{RпǑ΁ +h 0nWM׳AJh23< "ۚ*RPn͘ ɿ1g{WZ8^4c5&Xk)nRoR ا,zʬ齙FZST<=" Av+z2č w+K:':x3 521I-1 $jdj3uz"gzX}e9*YZM3fPQ'q[6k*Ҕ/NȔ}Mj m_9h}܅2K> 27<!2 !{$h}𚧦s6"{HQ#=x G504 W !ԈLe3wPYw<L;J5NÐad/* TY6wFm:D= ݕ7N |5|,:]Zv! $Fg<vI l-?G2>|(o\ITH3)v?01&u5;ApB([=2|C̶Ibh`SUgE拲pSAˉ]R:Ď;~PsmU* DmuȢP-Miƍ!_#_|PrMj0ȿ1eϦ :j*1oY.Y|\\HToӽqd5%ز?}*cyu)څbN>Щ 1!~hRhvK14x(R[KKRUgpvM= ^6VvLٍn`1/]שPRFl|-b#65 u󕣄ٱheM>Կ5̸o`$m,2ќ4@y13^ q@!O*G#azwi>ʳ4g\p?<(A|/uwI)Ѽ w`'b ..lv pWcQqS"~!XfL#*|%[\W/U%avXq0er4m̖RQ{OwHe?A\L]=Nw\CjxdZfU$b *<Ye% ƅ=]q _A@X7Mġ/UIV?&5˓?/5J3G.ON#cyJ :qqXbt$[_G{g%cgT2&s(bӎgFQJŒ dt Zl9W?& ix{u]o-gNbC:(?犒_bR"T>aY<6pQjtivS&pA&wUZsO(7sl€d$a6\9u`Е¾"c+/8O=@ǽ}#PuOT6d ,_C8mp/A@ȽM7Y%'q=6m7z  t ]lFuHs2 mdGSJmOÀ0!2K%;8?ٶ&KS6JY+g{'eSw"w"!pm >'!Y#3&V >%(h Ƚ0* -M`2jJ`z;X capHx.$<PDbK+0cyR2DZ"LՅʤ.z<b㰂N#[7MfN5PA拻P@w-z%Y:yQرWU5JS,b}=X)CU;j"d['V.X*WYw[M%Za& S˩a9;9QoYM=)ȗi@K~Um%B$j! 1/ΎqQn`X|^|~n<{Xs/tB|l޴b}s7<$dЮmO@yQq'Orp( t}hEqpX+A0}T48<co-v>g 07|&Cѝ\\@BBBP@-T[Q7.﯎Bj-0\,Opap9U ~@ZR&$ڿkiٗ["o?L7qhg)?yl$`\R3 vIm Rb \ń+Jj]BtUFbjsX})H)˽d"Gpȭcء !<`"@*c4iuȴ9H}<MpwvJ!'G!F 3,5x*$Ќ2bP=V1sz!SXi`P %oY'l15UPޣR(V-ng#i6Z<&+\/d\Z79JzKIǀ^0tAYjA!ǾGZtk +!6JjC+oϹ] wSqVW3A*~kߌMɺӠX _=~*4ӋjIL q< 2mZ=, lqltWąxҌ|'6x]h3Zu!/G*8r12m;R9lT<7ԁU:Uʡ0MUH{g\oK$ *!ծR$n 7IG9pZ1 +Ϊ| z$ef*> h np-I 7Cz)wr䕝U`L|lלD<xΐ?ɿ jȦ6\7f\ 6e-7Okpv'G}A~?ެ4Ȝ0jM|qFzUj X=#LiWR}/NKӱE;bxfbhi 8#C %b(!v!h܉}-@ )0l|TH-<,8k,8»,Smy]n1SSr1Y um[ (q8z!k!}E$)`;D32xU;0\5)#+-m?Q{tir-+C,) lPMi_AF|vx$<?QÛ*tT֒"R|nBѧaSň~&Yļ^ sOUO؅^X1>^]{UC( gwS?VAfw ]2}A)ɥTbBih=No f]R& dC$Pi}u0ݚUVq8j/ zt>e)`[j #xumQe<%3.M^JRnأ<>NqpeBvd'2r5>RMO\Dv/^Mݿ-<E8r .|=v7׉7p%1d)s@Uwg94KvUx`8S0 ofs)͔7ZV`QeH825.cx E1S9:mc !]]4f~fd,pB rk(ס;+Ubh5u3-lN"8$vE ۸c1 ;Ѯ\~[+ qa~{n &N)?¥ϊT?=*/su^cƘ%.Θ7yX+xW,SJl4$(MqՀ nbRMq빉-^ݽN ۃp6laqYLMʧkRUE'%e Klڰ-\ڑ!*(F8A!)M'RʇnӮ@|6>*p#+K'yL!4X/2k'ZHᢸhEߖəofQiPbA;9#h@Q z/,_|.xpKMғ?,: [2$33 K⊁:yllUg]3sEOO y 녑wi Nkz"mMYϙY͛(P)7]N+cS )gZ^ `"QɎc=SYNR*1~O&Y5.J7y>Iu ' 6:js;+N{%Fq(KY#L8+~H ,T 5f2TH8O7uu.VXd,:̺IW(~LoeK۪CJOfb?oO>+*<Q+f O*WR})STZ ~x = ar%|\{(d'rUSIÄ f D|.^S gM%^u SspiUh%vf"˜jS{c4iLR #H^,z(әliz8:)Pnېqs5eL"E2vù5͕15 xq_S Ⱥ{]N}͓[[Y ;~%"3/̡T>yuʏY|6u{arZ9|a 3Gixk!tDp?L|ڔ#a͑!pQ(&(h2:lܻtt)0DHk*/`t3\?UD+K Ӵ.Npe$TkQ K`g\j4z5I._>0m ɇFuU~6o3T>OINI{ nMstU7O>=E"\uH|E\<`oV>]暗bmۡ8zZ["_Ͽq頮f9Ac/KjΜƖg2tY>N10 :[04=nS;FN`Pef(_`58?5;B]Knmj@3~-=\:'J]t&-vRra6"vHJ>-߭Ax:Rva :UJL>U]-p vQ-KTu5wo9s4=$Clsע#.K}CY9);*l5o8/2,Lܟ&jvRj-26V4MiEqMJӉVg5Suk }蠷1v@G^&aG<ACfv$׃GhZ_I DM<qKBSD`t١W;W܀t'YLKˆ|e`=DP:<CRAR-̟7kQ9ӅD젬PvZx\1?UwNC!.tŐ|4RX}\%*4 5t> WeUg yA.Pר{#[h )䡬M7 215@0S_M T9wov"~dV56k| ϕpC%.JE7b\GWnQ_bg`Ok[8\t͍@q<+JB.p?Ű|R,`Xw2>|4pcr=Py{/&j4WzgoR&~GH"Y=IL;q(H}2) F1wvs-&zDmϻCB -g$.xMJǼ43& XG$xIERmŞN)RO XΦUZZ`։γ>Y|$CE-ɯ>zXXw[kdʳ[ʽ'uJX0ɖ^0Jӡ$^tI]_0t$&Ƈ6PcoҺhepk&2,Y${}kZߍI%L}6m:a74Y.Z柟 +plލ&>v32sC 2hZl7etuqA~T{Bv5@Rud {t ,OIb\}l3A0"36և>軀@5};euVp1&<JGSY {oғmhjFDg3JL O-Tߎ}@8#g_6+qaQhnxJN뷟iSsאi֕qt }}8Wx5GZ2\8”tI</, Xae=g^\vOd|ݼXgzGݭ%]}H( gqI{"׹KhUb[vQMpsF7P5ԶytDi}^%NK\@t¿Go6LSvŔۏGl)+d lj.ɀޑi;?Eo;GZm ۫jbY0A19n/4=F d>~ qZPuV$>tWT3W` +%R[6LU14 GZsɓsJ-NnR3ܣ1YAP#lt<j QUku׀T:iQ۶ZEuyRqW\ =f7!XS4oU4^sgTnlPcMO<k~VP904w\L/jHvX= `G ΃57rZbp6?c6$>C #j ڈ"%o^ |r$Z<bGzCD<olsO]3zjړB !Ffǩ)ŷl8й>"avZ¡. җe'f}&$*G&3M'PZbwұ-_-cfV'ʔ<oXoá !0v5Mb143؇p> ygҍ9S]Fí#><5+_8$ߧ.+?ufC+a=^PfjN^ 6ZOaw> |jց_gZPsE}/ XR4QJC8!kƤ߰WxBzq . |\U}j\^I*vhvq+Fc";J_Ku:܂鱺hC.Ɯ|4ȕBטhgF=l_ѿ/efy<F>;bP]*ZL?6*ENUe[a˗A1"9+hfXO|#;8ɹ,;ɦBF  Qsj;z;?%[Q9iF25M_ p3-"eE`;*4ȝ+KA㯌7 7[2EfY4Ai#ܔP #2Yi~ycځmھ% tgGgvN孝JSxsc>qKVT|wdgꠧHw`+h>_KŰ<PkE8U vf^譭S[9rk;-]] -ZX67rܶ|59 hvcGx</ϫY9v_ԴzR9܊F2g_JN'2bH̆Fr B݌dϜ !-.U,&<mľVY\]YͼVf5QZPJx\7VkۃB<Int&G+צY*=C9g`) ߵ+-+Wu@N:5 agIQ +$OtWGTf e@pKE~0V E:SQ+Ή/q)o K gO_+懘 KZNZ=^޲cY. ݵ2h8䯵]&2뇴k[I_yԼT{D+&r QH~Ÿin= ;-? \ݘ\$NjЎ?\G\zocľ&'MtJh_'Ȓhs*݄ t\Ӹ-i-xH|qVX9"/:;)IE˔~mr29!;(t-5Gчdtn@8xS*ʪts2:jfb$O4<8~7xq,?RWaxZxvCot;o:?"G8KbtU;JJ0 :v`jn|KE*dƻ֪aPkL~F3ScWy8S^ 6^8'q<;Ud DФf7]eLlZjNj9kôaWZ O|? Hf\Q(T<".y\`SbxcO%b4PLOoJe_gMB^2T?Ak$Z2%HٸpLWKpi):Xu}**yNYa=.wc|G'=ٺ|Džj}+J- |:Yr{^*g驰zpWG MRzive"&ؽzL_{>a=nUVi3),">9rAeszw\+(ahaÉ+$:qlO|@BtӖZӬh(g;W\85e1U͏G*vWү2~Kl${Ig.q4Й^p!$Ⱥ(wm /(C;كWKkS㑮t{{'d . %;(a@'_J3P%Sk"{)z vH#Bk}C?ǏOHl ]J 8) NĹ 7NK ;ūcL,jh{bƽF jy&|޳`ucK ̖ qK'iyBl7fl|ClϮU <y̟,K6L($棤Ἡ伍= H9E1k*=T^6QWc2J3oU淮>>bnI R׵b3Y /aVZ= ةoBz|( ;dvЁ H:1`e Y)>ň;5l۷Pm7r#5m5 r&K]١Tol],0[d抩Z;:~*xc]l> , "mUo\'AXe&vK/ T^2f)84dAVfO|`8ulW>*2x#(FtO]vH'םsp$ `R-lv I>/^EFd,d81^"1tȎ%𺕷:sx(&![O!># Pg^2qk@VbfmepӶbgy@N Z*:)tEZ i ,{CS5Hr^]LUEܪkAh Z|u\9 1CxV_t.0:8-&;_E3K`I y ] Hh~`Q&i^)@togI(OA;%Y9h?m$4/L"|M.jjERrgk k#l3 %D { p@m6M=bM/>Ǣz@ v6['چeqz^ʹFpCg$ݧ4yX._4kӃL#֟va4wһM޷AvAis. bghdOfDkJ S} eř-}}kt㢑G#ٌ/R(]5EMn j3;q8h_sLs6mTޭ K.zk$(x}\m^S}'ϑLn @^j/-6NKo${KsQ]SݣCڐ)d`08҈FpJ [jaRHH?g;i &\ÿjH-9dDIzdN.}*(ndօ! ?gUiXV45,zܱxh|s֊^a681Qv'h".vΝ-^1||~N%6uV͎ϵAD]gI0w<x0<8(f͔)mUܣ<Qo4TP{B{7vmUG rސգ~PC.Fto1LT*wx_t/I̫OvH*TF8þ }[ݐ{w乏Nǣb-_𫴣ϱ0K9&,޺O8K*C)i+ i},aA)Tj /6gqWc ;B+* DU+I{w^K+Rf mZ ON yrt8Dw߈G5K χj)qUxܸ$. pϷw>^A? .k9}_wQT/pt%%56./r-DaU-,TT, 7A~gwT|J b f,n9 rt\KqT)q(I,Tj U+eܶ\(kqO!.0B;=hK1hXV[ɭ8\CH6YQYauL,OŔ7Qs WFIy8Kd@~9P<v=eY\{?94Gk5:fAtuW<SCJ3ꐱE]8gUAjFZ+SJ<WKGqMgM0=f J"߂2daeKifj^{'ힿ ;SˣsXUነU:w٨lZ5XK#&j%F\L˻ ]uombb|4l<:I[E?˧sp<Z_k[ʣs j2x@;^JJ1JPj1z:Dŕ;{ꓦq}/bYO50`~̕ӣa</P#zS).(JAȮkmLu3FJvo2}8wZ/?H[`別p~J w3 rJsrF1'k6X.dj Aw5$hIJmazvtMA+-z;Pl;[:Blk{lrX>Q$j*Í'-/_sG~\ }2)ܠ/]ȵTiuWyv1^Jc]>\IFZEs3h9u/̱dQ!јʿ1b£Kdywa25' \B|25[}}&GǔNYr$(*Q?y ;{usړjuJj%İ2=[.RI*ssqgv dZMb'(晙%͵Rc`~ZxiͼAe9$otu.0?W5ș~~`je2a`.m<De~TpIjŜ裵Z׽_Xc3*hYrk\62^sԊ"J9^hd=VN.l9aōj$*ȼh@5c}߭Zqlc P:MEWkY\T<k[a]U8(uM(ed"Ol*_5&4I(c#V`4T9ꂰ k? X\F'rp;}}1xWFc4~>:/d07٥`hz69gz^RpJj_8_Ck0Ɓ.ڀ@ >NBy]D0Q]5m #ZbaQg#K$* T0'2MUaQR(wl*e)/+xh$mk#%};1$m|V3#R7Y4%- ׿=e4W͌2K>LJ ÿ,q@<s0gݲm.ȻEHXP1{&#8Jz7C(0Hln΁NKVv#f@XK;*͐lDNQyf^BS̈́U@LVTr|oh6FȀW/˧ Տӿ4XOOo^cRUX%6敧R?:G]kIPspZke[ _N VF82Zߤcl9y2 U7c"yq^))"dSRaO3zFEi%hEf<j H?kD7[˪@Sqk E 4idzrT7w:myk箿ʴϽ9 (rO5?=7'vu4s =TQёvL ]ǶxK$⻟xsEzMG?쓝(cZeW!A>%KpTgO#<qqXȟ̢5s35j:"bN&U7G?s-ûw W٥IGQiKs}+hʽm'uMht!1ѠK7eWKPxF!MeuQpWٓDQl+6iqdq@@SGYKWl4%-H\1DKA(ۣE]gjƴfrCwhn <> M#X`oB#Î30:\^Z|bX Gw+.ܰaVCۧj+|ց, QWck Tx =ʫEkn'3|==~,Gp#"$Ɛ{9 d@G} ˪9Ѷvoq9գÚ~0!v5+ S(贓UixL6{<} vN͹C4XN% 6[:=l60.O}-0GXLv GÇ!_6C3*Pڬ1?SȲ B6oiR%XΔk2Y#li ʪsKMtPaGkh<RF6Hµ}eFllwQ`Z!V/9 -';ĦG/YY$C$]5\Y&+5=x>]&4kL Iy/JLyb)Op P5$H^#OK5}ujj{SU_1z7q܄PFtmxGOuluUX;/D _otоnĵWڅ.%p8ֆ(O8IR;oS'%z ?Bx {諸Z%@$MZNma~Ldq>@JOȚ@V"HF(O$VJ<;%DeE>֑T<7&l`B 0 W&#m?2)'%ãZ@6)"̉--|7y@7U-ܞYٴX0e/OtS5˵Ox10f̩?nҝ~W&1EO{lq^hܡd6! ذ 59 lLM98u^^1v/ē3=-G@D'?RW:ܳ(U!CMaę4uG<\C,wy2畍zohIbĆ3<#T8s{%Sod5YEĜZ|/G=Z 8$,[jpPlf]\=0:XY2+]FlJ'Fb_c$k(a;vbW \9N{ )dY0)a;!eh(>f^e 9xйQ/˖r8lHN$CI Q;=md"L2 o eIvJrisyf"As 9 V s(Yԑ6=q{q>!> 3|g]gg[x8PRf~OW .?&+ 쵒Uu=o;t8cO붤9kӡ^j*NK^|l 8u#*XP}d.:^ 7i:7LH1SUw0IP *:N&5#qrزTu)dd&KzwLi\FAP q#N<XYځ]P0jqx/ dv4 =Z@>.Ȑ|o)P't|e3#+7w6V.}dZn7l3egaRw^=?LhҝJ0PZ]H5& X8'i^!$G<5֒ϯ=q(ncQ6Aoj ;ą_FȒvף_¡gtߩFzWȻ X4޼hLvg>M 2}p`6kѝ*cЇ ʀG 06?d;HmEm׋&cl,ox0Z;BIm9O3U3A}6rp.TvI0|;FGvܚ)<~75ιAvbM7K+)+4 >>+-;0wOB(8b|A>2ߛfs{_I< 3nG2 Nb[V^3Ԧ=Fzt7 @fͨ =YM'T-c)K=7.+ȊI<ve+hзCyQz #Mu`uva/bYZ\厂* Y \4a'B%I[7%ؾjk=*):VSqb;1_Ý-P *p3Sרwln-6`8wQ'G5Z$f\9rԝ2&/s{:܂Js},O>^W](&#M>1 wpl??H? wpAnP@p!鰓o U H'Je KkLN}0^uuZl=񏝋q7\D|wM7ۊ%c{D/9e0ʖ dV_9ghkTǭqa˪h""l\q7CO. dB:vnۢ=SQsI?y=rK\Vn{W5yd-syBB%d93Uyۂ ~ߕZ/MUk7(ݵ=k?|% @ּUUnѽ+MHl~T"&bOa+υTK'6kfSrAw3gL cn[/*?ؤKı5v2Ė[*"/  n(θh[cKLH|tJ~V^$K{B+&>ǿOt0׃N벐BOHI%@x"ukz[:f bI*_68Q8EW'n⯈oJv812 kzpBKӁe9w5u;ÑVHkd&?[1V,#de6:*ӽá}^=J>v^8MǷٔMK</Wk&0v9y)(\(N\s_W<$>u\ٓIߚoN'}j?ҙx{N/y)SC܈NqjGbɨRؾG' eG^}JW^{QrRu(jߘKhb(ا XU7M- !v[|Jnz8 (⧅Ct tw &OY l}x?hb|jT&lɥKdwSQTr&*{1948D rlm* {j' ٨?QDϟ2BH?(u/CU/Jpp#uDG[J_xpMlK İá r 눬Ns;8p 8+*]F-KQGp;|+9 YI6(^IJ[d6n\'47 oFHݧ?˵ c89crvИmȇFu'\^<Jvo ~M{)UU#/s 8 "5v.ЪRmܲ,ư $p{U2>Έ/g*9I^ua4p{Nω# 7z $[hߥnH9 _@&bh忣Bю"BdUXY?V~H>L I(ۂKEwaSdȓ+g8N&G2p6VXyaVG^IqD&qYeK+-V Y*jhMsaoT+blb@$f0cx`Y9X*dV-Ѡ{,v- uu:"av1+~>:䧦uy98ZĄ)Yк-LGNh dM3=1ň= |? gFg{Zw´]PMDJ9)K'ؓ'D%[_CX! e` - "G2X2m-=Cz3l(PJ7;0 ?ϏbIHg3RǧQ`>hcb!D:Z qR'%*Ղ,Uz8Vfe%H8.۳k(:ǟuWZ9^ ccaAЁ-wVALG8Y3]V^ kt<^9dsd ی+ +^{.(2j?ffvC;sA(ĺM"D)}7zkoO[xG.t q!"Li^=#,_<v)pot{SMp犝 #VI9QّWW*«gQBunQK-}!!^Xc[Սf^&Ԯ 99ot Q_ R"An h:W:sI<[C-X !KX69P54n3X<^9ݯ:v,@ t?2&$:4O H-tgO!$7v;a) 335>"F>Fl]x"c_NaD#&p*Hi^'5n|d+ֈ+J) ÿIFGx1w,F_7$G`hA)Q3x;8kD /&=Ҍ{!_/NJE{ ^Ksh|ݞ!Hh;NJ'klfƗZV&ZKLTD _y46>]e:W!&w5cR^0f'Ntdh.Q^hܢdA?;EOt&z `mrD"0yϣc wf0gh25c}G fh Rh\1ӽkbVqޭYM7lnVNK]s"=m-Ԑь _>$t owp-uܧ"(RBv_f/$:چ۬\w!僼R\M7}noyT/Xdv4Q-ÏO:TT\FA Xp`)`24:3FIxW] X9P5 7\gJ*3$`.Q1:[|Z;&7W$f젌NX K1+(_Enk()i2AEf|ňotYmwhnuƽX|ස;.sti=;)Q@l)Pv卆UXL>7 rwi y?Yb:A㢩3igKK2zѵO' d)Ћ쩵iz5S_"*CDȖ9JI@'rI1WEzYq:k}|[^t]M%r/t\ѿFNeSkvGe[i:,#쏲rb4ʼ^u9Qpj.$Mt#Zv_,agDagٶtls|θ (B s(le -{m8 '`&^?ӳD_bED@ )Zډ k٧X 3|ud'`e 7ɠ!^F5, ;>vX&%gkM?VJ"$%$'Ȼ_ê |M)Tx [?;SŹ{p yw )a9" 3~2= E +v&JD9WdMJo(QUDD IA>W}ޚ豞; 8A.=zBZ] | 6p+dI냀T"1{xKbxi])=f jk<Sg,}H7o&sfv4нx F4ٺW7RU2D<"q]ZX me'+C޶\th*ڥF9FZЬI0FUF(8~= EKnħ`Ѯ6G#T}GP6`"JbRLUZSjijW ,d]<|Wu~m}pQX {ok)`iZL;9ð .I\MO"QEgx29p\H" P%X2^[N޷H/ A1$ua z$YGeW<bF\%,[XsdjTDW9idJM7dܴb(dF3 pvE>y,h3{/cA3$o"?l.V,u7Tzwn89qۘ skna\u[Ih ӂpK]Խ85MV)Zw/M6u>RF=4}zuev~n˘# ٹО)d}dAZ@7:DoMAq%f>є :zJ |<.x24WA%P/j)41ޖ}ZQD,tq2Q߃M`nB跮z; q5.2}P匋ęPye.keko@8}`_WU| )>VQjHTN l?d-teK1K, p1qJ . z"aQH > \?>jG`wB^,#/mK'KoۺYbw xO-Y3Ɣ$_vW[QwE1N-" ZM:ږT=瀞P>,>w],/+d>Y>:n(!}NT-^jG>G3:AG_Z;9ߧ(T4J&v3?ިzM RCĤ)L , cROy8*z_[+{.ev&n3>Ƃ_z%,$>vwtҪT^5?Gr9t-XQh?M#Pb=U,0qao$TI+l#K,E:\2\0$뫣kf0<655QKT)1^] ف":K-Dt_ ř~Rlg 'ӟ0;KZU%fuгZ1&>p) k +V=}v<xB"=_SOt7(ڕx@݈d+rn8+Xm-`~VP"tG6Ny/]Uv( /0Y/n5WJ4}ɝ2 :?v! >~jQՄ[@ӹrV2څw˾AqƸ9{9*8B)z|X$aƋD߲YzFaH?"kQ[/ QVe K>Q{+eNϑ̲V*\Uiz6P5M>v<Q4hF^hQ. xU&gջ}%4^[_%gb^m1++խ)[$ PIabϩѣ-(NH^txetVHaQŹ*kᴗ@^`?/zx:R tf2|}t^r2X̉~ , -S(yDA@ģ쥙Do@d|}J!%.ϱ.)ںr!'jD.W 'Oeh.a wJ$TC&$_!ʂ퓣8Ҹ=uԔ ~ URTR XɵbےR[dgTP,{׶6 6𔓕Ը8yg?Wu;Ԩy$kjiM:{۶uHvo6j7t 4J2(ymNo?*۶% ՟`&DE}B-{HR0Pn7 I@M2hjZh~S[W C ͅOɓ1чb^쓲Q \f(Ez${\ɬ.j.Mospr*MLM0_k.,J>šږMTERڢJ{{YɚSڨ%R$ Uq8 i=a;h ;-fJ&41Xlj[Xz -]5l?o&>_؇fsU`C"T`]șij d@H)lV@RE =(oQUW 9d>ӵDFRN )G9uqcPaKL" h?lO+ (111ѳ1tnS( QYBFtq  ';*ke|x Ʉ4|ҫKܦ2Ti9 Άsgx .SWt]dҶUǂ & +R3c҂k-1, +-Y3]OngΕ -֚^]F .?)(a0KMKl .O:-_P 1m7KPpT^t 4_QxTe 8b:xV|wp - 8}E\<.?R @uwQ2iޠm Dcc* I F/|U6P KC@NI.<A} Mة5Do[;1 N|$|݈*j7 S6sͲ } UBʔsYJMx VzIUQHT XwP6QW~PXZ ]Yd,<CͣP _I+Tq, 7 f]+(oxs~ wbF-`n| zWZurWot }{PW k7 }CꊮPcة kWt$`u ;ՊY&q\j{6 g^ HW W/F*'kNv`$ xi;t; K6 S=IK P 6/ux'B" @cU:e.Twݚ 'y.!?Rş< YV-԰5?>h Jh dxE ;!J$c5'  uo^LX6{{h. R WyNx0^$u( esѪG " 2t G@ڌ@q~ ^(gԵDTԬ mZv9 >1827cn .谒W q8 'ym ϱ|6 ,e# Os0S2 ȍ$󿀟 Ƙa>ÿm;ɜX Q(njB?.' ۄ|RJ&N >~l)DQ) 5 DlPk S+] 4Zm\1RR C Y=*Y~%& we53Wg}~]+ "R餋w 9+M**|K!zk++,G~.]!O A,zH ! P %+C!Rwu2!$>,ppRp!<5p[5B.=>!*֟Pw72=y4!GTTL2a,W!gw l|M;b>{u!gyeW!QF?9DQ}w9!1/ TQz.|%!`z+U%$!΂brirtUI!߶%fPng!"GNAU4}ZN!* QQ+!,l5@'ǜ&NS'!/b$y7Xj!2u9lluzlY!39cdi.K=rψO!7hl QZ<!;"Q@o"ZpgqR9!=Dؓ!F>b}:Kg1t`^zD!N%f;fd=Pa!Smՠ)+8έ;!WZҩ btTZ!X;*࢓1t!@!Y . :*GQ 1(lP!`@pi -f.h'!`lzPmmGS ?I!a(U;yln֌\DK~!dLiX'g_].EvuN+!hTX,H4z!i(PMJR,!jN +mKc"M!jQpRtH!mj?VNM9n!rh:;DE~!sЅO "|T?)!v%q>!vFR C#RH!wM%2d9]!wheD#Jشy!zal7ќ5a!~<K텧:@Ȓ0!PG`mjea^(z!nj[1B̬PѷnP!nȩsshE4@z!5BsZ$3!!۲dck[#2!b0px![N:@,ac!01WHCH!7DSB9%oɃs&!}eM8(xMfC!)d.ϕ] !w ah6ձ!H[2n,7!H.㺷uM[!}U4WB!df~! V{*5n _)&r4!.RA O?%R!c6(W+ !WU:c߅Ni!siɀܫL0am!ߍHK Ee܊ɬΖ0+!n6 :q!'ղ'PIi!MNU_2M:C3!ǦG y9[20k!,d75Yhd=!ɝ*Ј`͚­<V!ˀYy =/M̈́ !<`=Yq~:S_+G!Ϗ{plz5E!F 3~ENat!S8|nQ1_W!-˔/p.dc=œ!ڷaV?ɘ ``f!x@b/[ !ژ̨B79(!rOy1d]si!hgR[W$OG!4z>G&Zg'!F"V3@ikiDg- !R<\<bE'X".(=D"eYϵ*"7K([Rv2t"{&~.3zǎ"pcq#1{"_z ]e4G@x"Xԟ]=',+4:"'yT3:b3?"+D2Q=,?f'".h0U)'rÃTw$"42_6>[ +":lt*9 YSc Q"<&FI\dD"A' *jk Z "C077EUë=("EGSIUX_G&"KaW8'ݓF"M=뾳8Ut>K "O]fmTj- Z‘"Q,i &/'Иs"Wcb_Q<UIdʙ"\^hOJE"`>G*T}B"b<P6=粐M"d$J4}A ֈ"j Jӂ-툛tUs"lF"4\]_I_OA"u t)v#H2"{Gm1Q e?_rIT"{YM /0MX*"~Zx>M!ӷlљU"@ko 3q"늳uWA|Y)"l&M&Uѻ"B@D]."G*`nioIŬP7 "- yL\PƤ F"hĻkY۴gbK"i}Z UH9V"g븾U۵~s#ֆ{"A9S z~"[IV i53_zC"g5ׄ Bc"#RMz `( ")_rX@1 l,"l]|o"邫ܭaiA3/Fu ":egN.["\cߔ# ["o̲SfʺoZ"NRlbQI"og4AH_ 8 "1zh`ug"V@B B^wE"ĩ`VUT{".X[r T#F"-n>~%r4"E7sR+gpRt #0" L9*%Y2"ޯI^piK Ft!;7"SA~qcwƖӂ }"ߕcWy<.KY" /͢oMΖ"p"-A^՗tҫ^"c+B , ,p1Q" r~(nm,ɝ$2",N?TuA5[]UU"+JNY"}0`}$o V_,#'`D<-4̴#Sw>u̓u#h_03af,* #`5w*dU&)Z#oPA~!zK&Y$#Srgַ%Ձ+<Qa#!k %yq<EXui#//@3|FS r-0# pG[űE}s`M#'y<}-\:F#*Td4U|d@ʹ3#+RCIvm;k#1Tɞh˃%#3Jh[9F?i#3Kff6LK: #33#oWD#6y˵*B<s#%~#CϿb9="6#HN3%WS-7az#K wl&#:Ju[n#aǍVU1]Lon:#iȴxC7\!il#lHS˴@4غ&Z `#m,PlB:4U|߀83#mwƕ^G.#ov 1kF(X#s~V\5qy2C\#t z]:y0^̅Ћ?#u=Dkz;>#u 5PW#wx! T_\RŇːp>#z|#|34yVL?x~B#}z1$50Kls!#G!SC/l E#NZ`11G>j.q#'hv(P}1Z#{w!lcϏI9]#48ud1);A#Ĕ[ DȕM#STO:m)+5Aw#C޸gseg, ?4 #_+bX{&<#)}#(V1/_xM##וS}H3i3#|~8iz^m#LJ?6]7T[#0q=FE#FIe4<:{J)#k9k[$WV6# 'z J'kԒ#ύOET1&i#h3d_i=v#؇Sr&Z9#aXԬ`8a#Y^-8##mZ@`욓:^#m:fi63} ##ReO_׀ו#y W[!`#sIm \Vďa*#ɔ) niXE0#L#Sx)-{RvD #/I"!Vf#أ zWd5\wv# FW2]Z#EL|T: ʺ#Ϋ5Ygʉ܏y؍##i)ͺ5RE$# 4%>h#nzC<a+ dW#M"-{%? է#ѹ&A* -6"m%R#釧$^= b#&H¡C0{`#8ys$)XF#::+ ҙvDK##5i?[jN#c@Wћ%#7Tb R|Mqo<#E} `r8)8 O q$ałQ@ c:$TKU.ͧӪSɒ`$Xkp,{E38]$F8Tw^?v Ţ$ ] `oT{F?^)0$ܕ!cc- !$J_Tw*P$!n">:L޸JYGc$#v(Ɔ?洸<"$'7]&dA= Xh$1XF#LHN>`$<PQ=1z-/x$@O%Y(@Dn$A]ﺈ`j7O1]$GE4?weP$HR[2[xe1B̯ɑ$QQCVV~}`C$TY޹<fkη$\ gR/m $\{m~!n:$]9,lP0(X 9$_Rc<vxՏ;Ls ޖ$bncU#$KI{@$fPȌo<[ $i:B'ޥ ;$ly]Ǧ}~# $l`Hh~-$p̘ DӀřלd~x$r7BY[46 $s0t3WH`$z8l⩬t$}UvZⰦWVRPM$~;a hGwd')$skUڥJQj3Sy$Y';-m>ʦh{$USq}S2s%$.kBˢq $[NUDӧ4Z&$z{qY%v y$l6tA,|$|'(6X_$8K*?㮚6m.ud$sYeiHQ$oe Ź,h$WӅDi[ht$WV 򎹣3L$C&+Ibn@ $9͡vG]f J~Eb$ƁqɼOq|qf}$Ȅ,i;X?8ea$=$k! $Cz\Pɝ!8($ςD^?J.RS$ ˨{fca4$XW^I1K@0a$ M۔ \f,$`~VQv=M$&)1x@Gz:? $ި6LgaY*#pl!$⬿O_c@l]A$[q35TJzQ@$xzTI$7miJ6xz$٥,GV\ۗL|%z1/\g11M?M ;%NPtMW"%J=d9N &n\%K-D^Zqnh*k;% #m&+MXi %O47tpX}i%ڵa9T,ϵV>_%K8 `>_/\8%*՜4<o%"OprUχ9%"D,78P}Pq]%#$D&ddfh%'*=B8%-IP!CNrBM@E%.N, n]b{k;s9%0:^`|XdyV%0FPCȆ%X1f%1!@^._L%26+/h&{F!9>~-%2^12wa\rl%5G*XVT\f8%6/A-o%L\F]_Jo%MF )*q%Nk|bU ] 7%V3++*%bq}dOɿe%e,<^T@^y%eyupPW_Mg%fȿBCٴX轲|%iRR ֩ΏpOgYv%l11 Pn"6Ԍ֥%pw;0px٠O$id%s8{]YXM@5:=%uH mǯfsAݓ%u~i|zG0a4%w,J=I]Χs):%|!8 *'0J!(7{%|7ڻbv;%|n*Uԇ'3)Pe{%}P]k疟9Ձfl2%/:֊S$DoO%zF\xC%̀EM57sI%;G4i}t%~zh3G/.}`=z%nEpeo/=gL%g|9Q:uskŸMb%ARj9K⳾j%->c] Z%~~ >DZXZx%tr4?-RHƸ4%O'gQ,<E<!km%ײb%Wu_Q V1 %W"%U J%bxd$FٰdL%?cg'}%[=+}tFVg4%T"gkIŹe %Ckn1VЕ %ґNvv%ҴOfYDO%0Gf|Gc.%F r!{[j0f%ۦP<ۅф+]%N煱Vp m9;Jux%a|Ҫh1)4>#%ʬ.^g@ .}%qggT%dE{ܼdX{6O6%dnzC9hګ%Ey(#9N%dzF첿_v7&R se&9s)L&7 ]=Q9ny& f7|9K}Dɛ8& LL1o쟓o & Vp]ֶ3T&km~$ps<&A]vcs%53H&ބ qĈ@&Z|*Vc"B/i?& q/fCXVYN/*&r"O$}lǀ&#ťDF^/t)ﶤ:&+Cɀabܥɨ6-&-[ĥb<xy&0e2yi]P@`$s&25&27=BxS&6/@{)n?d&8|q"Gql|=&;k'UqMy e,&>ó$)5f#&N~?Et&O&5$mU&U'f jtΈMբS&Z^+6N6 xavM&^sk$׶/j&_1 +wb&dza FD ư&g?V4=(&kU܃m_@q}m&k#4tV\FZ&mqJ2cb~&pBxx=u &q-jYCEoV&q/u Yw;ksS&v+4//6oS&w T", {73}&zB0wo2#sr훎&zrwb8>|1> Y^(&{^@@42-k;T4bϞ&bMtxZ2?& _Fj}4#5?$+U&Q6Pt]0)<&Sw{e1͔)&UѠt (EX Y&Ue+M f2vh>M&hEzek%˭D8&B0eh!&HVx\3ڣP@&qX3d* "JaV&3#vVǓC=&o  $ӑ&/ӷx7&4wv;4aLM&Kg|Gy톐/&,T>ЀIR3SZX&|Z ZO&΢q, zۇ&ԅ%KaӰf^j$&P( e月`Y(&*夲J̫s&ʈJ}[&d^$yfٖrn(iq&jAN~ntqQQ&H*YPv\"&!D\-˛Kأ&v"HGc|]_&DAXq*s|X&@|=Vrk jKvfŘ&M$ٓ;F 1XԔ&Le9 z+'"t;d B&#&hcp~Q#\'R=T.@!2t*'<Pu[ B' ʴۘiW%I' 2g er2KVv'=' eڶyWMz'֌n~ |礵{'PNc6`1/}'IWfK Re'YHuaSz-I0o'UZGdj M'Ċ+|$i-J'W~)=K 'Ivmp qOC'Պ<CB]T53HU' ]EHwoS(қ'"pOpB :'17pi]]=9rLA'4}/Ǩ b(['?7uh<\FpCb'@0Z^MS"L<'ClO2oV.c dput'EasjU)sH'HX-.+ndr'H ;V;Ԣ7(j'I0bL'K 0k[ {ß2'LCJ@&NdW:h'M|ϛ(h'OC2|5!'[X/CQx'^(Г@1l+y'aaɹ_K&3 kݟ'b1prP1̽#ci!p'b%zE7Ʊ}^'f!&+/'la_d <rQmm4i/'nn5hei'nag1 ݹHp's"߱pl ݸ'{ e+ovn>='~ϯ Z돵\?o'fO$k+z;'-^*.Q'ޱqI0\ubsk|@'26"0)-1';EO47׮p'RRۭT<v'z#,3FL'| lxvW yT8'Lχ:"aPs-X'_![qa' d"N1~Ys@ile'@;0- E('NӚ U?W`' a2Rb.O;'\ Ɍ8~\i'qFLxCX?*C{'EΫ0j&~'7@t9j/ g\Yʸ!'d3ʻvqۖ'm&\صp]l'yҡA>ԍ'}X/0!6ׂB%ą'Լ϶C_j.o_D'k-,E#'yK+8'ؕ[ YbSzM'm R./N'&+$׾oYj')yӂ̞'kk ie't<y/X#Q]7˞'ꋉ V/c(|$x'I8g]'G@]Nâw'FQ5V-' ܺz@?4߿'ĤG!=͘"x_'( }5yJ=(Y8v/<kF:4Qyu(|Ax=>l`Yy%(zUU2vv] (`Â4˵C-( "K"" h(uuW|bo( fd9I@L(Pҋ<`A"G(;-8cn$a(5eUǤ( <}_1f]4(0-A}v:ΐQ3(2ׯ&]Pw(48$tBΟ(5EɦH=POg+H(?G w<*e<!(?ګPfx;P(A9kÐCzlVCHʏ1(EѸmq1jI'AaIƲ(GܧהF=(NXA9q|r2Nf.(N^qS.U?K(O).2uM(Pjg>?檲3_L(W mo‹P(YԿ:g7q\eԩbM(_2FGN(aG5(` @+G6p9ʵ(d5lBͧAIys(eBXKZ=:,4XE(g?4pc<Hoo((g =Ŧ΢ vA(i{1d`D%(l tRC&5U >O|?.(qBH eDqq# z(s\c•:gW(t^*[qR}({kzhQuI~vBq(y'r=} 6(s6_/92](o`EbES(͙0= پٟ(^3Xy(.*:+F,T.(ͬ x"EO']{s꬞(MZ=ɍM/9(hFNXxbd(VtЦٝAno:(Qz|t'4`֚(83aAA rn(PPM3h`}(ȓoY=}(dɵjRF^6$iG$~(uG{` ?r(7O J⼥SC(*!v'ɍӎ,3Ll(HĽ51A%(dOk(a?(uPU%s1qթ({Boe؏x *!x(ujh^q (υTsQ? Qt(ϻzfz80(?K-rއ0Rm)u6Oܠ(+U Z/2k( O3zd}(dSi7c-ptËD(cO0]3:d(}&ز]7jn(_bɞ(Wl<d3(fhZ;0%(a2 AH >"(1ťIlߟw(:c{>1R& D(=f#7F R)9M&"G{)`Mt,hXjx)<L|~_ۂ)̑~#V|) "k_t)0#9S*HiB)Vwz|.)kDf!xku3OdD9<) hW;r( )q]eoVwB)$# O^NzW)'l\7<72d)(<|y',򡒫jY),%|9>[Et }b)/Uf_aju#Ab)2nX\#ġxק)2>鬶Qq")47(c^;y n;hT)9C&ᕣ&njo ):NKQ6):3`^ RUE免)=o"ni!1)Al$cCd4)DHl[ %vUd)QEyΰq5-@jp6 )Q :qp҉r)Ul:<af`)X%"HAiR1o|)Ys|m<1)[M\ Rי)_~ Z/ ZÁHE)e™7e0{~w$)fw|cp)kkgFJ^Xl6)kd$`j j)l{C4)2;"CsCQ)l6膑+ .V8V5)ncQz+N@iv)|A(U!)}y"i@Qۋŭw)}WaC~77׳{)Cκ)*g~ cYKk]F)$z )MZ;)y]VLͰ)Ǥ8'qʉÝ4)[^筤|B) <cHfV )pNÙ͹Gw|N)hNl:P);=ksg)9ilwOҫ:Ǯ)tx2QY3GL)o~d]ߪz) rPzv4)-5SXr6!S7)Oӷ>#`x+ɋ)'ݶ'&Ԟ'7)yr9U뀭O2/)/h^_n3);Ij)|HXǢ`f/D1)ޣwѨA)=\kIN*T)ɳ8U]8))G=3=C)]y {@GE:x)ؼhB0) 5hb{ص)`7&K4. ))ݺB%jM ?w)r?6A ,#)>#fg){*lj&ҎI)D{as$<U*j]@yӉ,fW*ռ\˛003}{*aI*zp{Zq* ,ڝa]e%~*,uY9ۊ?5* 9V* ' aVs]xNSZ*=ݮ *w>Aw=+ƪ*FY,f~"ڮm* OßdH0<yr*2,7jm8% %cm*5\eLFW sC}[*=2 V[lKkkq*?hLW!`Q *A[6?$]_z@*E*7s0"&*Jce_OS/k*KkR$z(O.2v*QQ%&iq*WK(IQrȣ*Yޏ<q7CN{mr=%;*`Dbownl9[gI;*k'K辰UXk7*nKY7gǐ5W9*vrٸkr QKY0*|43\hr*%ȥmd2ϟ*5ƭ, }ݣ*b_qVO[zW#x*hQtRO*z)&6+*k *-j|E*X|^g(y*n }_?w*%@Gb*~IyiX䊊*.2=xt*wi|zL-*jOńrYvPg΋*&>NizXx*S$K<;j/aZ?*XщD@U ]G`*f!CE״>*wHl}B-5*&suSy5|3Y* mM>8z/*hsIt}J,g*}b,B3*ŸDim |#*!? 78V[U *̓|q .{f_k*HvZupőp[*iLU =h^-*աotWcي *վ*މgRo+3*660'?:*W9 Pf?P88(7*݈vz5Մ|d>*+ws~+8UƦ;*ؐ؈*L;&yk,AgN*KSc?8/}*${&/o*v>+@ő ު&E*v#:WR[*#~x#@0x*C+tR "^ `+C܉;}N+h<G˔_ِè7+-TS(mGv6+x<G oR5|8+ DPKԀ+w(%;L+ BA Ą,S(W+ <9t_jf%+$MqvȈ8F`+Gg2ڴ#TZV]2Kg+%}k*[}+fAY,+)Wr+Ԗ~s+!ʟvݐd)+#}.N$J12V+$({7&޿= ^g+'lhT6+3ͳC񁆜'+3Oyhi-_n(+4IJ!@/;z:+4XC,AO'+5ǚ' L|c+6R ,~VvHc؈+7杇z/kKY\2+;f,Ȓx^_'B`(+?0sϽ'l+Ag͈@٭"+J;l<006x'2+K| vM+M)Pd": P.+PӬT@q]N+[,cHJYa!+fv <>?ڭ0!+pf .'dTx+w`H[e*y%+N7^ ^.]k8.ƌ+eEzR6~u,M+p%j7 ecڅ+ 3[]olrȄ+`IdW 1+ })>)< j+b7V,M!xy\+p#ĀsYZH+"Q(HΗY,`+jts_nA+l [B9Y'c7+SKUm_+N-/v=9oX+|]]+R+K^kJ]+O=u~ Β}W?+kqq[А B&+%l.lN88oծ1K+Q'L& l+=yE<%M +|+f1j"찘R1m+dO#cjA/+{O{d]*b+ÿR&E95g + 5 @ ,,+X*}+u_Fm*&0+ؑI 6T\OfE.+a)Z=s+.Oz"Wx՜t+2% ~¹@||y}w+ԃ<?}x(+usQ04dr'+Yd}=1;E,'Wϥ{J&,0@ӞZm1Wnk.ji<,%TBBR>',+cJ0z##[{,NB׌ޓXGd,!nl3cSVB4G,: fY\l6݈n, 5 OX0[МK-w]_q', 㒇rXǢ2x9j,C-9/Jh,eߥX:'nx, @Q_f%FKN,&LdE=;y蠔y,&%׸>NЋk,' 'A“m,3D򔘔<?ςB,7ÂMxG}Րe{Lb,9`_wױ݅pj,>M9zA!l}V,@nAJo䟆v_ f%,@˩V;2 1,AUr0Ɏ,J`HUl #cz&B,Jŝ> !(: ȕM,MDZ >tȭ,V@0Ar<N:GqG,VYFwGƩv,Y{U1L(jcܼC!,Z^ nnz]x,\M~D.\ QV=`t,`N@ZsN)DV,b\ة x$7,d-V/d>ܢݯL,d~#ظ^k,eYp W*jsW,gzYP "l8,g8](q.,kNNω\S'Dv]z,oU<gꎟ,p$HW٠ ]3[1!,uu[LyF8ܗ|ǐ,uJT.9#/k*,w${^m.;p,z5yD.MuSN,2>▮(. ,4qpp*QH,tc6W;Nz,R$ "*@I8,W:bQvס R`,͝4 e,"VGy"vf 6,ޕ 3, ;vLx<ֈ,cF7 |)b,SGSŔI3Ǯr,}RrX3Ԥ 9xO,(Q4Ik: ?,jJbᨦm,cLMLiB̐7G,GnW$'>ϖP*J#@,Gce)0R`33K-,}%$^d=) NlW3p,R>U@ۢ,܈2R6Def ۖw,zY7VGkYemC,A?SK096,b.7vc+rnj,ڗKkR/r@,Ý kQt$,5AvYDT~,ʗ<2P%{'C,?ʎg .@HK@~,^B<LYpe,rXCi{Z_e,ܫVCfd*ۀGX,ݳtl! v,0UDUʆN,/7L nZ'L^ U,+5kr,0,jS/v3M,(8䡩!Fҫn2q$,E ,bF 4i\ ,K놆G"O('i,-pA7;Te,?Ln.ds,:6g(xE|_3-;Cg+m5-P2S;u[+Z-{448]yVL-,񜑴  6- yRЃD_A- &#p] 7|(xm-5}Ɩ̑-} -/ny]-$(t7Fwk-yOՇ}l-7"y*Ƕ-6W3T6Hv-&DaَTVfpH-/V-QAP0u-6 >'p3--9o 9ʤDoa-;Ĺ'{Qk__-=fU$>NTyK-@V<Mgh΋F QV -HG$V2OK-J"}yevd-Ue NUw6,-]2QeG4qv^ -ev.2%f"-g=(exl}#m+-pG]#ѽ{ 1s-qo؂|ü-uk 8!ٳ5zK>>-~$G{-m}T qػ|qL-\ƆgRKJ-"x9Ǘ -S@(i:зt 6-$K帟9ʎf-*=mP+'VNX-i9Iet-D=;5ɋv3HexQ-e%K5$Nw-W1jf%cM-|x-T}wY-n& %V B-,[cQ-J.%m eo@--[cYcn-`ͱow`yRcP-GCjw/8 iV@`-ɟ+G qer-˅Ձ^{ |~|-˽C%f׾]e-ս+ky{ g- _Wn9y Y-U_>PN|P,Np-Pp߂lÓTʹc-݁!2zg)m-1X&х\UM-&sNAk 7cU-9`u˂cl-k|]JSM?-ag ^(;qoWC-/kjk8X/ l-󶵟s [9`%گ9X-Gm<<yn;-WUF%%<7 h}IU-O;юA . "峒յ#JH!%9.Z9q]lT. \^C 4Z k.dWpB ,KʚX.0Uu,-1.:`&AP D.p9zc+bfOb.'ET /\'쫚Q.(Q/k,Ug.)|"3Le\ `T.+/XāL!z 9L.,#;/]󚘽)'\..el'̓M*Gq˫./"NSKy^ô.9pGo@i勵.@_9{pHu.Aoa7WЈ:{BԴt.F2rW_f'n.Sh3V]qR".V0E9Ƃ5%<.W 񵢈RҊTdA.YЍp( /m.^ ~s 97|R .bIwxfEYs4<@.cױs=|ps.c 6 ~ XxcԮ.fw &.gvJZK[J8..o/[H}w_D.tCV: {J~.t fOА.y K|+w.~\.t`٤. @y=%[!;2.qpp+)|39䍁.K{K qbf8V.޺ѫs0.ZF jsտe+.8bgql"p.EvҌ$gw.Bts&VHm.͛C< M4.7ޡOK.Wx!ϼ.=ZŁ%΢uN7.|cd5YS_udtz9.fhL:*^UL.觯?a]..1@G[ʙ<3_"*CH.'jD+beAfɂ*.D[6g6[J[33i.uRf2.~U()IP#$%NK=R.=;W>+.ɺ9r ur.qf;ǽ$'.4A\ONH.ѺG f= aj$.ҕR.jCeC M(1.$<1n~]*a!. u}v2Fh%.o.${4vL1-.J?_28ps.[ψִ?H%Xˡ.-?ER_8cv.=חfcX#δ.U-orrʽkOw.vtB yV.f$⦃Й6.,4:/&۽jeo)/&=+BD/SωRT_/W cĸ/ $HUb49/ -(ϸmYi/jCwWgM_]T"/ko<L&I/Rr45}{J /e@q- tS</{&x<Eu0ĠQ/?ϙ_.Bٙ k}/"r{|1a/%lEgMnAZOy/%nK ư}AXq/&lJurSyCu.`7F/''1,lQ{2[l/.<f2m/3VbC@ʘEE}/4*N/h|&"Kf/8VVv3"L=nN7/=dcq8U*3쳤/K6cE'clz/K IEL /SslߞQi4v@2/SrG6jԵkMPDx/TE4?b/L/WWiZG4/Y|ߪ YHGK, /YsP54 v/\!_Ûz8H/\[ ڹtBٶ/\(%6)?L{)p$:,/_l^4j(3m)A/eP:%)2w>顈/jzDQOR׻S/jLf)CXgn/lJKPx`{s/meHΥ?_R8/q2E=)9.K /t! rEd/tdh!%:Oy/xoCB#n?Iۣ /xɮko^Eɤ/zu72^+&ݼn/zXqp $kDe`` /Sx&cDF"IwU/0 c@o?F/aWHOuB/Y)F:H/ځbHVmg/ir6c57+]2/AĆ/ໍE(͟U/9<u\&/ SC 1~T/G1ecHnW7/!Z䧼 ~?Z/IMsA/ i' !/*ArhgHv$<jΛSy/®?2b&ȃX|N\y /XڎMݥ/)+^|$r'YT/Ľ3Ɋhc*/)i7$9O =d\m/W\8\goֹ/</ZRڼϐȚ /I!Ktʣ&/}-s&VCR捋4/̾M1q6&KTzNQ/f"^L`95Bb{2L*/9-@\3//*(lH/w藬/uzB5B@,u]40/|t7u^y*|0?ެ.i (0tT;&# P0 "?]Դa8Ԧ(/S0 b<޺ǃi0l&r04A7}N0 Nc J/Ĉ0ˏ^Υ}fg-0E qN`<f 0.(Qg)O]\0Rb&ݭ~000du UwZ0svtrK?^S@j0!+滎*'40'cdwLJ,0-L,d_mG0/OfqoG:-K00~'t53=?03nwbDpd⏭06j ~bdXzH.H?07{\V\5W08:[yhF<l0<#.k\c|0@/ Bk+zOC0Bp-ɡEvdt0GE'p3ǩLqla0Hor ӷjHɹ0M'Ym0ݴ%>0N3Gd/k>&0Nn0׽i<ZcR0Nɺ^%)F\ʊ0PbP@t󀭋U˜?G0Qt*x~AKG0 1v*0\ Z .LraBP0]uCfz@L0`Ɲݮ L/PS0arפRen`0p Тt0mq*0r'vbSsښ~ɤL:0}dOj( Cmzb0~k.cH璉<50)ѲVI$.B0 ]H֠+ Sb0qTwXjm0> v)N;F0Xƺ3\800=Cb&H|f09Lں8&S]0dCqzSeX 0~~|y֏0u$}Aip{'A3A0<9Z'}0X)pAд50 20Qe3jP' Dsle0ʨIu6$EAw0}hRgށ 09z_~rO8yh0<G81(0_v41U7q 0buƤ;f,{0{=iF94Xz0W:"#z>$0eL|pn2&:0$Fa@H}zL0׌k.IͶWD F v07}-ճQ0/`o *tDC06se7 tӈK`,70ڥ:*.Xg0KGv#}v \J03"WL~E~0ʊ OPym}x]}1ka.5mB1|6OZ|]m1[漜m+ )\1H.z!w0qm!1 )Hܷe@1o1Q]Xt [q \ID5K1Ye%2`_v1&|qquJ^11d49ٿ11nց.> Z(13p ڕj_dB16,ONt(ˮ1:1Hb:RJa1<[ٙnlFQ`y1=[i[)y(Wn1E:OCUg5ڣh1Eja_.IIBb1Hj AakVS1O:8O:L @l1P=O*ގPwx{;1TFY JTh 1Y(Զ s-]sJ1Yr iN&:41Zփ 3h6; 1Z5|07ʘ;1_w2^+HO -D1`{8@-!3O1b5.ڋ?Jk1dk#hIq]B1ikJL!`||t1m_7J5701nq4H-Md{w1omn+]).6߉Z1pv[Ȩ% +ٟNx1t EȽc}~gr-71{t+3F|2T!S7K1?9=eCsz 1?o! gZ Fp1pMGWKKP+1BЅ/a B1*Ϣ*C.1@Yyn#1q2٠1B5rŨ5V4b1C[DoH̻$P1YHHuM1,o1mq^!4NlR1hB]h nB1:Ƥ9xF[M(1elUñ=y}t1CB D#gB?$d1jıp 0wƘ1J~ *`q7 1%:W(Ww1ûFR܃gL5c31ƛb An%PL֡7p1,++zb´<u1z --zqsD1cgx?1K1j8 | W1Xl)=Pٜ Mȋ1ܰ+o3 өE21"%ZxG`[1?6WGuXN+]1rg1š׊1ny{o cG?<1nԹpyx41v ;ы/W^;^1:l!7Rb?A17(N z!I*;18R#4F* f1hۙj%\K!ʕ1CYҤqE1C }s2Vi딥ڈUOB2 ]wx2D|rQG #.2 9xW&'VDy2 [;K\HEk2~ג@ $A%Yu2&£Am_2 aᐬ6Qe" ֜2%M ʄʔd,=2:7[xPFE2'qxS?',o2':1Wz.:e$x2)ќ!kʎ 627N6}xo)]wڕE"2@Z$Y1 >2Bh$sŊ뱸4C`4Pu2HFn*40#9qc2Jft%8s Ly2M:B& y9J2Pcøs?`Bs2QQB1XW8X^02T.lcpk1֏uZ2UEK H2]a74O-a,-;32]|kA,uMվ2^\3)Cp1s cp2g `'Bvw-22qK<D~J~~+ɒ2ulԃ!:ű%2ytat֥o+8X!n2|8ƷFFT7>^2~,gex₰}6-2w{7wW۹2B5r/} 2UA8zZ4 xR#)2g%]A{ii2wDB$ܺ22@@m9G= R=d2=1o:@%9= 2&ZZ([,%=,lT2@cXtl2?ʅ>~}2I(C(^ …y2YހNlUBS2PVzys '1]2rny2C J2=!fcw28;7|B`2Xer()!2w)4Ara2m$||]2զ]ۑYד22Iڧ`#.ҩGX2)X')0c62BKj{4/ 52Yp 2hq0!pyEgE2AcX$FeŌq|" Px2۶Sl<bipdd2ɑF\m]5;>L2ʌӲVLKEb0qE2+@j~Y{/}<2UT9@O܍n*&2p٢Qp"O2RR m`582ۋ>(!  K| 2۹/7^b8.zl2: @'WAWw^@2⁝* +~pğr2N>v<-:d{k)~2-UMu`o| eN2&'9{ع:Vͪ2ת)tqr2[&W&ˁ2DVr^܊rH2u#DJP=2/a[j rM6͓2Ҵ[Q$7NN823d 9Oqfä2k=qꢁyP3iOn3' Q'3|IP F3 JVJ'>t o3Orl t|3_ k= i []33f=p w $3bͣOZ3ph//W3%764yT;3Ǹs%Bʝ Od,3ӼZf+}3$K[  詸d3(J2$t䈷y[33gfu*ab==3@*E~ꁱ 3B2?Sˣ u3KDNv__'X|l3K\f0_ЈNJ;:3Pq`O>3Pt3<;3QQIc@'܇2g:#3WvÔ~m6AI3[㐗pt>gr̭3^QSK޺d t3`T5ZT57X)83ba y#7M⒡3d$O֔u9]Q3e7"'K/ o3gluoʉէ^3je(a34&K<3lū;t= u}ݫx3pհ0_6\*8;3v<\U\w~.3yT4w\`mU>%3mҏٿ\9Hoy*.31Ņ{p$3{]|' ; 3vO(U9_yf 3Ftm][>X/3Qi%#GX5Aˁ3fا6/aM3g^s%)K3iFk5%Sd3) LeYn+6#Q93'v3'mk3H.Xb C*Da3 @q >&3$9W;03ǥFf3+W36LEe"#W}`L3.'̳4XM'T3,AhO1?Z6=l3r|Zˀ1:-G3?SS֫k23:ރhNS}W3?A$c9'S~[93؈(bb[ ~Sl3kI8nQNw(93]I?koI"PSO}3nf&-}!=3Bcq(pTt׳/4Iwb_Б<q4 U2 a,OF4 83ՂQ ]4SUyCӡ%4lh(Uj@&=&v4]CTӳlPy[4#{&ϨF  f4(̙@y [woeJ4)KVADE0e44*S3m:vo45 +{ r !I47{,wn d6 18Ґ47ј12uDž548`\O֊#{F 48o]=!MEJL]4>Or\3ۨۼM4A(w޳YD J)4G=`ג_38Xf h4Gl <0 lW:oT4H\속J4Rv^C4I6 c|4L=\:Ћ)k! $4O/s~Xx=]'/4UVSϤkHl#z4[]{rAG*yS~4aMW/aamT۞4bIHU] 4ctz^r@l4f)Sp]Omzٝ$14fԠ-( i*4hTy)nuգiB4hڍ. QȤkſ4k fs,bqi4rmt(<Cl_#\fs4y]ٍHOLlU4y!it_!4|_f F"4~h߷j-Zh%4~Eh"!*n6Ѫ4Sq rg4vƵ7&KTOS.4-)R 6F4Ӭ@_w4PW('|(GG4 t(:|U4pYPg*7w4FVqxF4NC SA p4"|J S$4{'iLql44i_uG44& F*h_S4L/~F꿼j4\ vA~2M:7W4/?dZCwE#s4]"f+RH4u?^sk/a4ʐd+S2e?>4ΈvLBE'q4=QU>bNV k$X|4G* @"M.] hQ94ݜ$,rΞb4I%xΈ4pi;PaUfS4RtѸx%)hkA47kìF8E84tUj+Z_f4hK9$f~Qh󿙀4<o.o!r4.XXb.84?#M~ ҪD4#9{+biz4']uWL"Z̑}5A 0t<5$'~-g2l-5 nD8x]dTfr::5z$ivΓ2.5Ϯ&`XJ]!5U3H@@T'xJ5oN 5 \:5ԅ >5 M I$^5 yը#5%|Ψp5$Pm"0'a1qϲ^5(p ^tEiɇ/XO5)9+G*@5-YIYf'AoH50/A \W,r$50߯6:{Y{51K[ p_ #`姺(51**x~3_D尝55%>gΛfU581I mLXd~KhX58Tyx2zd8'&؁iC59pԲ*lTL5<4 ;ɰ7iiIn;ֶ5@rdm\.؂85A4SBbbِ݊,5GB X$ )<> 9N5K3. Fk L3{5Orp75@|>5Q0|QA%dsb 5Q'og)75TLi(jOP{-/5X> icT9X5b%BcU6?Pz5kQE.^1$,|5vA_ܗhѲ>S9^5w\4bqW$&5y-8#эH#5zCC&u,Izx5}JsԸ왼3J5I[,Զ&5 EhK;N5`٠O8c5&h"j߆r׵XA5K!փ [;x 5`\J+y_>5u0 3%q5ZZ5k c=Lhh45y^~BO(c5PhX\&<[5/>^Z-5ȏ] X3@x<]5|m5׀F55<b|!5 ^ ΤGǢfCka5j(o@Puz5Xy{W99$5?Td5ރN zM5͙"ϚӨ]<qE[5Ӈ7T)R5A[Ԩmsq5%5־k<>~9'O{5zQW 1 uxh5uAw٫=&#5ڒӰf$c85RC>ͯƄ 5<,0I!3EAcQV5Mxj- t[5<q5PE,]sZE,5Pfa;j%m@U5 (B7i ӣz5[MЈ?>˧E 5Y;+1B{5YA 3n)\D/5bg/P5ʤ5y+|k5ʟ4Wzz)x)5] y6hJw>+.5b#t^j5fJ&/vB?wtaf-6%J|lﱱ u0"g6V=w, w|6m*+^F}%6*'P^ZK'X/W62'Ra5/v6˼hpsD!6 RuY<&6]=2Fi[4g6򞋋*m!ApC%6d}%( Y֞\6!CGE\ _]96"pTHJE?L+o6/p(f*4K[y67r!*ȴ5i/e~68X;N4-Д]6<; o\6ƒ6Lqm֠Ow6Ot#ጏj6R7~14LcaD6hx^T?c^Ye6hMx iZݛФR=sIlVd6j9t'y'Iw(46sxj߱U<Ur6u}]N'K X@6wƉȆ`eJfܻ6xaE$mZ|-6}q@qLݛ$6L~k(6oywn@ə)r62z=$69_ <0-G~ P6mLpjXFz2`t6܃7hƴ>*z.>o6*];G- CS6b覧t˞"]L+6mm>ĥhk6 g4]wXp.XI6zoϜKi_6MaGe@ Tt:6`2o=+ e6 M"Б6DŽY E#+B6ҋG/U]]&96Hn>"٣8s46V&k&g:d5 +6ѹ@~]'43R6I;6)*{d~w}6[#“ $Q6bM6ۮtC ~h~6ʄz]~z#dA6T"\r;'56U2M]8r6 ,kHrޖy6Rċ O'II6hٳO!%ԉbw6xg-xI 6 JZ>5ς78H"*ԅ`VFY9+f7>F7,{+#7f7Ƃ;j &`.7 +hil7{k.Y*oG/W7 K;&-٪i KeДK7x7# I]Y<6Vg.7))P&i)_h7,kBxTS71D$tBDG4ݑ74 0cpsQ1G@/75B{chxz5W78X@H#7@Iv+787ѽɟXߘÒ79 ~tv7=g*YhǺV0u7=;S ȿ"%7=̤viJ,P|7?<mw.b7I4 8 7L5o7>OP7MQ[jC  ~7WO׼rAHdv57Z4/WKNO]Li7_@@ =,!:.7dqpڀȔټ#7gB#@7it1us59i7kLc7`~!dc]7pU婪ױ4b7]lA~;7 mCF:PZPFS7P5wo:5euuEp7B0G`6g7=prӎ7裠_$"l>47Fyqi(T->7x}cT|6)7l? H7gq}6%Ugf'7{ϛ&ҹc2p!7a؈ύ_qǞip7kkOEp?qw R7aIqVn7~P^ն8$Y7m[%l1(zz]7 헡j2{˴7\WޅGjR@7䀟Gcx 2F7k޿9[U I47՜7ԪsCI:)>F7ai4&+vqx[z[7ъ8SU8c!]e7Y&R_4@Hu3[~L7bvV~c 7 rWK\"bfH7 +0M$a@7,a/FT7oP$F#m?mƑ7ޕ3g`^ڞ74h! O:13N=7ꭸ9)I]NўV)77 1f7&7Ց7Cf 2Hȡ$X7iI_$_ 7.vzQNn00jX8P&^?Hubn8 t@mz|8*,v hޮ58uu2 @w ٽ80l0~T~1yy!YIFk8!tlеc:LY8#P4eRDG.L@8#했HɤpNMd4ui]-8$~h :ә܃sJRn8*r(~G28/% I,X̷&i82-KeI‡)J f82[6;ˆɣ94H87ڥ |xg㾻E88ڶ Jx1hfT89m,%7L<8<z`9;58@]lE(}{k.Jl8A*<)bG@zP8Cj&f(`8L@z&ZM9AGͤ8L LȟYK8Qī' -wGE5}ٯ8QȹO|p{?#q8Y8ޖόAN\8YYʝ% [)yq7w8ZQQpg̵J%6I((!w8[Cj,-2/wN6U8^ॷHJF7KL߲8dB˲J< ib78hWK.΃6'u8h55褠 8iGUw+sC"8ji[LpO顫ĝ8oh-cah};48sg/'8"0!С8|8: #E8D՗CA6#&A 0B8rKOtbai\%8a[tsΨw8BO y 80&Y ^b8e[<7V)[T)8{ظQ]6w;*8fj^B7v88&,vΌ]0fE8cs s5)& Wv8i.ӎ9Bt@87 xI`b "h:)W8R4vz} {28U(r8 ++_8CvH8ֱ^=g%yz8Ala(k 8H^vǪK8?s8¸9Iѫfg_ Du8ZnF+={?_8fp8]VI*(f8e 3ٺP%8C":-1j 8:XUv6 }$8:2g 9K8e#ImIktY8ۮGEoJ8ݔ5uծŤ`;}pw8uٲ>M+4w'K 8(0BFms>/8<sQ308dP=>K!8k;ڲAE 8S<J aqSAj8I@3$E܎x2e8μ l</^kF8tMg_z]AtlR+\8*ʤb_ \&%'8"HFTYRhݧG8$05+!ދר8ed;/|cnԡ8RMQŃ rLk<8gBtm͵I&9]8_s|D޾d9ў8Y`4"3bg_r9 #Z}zp:SѲ$9M3;ఀi9m)ja9|o8P{r9UE5]C=ӻ!9!d1M+uZ9#yy1MNi>i 90\* CP:89237.u[#'u96dWFW^?xg9;%°aQ᢯9<WUpYT{M ꦽ9<mȥYk T?U9=E0eBrmRY/!9K6p{e9M<7dvr9N|I/+cW]M''9N9Dp'-1&R09Vz㙡 rw`9_8N,BL'$)D*9f.0g|1g⨽rLN9jOQұR9oͶXK|; /v9wr\:O$ьH9{hb,q9}A6Uec=W\q9_+E$%%lp9n.2i4k[9{ s!) .9*W~,y 9ؒ,ػ#-9dޟkwMc[[9%44މ[9 g!t)9H+ziJ99RGQ)FYҹ~9FJ SQ1$d9ˡnbU;.9FiQ!>s 9FFڙJB,-'9 S)k@ܗ4$R29;CpV'634^U9 ,9:&ɳʮm_9LR!!d՜9jnIJHlᏱ9eT֧49iZ|@4M 6G19D~DfȡO9Xd1@C{9NdljTa.9_9~@|ݝF'{C9LFc.]ɖuDL.9ξOȂ3shj9ԧ8-99|$SLIٿ9}A[MO9,fwъ9Y%E6*+ajX9Jq2U B!/ĉW9|IꗧLš9 '+9Q?@v&Mj9D1b|GN9`@SW@.n9uM1s6iRϘp:8EwZE@BAh:bo]-Wp1;:UϴRI|8w:j Beyyƭ=0#:zk6]Ek:s䔖_)'hB:W-Og̋/wWL:ѡ?avRwr":|"B0@X1dIւ:U2 {HY, X: k!AhLJTm:$Lʯ_E3q$^3:'\"GNBhv`{;:-L?wIsO3ϳnGq;:/H]P&wX_>{M:0pᝀB8ߨmSz:55hqśmPɳ:5eK7veAZ"Q:75(Wtyjĩ :<UR)Uv}/:<zv+u6t:AN?aD~)8:C>†G+:L\@8|hmA:P{m1DT~N:Q 72`lxp흰ò:Rz8O[Of:):SC|l"\j=m:Tfɖ"+ Qk:V/$Jxi.,؂7^:VZE1Aěh yP:X:3 Dי)C#:^O`M9.Ap?|:_DCqџ o?^!:cA`PUpad:eYi)p${<>m:gW<+N;[T]:mg idQ"(ځ.:r$4?չǫ%s`K:sL̝D  5HB:w8;IvHݛra[:zP"` ʞȿ:|9P)eη4nkU:~u)Kh8Vn{:):6␯$/:+65wR,:]jܬр_S=:Q/GaQn^3:it EMm΢:_ NܷOFR:r{fQ?6 -:W  w, ~*k:iqW',B@?:[:a_r z97B:KЀ?֫Ns:nHR;`x:Âoz4e:U:^άg< $ˋ: Nk +ka0X:wNZK rd":W<C 3\r5Al:̣шjL9bBn:Λ +R;!Q8:KU(-4LN#JC:psɳQ:J3n:Quy6_VG: -5Do:ڋJ؊61*E:ނ Dmu_2H%:0Z*h:uzL! kd: 0AUI-)h:2Sw>B%jY o<f:d|1ێQ^5ܲc:D/n;@5:&QSryS:Tp8S^sj:/xdv'â:`#^"Ɔg?:"I0Bk; KJ :}(5O@aDB:2V*o*u;\I-܌ݪKj!;iT#{hE+U;_J?7 $8K;KQ@E/aE;D/ruDnA/; 2on5J,rS;~xtxfx$;@?8@6F ; +}0(Dpx;B.OU5}ViyT;`ݯE??x&; ]:Iy- ;OrΩ8[ I9T&o;u1ONc&"&b1r;" ϵ0 ?l;'8퉤϶jkG;/Ϻd$c{R` W&\;3&%`C{;85;LM·]&E)2;8@o^^|M]oQ>2;9t/ гĝ7p;;:r Ԍpf;>Pu.zR06 7 ;C v>;kE;HnF3~YN6!ma;M$+ jnYB^u9;NHW2DRTJ7~v;UZ?|M][;Zmɱ1j^;QJ;^{`mGV((CնX#;a!I cG;4';bZK+/#f;c{e~R6fSjT0;i3E=g%;iֹgcsI.;keQp% OJWf;lw3#+mKvNmx;oC6}5` &,R;ujemω}sT"%;y ACTd4;yQRzFꮋIGAy,U;z/oh@U|I][;zzr _?n;;=;}psY5bt: ;;}g Hi(W;giZCnY;@FXP<I73;>e<:$v٘Y;t7K*N_;e?suE;˝jM8;\<7^[C^bP;3yKam+rX;|}-rf TiQ/O;8zZip;YW-+dL;MFgV>?;Tǝ H@F:;|znLWoo;؋:;M'S;yupIia ;h](xx];ZL3b#;IYUQTC;zTsHC܇'];;MN񰭜 o;u,K<+b;T}CJ48b~;x dgh_g^;8w9*יDt_*;kL av ~rb;ݍ,qfD{tt;gِ/\懎;=;2yK0+;܉Umf}S30m;zu^{@D͠Z;Ji=}2 D;k8+˫h }'2;G7M)9g=;χ{zbON隃;o)O9.r<`}l;i1.Aὗq rl<l"\7K<fQv-كa`z<;+yɕRluMu<j$me. [0`<a"gOa;ڗ5.<fJ1 RC/L<?`NC/4:x/<tm,7{Q_QLF0<:Pl座3!L<"RGC#:0j+7<%5eOXtV <'2q@ 6ς*4O<'=p[9ꩬ*K<(4 1j&'v<0@1fZY<7c{5黎x?2#<:(0NZi:b<<gr])N<?S:\NL=<@Ye;UzA<B[{.3*mZ<H;B ] ܁^~<LWH>?T`nm ^h<L~eua?/5@iw<LƔ慛M }"<NSuG%6%{~]<\>#V> <<a?YuBaj<erý 5V C?"<hyHR9E$k<k и:(u|ࡈ <nDY^`ynY<rs*c50$<<rʀY0ͱb x<Qʫ wO3Rh5<6C,}PȒF<G ".N< /ͺQ J<TmL6z_տ<k7!P }< BU`bA<dcŘ7VѕQH<01w;/-6<iE3M f~-1t<*$=9*0lS<8M*á-<uh (L⩦*o@7!<G7yN / <ygeG!d<pMɋ>P\m<xoȝvV<e]յ]*ss'<CIL8}Sn)M< 6m,Z09Z<SvV  <;\ЎZW^T4D%<eKJɏjr;!Z<W1e _<oidpD}-k˞<>51ƜLpԓQ0< MҸ*Jʺ1<]NSB<Ľry<NEQj< W78 KMu/<,sybN>C<߉PzV#p4p<259 yS/k<dWD]$E<hNXIN&":<O!>V<,mV6u<z{GӇ}t{+:</| fK=>54E ; l/t=ߋN.W) (2=2B{l<= Hu[e"= @sNfSY =fO椸NT=Id5yw7i5km=gN!L`[M G¢= ĺ:݀𵹺lR}='Fz\+6'Z=(ǽ;/{I,ȑ=)!J'-o=/Ǔ5=3nѯBzԼK=6thV=:lߜ=9ӗ4> 2=[=Ar0!wD@z;]=F}*ޜE|oT=W=K@މ͎{v#=LLA U/.mF=L8:2lgc3yb%}M=\:D{ѭG=]y x?`{^=^Iɥ<JM),yU=dL93zE%<U=diǃ9<z 5%``# =f֑Dj=dT"nQ=i:p(,{<ã=k^8Au(bTz?=o<AVSץN ҭ=pD^gf e6} =r٥}8'>sf=u1^)=wנ 걱Y ={}tE]]f=}}3_|U=wo{ћЙF9_=d8eaY+G=Iqebe*|=Rrp;bƳW=Qr4t9p)ŵZi='q6"P^|[M<X='L jAԛ=WXnnVlZrV=QӾrO: ;== CDnѝc3=.ɤ^P80==<U&=#=of֥D mmx=#yNw$5=g{`{t7=e9z{g(U?T=?ΫQex;"1`=( SBciHj=fh%jW\=? ^ wM:W=4>WY{a4|c=C!!FQm=)ŐP>2c :e=Px1j>SC =\ZGQ*D(X}i=n(fO|$=ĝ3.^$=䵆d:XF{!%Rm=1z_>e=O.c?=dє*1 NjH=B9b^]BKjq,M2=蚋 a U^d4+=J0BCss|b]5>$IaR՚>NBf0}wc`> hɑI*|3'x>ۓG Ft~zL>:jCs~~Ɫ2>((m) {w>DMWb.,z(>yGD,cդf-K> :I|Pj0>Aev2=^a_1>B Tj k]]a>dzR:|$>4mggk>p޻S0pN>8 0i\O)ˀi>9OnjG8E0%>EZ 'fDVӈ>FGMӷ݀@?j>K+{Oqc V>u>NhmGْٙ8.S">R<4Z~9>Us&`L~7.etq.>[-Y_o6=7"]eAO>aAhԌH[nKr>cgD̲ Apn>gap6u.h0>is>DxG4+>>mL oqG:|8~>n\QYof .>r*Tw]fӜ>z_aUwPK>r݇!~P B>nf龖$K>i;u)>qx</"J>9.8>e%I3C7>꧔UviaXp>)l(ZHpLFb>-E}5K!k>x wƏ >34stVLI|f>uT9 v G> h0#/6z`Vuܬ>?Noqv~_>=&XXN604=n>J{k&q-zJg>cou=@C?>MX'CXl>pt6Ɩ_C%)>fs2_mM9>ʳiqpQ [>ofvs'eS͙v;[3>:op-`Df#ǿ%>̂Fk)9hQ>OƎzE@E>ȩZ IBbFC>|.F%6ں^7>o$ZgUR#_\>a& ;hr>ג"xqi@UX>FUSj<G">\ m2j<j v%>h?QcBe;mt>Q;W4BN>ұ3poGwn?Ay,@Dr? OM,,9m5? NR ^>v? *L;6#r6u?bX|U5?CvλYz[t6A?Ȇ.|P\ٸL?]~cs宖 <;?7kA8UbysB0@5?#F2'̠9-s?$I*h ?&4tNgΉyE p<?/qDSt{rt~?56C3A{?6ay`G]?6'hZ"^<c l=?8^W[k}Q?A#wڀ,+?C̿W`wMI}Q#?ML<O*qM?P\[90;Kl@l?R9\?=PJ?]ds*/BwW?^뎿\%1uMn?al.^1f?g`,.ewRx ?qus>TN?wbC~WH$V<˃H?yS>qe8h?zvk V*|p?z-!nYLXUj?{lI ]8hcsn{?WVGP!l `d?=(6Dl6Ñ#6?<Ji|qKdʋ?WAߢ<da+oH?*KӶK j?0Dl~A\?n|~LOliu?2?OuGܟR3I.?PIb:U%Q,?9i\Eal蜶?\ho<k}?` w[N`E4}2_"? l4s%n~{+?'`#)l8MU9Ì?*&5!5fbX5:?/ U2I(hD?Rʹ~|? X.)F:[ya?,*C[Z5?ynA墶%,l%ww6:?aŠ~ގϤ+a?YmYCw?v,SXa3I183ǖ?ţ2g~NMj=?0퟼q`<-EeqO8 ?ѣÃݢu}m.?I*r2kR ^{Rv}?uNM*m!36)?֯S_C$y'be?(5hUG?t=aGql=5'?73-[Hc{v>?VuQ6͡[2+Ş?QD..bzgD^wE?@ 'WF6?9W5Ȑmc?y"~</H?bcq:+? {5 =,mJ@.?.*G+7B ? !pGFMa?apw@ŵhgJC@(*<w_<`F@bՃ, Tv5s@\{Tyڰ ")@C駒Lv}W=}@ ڱ0Vz|":%2@ Lp?t2 fp@ <1C6\qRwy M@SaњJ^d,@y/{*[Sb6@F׃5)~@GLX$Xg<@9m˚@#GXyk;c@&BdPYo$K!:AP!/g@)g2|SÔgbW@+MC?C:~[@-jЈGsg@2SYbw%&sRi@6:t;_}-h@7m'_C=C_@8] SU/g)~l+@:j/2Æt @=;)T T*4@=VgPY7(C/^5@>L]cM8,6)^.@@eH44јE=9Z@E[k*k5b&Sw@GcBǸrƐ@C@J<pCC!@M2l鍬%yPqmV@MQ%ԉYV @P45ƚf$؍4J@RHD=Û9hsjNk@S[+d_ƺE@Thu!kO h/L47@\GwS7?nhzWm@\9,aYgKk@^~'Ȫnd e|@dELY#%Z@j׹:ضpHZm@l㝤hs@S{@l\\x1z::3 0@s9zwklVo6@xm @]L!a@x{;݌ @yub"nyQ5#;@z{Q@H 9N@|cݮ>,!LlW@AޓJ]i4<CgW)L@*gtax kE@ ~T7yYK@=AeՎS^@OextR@]s,s"Ԃس@]:Q.vdd@8P*j5sCp@~ R?V@&Iz@ 07i.@=R{g4@WM&3AQ;c%@N+"˂rQ@m"m;o8P`6!1g@Cu{H{(gN;@\SWJkuZ+@R8 qMei~TE@~( $)Ȭηge@%]+=K2 @yn!3F?-Z,Hr.@= 5WVmx(@>7ÏyۆU8$_:0@M|$J瞖ATVɉ@@)+ʮCwRj@]TC>CLpst&@A +Wkn)@ی _+#=/s^ju(b@!3 1o[RhKq@xlc&栙Y8@j#<Tq@WŇE[u,WC6@zDʋC18g[@JPS= [@eGTv>F@aЇRʡ@;mqLZ3`:@P)v0koF@O^l'S@Afz:jx,m@DId@ kJJӿ҂fP ŽHoA?3%kM[ekA6$QbAp׫EDå A|TKWZDA 0h"}ד :q@A UCS[TGW#AvUF5\cr5`A/]u ||wA$o(&3ZYAdSW&wش AaLU$DXpA#cH%q &UƉA'fr`@#R[f]A'F A ̀A49%- A9'4{=)JA9FIVMQԇB{A<0OlSg7OfzZ2AH_o =N6b̬&AIdX"7WܱAK;_}rܢ}ΥCtMAL3mK$]֕Q ALNqa9vdވ%7aAL?5Rf\w IZ@kAOn$OiqpAQ;W؁aAATBQ`PN2㷐 ATRY)yFq6AZYdq!jLnPA[~St ]UJ8sk[A\^eGE~TkFr.NAbb6@-Db`0Ad<$.pNca-Amؚtcy&AoU&tq ArsP!q)!p1(Az8?s>$i|4A{~4n>} 6vAt KZ4Y]~A&BF749"WΙaA2| U%AmVf1UCdžEA_A}DE@WaA.+z9ُAYB7U[)‡#PcOAgv3j`$TAp6ņW3A$877S"FA{ :z)QA5 ÛqCr*A,NovљOpAd2 =hRpAW:)8W,jNAJj{ Ѡ^V =ZAHIɀDϽmA;OLEM|r \AVa=n=\[EA+S 2#-JF A3AJŦ@-6\^#WAs D0O3y_ACcW͢Ze%f$9A_@{Ķ:(YAܝ.~xEW(=bA^<3FPLE/A[i(#TvAď'@ ߗOA}c r#Y~/+ A3>VMv=/˄BߺoA#PU#MjD;)GADˡ7AG^ ?ot ֶҎAVs$U3m87AW.Pj pg$!1BZ_aR*)&drOBqlڑLjĝ+VAB[ ]&=L+'E3B_qVk B PN. EB ]8ԯcxBEJm6OR ; B g~Nqo$aB΁ٯ:?LlB~7iQy{ քaD%B l7D"NRcBNB!725(B"pZ=0Qվ!S.B"LC/eydB+xv)ȹqB,D/^HB,\_og8daOB,ExeB.}6 c>6y8jB5=#:)4!)UUo5P B7nepMB#sB=43d&<=ll B=Ұ k,GH thN(ȳBDCO/=gc@vIBF8HQG2D6gBL G;CRmiBVO $$6BWųp7 +`BXY'7 qdB\A"v4]|4cJB]~uqqLҊokBaI_(ϳئ\͟Be]J>dOJC\ZNwBhnSrPO"{Bs:O ;`8VByK@ e BaSLC%K^B7uj.dAy2BXl<#hD%uB{a떅Pbr0vB}:$/D6whBh^yuF=Bx jr&?\B<rMQh%sBNkeItwifHBNQrq7s.ҥxBĜs_;%3Ɠ)PB ;2ad#;BM#u't/~1}M|\B7F742hZhnxBo#EEfH0m:rȂB\EMt]<sbB%*ꘙ\8?9!BJv'D*?ΈBO"UJ9 S6B~[ػ2MiˈBĞE-B#(ͷrBņ?N5Âv`boAB-"3Gn 7'B,16Y#ٟ?)Bd8 Q9BP'%A sBBΘDzɼ/B6$3>xyß=B鰟h.rdUBOMOUj~B짚T숯)Bo>M։EB\Th}y(#Bxy:-Z@1XECH)z 11C m±|_5VTCij\^"cI]Cc/9IyPC&JN JMMCP͞^I@vPC$1X3> 2ƚOC'48Q F-5C,bО}漖I$C- 5#ijC-AZsݸ;+W3q"$zC1ZjGLgҙkn|4DC6#]1F:WCC;O}@<b2? ԴC?xfͩCC1xC@{~U8Ȗ-9ԤCBp~2~ W>%XCDVxOaAFUCK*=''` !/CLݿ,k,n1Ű7CP) )Oq&LtÇCP`3?1E=|ICQ8xhdDѥ(CSӞ<--HC]O<oW XMC`47 u\uzaCeI @c59B4)3CmI053 3_mF8uCn:!|QJ\:ы Cq3r]πx`Crbt KMlDsCsKP.4١Cw(*dͥSJa CzWoX+-I'"3C|r^d)!7<9~ C~9 ؚ%˜y&ΧC$Z%(` Cm5|Aj=Ytr< CP2S3R<@W-l]C`r'";S\Ci\!W)ix9@CAwe6~*C8<V ,7ڠC^)r(a UCt xV,чqC}cOu2 }8 CԖPc (#8C@(\%ŽCoҒ9N&@*#QtC+{Vo*CNrjHe?5[6וC{0{cLפJkޝ1C&'MyAϭS,C݆?ŭAi;Cxi<4u"CaX)C>j(C?wQN ?fChm 1kS-SCGt_*Ve[JM.MCFtџZq]r}\o2C8`ϱOMBbjjC:2VelڞnZ]C9m|X>U~#dJTϒC@pAa?7CȂ5Ea{ٰM?6C!!/~NJBsCa}*8MtCւ .u߶kx1#C 7Y* @haCڑˁ:Yb vSCFgC{,DiQC4)ND|b]#C鸳ݵy~Fҍ9zfC, roJ8s޼CꮡW>!CxӒ-Ûbu6'C.|쇛7/C$.ݒИs.jiCVim>UТCcڡ},y9C VMRl"ܵG@-CHg['pr8CdQeGgXitD=b0oMD _TEP:ؽ'̯ Dw)t mQ#~ D1WdC9w'vhDGEIuTG$0?E]D>RP<Z3&-UD?=2#bXD_8|U`%WD$xr\X9~0CD%L{B.}tRD&г {gD'#Mp>"gmD*9NV2 ND+r ߠ]9lySeD4J_JC4MmD6,+F 咽gD7CcȪ3Ǵz|iD>M3Pfe.ѕEDGԫg 'o%05DK:{]|,b1J.[%DMB'SK`m~'ʌDM { /Bm&ѓzDQڭB :鰦7DS!drq 9^D_0XX}D_jͰRG-ThDaC!TPzBDa%>Y5JWeЕDb̷RaJwQ<,9ͭDuF y8%/TDvm7ggC+ Dx2#/IxD{.lDHPۡڱ*D~eiԕID%իv D|zw0D^m`UJD"t]=ʁ _[D`)v! =Dvyr3Pv D)G6H]>3SaDh \y CDf\$ȂDt!o7{ADEX%LD'+2igm@4JŮD+F` DSS LYNo D mȕ}m!6CHD_ d w@ֳ6LD ʙJEh~9yDW*ξ_שHBwΊD-F@s?DsD& ѫ9DɎ)+xǓ;D͖_b.gs](NDҐ  G?|k?3saDԛ~5Z_0aDT(W%[6D.PRXVFDe J0ɩHȳD܆;N+ 5~CfDRBώ{چ.+DZʑ,UnJ[ɖeNBDD_LRpnk.D"L|XQLK!:!D8z-!#{zD"i|k"ܙD-D|X3^Ʀ'(۷J2ADxΖO 3'qD=j%WrF&>3+]/Dj?e겆<@mDqkdӺTH_EE6m]=Y{EB20*]EMQSuK6O#g/"EAAL@N` ÏlzEnqɸt 0 +E?ZsQEJ9\ 8׳㩋E64&:4nq4;ETJ }P=v͗Ek5?\}\.W7KEnX88:6ٱElVE!8KDS6 1E%`<, ס{E)K˩SUc$JE1i!4v tR?OQE1B^Pv3[Vh2E2[}ZՕGi(GE2hbKҬ̏ "uf|E5(5Ts|^/E6%zN~01¥~ E7HQ#[n@E;Wڔ[IF.EmE> mE3sӗEE' Aa6)4Z6[EIͫ=?9 0קB+AEK5έ JrXERMӹ-V.YESBJ${VDEU ÿI_▂\hEXk!W 1&L}ꞂEXFڕꊻEX*h"ᘯ!E[.CF)ORtoE`lm5@EcTJ3fI/!`DEd+)rN^jȉpEgmp>e ;XzEh_4EN3xY 1<ϢEiX *oVEJEoI-ZC8MHZEup\ȫ& Ew;WUJ\8}E}Zlr/G x{Ek8Z yϩwCEkÑnU&j|uE&(~AR*sZzE7R"2d#E IhTzj"gXE68}8H.E3{&,E'>+ )A—(SE__tE[pgVEO5H 񋛮fS]E!>LH ޔE)~wzBH+<gE횄 (UOEV4㏠8E'54lQZuE_[u ,<E8<9RF酗-w-=]?E;MGY_Een&kT 1adEvQr63E>Zws6u;E5;l/-s<E£\{h.y%EÓ?| /P#oFM~*jEƲV|:^8_%;#EȘ$٬u_1ò[*Ek1Q`O&[Ek#^nDL^rE2Se&ηbEЍ$FG49%f`E5yoE68ZϘF5E꾵&$$PD"E^= P@1$QjEf-NϹ8*p|Em '.NK*OE7/*yF?I6it=Vt~ KwXFq7/F-ʳ4]MVF"¡6U3FHؾ -8gבGF 8!5Bj?yI\ms F!=gw;gEI8Fi 摎_:(#CFx6!~ PgF?Z] "bZ F|&cu4%^F': #_iѮF@IUS:XJ'F!O]?/=lb,`F( 28ڹnr"F(?Gw@r @?F+]&M3W[ۇF/[dʒpUҠ޿F0|FnH4AXF0Y,Bp'rF3Dak&COh\X7HF7a%}Cq@a K}F:F[t̓?ϤAGF:UεNnSݿrF==xBeP=FD⻯rU 1l&TFDZrGxxnMۙFEN LŇNK 0FKؕ-dpf<ꉤ"FTgJ,WFUI@3-MCơFX+=kR VFYK{39Ff8B$Ff>1FH9 gFhk.+FeiԨFhaVw}yi21b&FolYw$Qg(ȷp^Fpe`%y@ +}N7Fr؛\ +oo:x΋FsqK1QFtnUWd鉛Rcz$Fy3tbbF# 0Fy ZA)MvFy:|x0(P_inFz(N{lT/ٟ99F.[_nj8 e`޲ TF+WYI/tF޹LFR!#`5*_uhEF mɕS;F#rv"^,1.FiAʳ|jc )R @FP}Z~ X)FBzc?UaF< =ŭ7E_%Ff`z~%Fny0 DF/IHh.3Fb(BJߝDAnF:I,QlXP2Fg8׍YFɃfק K^l_/'<F xPx㸉$7ҌFQΑL#.>aFjr4j]t'F$njsW 0.\D8F~qNW/#ôʰF,(]+OAA3FȖn҄O 09Fͮy4̐kOh YF`2d5ZjFs\ @v+զF4jPhXZOeR`Fq։ۈ'啦אF"X H{h*QF2R>(|;.\\#RFos0FnV$F瑫Vb 7|C)1F:X4|wnot+n3\F3?L_]Fu@R &=㓺FrҘO>&ӳGVqdG{tBY@3]XQG  њ 莏G5.<36+ 6yHG (.!!AG */էUAG-~2Cm@G++[vs rYڿGD=_ Q6I0GǛG>l+G70"Qi%?.uG' )D/FG< Hcp<uGfEL$<;*G1;)-+b`ےwGt#b_;ԐV@G -4CU%㒐G#Ú}V2ˆD`G$x2;!iG,TT2 ӿhtG-9| E-G/c-n^&d^G0"%Xq Y !G0rO+,`(!wG1g@P FV.G>E¹Y>Jm C(GBc*6WFWo& GOe޴vz>>?GOݹ>.fr ZeGP'lAwzDCGVx#aӞRDGa3|=ny Ga񥣐Ag(ZGca3!4%׮#CGf 9od>BɺWXGhsVh1}O_F2GsB>dW8ȧ 0Gt~` ZcB`u]Gu2!TNdGv)5ȾQeGyh/Q<e`WG{,$5e,E2$G|Y1Bpk|wG11ܯ{ G;2x+aG !zwoG}'0͏rG9RGDCGPoO%D}U6GAؑմm+IJGgmd~GGw,B_GNQАm3@]NGOz!;KkbG˜Jqk"F3GTiɣw@˨}Gv~*DSLG+ NHcz>HGAu9 kG[29 l}{7!G)nOУ ϕ*GVhUn0 G:̌42YN&&G4&-Rj^G?XHs`TG xۅ Q߮HG-oG keJ^GG/*-`{~lZ BGn ),ȥdG(w?ެ3tZ5&ɜG9K\Bh(AѰG_ЬO $̏EGpQ!%]>$⥽GyQ0?$C)tG9}>Ary-B:GI]* u}/;G&' UY CBG1q"x'<hYbGݺKZ$@VGNѿ5s@G}1i,@aBG p֫7r7CGL'Ty͐G,R2ð# :HӑbL!:;`HgNQ317K~=H ia/iScɨHwwH܁\iHgPw:P=' EfٰH#"^S@'Hy(RϤE9 hH"P垗"܌{OH)M_IW8@KH*lV6'[H.@ZعC$H.஭ o{jH2s+4?~NH2$<깚 oqH3Y)ćK[H4 v͉`j1yFH5|[4.E\Lm_H6RX?GPtH:MJUAxA `fH=F$YP)wH?k lz+HD@ٻ$&$VsHL^S W1TڊHMY rZ?N_HM2DGlHQ.+ȵF^2HU=#3Yn?ygYeH[wY\|:7 -O^)$4)bH[ޜ⨗Y޿OR4H\{rI:ԛaC-H_&% -t ֎Ha_Ъ2\q<HbXлaHf3 |P湞dHHg&ʽ&uJHjRΟCP'P*_HlE H09b>yHp#9Unb`1,HHpD_W D-E*L-lHuVG-{^],֦Hv ]]1THxB|{ŮHRoUu3M=eXHY$MRY҂еAH$Q k:GvHGm+/uZ3P*Hy'0[@Un^ H$ՓOT1=(HhbTv+_H@2 'qr8HZE xP!i3761'H:(w4Gk&[H Ke ]m)"H&[C_pBN/HLJ!YOP\^HԲ:ɹCFkHHS?hn/-0H չU_Hl">m@CA֓Hgl34tu lHݣ$2/gΟygUNH&_``ZH } W7OUcHp>HԎ*tHy!Ÿ2SHW&T$tH@jsj1ju"/1HެTv~{4GXHָ 3gKQ|/&9kH؎蔼LsH;\VJ02uHdvx~sׄ1n*Hߑԋ!ϽzVYJtH"/Z##%\Ha5zҮ-"mwHȗETkDjHL`5!IѡAWHŰ{yF7MHX߮mLɱnH157x/F/?vHlV˱yk u#}_zHIV%vj 봗LH.+ĒE=<=jIWy8:v>^>#I_71@IMEVk>BI\*H9Lh$}*IZ}_ "#ZI G6lh#I aެv7 ʿI_ @.3Id^ӷP>}iVI9PQ"O}RI"임hrp>d\0L IL&2޾ގ<I?g^- cI "D';d:8I ql3)/92ZI Vk˿?~8KfI lۍAD"uuSI!=YᤁKI#iJ ҊH;D4}>I#+2=1c<I%kiIt[I&|HwHƕh!dPI,~Z;ozk۲kI2t0;~Go)w0l!I6ROaD~I8M|xV1D9OI9F?Lj0Q<S4<I?7ѪczR #V`5-I@'N^ d橀I@A[JuK@>IB\7XEc'qIEb<J9CN]IF}6^ ^#F2TIJgBmJNA#"IKKEyJKX0INUhhM%eYDcIND˼\N=HwIOI Ili93X:Of[IWȇt;fWa&EIZ& qw,8*ĮIZ^045 )VZSG_I_"#)F bRXIb, -Rݣ#cc(Io`tc2rPIqqD W%%I{ç.~ +WMKI}\.% NP^rI\/nlK$Ijj&7].;I #_')I(x-zw9}In^SĖDnI:k}}B\"I9i`@[ElIֻjU3aOJEI=J:"޽WIۖC@}XRCtIaxqIaMEC&+ǩQIm*P~K*HIF75 "H?^%I֟D_'F9SbI2k1tcIi3j?L+JIPŸ^TeXtxIө(d;DYL<[ÌO ] J ?sߓ>JZa9}_J[Gw c?JSͦ63:*J %T5JRs4<fMP}5I7Jk:%o\ I\i5J`AVT$J"9'G^8=H6J"])S q3yJ#%W2$Te9J'D0>kW/ׅBJ' ˠ$-w;޴tJ(y al'UJ,a5c[iZzy篹J-EwGT)bJ1e7|4[@J2 ]jS)5tJ6V Y.LJ7 ӗhZX6J8<<Ɍ"ZJ;.Q_L:aojJ;h..)gadKBJ=tTvwAљ4)]J>ΑVsN d7fJAV 2fl(2 d^JG #`WFZA{ JH]Fḿpx %OIsJKMԘ<٩JLxv 4v%JMݭzۗnF^$ \JQ$N Qf(ɬ@JQf$Uڭ:o$5uJR+mNoJtVJS(*dQ—BJS+\<j\?rw4!JSrKq@i<JSޟO0Fx1ƂPJU2Ii>],J[,{_z^TcJ[ޠ?aᇊdʪ4J]&?y|oX/ J`i^D"8I Ja~5n(HωJb 1@la˓(JbBDϭc\FKEJh#abp,JnL񏟅h.uhK&Jno-EZ3y$Jn?c\frKx8יJt^YUufG34dwgJwçܖR =vA,+Jy0e!3JyxʤJk_=pHD3&JH~}o4J𱲣L4|;J2*'v::KMJR)6H glB~Gl=J xEd$J#AiE4!Jn$<NNyJJKy8!P(JPih5 J $ҼfRbJ`WSeo;ڨJE>)1QNFh:JbdJhX%;^3뛸yJ(UֽMjJ̸,=;iJϤ\6?7 qF&JӢy R8Q/PJ 9}9bbJզEӭ#nxQnQv?J֧^AZyS_IJٚd.Ii7N0LJl ;J-/"$MhdJ;ҹISbX:1JƟp,2s[޿<$r͏J.5ցf97hJpK`Jci~Jy/3~UNJ2 kXTJ!PB'gu803wJ@Ki:7}}I1J=tƄ !!h[љJR,( JYJ8}0Nq~4{ KЎ|MU!e@ K؅0Adh cK6Ȯڥ;(csLK ^ oښCK hU?gƹ݄K | xJj)HgK4 ^6$O:FOKX qO[dN?Kzuy5(K] CQqnK!k ^l-AK# 8(Gr-kK-$L?Up'K/vsņX_\kK01[qnQixXK1&\xsw6.0K9uX!pP񅘍K;[JZP!EK;f6z !aќ³K@4^KEW JKC@_d~>جFKCX2X M6TXKI@3-ǑgBzKJ׫vPSx4KK  vД-%8KRQpq⠯ܟ.KS~zGND^RKX2L6vk鳷BM<KcΑc9h{yb9dKcpȟ vz 5KkGaW͌ sI5eKn䧹Pq )Ks$j\z P/KxN^1A]2Kxƕ-Xt[,5ᴖB;Kyq́ $0 AjKz+&h63,NK~j47=P5˙'bK=?ENW<LHqdUKc1疟JЂK4ڼx,%#tBKծ<E%bBل2՞K^ꆤ$|50]UK?t"ΗH󗊒1KnvRlVi7K5Pc. 73K KG]B-+qsI8GKkr#@ K~>cL>;A-K9r6nPbsXKɀ˥0V&m|LWKM;R <6cBEqK8eHF-KzW:&sK)fdPä2]*KK@oAo+i ^v_K LիrK^'} \"?vKT3]* Є3gK;PߑCz}KY9n;B[EK[/;K2%am9}UdKHڰFAo|KgB@IؑD !KII:c UqhK֯{|q9Ko KN3$UMwKi| txN)({KWcd:}˫v0K׆ 2KaJ YC*rrevwKA]w-4rA4KF^v`1K(2@<'6R1sK<#NO\m2#KhU⬈_O<7N0K5 TLudLU%BPxUXzl(Lu(X,aӕm=L @%z A8L$IyyWHoLfD2{r=t9]LǶMjDLk6D *ShGUL\[hYCW1|L8uZ̋jLJK;α4)zLt~#eѳrE9L(<+Legg=K]f.!F^!LzDR/=,O92UL"`Քƨ@%UraqV^L$fU&LG)Tj1L%aڸ-qnL':uD>́r,[uL))d; Y yzܩL,<\GYF_1u^%OL0tw? Y gML1;Li;Wn?uL3tn.*gW?Z;L3"Vmm ^ nPf#0L7ih ytaۘKv&L7}.5q)r^erL8lĿe=_.O HL<0h* J}YLFgi"yqD/jELQ2sF,? LYr no0Ы#yLY{8`g~@s\L]X7tVÞ.b!JL`&rJ7t<F˩L` Pv:UzGLaU*3WTTLd2&kq{`FNV~BLe%?f p 3{Lhsyz tbLjg d&:yLkd#CELmXF*xOvLp!tvYR5:*LucN&]ZNiiVLvIm}'["V%Lvˠ{2Rq !Lx:a[T7t{ 8rzHLy+i'Lz2H%\!&}3LcP򞕺>i LIkQi;YL,[]s0^{L,LiVBaq1){LzuXct[ ALlܷC:VL \+M2WF}LI6$T{27-~LOVĠՊ'ϜL0P<M颌{aheLt 9U[p1Lu٘I-vL<iLX(L (i^^L~MF>T:T˫oLnB:4%=%LӖV~c]DLdǝN*fE0?L>',&pk6LGܳ&n/T冬EL׭Hn3`GN.LĬc*C?kT5LXQQ`tvWL͵,$4O7zjL7U*LKnPjBćLݲiGİa‰L^}0 |L梠W1 v;i"L譜T6~݋JiL/|;domd R'*L@=߳JMx¤8L Mɮ|#:LVBܹufcdLwsSTؚDLf6he&&eTL 3ge⏺2U839+LmCC혉{'LX\ܔ&w Miez.M=:I"oZopM %4ߕg30n=M #UWjkmOx`M ,zJSUzyfpWM,2)7z3EM|%iKLu=B˲Mb5LB [UW0M^/%oԘNq>I`MJ?`v֚t/MnEP XU=GO?M1Uqڞ! HKE4MZ:ڮ%@jlBM $ zm3yGjwbTM!*}n'"#xRVpM"e؇[rKVM"Ӌ;, iM%_NTKkAHyM*4Bt.N['bM+ xW#a?oM.7t=7^B/M/7p$P[=QM<, ,O}8婚B:5MK>B>]xML<q\%MMظ };A_u@WMO] P5w)IM\gTj+m4TuUAMeS._8cv`feXMiFjO2Yi.MixoKh*[LwMkʅ9ڦgi,#'Z?MrRX߇)NMr!k@6񘏟Mu'ްm\^t7Mvvx*+B}y[[1\Mzi .bAF{f2LsS3M{AI+TqzRvM#m F'&M'uy{HM%{odOy[D;Mu'25Hb2 WM~E&>ӌr!M ~XsRZ'wvMȇ΄ f7MK!iѴMZܸӊC[I6MQ0G̯6 T{M2ms6oz)TM5h 01aqTMA96!=:-Mg5GGٓ}M<7s1zT:bC퀔MRm% "W /TMr@I6 P?ٌcMʇ؜!1_@$M:FLbgRMʕqۥ1I蒄QW:4M<VS%*#D`Mƴ)'ór$4GhMؿU~QxĊM# 8Kmo͡1M+#ws%aMIӣm?-۳hM9؟+tM%s}.K2#}ݲaM`M[o0|N䃍}%r45=NrtBLk]Nϳ6r/INo \4NFƱUp[N{<!mIOP{XN ?Lϋ2k-UKRzǟN##G7z;N.A]9im6NbaDM%TuioNKl-19NpqQ7zϼfAP,N!&P 7|kyN$hؿnI}dN*Dj+opQN,^6Wߪh{qN0TVMVN1\SB<ͦHcN7َboyY1{źkN8nþoUN?3z˸CN@=O#4.NA<BL;Ji!!ONI<ٱ;3`8tkNLmqikm]GNOSi^b6O}jkd=NXGB+NLR{sշN[s]+;›jsNbs~3 h€Néҟ Y)^<Nf#Ъ4 3OXz7icNgQVG|{Nb_RNlܘB2GR}Nl,'H֯/Nn @iFBRQPSNt.iPGzZW<sˢbgN~:B5Sc&ZN G$w4ޒN N] )$!Nlxs üepN[Txy |d'aNtlq>v2Ѹ<NFI4>z̝YVXN2T@݌fNwkfًNHY&j@NcH΄`I>*?NK&)#RIӉNz;gbDFN>nBN''Y Lj%_ipNDf?3vޥ ktuNWۺjn+N|>e?o+۷NW8-%Z] N=L]TxRgNғٍӔf˾/NМ˅elNc tnN=ז SqqNtXz&KaN\iFԿbxNڿ<ϊړp ~N듖DD̛DO NCT.GTN [1C3U1N/ C2:53 Z~N7K.2&YkN7BG C/IMO|TCsʥO8B#ހis ֝,O 3@c`6ދ@;EO JȮEd<OϜfb*ڀ]IOdLsŵkL<6O L*՛S[9O!Qڏ"2# ?O$@PM &mgO']{P#M6/ j#O(_4,O(ڊ<%~p;O*4l'pviW*fvO1XFJʤ@?͇mO7RM,TO:\ x8zdqO:X'1K%j*1< O;:JBxLpMM1TO@J)OapB7ۅ OF$>;LjL-OL#xEjsG N}ѭORFC6e#)zV0OU|rʸ#몕=O[,',G)#vO^#ij)7CeO`lj`Ql0[YA3Ohv` ϙLDOjN'X5KPeݴOncaUer0Oo!h5*h)b Opte(dckέOs /oT=9X0FOxu+6m ]OzMn(˃`3OP*бTo1WaFƎOuCzi1I8OlX?Yv.ߧaͪOy[ֻs OJ)d5 =O;` E57g'/O9QQuE x0Om/N)D6 J"O;G֛h ;D-TI=O3 <cK=',O1ngX$vO!Wcֹ K.Om 2fNO.oX}PlhO˾D2@ @ &eOԴXɢ!O@s{XnˋWOO>t+kpB)LWO nefbI߱Ѽ 9OiO7!m-׆BOxXe;RWO܄T՚s/O.a l`(qhujOƋLfbA_́pOƨ ,t{_b")O5Y[QЬ<O5Cpq2OхRJf7s(O"{[ E9pZLO֣$1^">V7\nOw-wTXQ z4.OW*$e~Ű홈WG>OV3ʕT _QKcO/ ZoOH*:#p~gOoO'I](O˘/T R3LONQ|Ro3oOi9ϛO ij;4O 9aF"OTUMൔ3wΚOK]F϶'9*RLEBOsm<鵞}O Xޞ5/Ϯ܉OouA;-SPݤ:5%vX=TPa, D%^ Pg(fN򼘆3PFP 58ܨ&k0H6pP 7}A0frOHP s|p|G̓,o>PFz5!8/[^vϾIP>\&7pPD;>Rp@PU.60ݪX:iPZ9ލ>dd9PVy %.˫ Pdzs)fۙ16P/0W/8P5}9mL4EP *uСXA?(P!̔?,chP%Ձb6GdP/3D8·'ݫRHP2w_wW`.NP;p;zàHk9PHNÒhfҖPH_|3n`<P]@zPL \a~GPM!dHZ\{E~sϐQ"PT]XYג,v!0PXjL+4zFg]<P\^ ~[ P`I]A?`ɝ\vPa- ݀wR Par'1!MDPa{%KjvE_Pb#b܈z ,^0UPe5Z[h;=kDL>Pe:΀$PWN\[PgE3\Qy}nPh6>DfϔPkc-OlT.Pk[7zPrGW0E&[+Ps"6H1[u4i-dPtLZ knPwݚ0H~OPOqd6ker WvP?31 w`0PWJI $a{PBh n7WM`Pݹ Rp[]MPdT@ZݺrP/i!nPq6P<y8gp 'c/cOPDi:1UasWPY]ܭ9+!+=P0飉)o5_QarcPh8ʵ>з.,ŞkPTet!##@Pד_x-qvoP8ɎP.D{@}<P#n<>B捱#RP^ZHʟ>!<zEPկryu+;`)PyW.@ &K;CaPӕatDܐ6PBު[}fdPN7``F6PG--yѭ2^\5X/P'/&|m+1}Pܣ;^wN>_ӲPZ NʲPb lzw<P7񣏝Cf{O#$P-QfKF.30P_SoDPeW ǰ)YP?[:a!E1=Q3[ ްI kdOQ8ù /EZ=yf/jU*Q 0 'OߣOQ6736-*_!@Q v*4ٕQ'JQ wW8I[L_Q!TLdBsQ"IEgHJɅ!Q$2@]Օj#{Q'&I3N#Q(){t㢴2uDQ+'jʳ/)kv+Q+λי>((3pQ.z )vB7k{UQ.߆ٍ鮋周\YrQ;5FyE wYw\NQ?x Ɵvg'ofQA{kI I=2-߸QC X,ʧG HQG2rOy݅k g QI+xAE68)QJmrTFlBPU[YQL'14,+L71VQNVrP\(: QNۗ^J0PFQSIkqu AQTO ?EXQ\HD4AJ]Q^uc#$ QeLHQ;T̙]lQh0nq}A!ɳ8zQk4 #x_煊0-Qo_,trp}TOQosds4٥ٻQp0j^S.u!kɆQsg6ԍL EQt2ڌKDaaIλQu/ ھz.~Q{ Y}\z"Qh Xy`JacQS8l=q  CYQ&D`sY#Qh>}m&nsQ=Q:+J| Q, _jvz{ԟQQofeQ4z:(Y/ yL XWQ>R7B99Q4ql"!6QόL8Mq,:h{}BQC.N>.Qi _Vq{q@ 2 QkFM1v)% fQ Qp]ԭJ ߫wQ{Â\ 1QΆlA+h53/ gWJ5QۤC,@~>MQj@A2[( 'vvQk19(ixZT'~\Q1v [%]Q5;r2H*,+QXI-M4|QK% ]e[8QAQ}r2*kF6Qz~09pښ?:Q,iK&%2Q+cQu9]IQ4 _[iWR=Iӱ>N3kR {y^27)UcRx8TG#IP&Ro5M>/ {' R ~D/jۚ&FoR ^,O1#s7 R;aA̱~iR[Ğd7ROwrAƦURkۄtedX!1&R#|6=G􈰔ӸɯR( &JSQO%u_xnUR)<4=PƼb3V~ R)IU=]E^tZ>R)YU<\K+o*R*CA~VUU\R.B;Nj>u4v[R1 ӰV s^tzAz9R3U+zV-R5K\kczϳ/I3QfR8 5hTxR=P=w& M-RD!4YfG/.něRD3dWKD*ROf=3PO6R[TFy/ ,g&KRo'K|IBĢ%dvRo^y (onji' RwAӷL36Up+R{&ܢ˝RT!ҟR}MŒ:GR~M!=iB@ NgR< ېdr :xLXsRM.v,"2P-,=RK÷LtXoوE)RA;?NR]g+S֨R#]%RﱹؾS/R#<)k#yRoush5bR!=܀OWTnR![cz3 iRk(UhWR/){ד/Ri3:M҉oTO[R{}K7b@$۲ :RWՄôAs9[aRi4WS3 R-*NV%v/O]qzR]j-]z`R5>CDRɟv`k(<YHRo`yP4%ṕ Z*R!ou|RG <RfquپRɩTszwRiAcңi?R`H)pgL&&RFZEcz&R43k(u`;~yRA^rm TsRkfR{Xw6yܮ?&R!hs@:ѧ2RM<Rd 8$R1€n5:XmbRݹvƒ=pfRHP*PVRwi[gR;$maqp+ Rf])j^S.e/RE25"ؒS4h"c'yP'"aSڵ:0ǂqB/lZSj녔 zNSYS/Eǖ-@\>)S M hI=;S gw*׮D\HSEoQaqoJr_]Sv|] 'V&'S-m~6y<CYw ~S!30F-} Xi"sS"]Pㅑ8H'hS#̡#C/GS%=#׬2a{P4+1=S&-{%I֚]w < S,h}}}цoXCS/sBfZ%#u-S/!4Xd)n:S7##<| ]7}S8 HeE+d(S;<R )}6b6S=78HnfB.dGS>6+8.&HS>Zo ۍlhSA5i!5X݆?SGϣJ4*SNǀ.`X]ܘSO'r:f@tST T2b U Ū8S\v5AݑG o,vS\԰C5wDZ4R-{dS]I{I+wq@S_^4G blq S_!Qը蜯Ye'eSb,]w,l)8Sc V'e%Sc , 1xmiPSd/e݉]V[؞jSd_0Usa"wSSg (f&&)5y$ShF<yÒpSn! Llyn[`].SoifϽ%PywSxVBf=CRSxI>Um\,ZSnSy d]/{˶yUXS*KK#.0SfUghG+eS./j/mj8<[%tS[4h3]SCjc6+H.xqRSoO?W!ߡKSzGaI7@S*0kjSt).NST15h0bjWS1Z \sY]:PSAbEgዸV{=-S(T _%#3JnJNSRY[)x\ vShk ʆí 8S {~7TZ{;3qS5)_^oeU-cSNcQ&3aAvJeJSIY':>^B-6S/ֵ4 ei[EVSF]~7iL,#yS:Bq 2z&SJnCL'Q9SUNPN~FbSFDorͮ2#Su&Pxa,;S]e>xه?Q S¢Ed@D]tl7S'ond;SΗtDۋ:%1?^{SΛh%:gPŕ&4S׋!_AE0JSoh^B%ly}pS٘M#AS⠛⚽˯Jn.zǼSյ ozJu;7a"r:S<p*2Xu##S҈ ;6̯qfS!vtDžSxЄ3|`T2r=SsWB`gr8<?SCb1T#1x(7aVT(][R!&T@mhjDqpl$@T tIH 'v&^T !=K}mvT ǽUpWXJB)TTb̹; x\PT#M3Yv:%K!vT-Փ,BG)죹}Te<khșx)ƤT脬v9S5<üT [+@yKe2T  CsWST#| =c>(T'^㞻inǓT-aLjDP*T.fpbK"մ2$W%\~GT/J2%qg*@v?T2HĥΗuCvT4<aT.;T6ro24LB峌T<ꔠi CT=,Źe8 JMzT@:h|eB,ITG2݀')7TGaEg ITGe!>fM4oTHˉr_Бn<NTQAZW7㛨TRE(5wFu[.FTRD?b`niYJ ]T[$/~v}T^׽_bWV!deGFT_zF4 4~%TaFzjٺ.N_TcyI*K%nwQ5Td be jDY̍1TdxD1kU0Jvs1Tid]}g-DRsTiuLɔ6 :_ETk0'.Ң>Ɣi$QTp,[0Fd2kMTvh9?XxH;qaT}ړUOvMZzFG<gTb8x;r\ >uT\T櫡gTD+YI02 B!TOD/)t6hTMȚλODaT;5"D</@Th0.<hն鄮Tî?(،c%fQC@Tg Ğ~l]vNTI1|zibΛT;ܣ{ Ct[TrᆅGofT>c@I48".rMTG6| F]iBTC%Z>7} T.8 w5l %kT$SqzT֏ˆYWaK ETSo2U?k%^оIT˽& HPCTJ٥$ʂ$(-T?8*=Zg4Tϧfǃ2ptF,."hnTUtSvĘۗBT֞[xL Taݟ͚7X'/T1}AT ?$~Ѳ%o T߄J0ӛ,fgoGTgD5^*(dyTy:΢p1`|ǬTzƍ \4o Tג1.e<\Te3Kތ1;T2KRζ{Uo b݇xDT;5 uU99O-8pUܕKᵹ$'9U 9~, r0NQU \;[ nU L|Bhٱ8Vv%x>ѦUe.Ļ'.$ EUƙ&>EgM2U {5oއUevm'(;U "Z4IôU# c9֚U@-O4U)8hġIНxRJPq ?U+CH^力)s┠U+~(=nJ.kΓxU+gUfa VU4ZWLvsOPi[M}YU6$arDU6(^ i&4)BU<E8W$3ԼlaU=XM2etU?D+Kr6 7!2UCK?IO6~?UHubTt =UN'fFD( lrUSgPhazy-GUTq.VH5 0.ORUUjb0p4zUUDj2ev˃VtUWJp#O7%g(UXvBBloC[0v.`U^Ă5$}/{1TgSU`)H7:Z}^Ub4ih `O4UgL3V&LZUgɭ~Z3S`RUn}FS}di>>Us7w.CWTUx;|m"vd^5FUxɦ0ϞnCgIj#aU|:dv~6U4E9ɯJ{)U&2p/P=q}Uw@Dbj*-җvU/nh#W%/ =A3U6>Ή놼h#mUq)K/ڜEd UxHGέI*TUQ؀ z{lTتU^hw33UU pdUGJ0̳z~h?sU6=5YU̸$FU oؓcxIDU|ݤDiUPZּ߰ٴO7HUXzKK:#y2lU,CyUp UpbD8P|fvm7UGi*,D (UzT;U()lU\ō f@߿SU¯X +=_|T `UӔiB ;2!T}DBUΥENb6<$HUМ`b(BA~RUC=_zopyp͈oYU$ЃnaKRS3i~Ut UOk _JU *w_=UlmU -oGl׽VG sU|k tn.63u@Uֵҽ(?VU,}$~D r 9U&qY%g Z1ZW|UTHY]ƪvqrU'4vP7I!dFUraqg W"ˋU~tq gpXUay V KrM;UӞؗ2yNc V}8G)8V", I1 =%TOVo"ć\SAS\GVqʤ>,Ý 8MV6+^vК_>VbUkh|HVAFOmlej%spA VD࠼X&LV,^Q4i"HV,Dv0{RifV1Ȱ|hx@Sx}V6IQLүa?m:V69Ap8ż~AV>ݗeűğCVAyV@fVDksW`&VEM\AJ@rVFk=`ՇMVL&Hh.CS#VMLW VNPP8+.3^q VP/Zxo 1VP`s:hH &Ӄ VQ<uk1ܴ]jVS=ԋ!hwooPyVS!7ETl0ߨlwVTql=U,/A7 VT$.՗Oh+VY?Ox7MثtV[Dh0y/[úV]?k^ Ok~Db?V_y>17epViIJuP6Y hBVogjZ{VpN`c,wV*ڸ{hrqr^b(VU0cCp9V%Ohz@^J%VtV~ P;ib$^]V{xeoS- =Z V~hˎkdZƴV]ĠtZh0r&gIVy9;cJYBVc~鯎!/3LVo_$'+>L+IcV;}",,Lz] P8Vs{S)DSVbFڰO^X8ڙ$VGj+=|>Fu,VQYNgV7~c6];FV33O?"=uanVS85>?@I:;V(V%$O^ aVDdR+\lVd-|2]m'$V<#q8^Da?-S1a1V{Q{TTKV]gy~[37V٧cէlOVV\98tY/ؙVj! Ye|6YV"& E gk%Vʽq`mu?n*V]YgLKٸVϋ8+5IV'8P94V~znvV;V~P͐U] VŪ&ZSX@w,V=+TkvVҮF)7݀wAV$rTMYަppVV7WǾ}+ΊV e u(otWe{p=ڶ7prjWMY3}Fs1݆W '݉,]gaEW`L|\|Ҡ,lUW]&NҴf2nW";_@iS&X&pW'2Bd'oé{\W)BKA)ny IǃW)/0@C$:w g'W-^&`WQaV.W/8p)cuT|zKDGW2K yBTv&@z[7W3:SoNyuW3D*uK2EW5yG&]])nW8O_[IqW<c cj͆obބW?I!aP)F©WBi6Q)-"WJCW1!xQ$WL1(6+a"h}~WT ١=4*}WX oUiҪd EnW[~h -ҡu}.$W`*?ȀW`RR|Q9.S W`)@ adя XWa)B ;Ii!Wb 3 (M 3\XWcR%X\`8K3k WeUЀNB<bcT KWpmW1Rl5FI1WrsKrv>XPWs>m1ڕWw^)-N3Ww.z~8p褾ʍdJW|AD @g?KN1F'WEIy}a)~c,W$([3t,@k²2W5w%8PޫrWGҎ0VWP6=T@_OmHkVWԌH M*G]W7a:mwgWNS9[ODgƌ\@W> Ӹ֟^GPWEѫDW{NIߨWct^Dr]WRG$_EqOp%_Ws$AdgyW_FU4o^uTEW|1)7WG%njWGpIݟ +%پWPlIҀ6tŴ=/sUI*RrW!#8K@Fh"qW/("3Zٹ_/}d0Wĸho\if!wWcǸ7b$3WMK[BL,充W̫2Rqm#WGo"v\Wخ^)q.WtfW޵R)ۥo*9YWr/(uN$8WۺvH;yEv4WhDGz '[nWL<CZq<:]W vknH WRvH5e\u?X Ub4!m\n?<XL*D2e[[H֣BX9N r!C~ WXd4\O k}[꡹6X3\ld,ƵXc++F*qR˃XNjX$*|Ѧ<^<ij,1X'XQ8fs1t2~X).}PTXTX+Ɣ4iݲhX/WjMIɇu{X0~T7Fi0CX24 KV'`9X4+OwlZX5j F0Z|NX:aO煮.me .u;X@fؗkn7'V~XB"+x6xgIXF>{O96Cc奞XH~1vzby9XNC")(a%{XNt4"V][o@iXS5Syd*$Ob0 gXSΏ5伅5KĉXWvBJ5g9_^X\gͫǜcX\v*Й cVkݱX` 2}XiBEZ;LZ*@voXk㜚 @UņvkHbXp" {SOeAiᰎXq"ΐ2s;4NOXXr&kU >'Ha>TXsaEY ~);Xvũj(%ME XsB-)z[XVtګe{J87bXgS> xWeXUMAj1RYyfXF unee֛9Xm@+p+ᄇ@&DqX`;D1 }2EX\},;9#Xy zDfޯ"l*=\XLCalNbXWv.bonX5&r3a"XCs#w$aXTa1E_ânhlXvI\#lOց*nyXœ'̣Fi$crUX`tE0dD"zY,yX=_~< 7;8eXn Vbe#X;rJ<َ ^X'5^r´aCxGX:۬V{6XÆ޵)^"3eX]ULECXw*(,R<XCg,&&bRX&H+!Kl8cX@- 81,TJbXI5[P3TY|o1XdA~ُ5Y~KLF1{CGYko(t$YêxSBZ3HBlYBxH>6AXzY^@JD&3X(CY(VY2hoYbَoRTY/л1HH5YׁZ:Bs o,J}Y!@BS R?]![Y)1 c򅧻FY/q ~s6Y/|_ͺٽ=J"3Y0&|nk>Y3M;x$W'G&I XY6^pao&L_6Y<ȽgУ)brY?-m1vfiYS[YA%bC󏩠yIYC<ڎ`n1ztYCYdꩺtbXYJ?Ѭ@Q1W:Y,YP7ba؆O``YQ|VT5c2-VÜ]pYUo$hNLYVtωŕ|gFYW> e bw)҇R YWTs=d)k|;Y[w- O?uYij4뒈;EO]YmB8bڌAt2}&Yu郍nO8 EY~BP6<BKY^~^PWC^+]/<Y<}J-I"Yalu`F<<PlYۖqq`+m˳Z. wk Yj&M__y7[lYʞ^}`=q|]YzYqg;-$l4YEy;"x>HY-fvHx:6pYWS 83T<Yє?~A\Qr~GY\frlXfF` Y` & f'f-=K$Y+41v$_|k'WYW #2-8JJ5->dY)nm2xl8zYZ <Q=U^ |YǗMsi=ӼC"֝YǷ`x8JiYg0\GYhқCs tXY?A Yp>Ma_`(YY;eUqǤ Y7nn{i4?jI1XY⿐GT-/_pQYڵmX4m_!kP7BoY|xEtYzb`!Bpt(ԟ>YUnJ3ZkQEv2Yv`o}>G|YZr_ ]Yi(_ږ >+eYyQQHd l0jǻsY wqDy~,3ϊ~Y61(rb'YdVjFSm}=V2YHF}Om~'4ZQ[< \؉ZWMC5 5GZ4NdZN<yUp\rZAayhsgǨ? ZOZ9vfj2ZS(^ ִY\:HZqekhhJGZ<SI0_qƏ0waZ'BGyDۧqs7Z(VEVX(O† Z-Ca}/Cg25Z0YxOq:<0ň({PqZ1:vR{s;oZ4U4*L9bL3BZA cR8@p9AZB|\eG=*ZE8]N~jSw˲W)ZN30r6(K_cZV “h7@ZWA܃uUZE:VZXddd x!s)8Z\iD#-|` tRZ`hڤpw8iZ0fZaÙQSTf;ZfhIkzQ2Ay8tZss.ԱulԽ/OZuб3K <Z}P0YMAr#Z~Lyȟk얽^)#ZRŗׅ˞|l)ZgTSe-Zp/pԉ13h:qZ"`H9ŠCfZHؕc}iXZfCBpnHZ( C[vK bZM!19`z(DZ^rsU.ԘRZ'Ro g=Me=SMZT:5|g8Z ^|&7/\$)ZG KD$_VZݕP+9v/Z9  JkK<'ZDi 7}Z͡^/%sLS#ZҤ5 NǍJʼnQčRZlwf&*ZpHd@Ite!Zhn,k_HT3ـZ^ɁgŽgąLjZu#]d+s&(Z{@dO>x(պZZL]qoeZi,rݼam|3#kZqt,#ˇri> ʻZ7K"$Lױb szrZx`w $Z 9']6E.n0Z~#3!wx)yZXߑ?!(q~,x[OMՠP#F]C[5s~7O[l}Tt.&,&2%.[\OteXqXOfO[=-jHKm9hjF[>\XĘMR~*[¦9Δu7Ή!a3[~x1dϫ$n[Bfq:d[ :7$-c[.K@?oD^L[/i!s4S[3WhuN|-Bq[? 0g'.s?[H;;壜'4N [M,nE!\3"c[R|xam=> [SGP<Ghם<[VՒD>5Inu[[n}օR.E[[a;V+a?[c$^rO..rD6[fή4ڛ)Udl[idDGpB#Ik#[nV%MR [pA)):9*r/dt[r'gg30[tyS̆y? j|?][tЂ{Zx[u$`%-[w0{V+qs[yA&0!]\'7+D[|Vc{Er2![$/rH 6(8[?Z2O)<3f[Kj<ߐ## M&[1EepNN[1kVgy5Ef[j/VZY{[HXOD< R3V'[5%47| G0^[ccd [=hi[|`gjxokQ[vץ:m 29/K~[ƨ&/l T2[Ca`^7;?"[1u!ّ[mt`F$ș?[Mօ#rb S[u75`V.a[Mų&mDr[ŋ$ڇmGv$Iq[ǞtͅVX5D[[hY64a\9@e$[. \HK[H^ n} ?܊[{p8>6x[ԃlG3<gQ[ݥ Ĵ di<WϦ|[/@"ZX\݇[KFWq6[3LJ)сhZhd&P6[a>" Tk[뱃b0j02([Gj )u#[12S8×Pw-[Y[R\׵||[ z[0t[9.N?CzƁ\\ Md<*#L|\Z ΰ~d&lq\".kͰň~K\*Iz{Q0,w@ .\ ‘-3kfk\:*j6i\e \}jqBBdř `\p<&|NҧDܯ)5\%%G.6]\l*+UC٥=^\Xbqؕ}į2:h\!Ծʌr[IFաY\'Tp)Hyh*5N,\'Xw==Ņ7!Y:d\'jw?{Q@\*a eD Ȩ\5 0'^FEm\6Fyޭ$k^=M\>AIfrEK.HO\>n' #?Ԝ0w\B,5D\DI'A@IMV\I]ȫZ*vfl\J-J::3PQ\JqQ>ީdQ\JMOf$ m\Kcc48C՝"\K%I$4`v@\NyY$%WYjT•\O/' >T,O+\P[ iµbz\a'3un+5?ߌ<4K\c1eGvpcK)j uC;\jt8c?x+H\rs:}'.lR<J9 g\u`ݮB);޵{P}!\wOK+hJͨc3ߵO\xQP.Nue\yD o:2H7KQ㽕<\}w8k?MsL$5S\~=#N:" n\~l_ _&S"J(t\U:E'r%xl\nt^utP_)\7 pod<\lG#H~߭Cv\ZQOK"Vҗ G\J$@LV\9e!g3\Bff 3 R\v=01C\&{JCwY7\IQc<Z:ܦ\(9Ş{bZs+A\N#> %Ww<g\cAa\gE lCp~nK\iVChtξ\sد>/q\x inx+k\(+-F>,/%=\=X՟ Cܛi\3Bٷ9mH\2U☹=5~h\$cˢ\ZgsU7\b}T~étN*\"lR"]^y\VԊ=Ix*\ݨ+Lн)\ֵI +@~_",\\,`l"ӲH d\qZ)DR[ x\;Yf|lDЄ\%Z2́ b\ܧL`|\f;} H"\d!ƽLq\M2T%3 h8\N6,&@Sk\֑.e\Fm\!l4Rfa +U\KO5\ ƼbL!"\~Q|, JȌ\i Ϩ.J];'=crd!6OW]iu ť] FN[ib1,Z]{'yjUk{&\%b]mqvMW|w+]qN]r`Mn6oyn6 F] 4 a1Sx(]%TB M*ͻ]'-vyE%},D]0@ű7\_u*]41|.dB/p(]9bRsF~I8ݦ]DKz : !ŋs]DqZ"&~-j$]F{9;.s]Hjn_[⠥uhjHo]H$'\Q yw]RLtr] w>s>]T.bX;(I&]T% $^j#^ƸM~ w]X \w~~9 !]X11'3R][y(5tsՉbed(]^COR_}"]`(KU~ =v 7]a./тtӵ ]l!oA*̤h(]o2( N뎅T(]okֵkxٹƒ"J#]qbCKy9MS]rߤ[="w5/5Z]r8+k_XK̂|/]tۜkw{Xllpc]t *`zIz0r~e]w3LB?]H9)Sb]GMG +5VZfP]~Vs` i.(q L]?7|80 钚]a1dDW _]!OdU+cʽ]yNq`mDbZ;]<A(]f}G*"-]&LjkLSZ$U]@]3~#瀐LqV]@/}^]Ésķ[Ž\]0پ *ˡ?SE]JA/O'2%]b9N }l]4aHKjݿ:pa]P=Sek.l]M#EdS=$-]·V х+BJ[]ӆܐmyͭ#^T]D._edk`3֢Y<=]+p?AvuDpٲ{^ls]}DŞ[X{`0a]ŹB\WfLJ](A{mK#s ] IcQg]oSovMF1\,]JUCW75qoٍ]l݇|hBb]aVFh*/IƲ^S95MH$,^GK_09^?̼~xyflYd^) :;ep^O*Omݾ2Y^]A(aDex%^EgCX3^ H@R+}r`^!#.L^pwIӀ'^#Lڔ~ax^h4^'zNnBPpml^( jAkhgX:DiK^/8O1^38 V/D*Bq^6"gr?#RNLn^9^G{1P{# jMJ^: ITO\ɂ ^^>PߌYLJ`w|H^>*{x ,ּ1+vjb^?8BP>dR*^Bc(G-?EM5l^Jn5ާdJT.^N BnU_5Dia^R 9=!ڰG^U7tvAlS^ N^ZvnR\iT4'iE^d&ȕ'u9BG%^joRo4ẳ<H7^lC:}Qp]|K^mwMnR~}`I^}RAqX荴>M S^~/ ipPfPW)^~a n?M*7A^5`J*ۻ&S^Xx [\^Iy)=2Fڌp^El$VK"ye)y[^{%"jMy6^)ۢ.Gԛ^=n]jxu>^NI^١g;~zM^ֶLu)V4^w$9p^TN9bP^{qސ^hc#>׈>mr.^#BY_T:SH^w>2@Y$W-L^ǿ W2!Z^(f^HvuO݇^D13Q+19C^I"XOs<lV^^(jj$LΩG^H=eT74E]^FXMN:Ő$^8nktl\2h^ǥvX; 9FR(֟Q^DFcOwxd^kR|Hz^GdBHсZ/\Jn^Uiq/L׆,^|Nx@RVN2!DQ^1°^@`ަwb^ތMj~ l^ڹFCҩp^Wn)W^[4_$iÊs^X!`RbŢ鶳^&?zZk^˨h^2۳9'}Օ^zQXhƿo/NhW6^3(Jf^B3^yӏOEez$^XW`LȿԔ_<VP̵tC ýp_Z 絤L '_p  'g) _ \1Z,ZN"_˄A;שcZǴ3_s?[ ʌjѨ 3_k: jP_#"8GL(x_-}T')çYT _1L1t] J)FX_7`#dŔ'Z[vB)_G%">Cko_m_Mmw(k\_V7"fhm7I_W_y "_$cW_ZZb?‚Z6UG_Zf zqQިݻ_`Q*sĞ9wŭ'U_`~?B c' 9Et(_aO3pKJR<d6i_b`I:e wd\(_ey".am-^1Ci_fa gTz ab`_h-fx$d<!2_jreƥMÃEb_nim$,Ҏf9(_nǢ;"::C%_q29xvRK$6bZ_qݚ( C(40_x.̉)cE{E_{X9{HMW_}<n^ʌ ,_$˴m^^_ɜbʜ=`R_߈:psX9 /6+_FqC]ߟlm,5cڥ_߻і|v:ZRb^P_2#l&ٮҥ#_w@D.:~_l9{gZ2 f_.xc~i-_;ZmN(Z!h_Ϧ)MrUe"Ѵ )_ѻL7ΐ"}_HaoHI\M!&N_JS[D?9kS, _Im`){_(,QcEM3_ifp?n؂(3_x&[H#dz_231|(r _Wh! <*_sY_r<vEkؾջC>>_眈LHIy&ŏ_T@Fٚ'__~T6̨r_t٫%P Gw_% I EmK湭c_87b/if5'_JM|al#^O_eFŅ#VJT_h`%PBy>G V_܍򂉎i٤1A2ʒU_caUQS_(,&lm>5_]|HOTƳ>W_+3ILAr_쇾!ۦ4T94_;O &, |(i_4IK_> _:1hv8ש&L_|д <R5_`Ft-I_ʡ¤F TXK`5&`퇯 vk[\TE`![` VyRH#`TCpj 69&e`0K|BSqBsE`/qKlˎ2G` =Ms8` ԑ[sc+\r!s` .;7[f-bsD`1E60k.FEr9x`6G"xkL<Pb`11{.w $L5`$ eOI^)`%/W(C ?q N`&k؞c0jC`(z.Rf6CU`)8U)T\AKƖx`*bX*3+ `* ~~C 14 `.un:s2`.;b=D*Ottw&`5g ȴW. ٟ`85#.NA:Ǜʤ`:Ldy\u,P`: %D_Q`;I Ae^o2`;P-^0ߥW8`@pjVğ}2Pv`AwȈl>1Ɂ`AoעZ#ryrdpo`A䎸 HpY`CO^TӤj `Dz#:3<s[`E YD*˘!`K+ ڮ dS_`O'g3`P;V(Zg5䎅`P?"SJMEak`V»&LD'u`[1J O u:C`\0W("]$ `]7ɬ{D7n@3*(`_o̗۱U`jiEw1P^&`lư 18jAx`nih/Ftq 5 X`oM=ѻA8LAh`t$Ʃ U5b Xѝ(`tT%_B4mJ-XK`uKB7^[E`/0bm`vAr5Mџ`wsLB(.iQ`{']j:gˍA`D;1W<+e<`SfD'7ٌ%``F)eMVdl̉k`,ba"P c]`P^%ᬃ`ڎؖ4EP!6`Q`]R}[`le*C1_-|&` h90Qu^f`*j=mڟƽ'`,̳x9,PX6P`WK@ 740`yn ;]&0f`2 [(iRYWY`YgZcL0=2;E`:.zdQY 3x`~ajXel `Tp3x|a` nq,,k![G$Y-`rv4.`ZA_yR3<_/`ΟqbOr" 'x`n:ff{&.v`@P)lLh?#Q`CqcPi,0$S+Z`)!LgcB' ,{`W(皙c:/Ķ`׃jg`͡y,5cm|`%zfVu''`<Nk,}\`Va4B"ZzAv`oۏ O-5L0avذ欋v1 [\ax`ZG eaU=N)/vRGSSa胍u 9z%a l<ujЅ,Pa K_&*tea&Lڂ4D]ôaD7z ͖/k baPZҩ?CA5a.p(O#<ş@Pa_(96r:daO;sB Ba!Z 09 pjk0_a(S3-jË wcZia0A=bȂ鸔a2Vx8@8V(a3S9 z>a<w>|{1OR^aBtܙodG )|)FaCj]g@IK㹇aH0^+6+i`e(0aH[p;IK^j,BaI<ؠIcOaJ<r0t Ū YaKۅ0Q~28w]Jq"aL` ;@@F8.aMfFC!+^d2yFSaPh(_W{| ;deaXe7QH¢aY,3.(]|aZ5cc_@;a\B`+ .K@a\`w;O>rla`DwJCƜ0B&1ad2 v/|hafzߡ'} +Ta/;aoo/S H.&ao,\Լ{i⒐ar%ǥq+G@|auDfU٘hy9ax;[ϮpZp~bA}}ay-UX XcH\،ay?ec`d l9ay95 aŭ="sq:a;t8B(:fbGa80Auzśa&!suf`a&&aʆ,2gLt-aɊiˎqIefsah{q{ay&>ip.Jda/eX2l a#n"F>Ua֜-7=Lhaoa;97y-檈aV@*!]Na˒X53%.SvaEY8b%|>aϴ=+F<E.Һa+Q!6*924#=aۚF-94shDaz2ûcЈʛ_naD4s_T$Y/a$TP#1`qM&aᖭU*3[iҞ뭕a'0,u6]aW(|bMߦaA*yn/D#A|zra:TCiEPaÒ>F7*O^a{edpTo6>%ǒ _auiߜwrRaVagXM:/C:}0a5e ŒkEja*T=5)aOލt-a2BvaAWhna.>x &bIb8| [;{] b,KΖ {{ ǛP"6b lA6Za[ b7|;+%dv&.b úZq]\巉b[ ԧ9. Jiub*QDbkmpS6~,btձ1G&Tqobc6m'US:#br AG"8}:Z:UQزb%Ӂ9)]44cb+ ].ЄUIM@Yb<󄺑|Y&>b=]Wڠ0ZYbA++Ӵ7'GbG%*)CGp2ƳvbH#>fcmxRbH$e6'{L?R <jݓbIFy a-`*bK~wt#bUdb(qNmjvbX#X;j"-%TNbYh7\ifbZ Ĺ8|jb`k60z@%Cq`bd[{}$Gbiwݜ' S26blJ&iܬ15a(bo]õ0>Ili'[v=`b~[&yg:/+])Mbn.]#51jWʿbtB+\U bE96މF0(tbҥG4b؝Uz"$-0GbqĸA-H>7mpbDB48bV`nzɑebޚ!Ww[LybJō<*mZbiOܮA5 bW.֠e.Yy\{Eb <„@Wc^bHrT_lrjbeAΩlAa6b2C國5l]Rլӽbv"͔L@A ~bl w=Eb1l8؝!N1/RbQE ͳlubD  YcStZbw!islUbT9<H̸)7 bHZ˒Ga{Mb_O}QG?z;byT^2QEKbQ1U9 y{#bQ2<*P_Jb=xzG׭)b,ksց'8:bYGog}Rz7<Sb9](;!RdǪ$4c]bAQe!WN7bڞ{ժLb4kʃ?/l bܾCN>\NojHbS:l8Oв.AdOb35{8tv#`'9-b~9_1bbf$h- b"`t |t (ҊYbV(̽ț gOa2_cjJp{߱/cQym# ,'I$cO1f=VB_imc[ Aй"cogȷ)$Yyc'LϯQ)Cc:,u P_?-c!i}YNQdGc#l#jF(.-M~3*c+opGB#g c4\Pț`A}3N,c6ط9Q?B&3օ^Ӡc8l$ kGϷc<]~n40Dkz\^c@鴹p[>›eS3cAQQ5hcqcBZiP@-)i+9.cC6ɨ- cH wьq~R cH9|`*cJs<^" k)_cKl1v›,ROJ cN)Vg8t5D9cRb}cHPNcR]jsY< z_cVTlLJAJ/!cVdMں R޽cW };ܘBn#>c_-XiXimc`:~-s9d{͠ʂcexؗT[yeR#FX.ckV>GPSS%MN:cp%@2z/ǔϦ7ycqcGrEJcx<@v7  c{b,Iɷ bÀ<c|UƮ\'cukd*{^va/cԓ!?cڢ!ҡ`xa,Kgc%V-.8]c4K&)Qcr&oJ[cOcMtfRL h iɎcɔ9Q2#Rc5!5N8 FcLcZ{5T9y<\_c h%%Kc>yIloc=$c<u].c^s7]/˃H-eܿc2tOZ^ҠW2cƋDm|ŭ O·c 2` RO!dc˻|§iro%b^cŠ``H>l0)cJ Cśa>c됚Rn3jrcӵlg9HSZH]cأ/<ӥc>ZpcRW-cܞ!8KoEO(8ce'ylpcaTCc⑹sBosG..^w^c\;|W ;c Q6 u8c۲ 4|i]d (H#+hE264dH+<G=qdU g}*DdHy iTdy\k5;otd*O} 9rktd!h,yԧd$ r\(@}d,le\uM睨d. ֍]O8I2,wqd1G t-ؓd4 LVm8?YdHc *E\$ dL.إA<XBl`OvdM *V&@dS$z0K1܆dT? Roy҇sUGIdV^=锈>˵<ʗGRdX%d0OM_@X҈dZx>T4Dda ŇôěI5dk5*<S).dnI"K4%dn֌rkw|,dp.+SqNdFzds6 S=c!dzps*H $. #dj iPJ.DxdM\ܻs){ :d7mTsK͡JldC0;urRsdGEb&idJr0??kldȍީ`fdsR3qsPc&vdcu}Xd; ѧ䮂UdWDq{Pj{d}`mO0[) &l:d%猬tnddFdOs3d$rr{?%=`;d_I!dErd:adڒzD`|:v>d$_)Bm&CKdòrxqd1.!2dŕI5<Y3rdƿ.h_{[FwIdϹeX%6C**PdҞF$t$ޘlPmd\IFQPD}(id/Hlx?0?jdPApW[mt\dcLh?5| :drN>ZBYFd[W7bbgpZ(dڬPn.V$Id3:/3>?E>(}d?cb-ٚ^dL4N={1 d׹5"=x8Rÿ];ed>\<wjd4 9=kOøSAce9yg|k-[Ꮰe7p;~mKGQ7sbe_DSecs8eg$SoYZ/ e6eUJI* ;eКL.!"9IHe!W2wGF"<3}e" @ he)j,AYQu:Je*BUo=:fe+uԜ*vӚ_tg'e0}"?+.g_8e;nv0GەLoe<1 ңPM "`Qe="ߠ?وzeA#o߀zZ~\E]eDHy`͆fV\ nNeGymెN͇4eR/],leU{ž~8F^peVEwaԩsBPAeZ8 JP+le\12֗c63 Se\V'`]슁eb嚒ҚMJ eb= ֶemߺ4 k^en7_:q0H]eqtJY@\Rer7yR%TudzevIn¢Lь͆ϭeyX4l_yHšezN>Z [Oz^J]45)e}F`s_ֳ@fye$ LQ"kϧeCKFOɓz)ye^W,͌d2Ce:80wKh"qoenji=jue3/eh;;e/^t}4F`eJx.< Rv!eFЬ9F r4{,e<B4}>#Ǒer.G }BʓdeVO<2we_?VµXeTzOHQe5 !{O]|}7$ebN^}[e6ǒOe ,>$e3Wo3gٗe/Y̴cY?edّgi{,e Q}wIPae${Qkke#}eބCw/=2\fe߈ynlI%qreS3lB]d?e눖(1×ZdaXe pp׿GM e 1\e 5e zVN3e&+%o_Gfqj\˺MpQ$|pfjV|K|mf ",:hW^C3xf +l>"% \cJ`f ۞dŠRf(,Am6yfZ/9ee&vfG1#QGǴf'h;FR}L f//]@V76f1GUZ-KzKbþp-lf8;\F 4hf=&ϭPcTd-|,^a0f@wDv2~BfC:_ "~rn~B7]-5fCU7atɂ9w@fJ)Z*t=QQfK5%.ЇQwǸpfS^lCoĸ7=f%fT}nyEaf_ Xn /<Ǘ+ifd'yUc3(|&x fjѣRuUCwCǺfprC4Q(˫#&fpLuq7{ "7ftBU vR8NqA=@xf5<6򻓙u]2fKG=~t*>2nfƎ沼hHB<jlL\fddt%mIfF+Lժl2\0f'tWZh`.˗/fvt.$pP|@W(%6fڨPH㡠@f+7K\&fmiԽsť(mUΆf /y$2cN~ f/J:v%gSyOKfKfkf·/(nn k_fsk\ DS>vf(q3)9QD_f] Ø_nƅfP(*]w(Od:\fPM6"ުcbf3|%5)BX#Pf quoIY3Vfj7ʋÜ" m(f<O,[Cg_SD:fj.4QlnfҲ TZ`^b%oOf Q$I> Qaf1Q`V0\.A*Hf}w+=J(|fjb̫oCC(Afpm\يa.GO*]fK j-jzJ{Fff7 tWcpfx %×GoÍfTMAbfnH{)Gbg I j>fhp9g*AnB͍u(gWt6yhogcZUIgc޲]B)&!4g4e|}5RhgW 5w!A`hɏbGgYE , ~>Pg FzЮX @pXQ٪/g! 9fI:Y\ eg!*SL6,* u0:g$4[5ӢHMϛJKg%Bl,D%Q}*Jg)[Wa-ix>ģg)}cVO笔`ŴWg* &LS-~g+Z yk s/tjg- 9@DDx)TGg.{._8@84>6gg/ڑ0d{:V6g0{'V cW}qFg2rGdB6g21 MN5^g3o|lScZKlg3柸kqu'8xmg5:>gH.ިg8hƚ;ُMg@!^ayJCgAjhgkHɿggCBnrm_/Eq ]փgLZ/<,bCgMK\jWçBgO~6PD}gR7}lܗBءgR`P ѳ{QgYBy`o.1?{ĈSZg[F)b. gb%g[0 `Dc&,#gbVj[YN3kmge.aD"NjBmgfGy!TUKbggnӷhn0ggl;y 1ȟq+^gnjSRZ\6 goOőuLj4gs@w̟G(GW'g}Hb4u ^գI׌Tg}y(nI42Gdg}øR|eЫXg}%դ픬8͂"gU^ W}i~zgh}Oubg53%5w䋏hg߲(IT^X7gNnYGg ڮSo􉾾g~rZ7#u22yg*5-G\:[Jge4C$!egP0$v2E |gud#$(,ٽ0gՐԿ QgK/G=U89Iܫg|BZ24mg<^*xSNgccv [, jg=x)Fkg<Mooc 7N*"gô?F-TWd ^g:)[97$[&EgiB_Y+w8feJig/ IUV˹rg xvպypgU mu"iU/g͊MM"g|P xqGg^≶o,g2$ eyg˃8'&jM@g1è$S@j;Tg _>s;m,DgU?iDS'q<gٻHۋʦnőTg 4;eO.6tgroG^dsI g`UU9.Qlg`؏&Zـ{jkg>}&a *hײsg?YU80YHgP]N~0f?TgUW$tӯ>)gݿ01,5#PMh c 8BNrBh(p Ost 3_hg01"@:O(h%+#- g]Uh"ѯ.ED!vs''h(NC\Bcnq}0FeCh4tKJ#g8jFh7Jl.%aU=h7T#Axe-4{oh8Wtqgcݽ}ph:Nѹg>Re]nh<RO31"t4h=zxM|;kh@OUly$bW:YPhAc>wBߦhFgXwdu6CJ!3hLQz{<$R3=7AhMmV׮񇚔hOaKb66hP&T% Pkڴ/Q.ҧhRIKW47{"+hR(ڊd'hVj#"WuF!:hWUq5tlSThXc7qh-2 $hZi鄕z|!k_h``HSN+whigAFQshm}> XQRjhwSz } `Nuƌ2hyG5q6M͙%@ (hz}GMn*h;:l ˭!ъh2o˗aILh٭۠Ao\`} Ih"LzwyLB~^]h p>XS9X17h1-N1w_hz32fX-%hhTBo9 Z?7Gph򂳀;=)[bT3h'z)Moyett}h7jĔ9pqIh׹J>d?c=_ f*h}j|&EUh;o Nc<h"e.\{wlhNX;ĝhC7YzJ K=$hp›u*WhљK3SnS^Z!hd hvf93`nkhnVcjtbZҡh`˜ϗ|ٛl(h{gx h&xqP(tk j h."y۾Nf;awhɚQ،u0p/ha[y<gðchLw? %E*h21oq6h0CZZȕWMhĊCq>؜dhHRr]X)4hխ~"'Ph,ٴ'Sv-Ib hn!X%c$Yh7)8CT/3$~h0[uU~5BYhs>ֿΫwpch,}$4hA䫯RyƓBh]h]T!%7^ i՛qՉ~08ji[A muu@0Egi`yTʚ~jZ¬i er42>P7,)<fWikU-W y|.ioO`GW3i ]PPC9iL %j%OXО i&^L^cS`U3!i)S?Éj2!\` i,V}V!%_l<Ki-./ʏFm{u`7i1? ez^LywFBi2Skub}i7- MoqI}1&Ai7XM'4i9SA +_-| t0iEsWƣS4p~"vgiGBL/Sr giN4[aE1ziRdw?wR0]iVu2Rxp& ܼTiW:L3uA~x폗iX/N}Ƃ\iXm® V "&iXrY&8Mܤ5FPi]Uo7f CZwkAi`<VU%6M!>BCihxh*,Yf'T~z:_ijȖSe-&il~NU 4ًACip{c; K'g*lmiq$",]itQ"hB\JiWb>iv=i;b.+NPizcHY_CR`7i-2Q``T irltmmF>cCIi(>ajS`ia@g8~;W[ "8i802H{&WimEƜEcii!%BanNy Di-ú: Nci<!diu>&vm}׏i? 2VB s^i!bli+uI9: ͷ4iw11ܫb]idZ6nt|Oo3i-7_ ׳ <5i ]\`yE"O0i $|riFȔ̊d$t6iTeHoY1.LEianM0&K?>]hbti Hp1 i7w#N2RPciWՠ0^뇀X+fiՐ6G%@*@bWiϟ5\V6%ݚy-<i.^YҐF*itM0XN~* i(;T2|ڬ.ípx'  ؄i<牀*R@.i^K61P}R)HiODhղ\" tIji4C$ _#|V5Zq iG6hI `f i(johjdϥiu$sȽ,[email protected]Nyubn ui]AQ1\7>Xi"eUU 0nRi,18,9A*iM;uà=gcg|Ti]Wzfi]M~gi ॉEJ~4,컖i3Z,3~/j_i!1ci Ω+;i(8%VV0i4§_, bcZUiT $ato"jh>{{EЦhu=,jiN2^jetmr#uTjhX):jleSoF_Tj>- v{j " _<J|1jhj N늙i+o"bj|<>$~Gj$nYN὿zjVv: pRj^ËohPYiSjiCr{WwӶ=tjki^ՅGS%j!=÷oq@фJj*\J%%ej/Zk/4SyMpj14P(=ܦr8=j5 'zQ w'j67mhnb;) K3j8rYf3fFk,ߧ+j9=֞i{DveDj9TVl8GK;j=1pHYsej@~;<겚(jAG=~ĊM)^jAw'O%hLN&|:jJ8c-ÆW ,CjMKL> ƂتojZ M$}֟jcI=+$'3~,qjeenNsm;IjhUM3c%D{B{lˢjkGg$Wrֿmnjm%;R2{gjjoTy_Cza{mqjr6`ڛb,Fqjt3NC jxy' QW*Dmjy+?د=#jTbpl)Emʢj%Wз)JjHgېPDX:djQ$w |;ňj2RSd;=A <j1xTV2qRj gR*$ j?!\KxGOjX K6ӆipjUqQn b.j=3d(G; ڤ?jY%eP680?Ij:xt=U/Fj;[݉|1PR:8j ,wq^qi;jSDp#:e93jfF ob:jL+]x F 42Luj`mPиj 9#B:oj S7ZpȖ2ܷ|jIu]P>jDZ8,/(&#jΉnN#w[R&jw1'2UV|Npjjײ7 ~}/eYjp-Kiyj/ICj޷.>n^OPojі9c)S{jk[ wyobȅyj爰"[JfSC4j*Ux^{gG{vjNnf" ,j >QT1jly-jOs)P]\hNjn'}%QcqGrj\-9 WֻtjRI\[2nLGLjWA {ۭW^n5jg>obp9 4mWkk]0kiBϰ3k+=ւvk_ O[dDCk E!P5:1zk G!+7kks`W||BkB_txɯmhtJfYkI`ʩTxwk)+\Mn}&k.Z$:O>ِ1 k} h{3~\k(uI=?Ǒyk *<6w|Ћ5k&EmPJԃS-ѼQk+Go3PNL-H}=?k-xW^R wrk2.D+3ߤ k8 VNy'%k:R"5uQ=:ak:Oi+}>fV\Lk;p8l.?yhokA:akCԏdfy{΋~5ēkJQҞA2[F4QkNfb]kO[AlN^vF˟kVlV iܼȳbkW5PvѶq@9mJSkXMD]*`#XD.k\ư@9*ORn\,k^s\C'i ,k_sP":@Xby1k`<'w#8LQmRkbCEuhuZ4 kbbPc wt{kdJ́vnEz`#@kgbB| V.Ζkl?eY/G.F=km ~jX6iknM!H  s28kp(TD/!0_`kpV+׏X pRkt7%bQ hbKNdkw@8Ao?|V SODk}7VULLŲXqk~/}5K7p% k|K٠O}#\k|p Ô dMkD&46i(k% ~iц/#<|!kF?Z@{nkhD>H;s skȐ`kC0 OkV<"tQ;Ul&k`#]ƊepڪTKkK](w˱[Xk'Ch=kq`{܇HkT5CKwbdc}k@?q~+NsYn J(*k q:{Gڅ=Nklq*q0lZ٪k.q17zN|?qk %l;WJ1Ulk0b1FvMkGn8EȔ.Ntk :WNk^RA!k}U6 n42<qBkS1PHurkY,ʰO¸֌2k9rj[c^kָmY۔Kml<ʵkS: ;ãe`kA{bd}-R^n'kA}h 2kaصk7 5 vc&kO0@/( 7ka3⥈ Uzk.H沗I$ l`k2Ap~;3 k4fkP /2nv`JAk7:`FȚwtkMVӷ[=sz6h(xkJxT$*2ck\}o@kXHCG~kVAIy¥meVA>ke/xnmi8 VlBkTC`2Jۄ̪l Vsߓf@\ l _HHN*A<lswk,[Q|,lI_LtWMǜWl_3ZM? 66l&卻=:g279 lohPӽҠl"ҵh$p$lAl,vD"qk=-l6P[0FU4*l6̙PٻoZ:J:l8]T4NI%btl8u$Gd#X\Y:l;'BF4/OQXF<tl<֗<F:['}Bl=i IEl?v` Ϛ˂lC㠵 {JglDv'1z9H^(Y!lJܔAԢiHlMK }GGlT*%@ Yim'l[.Xwv l]mƐ(毪L\ld4W"U@ɒ:}le)~ a:%mpǵllL8*;\.qsvlra\) HM%o?lsm!З/ClI?f_:?grWlY UTluhG UPܳ. tlC,x^X_x[8'i:l 5DOT&ilr~з5{llp"ELTm26slHVSC_$Cwc,QlúfbmdHlKVKT{ lYi[uս)HClLa#F lI7l 㵨1Wl򛥄,*" 2/lӈ=L^V]AblBЊ t0&"·Ol^s (#l$gvrl(Fa6&]lĕ% _JV㓓lޱjk8__l~F̷V]KlYζl vumD'dzl]y0e> GƓ"OmG_ͩC\5ھZm U2d:<DPm]ABF/ m|jhQm`6g rć tJjsWmz}C2 w'Vm'Ɔ2iXum5.HM۫m PsD<m"߶U~=+Wۧ~m#T@r֤V+fm'Я3XT]&MI^jm0`c1Rq>Jnm1%m=cx >*29m5Cc_t xZNJחtm?VV|W̝EmC,f &_218mDشdQmGsAmI輕>@ny\&mJzdȘڷ{XdmN{bݙKKK<@mOc$2ۮ`!}mP<Fe*d@=e=.tmS7xU{ɇptmT.X]g=DFTm[FXaq:m[`ә,#>0bJ Bm\FaʇGm_~ʼnt=6+2maw];ۜReN|Fmbr:bk,4S>Wmnˈd / Mo msԱbb/8mwd dm aS[umz̎$gţi'5.{AWjFm|.b^J Tتxm|ÉMjS m/` @@̭着mSBu ׅ(m;kOW0||%kTnm ?0imZT(NT"6mJW1\bƭ]m3OKaZ'm~ ŇL|Ɗqj нmMfxӹms 5 *೤m+zIa%D]j9{uOmO ؽE+s::mZwvUѱV6mɢqGZZgσmG,4-0=mxslxzysomQ r!0PSmCו7-;^W]V95mZܫZtGIJoml@$c( 3mc:>BjxBZѹ}mAm`:/(ʨQm 1)g3Xjpm^'`m+lȇ4ZIe3f[mc*c1eM$mc`S!SP.F2mffɾ3ROnE5X|zX4GM9:n7G R7i n iID Qyn7 Oȥf[iPn 7Ktl -GO5ln 7nTWɧ&rlYn4/!yJ{^!"ns+ >qJ)nLp+f׿;ٵ4]n!)Ĵ=ՇvkH{n'1?O7n//^"m)K;>n11i]j KLn43-aG^z/ On:U֡Vs ]n<c%'0-h^l7̶n=BzGGbl73n@9T!pvKq8U2nC;[%ަ%nCҞ4E͙IghFdTnN)3ڟv?E+nN>#x#K2nNn4Ϳ3ԟ`L%nS˱p7AnV;8$sz k nV믶Γ]5U%="pn]u~ԥ<$29.na !ӸٕnaP(uM:iI-ncp>(דfDnd4bv[{c "#3~nh* s+tķniY*g cAni fb˱%f|d!jKnjIџ dʷOj^n%>-~fR:nba6^ ӍF`MrWnkZ8^оAnK躴Q[慐N(CnITh<mn׳L|?VbN/n06 - .D?n5L[9OdG"nO(Sd=z5 EDnNۡ^\;^jWܙn8z]</nl"˽4sin")}ۓ2yDn8@4n5I-Pn13|[&vnpg*bb1H dnRiBBb 'bFn.R'a[xn\b.Z;@- Dnij) .Iءv=nCpVC: Ein:8eC9`d3nEe\ Go׺/nmH9MҤaMn!{nvsXpo `>nɕ|ıp)Enc_l$X1Ibnizդ=,Bn^ta,{P_܉FnS }EP#'NnZ"X;ғz,n#o(#6 1ִڻ`nz[email protected]xMp\&^n; Sxa|25nD2"V+VScAn'1!:ژҟ[./n҈{:*fxn&}Bϭ:2ұ-Zng4_xڢ@n-UvC,ve>xn?Ek =0':xou߇Q'o ƴNqB*Z,olE%grE_ oO4KP+smw\:o3~i%6Qo3V(MڈA>ao*lҟܑ@yo A!D<G}ߛEo ;z4ҶBo!ffW"91ZPAo%F7 l Jڥao(36$+<Bwo(VBaìz핈-o(%r?,")o-oro-Ϫ&hL۝o-ZEҕMUbo.v+N#n" o;֕ &y Uo<5e}1e{oI蟴e F oQ,MۂiĚoRG_k"<J~]4 oT}o᭞Vgc=:M7?o\åOY0 -7Fo]: BgZ)co^J J&亲PAoc_FkRӢ31U-'Coeb<rPx=nFzog۵%\j2e6]/oib9ՕNKHaLol?@p<Pp6om]W \hj0-ѳor5*sn׊uosYJ<>Ȋoz*ϛO Gσoʂ*ibh!2%ford]D_Bo.R9!5fG`]oDz<lm!ob*pOÃolX:(5ojˑ'rX! jYo0{$K"-oee6%0Lj扉Լ,oewSfxfZ^ogĞQTфo;opĴ沭5 voC>MDWj lÃ]oEeD>.bGr['oɃ, +)`voAB~t D&o@Xޖj)=Yo^,46bL[겢o޲WZ}uo`뀬e$<F7oSSWwa$o@]oh'h' -os4"B1+r0<o)R&;!c,F Eoۇ߶Tz*?zWyoSvk{ =^zoLY9eoJg#mGs<}oKEG\֙,bGdɽo T/ZQɚv&,kko5),bUv%[oĸf*!aE|i5oqVu{;o O(z)3JmpMJWXޠߞ<}x'p,D(=W2Ju[(pТ |/E p!,YbgOTp6a龆_\2"pnL\9NwRp~Z$'i7q?ېt0P7p 7^S #:gKWDp Fډ]A<c(qEpsl] H3JSnp0{ l6N}p!{IXgGǮp$⡩d pSp%<1-2 w@ ap%"-<fp,⛆0D¶7fp,Mg^m_;p0aHzpNr8|p2?p?<{Ҍp6u~7ݖL5'\pFNo*9pJlDXBA]dpSEv2|HpYVo^&p\`/V"clp]"k}JzӐW1p_C[)p{u$RpaDUQ! J2pby 8g6P`(6pb.N~.T>&oהu8pdM9}y]c3pd@4B>n6pjH[@Ѯ.L1pl{Jٱ< IC-;V/px jv! 1/?p{""n'C!tp{ЇvѝNzeVsp 8o,hTp29R,4Mz(0pɕL*P$cj Upų[ճ` 7vVNkp W.+ߙDdUup;d A3Ht8psǜ CgMKVpaA:\c{T }U#pNFdӃ̀o~pQ3xX(U{يEpά 'ZBNpy#㲁`~U:DApm&M_X4qXp0% B 2@p>w|tҊ?pَRJKhˉhVAJp3/C[pTDDR HzpEuG=_k9p #&"dw!p֨ &Qqpn<]Epk/ܠRnRmM2p;3Ҥ ްM=p{>-d m;}Ap8${FctJpTΤ j}2i p;bG,=G8pʋ*#v 4]ipׯ O0tJpZpr#g]S Q4pVS`lWCՖ|hps7;*{'UşK4Op7P&Ph%$t w* p,k̅m_o&pPh*V./p{dSA.$}pS>:Ppnuϲe݆u6^prmUT:1 VpGR[,Tݡ_p{i6 baZy2pn^ +^;/qHrDN#⁏q _TA_[#8"q rp@f P>$qEZ/{7%~߷Wtq0;>5I0q+N1UTU!I!q /;ǿGȯq%5狔b].Igq,8~}]8Nq5>ח˾82=3]q7m,uu6q8&~ y7:aq;S js ٢Z/eq;\~Wi6Lb3&qB8eF;9͇uqHa&B`V.d^N9nDqJK]q# 1<'qWԬwenФ,^8q\ɜ֘xt8}#FIqapOZ|8AR#qf]<U;羦Cqg LqcL]#qxmqk2#W#CqnyyA['KqoENWuFM}qw kZ5zLpXCq{7v߿r« z60&mqFP!G"[~D,qRGXzhk#8sq3l\2q9~ExEXERY[0opXqMCd|C9մbqmILʆ>-܎eq.y.iz%ž盫Jqfm9~1q6k'熤=G4pqUbx^VOq 'ӈ=G0)!|ƨHqD_Y{%S:1qʞ|F'lqYF6F!'3wqueQ<>:qlRηeБ'3q)w\4"@0 zq - .~fPP+qEc'He%#BG_qr12h7yTdqX "l)"2eX׈q3 ;vpܢkXqQ%[SkiTLtq:@BsH= #NqPӷrBYrk`eq̮ 1OQq -X ^P36q#DH+d^q>s]i Xphq5"\} qlgzq+FQwq<{^ nɗPN"q՟n[U8G/Sذqj@+1tOoGBhL.q,̀T]Zŕcq/LZLxeq xk4@ 8q`ݼwZ ~q讳V_5#Eq큮H ;3J zqi^K|nm%yq)Z9U?t~q=Bj&ctm}q;hWƢlqqs)r{Pj_q͜~ \}<rRnaAUT3(kF4r:`KF`pqjur*;ECrtf@$6#J59r PɃP0r!/F<}/N;9[yr!T`*^G"k(r'[pI*LHaPgr(ӶL)E$]S19r*"E6r+@}kc7t#r=@ 6sXc_r?nI|3TydrH$k"`ʿ]rIH3N1@rK}![,PkZ>~rLm6$E]}\MkrLYYت=KjdrM‘]HԒysrOmN1-19rW1҉B?SGќ'rX4v JZf r^!jA5i+rdgU%s&ZƷ7rdJ'1dCX֖3] ܡrkNDh9μVrqJHcoܰ uwrrPnd_Ú~Ͳ?rr|RC4Hѷrs`u'6,rsAJ(fR(Dޏmry#YkX@rz2*P)wr}[n %4dfr;L- rsݙmrqM oeI{Yrv"5t/zrg\ @yY5r΍MK6y`дr Un*'VUL7rk2xBh]Dhf|rް bt\&M@rΟ%=9dyIBr"eGJeOcr|΂sg=W?_^r(YŨJo9OJrBuxڳb"Rrd'\aNꜲrMZn^<yor16{@(n'RgrW,=A_wkrPvum_r+(ċ6Blrx8~_:IRUZ(rL p&EVrAE.rԋ)٤+xr io&<ymNr L;mwC+ p,xre>DG Kbؠ}rՅDآuMrZU 6rKZf' 6OoP{&r.RQ,Or~iN뜳`e.r}uw {~=[&rǰ\~[{Bǖ9Qr}uY[i-8r˓`-{ hC31rfs ů72Dc9rΕlBb"]_9r?'}olSZ^3{rrVr &I"tΥsrcm$Jfš>1*]:r~X&KcroJp$)Zb r_E$7AU rM982P!rgHDXCu|dreękF^ryvӪ.E&]rXj-o< !Arab]u#0'ĨrO_:#=sWyC[s%B`jdvT]L_s ҿ[h2= 4sQE  r)]q݌sg9~~Us*욑N Ps"e g3&QCrs65W8G0sdnN4P|gVf\]sD^iF+ņ}usuņyrxCQeM s60@ u s1{\g$~ƢlQ,s7(x!4,OױDs@&%XNo=w3BksB6Xz~+(sF\&Կ_2sH,;CvsLp~F|EsPsM.\tI7*AsUj_"V;$u4ResVW$ꤥ|fLMPu͉sX5m2aԤ s^^o~qV٥(/asf'|$Eh7c sn3[g 8k.oz su3%"oMnn1@RFsvnH` 60s{%? ]s||NWw#ؔQ\s~?*EbRvs|#0p+6lG<Mzsn3*$vܬ W!s O13ȐMXs.z2RYvT?(z`sw͇ba.sVwZ֍}&Qs)]-$Âe)s7H~c*spY6_n!+ j$sű$6>^.s#Adda}-Xs6#<ƌr&] s4a;5~ūs@KA4 z&y)>8Ms-Ms>( hBڼs{AQV9ks&pk2Ӆ8Is1nvoǯ?ZpS>s*ױiJ|@Uk1njs5`XGs&s`r=T@B;)sթR˰ΫsȜX@es0B[`>_%*sԊ.ȗ)f/Rcn 7s\\hnsp@U\p+ts/Kӟ%vj͛j%s6 !s(l . 6'M t (SU) 0-wt ]$^e#29Rt S'Kj"1Rȥ tϱ!1 Ἕo"*t^#:cD$OxSnTZat4Aɠ!dtU X#ͣt9,^gt{N :lzk|E?ft|FataC99t#0"`]5z6 !t#\FW+±t$<h{S 6%̙t0Zc106y2Nvkrt2]9O{uk3J~%t59j\i<v6t0t?Ӻ#?l%t@2 oL/t@0䖚v\2.Eu4tDi<^օTH]tFqnuH֘StGx}Z,9!>tGǽL<%}tGņ cUtHdi #5G.tIMC? 7d//adQ etM8o0ZFaitN9q5b! TetP+>Wx<Jt_+r6ѣ!~J[tb||ZD8 קf{3td4G|\ɪTtinUp BP$ѵtxPڧLOCMϛz8ty絞TމǢ^Y4#tz+>bMwꦁ;t{E*(et}DrJw+Ua̫:0?tp Bq){/ t5 aj5 /~^Atae,'ڸ'wt&@)JJ;uTp_t?Z)XFDfd 4tVnKtSOftgA~",u#t}Dn(8t1s'N*v{u,tƁHlЎt?V1t 68M[toiwltkE³Ag_L6odtPJ EY9t76A\gtN}VK5F#/<0$t3?+in i;Atvf\5UtIl`x0t>I T{.;ctV24J7Jkg}'JtCF4g<Ekny+,t?bfG 1_Ct=N@V h4 bzt~&^ gst͚ 9 ^$kz(t!v) MG~YFt'[5MOQ<tDz\x tj>D,>K`\BCtAP,l֠%tםr~z6f@tfa-NPʭْtjU wJtk4]/t"a|?!=tgtByۯwe>@X?t则96xɿœ;R1t[KG%ήI 'QtJl2ѩ)ZtE0XRPtdVDw#SRst+oW9S=bta"sKSmvrZtq&(wW-Bbt a'ET9tn),  Lus2{Ϛ)r,uyf|X=D1>6u "# u ˩ bu"WH#uM㗓xh*U[u@F*~rQa5ud-%$'bQI-ur'Y˰ރZ-u`/API d? u 5w.K%hXBNAu!%P:՘o&u!:D5|KUQXu$FfxAL`Ku$鄇R:_6u%8tb7 Du=mz?XXflyu?LU(5a"tuZuKS~V o&㱓huR?檠~RDŽouVY/,n5L vCu\nD_r\tBמu_Ve@םM0rub ]TI_+AucYHh\Bb@sucjfbU >'GudCacX؎G$jo+ukgNn&Y?s1k]ukh"4dxokunD6@&O;oMeupھpFySP91ur4' ~ Q)~#6\ uunh# uu"J8a,uxʩ8R.!߿$ux 'Lڦ+j̗uy|1p(kP=u}&5/򇞒z>t%BQu}OOw_i\u`)*0yTzU@u9v*@dSڪu jwf{hG:}u9˙LnuMu)aجj ] u:{Q x6 uy͢j/SGi%uˤvk|W!L`u:NhJN,.ϞuxJ!eh{4|[ok% uzOȐ\ # "uuωuߒow~A5I'Fu`-ha="ugoi?9{p uTts*AY $ u*(5YTsMB[*u4 uGjfuȪSȈ)Duu.j9]sJu6t$ˬz+uzϐrguT ju!ǵy쮹Vu~Li[-$4u4U&JJpvjduQaì1t$tduԍ wO\>t!5uzQ>v 4u 7uޡ 4a L)1XBu d WM13u7#*/[G2 1u1%<4=BP(j+u$=CX[+'[ TuיpJzTuDN} A^uo]KͯB#T v>_ Jk>@vN{,,m v 3'`sDi_7v _(v}oӕ^8vE$f+AT~0v/$u"yD-4m@vJ>gܕ9bYjv%Bv!Bzl4h}v$@gOXWޛv%bn1 :_zv(nJP0F܆?D)_Ev*µHuC -rv*o_ȭ?hv/aN ?O͝z14v1:i<C+2r+SA6v4 `YEn5-?>ƥ<&v;2_>dj%vAn^֡ރ%h$(OvF(75PUTu %vF+o%۠'[vF[_CFޤGujvKkz"?A~BIh, vME,)|*?c{vO\_)/7;NLvR9~98vYP,xbC2ԤGݟvZ2gY#՟ v[Xf/$`l$:^M<vb:>UzR;vey3֩'w |svg}VCǐW@*vh=Ʀ]/.ԀvmH{ro(|ovŏj R?S0fDEevsF X"r\uvv}/ ZLDe"1Nvw+ԺٵhDjvwp_Iur޿5vx`ϖ+4<Sv|jO%It`v}2vԻZfv}Ds5L-Qt"gX>vB-릻i v92'0ϏK-v=\r2ò =+9>v- <ΚU,Mv`C:srQGbvZ(7ھ-R%~Q'G~iv`~ \h9`0@vMEO cgv;,h L/jv(3Be޳,ؘ0֍vôTUL⮄.Nv5)+wՉOwK_vhkC0!;$vǥi(Bm-Gvޤo4mnv%8Mڬ Ki$vzzq9R vvϋ D`TvYӓXaNNSfNvМzc3rc d v=Bhx (AvӲTC~w˰ j*vցΩ""z9xv:`Jؙ9^v ZH]p̚Fv]Cpwk.5vd' oW7vEU88Bk,*d8vxm^ I[ȧveإvOX`AI1vcĺ5ga{ vΜm gm=f@"vN{zaq"-/v&6xNEwn"<-sWl1zxiwy-l1> Xzd5wӄ3t)v߻`Bw J@8Kƚ ,?w xCZlQN`w XO3~}j|w^.DQw~+79Ȑ{.(wE i*uqNj"~wMYq1j+t> 1[w c0;=㶁ŕ:dhʕw$ sPy9mzχw+Y0doWk*w/97&q)Zw0ksD߲_8}_5w3X.493_`w7GUo  ZwB`ۙ4WTh癭^QwDl}Py*pwFN$C*1(hcwJG2ns#,wT0eܐR3R3BwT=QnLXnwX Z{З~6`wY։jyVN-ww]TȊ1ī6=w^DcAn:O?w`!jAvOL3w`g?b[kBwbnK}&_4@(PUwg+ 媻%$L@wj7J(^wpN6zkWq wpJeOIZSD:\kwpM<6b<Uwsr0=W8ô = wtt_'Џ^0Bwuy}(+~wvA!w;e /9wx nĜjZpv;w}s%wCj 9q^rw}ܢ<)LI5#,w~ʁ:0t,yNzw~5[t{r9$wF hw]4K v:LVZwh-5 D\CV w1,'h5Q3Xt{wOBgR7iuw ֮g.I`Aw k]7G*;/1/wEDNyvw"MזѺvw)BDbkw( s)www`΋C>/3vcɲw _K\A tDwDG",&YtX_aqwױOu$”0Rmw9"|Uݦ#owo@"4aWuwb^ݪ>0 wC+ gb<Tzw? pp̡8x`w޹lʯ:DywV{lP/VWwKg06B>swW`j<wz2wsqV %wB$lqz.wK1^JPJ\mwټ. #%Ʌ^ ~={wܺ߇\XA0wViwb,Ҡ? w롳w2f&Ķ7N"~gwϔ61roF6@wfp8ب8:ޓ<w#iXjkPyKZwq?X ፨PwEYrs??w//Ʃ[zw*8vTNn,2 x|]"7#cQxG" EOC|B`Ski\Zx:U"8ckux [&E'̦] x:Y+8P_Gxs7;e -UxBsb:aw`gxh  ' PjynxP("RzxyX쭏ᕐxUvK4N.-J/bxD~ͥ+ig;%Ox @Go-[xaJ;. *yox HG@b#<~=^Sx-[{ Şn_A+x0;u4tK9V]px0%h}WĿqspAJx3#R-t!)v4x4PHbۜm x4fdтзdrȁx606՜֗$x8q-[pU҈.ox9J=Z (rrx@,_B>>[rvx@+A б/V]F;xG_>z:,lnLxI :lqxMVU  /2]xP_50}<wl xP;KQrxQuKxRm!ҶPaq-ahxV9ћ af-<xW jS4"<-=q<xX+Xd[cx] *#S{xg%t2ys>S}jMxiTnn,xf0,xiH{F.':xk2C~ķYڊ/lxp<Q\~UsAE(oQ7xw?9D镯 O>ox~;j,Zwox]o }̑RAMxbRdF(r|N.<>x< p卡1"SxNޛKxBhٍe~x+\"qh\xyE1aùux}¯F5DQ kxY]7zQqx^4VJp^x&<itK,"8@x m{`L``_x"_m.O BT*Wx0 ~,9e2xxӥX~I´(l Tgx C#3 )ɭ$ Wz]rx~.BO1XxAٟ]^mh%7V xmԾHRk"x5QF݌vTx^m^C#z&xP4@E] gxEt cxDDtxθ:?1kZ2T!xtjוTJC#x,E/CcPx=Y5/6;&8xqzFPp|',Vxyufȁ%Tn)(,xƨ @5Zk ,h9xJp#Xxr-шnlPUHxݴ`f ñOqRBxd ^+4~Cxt8܆3u-x|+笓nE*ĺY=zpx*B+»'lbxQ7&|;x>Qez ^|ye 0ĝKhB Td ymz9k5`}LyMmAy 25dmv w{y  ;wq3ϳ9y hEvi}uC{yM@DhAwJy>oz0ɑOΒ5yVi| =>qS.^y'Hyq%hh{ +y%jPبq~Ky܉EtbWe*y"Apy$:InԼg,;}y$\K:atJ"0!ry%=Tfݙg3sy-`H,oRbQy-ѧ[Ҡ:˴Ry6-l}97#y8[Hw8("ۀRy;0I^/5}y=,y)шOt" Hby>VNK n/_(ryA RJ_&uz[yBF. ~;f7^+yDf2.r/v6xvyDʢX'7yK:+ &T'yR*!\w݉g<7yTmj0CdݦyZe?50-IYhy\F} [qAZV y^g`va:V܍y`Raw<"3>gy`wxD 辖Nskuya/.EΦjLVNyb_i2&<s6ML,yd{Ƽ`!LݽlkyiAmۥBVAytSjfMc+Uf1#~ywy 3ͩ y 2{2yK2GV}#<6ydr"+Kő**'y k ,,$yq?Q/y ,{yL$W(zyݢD+m=Qy'8 >-G#L#yʕkx_d Yy`zf/- y: B,PgyC\fPS+/cDyAkY33QyqƳ#gy@观UmfE'ywI4<ܗsayuRMGwQ&۳qBdiyM?ӲA`&gM,uyޅ =_Ɇy*̮EyDZPayCS &Q_vyPi7-aF:z"y0ũhHs.41myPizؒlt{y4=W#Ɂ="dT_yTV+ h,N4({AzfN2Sh Fߩ]zd93o6 cD6ruYzАy8mֹ?4Ŭ]{z ೦{]L(\媛Izs藵Шr?Zz(\iդdDo~Avz9D:(%*IC:z#B>PYZ{z#F< Oc!i~hz%_sNM|\hz'|h:8LjEz'D3 Q։cz67#҅ tϴ z6vh㗼jJ z9D eNf6tWz<NqmQ?}+zAJyP34RzBwVTMDzDnx.\nO1zGF\ܭ<izKäX4CDŁd}bzOiwVHHQ ϪzP'.D[}rnzW^omjzWՃq!lgqaWS:zYT)ug=ZUiz`Wf0DxwKwz`"Z-ءS8H\=zbK]Cga zdW5]I .xͿnzg )Z%JΜvzg3bSan#czk ]foޔa`zn11?!ͻ|dzrft*Wl|N_sxzuޕHsۖ$z}&Ei'<zmV)NhA&z֩cNIҿsz閙oʬ_&Jz<rw#IᅲGz mUG/Vz=j u ;?mzՖwX"N*xzo{/h]|F#NzJ^dU#kXLzy#Ǻ]M0`SA)Gz> TuvzA !AKGMTz`}2p6xIm z&~w _yUnz0W=ZJ/Fχz%_m7$zK;ZCuM'm5zTyRaX\ ؀z!@c~I$2Nz@)E4,Z1 z P@BKoK ^zݼ-+Еfu)z_OVaCkzi@N[ZzVU{tӘ#`7zjow y T0zj\ahňWz=D'gߵ= Hnzu AP}6`w]8@zbD::Ϥ΂z}[b[ ޶"*kz `RQ$=l홿z>{:n]xն_ր{b9e_| dVo{!+EF{ݛ.=$m^Q"{Cn}Ht {3 Q@_NW?{ n 8%@ {#W_2C9)2Ea@{$*%ʭvk{$=I;0W%sa{&~^OrXvBbk{'l`b撫}~|{)&PMāڥV {+a KF2:(dq{,Aij#(r%hd{- KB;t|N{.CEHuyqRp7{66i "e.VLI{7J9z ՛*zaR{91,f1,r}{=}*G-h̵G{=8Z*tɵB@VnO{Dn_?q_ƣǣ {Jԡsr1ȶo{P,{^a͝5{P܈w/(Ņ)8{Rfi`wD{SCvę]0]/t{ZE; d5 0uz{]fزŤPpke{_QC;s,{`Τ})<JSו{b9X]hf=ၼzb{f.,[ޠhjoנc{i{~JF5sFy{tv=CՒb١^YN{v\EM߼*Àf5{yPV]v7p2a{{=І=j9 {|5XQ xfӒ{\39rOůk{lL.4㭇s{=?ش${;\guu{D(M$h~%{FmghB\  {{;M``/{ J=ܵ۳=3Wl$B{n,"V:9[{D|-,sa [j{u{m_9a{n*,0?WQ{(CVF\n[<t`{v?m`fdX{F.y6g]Od5*^H{yG,`<p[f{k,% ^"R{E&|n{-{g>mm#{QgT`Ymq@{Љ]DtWu8os8{Ҿh]?42ޘ{ވmXfӞHSm*N{?E&Bzwٍ({5 |-"\c4>J{g?[fdצX`7c{MÛes7by#{[J[:O{z)cXA(szQ2{{NYcGY*e{ΒceJM{7-HBȥI`\{M!UH{3#EV8Q+^{{@\" _`_|{"g&,z {عʐYַڔo<q |1[g+ #l| !#ʠhm6Z'4|ۼ*_9BC.IK l|Z$жP|]( TQ;|$jZ@!]ex|ojL;P\(?Fµ|!㺸2d |#HYcJgU՗@k4B|DGKHpl| yN^S'%|"2شCht'Eq|"U'Pi@u}}b\U.RC|#ɍ[email protected]cf|$}/M$S|&r%u`?VH|+|FDo" .|,,Ɏ5.un>c*|4z&}=P=.|6e$KIwQV|70SV0H| `|:{D|Gq $/(|>ShƎ3*_e|G"|><x?|G~5C1Hs㮩|KP_QGPa|R>+^:r|Y*dvA(n|\,,=h|\‹Z%Ǭ%/|\(}~Ch:(-X|^dE-_H:*o|b@MVDʓodv1@m|bd)Кyꡦ/|d!/K*06|eA*tMq}G}w|eޔ t' eIAÞ |iX*h1Mml|j }f{Iq5߂|n1@W=|rG!p!xLX|v 37/<|x`+i7s|{/hck$.J+J>|Bxsd8W1?|=7|rF=;|aD@@e-K˞\)|&TEic ,wLn|@ߪYd@y|,g97bn; A; |2(i==&Dڑ< {|MF.[p߃pO'c|8pF0 H|=mЖTh[XK[|?oI kט*| sgd{\W|<YD}-]Tu|c.42k|Zے1yWY9|◍m43I>e|ŕ eXy<<O|'NU AZ"qt|* 8h}D ?|S8k/*_Wk&|Ѱ,A6X'D9,"i|ԦR$\eh4 B|;h U^i-| {"Ys<.h|.+kHK,hϚl}|@wh Ȑ|ݩ1n'%)ZLx]F||DzEWE4t|Y>D0/uO(&.|εPn Qq8|NHC7Og} f |Ob(M?b|C TE$a |}X;N"ۧ;|i˪O8|} 3ɲKBǽ}}w.Kȁ&\>}!vXh0OVҜ} ,1 '(?} w3ONohϱ54:}n*B'RgSp}Ȟv=+]}._+$jI J}AJƶ6m@g`}Oo${kBҢH֢y5}7h 6?H}kF\Ğ }#9{A8hXl;M JX}&puY*Y<}*"Ys&,|o}+<"/-/Б},2uRq3A:3k}4k?p_jQU}h}6UFu7R@;bxd}:un&[3?r};?ΪDaDHZ٠5}<DrXx!Z+}> ampq0;N}N1q[0C3Qq}Td!EG:Q}VED^e$gԯDo}_"nL=<4<}n"2eP*F_ }pZB [!w7{?}sg-zBk9Z 4}t2Plαl{1O}v\]#/˔k]}v}ũ..}|yrA,8O`}}]2lp}+&ew"/}abcO>?@B}{u$:j;}:x}'~!}յIY}<}AnM|òy}QflO&5}J&ƼtleY}B]Pi%0L}%O  J}r}]Rz~ " }qU6rorT}_ey첂 +X}یd&hROCV[Z}&Wy8&VMoD-?{/v}6*[A_ep@B^2}0GBS)_f9}8Ox9$C H}7}MMd }%醿%B_}0&&`$+w}|O& ̽A'px-}s- s /R1Z3}DmZў4ZE#}GKBtp-&D1Kgz}QoXvW+q}Bb<%+6ܽ\b}v'4 H8}ibKJQXp{y$=*}* NC+ƙ.o}>96\GsxM #q}6B#O-:ef}Ѣ`6}))MD;W}Zr< 6]v _ܫ}#8{ghQ}A8<(ʬ)-(E3}X$C;`$DVb[}_86PsZ}Pm4U*=Uİ|QǾ}t8ErC(\I}hrpGv}_HWN=~?v}KñxUt3'}!M0d"0"~ NEޫy/P~_4Pm?r&65*~w mSq O ~T/\UQ-[g~"PVW9+%~&uQ@6C * ~+Ux81m ~-Cά L7=h]|~-(KA~lA~2|^f }=~2\_Ј=DGT\Ys~3K+ne}WnEp~4˜ ]ihÍ~~5; ~Dzp"2~7HIo+ u~9jJwE~9vG&SMG~=jghQF>R~Av̯3J(ɑs8~I:TV##Z%RD98+~IiG`WgrJo3~LI`V`3~O ߙ2[㯌 ~Y8f;NMPZ~SVnE~Z)-(Sΐ,xw6^~a%6/S!E`~eDž)vϘnC_ S~i >,~pc4G:}=LI/h~p`G2o+'\k~~FXqhV~~IXhkrYsI~U{T!E{|aV\~jc*f%.~T "%.~o az8]iئX.ݲ~ E0|YiǃC+l~hHc&X!g(a3]~DPp18|͊~'׮TҊ$bN~AQt|_R|(~z;х !}ɬ~m`v-dz:~1zwp.~d,ozy Zp~3+%^/:_ֺ x~OF8˺6~l.+|~JSߪ+pL_~Yy|krNf4[~"^ /;i` ~*n_p&~ݏ\ka: ~+r]C0}gh~AnuJ4j"'k<=~ř>˩XkJ){~Cxh,yZϕ~t^{I K92ɳh~X@mXO% 2tD~ւshuڎ~2뇥.qIp~JcHö:xe~ޙuB߇~bYrQⱕt~a$q "z,_cp~']`U?ث%O~~gL\ɂӯ~쨒b%q^yqtvw~j t|/~q$a0~Q!~%Sy4GVk~RC@aE (5oo )sn8M/T4C{pbT9@&2xՙmr!yU()[2~R u Ѽ|{voT6fwcodd) pn0,h: IuH4~^{`s[eU!=@HBl:ey3:ahp9׾40,D^bի+mVư0ڸ,5ہ5A94ޔcZU4:B_x?+Thn8ͯ0ld[W; /YDMY]b?]I SVh!LE~A rLB4U+qAVUs;UTzPGC| Q>Ea!pm?̬Hd݌c>grK$ BWie:MM` &cl!OV^bv[?wWu[Cusֈ'-XXzS{> A#2^4\t J}c\u Q!`ܢ'cj˄}T>`JV/JeUȹ:Goe%s}" 6+Uh)dm١_Ogei:QP^ xnkDV| 6Pl kI~TߕD- 2n eocbRPqo/}_rDf{z7t Ds\:Lщz;tYX-G-sLQX6Az:J"U#~M?M0M3$5!;Zg k듋ՆW]^ sV Ȭ;3{sT{i2ޡJU߷>q)u]!V?Zo>E!^e{NK'|O{<Sk{\LIS};DF3]r8!^~ '%f3?w a2p[$sX;R:=WeOfd6->D"0 }P&4D.pv¹/EBv6Ü_\bgn~Ǩ'|x@#Zbj ҥp&[Gs&: ﱚsE2|~Ċ &ͭ?k"Q:tG}nj:4Kk[3qhTИ[3JHkS'McxD_^2dV%Dti-Bⷊƞu HCEak) ph!.PU<SC :%q֠F-FYd}80~*Mǒbv* Aɗv3_Ň~&4TmLii{0d98 ~GExf$f}][@fuwdi^ e^]ۢ nh+e-<&66r)KS&^S֓XiL-xPgJXnorhV V>o( ~ ~ /đ">{͎SXJW>XpPAa0*-~6Du`sx\57NȀ"b F^y ]t *<=]E WI04d׆,x @;S 8Bz9eLEbxB9QI5V:9֕=-{jG񚁑qvLA+Ȩ P GĀBT?b\ aBoCD;z+xJVe!G:RپPog rK~҇(SpTU,酀M}Oh ۃR>ϼ0MHz%,JxN'q`ِ/ߞQ3kǁ%T^sXЧO\\.]{yegW|, `y.Nvt.k8dn$Eh[@th_Vtk m.&TU킀l' ?t(㹕Qm$`Q"=q" ,n_m-Qdjkpo@Dy+`c} RMq؀.Ɇ8ye:C8s<$f+oY~ ͹L2\d-ۀ~ᜏ9V_؅7%is^by2?bM/kV̩Wȋ2B㱑〇,T=e0F]W}ѪW# XSVG@ݧAȚxAdX†[ yft*>2(^^h۔wIvPm/%~ I=Vuuc:xr[f͗qN8HD^bY@7K;u9ԀiY64T(3uY4 GdL0CSfm3U"ei\I C4?TO&=WeQ"޾̸F "!41%$+qm+Xp[wGCYŒz R2Հ_ÐfbTj{粣ڥu ^++RT P-IEvsm=rSPhC!ƍUԹEvߛ@ߗ4;~.t|ҁ$jh4d-B4T>Fe^wE<ahǀ ( ;*?3!%*!rVKBC#[ F}ɳmӧ|!=rlhw㼂T4.GĢm8BV_fZqFί]-_9Ɛ Z=CKDƳE^I<mmG^^3!>?΀%8+.Q@[g|ID|,/}A ݀En3RSLGcz K]?<\O2!BIPӀxJcT"m5C/+yc/a;y%܁&CB-@ٯ2QђQfc$s]q'P}ׂ[uݸ#&aBMBGu7 A]kpt?tt!ï hcXGNفƄg,Kn˰]& ݝ[w #bmEq}Wv/FXw,'5Q =3[oc}L}"5_=L/6$)% k?8KLƸ4ٵP999 5Gq߁;BMWqN_i>?hHaZCŭZGGP7:(D(1p[L.ͪ) [/S./cgl % :6$Y=oxˆ!c.2[$s]?iٹ#a$YxlMށb@Q=4fCc}>/[f\[ЮEkIj.`Wg8h/i[vj2QWn uY!TGq% wbeQPԁrb0o>CU/Q)s>dU1W{I D=]8H^ttWJsl_H? {2r$yUU`xS|'F+W|ߑ2STu๟F30h]ODV6)T6F@&/zC4zW.L`܄;ʁYhA{:,Ȓ_$*buˡwӴ`q Rc?K5\6,&d[-0/' e8 Vz^IjɅ;JsH_pzv7F9X-ԭ1>wk׎@8_Gfm7T1NR0KBH1R"zKzw\Ύ۹bj?,T.Ŏ2I9j?~5QNɻA+ZǵףH9=!Hf!|,S l-Qas Y[0MN3h+Gߊ6ⓣկ#󁻹l2}YvIz߁yweǕ)|n v=/󁽒k=C|Maz 7N8`{E| 5%wY@BV'M>]<çmГa lNԁmUs&1 i4av =4?'сLuR+[9ˣ嫁 71|}{~kspcy@6'c@ʐOB1lp 9GSpERqGۺ܎,jr#"~4)=!Lm^܇nSsB=ǁܺ5`Z{a=zϚᅞY|#mE.V<7;T-.AbD5$Y TwT5y7i|\R $A!~"c,0ˁ{s`9_hSu+wh^@*0s_&rbtR~ҁMѴq:  "ݚZ)#l)YiLsRUߺl MǕ  ѐ[@ 0>cBSM.0l  By@5^6`!{7,ڂ~=[Z]\wN Bh3zc/, h+N|#diI`zlUd&cn!T`<%7(Qa!)Ib.nEcvX(Q__T·))! 1ޱ_E)hNirC֬8ȭ+cP2RX+tEo *)K6f-I8AZ϶r7]- "iA,a318-;]RVa:<J"S/S 0Ƥ4gGI0~xgΨOSJ$_po6q:ʂY^8VLQM n`b 8$=`dKn7gAU:Qz]};=h1jehNArg~j/j)]to)!k99EJC[al K?k, o:P0~H0xrɤZϱwu i.ur2<m;ufvCy=k(sle {  BhZkQ 壂|{3}1qH9l}JԻk0F` sXg8i/)nR|~v JL`dG>F #8bL܂DJl w[H 6yԁxAoNcrK3` ++ʋGh-_b$H7LJw{0;jIFSjee0̞c* "Ey x6Nzn:@1ox9O,vj.3唔%#i-" Zr[$\~"QJiDyQS )Y>[n4}98> K'U%h-)c\j9s31ϣv*X3@wjQpӨPFjMEc]2Q^du ۀTkv: _\BĂ߻$#Kw5u?2}cy%BlK#1Y\Vv9܂&V$"#Jޕ+GfuE L#"}dmu{;$ΖknͦP<oK>,U6 $\aۅE|;I?B߉v z/.A tO?xv?G"j %o8ÈNwLƃ[qeXyIYWd- ܗKgx E PFCk@O8m@1T؃ݱ{!_(*˼-XӍ {Mdt<bnqу ,*䤵UѭI +G-Q/+pƃ"y=w# { \ufa]&΢JU(lCp^櫃*6}ݜ#X J+abI >}5t6 j5H<{'8V[\+J>9uXD(Z\<A _xas <ƛ+OJcWkAw.秎>4wfO΃C(RG sX(lylE@ϡt&gFXHTLu/dӺMc>Y_ GA?N*]ۑ q RKR[h!5;zԃ`6$̂ܣBeb% _a:"[wV:,fx&Oz߼:"Vmx&L=(,HC{ݳ192)_}@|VdK3= <{˸y,0iAUU >+̓H?2݃g sbdzڢDjσ>*PCc,MIhH6(rVn, %R8e-`:FA;76w4\IcB$p ca,u50)P8quq2%Մ'=o =}m[$#aLmbTGM0n qAT2ƹ4yN'Vzݢz="y^"{R)bS;s%ʪC<@ҿeb-BpzP]5aF %~3ˆ[m/oD_?r6cvA#hϫ)8M㝓TU~ Lc/5ԶKi9XNV|8 B$2ÇnQ[JyȊ<R`u\E̓4̩q?]'erJWiJ*X'}pl,/$JMҶg SϬC(9L7؛;؇v.#J KvʶLe[[ãZ.ۂrkDiqJ\֝_7OH[Byp3/TrEN暡T姟80P9ShwH gJsN 8е/`O/ad•'Q"mJ=t\Xańe8}׼ܬaݖ)eosVQu#Iގ-*>M@HR 3vKLȚN$qaK8e]`+Z:-ūhMk˄>돀Ѹ`x?{{VbPMـYBp*"&FG@PD BTᦌұ؄Lt/ݓI)Tcj`\V]|6Y5g!gW[hiQя0kݭØ]B R5٭Stc2e~΄lM:i1x>FJ„mf  `hHy@66S pr Qy2tyd KrbV|G.2LM&̥\ҡ)>*O TӹTj+xDՄʀcΉ>КCI8Sj4X鄕ݨ'~WE67Ak_n|pgzpsAI$bYAʒ 6ؑ;Q!/c D ַF㫄5Ԧuܤ h[ᠢ qV QEĄyg']!e~XAvϛ\S?bg)Ʉ#A.\nH $&sl  M˦OfَP4 kQ7C鶸 p",.KI1 a- \0+GQM0ˁcÖ}B>Sfx77*U>6̚˄̢_I8#eyo~Jd=8i?4o:$-°FڙubB9i}_3w;a⋏M%1t={GmKHQgDxSF;'NKw vlx>+,T"վ@!Qvд{.V̄O9T|bz&8znN(,k5WA̴a䐫RzS&=x 橩Ǟ1eIbC+6Ҿv˻lf}QS&5948Ylpұ;iTԅ Sª{Q oǣbDž lx1vlχዅaHK  YrRZ6{5TOc6`;$!L1t$ީ$R; mf(ܺ46-@ ȅ 1,C쎋|n!gM}fi(y(!߅$宷| /t_&*fEm@XA`&1SSIr~+ V+LAC-N/k)ۧ 1X~y/8mϭH70jrϺhI ~>5 IAO}BeiV5AJ6j'ӝF7Aš!M9R9*RSqzO(n܅=jWSX'NFsy8 Ksu̷M")TJVNdHz;u-m,Q_/o*"RVU3u#ڮ7ȖpQP\ZgB 4|^M`}B_=%f`q* ~<&cǬWbEh`:r+&xAu f m,'E=IJ]v^;Ak19"O}]zy0W569ĭgh$'WjV])Do$</$6 J!Z86,#^4;n;5CRA5WQAhlϒH'SHϜs`7fBˏㅛ4JQc\R{ 8@tKrd v6ޖqJ3:d<l<A3afշq֞2)L2fr?T8ㅮ} zv`Pd9u9 rܺaHd_⭇WqE;#e^}^t܅?;v;c얭\j &#ԅ͹: z0f3:M 9pvvkhmۈ {rЇ(12NtЯ]A~Am7.Xz>ؾ:]@0oHL7s\"F7K"{(KqĤH\>O12+ 5BS?2[4뒢-(օD/+Y93̡v] |;0Fn#'hz#;.)wWR͔} &Q<ytDZ" |8; Bdj*$FU;^U3R]3]ՙ^ )/>/у?pz OT{ϾKs-{@qPMij2;xE6 S61j ?U`3n[sB Eƺ<5&Ag\ yڊqRD>+ irBɑؖ@7P$# %J!H&Z%M,-(D74qͧ*j`8&)}y|5 4tmiǶ@uf7DႶhc QJ=}ph"ʆE}z_%#U)ZcIp~=ń YK~f^ϧaQN(*_>H KT# mtQ^1rҝ@{fxUo.Tz lڤZoۺ؆c8.?m#[6gfeUsoA:|}gz3d锏Xhy-sooȖ"j0{⡈.D!~E\n e`[&h Dux\PRr<ւ !ܢvs4I"`z>k.yv 88D0MH+mpqA.#̚r:`3c/.v" Ytg(٦75t4MJtk4D>./ۆ~)a1qEv熥4_ߙ1 & a#Wݖy?_ykWIֆFqƵc4(Ն0ҞH}'0+k YKX<[[j VZMm אoII..Ox`g$QqU!w[ɺ j#qLނ )ҤPOֆ-X|;0 Tpˊᦙ =k}GRxrZxL yS@gbQ:zgi(f[.&F2@0 l9 j擏bH#UA?ʫbҍApb\{ eaeִs/%3Bә2gn</¢Hթ`ǡ3( ߥ֊wpZ<u.bZ)+s+<spRm*n'١`l0qo<)RІ)"LwDL׆Cb*4_%_Hb\ *WB 5 Q=R= "2dIGF9 ! ayˇi W܇#W~hVtqGL;tn5(Jv@\Y֧{Ȟ +ڍRc@ sd|<qFҫp ';U(ocu:N…%>G@F6fǼ'^̫2ɇ!ov"vy&;i{Jʗ'ka'$n*?a@+]`APC{!.dUJ]C|20\Navjs(@0ҩQ)\oh7cOlzL' =<t !Z 6ef9ԇ>R ɴ8)WU8@D9u7V-IO#hTG{_CIdpݐD(N,Lo-~Vx o5Nwd7:)iQϙ Dn*$ |TM5<ıSY^fkm S~F\w\ljT\hgW`[6mh˹9Kkcm|y_FYf@멓sʇ}t@ܣ9k} e*8 ~[[MBp32Yƾ 蚮!1k/ܳqQ<fB4){J`IYc-ռFϫcg5Z)V9'[g᳇z9"W%PMOZ~~h-~VDWV8KHZ aQDDKA6wǞqH1vh0sH&LЇQS3Z`Ǣ҇<ɫI2X e,c Vy;?ML;҇@Y()ЃBfƤJ~?5<󘨔NBy/>K,кF()n }}> vẋҔB_G)N@̋g4O9~>P%ì\]>s%%WrbN a망O *ȟZys`Z Pɽ%~0pހe!i@~nIk _sP$OIip|pòS5gy5xj \׈q(yчZGDaXD萇ge<q=={_־3Mg\;ڝSWbI^}?z),NozXgf7 ÃJS)t,ug= j9iУk*ذ=f`ˆ i~:3s1u4#X ʹ͜Ik`w(lsT%oѐ(Ä ,l,(HzCuy)O5/rse?Շ$0_J~ViY2VIWx14'2鸌NEv=܈5w0235li :ƱyX0I8KB;DMThBqQ uH*NkbIN ɈUR*/3®m`NȈVs^|0H\9Ս` 4\w`+.M Wcǟ %"7Dŋg.TX֧A-tob*mXcH~o. R;ajjpVp~<c9tV_̾s!ܴMhɵv)0Ի{\ttziCd5е[j$5PFNJ݈"H|EKbVd,ddûr^7 QғZPHhh^҈A)ItL vέ+e.rb=m <Y*4֦|'4rgד-:1CSv͠vJ]]\W*ň=jIBy戤FߗZ)G[,[?geV,ӈIKkŘV5Bev^S_I:-lFyŒʣ -x97Vڧwv/Hk ^GE,p2S]QD'F/H0Gx_i><nϷanpĥ7Isl:# !ȁW vӁ Jӈ˨S<,vQ*"TAJΔWm(mNbgHě7XI=s/4{NaP~($"ec zi(ŔIgV1Ni-G_::iu5D}üjtpxQwfňqWƸʋjTmʼnz[|-,&^`O)~:KG7˂ډ i港@O!ɴ7~rnWR`i='?k2Nĉ^WSG[$XJrtKiSel܉"K7ʊ=]U!>& 0j!#.oz=)X n<!H㏈d*ޝeʤ yfj-M=Brש \.D-̝Ŗ(ȅ|7 /Jϰ@kv=s˝0/)S X DwoPzK_F8J !,YiWGy0td٥SH TytK6NbEJ?\> uKcY7DNU( B77*0qOal:ď1!P^QW 0Ncܘl20V(ޅyVpVNz8<۱7W~2U_8Y!za-BGU0;xŧY0OL帲x[6TMRUh "ى])Z+ҧ d*gT-fz?f3c58UTtὄeBdfAuNY58Ǝފz܄𫯀 V}d=|v)X~k*%TȎ+!"yا( C8(4j;5{MK4זq>KNL /d6#dGC3 _8Zv pLYQG{uDZ 0@kWR.&;L ZL,щ;_\S< [Fx:#gZ$j`e]z63uK#QzC:>p|h?5K-J;WDthj1HC} ~8I׫ɚ⭉ w.5f)'4sA^,.+6S@ЉV |ݗ X?*&f?߶eL{])ZohoTkcHuc``}Α4鼉-}ݼk {ԋP !*өe%8u^k1syvZj6䡻1WiX{ygncV]|ea{c;CE׉Z~e`ƞr;2=ֹFTᑦt[ 2ow=MVOicWSQhhDJw{%;{$PW^[V2Rݝ}]!s fg?<[/#%2ӬD,^eց~NE^!NWcd[6m繠@IgW=~*xh54ޕƦ;! (Pqt!ZJaCxr@! 5,CfN% mT\r Ul׊/̯#E\蒟}fŽ4ky)bׅ|tO9pK;X!Ӣv@2q$r C2˦&\A1ҊG0逅 z, <rLߊH1t/Q\=LK3SN_p}06 ՗RWXJ mz*WlR<zR3cB)P[3ϼRUДk)wb' bi#HV33vX8~;[ * JgۗN[岉~3#V7b##c]0JRf~"VR_[8^:(+hEjX3 0FT t>Ȑv!2I(xj'd Ƭ=vu AN5^<sv"S 4()J3.ɱ624v] 9P5sĤ攠BFS fF 7!N8cLZoV-_ѹQާl􊗔"M |n H/SYlE\`;QYX;Q[lrR׫ي"6sxeUbϡdA&< 0MTOLb6FB[I΃kPNc, uѓiT@./N--F8:f㊮}xs^1_:`$upQ*YPT *Vrȕ sٮnM(Vm}g7pKOה ijυTKPB*!6izDžW_{:BJɄxZ^{J16xEIǡ_RT1Pn! o,Y#K Bg\Ɗþq:!dƸkFˊ8;a>|V(6ÊNYOhK+4K*9;Ɔt&`Gk~c^%xboԳurCEŠ{?5{!|uxNbq̟q5k/De2+mtH0oE  `ݔRBOR88uG_.:'-iLB `ĿA/ hcy!p6p 9Q$X&zq!B02u]=è3txyi'xK {Ћ܋ގ5{qY9S 4ᝎ!@ c276̹b"Ԧ:? S'YݥK9-P$x23~=`jh̵NJ75C̷I7^59T4&mc@e(nI$P` F:$S*˝,ʸKn9Fh99薙UД3H 6MǞGT~yzKv93T+t3-RB0}=oFd8,-k3UM96~UCK:㊑c CgW-&9ŋW.l}dC 1SBeYH~ɕ&}+~\}Za̢zuCm\];Y`ڥPlCC_H6EfoK`Ơgջp@6#,׋sRbnT;w~`?sl0 ^̈selOyf΋j*l"QR72ᐋ{WZ3{)_(M`kӋ_}Q: y]ȻǾ/Av㊛k8ލT!<'w+CfKpD<g3AQ܈4.#o"j`|QAmJ(O'w.싏 'RwE.]X]򋏮MW%nT'ċ4YGd43;d PmJ<̷݂ͯD2Q |>s:d>Ghm"YHAVtU3;Ak?~g=G6"ė~. %+]-$0x @\ !ӿTˋּvMVķGYJ9JUu / fT)MdҋK|FTqnNjW1l1+vL끋BZ:[/z7+RNԞjp& D(ޡE&.g_aWtߐځL}`¯ ֠$B9BLa W/T4JwaSi\ev1lXW4rtagWwb@cYqٔDBƲ򣀭=JKXq߳k2Լ$ĈLŀ:|*s$^ mċ6rD@OZznÚr᜻R}uY`ZesS b 쟬_;{t2FkG۔^P z箥!}#jX~xl𗂣omtΕy]\+G1OT\A$D3ewSrZEn<CRK8,}ь ֥LQ$O`=9mF~ ʝyT>r8^"6 ČTRi;YƌxoOZ3N^/&҆whdh._00,N,yCkdA$KɌD049&>̷!Fv73s!zTV~'ʌ#Q8pE&t@0N#y7.$ !9)k-8l!-,&;AQapГOM/%b>gJ#gٕ50JE!V\|3/ 3)pS :F:ԩ7<T|a(9#mHt+ԋ{>Ci ./X;솵D<ϭrфI$1єޭv%쓦L?9Su_!q1x>O6DǴVٌU:ڕ5sOYa%nXj9ϝvK,BCYA؍pH5#4͌ZWN=V@F \s(31(Nt>_Ե:\~0epb֌p hEeMr<4`lwEJUL-F1hoZ=#l㍿G$ݥXp"m3'D30.-ӑ3mSu('7~/~{č@)]P04ᙾ9`@{a>:+ؚ08UCk%S,"S7`QX8;.5m]$֞E FjQ%ڳ {Gz䓌ƏKňgE@c8kC+aI*l$.]bd KOKR W(<ۓ.L4˹υ2ia1ӱ=9:˧`+ќ-m[azY[<`J-WE7~B7=?J})X{o1rmڟ6vp^ kαD?g-UM3v@u3v8?U^xJU|]Eڼ" 0r 9EU^8#W B~lٌ F:e'iOP. `Μf9k Q\Ќ2RN19VĮRu_p7ySA^FUd+`~]vql`g3VQlt!eϣBny=)1m|J#(Tͺ)}e,|aᄰDE^CI;P$囌 5QVհf<kMz7 9TԌ Zș#R7@g!h*ʰMt?H X'yX. I̍3!w]__,c堅0󰛍 _QFدW[|%`;u :BB`N_.tRtqU[6o1\@ rgF_L36pR\H48Ì/m,4{o!9gj.BJ7l_JBVk+Ѭ"1~Wݱv@u(Y05 9ѳ!pmO /J LE/X>,秞4Bq_dN׿EC}6e8O );52+8rsZGi2;Y=ɂl^wߍ;LQ5fT*Zս'mF$>r :NG F.>Şe"gc˕}? {Oa~4LXn?o ˹.vMNJAqZ@IV?̼[wՍ%5V@]KZ:mAU * S^a?DP6"I0EEvIiH^==g/M g#aܲ0 ҍQ[DWTB<T9`~k.JT>rLv1; zY9c,W</Xm}և[6^D+) `!@N6WieCz^ɍjE)[}- ˍqEt]L_sK[媘M uy>"C|;C~ ΀*Bc_gi6ǒYN>)'fkƍ2ۻz`i__"+&|r8(k/gp;'ҁW-JTM)t_;= @獙5ꇰ "m7|p3#Wiw:_*ba9OIi[䟐-rŇp98eu9(AC\Do2`hβ$`/0 ߞ'?RYٹ?Ο ߌ2\RH0B*A iZNT čĄ-Zr*YwgPǾčM&2 |9ͼW~֥M _'JF-HB?)^;I]Af EL w]gXͦL7b8EyX0 $y Dj-NO U>B緡i(U~G; @REDN#@Ͳ3nGq7oiçD%#HY5)H]f{#Z뛬#щsdvg]Ƽw|O܁~޾t%}5 d 4DWC ³,B Cl"gWrWBv\t,* Z>od28'!ю$XpҋLAΧ"g&v#RrM4؎)2hˆŴ vȎ3U/Z^ƴA{h]*<@B5ޟ[:5>n%U1KHe58ACٻt/WXϥ^G%[ 9y{^ ^H=Oq^ bi8I+GTJXzJ9WB߱;dɎL j/70SҨEi0ox=^MTp%Uz_O-0qm\56(tQ0տ]X4Zfa!;NBVf}x94g =<Qg?R-NBNg;vrś),U }g\orDRENǎm ԻHD$/8^wo0i?[x=pf 3TGyZDv&c%'1ޑ Ŏwߞ4PjYi_8Vώx5ʑMtԘz^x\`C-2XcZ5ZN]622qdLI֪ms7ֈ긞~-+ڱ%'&NwV}NE xƏČA͉k+n#X_w^z*{3fp{X$@dǰp';א.ˎnB"n@y\t F@ 7iL_%c?톣B펩Эō!ʫ .)B(pB x脭=nU3B Sw//7܏TwF1p<\9w+ yzc:VۑDS]3a[ߚ_p⎶җ1`uiOQig﹖{.fT5ᑎ?Ӽ{ 4&<\n~ ֝tX/ȅ%IMn4 $;Q k񱛭''ғ_ $Խ4hqň)e7V2 㳽nsqK˟FeA} ڎcoȈ/g.WfK)uܝohճ4ifOK4Ԛ54;`_zbɎ/jPXa\@]m4$gN]tKL4?)o͏4,`k. :x1@$/a<Dm7AnW:bȼ0;hL "H%A-`CǺW:`4S=R[8tӝtMtOWpퟷ]* B$|ǻb ' ^ &?;of i3|A j/K-sL@0s[AxUf.7$pz0cH2,vg`,2HF4Aa25d((ML4K{Ӯoٝyۏ7<xL-z,9  eb:\ rj9<foiR5 `  ԊY A<lلE֧eAߏC7ܗUɖ:3dGA(.!<(؏Q;vh[Q5'HHV`'r:#cZ_>O$A&n]w+v_2nnӈ;`*R\LLh32=4@~Aleɏp ~%dmH!Š#޼s`Eq ?읧N.so{ޅbpR.IhNFB}.& ̌XDN#s%ZЮB軆][.p V;QFs2`)@&].95'9ё%RI~ s^$2R,vG`z1nM@_VQ5>MyZyߣo$4TˁWGG q`n_)w`g~KVP j6f.nّX;V? /'N/ ةeXc{9 qD~ʏx}0Y )Sg=(QS cxi iV YY=d'Ժ.{z$5ҏ𩋾2RBqEFɲ2Nspr+s}{1'j@/&^C`\Tar P SL2(YvA%fm՛Sed9_nf+4SѰݛ"l4l]_+@r]@Ϗ`m_drm}6$}zn7ucC+exn"> 7[` ԏta1^;Љyj;(om~ ЯN*8JeǏ?/y G4SgQ]$P.G$*.96fUo#pR޻Kwx%@K'1avikKO^|)!|cdEDlUm׀ e>|CdCqCvѳ+/+bjBw5 /1! -HHD0ϕR[Ǟx"xV֎ɬ,~"nJ%wb8k>p%l^&C0)CCl̰Ri)F~vf,9j@/3t.: 0Be[P*W^3Цɰjjn4%5&\}qYljq~z6ѫ. g8{a?!7E@Y<74T߸A09:㝴( fd @<;֣5̖Dr0qz ANhߵ4ǔqVW¾8Vt @ƨn,>bbJIeXD!f)F j:*Đhn9;Yxtdl]j  ?49Nq=̌Nc6;hW/r;m|Җ uLuɢS]ۖd5uyZ#Xԍf `+|rSe=O$`mUW na+W5Qwf Z_4n nWL(Wskʤ&VYjzw~dVސ^y{꘧kKCuD m=g.rnʃemG?.(S:N'߈4X{쐘~1)0/W="|ocϺ^G_wuIB!vjlÅ,<WcLݠO8!|oֽ9GZKEqXӴ9͐,sMd֖-vubƐR07a6Uڎlh_iJϜo&^I␪$|;.&_)!t5ʋqOtxiDã ȪV  H-rTNEbq e=+ }JƘs"ސ*2$[]ETAZoX)#f%Z%F}+ +хn<0ɧ5DtN ҙw3 ė4ͺY䀗r7c4BXq٦(b,rNVڗqˆs4%t791.'|S%ŭۘ0N <WU$e3xI6~%ucKYnY]mE]:vPQ}յh`1,W><p}A;lLL[Ac23Wo$?'DL%҄-`,q'fI7=א=QS#QL7zcJr<.Xz [ѐPv{ ~?D/Xw~(z eU ܂ 9]@7p@\h=ӑ YMk֤:+< _|ns)M-ʍ&1, 4đșD F.fbV?ݴh;!Rxh+T @u*>`y,{(Cc~+f8͆4ĄyM-!+vN6L8/xâ$‹U#55(*e(CY\GóWHē*J%z]\x9\_OQt2ݰP<7(bDS*2S-'Pik:F(jWRg\:3iWȘ6AF5KZ{K\[ ŹY- aմMux:NUZJZڑh#{N\BuD-yΑh]Ggb8o.DZc8iحvYZӪ@~j^Vj~]m<V:ԸZ őpGk]0·#ݫzU96q!Vyk< w͓%ꡊ߸+p7{$1$)m="7犩JPOcU^_H1вMڨA VxxsfāP:[z@Q?ϝ|z^2"uTR="Q!?=BqYKj(U[ ,hgjXl(fhud<O(u:- М*mSC3jQJ~jD< LiQL;̯0°D H&78D({\dkR1SxOl,3>Oe )]\\nӑE7fUu,[Pǃh.1I~ddzɍ+YڃfڶtfPb@~<F| +q뫳D,MfHܑ1ꟙ,L2:$ $R4"WĊ\SH|M-H y[aRX5>kѯWм^Hlks#̹y32=->iAHtl'dptmN׵}M*V'Ӻi 7Z/8U2?C.X &-QKD^kEP&Fl.hP8eI|?$~BF*IpohhVС"o׷J/;-Z-C?(Pxҟ ѽCb־l~%z7`DdI!;pJDUs3hђINoQ=l14]qIf ?!Jr\֥:%ܺJGTC](խ$?&d?7,oqE5 *&aOoD:q? i$ג(Æ e 뎪S`^^͒+c5_& Cuݒ+ '=8.s=͒+mg-b/7-j/iG@.]bƞ3B5`M0aY14psے78~<]ZZQ}k9ͭ'.}:vVG0⊞,SO-9]nHO&-oRoD:垜IMis{<Jw`\yy)M RGRݷjLN،_7 aPP*wZ$tmT<;RrLU\U\ 42{4I-[٘c&KK>" 'c}./dgX3T(KHkGd{AHDn]'veă6)UT3<j6Dk$[6?qKP/w^ɶEr\ۯ W 2݇wAD!#Ixen"&D520xͪ0]Q10'ݒzw"A:ܹL~iE%5"mW喝łAKog2/i[qzͲx{YGxTa7~+n8Uƭ=Aq ( ]j{9q_T /)Oũ!k;g|M*= )xV;o-Pg1Qk&'*풠3F#BiU+ÒC\6,츒xeB`@Υ 5ge/ u9AF璺@2g ᫓٦;C|0Ln9RY鶈ze±|%ܳ|Ӓ1VCp} noyEL+>rc\ݚ<[ZX䗒ǡ@T}X! _݁ d~5<C󋾲ۜ*Cj ieޮnZe&a{n0jT2DӒ߲I%> n:/ܒ)!wݍP$G(ΗG%t+wu[O-WñI-+G Q&c/`ƹ\[({a-Ӿ jQz.7Swj.ǎbקL& M[@CGt3}YSjDظ^gmx28?L{]~?dN2L`v;vؓýLbSֳ#1H(&qE1oRG5\xR[ IIBrot oMWG "Q!^NK=i EOtӥB4|=n`^kt@}0xa|&u85NzI J[pZ ӡgɽRŘps"5"zncyjI^'$+&Y-In'HA!Na@#8Pѵ1E,'xsc zkZ:3Mvoya|g4 jE!NrNAy <i7|a آ?\U}qitȕݳ 9nS@3}ԚCKSXߓ@:@4e!,k$D<?Цc<́8Dg*/&JQI5̡+L߳cߧ'R fNTg"m9cM 1QژhB;b}}~UcFȻt=-!;QWUo(e]GHDXMCo3ND 2OK]2%ee5O^^zQ,MdEb =eXB<4<,dۍb3XO_Q=e gSdZT“iZK{A/C rfw$9 *v[#pH?ؓ|Bw=e@+^^e|; !|<uSJ듃r]5n8In9Q ˔oX«h4qUn$лZ'tZW #VSPlhN9=Jf铔ҝڞQv4.)ENN6s oolГ*e=e:1{ ʥ(B,xJ㬷i߸;RuGb}\|)bj~",0^*=ѓmv4`j3|F}p%Q:E߃@hHg<1TR|GyzZ?{EAݓǢ6ͧԇVfГJ)B)r[<k9V'm_Ω?uٻXϣ B[;哿i[{0}+,lpiT 0@ M"GNFPꪰOi|Ό]tߍ?Jz~|sʯmnK+YBW%>/ Y6eb_x"W"#uU1ؕn$cx2v\zr!}㖓8+'!}mY-ndLa.|Z%wD1e̐ 5ӓBղɮZS&Ė=ŝZDޣhlZw-y(W%'46uL^GN~؝XJ0m녩T,F ,Iҙehܔ Ѧ#D. pO1/[ 4s B f/V1k7̫44FW@ja"˴"̹fp`_b?~'9D(@y<X- _3(VVl<1Th"gkUǚ12N9$pG .`z2:vڊ%/ƹ4¿3f뽇W?76fQm>&mS[$8 6E8(j8ƿ X>+V񝏢.mB>T_H-ע3]C4nSEjeρyyV G~Μ\ȓYrr~MC!Hgγ#FkJ6KݵƗ@>67mx܍Ll!H乔iM4! >|QpOSJ=2)<)t|:O| Ĝa f䕂kT`{~ޚW{V7{ulX]y'|f:2(j]Y <O=RB@bq|dZIFUecġb 5r(e>dbd4I$9甅s3(yjHI4V_Y*ÜZ"%K iQ-su'?BBݔ|KmޖY N7^$^uDݛؔ{c#۱ r?*̥\MdJK\ŀFJ{ԭe)>, AD` >b@"w80˭V,պ}5֔\36iY(vKë}ޤmkL# MùuAOd4%uȷj#i@Bq N# ŠKUɔ6n8|} 麈@7ݯVINs-'`39; A| rlrϔp&%?[Ŋr Vbh;U~ڜo0 oS@h%sr;ph*/iVbYZ>ն=N0d\-!A'+0oM:՝ԔED?P c}&AĔTNQH]uޕ2-6!{(ao”֎kl 7\􄜡sߔj>GXgUȟ(pFlԾrav F—Ũ|B.Ah? *_{VI0 {O YS2 "<eq<r܁_͔?#3so،dM' Rl.d |%34?wa_$2.~ܯ9F, , Kh+-G%^G1vg*ާI:)#UT# @ZGٕ(+,D u2(n2I'(5@h48f3[|pS4x3ɕ4_o[jT8P)4Wf47fѥG;DL$6/L^b=䋴+@2(. ":3Sn@r?@nKT\ACicۆ5DEj:}Mh*tJFCsE̴Ņ"TPiq w'NcQ%ch+vQ=Z"6C[3xܺ256ua%U/Ug)3iV GX7gj?IOf\b]qjklt;,1klуq,lG$*PVK> bjuqR2 ærQmkr>uFm {|1hFZw#/qKK)RU"wiG ejڑіؕ HKȆ}@W[,"~jc#RKf&󕆦׉K1OB͕͓`ɕCc}dAaS$Z ?L~\P'LnlP巢*}0{NϴEg~ە 0]}U6UKj8ƒV (2 }ӑ<s󘯳3bo=qӓvXUV[O?Y{@=R+ed^P&] 6.=oYiUs?Ch$ u)n(w{G\"ꕹ+EQ;lrѶ2zb(V:q…LMgJ?MǕK٩{qb 7Wǻ9o6Y[^5v:_LEWOMLʂ~-d7,SeW B3tn%a= ؼ=@ug]@BfDx.m4CoLiIP}~icIz\_Ƨe꾕MoJ}C.6H<1sWd~WEȧNu ?0aOn8qYئHV<맧rzm)DŽIEȦZ?M5zؕ8sRIx_WʜsO! 'Fwԟmܸ6R%0 ׸$NŴ͸uQTK$u8,iP(\Qu#O00D=My:r A4"v,À>n ;jG%h'+ZOqėvJ!hrR_Կp\Υܲ͜mu+͖=v xc7t;N!͍Ra QoH\Ȗ(N}}4ӗf\Ж13lMh/@{3Pm{"B,&KeaOb PC :įb,]Jdo+6%N~,Sja}KL9󲔖U*< Ŭ'I0[߬H9߻߶e]A& ~<}~$3]@~ZDՙ.7;_-jDIe_ΖeگekH\<M e3f7#P7QPMj0:GH_)m\-˵J]znixQ8fz.!) (0 @喞1}B/?yp r^O!lGeC%|ĉ'C}] o6̴Gi\{?Əz]$M#|k.q|Du3Y\;}M(x^f1B"dtj[ !Cdc(SI㾅l))/",D!*1kx痂V8T6oa(l%{h"ckv $nH~ǻԜߐnzk ڗp*B|q#qUe28??U 扑oYJoX:K0I[lPʎkRAtiYZ6h谥 :Rͼ XaW7bV2똬I/Z<L}TQmXpGL24gTc0 mԆ^ ey*9YrwE.ŒЗ,!yNBN1 =A;zL55rv)׾N[B1E;ɑx&fH%1lS}@XGOv`!Zo R9^-~j5]1+BGLQiS6 dPe9fk ֏Y=c<Gȯg֠K^Tq$ԗ@)qvSrfZ[[W@rLƗZ΅{I?9nF!Pc=INƾ8Y_<?җJpcKe LP+^_2JƝԗMQϥh_.yP1_ED,՗QQyl}iWS뙶K2A]U  fFf[MLV%pF<a!Ɲ@V,yqK9;*^ Wes6wn! `Yrs==>^}Լ[Y3%;h_$ֻ]9Xe ``dIlWu_މOLb?kQ&&e av'BDbhs[CQ]\ʹ<{lS1$pqIT:n;tW#xlt>*q\RH{uq|Gin_}{٩JLIE,wė}lW1)<Sf.k~_Oa~g1I}wP)CR5ftEW7ٓ"z'p nw_$*ɗl݃~<OA~~Ag^ RVȗt AG:Zik#pZDf-~X\ĮV~#OE~v$Oɸ:k|b~<T4؄T#ݸT(w-N& mIpympˮʗ+ϠmvS6+nXeiQNSglNҢ'cHwxm~:]bV@ݔwʌڝkL*oFe՚U& yWiٜpwpx/RbLZ, C{}C^y/v(̝=1ؙu*AVJ_Q/:E E6ႼJ% <JP^#|עyNV<l{brFs ńgÅHCkKc[uBHYS%ݡeLƇg#]KCC*0>м^oWRRK;LQo*$Ϙ(Z4Md\vگ?#O 4j<ɄG N(M_3 6 *{NQ)(?'vQØx*VelZ4y }\ =vYmMr߾m#25(K$:" ِ;+)$^t0p]z;lh*~>ٸ޽ϯs+sXrY-l 8Y64i0c-%d@=0`+a=w2;1 mo<V3Gg[?)]m{|A%,)9+N` 6 r9[,PcXw;pi;5emb` <beF]hjK?*3V&l$c?GDx9Аb[yQlIG \>m ?X`},I0evD^3ڐb[VS~ ~ [u''\lyCOޅѴEA`lnj3b<<\Ga u +##bJ{|VE#i=wjSD,<]c^D|ki2 u8qhBk[,PU_טs6]@ 6Kƒ"ug6SxcdX\m?Ƙutv-b{.y b[hvF (#bfADL_d첊|GSO_):&-+߿42#_ۆ'=-:qԏOp'E2w? suqojq}vݒljya~SYr׆F8wbI :,IN4똣Sģ0ͧHx"Rn?И $`aF2 YSޙ-$Fd^}'/ Mj혵K.8'D&ʄ/y? b1()aI?Dy"(1_lRۧV89jȘ%],/"<dה?0d(b'+FBE``;5<Ù/wֲ#MέW5&y7/l=)$qtI_y"RlDhM;''ꇙ%eT~Pֽ4G(yPA,w6*M+uw!V L"[?s1TeTTeT%d3R8vHS׊k5_u;-$CAI'sjay 6{1<c v4'Wә l`dqr<ND nua# Kdَ̎2ym8^d7QpLW^z/$FSz˪ LƄeKaP=a 7]|Մe&\ f-xKPAII3H-Pp̳#/BI+/hBV~d$?>P`JxxL$\]Vz$*Zdݐ(=sU&wmk+ؤH\#_T3B3槊M2N } y0==uk[ײ,-"w]]B(̼Uc /ZbG(^ Nx'd~L >雨5lP5P8#ĚR8e~ا~UVJ|5i\SUQ)\U3E%  S^pe:r>@<Kܻk!_`uw_5zb*96e#͹%)L˃'h1+;I~  qr }mah7齷uX 6e+1}Vc>;&*-7'sa~_FSe 9ٙ/!'M5ߞV5mt4X<Աr^ҙ<&Y&2 X AQVh!AҍxuxQQ2r6d /+X!5g}:7ZQ.;ң܀z;5Hm /ZBsÇn**&pE֚3%ڙq\Q_Et@e!*M8̙ó`;5{uaUł-"A,n~/b,Ũ5bZ&g%ǙѩF$S5p4HJIܷvvzؿbHasԉ[ `T&CayُGy<'Neڠ0P:_'󣇗Q&;zmyn~}0KD,`f$d`t9RѠ {hXNn6 =7`D$i˙ɱ[*e U% (VBsB)wL}H6)kC) SS"R'k {% MK~Xy#OG-q:i3i- \yH\^xZJ/{8j`kx$E_|€=>:Q̚;}C0s <!0WJ!&6wGkovvfh,%@;BE;Q-,{2UI8PQ2l.rS|cێ9b" sYvÉDzSR0 A^DDyٸ;HxvdV.P:ښM܊ka1 !OGtwf*5CRB=_I9U]2΍UjV':y#WXc %YAsAZlf<3)qDb*L[4 VyIl/Κ^|ʣY]o`b38:h&oQuaaטlBL[zb99ڃʏ&FӚc'+Ad&ib3U, T152 j {r|%/jgsjce6^YDk%Y aum@6}K,=ifuxʥ$xclG6$hס9a] C/NJgN)L#H抗@NR a77Vk}4vY7魦u}߶!'ɾ\gQ ̰шj[s}Vpp\/mYIaI$Ҁ9Қ:Vz|q4@"G:Q2ᑾ,*-ުLĭ X=5[X7DRpٚ ^*APooT<X0ġ)\e*4r%K@\ߚ )?F֑+hRX Uљ Had׷WEo|WRؚL &Cw Q"6[ƑS#bq3MKN!hƜ]`|Ⱥ]O#tQcF4lN>lL \5'5;41"gde\8BԚ҇uq |r^?lL:5e|h H18mtr<뫑ȁ1QCVs7ܟTɰnP7Цh+9_ UH0Ka?)P0pd+Krp}6+Zv߶q6 \,یZ/_1^vUgg.I!J *+ja$q<ۚ 7s}<dGxt!w\ƚ)GNIiiԚ0U9}BB,ÑOI DqGO8$ &XIDƾ+o& gOUտe$?wvL0 T]i,=pg ϛQW q kN(1C{+AgȅʁTD%bÊmG%z[$ϛ;t'" &x-j]NV+R<P֠eN!MKz0.E^'UAnYγ1'k쬙R X7O(P= :-7d`/H){ bxyMMB1*]ʮU^A%=K,d_߶h{Uc"ϙھ,5ßYKs"ji-2 V+FMZ-e:c>7}!'d?1^r46"i%4o4~k^\b>7j["DM`A$]K"9NfnœGX꧛<4"vr`n-3໖>@(ƒzenY*Q?|6r5/K'C=u;@Q@CJ{n :)<~TjyDʛL^娖 YB}M.A-e{cmCO*˼zD WśVTkVbࡪL,WT5<wڿ5*4yFZ4_=)>B9^[`ՙd S)_2W&俊m`gS a} \𘯙3,:2a2?>Ô( GN8c xμvkb P[O?g3Gx )@#WA)śj4IaJRAO&ujr`L<'zn%V٢b뷛s`+LQD!sM~V7dY>p$wb [; fwanka&d?#|˲\~tHIJ b!4[ZVNR94G5s߱]X5hV< |<79O.&+~qTJZ>e{XW9 )vkqك^źjSkX*\wAevڂ(!M雕bF-{DhȄL|!!ojW9u[iC-5^!zmh_UaC(TUBj/FvїH\lP vG˯+5^R⛬>&Zm,R8# rh@ECB$N?2"V"!.!]By/K[7ࡰBzT.M!9]:?Q48 S]cpSYTРʛ1dywv@O>Y_'@ n83zyuw-V0ŀR7_ ha _s;U8zI8Yܿ)D!~AAgAxد3n̕T-Ne뱭EU~لǦhWυ7+$oAIipD%W1et `ϛ9zd6'w\jBmqT LWGXFƛ1N6ؗN š픒-^NƴpQx"W)"^$\Z"aʇB+ijn6Y0Ў\Q=;o3s1 ogKr6'Į` !܀N"oun vCݜ 8'*QD Uz 3jW <[|mf`w 9Sb` CQ? U&Sd: 5MOTwǜw`1j1D)’7,i ]aR(PS?NTRe k1"8C`hWc+ЩU\*..('|MED tF>yd|Ddq#d*5Ar-)([.뮰 DbYۨ4EQ'/h6Z\Ft`4mS9ikR2J.Ï@_GBH~'!LEQGgHCMTUSloq&Z BVjھ䳍Wr2aeYwJ#XaўR &2(`1w7S[ aWR%JJ_cG5ӚmQ,G:$9cl 5$u(gUӇSlj~7Tljo?+۟^n‹_Mݫ.&4rPԭWRajXu霒 V< :?duA`<4⟥lbwH_LHo yay 6p9й{lވh~**kۜPS*:`sI%R@b,I fyr3|nkSCf)bto.I6ϊ+Z C'?|mDsT俏:T0\BifٞzḲ:3XyYYA? v0k0@+*Gu4w̌5mqGQE-\4`=?a|vQy}wD!LrM}#f ,Z*</6.G wtsƜŵV \тc&mŹCrEI?Vbcp%!\pɛ:Ӄl *u[b}dmB~)gg 9̉& O6ژ sfCY&pFxjx;zEԧ;ODQgk'lW95C}<3C@ٷ ]P>% o T!|NM}՟AK`2&/^ڙu?ݼ%J#Y5^|e}>aAS0!!$\Is, a3LYF`&~K40!N_;#[>O$ƾ *G2wLw}cO>aQTUoU%á,F@ma ƺ>5-kѝp?]4+hBK%&Ϧg<SlU|yGŶ?ʲt"@~O0&SD'\ÁL1;Hj%-kRTjd5?%M.*ejheSre1.o]v/vg#Ν0QnvJI0Tk2a+2B&mY4ӷ>)cN29ڋAo"5ħ1Olz) և6=HrnE,Vs8YQw늴Տ>Ȣ-JoԝB/H,$ fMEsE"%aIɐi_FQFh}_oW:DgMW[.t"enxĝO%S%-K_f/zSğsl /)Um-"qDջwkC`}V0!enȜu:”VʏaH= 0xoa{8~X`L92!Mc]u<7dlN؝d/k珜YTEǻkm|I/Քǁɢolx]w x0(1Zsf́kB!if{;t[aVco;5V )ԇru%22"ﶓ6Lo+ˁđ_siLL&\:K?2%ϖkG. 5q&h,U|վ?S8p^uJn ħv]$eW'e vԝw.ͤN~JOJӝ*adj_8퍄ddQ!c7َ4"rɳ䝝E?H~z$z`H}FcaAl%StЧ7-yɄ炜=/9Z0̡Ү^SNpGHُ$}INQ2BF9S7VƆfX晾ݚ[ǂzT_oiwQ'˕G%n^M r͘Wv+Xgz=՝Ϲ!ðmT$AnK֝aUȻ|Xmk*}Ӌ|UvvG _^#>Ji;{D٠BPH HGa.۪Gf:TĹ]ם^tIB=ğ?yC# ),(rHHX's#}$/d=ڝzMZ"FD2LC^޲;#s) dK\>hߧ]F,="!3j.p<~9vE*jd c VU#2VFe]m ^3)eB nsh!*R$ ܒf/ZS+rMK<`1 &qk/x$d<Dd`>^4&0?,u%5$\*rm[XZvLq,l : 5zWj5Mp@?UA "[~3e[ kZ?#D$|X t~W+Ƈlᢚ΍>2aFwZSj\4ZJsV>ъގ{!㛞˵IJ4x`F T2D׶#M` "]p5}&r#c:olC&#RNV~_Ne((bTÛy3X`B.*%|DF_PO5=pQ z5b0=12,FwSC_hHܫztOb*儳g NsP뼔EKޅ-s d\QIvel8 ;mU_t{ږI6Ҟ^9%NZX%_6_s͖Tkn"!d3_MiAm@?[$Q¤C7oh0G oKžtmr:w%rZ+Mgq"15}I6J뿐)vh6|}}Lq6IVO(߅ٞ~>a *n8}56's,ᱞW u]|=,Hs7{`1 Iw螎*̀*EV x,9<<՗XasVN[\{՞nHgawm4ۙ=vDi|6D& CqX<xB۞+csR@NAz$.gdoA]+5ʝN̽vŞ枨qϿիX%.鞬:ЌKR 8_%+"\w>xT~HtqLO3 #ڍrM1;C؃ i:k13 %BlzmYr^v94:Z]TWNlZ@`Y<õ\1JߞJR$O` SM~ ^-S ؞^W!;ݩ8۞ cæ}9Eǻ~t8 0MR9kjԬa Ƕ{{GUKwb)4@o6:bKւ 1C5Zݚzdu!Cڮ`U*5k(t/L4^N8yg&yҳA'w兙*2SqDLgQRߟ "'%M$#QQ息/]HaU.ћω9u D؞F,r0/Mߎ_aR,@?2+vzq3BV"!{8\"2C- -O>+}89%;6." `~ņt\eA-!@Yϡf0ğ7B*@Ű<U1[ $L+q`w [UӟLcO3i@Kq0ХkX/=$:a19,)IYH c,NCC3{}hyB}AR Ɵ" 6GӖYM$ɟ&h۫X-ogFo 'jsqg08)`JvWK/2ٕ&ٙ3w mNg5ڗ[5yax+A#I@biC0:jp X~ޟ:O``q; @*>q/j5B?!i5UD`}>tpKPFD+S(fM`cW!@A}ϞEM\onQB)KvP|j蛗ieðS9OAhaW8T|W['ƞF^']P 0[ۿEKlZ;|(25a@z~釭L}9jr&Q`B 讨mkcIse4yleh <#ɤӟqR(=$G鉛/wo]q |⮟z~>e{2NwkZҭ%GpYi.ŧ݇ꟈE=QRk y%{o=d '?8!R0ݟS 9E+vdKM= r`R,2*bw^eeyrv=omnnldyyiEUẁ g`y*ȡj `HZo|3F=$`ub$oɟ/zX+,?d}̀ s؊䘿C&E˃(yAds'eQCݤ/=>cCYs(;'Z<C p C慮N"څi ܟ[gȓ=abCNA붼-cBpk +ʔfAVvB[4̀uVs҂$@Bq(N[$jzrp&fkj Е#Š#&&+՟b(R9^-myk4e?j g8NNR =„yF 8*I>ȥO_|pM @YbxL]>*hoڇԳ,\z[gDp;Y#g"͈A_L!,W4z1#Kh)PgV=vn1s-n7,IXb J=sq\o-q, D G 6N) -"gv8QRmZR#t]i[_?x C%sdFzez&)}n^BǦ͠)}$pj^IR+w$&#yF S-d7ٻp%9.z1X8)vĹ&%3& _Ж.|sc;.2ɆZTI<5Z;?v?774d;s#-"VGΠ<; ^2O=iP~9j > >NFSed x%EC?Brߞ륮atJg?a>=bzz yHAOz}OK\1A_ȘW/$s_8cŷCEe 76 t#G6S d ͰbH7GW`hm{xpJce󂀚V8 QM\^} $ ljr詿-PB|'+PQ T e=ZvR P7>2͓0Si,'坥rV9Q{WVkbOυlr䴘@m;Z{@łO:EΠ^(T"pNG.^Dص4K77oN֠d<O$2-/5gf.SkK$>hzUd:iziPP_n݌ 5phoz[b(\y#>zc!>hy[{7l* ! z?mW>538gډ{ӱېQ#S;52{yѼ? 0Wf8?H+<ꠈxᝬ =5Ю~s9D!.mct]c>KYBFc2ôϖ"cX<̒C373PXe렫<\~?2ܝ90A蠰 Y~bo<Jw-3Zy蠶B![?*@e^N̠+VCD;79pC砹x2݂/C砺>6+[OKoz2L ifJ%Q@{Eՠ!+*WIBIP] A1t=tf"f罆S?WN-ȏ\3ˣˏ'Xҷʎ&Ġnh anx;ύ|8I}_|Lߠɪs I<@.ܞU`ÛBד딓נ tW7Ӎ=`(m$;݋8rGUy@ٮ)S"f;ldTLp_yFea18 YiȊWQY(vOBQnOh>.wHg];z;;_C#a [>͡];lÏR3Ti r,ʵ/hLByV5*֡wN3x:5iQ5%>G=UZ^ꑡ؋/ŬյV С;WB`e!w|t*t8: t#ߋ*gΧjA&/V 5Jf&&zaeW':)f_ '۾ĹZա*r]8쵑3ق^ +RˆO\򱊺>.iA Ԫ\,>}(/TXc`}C8[/eL)Mg F5Wka[9Mz gۡ7mwMf?G>!7L@e.\b:/IiPtPL+yIſq*WhEu3jNC: KO=fE w7OFHh{Y{Y.YnBO0G_B /\( B}UL| b-" 򱮡Vdp7%45 fX#= bF6[8@RTQO)GMϡ]VI$C$+Meo_W^Vx7[<>|#auhg,31 wS@Ky'hu'\A69'{i58W7KH `.`nuDž;ň|0/ p~W3 |4ڬw"BȺڼR0|5@izqw2Ugɦf(Sρ ǜݜrm ϦY՞7g +'iR@xbhkJw*AGRj0 3_y!?eO1 KPIU"o*к-֡kfѡ?ե矶IwUơQ1WF@3x G!QV{@W:Mcqr!GVa}n+/'pvo:u!ݦ|qtwHtI3Wy8<ۋp3xKG۩DLt Y*_^ˎڏbKN}˨̡Qs|. NAxSH(mR ~* qCKF$ψj"rF(@Ȧa[KMȣ 4DYv{G&ڡ*+nF.71̜ѤOQ[Wil4+^;Ȣn:;xp8`jZ;D2T W*W1O ەvdOyq>BNH5Ct-_/_0hZ +g,8&en.l(Ǜ $_;vڃHH?bi ' ¥F:kų sN4Idŕ~w)ʡ!J$F](qrnS7H. -e?ퟢM7`AlG#ög~}6St'a7K,kjtā$C>ic(!^V2ɢ @դJ9:b?+Ϸ47WS ^}$c'N&*)L[D1,Kbj_AΥN k$&w; ' d:O'ũ6JJIv쐎*5 #Q^RGg+u !@ЇR #lΖ<aSz&C ԵL0&Tљ5GIGp)vGvwr(^(y@*ӫ=y_2^e72@wn ql(g:.7m¢=쾨BRt ?<97uq6h/%HD DkZss]0Gw q{R8#/)&GͰ'%‡hM¢M?P&<iA7{Q1ЃYUMSVm'XPZRsIspWON5.BY|5Z>X=~q1\Ssq̠ݻ]]Y):_TxaNkn=R-Gb i`ad/^Zآj $bI ȆsQk(9q6&}Ȣmt ~Du.#Vm8w"%|n&SJ58I#osDuVPzK̎ykNXGv |I#(an!\4w&y% " Oxax<eT`Xxw /* zMmZ*\հ.%%<{{UF%yL/𝁢,@ݧl#)eϖ[Ѻ>uy2/i㫢Rк 4&FI*a[d8YKie`&V̢ mClw-n=<cyТ:Ps;2t4䢚*:6'^,xL"̙xIT7.r1V6h),݆sv-7 >gBygO)IxY#9 D썢b_Pyߑ7FpdZ{lnnƽ6wu)斸eނ "٢@6~8V0>MGɅ $2K{@Ȣڽnm'SL.up⢼ϚŸ@Y}@4_Qܼ(؋S9%c[J :~]2mwYS|x7i_$FԮCa@ܢ njq&,ֵrW#,!V@E. C32v`N-o\-78M"j."{ lQN|#f{%_Z@74XӢMj}RMe+R6.pkbf6~l#D&!i꩗mt0`tM f6+0!_bH؀ȪiEGY(NjgК{)7l ![?]`-n ;΅M:TZC% H=qf"ZCmvl~,Lo!C+9x}Y";^ YzkݚڏO \Z 2y{ BZdyyCLp׶W%\ 1b b J 1**ީ =Ҵ,EaR.Dwۄ hÎV{(^ﱴ m Ђ,3z2*5o̥M/R: df74-2 ngш=vˁm60ڔ_UI 8<k h0}F,ԣ9*-.d:?;\~A(S@/b-AJEu" %VˣGVO4YRxKuo\߶/__NQcs墶p+IJSL돁Z/2a.VAke4~v6W]?bvl^ޘr "_-FPPx4dhM_eD@Ă{dNS:ph AcK>)P#`i5S_iR8q2XjjkYI?*fl/M*0H,qTlz"W~qym)|hH z1h '=|2|zF{Hvrꣅ[ REr\K -6#VzM?=\| E-\"#~Řwr6J n' 6`&sbr<FI!&Vyrc!'ڃmǔl~iysmhJsM}MV3/CtN<p"XGIj95wВ }K棕Gb6L|0q-ٴg]R,w룙`Jv-}lRD`A$ɛ⸍uթV˞~Hp>reJ%GKHQz W<\Yᣪd>d \G_~m"TD2կU˂S(عM2BA)ӀUys]£,_Ӏ,Ob' *%4፶^ &_RHDy{^ci[Ʊ=AmchZun[k5lSM X!'^VCԋzp{KqK-ѵ&Ȑ!cTsE~ϧ#9T0q>2K0AEDvICزPKih>`X~ak66LOI_.w+<c#꾤Kߍ@/ÿvM)dԣ,h`t+6뿴)хYoP]%A^#wz@aN11F;9!HXE#i{ei@OG<'Ӿ>d|ub XԞ]o<Bi1i8KPHihpI/PH~ ]<F`ƌ 2˄#WS ?1gfޓS{{g1tp$҅L(0c+/U~6l FO^>_|(s" Fs~!\H  /{ (ۄRi|#aN b3MY#7ҎSO+ULF3'SwjGYU7RhOuJlߤ&ª09=S$kev-$OP|{؛fQx5(e,I!qlvVvb>I hxM/')SjKPզLD]%u7W!‥1 W [78HcV\90eA;d[tyἁƤ=1*<fmz>W^zBl?-BT$CX1H& 'V/[іJ}ON[kÍɤPk.o=* XvI⛛7y _nZ R3"Ƥeflm8f%@euXYX]ޒ' k#8)cQw? kUYΏ;`)lApTLyk}nunX1ZYrlHpE:هӍ'yn" |6KP x嫹}S!rWֈ#h 1¡t&f>$ڷOY`jAL|߆Wsob<^Gļ=ÿśWמ}l6Fi`?1Uq;5TqgV-tB9A! 䤖C|QBQxv)TH}j#Y O|뤶ƨ%h58*1 ?"bi_L {qjP }D٤ԑ`;#>ٕ3e<Ȟs 2Glx卥 PFPJ}閿Tv͉x H%z@u=cɡu}p,Ť֍i\[h}$.3{[hh3c=6}LӞb'k1izGὣy)3n0c&JC/ /@uTBڝ >&3b`k.FDk8,?7bK- SH]@*-ehxa 2&.+ӥX"݃aTt&lC? u|#79:sfڢR kAcIph7(Sw㧥 mv[Qh8_jݿW07R#zUl:Rae\`pm>!"Y؈ƃ@* EbǻVhK4`ʥA`R?V=}I&fa:SKHإ-jxzfB6'>ܗ89=bԆl \\:3nPeJ0mg:fT޷8ar=Ņ5𡙜tb?"alZ+N "@Dm}Đ_4C(t}ռ FǁR l߉HJaiHXv O/,B!*QoLWU\W4FFh37DH[bDʳQo[bI]o EVi&d8ԜXA>ܥimu;OȥnTd56v~vXwĨ n:I}=S95^x vD'o|z=AyJ%w1c?@kfUrs{</襋NYSD{K# .eA?us-S:5}ad~EN-V3jC ?Oƥ@g jQ+1j ,g,n Z 86hh&d^p[7x?7d^|DW}iNpef7YfطR =jPngP![:d&_BY. 𿓘vkG d nU9FyF]eQ'㮍u i~+^ u봝t~}ܒ)t#ϳA%D ݽWQ8wtOzܛ5f3Xav3GOmįbIFy<5/7mIԒaI>f8;wjĿ6%.BLС,}UƥſvK&d3z@P-RSL)/IWGwTnf@Jc,f?XSc*.`[t\3wa]ͱz:鷚,brsؤV! wYGІ 9 Q\Z;#;W}iՖ&DpKťO}EؕUTUJZۥ }}k ph6pz >2@"L5nђc̒>q H>4 9ƾG義\x,Nn#N6u K3D+ bQX=6(1Jn'"P~se='@T2aOS{O˰'0ş`Vt^=>:*F㦦:OÒꭢٯM9Y. zwsD_ tK^ce^:S~ 2 `S}Z U-Ef 8"S&g C(+Tg9t" o8. U- */tQMtI{"83Mj2k^܋+Eh~w5olhaYmPL|alT)l1#^ĆPBcPx3.CGccR[`]6&#fɦXԁ}= Ҧ]917:Â?_g^Bh;b8L-"걙XbaՌ$֦?Ylc֣]!{{<e%ˢ)IvrNd͡g鼄WMHb^Ǧw[5dJ%_{*G RfJjOiA}0,hWqH⦇:, ~L%cVQV=T3 "æÖ]ƻͲ'M͗g|ڳk1ڦצ]4QH?+/ )Ǚ$KtStet < 1p3d+SmZY@Desb_z\kRU5>)tLT$F4W\7jZnS+O%Q-v s.ncϲڦT};yQNDE@tukDwG6vZcf(yUw@覍õAZ:`T~]ŃSq%~>[δSQ hslOmt߳$2NaT^鸙jvs (դ>oHm\:DŚDC)&L| Φ }RzeDa~HƦ@Q u~7%UBFkM ,i:'۞~r3j9 nN3@e 2ER9nP*gS'.)SैY"r@nBr]%UA$NJM"L*&IFFzx$H\tlk2S+7̦5Ь9I{>hV G仦w7MZQnx*tL }Ռ2-Zfæ<y'. 9U?;}2ԕLG|'. f5mYk ֆo &+=7sTәڧ<{950>r(r}f/lR$Kn17"O h^^T3L k"؊/7j%#.iN-`:ˊ-%a'Bi ߚE&b6q| i$kyE+a#/}B /p`.US0S{܇D r2KcTN7ܨGw4G%,=ASDܗTblf1>S |bL/?7Az0BL8 Yz;B , '8mW#E-񫆍oGVG rR׍9}KJZ~ٔV!6X%B1=>ҧS򋶨:w Ys}W#6MPo.mQBZd1RɠgTJ]ʕrgUZ`R\VߟfkbJb^G[ܗ+ufgocL:$<Xj`ɧcQ=sS J˧ckkHd`m f=0!LLo3XmݥqJuVC<fmBл3y AijR<z{WMc_rMcK4$-'%8i˱n.¹*nwij* Fꧥ= jA0Iv͇^ݧd+rq?`d3zuY.fQV@JE\m6WQ5e˜{cSU#B٧1x#P U@mnFQgq?eQ ;|fM:+DJ$Dx.1ՠ"P.#P(ؙ~Mt8L/ re䠾["ˏ5 3{`w/-e( @c;C8=!M#͢e,enי%GΆfV98c>Y9 A^ڢnTblN3(=/o5T*V="o.sM,Su<sCO5yo<YP]!A3ާӎZT,J~v$s1ק2jtt3G@Vrڅgq<}3u%<"v) Gs3E@(a u.;|yH{Z=Mh 9;v%.ǝ̇NbuM1\(v!72Ψ4vt? hun1Yͅ)w򕜧]ީZRdo"XYC֨oI?)ې4) 5|m+ X44##ĨZ%7s:/ņKWr^?I)(r?{&Zm(͖@`9#p⧑A@Ig(_g.48c^\$!eJ:/w܉#j)hU 7lGT05Rgȁ$̤<Ę42nNJgKND4:m-0a"!b6[F'e)Cd卨7Nu<|JgmOc 7ُIoQ0fHy<cޘVIUq>bLv㦻$AO·9_^sKZJ5qr2[4aO|?0hFFՍOq-̭TSmR6CrdYB*~CVH>jK76O,יִYAS)N=-7A]۱qp <d;IVe\6.s YBe{)s՗P':g`X(c&`Mi%<l_.)j?|#)?WܨrQ(؄/"7tmYE51Xu m-a֡w%nAJQ@\wtP%k=uGbqآx2(j#L':l+ :xlY2f[nNnXJ U#!ur2GQΨ= ȟq9G"żGmL~.e<E4J] Q9bǨ橆!t_IT6 95i?/*tX[i<TŰ]39\Y) =c/*n>~AkoZ$?s(V}/0:);ioYlqT)+邸uφr-~Jofn7^tD̈4=hcħ+eH娪 ]AJ*PQ5Q-&S:Q L]J^"vͱ 9zJU3CZ1<UM\wj4HIzt?W|ƪHK;Tݚڨǡ˲O@ KSJ1`(L3%`et\NS+L2[ƾ02ŨXC< \݀8F *!<9Mᇱ巢f|ݷ#Zw>NjUc>=E%(٨eD30ѱoAG7*JV^l$ȩ*}p!M]$'N96S '^5#]KA &"u'!^js]Nd2eJ۝勷!e3T>fppJW|*?w0è_ط荙`w??̨7+v <2bgRW[Yɸ?Ϩgoc4^Y*uPZbl0\5=6*-<}'TwkڗIy:fM{D6$aLgJv/?:@CqUza!+֑Uaѧ3^( TRZ5tDBsJ EzG}X|jOՒ +M1B憝fX,"+>:~3Jv2$ _ve)Y%aNḃ4- w,*ZǼ bC1M>-ӤYDD3ik\ߏ,l4iLu`5.7\,'Hnj;bJm醷iHK^~@ESK3hZMBHrکDwA=ݙ&kJEH+8uP,Lb3cޓRc_jQ0;t)זp0B)W6 ];XA/&`C,]_'\u0Cv_v1_k"t^`q|;,M^s<bul{*JVzVFQd<%m0%o-+BRM._fޮuj$ւa2u&KuC)Lz38(0z:{$ eD^|aWe#!c2Xa7Çr|ս`G''6?+.;X9M\T]sT~kzL(No?z!&eZ6ĩ-|=ɿlw6 X.ΐB{hU_{!vCrgpB Ñꩩ|AȪZV<:uehjVJt #IAQa*S0?QDW6SAw"[]';C!wY{KeR>(4S'4!7F ahnQ 8]C?KLOfI[<N][k!Hϼ3M0!RRh<,'Pdžf;~$W DZ<Fyd捨=A, "]̋ة3``j`T꼨3ߔXW,(J̩\['OGNRO.w7%CToU;vҙ^{C:K٬-ExuSo~i֙cY<D-Du6 P2N\sa}ЯNZMk&'3L1/M )>]4V[&'Ӄ S_fJGsl%-$˵?6>17i6ڱP |`H# $g!@ޒY!p0;NQuw,+w[h[.L'8mhOif냪 F&wCT M:phTflQ&NPjB*=%1 T\elGh^t \ XOy].$ox:<VcUS,sEk `"2<Y9qc !z0wE/sCBs`5 QA&sX $`0 :ܹ2笄]v@=a7Ȥtk.'UCkXA`\Fczu'L%) N{cIӹ^>)aQXW'MaJ&Z2wy7(=%8j(\,#KаFG4cCR Ql1ުecr:FpjBf07Л{4m df;5>nh0XpzM0w".Wb{q3'~fE?zGgRb"t]eOqࡪX{;<va>Ӣ? -/r_JFRhvNJo;nH=3Ht~cw) TP`I(x\8e$D\ g:FRq]ЏC^؆1媙;gST܏/*C}jUaX*tYǪcϻR#%|E6  =PC2k@Si͔"qj=lQdsת[f54358ĉR Pb/6Vڪ \xgdFGM3Zy,%G`E2Ռ (ߟ%_duP0y#G2@{EyWmOvg6ƪ'߃%Pdp>$ *C2t/]qQeLG܈6<5@Ǫ?*Y4os2ϨFoJ "]̧JA ?_{]>͠wGBQU\`W$#4s<޺|qV%/]2Cu^ 6P}zs)L|٠oa#Bbl'r&.|lOJS{wPAcݪtb./?k )E6]miIt'4զWiR\ڏfLHBKTet<p|p(~ͪ8K(^F,}U{{!)gR3r ޾m A"cPA8)*fbX` t>hTNqW .]nƀ -»;-,YáV,ݧGfسWQ30m R{SF!96ZP!apszʇ!u3Sl"5ZIevaxL$&rN*#R!%aЂZk C&WN>U%ۋg':ۙwz=//z(оpm0V *t,?A\6ӈ445V?eu= ;%JeBZ'@Q*ݥT`BvLuw,vg!YD<pa[c_XpKG=#$f_MG0OL;,v+MJ,TP> D20U8 hXY6XCBb1"oZeˏv].WB"I_&/iR=Dz.W`(cՌ5Hdq,j`}<?F Qj[!bD!g5ǖjīe\;1%<u[~Ыi&h6TӟtҎz6nyR箫wzSïd/RxEѥé#V7S,,vM6"+@I3&㫃)B0<qNSFӖ@ǜI*q%3x%Er x<`9&[s7 Uw}#&FhT 8m5AW?@A恎14A̎!h<Ji$MSG}z8tU `RJbҁW_Xv@N%l閡6?["KDzUdJ ]D&+?ԫ9==X ,$V\xg uKJ¤ݬ<p.\Im7\yrb}M A΁FpMPw-c1oMiGZi:A[z]w^{Ð}Tytӄlݿm@7TKQ*ԫ%-m~-kāaFDǼv9䟡Np&ZȀmX|@Ϻg=0Ɋ(FϨ3 Qk Rɏ.>^j8cZQX_$T<*i̫C+YpW'AKj:EEث%fCU+?)6r /&/D.aޥNF`ּtF1Eou.٠N4<5:NȚȫSB@[$=x-ܫ׊b/շKQ^ږ$ E&\fܲCξ2legٟb0堫(6d_}T!FbЫZ`6мXtҡ=9<ťSyeYW?|J $jPMEyYhwL:ܝfk8مfi`ڻNEGff(C&|pJ?U(,M'nImZ`UU$'D7#R" 1*'N~k{>xN6 9Y& 7ם  Q?VcUkf;Aڬ ^ׂ[,]\7:3K\t=M&!Y0  -eQ:3ìc^7*HۯcELEZDB!Ċq  vG?*&$ '#M"-l1$@#* IvO8'@AI4i`T%窬(P`Qi7KWT\)U[Éc1+)٢5*%f4bdقm+-5I`L \t8RY$+t[sA~ |,Hp= Sk0~$3xz504Ƭ3o}}Jaҷ ;,\/no+Mm=e-<*Y>KOS=.Q QXo.1ݬA0Ys6<__>D~)ٮˬKm,sؔF嫬N.)tK=20_R X}]xV"my]#ToJ8[2 1ypz9_ n5P8VEg~nCt_Ak[bD,Ob%cVӕ$. ۋѬb͹OG Smbׁ?7+%8b9c%tpLh@p+BfM\FpZ g=~:wPAwh(S[g%oͫg4l٬i@ ͌ `OpN;dj9 .84mx}2қs!xcxjÌJ嬆y5S{#i'4묍ۦ}6y+Gz̙JDeEms $S-"P2 7N+[oNtx#Ĭہ_EXI^PfKmn~50Y PG[ߊ?,le<l '7\ >[ :]=E|uZg `.b[+Q!Bxٝ9k_HX{/rޓ7,jw;Va$$AtǸB?3^6D:9F|'+tvX[36W5wmK+T5ZP^( G)AK}q%5Lb;P8ɏU:GxuԍUb:ߡo{ ޖ oBL}2iЩR]A4M*oirQgN<ߚ.Sbݼ o<dhu֊L4DzCܱD*RVGg@'#l1d&0wP,#W;*+ԃZ'JpL3V#ua˩;4:"/?$Vy:Iɭ » oMy(60>?'Xt@)|QCɮI =Z5Mq>eB{wੌ&"7=!24ZC|q%w+V՝ ф^&[a\r6_)ULtyv- 4Iu,RS~ŠM],C-[}ɞn* ɭ-@~֓'ϳҭ> .5QB3_+ >\T0!OG2 dDA(7v@;o&IȵE:|X@L4yhs~jHOD[$24#Mv׭I\qx/RׯgI}-Kft])\<&!_eQ֤U ZI&&P&_V1n)Q2qS+f\@=*%<:h>,GjNT1 ךje+\p^"0㧭kk=y~KY6k6egb|;^n"F73A*ݠ>PXoz>7m?1uT,89+ц-zW.9ˆ$S[+qA{f(i m1=Y{IqΧ.ԭ~&^ ל,UX6R?NͥYDpv2NX&0]a^/&>QvQK']ӫD4?L]ޝ?FH]W'x pgu^|aO <wO)d" qjMjh]O:)@DHꭤ3RE}ῬcJE% h;8{孬ɮWc3tQ]ȭ:c#1^ZI%$f\Y%u٭pY->K֨Cھ7],<ءǁDO*ɻFIS_r{åӭʰ.) NWDqϣ@˥4~_76Zb3ѮdWhMf8`j7wzb}ܧؔ5=GH?R螝e)ٛ4͇ݒGUuۀ8,s~A†OwAy74cv6e摊Z`1j)(SIJ Y1L_ խ VuV,`4?GX QO s+%3Rݩ$!xx\4YְS87; @4>*o "rs+w$TفanUJf` 0IQ;$\#NͮOIM\*k([#懔;[G(ڎ<m TY]<2 䨮(zSdzB2o.+O1BGeu .SeYo50~~f#2G*GMSZ ti3A4swMrk;K<AbƱ 2U] &Gn2mdV)sLw~0C0aˮM}M3e]?-ȫ,O.;)(QH-lE"qvU8Yl0d>{8A ,[n;$oMrRV}\Ghy!ػ_J@2 /ۮ`z!0W`ot_bcw & Ize]x}CEMj])"?F@Cj(5Q=^'L]j^^x+6ޮmcC6pWnQ)}] > /Юq]i8|b֔ڕv`8c$*w\1*%abDA6"ROq[u[GOf4N Fhzخ?!?,n_uNFc@d2-K鮍*j|&?٨ㅤi+,C%Ѡ^?{YEz.gI N6#cɡ:!% ?hW@3> ;Iͩ6Jb jOU^,IL^-v<3ph\C;Ճ罇D,Ԙ Bټ^09XL Zj%8Hh ǒrF}8v3W42h9RˮگԵ>#1%8mx״K郞>X@fFR Y' %&&MTe&Ӻ@7cof>y |amkjͤMo в~WC~䷫Eb7-Hm#fvz} #GcQ0ף*BhNBwdW Ҟ'+ОnFCY~DĮkTNag]vޖ.Ua-,biy0^7fO[dyrS}~Q23[7fA|d᤬H{n)(x<39w5W+i&{ n)̱fzJ[ ܄o'yߟ4(JD~ !pw|-O K4֞i7 E;"2ɯ I) #ʬK%ْl6&Ulo4\@)lZhR2pEq}L {XKq=rz%hYߤ<Y~-0fAlNsk<#0"~_0 '/ օү:BQ ͗t˯<ڤI^̛c[u7=q¢T$>:#=7͸U <*CeiNd㈉=HIjNm|]&.N|hKIk%uӶ@QU˭,J!^=Soȡ'XMX"[ײ,܄-ң#F^WwCtxO_NƊ(P3:d_3?l87QPcȯnb_e』 %w[ U=l`:J~)tbr4oR \ JEбG"̲NdJE#,Ahb9\h0+R "2AT3nfDwmf 1J'4WO8b9;& V^w䯜:MUz9[NɥdC;3+e= ֯,2|Q,LL3@㯮T*"#䡯_݁r:yn؈F2l#-s_E$ S[g}g%MCw'mܪW<@ʯLqb}.4 ͤH- hmX/I;*W"iQѯ]rMTKH{$ppO?pOywڋ[" D_ Dc>ys<'e:$!+05w|%/9߯&n^|p:WRȤ;B|0zmn3qjLmXzl8tCZ=cڛ\%٫Q' #6WZ!;G(d"mcev;XHFcr(@تSSU2y@며_h<(S!#Vmr[x» L60Α |zX1֞ %M :8ܰ,@CaPYB.XF,YQ(Ѳ"ҋ31Ycq5I4# 饥$7 D]4QŜ?77G"6A:=벰9΄*ׯOfJAٌT^FgJn\ yѲnJHdctu?>PToEMQHS=7s%~(PُqSK=RnsX -1XJ5<<@).$\A Hv<VR6]D'oL8"kE4HXNTnl]]ʲB[pxݽZ zpa~;Ƽ~ƫ.Fq)$H^\DreZ3mT\5t6 %OxM٭ ]MW-"6*|6T׹ ?zE|僆&K;XͶ5°a4J%*ڝvt>ژFO'fi {!Y33u9V9jNnZ}9R{巭r(@D>ZR/^&5ʟu(YDSs!n ͰW4 +;4s7YIZ;lnQٰ[:1qAys*?M.θT%Lja΍ v۰_i)!mpdRmg<.:%J.T찥ml0xO&tb8R}eӰ5dz`Ap[ȝQ`:4akؘ Wurb so 5~pA^ MX{O3ܮ"1ǂ)P#(8B_ -V(W<8R\ؿ>z)᰺%? +ϫ=#+ǹÐm]8X~a׮ʖ "K)IyD@rq!) DpJxNꙎ"@-SB1ɕXmR%ONIN*:nϩ X^gLk2~ԢPu~LZWXDǚ)4]<rL0 } L LZ9zY$NpI* ӕ_Z܈Bl4s #$9ӯ7)y&,b>f8fF-CSA)Sޫ/͇H\qVj?L+Od{FHHd ܘ;q.x/"/U5ώ~loA,଱ ^uMխz] V Q[T*5*^XV7vqFGZ7t$z|WA5va&Kb#)klb0sls'uD!VٖQoʯ :|Slfp& 8'n~#'Kd-}Y& սUfЄV8&!S EeC+Pd^S&#0i Q,F3dPd,86>,)~86w$-01>1t$X7 oԱ4-Mz,'Z`7W6ߒ"r-Z:ZXO;osG\FN}&ePJ>|k^Z<KLUL 8ut ^HxfQ]a!QsE`ԅMS)oS`tS֧4Wr8ADjVr0r ֌0E15IxvsXA+ 5(Qk/3N8T4ߤ;Z`%r6^bO 9s%R L%{ږc*& Gƕ=2` &'@kڱ`-39z&y f/dNotgn)q4نC쫱]8- o Z8AEP0:# [+Cľ 40(lVV7,0sܝ.%IMsuQ֚T^N%@,[k1iDotH*?na_za.l9N"d7ry&R('S78>P2JA̱䒩̤A6НZz@p\D0 mTP^W1hC ѵ4@Fȳ])-u4kU:_6)(e^;Bfǒb?3SD ;T ԣnХ3'zP.ZB_)h>N0YY'sD.lIʭx;bO"BE%*TaI āt:mq*T߿lٴ̊?b Kb3,s+#稇yp:,HB‘<*%PM}3ODTȬl@,&1`vZe#m*' d/igvrWD$A`Pl ڭ;c$u]5X߲%͖^;N-2J!E*rdٟDvDat+lS:Rп+j}q²1}_aͷW잷i<Z3rnk9/4 x1+=P(Yz<26.Ua>P*84,Zxp3nl OVi1[[@iYÜŗB/N} [0dBvtJ^5,5Po^^(Er0"{A/cmiJb(!ncp V]}~ YE|iϒI2ŲkmmDHֲmb(g QQ{Ln+;wsjB,Hzy" Dzt`%@.bO /T-Jf#{[yղDcMN vOxv~Q}__@qSƛIJCR,>!QfypƲel|*vN㒆|*o x\L09m0 o6tc(Y{Od t |ײN,c@ɺ)I~]aL((>2!Tc![3C aGUnKͲX^cfJ zR4\'8ĮI Ʌa걥MhP tOņhٗeդ˥I5y֖3GDs U{AD٩١A}Zu ڪ}D!Y;gA[aJ%iO$ӬDo _y^ck#$@=|cx YB2)UB1u>_)XplWpeP.pFy6[dž_G9=:xޔCſg/57@V)M$>W踢JIl >.V D<R;NL.7-?SC Gc:t8Pzj>͢bo}w&!@Ǚ6ƏX;mL$S۟+mt>>w+}S'LDn70a}ճQoq`.mڬV*G;pca(&[:F_v̳g7uiguCy9B#<&S0 1y *,9ĔAQC W/#˚z2H$#|$#5-4ų%>C@Jz *2tx&aBm2)/:ȘZ=d_a)Tlj{'i&6Kq\*MzlOڨ by, ߦ> e`{s3QIB>Xs}.b5IͣEuڧp)60BqC`u7t}e8\pzjY]7>VDEH=&\-AT%Q\l>S>U YA7F>t7H*u3 ^@]vb=-rRPٳFX ekeoߑDuVóG ا^yphG ZqLLX_;ĵ'ؒK!LLruNG-t\d$SV7Fu!˗5N%W鍆c5p5+QZ9i;hBwĊ_]E@ozJ:Xg 0V.-Z+9nDg!Q']B҉Qhcjm1h 3JPmf!j9DbhNAQ׳YnFGl@Ͷrw(}6Gm V"sɑ ܒa>``[u<H${C_y޽G-{^W8VWq%=l|]7K!4αixQ7F T(`M m@L?Tfgk;_Vrd5O#X(t%5pJ_B GF,q1f- p Bz@鳗 n1r,b7>5!m.ܦ3P$.ubpW鳡QuMcU0 8@&JٜK1?xr0 b/d=h\D8jX[?{]9$+:SZZ2aLDsyyY{dϳ2yU jOH0$rR,iYo5+<?kw<xxu RE&3 `mK(6;U?40 #i*h2ׁ@;.k| ӋL$ ~Q &$}9 Ӧ7(vb LÇn5둑pfI}bcC8&Z ;"Dž%9ʜS:\2kt[&.Ɍygo FtJyF8z_k5eJ=$:ia\T!s NGf@+#,`"]Wh[rs6uew=p~u*~nJγSb~.FqXݖz(O]Uw7qW\.ϴ跖.+9cĴ+3|w8I`kp)JY89z E}s)ڨI9~ ' SFG\΋kR:lnMY5L!̴6}<}״$E<gNHZlL(HY ' q*Vr6ue6P/?߆YxȎD$k)4yeIaܴ8dU+%,BW˲ H?{wo_ҵMz@7mv;6te1=uBN)H]F8靅<E|H-b[،>/ҧ28HF3_/w3,ecZL 7քu @N5ȟyS%XS3)1yK⫙U?8cb~7m#`O1 z$’Pf)l;k.Ů *(Kk` /7o51).δpj4Ѵcj3apQ], gŀHdіqE`%jC+KqeyeEVrNT<yhdyr2wf2D(d7)1dd~$HkS^jU8]X/k3a/2.,G)p@ E[/ (tظ@gn}r !.w|lr']TQPTsp_D]Ḋ51xSBE oE|y+v1۽e& ״6CuV ȀC!yɀ@ýE4O.*[ MHu $b ZrhdȡTz%#fgw&GӴdeN 3 ~xϴ8`ȢAQ]Y6?#4Lf,B%|\ܺVǙJ,hȂdfs {ִj(g M@\Z'7Uy8RA;$΢;MZ { ]K6~-NGWxOKᅾJ*$(.\B[}r$Bwߴh[c8Ѣ(2=9FR/G@mCָmRu-/JuugUB?e\qtcÁLmDά<aWSm*ZB}'"bGh^G>h񋟡y^=+楴N&B (-Me 'U}Y!κL:|״mY3dy ["$xk0cӮ]GNyi)¿aе|LcC#pAr4A2aZRzC+dL;'_) \&ձ (g+(J! u6:M,yBZ} {n,%R;h=> 9BvSf%!hbpKU:8wH4 9U(_'ʹЕɵ ;L\}le@8r[(""kpUPӴDQ%P~Ό# 8>21rY9,1QLhh՟zR-riXޠ2C9/Б2P QG3Ay:ӂtwhG .,FGJkD_죝q/Kfg^K#㇘-z"eA6GLq9E^DеWW69oY]Fh$Qbε^+$Ap"e``nE3{.`mf^Kf uwf}<f~^鏟h ijZ2l׮qkA\Y-[ljtGڪ+ۇ#εvjJB 銷!X,,xl Mhpw1Ppc{jHh{Qa=/ {|1B<xR3~r(B,`F7#޵])@A_~B39D!OӊS# U#72^keQy1:?61LWy~@|?.&bhRNs |A8ue2[l$|Sw+j&dʅNtyrCBwCx`ŒnDo-qwjdC $z 1Pqi?Pʺ$㜵Q]ICE.ܢ94|fvJU2?[$hK+t(H/BRihGfL +7|pgƿ f-sTk7Ь/)fӅ??]-L7 Kc?hd*5^> c^3ƵݹVr%XnX>݁gP:-B߄Nqhh^ A T7gD)+)~2xT4O,fb#inu/g-z-l=-3w<z T<k9[Ńw!9r0傶 H|uZ+=x )=c k Oz  < Li:rΔBsi{\~`Cln?L!S-L+Q([O&ܒ#LgzNu]~sHL#fV^CL>I#3*u4'm(7,(?Hi;͉ua|}*%ppw?3+@25Ep$3t:0Ti}L.? d6{];8b4vs,@z:?͞2o(֥iRю:_*zkdB, _lf>h)L/Ă10ΰ7򞮶?*J 2|YChah bLZ9܎GV۬ *Lql8|mҶLJ?hGJtFc#Nγ;X:L[ WOgv3BU4'iԜ3uU}n}E0b2V tMm&V::ƩI0oeLZPmm$r.!x_zE5]5ae磍⊿eNyf芡bզZ:z<Ufǫ806.C},hm(hcJ/0U 3-hۛoD6Fm l| ؅Ł( 6piM>42x: |q1\}C׶rԯG˼,\ e@Ͻ3̶v2j:k&tDHu$|5dJ<j"$GQ訸i)8zRf릠54WI_ָ)0<kཫwI @ȶ`\s_mB1Bٶ/M2^ qD\S:a}#\=߰s9P]֫hJS`FCfI"һSH=!D|Ɉ.R8>w=m4& ''3]mkQ@h' %s'l݇5Nz ޶™P.9>&cRT ĉ6Y%Z0'h7Ի# B?Jd^dcbD$(綷xKɐ[;h&.pֈ9*T{} .(VXTFPCb;lKhȞ&'sT\C&@x[]?Eq 8&9<>pȶ7a*cwϕ,YݶMt.c$ άp."Yx𬣷#N)U oғ&WnhpkLep18"9|ö҃b,hAO%crʄ6rތsu+޶pڋDPp\1ŶDcZ` 6xr4)۞f 9 ]ж,"#*}q3A *«}-JdWʀ0y1 =/2x(/s]610ѼS M rV6T.=fS^7y]֞|Bw^ K'}9G>-Vmdޙ?KxuL' V[nɖ_ %SqL.o GQ.ﵣ, |Iȉ3@ѷ։5`_ʑGb$*fT{\un;-. K?Ʒ/ rh nNڤ1'HKO1%L[g8(+ BW O!t˱qN81h*Ϙ ;+?#ͼC|K !,UOqCBY[APLI+-Q?6."L E[@zЃtd}ַN~"^Or {daN`ql5զiv-yO:HHݳeKˆ?rS{g؍F)~Yw V4ϤG(8 Z|wUQ .ʛOѥط` t”3%a,aфl@d!𞛷g=W]}ɨr8WPbrp9 6]#NJ+,_V~j:t냫|l -3`|< ?!ڂvzU,S[c'%e,N;-Iph2QUSaP3hr.A%3C"{݅ h<5$;NaFtďY7V`jT}4S)NHw~%D<\f#طXHi.ש) ǀ>>HC޺w޷z<3 p7Wwqȷ:HN\!RFá8}o vm'8]&jeUʥvMgN-]@݋xWiuum_#GRzW;tfΆN~H<gRDqHoʍ7KxUþ{D);K(C^Et( ;+9j2ѭ\B66ٍ%Èԓ K%q`zo 6 x|v6''g[1]kr| DWhS0|h$`f5F_җNț=p['b74sP82kC>%R` Q T0fA#7].a8J`13=V(x0i-rCj<몧Fb<)R1FJm' [yeV f?pC5O# Zgs٭Mc^Gߘ*oS${iv ʒJ#Ƹ3' t 7|':w#8n!eO@Uf0wLhu߫5M0m Fy_*C,&adcg6kh*&Mtko%PK#JeCڎѸ%c w!q'ѪC(yoߡi{x$)5Q%z~wZ2${fp554]̸3N }l `DQXө6TH_D:)x~8,mg e*EiĿĸ@ZRW9mk.C*ryx6? E (\j}ٯ?vВ~F-x}j>8`LIЗغ24O[zUENRJyfJ)-L4VZpոN*%tÊ{kh+N7!ܤ nm7QD\yœ$2-TN`Z<DӡHF NUX1oU%]1`5vy OKE[I̸dp AR`cfq&"2X4+S]jWFV^4yZv}AиjU *Vál~|pw0#r\}j̓ժ'θu؟'1'6!gdL Guo1v"b XxLx7H.sS~z4]Ok c%p|gBXeM+jAn1̃YDV:ա ;Pk^/-+곸4vI04o:^1OS(\JBn#&͏%#}MFո~g| $Diḑv7/(ܮ/@zosdYZ<[`L}FUB%DXNgK e <ݔ.Sȸ 9/ZQAjLk _ij4Y]uYu J]B&ro3P2QjO2tpFYU8>4nux,a\'퉓)θ嗁 Ufq2*mLf{4iW<nJByd۸k@+ WVrn)%PAnDE;[1[KemB+.Nzh?_* Vdd] 7f>:֨b zlĸw. k(or؎U59l$r0C(\|:f5颸8ba*P#T^3lJI),~xK |nw`v]G(n$5Xu 5B G aUět$.r02r۹uT1(xNJBx2$=P#jIcȅ T:#(/|]%1Md[xOTc-I|2$'v~kϺFj߾ sIR_4##HBx:lMv7WN߹ۘDl,) |B%gyq"/~4H7Ԕn]7U4EdTp7-38[xl3j3:]eo[T޹;2[IG T:ݹ<@҈d{8 Z)y=6p?^+Zo eɹF~Xg;'5GL۫75&) UYՌ2My?LeBuY Wβ&ᐬ[9FHß`&d>/[Tr*ġz+]:b*ZoʠI3!_L1~ 7W&xJcC$2 O .d `R$qm.Ug;b'_8i"gbS` {ȏj1pՄŦv,mGX))3E2‹rnnlpu:Yзane_xF|4g)"u)݈f׎Ѹ^1v174? (+̽6dy t 0Tء zY#*FȩU\ܫ.){L $X(oL~Tl#?+.\44y4lʟ-~5>k8+2>I*4 qPgmrדr7!og>L  6鹌E\yP6ʲP2ȑ&Ŵns6ز&Vޛ%J(h4 Sa %mGh}3G*=).Ϭ¿REKUG\M3~s!0u*J'}O`{QL[^ -((kdU0m! zxp(M3K>^-@s'۠}ml6C_c$Y̹#܋[Rͳ0tF &.,X;$'Ү?/M PN qBTMm+ιOPO-k~[(0| [ƪu+y`LLQ7!#cfȹukZ9ˬ+,X$}kwފHu Bt+)$zLħ*@À猈%(5@X/EȑFZr]<6<8Aٹ#RV•uq\ RNz `x"K"k>/:/\e(MH6"NrM6m]8ıXo5.M ss&'|DKF@bm 4RmGg +j*fF*e{+aNHPdw$VYpzLi#ԍ Li]k,,{\=! c]1zYPlD 7g ٲ~^80pà".}89}g=SW?t@474sq@81u).y+IqMμ4~}J" [Kշ4k:P5\:|m=nBU/0ƌ +%+Wj A@\`l9°^ &C m+r} E_ƪw\;T$l1. M)`W:"TOesPԺcGFN哜0dL% i2rqsYd _o{sTh;tξyP~.ka)b폶jCOnU=]LsLnֺ?j ֺoUףR+Z5YXqTOL̦fFLKЂJ u=ˆEek?}usLa2/6uդb544LOL*FvHe|v3avw!}>b 6'*7bP@"C𺁊YSE'e}au!b?C:a"HN%c'cBp|0|l0Jq`QgczYoƿƄecY2NOR vdQc庖֥">-Ǫ)aH%@k׻XJAx_\_xZ 3!OJ*V =逺~ oOj[{X @I>{1bK.^u|; iEoႽrt|ˊg4q̷f/ LQ։:>e#DUuK1FBhz ^] uZÏUh%V.4{ \&Œ7 ]uY/ oSI*d*y<.ȅ5ɤ /ӜT9gΫ-Z׮/v 95xBZ''-#Ѻghs٣ {[<܆Bh^ger[ Do'<Ϻv+ \ћ-$g0[CF~#=-cDS2n7=l A\[N˞&ꄸn{,) }.ׯI :,` Uڪy''\>}#pP XN(P3@$W,iJ qے5xc!DA IWZ{z1r5'9AnCf_Ǡv» f{=x4ӻA0wdX6!quoȃs$ cxJdt@cл$灦4@15xW)U RS1`~4^Xcxʻ1I\~HAp2 5E{8=\\g7P nR_<20 <#kK#B<;\D$.Z ~Ok^Ko)9I]SdVJz<SUtzbUR:C!hj YV{Ly/eE!lN\Z@&ZЊ-[H#Lb߾L#\#['7 W|@hMY}^AU + e ucG32U3|cdDE`^j߻:e?^ 7S3\Yi:py@):iU#CA6dػl"8^IN+5Dm)~ӭ1#o!φ$s\Zp<EgVr|7.,r!+ 7|kJv9Eyr՝'3wVS%Ho#jMM Jtju[`2081,?j_Lqa5 X IW0 jN4~H"3ȼ9=9a^^ GmѿLf $ĕFU,FW4곋)cw= nWﻟx@*' ø ԩ::?SFKiɥŠѻVK䱃w5b[Ҩm˭6pﻧs6de9?廭Д5d`,:t_1g;P+ȓIuSAa_;+<&niB@ygJ}"”nnT |͌ FxYD%WM%>j\N#x24_L؀o_٥R(% nWH}WpR9n:?TKMk5"?\c6N$ͭ?J0e=zn^Pl-> ]Yy".WWu޸g $&bݝփCہa{xEMlh蝮/">XK=.0_.+%F_PD6>.^#qU!vF իwrg`)WýgQ'fۏhPcz~; ȓ9i Z'-TQs׸ߗR kvI}(˃8dg7d,n1{`#-)/P:L+cDǯpVA<Ձt5X18`08ZO.34>56 s r4|4e_J9eі}{]:&[V:z]Ec@,~FTem2ӭJ='wą]xP@k;I@_]ɼRmM\2(=SsS5((tQPTl_Ű-X7[ l(S  jMd,ѡHWo/aʊr!F[n ЍshW J9Oɖ xh)4&_ߥlcU|{wRB E8WE_ڻ2~D2h 2HykX? <Sf&4dn_E͞p7~N[A$8RyQn2v&GR32J=˼((IY(3_.:'^xu]񼞈f$1,i.jDyV8nwv39Y,Kȉ!Vt+6u_tMl_u D,Yg5k0')=5xX RΧiS{X]o|zewR @2] ̆ǹJ2vd_Ԡ>ܤEydCBA7L>H߼<Y GMY&;N 6^TYJbg[b$ y#lk\: mkym(8kXIݡ4 825[$ Q9oWqP MG nbr_  BwZ-:?|b̼/]!c.+#2'-.]9P!!W1q @"< 5v E5#GDq€C)U]4c*Umu&>Ve[ʏ7bV3-D0Ăs[Siqz.ryx6,I"0^Ja]i0rE:o׈#@ڨ4e3) atQ32Q"}4EU/$i ;`5l\PYHeB=8Ǹ<0SG>#~pFYGP>ZĽ>|qve ݽ@@!FO6_ܽA \ǾrG,AqK\beɽBcWWh Dur'[ٽI6|w]cIR<v?a YkktK !|o^ucCrxKN-q`RVV@Nm`5~{Pp&E N$w[ʏ:ckp[jUcY_ܡ<.balgiBw.kg} 焩18?(GpT@MQͅr=+p/%m6pjʠs ;mYhYf97t iouyNgwg#FTiV |dw||~W`G,Ҹ<-x[]nù'h @}&lBmb%jehۏǼ,_T> sPMQRKdlFR+꽖+DN?ŭ6EyIe-< \c[H<uǽߥ؆3#X⦆1]}) <uRU TR0@̼lo|.k0 أ_DM‡'[~ahVm"ruj j> U)h%hMa 6ՁD+ׄgNyI\Ƿөc_s[ "\B4rdF ,[)>N8c(ܔژ{/ЖSGO G Bڐ<5CG s`'ٽfNW&ނhMI? Ɨ(w%,(sȽPSqkY"gA(f*}aYL{\p5%?H .ڣE_oea8w$<A,W]{aZ?;HfD~;0;B~_4x qRyufCZѹnHjbQ|Q=ypv(cF7K7eG  Zz4|vKUHv`tc9rsDk(Bf6U~;N⡁Xu[7!ୗi^:!LIb_3l_"} pF{P[02Yn\4@0Y.}oGk-1I4K&_ws:4H:BI c;M-}{3iݭ8Yo;qV$.D8XT>^tMxi5AP sH:ǡ>TFC(a -Dvς}zhϞr\F0I3fqA >f>MJO d-^ gM٫܄V]#K[Є?O&.y Lѯ \l[AUO Z_XJX"3jd'`*_IyfGbEt Z 9Qq^f"`<W*7o]#ɾiJP,lxnMO%M#Ծoo^Tzˍao($`(캹A#%ԾuNX[ch CUxWGu &jA >Ayw*LRa H,[&{κ]zd6"fNVB|_a}Rj}).,v~?@'@,龀\EÖ K Ŏ5BT&@Pe3,[w$d8õZ"yv)R澎9F``o)dFTPd (}{@9*Mi ޟAҢ.~im>4r6 w2bWX&mLdzTW"b>jh A!YC(Blϣ]ྞy%K5#3dLJ6=U .Vp~Bb&ȁsZ&L ӾӸIC..ql*l,/VFeosL٭=\ )K~d=db|I^]děC@dqU5U+r쾶5oDv&CT}R$MBX6߈!&AF5K&J,nmVJ*}3و!I o.ROO݃R.`eB~$ZxVBWi Z>3/":ۺ)n](1GhTT+7[`Yj˾O~a~rZ5)76~L& #վḾ2)fFw]dlB\ъf3o`謺aTo+cLh<x oqJB /q.{)XI_rc2ߢ9Tıa?2nکVu\0庿 Hy<ye9 ^Oz(il%5:qE |#f|䬤h11(K6}m4Ckֆ{!|{A!CP4ZWxq;_%ct*ŵyVᛒN+ϼ=4W01a hb0p;͠,-!;H05#n\Z湜3Jњ#v! i4 \`^pњ<,/c^D6<73ˎ1Y<NX`?qhunaP $eT,zV!X<1ONDGXI&tkYT:Z &t;1ъKZ b @u䰶Z+ZATxQ`[ey>X]b> 8i.}T_)· +"0`1CP+ViAaN}H(smlc_&X"Y"rf҇,8}<_8Bֽj=>l$^4' m.Gw"^nuZB]ͩ딄l-u9hғ-m63vL1p;OѸ ]{ wDu%xķ8$^z(9fJU!<l,}Ҳ][{Lrm/TP g<h:;KF8XRJoNM `*JgȄ==uؿQ=Ig y\%تPީ1E0*#8`/L*D@W,PA=j- 0*XL#m2$y')aG|',ʃi, , ҄8?/5MQ w ,iIPEL _S]0ںy@{$w[e#Ģ~'2(M^Dv[ag]s_ьS=,y+-.KQǿvӡԒ_Dߛ꿴HmR{޿p g)p!*ՄW4iuvo@+k Q {\By/Il$Y6f9x2M25g6eV50^_FRڞdXt˕i 6BcoFˠS&OT2G8bWUGԓT9SRa^EGP0ʤ>u^{nG=-B9d(ޭa5頍A"kxqG!D[_տ=z#_R절HbQJt+*TMhvc5θ55]H/?r N?Y׊BܣF/tݮuW@_mK_!:zByyD?>*٧t-5PQ. 8+{ Y jܢʌHd YYjݟrh&7=90dvXBY^VL1cI۹Vċ?fp.{k 5nsͺj'l]tL'd?Ns-|Y&޲$9{nTnc^gBb&bؗG 7jmo''W{~X8i?-T-1h'޺9VҾP'v[9:9| w:|v@:XL ~oA;O^[K}%<[cɸC?Fu=CVW{x1"EQldܘх#ÊB/pe#d_`Fxc*i|K.Ç i1IfN5E W9GKS"P88֬MI69OfsQR9lR!ѵI ,C\kbY  PGB3GipSԅ[Q;C UEΩdde|~I)r[ %r.xs_ɬ(nv%,%/h@WQCwW qC }bl(i={cEs T~POL!b]>o%Œm *Q[ 4M"ܚM,,8Ӏ+YrcTA 9:1.;~a%kh;< ugud@-i.'ZׂE#mC]U֩1/tAo!H6w_\ѧoNsK8a3eHwHm`&9\/FֲG&CK(JZukzz(x{0ACBj> ʋJ&TH콟4a^ r?r8ZYS{Fzb%W qXhX c/ 0%_ykYYicS3ɟy)9qv|^d@zq[ {Tb%*̎Ҕ-`]45#EYR)؍q#G@ilH툐a)GdVu_ [}Iy\VAIj (ءmVPb=QO=Hr7d֧ClQ0gM Λޖ=At}E9;;K?Gso؞%έ7" n3ʔ;$~"OXN&@ګ/c-qX * i[ Fx|N'$n8'$U9C!w O4y/wWXzZNmXI: EO!}\J;pEv ԈրP[/!7f%q!O|;f~r.H#1SDlN+= UGxsKzou?&!Kx(1L s㘡5"{,Ի+=3ݟh؊&0?|((iÛQhk*8}9ܬOP-{pU 0r"V\Kä0aOBs1͠{\#J4D 5vIXu!{lܸY; Ok<+Lea?X?0iS/d]W 1V͐Akn}O ȤvB.ɜuNT"#[܈/gIY/jg^!s m+hJX s@jRwdL2 .ȗ/aPmk/O+l]B(Q0ᛀ1Q%P1K%Q9px#}JT]Sjr} d#Z,3XӤTEװn%cU52yZMZ\z"hwVqfpz]@Z&UJCYL2 [email protected]ӝ+E~AliFJBU(c*am+Xlۚ7dNm/e(mM]?l0OtmŔ !cis!vtZMI]fxww/:1lP[xЌZ^oà$yKg}>πHP%t_hNJS}4zR%epM }E*Oa `Rtc?p2foـ,ݛ{۵;t4 7R3ɴbdkeЭgz8J EK=U"|˭q"y  >ML dOk2[2heXȾb#ZαiB* fSa)4;݈.,t[_2rj߁5}Դ˄nu2)_hû)u#._P"b?])bBI=MRH4X4(:̖xjQ~.BPn~S ;5|cveA5SDm%ȜqY.|zhɈZ4{x؋‚$SU&k}x M5S>ׇyDAޙ7>㇩$&k9 o=_H8H(B^iɿtEM.bl+ zLרt˕,%S/mٰ_cE9W؈ <3$FwRDIz>8_`lΧjGd1s+?a'RmPddQhlZ8eGܔ'ب_V{b' Z٠s# rIXk7P͸||yɉ(eY L /#daLS_ 2~49ـEX KU  x;"kU͇\ׄ;'+WSd76=Jw g`fe)ה)]VsϯQ}.)ϰ[YgYDFij ZM-ęGXt_ssZ(Iy4.+ێh$N'pkU=F (y=C$2pu"2#=[ShViYLz(@y*0Se,}P;WH;'80u`^ KAjk0C |6wFg3 Hhek{ z=42I6sW7JD nݻv-ICjd?+NQ3dJA=vFNi5=^wSeB{KU,LJ;~QE8'U6ͮcVBSZ[A ϴnf\R޺J}!r]!778۪^CN_ Irm۾Kf(pa_koUѸD v܊bbxLZB&yˋ?e @*زDZ]hЏ?ω;d1~&Nk8 w['1kgrX82,1v!gH魌~ ɔDZ{*o|~NjVCx<{;Qo pk-{OԌ0 # 9%‚8wO~f'p,Y‡^&,X|J4‰דM>+V\Š~s~ZGJV /Ž 's)u\.1 s_D ~0hjC;CB3mI'[v’h_)L ”pyW@š G6]'0z_ ]˟T~P]/Pn¢\#)<v?2¥?ܝg59\i]§+dţƥ´]/tVQF¶o74IJo·7c&m²1·6rP]zt[I2¹aןH3cO QpRxQφvyc,\F4l#k/WHi}p2.IIG ۴佩.ڝ6B,GA[4,w0#83'by5 &*[j:[l4'p5@$'C|%X*L|a\"S̄2H󧂭Հd@Nxp Atjn=pP#Udl-]˝΄P \{(]xTJey@}*Pn|$ [B`4B8wO ^w@ t<K&#5צVEy ȡOѦTY8P|iOhM( I7RlC.Ş&\$Rm>0ͧ?[NՒx(~m~ܣ8 ]0/NLa6IcQϵ[ѽ;h13K)/t\ =RI+ +@+AiMF<[uˠAҝvشf(tDAke@_ZbDL6ς񴑠aJ蕳"ID/L <E|8 떿fP_;L9ZCh=2FaȃFP ^tYD?8_Ri!LURbA*1#; yW'HOPGYv%z{7-es[9|<[@v^LK,.C| \_8U礴81d&&rc~e.[ƭfGwycUHk>5kaf疦)1tHIfF6yd?"jS6^ϧ6^ k7H<rBr/l> jvqBqaH@լ{.9 9yyxnF%-Yf|OgS#Dm$RklÀӵDYytibJ%Ä/_$ۉdhG>ÇQ=xgxÇ=J<TTP+8$ÇܙWZD>fBÊQX-w2ם%9Ë""ޒD +67a6q6Í ޣի{Y|MÒǚ̈́,'LXÕH>S3A&;:4Û~MݥipH?ÛظOx`fOÝtL zra,ZÝ.mk?&qeÝʩzW sclß05+7bI|áAK;}Nbl'`æ嘹uKǒSç+kz#|!1T]5ëI=_ÕwP Rð,9?j]lբu{oó+T{['ZNc5YQõ谌f#zö UV%1̡j<6Aø" G)SJL;üCEؖYطGÿDgN>quO]&\qn%ΆjQ<~֦:…| )ȞX *-I{ {ipgNaj<.V}9UAOm<ؒ],fԋTpޓ6U17^o,+ lF[ۧWc ,Mpc"_7ݴ'!81D.7;:͠Fmۓ  L\6& R00.c`Un.iO- r9B`u&CEBv]p"s8(Q<bdP)S9LYF`+K8x3:}zS.o#A<%)/-% DK3)Xix9T*q1.S{Cp+R3~v3p%2sJ]nq+jbNf',t2 hR4/$dwP!U*;NbfSвAe:?S6[K(=Hs{mB,5׬u/+,E.i)YD={1O46dZ> s[UlL  ֳtncےV;zow8щWoBndXb^g$rW,CHQ>Q-8jZ2+rZ;b_>W:~[d/3h^rN^Ғ\CyLä_uз$hߵ7_”IvgFsvaK+fҷqprߪbxI}zˮ[*dN_IX =MK>eT$N*cY [Y}:Qm e:,B BymufRs"Uo"r`yB(9 Kbp2<ظ3HVt^]hZ"*0|< cmU_;(0U~/T*Ě6m$ڡR ą B0ws WR#=ċC3)i?ċ33P腅7S_3ė\s7R&g){pęNy?ĝE>hXT ]A CğU=i~:f=Ĥv*$uf}{%#  SĤ,n*;ʩk~|ĥVZfZDe'ҋĩvwz[#ȉlīڬZQ$#oTG/xY\0v .*8vSq_ܠ;'j7=;A `y[X"w+hEVr=L^5B\C)VeUhcNJ1x&.TIi]aꕋ΁lGΗ=ކ Plܪ޺!M1u ;ttw#`FrcM&h .1t^|Ys}n5&C`S>,&ĴtGF[μOHd$ uن'ua>jqdoMO~>|e޼0i1P⵼\h؀a0>.zW=ktT }08bR ή "J-N¤1rשWYW{rEu{:,F,|wYs<6&p-ϊg㣵iSl@Qn5 VN&hrw^ !S~K,`o8=s "z/a5_.N V#諚ae^{AXNLrŠ32֨u>)ghT{_."ݮ]P͚̽"Q@oǿ(CtUDfmXW߉)~&L@^ј+툽#>WZh/^"`.uZ!Ĝh2M=-P <_E`SA3q:36Q΂pmrđ3 ɕ}v|qx(Kpk4| )x6>@=6 5/ڐ.v|8lMh;^`Ml('w!nJ^@Ȫ}[< t7DߚRA6I  ]:-ؒ)SI amG6]Jj]x] )"PFRV</D;^Ђn](nAh3l/E}=zl<ǀЃ(roohIvk@*`I%)|L&!SB\IńGqS>==|*Ō|Ddbյw~ŕny^>ŘԾwElo([|a6ըŚ{}]R}7|= ś ;t0ŨUU $c&EzIűG`ը4a絬|Vaųv-lJ΀ŴR1<vŦvpAſʮQNxjF! 92\CШZp';=6`)WçOR"0ǓdhaeAiE&C?4C'/߉-y=ojyAE0\-u\ւ*xܴ`vTN f5ZPo3! ;%(V)~n+HҚ]H:ʽd&õgӿ m,Y~ 9ADC7u&EϺ D1f H ~G3`)rO#\fn <<"3uV;rټoѱ]_̢fݽ @o)ߵj?I^,p-rdVy  cisǓ7 ڗv*Roj@ i}T+v#ӛ+ڃ"<q,{=9c$&=7ƑnK0mmg3JtaYVR317FaGnJ٥+o>ߥ2=SsKŃv.K(rl/xN_TOov (pB}X+5b,c n:hTdUJϠK{gOx1V $hzKOK#pi_CmT{ `QY/7mȈTUw{Sq{K3fEJ~v`0њ@kGH,wvYzޘK| K^κV-}_oYV~ XWڔZ ƆXc¬%04XZƉydn` 99ƒ2S`"0hWYl~Ɩ7~%tCF{ą]t*CƖ!SCa:DƘ㊲xyl7TQ)ƛlZ62Ɯhu.;J]8dқƜsW=1Ԇ_+Ƣ*4r򉵘8l[Ƥ_ל,ƧQΥhW;`bƮVr"ylMƵ8="[DƶaِDal=i|ƾS?SdIfƿ }+, |5 a|z .;zeeý3GowTJIW/Ϫ٢'Cu#Tt&no3aVơ_6ܰQqϼ=p{Ǣ=ۧ_ηb**Ax"Wa}z͂c0;==Y+]\b 75)wQA:F#ND`~ɜ6H9+5>FݗS53LxqKލѧE)9J&1_r/czp< (7 -W%r됮Um9o'f.*"3Vq@@wylzҀ.{!5p_1 cbxJQ8}( -9M\[bGH ׮tղ`:ؕ[E!Ev4z!J{( X<"& (R93b)l YH#ZV]xc0T29n!t#"S;:,q/k(G7=ǃqt7 ᯩ;5;;1םR`sCa>^SHu$6(&N9.TYO &%p9MbN w!g#I%n9<19!BL|fH@ba6]*ˌer68. :4F2>vp_ 73$]S9TWB?TG `<2Jq_t.:e>0h gb[%wD[/߹BtZI%s8kEJƎ84YiFiQHm߽EDvB JŎOh$>DzK'2(/ fӖ5N1J!u;/gdNSXsGfʼn:OɿFzy?-%ў_dmNO;\EiCG+Žc>z,|qF“F{lyF;'>Yrņ/i,lu_mPt==h%|>x5DnWǁ{_4zu,OLJ&(3e _&LJ-/y+`W NsLJ:qZ/CХhnji-@ HBzL* '.ǐR?!ÂS. GLǖy?"y+A9ǙařhDauo6ѺEǚ%,hZ(ǡ34dOToXsLǥ83- ysMbǥg>;2$Qu]Ǧk;m$HdǮ?ء߸<ǣ˪dzjzz4zoǴ5> kS!a%Vǵ:hEs_8<bǶ-_1S;dKD0ǸiL?iM?s0ǿ,XC4^uY*ʜW1 /.7G-T-glIڔI B5P:}Dѷ/ߴ8sbkR)Rיmtr`AaB;:? 2!$KNnn]F{vS#ro*&!(jmeϞ&k^Դ?k8Y7@Ơޝ%\܄.thÇ< <ɷlUYƸWCbܽʢe(Y[OD;!*iY33ɪ&/ Hz~Wd &ʲx(5l u,N]\)T=ϻD5@=e555א]+"}$\Ηwڻb8nK}`B9S?@ UҁU.!8Ѩ,[jY[whO,ny'u[. Fnn߅AB$i ÎCDj +pP"REkh eLI/ddqnb3Őq87.s:<;!p81+ز)˪=CӃ]m8dBX:M qW&톯=|1SQu>KwPl l=2>1<c /nʝ @!^Wh_VXcuY|Jk8n^+KI9dVeJpp"aHi a7K"׽O>4?:`?P"{^ˁPP SډŻӗUWnU&-Te~[3 gi:#XR2[Ӑ\r-Qc[7[עŝ2fj,gW׵~$>Iq`}4B?}*f$4s ]8m֧U*vQf-rzfFu3y10tg/)+&a\.ȀDH} ~T(DrȁeI- ӽC%Ȅ GvL)Rj#7ȄAkmhm;mR6;Gȅ@t ASo>Ȇm4aO:CE8(ȍxi9_Et;¨ȏh'э1+ɶ{AeȐ[̓^Urq<ȒREE+ H6y aQxȗSf7+Qx)+z|HȠ5tp 2FWȡ8<[4aCf~]Ȣ$pp#{γ3 ,l\ȸ1Pt6lHZ8K\`K̝8L;J3_7 Uߩ͞ 1Dr1}9ϗʊMTfFsfxRT&g дE;;ݯkbӭjS_pn:>a*1*"iUeH<RwLE!n'Hbi@Sj !w] K~TuHqP +v"BTF)pEr 6X7W}w*6'P8 9g%}K)O~ܶf6FHH@48:)85'NAYHhtoaCsO+fA#< w!s Бe0C ڛYWkk0(UP ~9 q륳!3xBᖞ nYnPwN),v%s|Th6 ۧ(?JSwW)rE)&90,h_róYmue`k0 gr qS4LP4C:b3xmn$_H0ZxhGkLcTKYDx2u0<(yѹ<khk9)B{0{d*R V7GuaJ_dm*;飞O0 xl+ϣ[Lm=qsy-te cr{ p.yPC9̱X}Oh.-fm^*E\)0nW@ "0%R2b혐PlWD51k0߃*oy6Yeq3>=81,9H&. >:0˂'5Vdu>+OQE#'nBBҏU*#띓Z$cN!\4Wk_3{mNS諀T!ӭObu}M͑ e6+P ȟh(Q;!t{RZ\ =h»]\xhwJ\Qƞ]uI]?BIv>p6ؚBOQ]+Vi ##aT̒%ŻhԮbA*fN z|trdC'^1T`][-X6V uqנlvMZI>Ʉ<SnœXeɇR0CȞz $ǚ?ɏ 6wjRɖo  -D<əFL^_?JP);.ɟI#T.dϝɡ>hSW 55ɢi?:_t+dɣܧbǸi7X6ɧ#JMҀ܁wdGɨ3Ϭ˫:gw%ɮ=zSKU|-ɮp p1L8W>ɳiMI?Ak磡ɴ/$>Kɺ^o14V`T-wDuF&){3apqzO*sɦ̦<#MàtVe2hňB;җSYɫ=pnfi0v</f $&iҜ}8Uxܥ +:2uPfͺXS+u ̓Y؎egWv?+F(;=I޽A1pc  oűCRLXQs?;<N=:Hljf(+KܚgíXVtI2뛫̑ h?%P^nш\CZ_$О%YPF!*neqg6>x 7ֽDD8P\ D"X̤):K6z|dy?KwȯF ԷNDGϱTޡ5uEz*)9aT(btU"E5*\򓃋M ;@w,)eJI0=!j@SuHn"t!nIs.f;}E_Pc Cl QSk[BKOL{\K A9 KY-nn)7Px+\$~ +=Wת] AOYP-&參 4%qv-[s'sb(4_Ɇv=&61m[ ߻zͪ=v9]utL>'nl=`klKJ y^WF3J&wLX5~L·f \CoM1lx6|LYN,W!'^ [7qOJ#`pk0CPKo9}Q}j!/L *_Vbn1ҁ^9ۑp&o쥠Z *$`,2=\o& 9oUW!bc/P)16g18i168ʯuMqkMW>j"s`L ٝQ*x̭ihQ3,{ *LĶs-ш~gV0>ŖO-jW~<QAd0aʁLvU=(Ipfʄ+J*O+:TʊEHzԓN~ʍ3҅+Ee!lʒ33 kz[]7pyʕi[߰1:ʙ)yCɪ ./)Uʜ&:D)u%D9^ʝ ^=` ʤ "ﷃ:R}ʪh7Kʟv~ZʬӧZgdrҷ&iʭtFjjF^z߂cʯ{į+봾m8ʱ5ޡ'1LʸX =;x=*wwʹu p˪ʺk0ZFtiƖʽc_5!D?1 UgB E777`y  &(NSiA/60,W'^`A$VцϏ@8VJ)|j;kC0|sdCgw81.= y/eUZ쮧 RIlf,J>Z\Bi)ΊGf~ (3}!\PTn#ύMm} *bPAq +Qqw7^&r7"g%ͬBK # `6R&7uɅU<tL|e:syJU05t T@iW淹[a28ab!Z4U$eU&_HE'_!o҄Iv> /d.# z>7g ¶yf$SK)YQA^ܐk^%wd/+Ο#'KjFis{˰:'E6Ѹk1iT4!J.)y; 7;5^X%0s9%qVCnl4mYv{6/Ңb+RvM{8 Oz~F8=&+><3U V!Gë>̯W d@ٸt7?ʲû/TDoCȯلneUG.$Ep,T#@NC<GbIWb9m Gal4 _ݵG) hXb{ȦlJ4T7LG_n KEkQ[nFKYAX2K?1M#g 8vpCwSW {X.y:ޑ(p̉u[/zcV9 ޮ_nNw|uoXi+H5;\noZlCGKR;r\sY.@ЭRLwI x.n=O^ܶ|vO @~n*T5' y{$"1 ˀCeA5))W# D/M˅j/5\/Mx˅C#fEq/ˇ;>˷J.juZˊ5oytZ/m=l_]ˎЭ(,%Sdd{5˚1-a=CoB˥U ij\ ˥s53fS ˫_CMA ^oF˴.?I2!˶ )AY: j˺j 4)3NJ˼C:JՉKels9˼0sMtNDG˼3ŹO^'`˽^؆tMl) l/&3WѶ˿=|!6GtZekPO^7i2r F{<UlT!Aka 9Y|"bo{i qau!+l [x@5勦0\2%}{NX$}蠶w Ӫ|imMx8W l~C՘; 5(;`a<Z:w^<#]RYbd2Qz'{,pfM}6z步GxI?d滕3>L㮣ܢ 6s=q2cU@p<lF ˷v^8d"/VPr GN:*N|a& icf䓀 ^n q˗u8 FG]f T|dpn Ms0O|~VU1b BzweL*f) yZ\&A'p [U09hЕwQ  R;7D&q[Y|fPԌVixwޮe !⒛!qvrm"а9gՌH,*l!CXI< :z/r7"yДoC7/e? [AsAtA ¤wu1B0 5; L"@ R9LCSe350wQʛƝo4Qg2D&Bu_HRV` u)@HchQX~K(Y'גdI?%"rt[(yGtYފՁbK,@aerTho6@ 8j! k)-G4 ކ'HTl%FuE?/w{;)lsOԘ4i3lsvo/rmZI]pQr&[EyM9 s 5JM@b\iƙwĕG̪$vxhs!ϻ>̃H{ޱ,E`;{̅o`Ü0{uzGh` E̗*BP*x̞4X3~ ;08ḍ|?bq4%qd*Ȩ1AXylĮe`yT̩2@}RJTR<̪}H1icķḓ[{-d5b OzLn̲Pqj"]Eh<̲VA^zAU5̽v V=yS,ip"힉b`0 ?jφ/e37Q*QQƐgrSآ={q|~U7܈xWhXg>NrjyS X{F`TQIǵ5KDd.;ZsiN5tDIje-jr bX:.[]ȆW34BJͳt c1mQ(risl37hlEC?c4+ S|0 x렖<ӋgrgNH<TD |gI ^>e ӌ D,PT,D\4^.K@EC0hp+1W)1m{Hqja`ح ~ #ͅ4»\nk1.3%pT!`"$R)WH$$ iJge_U#KZyե-(xFpbHd`*AڨO"Nb.\ڧ뛥-EzNB;32"I{`mFYb};$iAm]}w 6=K@̈iV >Cg* ּҊ@ó5|=M[L;#N3-\[ |۽#͛v,_H:g=i`,l`SC)HaǀIbU;*9U!uhOGbU)ѝo'BoM6&"3(wVrMWך[7t{]ޖɳ0HS{#\1ZS@!-9̈́*&\ODAaͅ@L^on%r Rү͆y4A< s͈KdM95y͌1Wa.s[pޜ͎7 >-9x,K-͏oWUXʫMw8͒= _t[PUb3ɯ͘sré}eWF'͞H ڈxcS{$L͠u|XX?-{Tݘͭ~Λ`jͲJFY~jO,피 K FWː!-{_t e̢KhN伥\ f7!Vi#Q~Q-&T\<񒔢b]O7 f;n5eWw 'tq;Oiim1 kc?o/^@&7/]~;h%bk+/Shڍ ˅R)s|\sr>UşPY2G[d >[bxdpuZY5./ J~6o접"5ZBihܵ8)xI5aL^J`3M8Tgw޿ʼn֑-i=]@mU73ø0>H96pC-$T!F>_wx/>ֳs3+.,Lbr 2WSC*-Ѐvq:p&(IJPg!B6 <%7}j9˙Wo UOԯ@  l:ӯ 2BnuQp[Hs :b!eն+ /vK!y4dv$k~V2?g/#ʩ&7 g!Wif 8^S0%CFا!A)s\!,宏^rR\uN[`Y--|hpb봠/n&VXsߍwkh/"{M%N9U z06Kn<8s*4 D>>W }s7JŸs=k7} Uxp"9bИ:2UW=<a6bM{4>gŊ\z> 3:Tvu`]$RCq#\jEv@CJN9M7K7bDT N7-|.½E5x62M;J|LjF[\fj^[#ZݚGY^A; (zjnGqwقIم$} #!pn"R| 6qk)}S|sǛ6'/ko;CVU3V2O'V[r^PLZZj 8broe\x-.`r`w2`]V%ɂӬbȵz|ىjϾLm*#'|=+'DH+Q.DT|&*Y8s3@IZ:N{@L΀eJQT'>6C΀)@UR- (΃;!0Lu)"·bn(6QL'"?ΈDw<3"wDݴ΋S ډB*U. Όb/ٌae:2`΍ӋG x$څ]ΏiJ!PdߴC Αs?[`ΑvDѥ_ps&,2Γ=`E?Y"XtFΕ ygmsfQΙL:xA>3mΚVs^_yY@w΢k ≠7*d#Ψ `_AZ:{ gά`y5=nqiέ)B̔?\C}/Oί?vDij$2ΰ |+~*=PHбλgѳz͠ν5'Ev  rZ(JAbhCGpڢ7RTMm<vCHs1yᣆl;,ZCS҇M8y*_[[Mդ;HvEm"j7ے?85}ÇT6n8AٳDa9Q h밼}B/M$lkPdPOrݗ?c*m}D u i&kx8Os lTݟ @q_$]ZC>G`>`͒z2bH9XKu i}DP, [vjˆ}\= [p(Ը`8NnXb *2Vj ,{՟]^JZ;Y= 7z~M~fS1t l(jd¸#< RK!m^G3N,AB #5>z KB<SQ95I]I?<&)\9޾|[aC#5VQY-+`@* JIJP ,WT5R A.B?^ >}/ .+l<l%|&/%ŸCaէ w8>1?tB Ѭ1WpP83U묦؝̘@^˖[8Z]TlK脢UAb|V9n As΍ ߏ:C}yƒ$sCmkH G}{_Leϼ*yM=.KD W($R? C 7]YsWTau=> Kma>VI?;~یm.JHWڕ;.똎^4yOMɍ] @)4fb 'jgS;(_+h= 5G5nuL<ЛFyrP) ,kw Ѵ#40:. >wxo"FsePł/yߕM0?8JJ|:P]vMq̋},)ѻU#ftjDρKW>pDA.D'ρ gtF%ɿ2,τ5w #υz)oسŃr"ϋm*}\DYj3ndό _LC3;Cfͮ,ύK\85ᨍ[<ύV5b Q]s"ϐ {ǽ翐 ϑ^pB m `yHoϕѾ+CK<~hDϗ\T& yϙ !FG"ϛ^`ˬVk-`OϜ@LF3\Ϯ+pϧL"$M.̈́{ڛϫ;#yEOϭ^nQK^کy1"ϮbFh R. GZϱ@7k^ BFϷu-(0oNQ[&zϺn؄>1bB)5qϺ׌ӎgcΟ-ϻ̖7stK$[R|[%φ~( 7$ť=P)?tS/'i9L @FWpZ^#^& w+Px+WqJJ';?TkYT7>(hW4>ӟϩIq# &1Oy*Uډ<h6zh6ΞW./³p@_ggc8lAWhuyv)Pc ΣAKu kdqc u.l nwkRC{d0%cyԭSh_%*&ty!#5R "|#8 d0n9|&&QQ.'J(b?V5Pc)B.$ZN-#p޸z *;,X /NN+e[ DJ哹q/# s[ɩ /kɞW$wA,i'09nI bD3l `4Oja Y<CDك,F2 |+KDZ xӑ eNM0.;1D6_YQ˰ҰNllx#S1v1C (-u^Jm3A [jaS\73\&gjnsǑ+k VKߺ(iwA]jkq9!JokipV!]}+b&Бٗ_9K) CКXddz^b;3О&-FClډqТi>EI`3V,Х9zcsN mS+!йOڅ:iFpкfk"]5gJ~1лK3^Z wRe]м&3ޯa0)j@Ͷ)e;K'3Ϋ:U(])fJuSHסQr*F}Zʃ.SS~kZ6o%ౢ^$fC՗ ot\Ͳ҅9m(;מtc (5>-s3K28❥<3`KAL4iDbQ.6eF l]K/~m캴{_P%vUdi(:6놸95E|٩a00mIAcR>vA|Z )ah b.iF j-*ijW{-:ɐ w&'NU  iۡ]*q W%AF\ M;ݑ-wAB 4#/< g{vmo 7A]kڬ 6f7!֙ b *wkb#Ė "혴fn܀$EJA<By&?q,'k+oS7-(e]T֡-&~{5܉K97 C8ߴRMxKOng}A86% NC k 6}zvDC`3ޭ;~NG}vDW1YV\!g撒Eߑ0,S}zuT3 Hyw[iGH5EReNS)Q=Sv91' FVdʄV0._[ԒwYLJ_˿ҒcHH|Vϐh5 5l|Ӛ>,i[GDcB`=@jf2~B8l2DVH Ylmݘ(lS|Qs=/nv3k"{WpSF`Yb8qސp&Ǽ68fnSjтVF|QZ N*Lч0ϲ{lч067maқэǟe>9}: }љ@CG-9=Y9љFk5#9ޔ=Iћ/&:<Dћ3r!NHNZAќ]f]3r۟ѥj MD|Qjbѫlܒ9GY7LѬIsPdw}MmeѰB ޑu[ 61^ѲW`2# Ѷ=ܒDFܛ(Ѹ3^63O1NmѼcb.^{ |%nVJD\e⌚n=0g\WX;ŢMx[m2n.B5}hfiI BFF6MD{Q ˗/@U(%ۥ&±ύb\aM(ܴƠhiMA)ZOG#S :VO}DqwuN63?C-.=IEC5FCJ<]eNYt7Kh *;^J>!yYX]xj6rgQM:eOtMp;zADªچCI+Hkdo0EQ5秦 P X<T+g@ǝy:K=>LH9;#rFѿ;*07:Q:O?cو/3Qg#g/)z܀c);'oMڪ/5-뮪e )M>'O\g.(v hs1,Lä>O9i;F2Z8v'ު =9K@UH9O9644iK09ԢXE?ԿE; >L+$1|i}B>pudu@WTGH[|0wrC&K߹XCk ^Qt}/X  Q'rph>RLkIQ'"s; WT>G{XU~-@Zl +8[]f^Wnk~7<b% CV"$"9wcBM-jfoR-j܉^I'z& @n .Q>YIr΀ʘzo45tE!qI3yhr~ 1`|z"L]}~f<l%goK TҀE($%,\2QRh0J҄c]ۮɜLҊF m@й`ҊH:޵ &\.ҍ=W0)Y@8 ߑҍF\j24w@(:ҏRk`HIRSLҏ&t0u 7YҔ굺 DIQu@Ҙ#r"w(SXgҙ!9詔 zPSHҚ;'x9\@ ҡhƉ>`yҧS ki/ۘKxҩ_ťsw>ƥwXҭg$up|X)$ҰX02X(VҵUF/Q8pi0`ҹZ\Jr&P#IIһo-zLV@2Dҽ&cR64Pnĩv oҿ ewIW\R53=yBH\&~#\}z'SRt8f5J/^,۱J̬!$8^Ι +AKѣ"J"jZq ţ8Y&;˜{G%lBҘA!oRV_^|g?J> &NƊ|/y"2K7&G+L5{YyPdZ!^*}m%fm[K$]V=оzTK\b'F'o+<1k+H!b*Nʘ $F!9}OjgWHؚjpQ[սz i<ctq,z<2A;lr׊ZUچ E_u']G{ru. h!0$|<kD%*dr3Mؾ*vgE^&q;0*zPn9ӭlqegP(1u;G]82ʹdy#SNbfmJ'_0! mp)hȇx", A<ǩ͎<1}$\Y3^0}X&3?'(%x'*QuCmm F"(~"Z6'0)wL҉ e -XjJJ׼nX5Ք.>9 ɴ~DH)+q.hTMo#)(008~;J50DJV l0-6­{1 r j:$O'&en<4c'<)U|u75- &f;X8HNecVIL{9'?A61~ieʷ(;-NKrδ?1 9eTDRj>8@X4Q͌OrjrBV )֨#+L/E9L,;4@OwdF3lf0o JCu GdǖK#- *\dBS,ixXBݶdT+EgAR1%={T@"#M3τ&jVu¼P0]QOǰwt^T@ dd")_ 4hE&< F1e|@daC@T2dThEa Kʰ?*ktFe&ćF4$m7u@T"׋}m98(IZF1t[? Byc]w ߼l{Qb1h,:ӁX7Cf"Ӄ)/>ɲE'|Ӄ1V\^~|D2ӅG,ou Ӈ4嚭| /\ȪӍi"3Vz9AAꟐӓRԫi{~ =zk)Ӕ@_2,/LVӜ0}Ҽ26Qw~%ӣxâÇލdO~#>ӫ}%vY:a\0>ӬRcؐ˚2e\GdӬ;ڜ 'ynmS _ӭ@;7.ԧYxUbFnӭ guyW&cӮdv_M P6xN+ӱQW &ْ5ڨӶ!Hݷ|\kOVtӸeA~rQӺ>)m$ӼvaasxaO1i|pF>l(6%krR;<1J z)nKMhBCʣò]AZ܌azބuǠܞ>s*L{I暎JT-{^w*؜†v ]"U lG{0I껰Q߱:w&E]^%8쫜! oT9numO0h4WS3.QUN>`dV۟84o</=bD ~S{x:nOb3R8b),#B| @w<F3𚋵]|upZ]kY\S7$r,STAzFCR?T0EׁXtԥS:,hHsNyvq WG /$K_c+xZ  n%oܓ2VPGe1݅y劢ӳ3gB'ZZ䨮MJM/cqmuՖwFoJ',kxHm@W}MKlW>f[q Vvy 2jtet %~)[x}yT'%ThW +Ww'7bIYqǍe$P\+|v:gm-qki&`2ihL5XڤXG;mY;3sN!I8Q +<k,첥49!mu<ĺw%]X4h>Ǩ,ln~>>Yn>gPp%8??~(r+$-F#B@CPF*-&_HHJU<qޖ]K'xq|d#T .jmzK1Su36:K VMxιjC'YM2rgĄzaRv\,Z؋ Z[z$fxQ[V.?]+*EП`[` ؤ򎷽s\kd@*wf\Hě:qUirgfZmEmyi b[f<gSP@[mp~?N#HprԿg3U?ڑw򯠹T҃sHSԃ~Tu C@w+%aԆa]ns4_U%Ԇ|8: &c p% P8fԆjFuy\~螤Ԇ f3b1E\kԇl#1<ZL-iԉJ̈́*ޡIԏ Af~]P\+4\ԑX.[H%ԓ~:pcy~gԔpZqX[0|Ōԗ]Z1]Wd Iԙ^DL˹bEKupԛwztbӴ:{ԞeJ,P]/ԡG  l)i3Cp&)ԢHQƤkD Ԧ^ kf"iSԬA06Oql1EԱPEBd.VԴ5NH R8:Ų$$]1.ZIB~JI(80m=]z6^Jpl a%Ttw B2#jmygW.sIZ*H ?٬]\!R ZNZǁR@^7a߅!ӵWϩ_08t!'DX}kddO:K\|}p[j2>9AQ:‡F#mmuCCdF7 521`x=l+?]ėP·ZixhUHYI#QB&+]"TBA6&GJ> ɤ=7V"SWS UŅ==𯂖9صaX<"Z^k=!$#}W 9(!rvhPJN "^) V3Z#=*`U W_Q+V5i+&QTA0{)0Ҽ#,r|}5Jt1"ɤ+Cdl&2=! + 4ha^i.FC&8"L15tcyYhPZAf9C~?cr})?)rVm m@ik+V2k]o-dAR1W6\ě(B<܇MXQ"Bj^j[i=&4AAD&aŹ٧[`χFj$ YG4{Z԰t6>jH ʫm)wHH2W -lmdrJ i3P*LLy~KRu0#^p~Pv<w@VoT$m&[3tR UC#/!j=0W^tzZ0X^36Q$(0!%X;0ZNq^0?<]7Y-g!FЌ[a :J1vZKbXNo09e$g{Š<}gj(oN}Rh5ulyV8b&oj Ѩ|+Nxl1QoLH}zu&cg@"ՀbXVRa:Յ%%S E:DՈj⭯,d=]pGՉ=qr'R>O"Y4Ռƌg f O-aՔUl Lvȑ,X#՗$VG ~Ǥ՜sO!m!Wcu_բ|(_la~Pըve*+lթwrʹshέթI'XmըJ LտBQ~C7*2z @J>IMcx`$%^VBEi[[tӫd64ëґF*wU}yjb]q3ikœi~$Mձ L`!ӄۃȘ39 G|/ ʲfiа;0{[֏=ͻ[En׋u<?Â=WvX[|zb@^aJx͖8"eK3?}:ǎo%9'5޼XvK ugUi!e؜3Gm879T}c ^>R#I)="vOBo#,1Ps&>Il|"Eڂ.)t:0DWZo22pI*c 2w*CTN)9XSNw{xq;"]o̕\{_;Y~ mHOTumG@K?QAc{}OK u)ʣ*A= t SF"dh'=_vZ{c@(ňx)uEi~W< )el`yBƝ*s J#soPk,DdF$,Rhz{`.(hpwx"d=Jj}N> ,=X󗇎>U0IjKppg21>u8@5%BGc3xM`Dc~XYN(2DpRiz4yEP&"KBv-  L \CAbtBEc<RPnJ O#Tn]yBN(fFAUj\/2_ކVj X: *Q%Z\CWXS`D^[X 0Җ]ɕ}rI,Y'`MnxkJGsQ7ua;$mleaAfe}-5ȷ-L, whr{Mc)PnǂAi>j ψ;mÚqqV\ː=pn29Y@1 KPuKҿ<Kvg+4v+6>{ j8r {lJ"2! =m".v}րX W~Cޚk[ dօ]&~<މ}uֆfݺÖT _և X%4PI>"L։ي4qzP+%֋7=b?SS"a֋ë EYt.֍\Ly k4|֍5TUEL;3{֏b3У ֑:!XvT.E֕f9tV y[0T֛mO/#]֛nLE0I֟9aN(O%կ61؛֡b4HIO!kkƙ֧{IiXq瓓#2_ֲHAO`\I ֶi+O 3hָ& ?n]L.|ֺLN2hvh7;SMEk־`A\uEֿ ,?9?ֿ3dAӇe"2, +g/A W"սPO} Ϧ\F6s޿Њ%;JֲsI^ {n&p#5MB@B p $.LButJ}OFCMi81]T#h6M~ͨĖă6nWݶư>f= b~d7Ve*R $L84gqp9$ Y en[P2 h-aW_> 5I>b.6k ؎3v/69Ehi)q%Nҵֺީ٨uf(kH/}.*+T),d {J.Y·wh A1ꃄ%Hՠlq[Ԃ3T!s?M?3q4砮eЬ9/vp<:L.5i7b0Utvo[:xu7m"͔I)A_%P}i:/CIy;a; H` rBjáE1kҌ]"> f%GGwU^YQ:K[";רtgrRbLHl(vKpŒ9MDA(kT"vHl1x![xj?ѭ'o_Jl 4vd,ŏbbvw677T?dU^I 'rCk)?/Άb6p1&^H{m=;¨'rU}WhqXާv8#=7m@m9/,#ȿ~QxVؔwV5׋@}5t׍*)Q|+"׎~Y}M,%,בvQPJh+y^_UFב8sN{oCYKcoSM|לbuRן6 9jîWcVnןz*X*nק]5Ȝa`|שJ5ܥW|`@W2o׶?SEz`ݱ׺f ԲKuc2,-JQܬp\xVboEgInys%0%w@l&E&.Oĕ,Qފ7N^YbD-"ab(-va$+b,3_#}Yqf'3 E.%Кƅsi bUeJ|A VIku#]wˇ~lXS' n-Pi+<Yx F K4axԎS -o;^>uդC|x!!ܯ*WM' 'AE^E0зn(k ݊tM6l}GF),N*, ihwȸ$[!H%e69Ln1'7cS%PxA/!,)/d\$F3eKwҪSf _:s#j[; NԚ ~4<w _thc @I. S P1DR4JcRE10"?F5.ٵzMͽqM[ЎqGrIj{\WhKGtq %,-^ `H2)$ )X?kX FyΎػ6+aX32 TzC]]֌9 ЭRT}y^%l ̝I_-<341,rFd:Z h eQf9rw4#oh7r4ցv)rtwUXgdW=Q $Qxǚ-i #5F&|^+]ɰT}Èrhʩr؂.ab4*Y3E ؊ ?8udrdGb)؊@zԜYh.m R،\g]!N [[L;؏-'7֕kP`&1ؗ^N|$ a\ؗs2j=,UQؚ}D1 EQ"Ϛ؛{IU-iaq`؜5yx%;4؞xږP@IwPSJ؟&J؟;=7嵨;ؠPeF{BVeGؤm7Ĉ5cئ$Qg~0[dةgVA)vsOث .W+teCqث W?@ ثƈbPRh;ر5ǓQ52)شDum"ņ4fغb $z|H~X6f]C&غV>ذ`0_m@ػ]W;Az}݀6"ƨL۲]ZGnh%1{~Ĝ*f~fͳdW~=LM)3k{p#!F9rŴKq m3L iBXsWUL3'JcqsKч>zSCB*{_ U&gYL'~x`Ì_|1[٩ #~H s櫛SLxLټnOWY-k$A ل~-18^0 ѳ&+h͋C: 6,V r&=U %h̓Sn" :mN.O5a9)2T2*Cx5b9n%^=.i`Zs6;&ms[F=_W,_f&V_ %h$¯_l|[T ?CB<t0<P%J)MS(x3qHP-R0N\nni.@b<1Jƙxpn+E pG|F>e= 3k `NL :z7ck/ua!%ӓk834:8a9~,oZc!,-v 177<$NPtO_$=YVo=-Ȫ~șX-ZuzwD}<׌ 3K#NY1^k 9$43<:2vG}D9Gu-o;]}diX[SZ<ZaJyyI>@eR U68AX.Y!eo%[Al40ܰh3JBX$W& CbFѬw0=IINc RkT7,4Q73*´TOBcs.iSH><V 3\ഁsQצWQNOT"C6(\M+E_*n]d3QiaCG)[1Y`)=)ƒ&aͮ`Hߎ3%I wa츌Q R`L Irte]0MeRә1'n'ʷg E;UM(5}g ϶"l,Pnci,qwpph py|i "]d.!XqʇN145Y3iw]@,/%_$FcHxoG#dR ۛz q{W&zTװ`H1{4`yh/j|T!ToL [cف#9MZ)Bقi^,&4zBw$كO~a<t<(QMلQٿP]~'Uْh*[w~5ܕٔtN(z&p٘Yvbq"ۨ5ٜvWR&t)١9' J3>':lN٧b Rׁ٨U5Oc3Tc\ٵX!5sYBCOASBa<4e+,wǨYQ?X~aǡRIrN/*w!s ƅnEE_5^kR . !}va덙+FN2yOtP*m4[x,/ /ۋv֐* 0Pj*yz<jhI`M9j<%9QT!rIueqDWHe d^j_◊& ŢfIm,D 'uZLsu‘ΉWN]¯7YuADRmnaL/]snN4ЙuwU '⑟ZLQ(r;s<\bC)Ƕ13: W:7x8(s_[b:r#?]PtA:~$ՇՆrK<Y. -=kj HGKzPߩ@TdfYYu4<AMS.' pA BޏjEG| Cң@nǿDq?ilʽNKT蔉s~rT1UQS!Ȍ7=Tz3zmYHɝ.`jX͒ɗϐ^ Ŕfݏ9a ._aŝ"6#@#gb;+B\v^hra4A(ZhȚ:9Ri=\jzyji.,ZoZv;WS qK}+4{L&-Ir\MW0_wDP/p!>+( a~Kڀmc  Thڱ2ڀ(~XjZ%ځl**NڄoɏN5e$l$<\ڔ6$j|0moF:kSڕVڿc u Bz?ژ`Oͥ鋾ڠى[rʆɁ=ڠ@H\Wmvqڡ@#݆6ln0+ڡRI8"KFڧFOQڪ]\Q=/x93F+ڬK8O&v)fI$yگy7=Pj4e;Ňڳ]~O UxJڴ_ʽ9 ڴHZ:jظڵ$lne+5q@/ں3(rW6W| ڿ[ ]n+b<-_9솹~FUhz 7hMf0!w#| 3ݤY7KJ5)I?ևwPlwdul]Mθz/C^liuO)B =3Ш<>x)4 ؈>fY 2UGsn>X@׉N;ݱKky"B_$~fڃdmB|a2vA*KpObɗ>9nug4x)u9*µN.>DFݲAj~5(_imw1QVj&Iqu2\NfPoӢd 1?5$|tBW;[(Q V(r>m糬" H <DYO: ]0(zp}*o)QI"-V{? {ÍuV/CNJ{/^]YjY/(f;=POi.^-k[^,8J" $8W`W8cn)[8oΔ] ;b%u鸵S^@^'8_i}F1(*u2r9M<.uMLR}5@lM@upxyw?MP+pajO;Mh|p).%7NUV&63~<\R'O[E QXph忒}Q^X^>S{ ULYR1 U%;vRY{U_g: ZшCAAfy۫XY ZtĪƸՙlC>]xff92_'jώua3JɧYcԖa)<GE)װ75|bF'8dT틸x":7shhhvaz*zcSiEۊxN)F̼kLuM@HkԱGMzACjvK(:+xspԥyBHܰKӍkہXFBg~_Wjwhۍ14})HE'ۓkRTr;7Mۗg8Al[ۗtByYK I,5ۘ^Ku۝P3h0CFF4lۥR_,S_̱hzۦf3#aA2݉ۨDӊtynm۬ L$[ۮN0)!qU(,ۯ]ukb@ٟޙ5nE'ۯEr@@p |'YlF۱؄c6Qs}sm۳X1]"T^ 3ԩG ۷ !fŗF &۽L]qeWFf]0k[y-|#<[oǞb[iHvvYZ”%JUAH'y]څ'3_F~&!NFvo! b"8ݬt|=q ô(9hQ`6`/'UT7X'VMs'H#21Ib,h&^A[tP`OAq2LV]bfZ>|Je䤾)~ afUT;'ݏ풞V}k&LD7;-2j%UoE!_/h{4CIkmfTAA°PѦ4C3OPL"٩6824*{CB"dC vϮ_'Lؘ)~y[r? d,!>Gޑb"(~ICSDY@%۸M?VPv=TѾ& !LkWKqc7 =.ll? ΎX GrIۛ3`T\?+ͳ= FuC,;qߡ6.0t|y'W}F ;PF [DI*<S `B(Ǽ_{q"|3H+WRtI 0:ymO,^Dl84d 10+30f l1 ѯL921{NL4z?"<{dk85L?=HWט>R& )W Ī@I(~?[ zcA^JyjOmȌU.Jyl̬M˻q JT f߿(sCbNZd-n?1'n O`="UUU.Pا4{P {DXOX[0"䴗 Ym#}W p̣5\Wh.ժZr*0\ f }=`y^BwZ 0 o^<, *J+}:` @sJtghe׳#ă[yC曗nw3`~Xk#&C}nq)@7gkeypk^A$ŪWEp1r z&pPU&wtH՟\j'nvht(y7m9}#5RLXUe{7N)Ew 2~ ܁SFӚJb&Cҗ7܃Kr@܈W0tЭv7.>T ,܌k/Pv{6@ ܒJ 0ӚORBT ܓ!&aR,ј=Cܓh=5c:W:- $ܕoD!eJȬEܙY5݈odb$8$]ܝTs ΰgSO{Nܠ5 ?3/\W}ÛJ9ܠ1M?~XnܭD8M@n>(ܰ{D!?Kܺ; <a*ܻ0NOɌBFPl ܿ b+{n`6=Çc -4!`0*Adg!E2Gb{CsSQ[haWSGAzRK=2[a ҪF|C-dP@[҈e:HgB^Fķ{wcdd0N3[:"{x];X%Nw0#sAnE0.hƞ/BXq?Œt=d9#@5ց{ :z;|y^O<~YW+xG Xs/s88Nk|$Ȥ E!* 1sR{eaDPm(pu2*!^`.<4ԃX~ )ϩw |Qz?nya,y Xכ#Ϻ#E y86:5&!b5TD (0&`^ YbV .8a}A1ʺф@iZ6&z ,u#17zoAh9Og0rV:0vT݅4d'p;I%u~.F%?:pTddA_*kyd#{mB@OxM/8=.!C`+<p Gt2]]DdGA!_|D ;fvb8l<40VGY:t|kJIvb9aI1IK&VndƒӵcvL'T\wԪ )&sNpA)Ԓ25h^ӻOV̀[4j?PrC\5A00ٓUsws;S;_b*,f|+][X@wbK.X**G /\ ! 42.Oa\h!ŷspJoXbsLl{7έ_ERb8V7+?8o +WʂPf DirP; % u}8;WP!v_ؤ g|X&8jxx!I)}Ԟc_i+=3qp#} I[z,{GIDpM}/pΞ/h_gZ>%.i_H݅FK$wM'H^t݉ZVs| ^;2ZrS݌TV31ȑyݎ*#| @ZDݞ8~m:Jݮ܁ݟ ?.$D/EݡBYj -G ݢ2so7#ep̓;b|ݢGDQ-F ݧ;H?I=;uݪꍺ;ō ݫ>dh !l4ݰ&8hCݴ}'t()mOqo &4$Zx0Q Ăw;E38i;灿%?z9tFڪ;O"x?lԠ`]O}宅h Agڏ/*)+'WƸPEp4Wa]lmUsx@|$1{GH}#>N( }cI%wRmUX o!0 <?fQip*q,~9>/wPqt*9SM8V==0vc(%dn2hEW>Ȇ7>Si 7LYS9O-<=t \O"E{b .?x%/:?>~p< -$\ Ax 8ze[|\[gU SBʲ eW Z4+O4"fB$ !2ߝ}HN# T=>o)Z͖d&نb#1h)`UqF $qf ]?U'} 2Ըgtug"ožEod%0mK.X$"w&/^' sb57'%{yϺF9{Y1*d0C+ m,P'crn"}ra,%Ĺٔtr,.e re.2zై. HB $,+S0w🵄?X$?1(2qjy 4^Mr4`֨36GZ{B{<:_&VfK=-P6q$ B<fNH$%EHg,`&?DI*Ǽ+.xLuKo;> _K%C~po~2M_GtMdG 24>MwpƬזOrHP-tıke$(U Oء tIPT9U :0M1gq XCmhՒ1 [$E~R׹ _IfI}J!gQs^FS/mqh u >mzFv[OpAp8Uοsj߱*fB8 uUy[oEˌZSHUyS~nDְAXDtJҴr{ )ĝX.rr:==m{o79ހdIX a꤫XނЎbQHL5}I<\ކFbl>IއT@iR͇q;2މhlTr-r>xtj2tyފ8t S)*ތ\hc8gAPސV N枻7}ޑBs9?_sk[^#!ޗq/'U1 lޙzv<u2zs>j8ޞ`rne,'ިGjH=RNޫ}S ¬^QC%m-ްH : CQWMްbčǑut +>U e&޲LE?^B0pYZ{޷gժ$J\3=ӯ޼i[yLHQm*Xd8^0 Mm>3ND2ԍ`5P )Ȣ-К#6-Kb,O\7ޫ}epVH+Uܶ5 !.\ZfۨGȦd% KAƙܩ^64HCCq.$34U%fQ<ǯU/m_iFͼPv bŮ ^EdSBl#HG։¿Ei_\* Y\k/ l c5UPP\͢ wdlG/ɏEC2+q׮ ނFHJ.pFjSfu,=K-F8 2l2 \T]l/ʧ -W爲TU.^Pͪ1I" #3RSqy%Ll 1WB4'Џ&LhWk⃊)z\K): F{ +M7yzM4<wcB09 yJ:*#b*Vx6;;˛h9YO9f<oN%JjqA3TS yDѷVeZ^ !DNQٔ]v!n'٧F)c2ugᢢM?RD]`H"&Ox%T]IiuZ`%ZtB%Qh*[yjK04o$S%:[˯w@/ZËUJ\F{]ZF RyReL<o6Krt BUh֐Xr/޴i` kn=غAN_1p ! yz^FM3(|߅LP#ez}}j߆>`ds<߇AkGKdr;G*}߈w9Mkzԑߏpbt)N=vnlߕ9/UaP %6ߘW5B(J;^Uߠf#>Sz/gߢ"b225Nߣ}&Mn5?.E߫%>I;~gu:R:߬;@ޅl7 EA߯eYĖi0fߴ@tIVLQ3Od?ߵv^w+%4.|߶sި)OKa">%.vR߸~7dkϛQ@{4Bet߾u] +GGDkq|QICP*U<8hgaihcօSk$].] < _-jcD!HHoImS y/Ѣ Ud&iB'<'A᠄/{Ik?⎥uVIKɮ2XZ< Tx]8H0D(R߻IC&Uo? íLEã"{$ M<*HxAW8B} i$D=\"w%>i<[uDNCr``%NW0@$3X}I+Yv#?bRs9i"CӔ뱝llD(( s_8a(9 H\|\%i0IIIC L"V$J0IaF$Y&B t*}-#k (!g&NUƔw ,0':gkX.0o E:vBj?H0RG<_\Z% $ZAtFg%~Y<##>1K)ʡR0]P@ݜAwT4(ۓȭ!dcrS %!R|b`G!MQ䳕4~w(Kz`J&^(l*q#6}y|o"-,@Ue-qP 6h.0 ~M`40I%;;1 c1='m<7s #4&ik,vc5OP_ŔE2 |S9?*- ><޶n_ So:GERq@*RF'ڙc+AzuVWuyK#܈C8G?1"n'}HD%@>F%+;Kc@=:H]P3}tKu=]x-S .=>Yɽm*`vD-5kAgz އgo^o59 Cs<&cʭ8zTwf# ZM SG!7w<{篻쾺жC}&)ZT[X=Rk4~ sdwG2HpYG$ݿUE$Ud@dշ[Cnh$_J 8[o|oͩ&&=Z|{hk|H3 8-:௸[PCx](+e˿V!"nDH๒/~ |K5y'&/0gp4~3r50V hJ܁hw8٭^i|pFɠXSim|kBXD/p)qoFU5@嗯B4RlUy6dy8tPmZL\trS8M$ѓ(eS̠pzF&C88ݖiehS$Դ ,Ԋk`Tf^;cDb u3+35p[+:O -*޲dd7ol*Xyh'`n}p^=zqzN{*Rtq@ :dL=H)эG4ˋga}[ oHs}"Ҍݏ bW *\#y&J0NߍQ"LOtmy7PڼIUb²5.B88+ m1Ճ |V Wq}ZB k=j,9^DHЮxy)y ҂r7"jK 7aHQ%޻~ >ɶ}܇pE 6ohɘ )B:N#u: 8=^y'JY(9BrnaLY@/mv6_C#Vk7FpLoWiڏqXhy2eP6e Ö}Y ĩNGgs\ opHԣ(P4Z[f5 UVj92@˹hr6r*fvx%Ru5DpRx5v8sਠ7:Uwwi]pQ<O'y&>\&}fgm4 5SUu d3ᒍ>%gDiYQ8d֕!6~ߺ;]( Jˣە郊Z|ީ<X-K'(Y/>=nCќ^Ѵ@<jH~4|wC =nC2)b#4ᥡXIi$Og`<h}T|xyLB5GIe TQCI7ᵫ[Ӏq5J;%J)ʛᵶ?K<Ea==-9M ジC\<?b@zTᾈ/r]_rgoR.vN-2Ta iWf 1 ,)2֦]Fv4+T̀*Zm༮i9D}L1b4q #LwR`hST4Ga Q=׽C"m$Ixwa,%UUk)_8oȖ"-7R~S$#Ҩ&eZsՓ >O~$tOE o8`y*@l.·U[E"藾2 ҀP쫭2fN6P7]Cv5_n<0h+jp[U6zQ?m Ff9[J&S[iqIS< {zUe 5̾scXh)]ґ&4l}Fuэ7)vuht4d [fuwSx>M@f(*R#̕ 4# 6L=͸b<!Stȱeo[,V<ay.P d).^DxlKXY WR/"[Id\Q6~Є.}yX9?<P"sҪ\<\MQ(@0=t- [<(|`A-Wݾ$)8.(BHRJVhpbH~]^IHПA襄$=ʜvC I6s7jJ'ԡ/VMui(J[9$ʾWM7o ,] qPvfΤw߷ ⲐTU9jng AVDQYsJ4˾ej\4sG#眩qC4]BH4o&DΆȁ)t$nb'XUlhMj#apV~.3xD hPXHPpnq ~jT,c}2nҷja5of!ZjKr֤jq=z4{tt@:ELUh t<U!-:UtowWb@kNqJwcꐭzZ S:Pz}Gx be3l~}0GAs`Ph6~ԏx;If+By]Z50icg4$[6zs JICD{nnkI@$Jޏʹ=sDh^^Cz>QdK_jiݵIxJL.ļ;TT`wGԸWt7Iu?a& a &5iju◌n܇̗ӥmv4|x~uFkGdh9⡭ed<$}w(ec ZV5)XX^+Ie;;f0&g7_ź: fͥ r⯀1u~#D/ѱj E{.H ~иj݄ILj:c'o ⼷Q"]8]G$?_ͼ9i! >$Hx^1;<ooXg,GM,_Zi͘+TM̻)Ԃ2j>| JgNܽ h; FԬ\:mGU=M9\h4r!ڥOٕ9R10<QbζN޹,DZdk۟/#B WjsϠd fnVkRsc}Bɴдg/F UJ)ق w huEP@79Z#,OD6|Saia_M /TV/9:Na~a7Vs˹|%\}"ĞArRMn29 UNv鲧Xo0V R`8 df.v?.݋(U4Qt8.pH,w2tA8}7U6L՜lyJD "i]rRx  y 4f&/HgyO(Z3}Fjmel9H^%R׀*KOhՎ8wJT(0N9S!1MdӨ6pu9&L C3KD=2Pݹar'%}=H8(gͬ@ʎ>S$I^dyTST'Oi8DM䈱IԸrטOc3†R*/AUntR!NRX,' Y!c8j_ÏfYrO+ੇL2n`ed퇩DH2i[$B4Snbohڻ=~\ov=5]MqoK Xe9 _x_@3XNg-!Ną|6?oyH &Ѱ},4^ǃRerXD!I2FŘ^*&<ZGJB9lD2E >,aC=q% 4n[ .>BI-mf[Ztt:% %~ϝ-<UcL 8HMyCyD[vP};ϭ@Ae襤Sg-C˖!uHTzJ$\ŨDFXU[^ς о[email protected]Yo/y6)67 W4{t<}nM*; 3cK4:Ɛ͐bqYƟ 1sL)_O嚘B(ivtO3*2>1?_dSļަw/ռx+U|wS0&܇ T6:}#]Z`#>m eQ=bf~RIuf!jwR2V=LbһW=]<9W}^^:yrKt,? 8w1tuL ahg,s˛%4晳k0mk7i }Ow-w0箭pW0[e:07N@{JŦ띫( B2L/YzmM<eҍa9A+򐼞; lhos@Yi0]ZΓ8Bκ_5=6yuO9M'YOkN]?٤1)ԥ9g3˘$3 {KyL7ɞ* I /cN 6? 4&SvF[N8T J%G\&m!mZ+C ^O!p nѳm%LzR<z`8nD&xg1jvȻ c/TɶG c}%+̞̹%I`PN*wL/ʬ(kZ*5{߳OOW>6 #Y[|16eL)SYRS9:oF+Aig%7TY|,<+1]7YhkefǾW 93Pz[{@!Ax_4#h? i̅ah>7Ɖt)Kat=tJm4ڇ'{?0=s*ȼB6BM|\DE}~L8 )'CEE f!Dg`D3InȬc@_ߜ IPy~JGUX4,0VPrPVKMo4rXH> ;Gg$VZ! So|T0b P[_st}2csʾ&AהiCp;l}8=\ɾsa2넺f2!wCEA&.כ͆r 5t ҙq1DO` ?$vmR`Lh&AQvωJp䎧ӖC_ cc7XGB=~)2wyD1|M ,/K[Fp3S. Gb䛕\͗0\8 7v䝎:'5<_ 'FAtڲh#Ε':n \/\JE䠃p;Gx0c7atY0C\}KY@ D@(f7h&EcT4YП}Dž)8#V~[Y?$ůg+ˑR E3?!'oּ@I^䫪 pKO;kԏEͪح ";&q \ބ uu$m qCi,"܃_wtýN( S)^Z^͘ Bn$*[9vfQJ^Xd\ 5axZ4#f$yXHno~Gpy }G) !ddM77\Xt }7#6-[XC߾ 55`nMӋP ۝<˖~_.1ZkQCDNxtC+e+d܅EV慻đfEb찃IA+jKiOپ-5,p6}BaE5eD;L_N]A$K4, has) d\gSɬGv-#A!YmR (8ǒ/AbH<uvKq嫘Ycsd=ϴUGxZX1[X<~Ep, ?oUߊ?PE| b}uRGH‘&~~xqٝ͡UF :mG=,;j#3yyXkN' OJ0Fe DF7 }Loh;L=߂S"8iRĀFAY &EkKnV)Mw5b LT;G![5D|J3ܝOT.dlKKkجwQEQB٬>GZ] ]R} hoAsSJYM,HT_@[S~U #gMؿ';,VזoQw( v`X9$kC]Ը]'#Q f;uykzz~y m* ptP[m˹Β>Cq9&g,wPa٢xA3:07ُЪVn)$0P 4`e&4[ H^hBMJL{0,wPD@\F#{ۉI;nÙ$n台:Ա7tU5ȘsA62~4BΓln^#Bn P <嗕`;:/tgI(:ԣmF:}Y妩|2wI}(r!WKsx^T害킄a Y]b0kOFUa$s',SjEF&3 Q*.Tp巧vuJؤ-R+ї5SO2n8HYZ1ثrs ąl$*-ȟcr \pּ3UZH[y*DmbE-蹠#2 X']h@A*t#.ÂCoЋ\=s5;r@~&@>)K֖8?>:5:HKn4L-89ز^2P+GQ, "y*y})cۤ>1ZppډΙƂj 6!t1vTߒ_OxX6JT](PH~jDE%H!`!Ι5JN0ҹll{]ys:MS ̞,Y-{y6 *'(W1s> L%/Nֳ{Y%mf35eH hvmlD"ʱ_?<aAfP4 ao) pyuW&Q()W_EEARa/ՔX7dRZfC[t\Wd;:AH 4d 5ʅYWX`ix^k(olVwJ ))}ߔaB6;*lC&@>\,~yIYc*Κ{lo -ԃ{z[ |&T-rfү@Ҳ.'Wj^F9no.:2SGYogu^k=e)) =!tWC_p)rsd! NxZ2h3d%Q5@%z ?S:mܽbCb nwX£;,qT\y%ji+6i a)qg<,Hfomb6Q c |Յ͒MzDf~Ӊ2_*+uy9GgxDqKMW_hO\7X}>\jh-~"6?qpkt5Kchx<mٟ9)n}Dh` vOz=os볧 -$ng\w6z<= #݆x2dS9D=s{1e Jj}c:~Y/t?עEϲ  8ه7{S/'XAUymWa҅տAb`x! YjLE?喣B_(gOt%7O_p~;Ck旘W` ,Dv$Y4w(M⛲CK)wZS DHK;جQōr%5aClyP;DƢ) Ȍ9&fb%W-X ǀ[}w6vyE+@NrY=P5+ ) ڮ y洘G.yD]Gᐹ&nCHf漿޿gY]{6SrYJP[mʺʈTڶ) -M2cXC:T=sY:oz4,SWi VNCn ~"S:б}x:G[:^~=;r<7=5&Lx8cTKVMBN/(ESEKKe66tQ3@@–2id<w(9]WkW( ҽL|J-$ZwQl]75saNj<Ju6_Ǹ=D/q/Lgb(" x܅o'3 Cmb<w#c<;* ;cdWvSZ5gC97>jYD<CYזHO^1iZkcb6T ? bޏKcaR`#rJP̐7\dGGmFv ^)Y1;&+Ur!a`_g`AGK%Sb*|m~E{PT&oIzkIR]ZK2v6 KT^ڱƚ:cSZ KB5/dmQ diP'ZȤ3 cyco\Z½dg8̓A$5%];8h#3nQ*wJ !<RpP8Q;Rn/<4#'x:S3oDF#K;  kt[>;C൜P{+L@%JJm߇$?Of+2;HKQ[[+`7V_'n X ß9 X-FQ+A&}VYogk it3@'%ZҀ:!5AK `[AdP[Q_WoH,cq &aa5:ˤz.?bs3ɮ/|=Ed`ٔ-CZue1txdmkSi;䢠ZmeOQ] H 9ې8IvcKNJZd\lx z/ ,"`z{Ki\KS9p%c{<hAPhx1{ڵ6V e[E[Cq֝|9\u/Xc]8?fx+"蟂Ќ瑢{;#A?28;*tN\McU/|w3H]{祛S N%*?!k yNv M競NqɆȥ2Ҧ!FQLa=DN҂JeWBbM/&){ pCϏI5ACJ=)M׋%0tme5AhĴ~ )-йhE-`X Ҋy ӽX-O⊵hӥ&&([9({%FD9ʱ$W!KU (Ad㿌Y>KrB\KI*)vM[#$ DUc5XSK2':H|+SM50I.\7so9A뻀,[S  z&rbcSKD 1=9XJ|^ΔPT31Dw">d_[.hdKgQ"pR|ǃi)DPjw˗f6÷S<Dlin &n$m|} $e'0Tʂיg֝A3cG꫃yxV?홣uA=$o&.koF&nZa.KZ9$Q/&N827!DTšeV+BN#S2!a"R7R#_bȪr;򵂈A5a&5Up7RV` 1-A=׶{jH2n hX X'z2K-K_遤@*%5y=ȩT1"ljl#5hVD7%ЈcLFGbSZۧ7+Y<F0]hV:֨S|*ˈ<aRu\ќu><|=$92VvE^vB"|J =Hg6BU\hE2߰RHNehk6&IWY3V7xXRcNhMΪXuldhNϥ }W _:qT74g?fP(}6q5&*5X sQy깎1R 2|O.YZj<|GWn(z9])<}q;*e@OR}ٞU<DamMX&:Y#y=1 3PĦ2Awødُln[9pS]|U)<5a %(e"kʢ0(V:`Ê9_Z},誁)zbЙMq`_T| &"JOd z4WJ ~\\B/XU¸tb2[Aj离( 0䔡zB ]qJ./H*Z ҿ+yuUw6<LiM٥S 7m7sIJ''wE ::'E€u{٭<3:+nYe섵ސbhOBiPRY¬-A^m<:ǿD7Ț'Ir,!|~TwAj CKƖ6dO(_g\hM_&*]m `V n=neƊԝ~UotMlQsWl=^ qqmB ®A]bٟ+_ 4QDfPX-5ə.7Ul8g[&fO?on<PPmX\S{pGZW7Ov)Upfj"GcnR@/&lw,G_^BF&??") N]x))r<^ D, z}1.C=aQfzU.UJ>_Y~׫USA-ywb CocNgJ^Em"N A neK:#-ϊGM7NGk6P%ϹnP;u*(B}07OU<\ ZgW]fszmBÓ/ݰ^ϯ'E9z-H:@(^=ohu-]u_O/!;G<?DLfjP;H1k 9v<u.yeuen،fX=)xy?/5K,P b|TƹiKe~2t&rOI ( A@wq,?*h,ϊ>reZMs^".Az#b"FIq鏒mU] VϪxN1f,ˣrᲑ鐪gAkS'aWoaۀ '/Z ,gvUu,M_A1rp89wI։ܾ}aф~Nzԉ靵qd<<<nm+"Qu*I],WFsC{ƽiOrA0q9 $`<\p鱆 Ac] (.hau;Χs*=S9MB1H@|jFdP\~|*#8M"1*{ .Sc,mi3׎4MD/H)?P\KЕޕ^A%m:8a/6 8>Wg>ժYΦ:Ho ab2h隘8Y۪rs\A }N +X h>7ᤋ_*U^cڷa|F ϾȰk+8KL *BDu[F9&k'-` \; Z;HM}frk<.$bYV@̧tuc-`hh4aӨjgx3 (I,l!m盿N=95V`Qt[u%7k.?2T&ߣJ>3D,l'J$gJs:Y )sҩ.ڳR?)q,T0dq}Jy.-گj358!1в,q'nѸ'3k%*׼WuN5{H>a}2%п6PTac,d6@{?./U.sl8Ia/[0vC G)2+('lB޴dtH2]iL0hG).~ RʎidofBH[T-)>K[ν!^ްa`˕m*WpO>XlgQ0bX U-4 {.MEzc5f {"+sYhUO\`u!hMl`V"54q "1xo3JņvF ʀ#oZv[r?C@c䞶weJ4tzhɂKHh]k̈́w6""J1UQ$`9I$W"3ꅐ: ~gn?`eH Jd-sAXFr>Q&ظ&bdKT%j$# E(8 Lѯ*G25((X EыrbEJwV9VR{ב! w_2XvwQ[}]әد\TI;+I.v8ܸz_L"3u}Ȉ&Nq7gWZMކ@WnbC QMQ:[4Z4;JɍHB&궷 _B<;K<]Y}g=r˩gnv&q$BRBP꼵.yiiM~0K%6Xqs/DZkh3UWŶv2-L21h;LCy{a$aӊ 0s9:j,bESX.Mj#m&۫Et.\Q8&o\MO4Tyzna!ѽӡHr9af  HقEzIHZXQ~fkR_5'm J$ jl3/¢J^;Źiq!=n_Sa^Nf락9gBZ|~!)lM0ϢOiP~5XWѼ2;L ebW@! >?w0=e'9oTn)Gpk4.zm<'XQ[IP,J <8\pC*&HQXJ8h,Pa&Vzd7,[zqEY/ aptYuI4M} Gs)rR6c5kܭ 6H 6A56zHF{:1vQZv+<_iX <TI<^B< B= N"79Ou<W?&QxcуI5@6P@SLiտ9;F gx%!Q$LLp3cJg;^!<eWaLӨ+A`|h!!TLM0-;Gu2OD 9= a&A5vwPGj#~&$2R'yaP aȘؙ`*AvQQL>?^v(RR=|%g!j ;RNc㎾COeZ|T^5/8g 4Z.Kg=cNZ-˶hnSӌmx\bI~AJe\[ڕ}Ƃ7;d^=L/UGQk+ `_44j"Lwj-ko&KPHk nQĢlq'J2- `o a0n9XaH2n<n~?e#j!a>!rj7 !Vg-:z0Y$A۾RtV8HsYwP[>u8*vh*Mf7#Q$޷[z~La$x.vɧh뉧d+x^ʶ{kfUU7VnoD"y1F-<[o+xΚe똜Ϳd7>;ϙ20t\Xvaqp<زh'3PLaw'l-S^ 2ބ>` ( `DD)bvfa-!.%S7\'dIlUL󗳥lqB붣䧵j$qk<rG,RC*e3u ف([!zvo7C=)0[уןy1}^~H`z۳]Tݸ͍YIȾw'ÆFg NZƋadi5҄* dt(W^'XֱiTA=w>kVB0ƲG:{?<bC kA3Do_@Zy۫8v.(,fڷy ^8*ބNs13ZV>E'U'nv"UDGK]Ѝܠ2맜s DƇC-tvVᘻ`KBIlf4}+\ 8 N9j cGxTsxd$̘>:Hfwn;X Ƌ׈ d&*ֺ&@b I͈(2t")rzFC,)u*<Ц`/_- PHS1 .n@숞Cn;?<az*s0I=(!YjEf20B6?ʳx 1 I8ơG} RW.:&OL]ivV >_<&䃇2NCFh36DǵP f3m0P̴Ie{5N`H\T4mఛF}U '0=M{zyٓs{W4a~(ٸoY$ߝ_|a;F? \UtLp z38_<NUq)l)kf?!PV` vmQ#kdLk Tz"ECRciv)c{Zȧ&5!k9 _O׵8e9́\ڂ.n٤{m>쇳 dM|C$,rTxf課hBYB6ݮ9y4Xt+>[-}? n?u쌃a/3Gek!Jy;-d)7/?z!?u'^d1)'wk5҂D2rGBKiԾ[ogr;PTqQ16ynkdg{M[Hک.޳y,c`V K "O`{7Ν'©(STW ^oroXCz)0u݃{ sq{@?8&챇d<DNTwJ|cDsuI[Re㽍A-Y8S!11gF` å/Y QV)b+V]W<s=#Q+-|y?Fň.ox7fO VÃ,4}8N"`jA9+BDvoȆ"s$6Kk]mvtg6~|bg16h| QA #FYUٜ$qr)9TyNgvNIv+Ʃ(Xh?Oo-h|Y4bP{tjFfa!>~fmS!(V֋3c4Tm+pTQlk2hG0('`QlWO59ic76FU&\Oj滫j<;'—t?q&w?ivbw8%"Eƥ! XG("2Ps |%;yk^)q;@8AW50}(*hpp2o,Xh P-F&yx{ "[email protected]}̯(%\#H;ߧ} =~]e$ x$<v֭ &s#qҀemant2&G+}*_v_6'@2dhe4t(|`dK-).%-ts~ B,&.1nC`1XƨmTʉ0tC{2B94r+_Fٯ'P;T5mS3n@~qXua=LيfF;ACqNƜv%\5VFOR`嫥٭]Ly!H7*} ]folB`>iN?u"J"`Ttwu3E*=.c@[k◒fnw^=п>mS)Nޕo0KS+ pE $eȃw~[<*5yzq }mu$ȭ|jio@ Pg(~KqMM"Ϥ}[fxX"_(Lʫو6Ʒ!+*ejiY &Z8#5o폻GvB6G'l픊48$ pw/[w$vOp##FiHe;}훅%- y`PvFu(4k,% wX?W%;qw!M|k"xk%nNmd0u`r{`pLkƭC#L&ɏ"!pl(qYz<i%O]lƠ# PmT0M>;ӱM -K,m AL^(6<6O;ȓY zTnNt"Lᖺ}(H"`J+p1$gdx|zkÔ @Ny oeM-e6|+y^VV+ 5$䪞cgCՏd#'nüC[w4L9t¨U\vWjGqN$.l!mJkw/!Vzb_R:Y<3<. T{.ft,yZYdaWkrFc Ϫ;pc Ή3C$x D`s YȉP@ҁ-)= Eh+ij\k6)S`6|eL!F]DcP^u~)#'-z*:Ϊ`\(-6w(.wQ;(J"D<o‡Ɨš-H >11(Im|.BnPwWP@wTZrj2젎V kM9Z9c(32Q;.P:,uh5?$䔟üN)TƲB.a;=~2oos$ѰD{A%Q#AE%ꇱ3BGPY r aJRpƌ_B9"PJ,ǝCkh=K'wf˥&Udнk)QrX XRj/E9>GkS*yC,jTѳ,\B`)ʢT{Z_U8VHY5W,0w/[2qTod 7cL"q %1vcʙ]B!n|5J6dEY5BۀSd"+:+(iw 'n\e3M:dnZB;lATsq+As|9DFfRw(ӆP;1sl ⨃/hRn{lS)<RDwI;BaS*Zk%Oj7Lu,s7^t3%FϜOJg)IT- :ڢEG8Jfw)=eh쥔HC[)FIU+]R-U - ? XnmWh|t: PR-%r"o?2ۨaHXz;E˨^W(Kf(deN _&AتHm=Dl)z2d)V2S2mvz3qKz- !6^`$ \r6d'\OtP:@v)8X`K}x*^AI#Z$򥼄aRnF#ӣXH*)o?nf,PlLDxx .~ ;Y|ckbr9A; n:q|VU٬SE) i݌ zVc0P#]stEF DCOqdD#_f7b8qΏԣl,`?р=4}H=-s6JWK9zs?S1ܰ%iɳ<J@aTOiAfwU-iVA"vQ?ro@{4 3aW}vKj99573r+~,1}/,hm]Ne@<R` `c,wh]xk]Y Qkq.\tEklUF8,q k.>UA; R|dS$.m ZFwOGX+Pc=,#&Ϊfr-Wo)bpp4)c`d}ָډ7hL7ѷM4()8*`S̴,P,;_@@tZ t!F>¤wGjZ*<Ƴe\MBȆv$w+NN9md>LP2Ox_#v&+6 rQ\5Qm\àυ,#TSZfH_Hɼ I"Vj^j64 [6 1WW0oA iH{ͺA^}aubZgXa.ߤCt摨sdOx;]fLfXs:Gʨϐ/#jS[``[mdv˖JrxPvoEFqyw}A 05>m:Wz}zF$PY^S$q>D5N>U`é?2J,A3z YP9X1_\&x_ToZJRطQURrM}9⩱;d;&X"N8>:y$DhК[4M"h5ήA:vvO s!x0ՁݐIS?z'nwyXGļg 6W@dKMp?2eSn]n⦱+KZ<ڬ ÿn^\ #>Z@n*@̱}<}Ͱ>4SRg78 Փp_m. ﴣBۅ^g(sOFﶠW {5۞`zhMmXCRHt'(C8@IǗ3B_]7Kɜ[ q3Nʜ|):XATCER΁eQ"oNuAӢN q,Zd FYސp[kt? ',ٮRCSdg^,RJImzꂙ=ۣ>EDWOƀvBxjCR 7dv62h-OC=(ҙ?.U6A(.e6>t/$G~;PRjՌOe{FcdbCx >k=*l+_N  Zӫb)w q;x @Ps\43E{ë#9%%(SG' tA sgﱑ!w ǯJF!>r/Rahz\v"o,Gh"PRݍ71u.g5){؄!J򳥱+-D{;o42641к h?.X6X L_@0j&8am+k4÷ 8Ţ V_46i F9]PֿwR.l0W;c0ŔLSAPH]FB<4w;..IPŒF<`隰)>Kz9 *$iK3<LBL9>fM{pNi8Q8g v P*8QŪcw;W4~Vd.뻣0E. m<sPX%+ 4B{"Z[b3bɆ-[++ZOV \dզq0y3/d_1X=4%}תfJJ4d6\K\ ^iZ3a 0hFR~j(-l^[EQev?f\8`5kWwlv 櫚TJBxH{bO2ȏ y>#|Q~Az uAq|ꊐ#_C'e5 9P -WD~heZ9P\Z\RǑa9#Ĭ1yK^9#Sx'G>D6oM^TR0،m{kO .k(e' ,JYQu [ jtd2C_7,˴Q,>%eZh!ph [qn(a_bcG U2rF,ǐ;9pz_ypE߲/@YQn] [gN3<+EUuwG1ٛ=*t0Gn55w@ iv( µ ~Z־Ebc$79ofibJs|Z[?&v'b 6V y0(bNn'*ڪYѤ-kx^E*ռn oaHoׇ>֔` abxP2$+ gtDuь=f}\-QmmG+L 8͚&7}RhAdZ۷|UC 70u+-(:ߵ9B}#aݑ磴lU4}KoX:64?Esy܆̸ 1N(oͤJ( 1G7߂21NI?(a(I@vYT%:83K&FOǓU J]XӒH1C]pW)}sC[@0G\Xɳ ~Bj7E^o-C F2@-D&R<qMF5zfٷB7LfoyҊ%hkM{MW+s=hҤ^U!/U"KUԄ_A?t(=i7 V`+nz΃>qiWk\@Y5P> >na,VB7Z-8m)\*A$m<rToy]thtz3RJ9_1'{SȤbJ 4 -MuPd7:6VFr@g0QT`*=@|u`!4-FvV9ua[>+C)vxmyfD}xlڥS~" c=&?﵄ߨɪU`qqYE`Qv[ x3cb(AMm*O<V.Nr7-4 u-.o k%JdTyt hNJWS)" cһFBvҜ\Y|)i:#>xu*}PXrL({T ,{>Cpzq'{ET9):̛$d")i񺧄*\DžE8M$i&&6owkq%M}3z!$~Ɍ-`u:TOIbJ!|R[{-nRB!pCAwܴDќZ2/;ykY"_f D +ȹ^)U1 yڧF0n3$w Txނ8'=]GJy].ėbm@B{tg섯wF=R*Яym}?5wI"vOIi |}ClG7F'A ;nc)>}~_ mNRcѤgnJɛ|krV}ޮՇ5<EV*@(1'-\+m jo P<ǂk]0 lB !h 4<Fm87-4N %-~s0q\/AIV^Xsl/!WUGlf[0;CeWu3$X3"sD9-6-f1N f񲯦:/:7fFKEǔ~Al7ݔ-kx@9_T=@ U)YZNڜ4>q%Jugn7(Ccۡs(/*D'Ղ@7‚?pD@J 7f|X×OqNRW6(RΖ[ oBe=ʬVh͕\Ǝri lIqa9(Ymnzr9cXU7"uM"^8T>4g2(Ʀ1mzzX !jFEΛ`J Krһ|{U9϶UZbms8Q7a{$ w9J+猿$@`/~bT=p>WC<~`<y~Vw(-02@߽$ԊWraNn9a򅆊$%[+$5lmnrUZ1򆱼xRbxP&A!ցsV_/vҤ g< qG~Ke@3"hMP}h!$(wWwE#Zi@[ [\$h4Ǘk;dԈM!‡ ` N-iMfU!|]LI#Hs>-r'o8s }>_=i\X7c,@ȕѫ4-Ѕ܊~-\+YaA*d:_˗f> 8Ar+WvGf SDo=)F9Շqj>XXӀp"L#Fw&WQY|i"Lp>xBu$T!0ed*Dgpp"GU'Xx3FJs?0t{AXq)\8_\7 f-Y'+b8,_>TQ0 > UqzQIZZ@[t|^U{WO#6$g_ԭ tw'%[d{6zzEsWBDfnf.FFgC@}eO@;T^罈ɽ ![%VpMyŎ Ko/e g; b ƊB*>6޼BSWЖI:𱄹Mo %zKeߦBOTQn!b.mE,0yƹAhrN7 B1pdQ4Vz=2xLD]t@ebvb|Z*㾑/m$ƭ+JIHTʐZ/N.c#@iZ +Y&<Ƴ4N";f։W%mcd^U46P,FApg=%'0L7rp_Y : SU,~&rf/z_-arF6 '/xɅ#u\11/MW)uh!D氐3D+[٬r,6̨a h_|gaH<;=0xˤ@=%<3`/.)=6Ua>s/J}O@]z܋})"@Gaq8[#M D47󥥰dEd꣏(_p-O?NF_bf>~TV6q)'XUw.#Kŵ_:XE|`L㘐~3^o2ZX~ޗxa3[}~etP]e;\_9Vk‡`e1$4v`Ƀwj/bӵ+cȥҪvn@u&ɼ3Qn4\Ȟޢ(Du{Yx3v$}AR'9Doi_{;5xX[N袔NъȀk- `A&_OtxRԘY.Bn=~ϨwkHR7Bl󘓯p!I JH.Pw?hx+2>'z?jS73-`CpWթS,P&i{ubN'oUx󮟾G=s+q󰊰_3 ^_Dp[}GĿ?lP$#\: ^Uu@`Opp "EVp,yVZІ*wN[50y2gy],x/ 7}$02w74AStuC[tM ~E6bB(lGd{+FosmYYtYy*7\Rk#&DOSez}-':6\hopy5hxࠀPڥF۠ww_ ݵjX]yItƺ'gh[(NwLLL(Z3Xy_2},J{ ;K#yӭ |E~|m46+ Jh gpZhv#hb@}I.l W˂€wj-'v]y|[لgnOր^P7)Ρ}x*īfD9BHƊTmweک</`6%F<m k0; eBƱqIn|CN; n#l%\X#wAs|7nz~2( ,G:ݖm uh)6>bB}j *ϯ+-mt˘_,Z++?F=s*)hYON8;2vEvN8V7LEkel~eCr8D KWʣ318% ݼCwlԆJ3?A"柚rJZB-8!ᩣզɆB';DH'&uE:Z:evAxI<ϗFLN]ЦvfṬoO|PMX,{KQTӪ^MR RP˄՛}R+>zTTQv]ipyη)A_+S *\ YrZb ?\DePbJ玧"W:*cVE6ȟ ;l.M7eAu 4vY'[2eE>Dg ` lrt蚵%o DߧnSxN"M9{qȦfʯ7W:eº+rin˺(6k5@0:wJHmzYU$|b&{Ӝ 9 e};I?>Eo) e~Y/[pO~DȒEd}I)VS`nāX)9􁆣L%0J^FRNy { OUO HetkY%jrxH?T,s\#׵D]}l톍r%m􏻝 ivkrR!UW#TKt8ۮN})HKΏNǯ WP hLo`{kGW2 V$AMYjYp!Hs؞СE'bjANtr26*l!*vIƦ]r=iU#&:׾8(Z>.8`NJ:_4]DX;8wiG~n+ c`؆*=ҚI Nԉ2:;SH][ni ]xLO-MWCʴH&*@v<Z_Fˈm$n`~@)%l-FQn#*%۶N;%]"pL? ?Ս] )k%R$JSBB6Wp3 C[H>_c]>(ݼ\/fJ*]kʔ _QXC[RH'ui=9SFUߕeEx" }[kd~3Τi!}=ڎ$zϗ]'~bsCI1[N <Y ,c@%1 x 4[}-A_Ak/vn҈7 '@>iH⢼^v6g8C.ƇGZz tjlc|jF6Hi5B8W] iʬG~P^ye=⛋&O$pޢu:dQGƉ)}_|0ɉ{ z3h)U%Vp+j08Lb5AW+ 5!s(5,BCö[X0 ԧ-'Ɓ5tU^/1pOAZ}R0*DiXR6_F~^1<t gANj@2XdQ׎Zԥd2@56X64HFXAJ8Qx/ Y@W,9p؀>h5l7=`g:ݥ1 ;~'{S ?:+HLD+50,SYAG"tDO)Nl)=HF?Z/Ye1;9I{;ŵ5II`9Jh>V YT8MUQЇbx_@U{WܑzgfZjBcq[uyYC=3X3ga\B߻ܮc˨7ye\o:D(@.p4`), ?61~dc FSڴ\?omSTJCQ9Kwo `Nv_By <0vvCJBKyDc}tZIke<i|@PO 3Ur}ȇlMT±_qMe "$|}KH٭7"`3B7. ɫ;{@k)9!FS[NF1<R[ +`W/SaaoEzvN?4kF Xozd,n# @Lo*y4M" [ ȧ~ 1ogS `'jw %wF#{tdf̈tIV)v)AAvc]cpd:$ ]emfV^iû[giʖ]Q-tG>8'O0 \ܬBnW#gOJg&+PY:o&zYFt3ʊ+\܃VޮقI΃c*,SABƂ* DFvᬘ6ˋIM9yD8 ؚ>[U[&bgnZe7G)$L7W9:*дے9횔**o5t;dߵBT],C<mI=W7W ʺd**b})ױ&=Q2T^IcA]IxqW@@[)~ocY_ҹ:^z%pfU'є;(mN?` Uq15x\Jq'sk2 V̪\՗ :fxg0zO|8]~:~nSf tT~c 71X0S~+QvT~EK?ETir9}AopaUsYwݮd&џB~q㭨/^fMyf;άƑȤMx6f~Deu?Ix'^!8<,5 MAƟ(Ƒ_!͘#^um)A[ oq-`tAPb$p!M41!1 /3<!SD8Yz]=r[jNAhK4PvOoD0FgZk=<݅-K`)8YTlKW+]BY%IkLq+yh^_'P%]ZGBZloR)M)1,ѭyS"A6IƳ4'˜Vo8y֘8K"yW OP+ZoH@f,2E H#Z1NP` ]_v DCa_Xcl})V1 b H/r(R3="bgp3woA1 c%א|S_*Y5eh(W>meժDɫ''imeIԭZ[TP8Οp!ꑪʡ\pDtáH,Mc v[T t_b\wy `@';h2S)w|,!:+Fh(c??LhӒe%}P .gXi~,8ih|+HŔŐio=Fx˺N‹ 2aS9U;AkT&[ր?soĵzu3s\we#m)Xk=f+qF :JU]$',OLQ6[rKzH|7eG w5ې E* d8WI?<!$ *\R&o63j:y !:s<'R]*ֽ3 HXM{eZ+5x{BXKrGg7 kZ(? &?UfǷ_pZN8AiF +bDHiJ*q^!Rc_WA-K 1"Uי5n)z"Fܷt?KJL%waWn_tQ&\;oERޞ>#40kg 3jQ&-Fh̏-h31cJZu!Xsl ,E!ŔNs~$ϬwZS7]aTo{Q>74`vZRl։@\Tn )W](̲Ɩ+T:pz P/Bbo8h-|ڦOv :! à#fv!UvU~==oC\XwPC'81 >OK#zRt^CI <Q݂<bK8H!(Mؠnv"#5FH 2LC&n-P ofN7lH~f6w3)m<t$ @C5T=#4}Q8EЭ?1;ڦ:|C4a0N,y(IR EO W"Ri;F# i4kLd$QHŽ|uo1e|IČ3_B*<LݙRO)ݥN^ICSt6׮@'rTk,U'`<5A^Lآ{e(ƒ0\ΰwK2e`ځқ 7r^vfBkCd-8 =gignȪn kѭOJ`d mx8zo2ܑh$naRٽp ]Ȃh-J:ޥstS*߸^?v܍|,CEUza5w Bju^h{s5A ~T|c bO0dQʼn'<C4VQ O:Bex~gLȰ 'O}F݆\.!XYRK0SfAS;FZڧlZ Ns 2=AT$JxnA6kB2\L7^Z&KQ)ż]aić(5bzEv;f-`B@Gg47]UWG3%uD[)MGw0C.7M* &HU-(ܲ!Gmˇ#2 Q^T%F5lo!/upf^Qlc"_66wl+* $c,1ȣ)tߦ n-$iĂƑ[K[ăayҊgfnn2%2<b>t_ŎLKfu :Ҟ$k$V .Bд;Lj}MN2{1cJ 'b[{jTL<[$.>`M))K떫WNl#F⁺P/BҝFiz秒0ªV7'UG1[ہ`pb(VP¶TݵeX+u٧Ǥxm 'J -!+NG #ʸ.9IEInt)I4XI i*iD>.2QL]Lbmk>gj*-h|_/O`7,!%{ F6ϯ1n\ʵ(EHX0fVh+; A0jt=b!cccm X8jx__l<^?/FNwWVdg@"(Tx$F)TʬN-1>TU*Rئ qF >W;^ hԍYe2q04Νh^<.p *~&mT2B&0!~X Щi<e^0U%B[jx&VN.\ףT+OKBGnrbZ!++*95-e[[1?UI\OI]4pCҕ^X>Z55⃬B6u#V=V[%@FݴMrc*܉y+4JgQˈ $Y@WHM wYS]KN"Is>{1(dIO@Y=lZAC֨P ïzYVx6<ΝaX\ԁ? R۠0PNbHګaS 92jQl$1?e{NG*s4z2G`Su0u[o~U.-!8'Xx]T d5+B|nP;E-l6K}s{E{a㺆+*} mA%'_Fb0 LbIcJ?mx{q^-˵ 謕6 FFOl&:s=}zΞ R/[ 2?׈pYz٦m\ %k"MubiQ7C:hk"%'sr|97P+lt[ 0Yq*J5ro{`<OHU^nn#u  BΡTѐTB- L-:\9(qͭT[5!N@@r0r?]B<}t)r?FM. }:*t̛W㏥Ok?(ܷPľC3 dV-1Hco xm mJO\#C. \.R;o4`b$MTV:>{`emq0quE AF\t CABOΛ6q8t'SWN͇\Σ =<z)-V0 Ѧ]{2Ý,͊o_h %9`jVj!HnV6 .Eh.)?+q[s㲅a۪ebDo7-dQFE|$5t| ?ݕ%Xe^j ;OvAYVtKRZv 2Tx} ߿S/a[zh=̑ ګ:z֊gQҽVVL_ Lo v-=UlsE-fH"Yqa($چ| h@f.Rm2b073A͖Z`jSuB`6# qڤJ >il>u|^߮Gr72qO1$tU\=es WC߂/_ȳ$ r9eiPPg C o:7q1 ԔӤ2 ^HQv R f01QNulT3 [y@u=*=Z®rnlq:W9'Q I1#TQ Fg3Yƅ!6yTumk_:D;d}F Y.H-_&%ivs'穅^)Wkxh5k%t*= 잺SfM1`*Q6|4oʗt,UP9NBx, yMƱo@.-N~62YP ּ9#s58tm,{6_=R8}"ܼ4HNGxMi: ux秸Nd!<}MkFyО|ÇJT<f4th9$M{ X= V[ Oc)g݉=6NQ\]9 rt?-!swY&pƞ$Bt$UYԗ}+}BWLdz.it&BYPpx.9H.\ NqrOI٢4]!s"4J9l_J? ՕM!p2u-)O 8YAG3~PaO?Ň4a FSW.!ELT(K"BTǴ&k nsT|JҘ!iy.V'eVe{Wt,~m`Sdܿ/J S*8߰,hݥ<^zip0ag]p//,ڼrNM[t] i6sXDoFnRlRv.vل\*azUg\>Q_ <zUydž.Bæ%i{'^6B᳠C(i)QP=zN ]|L΃f"@W?:V (ۿ7)a8h{+reN|XntȾMMͶD_G5-pG bg ! h&!,kZNKKY4 g>VOl5@dvή]Zr}=3$1mJ2t"@}'u,NJfZl[lNɵ_9^7w nu1O0o-P~k!+F,Ѐ>Z5Bc ɋ^H{[i8 eV%"!ڞ}jɆ^|s $>Ճb/y¡HiJh a"e5UO"c*Kσ=ݔ rMg.၀Q`y<(},Zlj{0v5g2lю}?[Z OC(D⭗V' ݒK둴ktY9 "ϴؐo"E8KtʵYDtDZcBdy |z4ʲ2SS&TMF,Vq6gz ^UGӐ2[<%y럪eh AerK,=P6T<햸eQOz5=kIC~guO4zC# V O8E\O8."f%6!7GɊBP w."mIS*w +;n5JKLà [M)Ye" q/5MZBwc.biG:jN߿/Z#:&$7 4x s/`FX.0f}cJKX/MΝ(@Ð#.'4Qˮ2qX-W#o5aJ.bO_=穤46M'CI>gNw|8{KQx|ӛ>åR[TfY44?u1񊀵@~.BvEnލ+bSPD'ä.c]ųq`@2Eo.N|V{\I}"}M-S,yN0|AB$IuOso&VPiP{ih}erVP V~_U;[+Y={'"ׄvmc1I`Rwe[z;~Tnf2HWjDouOGlob5XZ#ylM3,86!_BNIY@4Ts˕D_\yuqUJ5ߗq 4@/N۶P{f>RM<M&!dcƛY0M2tNңel~Lr׈OHf v_]h[ -me<)S.DaY$dˊ(,6gsPkL[OS;4w*E4^.(2VސR-ZUY1*"M0^)yAyg`%m9EZ`]YV鐺UrLOC̜@sP!>UW̬VęLyBU&`'Z;^N-'i"G̼@|ҙ2׷<t"C%-/G ]|̆ۗ`{:GSUbF#PIhV[;0R_!u˾0;%M8` . y3vKi ~׈XB`7p@豛5P ^uSN?v"Be#gvPzH D^y&m|V;"e{fdoQ_Pն=^ A]X8^uHI&dPO$ާJ^N{3&!Ʊ|BSM`ƎXAz9!tӷ1桇JRu<LAdX@H$iK1Y  U9lE*K}`SmM,x}֣j\Ix(|$8 *{U7˴UoahG C+~o$m nfIUFV-H#bvY)Z[=U6k *GA-N_2 О5/>BO+t|J#Q/!I4zSX*)7Wx)k:"&Ѓ o絩cK5E_J9!SjQ A`V{V0jH^pS&X0e ,wHϿۯpXXoMi#,Alƈ~z^Y6R|WeEq\2P"ŅÌ'1{g^[L(H8%c\@#/̩,pH}f%d{Z ~obYreFPߡwqJ<\-]tY[5>話e<5%7tdKMxI$.XۚK5zw@XkLTiFh|ƫl EH{ʯVxs0/d'5?@#ִ4e)RKeLTfpJS<s[Po#^ }vRw5$TyP&`KEߤ8gUpO:_(UmHe B;$M _`t[Gq enjs$"Rmr딠UR]n&.FIat)yGiJTV'aPgG<B's_Z\>X컸&#8vP(7XuN5QJFj-pB&,4ZZ~s^_X`cJ[+Sb5MMD>82K+Kd6В&ې'?ɼ į9/O'ڲD ?Jql " xR h N}P~/Jbb9YBN*D_HK@f̤Db|-Qz."m8erBPA@]xO. Ec̻WKy*4Ѫ:͂n$jz=p]CCJY|H _$<4'&uz% p\rNR Vr%Egl.!nޖ JDb2Qzx=uB-XZ@SS{<O5#?`ѥt;"`Yd@u\u<A&Ů)͊iND(,&H۩E\^-1 L?CkƓ)'k1gp%8x*CFB= 2Aw PZa̐ÚC72x8m۠8 H;8*"TBYᣏ+ ;n/Gb*,>Ƌg1ץA'DX/p }F*&A4ihÖET` x_G v "Oɳ c<HGv]6[.jlzJTY="I*HnK͠ S#rcK^L[$mvyP.LxVsGP!UMmH)Q)DP*lۯug<N9S:ux8"j$*.S6qv8~b[Psu [\0 6m؝s])bN31$Ӗ*`T ;cr5zƱrb$ Kg䯰,&:P$i]1ia"L.'o'kORO$+37lAuZpvCmUZg*MK|çFno+]x>n<?f 3uuGiUiCPOB xe'M@DtJYC"'[{d$Dn-` q鄇!i<cd̛ n_{6szIt \`CXBK>ve'vNHnٟIQlEctfdxlG2IlBQQvL>0eDZ)=zvԯ v뵏4ۤe8]HJue\l=CfW c-q4*VQ~, A/S-w1p<w:9B@rΥfjBb=zäI;+x[ts &Ĵ13͔`FξLT1G)ʑd3E+hꋐ:f^XȢ1G{GGV‘I͈Tw:m(`1Esh*]/"|r4W\.d@}eԃ2{ T1d⃦h@R_ۄqȃ Ჵ6+\'ϗEg)vRzɴVBp R-A՜ZtLg7ױR907/)J38ͳ <vG^v Y{r5| "h@+ Ca xF=7dBbۙ¨ke;co>-3˅MBk!Y/v.V@6oNg|#e@ 9X,Sظ7~j?ꨢ\ISĹBXWH^ iL{T<fг^0k;8FSg FQ!6Y_uw;qj"}&aԾKfUB;Ei$T_ {钄jAI& d_x}k*o NDc-bAR||.?d:3XSu-c =[Uk=F\rDh`\3FA[F2إQvQ9 ђ&B7j4_8C{Eʭ$ t4WH Ό|Fh&=aHu #5HvZK(y!)2pLy2 Lx.9'X;^P!R6.aQ4P¶t@Qx0=7 (#\X]5{ X!tޒ"ZThzI']Jm:k_1]IuhdB0DN {pzdMJ]DPlL%uK]AY6nuLrDgDlNxF}O狘@PyjRR^._@OZz\)DOGs[4~|ώs, M ՞}}:78qN1|r?7c ,raxx A\yh䔌 *i y,de%n2E*ʆJhG.lcD'3t 3&X6$2InL6>ETbP/F09[Ko=\- կ}i$Cfw-cq_ۥIpc\q1XڀM۽\ZW I$V"9'7 4dO7a& pgwp~Y`٥5ži R# YrAO%D퀊/=ȇ<X@NKga·ĶjW οa5u"H ;|W7Ƥ-"3xjCRQBԽ l׮*a:9ѨT|!zϺm"S#<ێQdj5W UB(VIZM&~B3Aⶭ[/?1BMm?/7fU3"%dҿBK2?<Չ;dr8|`E9) T3j[?؉@ G/y !7?>ҟF5/2 5H mΔ C2?u'l[84H>qNghZC12Ye},텧sCZђ@ufvTsec&B ER;S& 2G%"##eظQO#C~]0;aUU@-5e>jE}B:I(/7b,sbQr8'Hbu(xf]C#>Zlڝl)iD^]GYy҆zӨJJ-/(G ?tKcM$#a8$M #6)6@dPj]`2Ӱ9kvgY)gQGxlkS!2̱Xrn (Zg/ENk1ɯ\q挱={I]^5ݢq'JD_/ c/Ah[}`^ZRly&"bX3 H.+hoLt0CHm(k`L2 y܅LmrQn?s-CnVrz(X8&wn*~ }tы= +wX(n[4LM,x8&wKo ,b*y\O)*>F 4{=>tE∁(U7~ B {'N#7#<yݾr~}h|m_Io'3\.I p'jޚ15`{7NLDTox򵮮""8*nBjaG`Dfʦt"øvL(XgM ' =2OۑRtkz9]Y'#ڏHMRU"PdϚ2.G^a5Vo }ۧt@/)k:#EC7S8d]ڻshC3'7f=ΐ]:GkaȱzXUy'v"_O$M~U&o15ڌ9+NLjm:tCtbK}Wˡ-ʷ)aKx'16p+4w:rן]f(2]'g철`%5/@H>'}g8rj@ 507gbl7BpZWQz!EY_4.>pzi)xi<8/.mg)޿g.Swb<ĕ.Z)4~${UѝKed|r?`n=ڵz|ɉ&'+K8$O8; -Dѻi~V֜3ۦ;AN%Y0zS~ ϝHZ9OglSP(Ӑ|n$fSGѿ̜%jO~(#XDKP'ەR` /g;ChGN{Q;#?]ƾ*ص=siJd:Hg.e1> ۬+ؒS/:(QDDeN\}ohU$u^:xf0#Lgҭjsy&'f% nw=*haj7>-|qb/5h2ZgbS1H7:դwRv 8'~feqpfF#:1&].1=4f9 G: MBRir%)p}7CUo'4ر)D=2,7O"Oe,H$۸bAuQOFwW"VQ⟒`+Vu]oWPGPS}ܓ6Y-Nϧ0bEPxC[kTO { ^~qN!\"6r d_XpILUXZ%bZO H4<y%l_a&B@<eJne>T|BNpc"g17D4JEsY?r#J]mWtXk, vP)|}&E b3x{\o^ʗg(xz9&,5,B"|Fl=3t7Wr fɭ/orpS0lуEDUq7^XoeHlݙ=J 0u[seE]=ט953]8_0ős({..uL qcjf찘'';I'ԇ^?hV97R<JMO=.-xLr׵c\"AZ+2wp9e2.=^3y;{ +A 2{U+]b3-ķjqTL)W|\ʸ=2(, ,b,IaFȧB0SΥCu]# c?Eӥl5'L%Q4Ϝ6<(pۦ-cӥebcNʭO1sDڙYahxHP!/y[qĵҢ^v&}vW_ݲ[7MLviwo/!3N^Obشr5Z3iO ȁCitzrf^0U#}OkSG Y.f +vܛbd*ԃads袔<5ɣ?WXG`frehp.AǪ[#=?(ìo vٶPVO{α^mAaxKZ`tx`+zj <܎ȷ."#ӨA%ժ`<S3eaE|C1* \/Sژg_>JLվή QTU3Hy4r&5QWW>T/vpWavpȆ%amCg Aa-)Yң~S]T -<'<ZI 'n** )r63-&\Q^ɶu}*ED'\ۆ'?5mP!9[n!#BL)Ǽ{$~LqM7Z j1Α!_t26]WR] ͓]Jbgć&(B׽${(tc^rпK6Rӏ#k:)U cX2VRDFg!N5+„`sתґ+bemJ9^MLk0q`y%GnϵxP_ψBVǤKNOOЯ$Q>38r1헸FuUhI%K>1G4 D&C d8Pd ⫝0GQ`c/9V;z 74X[sj)Z' ,{.GPni|^2l7~g82%L"P5'c&0ƃ;0Y6Ζ>V>˗|&bsE.f]0q+; UxFRy,5$l&ܺMG./ 2C8jb(۶{WQcRi/((0`]FRd"ɭ&)J9brvy}XmnSR"'&pgr,~}VCm>- ,I8>qG2V\_+EvcaŁeQsT0nPF2x}^卣$?\B^D~FS~$usaq=|(LE/fB<rwd%.hhayYc.$4;M#HxCҿ{CuV}44}~! ?#w;=r w$Yp Ӻ>Ej2^l_m(5y^ߍB807G&Τڀ0fGբF!t^ }(ts6Oﴡ(eWT̓'c_NZO8Ͻ2ҷ-UUl2(Y7d)P|J->5n#]o4Dž:\OVgcKn%l]7F @ڳ<5< t;IA4V3{p*4H8A+lХ$o2|`6o\gakRgQ@1c ,vAMh+VPo>uB4V`s-ŽFRݯ=<IyN+&jb 6fKj}TuS.9fMpN[.?) Ƹ I 8`sUVP 9ՉGd̈DIv0zr@iZ M*Ŗ|y#+:aO5j8&\BS_<ao '/-tǓg q+} G2;#7Z)"~Rո<7_U4E.N3^AZ%#&r-(ϼy50u&dޕ'D*4xk <t9=C4LR^LX ;z) yJgiTS0;gWڨ..,폩M2m>UQ9ԙ\_%EHvFԩ4<֞ ayi'A;/^D#YF$̆agsewSNSv5b$pQ<^Jkf|.~>ܹ=Օ`A`Ίe7SyB|Un ቇH!frN}?`9=HӫUR2kt DنkSM.ߥlU:ߔcBڱQ<&Q1}Y)8`Y#wa"z9əY7鮊$gQhж:DP4Cm٠bI3<1yCv,b»Uc 4 mrjrI_haY9ig3 TgM.$,J?sZ]2VH6<G"SJ1^t|Tgsred Lz|u}92/ nU{s_ݾ+ңM¾1OGfms&;3DZL?3r$ǿI\S9ktŴv\`mڛ\nijW<45$T-8Qg* 1͑-CwIwmC -pt DYANÐ|Vp2WAD6y,?T79?\];ٰ~$ vcj 4'ylTյÔ+(1@6pciDN4L<5svfPE,v(?RCڥb49&Co=[BNCWcȴξRV&XE&E<$Gp auC<Ǽk*Y|ݜ_pw +.P!Os`>+^h2Qg GbچqD4{V@ 7`ɇuimC&XK`.9QX4^oe87P,fO;E%&J>C~J 5uu#8\d^O1/wټy&~YgGFQX%,]FL'<Jm &3ֵy[ݥ$>:>OKB+TrN% ނ*=ExǙoަ?m,w["#ZOi7TMM'`\NLLnh̹>Iԅ6n6pzjg<ۑhkLyc?s0.,_ݒ܇h9~!6gi M 1Nqi̩ξ7{9 Csf[V=}ViI.o\?jqy#2Xdq <寤)QN!_׭A7Όߟz<ښ{Ǡ.}搶 MDv(Z+=+Vjk<-,IOKo:h?P>Kr]LKp[[y·UZ+Įɢ9 l%Z冲n-\BGTPҊ/a18\)=}м[A#yM4xf1hS_sՔ7m8D^tq{]uV]TriGVC8u>No1iXElRz&){Ukޝ |JֻiikEmP%GnG.dUa"SUL dE{0ŇBݴ:17򀖴)DmQflQSF3l".X K )U{d֝5O ۰KU1eW*N`.3]l}y$lC+㩘N+i^b( 0I=+ p~Wsh6ujbԋM|<jqWQHmS8~3F6Fn* M}ffopCTw-.X؈~CpAl3b0*bvr 0}0_ʂJGh4ߜ+_>Dz2a<]F@>`Nvmf@ 9՞ಷx xL&` d9;Lczq)IV "$: `=G;%)3V_4}W쵫.%#V}GK#}FkjsjD{M%_%'U ;mv(^/DFѺQ>W8؀WU7^em̍ٿcH&Z-_8博 Zϫ@7))%GjXQXB~jWgc!Yל1d?F@Q`AY5\@ fɺ_ 2̟lp:I$<@ p(שּׁZ]FG{Ԟܕ(H滌I 4Z9; @nǏ QZ{Tۃ< Fm&*jUzﵓry;ATpF&iZ4JK#]+>Ĵi4ʫo`1c !z]!$Ļ;&(oN5q$`M#剓jQJfx3NW-C{d~Ր $){.d^a$}"n6?[yD 1oTv6# 1^%a2^s<yn&ir#bYA/ <.%ڴ9HB?;> jKE0IHTt~K`ZA+Dw+qmmR$gԽ9J$uHWvB&"{ OjU} T@YV10@b{vһL8Xխη+ ;h5&T/zǑAρ(N#\` =-{fg' |- ߚ (?&S0'&>KaNljZ"E+r\cքu8(Ua)jJ[ ̃K cllz1lYqm%@Ź18Z~Hk U!dB5#~Ge-R Q$tE$[0ЦDNˌ@&}yKQIeU`Vj|Mď9/BSj&}e^u!"P8X̫+sb׳C̒SqYn0OqTQ㕡4DI~6A_ch;(8k%LoN Я(\&lo"k!Cv\({`;o#G51DWKtuਭ\ug`I6J!6W~bA=L29!$ϋ/5c0T, Fca(AuOЀY?af'AJ9n(ɼX2 Q`(AO(LU'ܗLdѷհgE^$0+[!?ͶaU4l;HRW2_ET3߹~FRIЛڞ'J4TUKޞ~w[t !6#PjphuV^NvLF(TJ2G_[`! =So tmK˻Lj{ో I~f1/`p.H>zb<Y|D10crLYp a}OJ2.hӡ)JGG.h _y, :r2֖iZ[{bQ  VWm}Mbs5f]'63(ڽx<I!Ѳ/K|5jn07 u,b)ۉM4,k{2YK:2 ZOZnoYsUYk>O>s OeOG7zJp|A+b @M'P\98mDk_,I(ZYù ybJ1pARd4w!nWq+Jl)K?B#+|g5'־k~<^,#ױ̊ޫf$R0輘5NI\W__?{Q` O"C-_ T]`ZQh@ڇ]p VBG j͌:TWܶ.[--Ȝ"WV;&?j( '>4u&1p3KLF@4?u)+N[|KLU,uإNyxNA7ug@M\uhoMsBGUOZVq5vP̙4N}5 Mzt9o#n&vFf#Qp/^N ɮ+R $^\X^Go VŖJ zř"D6NEQuk%Vaq~bgvSӍC&*Uys`Z{MՈB((j~M_0,'[aWsqK6<k)4x%]b4v[WG:1GWc1AJL(pXb'|?3C֥0٥. q=aFi~ɿ*i3D97Fh{%5مF%*zQ󁳖6SC}tK_Vݼ\>n4R&>KȖ8vܐ9GX;_fmR,w&ZDmsND %-ZN߮ؔCFw(C1F~ Fg { 5TYТR jw ,{8u?*p&֫b_ -WdA2\4WQ84PWˈ2rrkb HgрN}g֏-:s 0J>!Xt 8hc(`ij> w`W"<@|M=ӱeƾ] C63<t%,* 3.,楄UB2h&\vRL6GH݆Ie}A;j,$j/0c$|9I9TtU@֣Z5Z(%wBx,몺@y[^+ 2v`S^V`|2BYŵn/0(t_cf==FPl)V-L5%\lF5l~smOa{GL }rG k#2p|OG038ieAb둍$[7sd6jpb,NOc#)mX}b?֋bSK(>.-ċ1b;3>%}E3x'ꀵI\gf˲gЩٮ!;0'ƗBA}윴*Bg_<~$iߌYlå E`%qי !+UܶfVuq _&X1'jȦw'8o3g\^.dÔ?̘:#29i,|]Wī_)R13ݞÔ LotX-%YB9[զmmikƵɿV撚D>|`-TE4ؑW'*6;e^_o[؜u{|T-D.=>$ 8w6hïPG<^2rkpk IZzAQ^=*垏֭:u7L/Wiȃ2+B?sY'8Xc7C7FAZUJ2-Pl-i;"h}ӿ(Di5>4Y 3-= MR-oI58&1z1GXFz#[@=H<Ȓ *;sf1$Xx&p5ՀsLPwBwuGMhhQ0RR~ ^_t,@$bL슻lxfS֏.# 52Q=2s3GpA{Qnu'zpXͲӮ4^*cE97f&z6/uKw氧z?]I(@ϑ` 0Ndrl!+q9aSYj\T)kY>Í2uA!rqhJ3/ѓ̜:W5gN'ĺFyj ӿZwzMsgѰŒS/\lH Y5 %4:%ԦdIt Hj4G4=Tw:329rT)ꭑ@_љ#INwZ`YXsRQZ f4 SXX"%@ngq}xW2oix^cr2Hyi-LvTL{R!JEr?PC9\R{|i N{tQaa"#?w3dOs.כ럒PDbi54JA[M}тǨ>,873n`W8 w2dXC1*yF,2gXO{y̸F`J3ىyAbU}\W7NPv%V1=.dC}Nq;rrc?U׸w<|Nqv>lB͎FH9PƒQ]'&P&>e>(P !J㴳-1tԴnadPvA+ďg 18,X\RM)6>*fe i;UF3BcL((l}CWӖ0&_s*`> ˎMA%X 6~3 Z&Ga _!t(uy݁b o%DjKY.-(.C>CFA < /kmvf Ķv> JƌK F%;oh{= v.tQU&Y_+K]Dw2ptX)F-2~`1nGN6LJ$ 82M!6s F5*'eΒWT' jJ ̶<iN-RX~NlH|y)A1ϱH/ ;=܍a57B+ . ؍RiyC Ne7b zx(eZi)l+QI =2w8}dq qdm&%~W 3nTxVSZFZu.a|:#vPE&欀Qo vS,on9IًC%dS#%j2#vvYp>}\X8:ءѩc]\O"#P1<6 'ix}0a6Jʀ(R+#Ҏ^BR;7dLB)xvCYڱO{8h4=Ҵ$R2:WZ'SH(LHY44"O?yD%w\JZCuoL7:(|OeKJ }/wIڤ)}8 q@ؾ EsUB\/ېZܰQBv_5y)9M':Q?LH ; }WsM)A3T(`m6pSbbmυ- ĵ]#?3ꄈzSN17VƟu3VQ$,ד L0)6!RorncE+'+CSS<^5<\dcn D_:NWb)(I${f=,qO(a|l4La18" `UeP e6oD 'Ʒ\h|3plLCTtFDx兆75[`kALmam}@ӔӾD$䵗:y/]FToD,mw>'N &{w⑟lMU?RZ aG>H@eqv+`VE  WN QՌa2 XdE,2X#KTZf[g4E}g0mKSjW0֯.3ӣU Pt_Z)Nc!Ig;346+(liٶ xNOQHi~KŘ4TYaW @Y(57R~)9ns^33Ac~5ڽM\k1SU}cgtnfrF5ɾh1r={Z *aSTF_\^!O gpV4y]aCv8m6 %vc>63`'K!n9{h'Vl2T<(AWl5h`k5Ztr!y-ɇFOFJE(dITfY@Suk <z*=JQ#a^Х5 <^.V-v/ zp.C]W2!]ְ H*65a7uu6u'= Š;GbB'&I(GIN|_’Q"X{ުG}?͛c>f50pIO~VeOmrMvh{f'=?NROlC)2YO˰E}kS_˭-e©dtJEuĽʨT G]ՉXǑ۰5l6J=L(3ڃz49@Y4875:APgݿa<5,~'A{V#:ah`aʧ>{O SNkX$ @Q[j7K+]ԹHnt+ ^6.UIzBH^ |L+GdQ # LHd)`Y]ЂqbG8#r daԠ'S㹓 J'K={'7Tvъ+$U߾OBiI.DzcUov<?re#4ɠlǝ7ă5eEY`9 aXb %"#.m<C>|$%]St3~Uz mu:r_r_D/-DHnl_|I4-ü }: ̈ذ-Źe< .%*#%!]-8$XL)I ْmsbQ(u#ߡ?nʠmקD]>n"aotp6x|!fКE rLB|r4"dR۰쮐=jܵ^WOѷX^|J>MOW}lU|ҧ!lyztG+F'F+ ST\Jl0n K'-ܜhyGRi֨H*+%'l.L_ƌ|"Sکvk,kCEڟe(;#u3sP^?%'v$*+Q.Eٞ>4/tzeYWHG]LJ4?LsIb>}ޅUch˻v0_N.{}!%d7[JTҙF~O)jOʷfӬfDZm7%' ;QzX!or^ rcn"T`*'|<m ڳrT[Vݯc?{b^χ);OG<@ j~x!QN szLTzԱsmz."ibtPjpLqr21c3#.$\E.5nA䷌w-WlLK߾<KK<@OZ &CN5YO6=rtXwm)hE0g֧}0lS|ƦgZݓ4j5lo%7Z>}>70XP19W '5ͬ@ÿH!&e{\, ݕuh$ B8J}ݩ৐mu&N7H:QrO•򧔀>xA!ܶm A-O6e¬,vħX 4`ͥ3¬DhB(&:_.Hk3!SQX.5ڑs][# Xw7w#lЈSG )n5)-];^"ٲmQDP?R"[z)ǒ:. HO@fye1}n>k0vxr' UZGR%1p%Rf1 )K+:2IkilhwǽlI1Uus&07f,wJ׫92sXb)?=ؒbbi=z.)G8j0E5Ú[ "c> Ӊ$MsaMPu ʱ<*DŽFy-&]<FBhFw94C x~C.*͓OŢH xgdW!9A+iGwEg ~FiI ]vޢG.]a`솋Ր/ ߹H_KaT&j< #D|*E3UgMAxDb>EL!~,OW_)d9A_)qYRٖEo٣<f,Pj*emIz|yB8XM|!y΁٨?)9*gb7Y75jo ^BDї=ִLBs#ݠVf,S); #QX*k.#BRIv'e.7%u Yc[Bm|n%0Ľ*utW{z&SP!V\W4t$#"c}54yjdupH) 3~.n43s(a߲YpȏzIcp9۰܅3wxvY4š!Y+ʗCiwؒX.<HS̟M;~Jb>b#)F8@No"νAV+T1 j;2Xn{ ߴ{mGVzʬ5ӭ!%iXHBri{rͺIVxٝJd ``ĭj mNh=g~?~?(zFV`ޛ*iH֗atTyLXC3R6չ-֚k UsAD/([e]#JLN< qBo`Nlx_[f.ZV쒙0~ :{ ]x|WqRs/S5HU7f.10>O[TAq{%F"泾-WabʄQ]k ;V|i6~ydR t# 7;|@@!Bpl#=w.As)K h.gCS>&Z*O9sx׏Jѧ~[-;2rT@o'" &6"`NAi-|,c_V꜐3=3\ǃ= ԣvc`kR1LL;PMxhCZ 0[W)n;PADROeSc<m~H_ d7N?a QBB|GŶ'%;W6ȂMOy: qG5lqs6geU9}`n!6h4MyV8M7<4'2}+{Y\ѢhXAT:pD{bbuf'I'0g-R/5l4yt{', Zj(sMg{YU:Oys@r 0IVXg&wd W!@-hؿܔd@WIY8瓌;vs̸sadop<&0_]32O:N9C}> (z<tmV*;˭\M1{ IG]\^R|meLN~ 1ӶXh8"ֺSJt;Uz>.@ys/jnL -!K朗nʤU&zo*A\|=[n}[C/_Nǰ g׮(_,;ޥĸ7U<4<s2/\PF͙j4 Ҏw Ѩ1 );Vԓ輺S*jC"?f;kje=]9%64_<"0d FGѲu*ָM +EQ!J^RJ) E=lzA!auc&Of^ ΆhrG[Fosp1x7M aOZ D ?EEv%Х6g[68] a4< inսLnl 9ep]!$*" <i^LJUX;@-r]2F K@+UJ3p,:SJ*Vn;jDWrpumg)\խ=Y@J7*^ KdPQgZF +57~*3ky5ANEbCΏA @6K:2iBFjFDaEv 4$2c8G N-whw*!-j˰y`5nԠܓ|9CB hRǻXs<ʑ͟jN{,tM~{*ƔWZʃMX1cwQu@W>y"Κ?"Y3rE7 :VKPPfmBB%,䟴Ub[X)VK8j8Ul䲪~gP1};?KL! r9ԁZ U;> Wt;kB:.J4j R| iujR o 0QTY-hFv ;@* ^:›d2c8^bM<X8˪F*lryMEZG]I83bMP(^U߀?~>nVhP:0]6B<>O_odةWR~&g[*A"h PJcغ"IȳccӽjޕJwogE0&7BSge"K{A]}syqV?2 rC<7̴<0s7] ' *%Bn pT-? @ nc?gsטbGGWZBHQJsVd/Cn5)a܋pM"tcVU="GIbr+_dx&uLEUo|WtVj uyW>2l 쓟: BOr\["AG&FDž˽j7W2/^*FxY>9qd UW>xRJ6nQբ]*ta4f9?^ PRĺI %E]Fõ$pbGzԚ x&6i_A]G'k^Y>61y(\r"o鳹5 /PzgëA<޹`Ξ4 2/| qGT WȀ5Be4~Tb֑@jQ|p1|BF5Dϗx_Pg,y^ |ǬbZ[O=:д>ΕLhz0[Vc ]&_9|kڲ99OH%>޻\md/O"~VӂW,A[!''"c,h7`XZ瑥N z+SBb8=Vٽ )ed#|y**;P# >>\)bX@`Iޅ1Urp H?;G3z~ a tb&Ӻ!n$|Gw!Mimjeb0-12='q]-(j=D}Pse9-W 4+]hVcO+́jB'Ar6ƙ!8%5]/4շO-$ &42SRW8GZ%SV)\=Ud.-89`"8[gzIVhX4o^-BϷӋJ"|gW28 u?:Qߋ&gG'ȧ %W(w?ΜZ¸#k#<Y?3DsDPTq<eP|7yd$jnקi@z2f 1En}a}r$[x?jXz5K`7փ6ÐwkZ䈭+'}S:0ʬOE(@'FtE0ȣ״22=Ys]9%N GBߠy*_"#2iv/* 'Ǻs ?Ap8[<cP]1f0cH8eG J I=?wQf8H=4)DՐܗ2.?6R[`<˾c뺰<꜃ &$lG7N1ʪ`G4v 5 qO.:\sv;{A~peJ+ƹ?뮂d]"+" 3=VV|*> g{b|e Cga" @UX#+Y ` O0I"pU1$硓AbhqK&v#<Ia4.DH7bg-zMyZř>a2`JOtÙqtI9<h mo5uG4LHҭ2NNT1tjתC7jlhCmDF72RJuȌ%XY~J٥0r2?==oyΐ@^Xi?_(nRvPtwa,"~>)x7l@5KJWԷrMh\rc3k_NZ,xJR+ﰔꌹQO΂0}3c>9? }8ΰ.GӾm^6Γ$ױH~4Y%%d@xQx]<`?Ih!)ѺKc8iDK+5m$+D6@m]l}'ָVB\unM.9ʅ_`n $h˶IA*m8I~(bא !AI#u,݅df&ԅ1S.ؓ+cEfY z+Ţǫ $EiLhL$ɬ*3a ?PGW8o__$%EuHԃ@|kW v4 9ujW0\-V(DF=Q"ӷۑ#oo9q!nRy1GfpՂ.$%ѧua^ OJc1grG߶9٫C^$D4"TvWj/7m f^'ob~P$ ( -A`$qxqAC,Bv)?#PB䔇 6L߮wxJh/LN7ܬZh]OfsGAT[-NQF +4tN@FEOm_|Y8(>,TY{z-nު'_A,%œrV_SXv$z8yCD%w{h6[P`V.Dbrb ^1+h=trNkqϩL\gi{r>yh*^7fC O-r0Nqrr+Ճz|VF&q&ݠNH m@6<&jQ ۸^:B6-_1tSѕxK2c=8`&@ G961;e\Kx7e3n@*?d.Qҟ.ro: M-,"KGB<Atb,l!6W, @BV'NzK_Cv8@k8Rue1E~KGI:ƚ) eZc̈=eC]ʮl4K%9'U3i"%DU#Vh%u˾ r 5TΩ}EH:pql1φ #44bҨ׉I?F(-&9 N(Ҁ7# d/ k}HLJ_IelR6=~+z!Y*&fU[ϲqΐ[I*Ԏm5/i.6 x;xir}h̀CL\cךd멶IT2֖tH%RJ36=죊"cNVp/XLw{H _@{/PA+wfz# TkBZY Q-@•u1WWעgrDž@I;ʱmo 2dWy>ߝ!u@L5cĩ=ͅK&ݹȆť: _݆K]::]h Q$e"d(I.\X*e>cUNWz=zD@'wZp hAz5! 1Iy[YV*gq`'e `\sçkߔ9!}pzF끹]t[ Iڕh4b~&XPB O/N3tg<4HG j0e\2|3 &M]<k4.<YquM"X !s?hB{q Fkc42R{`xPmsd gp$K:myKf͑y,` 㗙lG`5љ}%  |%8YqגtInEU W徂j*0)MseLJOC(uj{~Cv8 3T.Є[{ݴKSǤL!8a&-6aH'o>$D$S7AN 9s'Wp7C]S1<zJb!P'GF&|8 yҕ{O)X7,=Ƭ%&M}UX.FK|^N$lvprOx?[{hv ~>bŜـ?^ߜ/&! הLl?xɩ='jbXۥ7Prvy92>I6xN\(`Q;F !"s^ȴ<Rڼ5]<]>y"Bvإeb饢e_xWӼܩnu2>fh:\4xvd'd;ߞ~ fp$ϠOMn^ j] z_Il7TH7_>n묯 'ҵ5QgT>ufϗ hs.5p'6!%ju*>|U|QIj\vȮl.`ħm<땕v'^ZݫfduX FK dU߳/4.v㝟FG<{`qyK^JOm)Zj.%2 B҅ ܰItԧs ;6{DC\bztn׷^F"jB?۶zj=n)Է>~p3ճ3F)Ňw-՗8:UOaWRo==L\Rpp_jCfzL^5F5؉2I18"˳KR6J2#bFK&L] ܎Ψ5?]IUE/ܞީpڥp$ҦWm͸}TVdPS75]kϕLI5T幕.qܔcM,,w.T |2Vxg9[iMȧr]ǯ6FA E`6Mݱ솑 ڿQJZl۪%٪\gn7Ge 3Oª\g+!~G~LGF˚*&7W{V4l7={&}6bRcQ9[-&(0"þ\/@n80ˡ{W(v\e?j'Ĭuȿm'\vs,\鳵:^kGDA2wX2 C|/؀1{`{YDU0EÀk`!cDegxrآc/}Ղ3#N5;NIf"4N[]%̟k72ܽ4Agf|ׯz%c*@n.MwIΫBxnx &дAea(ǝqMjsGHMS<iGMb}(a XJ;imsjoY%׬ i<//;.4äraG|U5DHkf<W2CKgv$6<mt*O`Hy yL?K:JM$ , ,li.%ai?#GR$iO6jxĴ=>r8QC)5FTl{COZsf\MhQEiˠ'B#{.b W~zJk4qՃcrϘpq\Fl|9qƇ&^U~&tGM92Њ']+OYW j@bR' m#63 rFb$}zZoV 8d~lRPa~yrTM}ޯwXP-L>>dMJj Cc :,SЏɎ ׹&[֑,toѴOk0aˣ%JM8{g%@i!yro~|VsAeɨz8%bEw<Cg*,sZX, Mz`C0ㄸz8+?F ժdЍ?#I!_B"GJ 9Wqz0 |GcCƀ0Kl eyVql D y2~J7&[=#X+Nw~G`Ѝ,~FJ`jmO IByHtTս^<6a  3tocVHxmuPN 1WJ#)c }=ՉCpMvlkA!U|fj30"d2o9;xĉ+x9fz/S/T\xC>?Rl}~+V?0g::Wxwݽ"ЃýB8ȂQJQnV 1Yqh+'/6B̧KJU#|vm)dD5({ yR9HWݽzXU/ ]M_R& ujOjbr$5Y*G󦂶6|')b@[I#']0l$ fe^Dod/ 06M~e|ƾBTC! BAǎ2ښ|бUs].u.I/b7q#C+A;\szL-mN δH|ugh`HBW+Im) u$ܥ?/S!tp='GtTӂUnQu#㑼 ^zj,}WA8Y(0.W@'@w;-*dU&rXDwZh|\Ek:=yߍ?߆GC=g2Э`x )SZ}6:?W#p FcvumHLgiwO@c]@~*jZҹk䘽^2.[h>0RAyEۋʝnR tbƿԍ=P>"K^lR5=B= Lrˀ2QH(u5 ƈLOƼFtc?[9 8]@^>AɐP3n0ԏܧ1rH)J!* 7R$8w_O-_~ٟ]|G_xu #A`3,صWqS@??Q_CWuJz D:^y0_e|ԣ@B2t3%ϜQx;WBVs B B~DAɲV1#TO{h@v C08n&[tݓrr:Z'ߤwx]M (qAbt=+CrM`os81$0PH]]&)5x$͵*Gbu?p*3 {\%+7` Fo ܢY:m ^ '8np u*EP(x̅#%yKc3_Jkn]H$ .T#mD?e!XT0#X&GPz[UjdtmW[d8!q5̨mioZ?(C[䃷& 7T!w3`G 5=Qxoo;4.7닢7DskUZ[UQ}F@鰙p8?X4w%r_ JKoj\eiVҬխ_+DzJ;BaXǜ7*N?F3}?Gf:L'_9NB+VӅljr^&fb.!891 'C|(ڏ7BᎮ ۡ3;e], C.aŸX&xS'9Gaךfv$BѲM11"3@Mmˁ #tHj(vE5SU$LyԛG2Vz'Η)XOD|4'{cdTnl2MMvv 8rwv-d4ZLjUP!)Ulnsq*cb}}>A^~CuR'jrc4oQ =VT؈KnR)88Ԍ{,BJ]CO Šf;ľ^~@U1;TIyI3}\!kHYg("8 5@d*03{]/)߉)nWF$nVjBx3!^!hPZDq|k5\Yu9Mm>:|zSy˕pT1%wЉΩ%w~>@\6[.]Dp5)P5 ; \l82'#tٚD;jntD6cJ͍Fmf众nb ]<WjPfC\=Hg׀ſ;c{YXid׼A{wV%W޽ f3 i8)k&z8!mnhc|"T܃&[V r-;mVtlqa *iaDQӳǥbP9y/F]_ off!L\1} N&=CF{Hӈ T&G}KR?:SGeͶXADo!Ճ<izuZG&G*Gw bIh@\dhӢdJ A qM G%r B).}dطGOΐ=c^#G6m"[|[#ufTQ*- .^<sªc1C K oO?Ubt!L}Xj JE0yYm  w;ƭ^sIU,sxxW!něQ\?rx}eP}F!J^0-py: 40r==7wnd#e,H0d5Ss?-b: .{o3\+'xB!tɈ" b9Z0g_Jr@=dGص &]->33 Ecȿ6"t߻nr!h74g>t"CɻnA3_$.aA n7L lY1\bS`Z Hkk}>oFdn&6g7Pmhjy3[=s߯/F`qJYAY \E ^ޖ1C$~WLh00F4؀K SyiGerK 'TE8LL\]Bՠ05Z:Y!AlfJ$ 8 xP\O(VҘt _::g]jş!kyQ74qLM1 O5Hf_etֽS7T(?庮UMk%~&Ƞg`A{u7ٿl* `@7TQo z$7x gݧ6!&GHwl@|*#cΤguW&MhU ]i%JYF1qzf:La=1f' j?2H h6mEV{\% =ݝ9 P+VqӯS h|?崾X· ;Oz)vwt;;yh;%}g@ϑ\0v$;_d,aE%]/sr[ v,3)˂xTX"lp}xs'WeʿJl%Ϗ7Ego2NV(j"6턳ݳ IoCˁ,/غ R| fv~bX%0īV%S|Nz &-Q mb_<u꧃Gr<9쓑'8l1N#k 0]첂Nʴv%R&zY*Č`Ik[ΔcK>ܰGK`dױЉy Ь Ԏ8 l*֙i)a<";nٗPr0ek,hPh~6_c:'`bvAɴC039x]RHy|S[^gAo?Jt8M<v26=lf&l=0S(b'-z&UY8pEdg#dV,ge32~xy$ [nyL2&Z"h|ɝcܪoRH7~^c-<D)i&AҲJpa=K,3B'[L'V@a 0K=1vJv<FRqN2(6le;vJ/l`9d ,&$Wv:0g NE(PA?uYGTh>'A,)M.()_ -Bb|1QX/m!8p}sr>XEPs?H=_vj@ow}?󠢸@NQQ>h8I ;u)| h]M5VIѬ10)^1 zDzy{jK[ߡK>eK+JtD7&cSH` o< q@9IBD2z%IT>>7E^=},U7́?n$aGSܫMTfZ m'#՝x(0ZK!#(.'IMiB'ʝ0i!|tӭKt ܃}YyX@%P#?e9JQ"uztL)ꆈJmJg^w `ߛ| "w:Q0w3FLYLXFRɊ'\׸ hMDLjUŭuZOd$pyw@͍hv受%od|MW:c8_{kg&Ϫo{jJ](^ZsG?ȑwoA<J/gN|fiӧ_6}JC`T$u-u#"˜3ήG;{ 6e8!St锚p,$0Ps&9O8A8"^4/3,DBVyxsV;y !Mq {u)/Rtg eF*u3B!a.u3Us"94%SOEZI >8!a#(l1\{lRĝ E,4 ֬*^KPPc@AMy̿6d9F/"w64.BkcՓ~!MlN'453! ;I-fKEZ{E lYz0_-én61\ zk>`;h >3|#wTBkbRDPo_ҘƑa V5{A.hUnG`Db"ST|X;*$d2Ug#@-j^;q80 LLڏψjgm4kv:<^d 7lmf<cBZ e¯y + $15_TV)<,6S>8\Ÿṋ!nO *I5y{vOK&<sxAֿŋD%ec*_燴 5Kf Mr | Cw} I)>[['" kP>3(yߒ̅^<FtK6F|;^ք+ZxٰDAJw_>TdDy)EP @[@Eb4x"v$]Lu]XBhlzb)Q lcS~ңęxG\ӗ2a&|N潫DLiS~]tGm[oM6"6R?N%r^i;>9웘E7Rpf#fv0/ ?cyLQ6ݬ)|`7a뷭 G(V*F.G1ovT6w b6|`vDmŠ%m#ld;L/J5d/L0xڹW|Ht~7Bg&]M9CVán{e SQY֡ V*V{]e_UOTU_~r5NBUvC׏Mؒ>gs%fM`<BtuҋK{f\widN`d9谮{nWK.G,v?ӎbȒǯf kSV\,lPbw7'Ezh^* DfT0Rf?xo.ި{)"釴eeӫPo툷O5 E=˥biEy4"eNvyʜ8ڹ <.U-Ra-dh( c녺+naH=HIRqz :'Y."K"^O% e0]I(gYo .ORc@hvq-Yk߈qXГ?+6?}9N h{;x)erR[)*%Q)zU,,qJ6؃||Tmdzذ%xq'g,g@TpO-K?>SfbuJi6;qB_& ,lO\^ȅ~/rB~HN VFLm {-0'DJ% ZF}5W }n 7oRSoퟓ‡'9ի<lO|Mqy3\r#jR۽Ё6*APfX%̌p} ywD&WGHoi"3(Pm~{rT<KKgQ_2`P|=ZejI UwG]6K[}y}~u-5;䎡5d M0I;IQ-:IV3~=C$O2sJ :[[uVx)+ԦŚ+xQa]G9W[w79DMe)0a!w5/,c iJBgDѕwSuWffsLZ ҷ6RȝgBϘ -(:kX}k`sԈsC EFnIva#Z'AXlhU}EB{q)>}v[ ?u(dᚖ_9M7(O|dV1[T3O`Ϩg_/ڏ>r(Z;c!!Y΢Hfv G̃2XAfY4UO6b>e֨ 7'[Qi"rLځsxxms(S(^+wAߘkHYtv6)ێ n;#/`[ 1Ui3Ua`,kM+8cӯ4[J6=?(dMӬZд͛?N=Z,=9OCLz_wS`~i&t^l5iޝ:̎[=ye>YjBonAy?D-]'L {"ͱ|XY.`5ΠjD׵RSLPƗ ҥ ۄuxJ1<$L>rܤ3Tp,TYEI ̌=[H_[ 10Q:{qHc#jI~zd|qz%"~I u.iu|beuc(Tq5Y%{wU*zѠRZYSBŢePCF g~FH#nz ~]0b7h(E̳؅{]maxYi|yhyG,gNr7/Z&e0p^g#Y#C9muDBt#|?VyB #}n㑉;|44R$2/Eb>k&>vs}L 5 Zsĝѥ_tGtIwH%褦dgqK!TTSEx '6FWbUL鞺.!iճ$!m#JBHG9WGjc|KBlCa+is$33nY80{,V'ESI >ww֢ U3AM,i|Q4e)S1:0_S<7:9XcK!6l cj<P ²)$qN<^deV,)So&N#k1o7}έеtf*dXyXZ&/.Mnoi MHspziU2~ۂţ xD5Y^EVZCU4A"]QgнQxi;6k8,eCD3`M Ihcy\6qNC]MֿPTɇf Cdxrwhߖr"b-3Tq 5$A[b '̝jAe 4;Dws v!^ ޥhY<jRaLZye7!.>A=z!I9TWl Ĵo.{@w4M? :1}i9/$=z9 Vq3h >$af>{T6WwuB<PPG{3G?1" 9wLis&sy~ٟJϞsLeۺ 6n% `*ʾƳUMt][=lZ,v<a ;б~+XESPg wU&{v>vYYpD2{@9 f KŎ! @B`Soq(7Cd)YI..F?lΗAT^7D.G~XPGT6d/t`!.3E DE+jaizh}L`N J׬P6և]_+ze^q]ӛPm08 GѬQ_w&T%ٝ+v1 OXrJ5GӍR܆7l'O+@c+tGtBP9_TV2FW6@Jdz{&dPW˼qz3:jIď]YǤ6/fuȋ WHA/:o#}ؾQTvH];SX<T*7R[d^ǐŦb\<+Sy@M# ǬY$xú*fsf,ubnS\: VUL*;e8Gc5S9g)p*horQ?W쥿܅iScq(1=uf+,T#+]0c+ R9@EiOpF8Ŭb*d[a'a&~3 =XQjKa Dv>f A֐3*LCj'.h$~zbOMZz"JnP.]Un͉U[Pd`*qHzH\1!C>fm%D?"QpӋ_@X~\V2 ΕldxZ{@ɂv}Y 2$z h zKޭKqχ+|6eBjpHkt!M3j{wW7]|2n:nAI5 u#Il&bx;l9_[7"f(Shn[acxڄ(nvP813="ni RsU`#ysO6(m0ǵDM}*X!S?]HkxF9t&/]Y.ð Mh^(\1X>| Z5 %'5KuB> PgԨO:_ma"_kf(e;?m5gHM`07oN В=Xsk;3Sl[I{=PF,HsӰO<YVwZ@d=U谄*Ozv`"^wk ?Xffk܁˳4so{evVƭO ޘLMd ;fZ$ϙ|Cw16|^thdg oZU Hݓ70.P1EkeIfu[ZEYkDmMJh7 p#[p<tm1v?)4.:*=֋5iK'!-(hWuStSOO%T^wZoldtNhٌx&KT$\ A_Fnr&8}<ff qZ;NXdIle\VO(.@Ծ}P5$ fćf䪆D=2WNgO-,ih>e!9?`W|W5BI' ?Hhxunђ)Ds%eQOgg<yLx-ma.bM 7D@=<<6oF4qOܑ7wW L8k[=uMD"th]K׭h %`QD;-:Ϯ >1pdT!j82L1J~3G7>nabnBl8)~’T ٰ#)TJ&4Q1Ѫ[I!ׅ_lźu"Gr7 ȶ@&{GX`Ƚ<혮#4=a?l!Vx;Č6])]R̮[Yj/AſfZD8%h qm)k ?vϽ+f~ [ &6ԝȂ>Չ1iCBB nE}]EM:<aujW+/y}b+ˣe6Fc uMkQp1 y?]V5n4hJCNV\{bX`᠖6L V~J'zEj!`?L^VVk -4 o?H m 5wzubo_##%ߒwkZ4NzKvG_`udc o:кBN j]2%|4 80 nzY$:zNZg2We+GV*`48s?"|Y%ÞWS=Xsj=Z}c}djXJ!DP8PKչvT:X!$Y}8M 咗_qZ7sӚb$heZ =_K{=4A -&F*FLqq34IKV}eO˅D\&oP/ I,Q/2_)@̗A7ax&R@ l1 ~lǷ2k"K|~uʤ$UJQp0wճѰAiB]cQ[LFxkС+,Kl.X|z,u#uqYRv|l#mfyDm1/2z=ir7lin.|`e9l4e~%\) (q=L9e ilsq]\glo_=ܦI rY(w=vq]; M:4:oE^(ɖ G n ob c 7Aĉ@_&[1p/2?izJܬ(M 1N y˳wFqu@$[{EwRy4L*f"Mz?<Tq«DеDa\&Y[ ZEM5 U/MJ}?jfaFh"22԰;p"pe Akjx+驄^'=[jtD\;bd%r'B(\PJs"UPJ9臬ߵ<mCJjza3P[oSea1,u~ʌ[Rk@]{!TWu;-Z"¢D_vDLBA]Ϲl*n *Ɩ/[ ?[)z$HprSzV<'HJ4LxiMoӆr%ʚb8ל`aWojKV9҆<ʜwֺTu>__-rzȖH-(fLB~`J _,/|eD"ۂ i6am5OwV{#0"$&ٹj񍅰z'֟,J@e~[ ̧84Hзn2"ׁeFtES3sABa-Q7R(}d {q|P8QU[P@\gmӊ.rkSE1Ykq.g,k,^(RC)t"HC{W,6Ĩ6FJȺGG3v[3{3wq Syckވ;0CN!|D R~EWFEGXd+N#/o?$at5@ $eIP.n+~r#]ص]S oq8%|‡'y>^u1 D_hG|{&WBnd_ұRxy;[LĔ$:+ E% xZp3Wkݬ@:oA=%(.QzÍ3ˑ>bĠ==[̾ 1vGdRd32' ?uH?ނ[9Um s6@f8~hkpKǞ7dJ =+| ͪ&\St !F rT(ͪKC8߫$i yNHDW9n8 alyXUд<.8KRĭE)F߈FFtR C9yVP돛jh5~hLw!+~"4>v_>'*z0*&auK^%sʡLSH:K Xǣߧsqvqe}&FLP%p 8eFGфU5?\K5w&PU@YOXqG9=ѷ|f.Lj_FM@jb'=ly1EOPfl>|I4~NN(?M~=8IRJ+ּ<u$Xu՞?AC"<Ǯj $%X"d:+!;f)Ԍ4&]J]7D 89hm>Mv#S%@*%e~OҜSLdO܁b41|ֳ6vSyO~cQl4[@-o(o{V[#qU0^fVz󞆾I `\9gɀSC.7G1>~W},# ?Q)w=ρeidv: )۷@?3#AeT-ln.ZgȻܟ[j5л񖍝zPʼnձ^ ߟpV/:|>hsZQ6GM =?5=x`4_z#xޑ4UJ*jTɕ";9O$>jOD7 X´ZwYVyg$#ys6փ{4!wmܳ{4ْ uIIj; }P_<?-w%ʛZ"E J'Eo6ëT<g)_୴[ 0RgeHL;I:8WaVKf.KcwCN1s#"<KvR;&ڏPQ)mwpH˙HO6zkU,T63Bga_;Z$D!=^IJ¨c0;4/ͨak\量d]9 d*AmrF?Rp} <p)AĜH_5{/fXןK&ZfOذv|E XKv@\ k,3AMNg.*({sS3]rgƢW{;0=o0RPՂʼn+=ȣS1kwQu=ǙrGm'fUgQᪧñz&u3aG_6,=% %pշ.⑴'Tj8➃#@egYI8B[kҢpnKO% 1H3 ;^ҜNG\Z\BB/C/ =36sz߂ y(\R̗mޣv6¢GE霣\WܶF?eGB^WzLKƟuW[~c/ щ-0 ;;ϻ4x yψXkmbm@߀r0ZzekY.|6",?{l:|2TIzP5( 2T6l(#FR;*&NĸpQag|,û`&l$|ِ+CRq<ekT!BrPN*Z*NV.+sPߣjqD(x:kI8 +Yb)a*ծN[PC,< >S42G~oJ)P()ҘEJ1:IӾe!g,14I))°4Zϙ7|p)  ʏ]?rqqM'w89/EDc)|¿~ZF42ϳURRRڶ dw}h/Mgcs}PŘU>\U 񙰓_|$y,km;UC)m;7_}cS>vB^3^pIﶴƚ@, Rg?wjXDf~6|!Bѵqk't'4ꯗta ƌo^~Ŀ+=ۓO7ƂTU]Sai]i)^Xo? ܬ6[a3Y,uE~=B;(z5`X)!6q(jmU bVZ\ccvPC=?KϚIeQ~^|gODeUɪCr`D%=Y=FY<IfKQTb!T&e#^N!~cp3ۈ^P2}/1/)8XXհn@]qmwۄ)gS-759o!-H"6FG]^& <Lk):䧬t;?'Vus8lƺ>ǜeVe!-Q?RZu)v>p߼Fq9 '%DFc"fb,k%4YwʂۘR3]0Q^2|4UT-ynw]•օ(q<Y&+tso3iJDA9rrʪƺ~|"ٳ=*,.[/ aVU$O0*6b\JV'K9{5P5Jezw  fQ*PEmwg<8O0UIQюn FqsfsdUc/IW h&R! abǽSOy8ǂ#rq`<ܔN*E6`bHL9kO~kB]w@X\M{rˉU{z%BG{,H\"}A*AONȡs7jjKq]ffBa$P?CpQ$jKl=8fqiǗђVմ(wbb&2-\<6qSZNَxa;"-ds0-d~P<){ 1}V ?Mx:9r-H儠TοnyPkGHX^qxNxuIA",C!$LRB Ƃ~/~"R-=24{&qwX> < $G#? =jCm8n97\I6/b0N'Г˼R#AU-\(֎)wz"q 1sL^6h"Hk&eX+ʡhIjo/ /FC|;]efk٣u%18<Vl R k?)( #kr2tŃ]qLU-mǪo{K/\h$ gЌI~}>>I4ϑ 4{v6ٰ Wofd_KX4W}YghjhIU =rjX a;`zj.G~$ťpuPg@_ #pf}+Hgm}j;_D8fOGb1kwΑ<ȹ#.ZM"Y;;¯^!HwL{en{M^gξcV&c;QoW!H @œ#EUӯ6Ea袞[:o Tj}a^r'vFN+튆TИ nw!_p ]Tzӡ4J*`@arM/|pRk\3Jṕaʦ@pq18}#P$9]Xһ#D|`kEE['ocWj0xE.p0`f+!Ԣ7=94XR3Ҡe%4p<̂ ̍6e ƈD2:ZCVœE[+60IXdՍ0wd\zbɶ{~;ܦYapLj?N\Qa3{|+wTâ$zBCI3RFަ Fve<n9$P뼜'uEZ̘;ޔʢEG`#8Al{,LR|Z(QEh6Ƿ݁&(n~?Sge?  vC BwF<CJ䳺-|pnj&gq7PmH~9sAsCӭL;5H^IpzxG:HH#*(w+Aqe0Es!.sUj鲈Sa%K=wmP1뫕[)~IJoFVѦAPF,2g7~N:RU^?S|Jm 3k_ ޳QE#|5J̕] 1*~}֩~8$<YM- ͛byڨfE[x~1f:Hc{QK+δ؋;2j#ϡ{(oRD+1ݣ>銛:'ZA^$gZx)QIޗenqS.5iv䉻( cN62Socs6Ӕݣ:wl7Xڨ;׿;CV`bmwL+k1&9?(&9Xt#K/pWσTl2J%%J25yg f}\֟U-3v Q]L# +^S$&'ǜ6ݒej](c2!Q<tCDmKnU9l Fo4GdAo'wm@K3`,{  "IQ(6_ydt'eE%K=y:~ZEeٞn85({v?MwW65M܍~0%uQzr!& ϩ2k҄\V72to*/ I\^v ̦ef䂊xX$vNOEM<|K :;ej1c,F }8⁳mp3[ɑU0 `;=´ wQ(zv~3I DMpؑ}d!hiB2wL4qun:ۯ+lOBw`E# \ !UwY>B&3L2|6A#k0vȓbKy遰q|vx"*晱җ;ÈX{lTyԑڮ]K gIy E_i-W{{t%C8Dy7ਛ5}eڈDIH|lWS6)Dl26ݵ5G^g\O'PDc9(ȦGmF=P<L7Ս|ܭ8.ZCȍ!G}Yaj:'dV;s"A%- 4d5WJ%{#L_W[MvfJf#.~prmDL?*4,ko5>CB”_(^uV*@8G>>=oZS=6b6K{]M mQ:R;^|jD=',g_Q  >I$ 6P&_΃4 3Y#O0eWsaH!nDL垘hMІ1lY1YA 6?4.B 2 `R>1D.ؼc۾{1IjSVw?B)qoOَ14U%f;Q_U/^yϔpGjigDZݲGAA%,{D:`;W`Um XV)|*ZT@,&x~ 1Asx-aW .qJ.SsȁBcNDR8,M<Aw]EqcB/L?t8Ų͕ZT꥕pyׅ=)-wXc 5ٜrNy&^:bf7Y5um<F^ Ԟn&JAzԷ8xTyT.3:\}aXvuݣS*a^5ƈK:i^vup,!M|Y$˩{RpwΈh!ݒj+fLw2qrL*<^*\)"|#R‰xWO߾݌DrAJJyݓXHɞOo⍍b"Rd=.ѫj--&=KC<lꇩaGREý5gFUr0(7#BV25= Ri/0ν/3e0{+'_(WKn|WCQ4a}V0>Dm(N~D).\LhEٶ$A^圜gۄ:_xkZL4P0EbIK0Oc4s' 0BxXvNAzW1,g$|=;6'N I> Du!.&hp\wG?l_F4 Ȝ?,U+OW?޺US[в[` NR!8[Ϭ&Vmr9h;20lQA.䙑g4 C-+H2nAQB7mJw&'C>"DgAhO9 ;6lCjirFM蔓E`7=I fQR??9anf|+'jV6v^C%ssjF#^cVMú6s/{1Bι>Q<o_N|^`{ҍ s*b3TDqMP<O2amhoR k5Kwg~۞3 j᜾)&y\+,nArdx#a/|{ ?j q^z0>rSl~|rI)6<݄#"^y\0"Ϳ'uFΈ؜BuV"#&<[˓key.QPSgؗ߮a u+ArdGw:͆Igiܔ< [h$$Z@V|mn{&m zP (r{ʼЗy{o[9_Ԑccx6  Q e'\} E;ңp~hn9c03#(; g  C3FG2+Wo_ .\Qzkx#e_yY'i=EKR{D -\\ԕtcA@3G }&aHk3',y)IP :lLd&qGch\ެ*Sp,bQ$o˼z;Ͳ 8}{~c#VMǯbn-`Z'ɣu8Ekpnj!BC i*{@̗.Nv՟GMQC䃟\ '7ĭ_%K>p4p<lpZ[ŕJ6kәΟ՚8hP)$B 4k xB/m2Re $*3yT4<3<B#Γg^(!\C.~v ZM`(lY ';]w¨<7 ] C-)|Ce2̈%olMUUH|ڃT:o24MbWg\QHGlxf3# q2*HD5~V#$dtuj"+0Hb7 4TSƕ3nޙ*OgQvﭻ8~juAZn *4|+IF<!jy 4=?61 c#p7&c$jXip7ΆV˨_{*-(,iUKm˟lO#?>Y^[/T-x( i-P#IDVHut^䍰f(tj/t݀ȸ.HXh,>i~S5h6]ʃ$QU-(V_̄ư6~^.$A;`)W,UlȚ"(g"5a<Oy!rJs(SJ+dpj1 'h+Ӫ%|42]B:;N#Tj5'UW_K%`6L;HrSNkړbu.=-|gIS6og>?˖hb  k(ُ{s^h]r@nT!n5{<60(~f'2.) ·2@ODUY/ER|3(G\<޿& 6~1SFtm#n6U^doQ|_TC4Mq|}&*טBfdeeg&/U _9[9kq㩱ʼnLm|2+^g@L~N$^*=gKUʗ&m\xv||-@,8Yo, tjOvf#mB+sQPv'f÷j0+ ʴ&DF#܋ЙU=#g3ZSﲷw:V c{~¼vx!-=Vbݔv!ʲǎ={əFY`z1iBlUTW F][òhn$F~f "_:Ô5_͢=P, K.@]_K%!5K%l1</W<yNp`LósoZ=TFk%`k\R<r#Z& ?M?4lZ+Ki<#<6s P,sP‘:IURHzjv[@-1袧pɼAeAr93?O`?Q]j\-Ԡ hG~ac kfhsxOJ%R(pDFff*WqӔuE ! Ig.`Ab(Y_:`f QRd62)ZlHПK(eHh^WSsUmʦx`uފws^(;=ܦoQnuq{8LЕGV%05!:5/3%n>?gcuqZ+ "_5icIrk %0;1s,@kթڙdՄjwOxUU.M])%wOkTG綶I~4KXA"a)V2,5Qs)\ l[hO^oZH')]1B=1g1Ϙ5Uiۈ& ?s9mC}5ŵ- u0 @݌I#.b804?ѥK>Ε/dE3S!2IJ+; toz9%} #șNPvW1a,ڜou Zr:W ͇IfBcr.4Z(HN;.l.KW4}Q ~?-o'75Nǝ*O'՟2knW R 3'i/9aY'9ujnwo40(fB׊VasyLDUq[<xI{.Bh]=Ҩ^zd<:@W!kd}\?QJcsE>hDѲO|jO8Tp)&^tǺR Ɵj*/[ALEȍt3VNks !* wi1W:ȓrlUi{ ڵ\Ew2o^<Eq BNUTإ?6=1L7z-ŝȐyrנcKрvYL 07\r5]!w[mԓFwK>$a;AzOYD9|(5V,S6g6sc 04/asϰMű*L9<m1-2h(4UǔHt@* ih!Nwd0jFka6{ ΟGĆW|70eq(Nͺ6 B:^Į.!m4%,Ԙ ~DReσڷ'6Ohr,cmWA+v t/ {ecr HR#љYCܣ"(f4o:kp>x{L=ՉFR7KPJ.XwИOrV'w.vvIca̖ &Qo 2p:pߵ mB(HCR:GDg:My"l߷mǵ"]v ꚫV97]z1F+1Cpj\ěh:[웃n}[$OgaZW-t;Z-+jhO:X!uҁm@TC͠LͰ%* > k\'mM28;LOOS^/q;s  ^'@{dD*]-#qǷp@4T\ &eqڧ+{lX4hXbyNR^19%8ԥv)( 3i?Cf}1tTd Z<H?%.ʦgx7L|Ԗc8ǝ1/ְ)asqoo++]k 81?&ȧE2+XX"opijeyimԁqt{-1Au켴"N!ޢ)+ -tD\Hz|avZucriآvVH4ߑ7Ƣ-QHu.b򾝯q~yuĘ:jZnBK W V1p7uۘ^3~ى!][L Qԛ\mwZt_aGB5݀6%MѸNd({̅wIUc>7~T kŚJEڣ ]Gb>G1:gv }7 K*N^?EZuZ18ufLu ʳ1 0~bD_ S& 8pPƨ `0?lʖTXaNe|)^J\C&e%XJp5ѝf&Z}6(oGmQ3bC6[JBj#3i^H1fO Xjv*GB1r{5HʏW>1Ƴf{\,E՜jZ#7X$0s!ZykDRg>b!X(cwAk>($|HJfO"̀H8uY0[6Dcj3"`Ȁ!8-N0_E~r{(|YBp\/4*G#ş(?wHP;$*n:ümUS4wUܫUN :?&mIP kuo%mh7zjGJvz9q)$qb iێ\4F6sR)h7|p #gWZm\G9i8Uz+agDR s>;̪v̄S"5hP W:M-B!qxƮ/vJBgpANšҥ幄 )ȵN)́‣KpMz]\u^83ŧfrlU<#bkwc6AWbz<dyV߾j2n$Sխq8˵*{Լ'qDW(㱍os7Vlk6Rr;Uώ"'6hdRgPO=3ςkѯ_IdAQ%1Ib= 9)lE*H[β&q6RkZB!6ܫw:Z!_3O+q1G/̐y:Z@Ke9V}v<4dL[6OrXk u08C]Ch;⋼~+f _:XJTZ7$D_߭1zF9bp; V*Bar[xMN hw1ss?> "/$Z4 m+ <v dĕ1Hk B_)G,]*=u-*U gqˉ*ar>]>DΈ\z:ZDBOY-߷հq<:¡oOiM^asL!<m4vJaX{l+Aп#w1B9Xd;IrnyDCF[$<;ۏ5c$8@s^ϻa`Sv ш[TpF@REq{°wZ/҇q2ALn0.9MAFֶ;ԸaEe1[.#-BOƑmY}Cx.(+P7(-muO<p`l=!t!@HL|P=ȯykZ[WWan5[b&$T AJKGظdJׁ݀FKUV_~]{r_j2Вj[FZ78ΣM4~8!ސ4S'7o<N*P \R>lθcEcaf@58JR:'U+}~+SUW=U9r MCHNjp26cqA ZuC#p?A TKa aB?30>@v]&\ 3c77m)qWQ& )۶Y ŌpeSrj= w.YoA{"z9k4eN̒u SCK_*֠5H< P8~\Sd玲Yp X(87)VN!ޔ\GQ -$"R9pã'V͢A'/<VBSj`,1~֭3 +6m'p5v#UZ-󁺦0}6ZV7!^d70r#\Q/]Qpj1q?n 0Ȃ^|Y;ϕX<6{C[Vs`=аʸp"(%wuCl֪cH>YI0G;mCP^?7SH1 yHkeC?GIeY_9k$0449o9O <ie^jf F8FoheYOspkRjaHAM&c~5II|hf @Z޵k競ՕrQ$lRfG{T6GZ;6 :S׸R6ȅ\RMV@ڍ_ ], NbjXk]( O ղr˹Ц\-*] ]5ï#e7HM iۡTdaXj*jZW]A"E4ɢn$F*J{{ x6z&=" [ p;9[mi,-NcT$Q;mMsdW vDߙ2 G<UQ0q<mdReQ Ӿ̅C"%?ybDa)5V~ٺF.<ђ!`d#aPy߻R]jT[1X˝CN !M\~R}?゗^R]x{z踒/l+} H^JeLXA& 0|] bG<quJ%Zu9To(;}f=0Q60EA [=Pv(V!ՇVWB`[><Kr0<F mB0@}WR˖9D 3_)JΙuҥJN/](} MEMԵ<^I&ʞu_9Ɖ2Py (?n8]TSEK \ʹ Eo- 4#Ҭ߄4?#rAT@:JMnK!: qj MLltjuF\{-h!&=@MTFć%P&.IeTbֳa:<$⣾+6ϖl]vlacj[ J/k1a.l/]^tybBK~07P2$S[=Z% JҏLYPH.9_*-y$ cVpHMwXU흪-uipX ;iWn))TD *lp3[ot2c->$`OLho@&>')pX=jQ׵hyAԘzN$^HE}Ht*;or 3{)aQb3g4]~L(KH}wN:2W֜Ld{&[a8emt/5 $ r{K4^/TLHaPf).VB2SgK~@NZ;L-Q O\ 뗾ʱPXꑹx 6(F7a\w jLbZyKxNEȈ^DM9zgc,3{@(zt=,*f^|FׄAYc9p)5NXƶ$8\# 4&8Tb[8QW,9|@LAhGjw~N8Dk\ v`[$Zcil 2{‡ҥ!NwX- M%BJL3䄋k~Ȭigmw6tbC9KBZo;4BqJl)i EaKvQɠtMU`4. H&^Ԛi'tTsa.B-W*ei{i_080EY ۋ}VWlހ>cnR=69S7Y߷juTq6?T)xw> !ifQg[c{BAIIn=׭b=Y@ >t 1,IjLAE08#ڇpĕO*ō}qT+>pKAQ<0^8> 7S~=,={KQQLNH)jW֒a/}]H[cQTa VK4lc%ۆ ځ:dm-g#^$c1J@4a^hn'%+{BjӗϸV|7.PyQxb+Q0Lojn̤jE tnF3 Y}ɵPUb3@+=#`Őܨ=(YIO9%eq=/fRӞƢFy!e]@6klh6@Fe%U:񤥵ng4ڎi9bjdڏz<D߃98,2JWA{^Gv 8Ȑ7?Vbjm8a[S{Р HM3|BY!11m4lwICc)Ep쾜I+n Ѡ<'҉D|M:~xN;O N mvaECB1&_ Xޑ+$~9n@(rV'|O0 wMY M56MER}T*duMt^#=$U K>`AJ3?N԰4Rwc,l&S"gPk0KJS1H$ht|rĒ_u>ue^v=U/ (4mMT"^۫tп_(2v~tYZ/6ZwHr9ȈU6QwaUN|> ' ۷r kXprƹfC[&0RPA,rb ~F1EQe{6n2%6{u/K@; :wYF$\Sm !\?F=!նD>{ !E`.v͇]·HzZ:=J|uq5dt]|)Ƅ)NƎǾLYܐVixW7<,N:S`Xe!]]g;']kρm״=ƻ񺪪L[VXY9a2Kcukf * V/60`I|(?,]~^0_I`]o7oLG!4ê_<1dz@U%2m| r5ꋸ [eD' XO:]Zۣ5@<C!u`@^Ws95Y>%y.l|a< iYA3C"ú)JΡ;&'m X \>@DlMZXOBrNpFĜ^\[4lV#G;/ui寿՚n$ ɓ{iM ߑdok<9@j99%i6#7QJS}a/Ԇ&HDU˥2₩9ߕW7ҏ.c])7߰IJ ?Z<r<'Yfg;%$mTy2O3#hZ:eT#Pip\D}j;qj"2`(@b9Ye_ C K@(R!F= y*e\' S7L>L Q1`kkxؘ7ED_[6DہkRtA؇2TҹY-$UP%j"%sk?qWؗ\֝Mp'g~KXV@R?|:u"fFī|*OoER: 0y[$|IH58O(I \T?lrD~G 3ly2Ux^l}? _1ȯ<bk{m@vC8eRx>1>AVvW`F 9k} y}1 BoXs+v$K>g=xMU[ #-t&S8,>m\lq_quQ6QUoU-N9񜛘8oĦ;AqcZf'8QjЅV\:18#$!\N,]²yL5bPՇ_زt&;:X%<3oR2Ek/*D/͆b=̱jCfy(@s/}!LOvM5n*W]MәX\삜#4ٻZwԘ*a+:$ck 4r\O*CTR9 D%⼣O+ˑd~*=AX/R6R9JwD$&#ZsWZ:Ìl .19S-bt2Rt#IŒ0vE-4+~CHQ] r2ÜgT~ pCCrjvnhgHG@Qלp?j-}-~KɘJChMlIO?P7/dǾbjҰ2햛b/x+/K o/˯o˓՚^'94tm-`mraqH;5uN<|I㲔*5?q*g4]VR_$0?~6q1n•Cn* Ha,?rkQe  43cO ~EŽOzX׃%[ s !$PbQ([O+~ոEna\vgU4Fe?na|)CKi@C>;b&5J%KrS=ئ[cޭ`s_&:՟|F ٻdP:0POvivѰ7GF,ڶ[Կ+L|-QlsC{hviA;rꂚ/3JtW$<rôۦߗUh9 E mM?QYC; X9BJ6xM1: Y-U")P\w.>|o Uk*RP_%Ax6MJWtn*/#'99Vf>Q0g=9[ҝdZnn[ X8}q) )м{1X\|8[d黡?SKޑJ=Z`dsk } ـ=*^`Wǃ(hphW=Zћ7!+<j"<"a?O[g!AKDH/bXcCz58+,uSk5.߮q[y,a;푙.(4$V]Zwdl1A1 In 7MNq1UhuhŌLC[crN6+0Dȉqs 0ߒ-f+v,*cqOYL[-;y=GBQ*_vp3%ӗvݴ&O^%1 CRz;e*QQdZbf51j?}EiCQ B%^[O5!&ȉCЭ3lOǧiHT{i .lBv(%Y<x>]=]5X~|p{@ݰ 7.{n2͔7QBΓ=HVV)aґ⑧}.,݀.dɘ쭙8 sG͛u M6ka?Wb)tہϥ5;uW<_f}BRrvp kMK'I*sH\FJņ0cVQo }tK/zGV-B/fMܨ<^L!e4ۨRyᏻKZY.wݒUh׬KŭSGAd A aRϽQvk>.y6 $j6 ^~;?(m@UdThr.po)48Կ&]Z|n`DQWL%:ZdtC!wsQn fScosgT,tO,s4 Hx؉Q_ˍ-x3N}AiP5ȯ~ĭ*#Sڣ4{8/| };odwAnrB i)$?YG?^j#~Z1mnv|Vڟܯ:? W7K }i0a!D1fٶ?$O_G;6aM/L񨽜@d#U+~Xߐ;~YJVEEQpvw@͡!M&^y3HU! rW~8c1dXcR6-%vUڛ…(3ēeRCt=T۶F_ڻy¡[t}b(g"`oXޭBYmL_|;=caFY1U7&Xj0Bbca }ȁCӜ擣JDJ/%EK! Ĵ82(L.Br0%^gQ[%K7E&ȭJB>)sSϼ}WA0H-?+J<xMt2-;ycZ\ P5d\Ajz)'j8ix2%=5;= 3XCsJ tzb3 QMx7.4Ϗ1Sq {B79yfl]Vt[u$Qkts|7@1:dZ9TrЁP &$^K7A9sǢ6Ҙߨ Ơ\&9`5naLr YtЖw$߉~;N<k4f=9>q\'j_ &zٴ<,vME/و2ŮgX[+-kv}DӊW&q]ܱlQAõQ;Eѐ{h?+dx|.yqL@^!FU7 oNX>38LldMh#6\p*ٷHqPtSI$N*7|bݦ#b ;}MW"$ō~-]o8FdbՎ*|g_ߠyM'Ş$.<`ኣ+ܳ9A]/PmQڢ_{q,7^ E TFkhL}n}z0 jVuk%ߓHLcYayd2rOT PumK{B&BgūAΚtgZASDZij95eвnw@YgV8ϻy!!AzI^ ?B~|yE 2׹6{C"δS` kL=HYV_p2ydB^a|y& <;J&lװ91\~ćq_PasyyW~'+kx68KfRn _J%q'+aG͐ʼn/7rBYiU@`PI?`F[*h/dNqqP<uyU5Vڽ6l%2,a? {pJQ4P^if P7Ϟ(kpOWud[ȸiWu;C}d)Y-$oIA,}oөcANzN, \إ̒2`81fnF;s٪MҁN=JHJ>0!O$Ժ3/E&ZSI8o٠͊lK3&XrJqq٥L*!W - +8<8b,sy9& r󖠝RT9=W|bo#wrdv wv6rz Q}QNY׿cJ6m@M^QĠBIphӓdW~B2<QW^Ϗ';kq+Co5ނ lBX04NQz]2/Ϥd8jߪ^=rd+<ptJ;$0c~֐NQG7j (޵kX&]dq.Zd]UݔNSO{u;6<Sŧ;8I2ʣ Z!OLF֏}]r{&ܮ df~RX&x<0fD:U`O1Յ3o;.F:qiYY߅12%/%$0D}`]|=&HC|m-0p*Q""d01D@6#yаN (k dj}e0{ʇ5r[ *&P'@R1ؐ KY%=G3KC(ڌ%yGC ) = <GZGah=?6~Lyߴl^@De~wbg~ - PO)#10"~(n,K3KqN7=(Ofra)O~0bQiJKZZkCBllݻi' ׊n3Wf{X~HFwU Ui*kE/K5d[E|=_b 7LY!!CN@K )H0ʤx0UJE^"7hӲ.Ru1aR(A N N#!-G9k%ʇwSuX<jF<v13, cGDZI[Rz%3=s<"ФPd/A <nQ]]ߢj:ZIÛEH.s T 9)C^-~\jT# 1>+3f[z43_(XR{ R,OgP!LC$@B39$ IJaZ8BsrPJk_үˇb^d^C+}kH1t7||:K٠Uwa-f0>%&LJ%Dx¯ פv[aTPGJ1i2p mY4=79PWM5/4&4nRTf|D:7v^N (܈$S[`ѧlX֥8@o녯Rf'Ԅ ?p]%L 2| ss,э=U$kq2?̼vW.%zd^*,ŶO6ػSrUůUo -?L.{Q4k90'If}.ߺ"SP-yx"]Pm"6U~PH5ѫ@kZ]9$--[ݵЋwGѣyo ^m 0Ѭ)C\lr@7%^JfdŔiw=s'6hVNQi7i+Z<\3UCzRt _ Xo{ 7LZM: [F*RjX\S`IGt\Q᠆3L$( 9$}]V'R gZOQ3 Tco*QV͋a1;:uķkT|Q@viPcQjU)P2O9Fns)_Mw7yfJK9OR6:)DO,d;o6QS<|_W5-#z=2<+NBsHKwÒB3E (5{fһo{.ZAcMv dáߒnakN T*E]F= oիO][6l [JITдR`i n!Y5">t9|ɋ )6ckiQXAv!TȊ+\I^&d5;5ځDD.(v86v'1_$O7.C3^sGdScy-YP:v_j,>7JXjqD$ PL-ÜR>/v6^ㄉi@_ō[O=ep'zoYC ŖϦ ߏ9b)V4SMXkB'Zp.FjҺ22o@&ebpvx7Nu/Ƕoꪲķ wV,lPWɱ=Pp13%ƟNȑyYlY9QZZJ=M[8![-H:Qs^bXo>B~_PԩM,tp9Pg02pwqLmS1m"1CfZ Xhvu} slZV)Z~Q}ljߎ}fZV^mXhL)VR V6~9Uvn7k7+:Ԙ,5xkIBL>wX.I9^NL}kD("BdiSx|񓼣$ 5UfAr`WXLqyh!4i aK̵!,ܚqk;l#M2kc=i\6H/T^DG9þ(qd#ן.U0(t*W%g趭f$!*'{ 鎷 F6C 8܉u  7dCAC<@qS)Qz(G[ ;H! G}GXwH e&, CÚO]E¯AmiSZh~^*YXKRb_NHa:QI8nw'~TL^rZ$;Spo#[a4<^áT*u0oTg2Jv!TNg/b .K\ӝ]Jfk,,@Oo/%6_z܆P~+nP+ҸI>5Nэ# OQ.zSB1ʃ4Aj{CV\Ԯ5{.ΐOatd#uX\ON.{֓o5ZA|q?9OG%4lIt8o Ej͕z}bԵI0ILFH*F#4S3om'9L4]WcS͓09f1 S&"rWQZuVwFc;0ro^(9]8S jbONOSEތOr1~Lu*3ZkMWW[m>#wETը_-PEQ*Nাoᛛ9S1YF;ڦahSAT\AԻ!VϹ/:1&ݕ2IvM{ߏ=\C=!)[Q[ ͏>bdnOOѣPSSaD P__ϽL=.dv.ҤP ^{"gHL(SRUO"S}]E(GYHJ^h-GI-yZ۵.B>>t󇵣vS5=^/ #$62|i5 S4, ܯ$tTx éIa~|)ӃG:aWD˶-*cEb Ha~hk~;iwxy^ wfmV;O3Dx!H8쇳z~X <}Ȑ|<ʄڮݷĆXa{,q-YW&0PoF46dyxxhC $)m;iEV_ }N2kv}¡:3/J*ZAzEb v'bN3vAue仜6+kY'!юkoR(NGq;0~4䤸UGq{#ǭ4&z43OW Τ7qNU뮠琧xÜoF<'_6xygRQkߊ>>7m;,NرV[Fx'L/3NDxb!P[>e&C?^bL)>=pkG~MY|ڪyFOGYыxKtbS$#dF;ZN"is=@A{ 贊Tkm)m!Y نZW5AI},Zg8"Rqֽd{/lhAL }Ax`2۠0ffy0z{ aFd>^x]^ϑ͟h5Z3L[{+=$!nM1 = }Q :h `ې{i-79at?oZtӴ{6ffEݒ-S4蓨OV]-VH;LȽ})at,DǦEr `QA1mqX^hTV{C{wQ])'ʋ1%͚_LS'3$R|<3ߚܩsTẬO+< aGAk-XOU[)zaLѼ(:ykKg_HZT<=R_ 7Y8[-&8(@V`.UPvm9WB b'S`衩[;,|B/bs2z2 xFtC77Z$rJ%_K7@<طA߃g9NCFO^(o@(OUWKT9قJs;6bs ۖ<[%`q*lලߏ1 q 2̟r]OEqFݤ0] >bRr eDkAFq <s0Z)3P$۩7crq`ܢ>#\.P0vUg/aX_9PG9Lo z,wwn%>iFbc՝Jcf BA^N89ӧ}S:@ul"H=X8;8_D(zyj͎㆖+2V ֋SoOVn2%;6 buUm -6=VR;ݾ/Y٩A9hkgU!s^`\ fdڿZÝ#<(\]f@oCNebя;m f}Kux,b ,(SzѮ*ą%NZoQ(EvF)@3'm@zTB>C8-uH,GcHY ؝;t/QxZjnhk1"KNi~a}`a_1.?~؟{Kj8)u}ɘ}j/ܪ*YSMh$Ѵ2 8>DTO4%}ڤޝEcl@5)!-JXÈ[lNq,94cY:~{\LEH8k?_ OH3-#)u 1!:thGG.^üoPS0jҷ:()I{TK4cvjJ6Bf)Ry"?P[–kv 3&:жUl#~۬cF9ihEX'x[R/x$b0rOFr0AB+Ii\%5Z&8~LU7[qR "9ZH#k , DvȪZmFڃ]8ҺP9I@2餘ᶥ[{9$#%$d|3`s tcR} mދv)m mY WnV7wPE)E8Ңo yWmFgG}LSslj(E\ "Bzn9XJ bx.ӚuqoDƌC3?A|oEL=<6Qo$JȺFː1ې&AV}K1$2ڑq !Ɯ(z* ao$/ 7pԕ::} EQYҀQQu yp0/0% Dݖm,T4aSnAu C޿$bi]"ѣ{29A.+*ftl9ewfNUؖ \#hJ"C~FyvБs[^er-䒉-.ź#r O K98' ht@-3VagM~I`DtJ f "ұZ4,ޖ {J p5b,J/DzڭN`t=I3]qwHEJDv[M 6Cp<ǬsmPP̞@;rT㫟R4;<nҧ=zB;)BQMgC$\^%E4~+p %v%M  l?T@ݮ: ͍.ļ[xAỰ-Z!+c[G1wj}_\ m .`OI 1wd6mEl6`Qmԋq qAf+_G)Z >/k1Ѕ*NzUX#8n-|jr΂un'Cchc:|Bz1ݍjÅ20aV5,%`.P=]mwV#b/qniڤ%U1.fvLc=o6d%UY[ysbJw\1&X='O9Om+Vl?#eΓTAF ݚҷ~ލD4@y@~Nk f; |[+B$u.]\Lj_ oiFJ-Im$좈m1CyZ%frB?XhXs:r+ yq) Sk~t]䛷hqghMSm+zMktqhMR>6!akq9B n~I [)F1aVg'g#{"'fb2V)'>b"C"֏Y1WDs3%YMuK.N=6˜|Xw"ppjO@c^ W/\`_E*-PEJ|Λ[A6YIi'm)rxYqE4oKIW|1C0@]SP>{0 z[_r$mCc%U1K%PrQz)8ݶ}QE)-t=ܑ nXk+LJ{>T( $.d: |tUi.'#)3*߉G{VT\g֗.MS(6aZb7j'L-mo2@'We7sHwruW@A㯰LitPOi>^7`$}KzxT<Ƹ,X%A89x vQclђx[O`sj@u (c6T1 쾟<3`J q!_?>:o6U(Ԁwp?@`ư dk%#saWܞ;˴[} Q<zp "{M(}G/@ui~tbABf%m_"X\@dvP&bMl`6dIĀ 11-P|8i'MOxEoxO<Ty>2SwoJx[3Oۑ M,Qg}RE\:z-n"6ui;9O택>0?1sUmQ--;ۈm?ꖍMK)g+9;D8XOщD&hoYF3"0kJ>Pkc8C\~ ݋׬q<R(!w|:ʖ~k 1ASh:O%sI<Jnɛ2yl-A)1촇h1]2Q}p288e?k,4ߔihf>pD}1 2OWЬ1'4lB:pm²`X0ۺ8R`6eD#:<URqrn:\Ϡ$51; P,O=39B/egsx2{)TKZ`4m_ j)Tk@O?X:Y%@]Dr$\A6 Zѻ5I\%bm)+fwxƢlcܺ4Ͷyټ1}Õ'G]_@C<S6F̌PIJ*7B7d`<JllE7 W 5oBno/O ZVIUł-1AuK Oil:xd/u#NP[/mXX2D=6d?4Wt/&wXDc;(2Sr$xlٳF>.4y0+ t ":Xy!]NŬ&rtFLJȉlUQߓ]/>fx5jZU1ku{[q8O_B s7Ɍʝ`cִDjpݩgܙlĆ!։=r|'g?<_)Z }F":wAQ6J0f[+ gU<4X^ifce\7A ǡlwv/A,"r7ia!LዜFڔc&_3, X p$dLdSgA`uR FmF ,XM<*}^0 }#]-];=1`S_璮~JI0*Y2~"ܤd%6U۳u+i[̀z6Nt+2 AevWOʹz  ӽQaכj]ʍe#APb,*ut(C7YJg7.FedHzQt?RbaQ[>m4`Ѯ ]3?o%s2lt^e? wEOH.;#+ 3KqvK6LX7cEI>)PW+!z6ykϳL4ec"bϦ sE qd{ )]Ѓ 0% Ff"FG s b`8͡3mXF͏kq*[B2T䓐hO *+^ϘdžS<.K=@,L> xa7&XkL>:`s [G jj z" %0Ô 'Q=a<W[/Lɨ&O?O0]CCGqɅ1a4EIW/yysĹ ګ4`\&cDBE?虀e85iYi1 BsFS֎ͱjEtyUqPHVnvvVvߩ:أ0x-ޙ ob6Î+%] oe!3dnJ E5Lە-Wv<k/O+m/2Dapm]vǏ`' G%[l{(8яp8x`%.KjvsVWo|VsBXws:i/ca# .Qgkrw#y,RMt `+:P3BD>!p*j#kC'Z(ԓIDU,wyOy̚ ֆߪds]GP2 9Ƅ19i4o-ُnޭX03Ws9`~IvW,$Y$ÿs'emhaQxY4EfOq\p *@bnv)_/*ְhk<𙺛n#5gpS{qQ˚H_w9\P@5~~ȝliPgmN/okǩH<VS GH\M`$> Iy!=}/+I41ӊTZKwu{/4Qйw&liBk VSkFܖ u !!i{0D-s݉xh c#_2U13'p&I۶Whs2+ d_VFzzz/&XH՚9-e68E7"^E3"ϞR'&ʍnȵKq!" V:@62ߍfʏcd^ES*j[,6O v~ OAaoas&GM 9 ||miiP2֑$.sީZ}ɄG==o,ąq|P?Fk.S;S7wlu/CSjVOs ʷ{7[K*A#=m Hwr}'s^XgwmO3V2~+=3 KKtWq}Te숱?Vek2hRu&vi+ltH~Y` A2<h&ؐmzzVu6@ʸ$lj ;U1ZL~ǂd\ sۉ>ο]}"u룞^qժ CjSټq2 2xI@ת5gd,R Y*XEt*4a@ZG(Ё3 N)Ԍ|N-ijrt{΄?u Ȣw_jF73q\cYXc'[P˴O"]P{:FRm0뒥7įWU ys8F0G7+vR{uR"׈t|D-3yL"VΣġqG%l \_@ubY\}eD";xiuIw-'a}x -Pbc-[ԩJdCHVC$1hE|)Z,yV3#4=_;k r$QrH%A"nDOIR3LTnu+er#^JsG7tk/-ކ?|#'͠owM^ԠR SLcd猏\`Ф}oN=m-i|͇ML{z1'h3لS쨱rn˟?'V]K- ~Qs\ c?A~Y,ia-{42 EеP DrV푆 C">%2J1|mpFbqZDr8?<:94iJJJkЕ:z8rrV9#@ 56RiOؽ@,6{YOiʰ ++S{H5Reȃcd$ O=+'Rl/(OZu q̶%óKCZC<]RTRGgDXYh#*ydצ:Qk(,J{8Qh [@z Aiir)p9gL\4ݳj4>mٺBL-w|2Z8}Ը=ޤycd~ +^ C<%ESaM6Oci@.;Mв߼>>Md`MG8=9 puzbrQ kDMY)e0+e=ɶuNZHt(JB-V[y)lw1K:q3P:@ .ATAr9㕳AN2}gg;OqiCc?d͊G9aOO_>W1̮sݰF;; n|&C>qFc &^}bKż+z hJ@gʼ2*K J]Fum)0z4cb007{cCGG41ɾ[눝K=ݬU"#8o5Rb JJ%18&J<=_9{b|H>jPLkST哂? dKտ>`,br Ie}[T#S_4z5/dR{ا4Jtic/H)gkqss-ڕܬ! )Rm+NlS Fhb2b"RDSecq}Fv"6E"=R_rZyd]0=6ͩg88Ht7ڤ(.>%\L%7>SOƠ·#֠kL<Neʀ~cW+/bxux2<jqZ?Sܗ+vad:˙s44%'[P ɖPØ@Xi !A*#:Lwahk;ce7D^ jxb}l_ʡZ*}T yɨ0A.>iRU;;\ʞ`<348YX<Cy ;<9Ŧ8v~6><? i||QTlgƸz [Ƌ<!P;k̻/.:Jο ܡ;qdxsޒu8 ߪO׎slI[#H%tTjmz=<F=~wpet>]'pa,geV:tN\ʁL[^){Xo*,Kȹ& C@6ݠJ9+l 0 a5P>k',Ltm0,F y]ݷ\К,ult8VFHC?,uF2H$Af_( _uzFS2&O:!MPТ ("7gUI)<zI)DJ_;[`juNE%n,GDD#Ӱ, 8ES٬@R'A*'`[#!~C!{6cNt 4ߥ׸Rc]T6m$@z4YV{"/tEyפE*p<F*I?}ƶдϩ:1oe=+3/tP֣^f$pJ7T /]ZnrK q^wN{}Ṷ@p!>K)t WA-mG"(+F&k|/=z4::宫cAQ1{'/;E>L!PhiXi'(6W( _w5SI(6/KU q}4r;pߚm轤!*XĮkX,p0OΈø%ȁ/ ,hp-3 F(e?2g&5p pU'|gntc8y;ew`36ړ abRUS@mkӆj+6`{Y*/g4E'{ x>Ϣw~wǂ@H}6NL,$~=?mOϓ{0B s@YIx:jgvݒDϐpISS]?Ҡl٬g Q]7c'CE9# )h}(hw-+/}v.".; 9۴908M#7\tH1U$TGOZu蟰zIGgn@ ¾ǦTl)<!S:YL\)M3|M.Ӿ=Ed~Pd^l)"FΒVF T!WO5C@ "UBd1=tZ\c;@Fl)XB ݱ<moDc_5Y"lh6KKppbnqi xx|;xeckҷԚz'xFY/BL:2SsxdgH,BR\j郮Yt MJNJE%\*Q֣6gx(%lX%HAUc(*byAav6dDyg# |FyG!E'ÇW7kTbx ?JVdr䛁H!%Fy%ߛR(}Fñ`Y?FmA儼__"B$.~(>dK>xݬ&bЅP~BѠ?+ n3Q#A] E;nPлy!ގ'}234gLI@l7y' gB |nɿAIz+L@ ։`Tpu){Ynf #uJ8'mvUPnT/ye "píyB|Eu[?Я!>)%8"_E)n̉jQ#{E>^Uv`$GrHj6 |RR^O1v8d~]5|g-]ƞ>ٹE"H+d=qjk!?,\,!9wUS *˟O!N}x}ΖȾEddٙU$Qk?H ſ{ނKFg ]*!z+Pz T&EZ d  v^b$NOb^o4v!÷Qa3$&7׏3by2Af|t܆E,Ͳ>vE'5Zh 2Of>ّ)a\H#q%ďwwn_1Ѣ&Rp 7)V7oʱLǕ/ג6@DWer9(iv&aq3ᦌŜHZ |ёqGi `"ʄMZ/AxW24S<)Ќp1%/E`kc3!~[:)U6(\66ٱ܋7}yk@D>Z# 0Q<9Z F\/&ʲxI&# SܟVzؕtEYK-+Z)#Q%r6O_d,T9ni]'ʅr<9ŷNܗ--@P-KAE RS@JhzjTGu~9MqSl|FU,`5Ev~‰<jPt ѨSJT> n8+@T\a:Te ۆ%Q5< iJt*vaI{x44,nϸ]`N*YExz7 f(,ص!$ծ%}">C#8"o4I|OY,  Kx_.YV;tL1R S^qW3se@UpJf k!D&EzyLqqz(DԚ~)b|m2mխɅӢ,Fk= |\V}{5LX; Xnș~1LH/ТQ|$E!|qd]&堕W_ qaz+*+) ٰG^<V*Ìl{ڥC1RҘߪr$ce,ˢx:p5SxI{_R's_l#&(\;U{FZ r-I(wAK0(h/Ysk3)$׆\/<8@'/XS.x3kO|/jxac2͂τkwLZ`XAcZmggP0oF|m %Zh"+}ɯ}l3k@5FSuLA:kPV Jqj|烈L\DAIB Z୨VIT?YhcX5.> /kS"(F/Y,'Ţ|4PD3k8[EsRm1̌~CVa4[+pcG׸J* mB8bw0np%ƕb "ec:?>H`):jGO6"TH.?hյS /<Iؕ~[>>[hI2zFVi(T،uxwvBa#U_>) E]tz/糐MG85Fr2?ԒQ[l.w\G#LlK vz)$~ x Ƿdz]a!7=a;$qˮ\!WM){rqE7ɑc澴^֧d~ۯry #ӘM1mN-J~kfC)kc%j+]; d[<<2MAY!&QPoEiÒܩhi 9̭:$f> O| E$!@LSa鰆KI=. T~$)`!Cc/|O)7JcI\y6WQ(S':,kBOz[|+'16 *iC+"Y\cg?Nㅐ&ke4nTD/5w, ,ycvS2-\[ݛ`TcSwc=$ؑ.l""c\X*O)rZ}\K?~ql1U7st*{nkzbEĚ"C=^fAe^1?SqhYX iEtfp5^Ҏ CRno" iڌ$# tzFiHyi =yy\)V$r41Gh[p5&^j__ʏN gYʫjeDoLvSo o@SNWV.7O::e4إ+B5*Cƽtn_-0G1?K}fizuA zP A[{!\F8yɭgE/)rxlxuKj !x^FÊ Y͐=#gʤ L31p6+||m$֛5d$piV~+`"˜W)ny߈cj+ *!ͽ/ʞ[$;Iuo»Z^ wg'tM#*Le^cAvEjmΩ8 ԊZ *ms3#Sv5gݣiY.ɞeS;1EqݘFP'Xɳ'A.k Ewp&]DREOݨʸ"݊1 vr pDS|P-~ t_y^΅cǃQ#+(NArUEZ(HQ 6ŗU4<ZY[T&ɝȿB{ί5;xv.Dֺ}P>.P~(ADwP8&u9x)Ǭۚqgfx-!"RwԔk_; gNJ+׳٘iMn rtlxi6pwϥHBzR,|$(+*qE|Fqe9`ф)'ZsGw֗&9 <ڮпrUfKƞzŻцE ҳ[`V <#Ȳ}tmg ,<U$˶OYCSۢwh}5ѲD, BMF_ Z& GCٿo\uLϖ$֠twŚ W2`[ԈJ2ۚxrE.,Z <O^bAtņ8/3[vm2?pLAE:`4*~ESJrqrH܂XE1 ܅9H$yRpzT$5[Pu UьXۡ&˳.@nfݭڐf-w"Ѭeiz,/wEDʸ؇ +RI8{~\9~ ȳMYi۴5_?k܀|oEڇvHT~j}l3 +d*!*::ءu܃тMQxĆ)Ȼy"|x5|s PLl8M"1GqdVy0wR "mxIK~̏ y&ޣWnG]6h3X  owH5Ҥ93Kzܕ، pa3@p֙9vyagۭqP.8Cj#ze1܆ѿxE"{S\j@ɴ 3GqwmqnsjN'q}1˸\)ٴiavߗu2$)#^ GЉ f;vG Bŧ]ʂ Uόtؔ:u(<܍4DQ\2 \K,9xDHTiwӒ]O,VknƞNy j?|ۭd=7'y-j xqaBV pޓqn&DtҩGquo%\\շcTr=6˔q4A K"5 kDmvz W q{%]U0xjuWlk 7_`bbXd-v3o^ߐh83I!2;{ۻۡwKi q}A=-# (ZdTqZIfSȀ-XIZv?-Y Z؛Pڑ!&5z]-xL|xmO .`<GՓhz@ϟfz4۞Y~*P.ڤ}ɣ0_ve[l~dprtRSm)ޙ0mMoPsؙ>ʣh iZßq9]Ҽ Wej˔Oˉ7H ٍVӐ&yYz|5٤ͅ (?<3 G ?|}Qşu>tl|wD[Y.2ݞ Lə|غq a ڱ'99v{+٪Eڹ΅"n(/ѥʭ}R͹dX|fճʓ!4T_7z|S?u*+$FwQٴ{݆s)ظvߤʼ9xbq-YF ]ZԅA٤ޓطZr`ڲ$WD22<Avy  ']̜у8L<b5ہre+8Cy=(qIMٿaTnЀ љr"г/ϙۤ(֔?ۋCݟGis* p:Թ47"kN"O+a{ +(AdP^i\"G|TPq06Zj{xV<W)Xđx#vJɠ/%m*zAm[@%ӤۋJ=Ʉݪ%8'C~-l? eӘzۊI<ODs|BB'ۉ eދW~ؚ/ V3:+mz5"'ǗP 0P8#Y%GP^o \sOq(vw>^4>H |q/.?iܵ= @΄ѪȔʝ-}%ez( 9/>;\؜JMwvlψO}1r` C܄1NGYɢ!ݵ>Qv̦y| f&%svۅ}ؓ. 4 ^ ց  BZPdA$n$ˍY$5yř^Ɔq>Z!1q}$z d y*w|߯ӸjԸ3S66+ڴY>(l{?:ApPw[ tm+]h^FtGv ?@St[Ёg-9~J*[+$ 2{ag?Gn-n1xO.;Յ4!N~(q6) 6zSRGlH*p)J~/ODԧ}h؊webfVX$x/%}oqn Y{p yrD}Dakz2 ӓۭn͖z Gϧ/',Pɣ4 |[URM_<4vgl1[ۯ"5ISI(P~~%'EHnRyZ- 2z6 FqSyS)w6>ɿ@ u8.aܗ(>݄J<VE Mڵ zx++mYnӁcѤqP7ݸ9brqүDP;'Ou*S֕Վf]yp$ (g]dig1*e~O$rr0poHDh~5n#/k"rOhUٙ i;nӖՏօM9͓_XۤwC˝e"]hdfҖǽۖ qCgɓeFЊe(6v"l/@Qލl]kkktt˪lB!fP gAS_wؙErZY@'جIڰq|.:a߮Nɧ$ :t Te pLȤѷg݈ɓq4 ͉+IEG]2q1Bْ"٨xH1Dx4؞5H?RFkɟ~K˛yLa@<NXo]y{ؽOc+;8~UG gc٬E{=/B21< |S˹@ٙHA='(ї ЎRxRCsy )H2ɢq\rg>< U"6ʑ7Bql3v9y} w;A`o^ qtx` }e!^}ۄwrA_w% b <l3kK+p`+i B!vUv)|L1{P"Y;٘ɐ(_2:ͼ^j!*6Zʞ`xʘ3!G)KgNwKEakCc/T9C[ ̕غ0]uqTWx:qZy]Ҙrj)sBWg^m=HCۣhoNH,;{SxQ]a!'?.٦$ξF} rqobrՍ qP, m +V<ظ/֠h1F>@H|X̑ڢ9پЯ՝gey0^}ܟɧ0h~7Fxuv 8.CDrې7*V~uqݽ1}ʠA~mX ܴz[,.ǿ{Yվx^޼\3cœ6Ͷǧ׷˚ < 4}mҙcU'cmͨOq$@Ve|CKoAɧmNq7OB4u \PQ܈e՘-(5FO#!xt)xCQ0rQs+G'J8hG0jɸ7F0hR w-ڲU0Nj 1ϜU8@W\x8j lA{Xֱ Xz`I4~HU.pzW%ȑb8j>Y {T}V,&)hzZDJƞ8βRS[ɖ Co}:ܘٹA̋dEZpBOAPiZ |~qNy8rwGF)| <SԸi7ڱDP݃!ͼEF8\q ZmsK{wo8BZ+: deNw1~r8Y&eZUȰ\ qf`{wE%*~am6 ou|E m޸/x}J rg&RܤO΅ȥ>aN{55q6*po9*EAU'@z0=˘tx;_5`w rC<^Kx' YV͎˱Zݷw C zi+ǹؙ pl2*J-ޛme m59exw-D^Cx0No "X8@ :f ~q_ǝ=WB֐`~BB Vjh;QH# 64.y|ȲeV!y.ڹ!Vۣ$-;qxgA͞Y@X|R':ݼλ=,9M|ʞx!Hy}8Xsֱt rE$r\\us$,J.8w Jkʶɒ{q@z%Ȥv?l2[_>4ٖ!Z|]EHhIM@86"QϠxwh}DNkiٌ0> jmO`tж+ QNJǿ+&U7F&ᓢFMS*}ʡp>gSˢlCBC۩c;; }w<)PSWx, (-s_˸xBعV;HspsYiT<R36x{/ʬq}O~B/JݬJQrԥZTH. NBPdխZ}y& ߶=*i)J W4;y-փ:KB}OqdwXRq~ds pP9 m4|ɏ٧$ 2Y l K,',:SL֔fZtD:6Z5Ȳ 8i ȾY*:w +"Ϙrs(_ Ҭ\զ[`3XٌZdzc9 q#D:`m8(@LwPВr&@1W|k&̏ ͋ ըԵ#a!Ƀcm 7ܖ6V9؞T{2x~շ tfq PJ>r> UfȚ7˿WdƈDqoW@|fkrօ Ђ7VJ?8 :>ܥlwchaa 9={ J%XecWo2ZYN,wα&.Χx1giԧ؎DBw b =7@)Yc7:|qg<qFIN<kU= +KׇL"YR chB8J/T΃Ћ >!<,ťYѷϛ sZ2qaٽLxϠܲ} KBH_{mê;݈1 Uz?~07.3o $g yϡtٶg7 ~&l.ɨF>zșN:Dܹ:9sݭO]"ȭ(z9-m )ɤ|7!iKzNׇ٨֏U˕p7>wZ=ZEzuQ '7^;,xGk'tG 3R ?WҵʬgYJT|!ү/\yWwIbf(ED_zɢqǨ ^d{>!5)"xt~Rl9Z*\Il7ܡ>w8ǎ(7+F3x!G[Pb@uDžRרOܫD RB{e6ع!a;x~#ҜSmmXܸ E6CFwlxeү ONU'U_c݉}"}ryX.@jܓ/]nҝ?"ny0Y$x|F'6_Cҵ5Wlސ4ۨ6;|u| d+n~?LjŴeLqt"ԯzϣ\s=z+BE>mE[HyP}r?O rbb7EdQPG~yy!d|Ϋ9Bq\ #Lc}A ɾxi~?XK0Hin/TH \|T=bܨ{hUދ،&ڱ3V؎ϊ-ɶw޲ЯRLpz!ݿϛ jЋS~ǹ9>wևWN@Dӷōl6 ]wcId-"s'2ccrx]aF|ɿ>5 Co՞x^s2]BUq>ƅx**q^`wU?~v֎m .C~u} &}+Tr}.ٖxuN'}s˕/%<u6ɐx74dbj,~CP3k}hUT07ؿ|ukO@lyjr4ғ<d=ֱH M+9ܕ(#t&0ޘ1ვܔ۷*96CI(h@вِqz(KT@.ŻR@m<&m`1o'`}= A[rS2aإʓ˖ O~!#ELӎ&E[BؖBg۷}܇;s ,j)QzK܃6 ho҇u݆22eҊؘȀPv?3D="jɬrb~2ő(7U Zv5$5ҊGAQٙ ) -ڀTMR c&pï-Iߓ3e΁ TÍxҤx'ަ)p̤<FT-϶e+q ھ  ֐IzTX6'V 11ZQ';OuEB Лp4<7 s{+^uGɩO$Yeri^/e"Վ؛ bKCoҖUK&/ʻH3zieAͅKW !!GVhcžbb'{| ,JyMȃnG:;h5<nϐ ܮpxPθ~!j؜i8DP)ر"AdZM}>{2|ĎkC/R(yUɑU<̦ۈE˗Jϲ@8/8x'kX{^aʥ֗\y~ dzTѨ]w j<wGc-Es <4I<ܺvcϢDѓfwNWM#&qpx8nҬv DHh 1OM huO(.Ɂ, ڶX,Ց{'Ijl $uat6I2~Xl"YmX[gD!Wnz;un~lȾCɸ{hGm;5UFS}VUE|DŽ\0%?Ҕ B'53(Kҙ]|KfܥԤpcOKޣC~oe`W*=^EeG;_{x.ǭ*Tqr/r#z2KTݭ"ڳWK7ѠK4ʱDUR6X7|wy |Ҕb>+>Ȕ  ʹG^E˶;Z}tK:|SEWBiqxz๿z*{ w) *to)ӍXمb) u̐ )F9 ֟.vem MD# GHǟo?>A2nABݠ){B9~5wX{ ޭTG] hGnP9$JS sFkzrhTܡA%}8zڵd)jIɦriroI)"Bɚ ٢ֆx$)7̗G 3CdxmiN$x7]&(RձZZ &}Y U4ԅo`V> c< \~]͙kEM Q4զ4H[;ysyZ3L5քB*Ӿ3Sa`U#yϞ #s!mQ̉xԞ2q-V?*%/ݐ&sϷchFb[q~>(cǭtk,kXW̓S -KSs zM7"\NWbЃI;٤SPJ7; wn; c$C 6.P*y BiӍ,%W+(Ϛ T+WAf,}v<}Ӑ -3s9!l؜wɼ z{GpDz'EƲۋsހ ,ӄan i*&_ fƸ ? ݇.yGdq9q^;# >v~rY#bTހ!$KTЁ`r03j Z֫(lۨ7KP:\IaU=˷Y#Ӎ2 ݉#ʐլ\3n}ϟ@vOͅ F4՞qt_icxVxnz#HeЄGۣ=ɻzʱ<|N;<~Dz O፠Pm~!CxMg~@ɂ Qg1O/Ց @Tuh$JCxP{j|jM~*J_͹VGfz)rw0 [ Se~/xrS2*? ؖ )=|7",Dqҹ}x PoFQU@^B~K"̖ Is*,ɶ4o`*[ BD6 p1ȁrx}`u/yu9D͙{rʥjݬE9,ʡ!.7 +z0d"=qg֗'J ߋtl {.ղcLLgdr+<u3&.T2fSR݉4ɳp1xmg9"@x6ДED޵xrS1P{!#MOe1F OX^%pρ́mGp~9 CJs=-*T%,,Fٟo_[r6ݬg{Fhۦ˗-gOW NGRV}xMWa2ţǮY%Aز qrː˳jΞ}fͼz%Ҥɝ%|xSΔP"YlC,y/6/yd{޺θw-v( !Q Szɵb9| ^Y beڌ{ŖU6L-j^2Isڌ^Cc(zr|۰Y~C8GcE[qy}B@1 Je؏L"FJ֠xA M VC}Hb&aS(IuG_(U&<Wc+HsS~yی'G>e1 mTu~NmB7c:g%3d<~}]8OM-6B ɔV[~W>h5^݂{~o͘Mw/~ ٲC%mr2 !b}iA]fG@ =c֐x+yG>_mc ylL/ هhTN=vE۹e/* Գxѳ=ڰgf}H!9ؼrqxQj t}k7s'$:,K5pnoٰy3nѬǕ7ʿ _Qط*C !f1u3̌ Υtx ؚ$è0ˡVHeŒ9Ҟ( gҝa!r ؂LbޢT/!pb-\,Sׅ~|(01q-:9Ddv$ѾHڃӎZs5|l|Hx}=ɮOpw|bȋ-ڸ~Яgay٫19ym̊}l3oL/ހ,ŒFkQdz٧AtheD u]1/}>9lD>:؉|%WTR$_|xm?P$H? 5xv(}Vr#X-bkG̳OַlD32ewB)C? $XHuxamSk1gRvfЈrew}ڕpkv O =B$2eIkvt%+nV~ mևqcmB5;/7aHWUMzZpZ; !Kdە2֒&mTV١oηZ7 ɤK"v4≞~Ifοx:A0^mJ}Y^;8Mpyti, ؗIUl@@Yr9rqސIqѩ8խϞ'yVIjԀS7]xöa՝MĞǀ xҠb~gg'~| EPh}x klׁ|__;l{x Dpb).&m-Gptkɀi1$a:XMrَܨ-tЄ.[|4x` :6Ѕ<ϋֆv8;1Unro(0@3;7ET `qA>/hX<>baqt)<ݶ2Gݕ ~f?̦Pޑ05=,ǘZDHw/{3Kl G43GW}i&~vʼnƉl1ə iO|ǟ}7yd\TPJyhSGwdx5n.=/ưVegRKT~(JSտ5}ڋ4WozпQGn1 9e4nCx2>J;u>j'sS5͋%$1Io Vf0C|yfl׈gG ӅM^{ Pad|Ɍs4n^r ̃Y9bs^^> EGfisz _6 z~wY։zl fǘ Xk- =Pi]W\37D̒8I5ۅ ᆅƉU<  !=Byn|[y-f Z ߅2x٬ҌǹwˣGsK:~i ^E,Y_N~a\:N۵LVA@y+aSƺv zbDn ~MxJ vP%<?T:Ђ DWn~t5s˾M_4exU gդd>Xp s+ɤjLm^M|q|,tyr}2+I%k!΂}ԦGvh09$:}4h͊ xxؒEHd(nj.ˉ9Ņ%J |~Gzxf Ҟ|t DNִ_cVf2b5T@Z*Ǖbق+ky{p(4ڸ"|.[8  Sb "ֻwaqH#*Kr=@ؾ>~z]99B؁a&ׇ  l'W2{ص,x,[}|A|:jmY\pHz3MϕL- K ڳ!r}Iwvjހ0l13Dˑ}[/ ܱ3{(:I)I_w_K&u}r< zsirJS;]6 =Tnd͛PՐ50vV(vٲ)4@ [(q-gFM 7җTB Q)ʼwu[֫Y &SѳlRf} c:٩/̔=~q\yϗH $ӓ\|1j&]TxIٮٗ %PV C0 sJ9Y"qYޙzVN@F- Hsh bNO}W )`Gݸnkٜ?}VS`qg'zː؎ڿx9OG en3+OU_6ڸOη?%T`u,q?K)_$Ҡ1Ƶ% Ժ.3uOB xIEՈߌ' 4/Ո<w ¦Ujh+=+w@Z2^a};>D[v bFՇ z'!9U=$i qԦ`, hFٱkҏ϶2 =ԭ0˺&l v3{қsUCg")FL9 5:VHMr6Nˢ_ $&[_&<ʘu0G\ Uv}%vQćR5RTȂraZ5-~,˫yjD gavE Ex!rD҈14߶N &.n@դa .qN;p4}0.6{o{9DPC=[<FhJVAfFFq ;!}sErrǚ ЀZZɞ_uܫ`ҟY ݃ R| 'ŋO) r{ؕo 2W>Wzp~ r -Lh̃+_љfL U `jnsˑuxzٌX #cʮgJf7drJzyPeߪ̃&c9؂N _y&r/-:GC\D8Ǡ:"}k^pQ@OK.ܪ*x cүȄ~Rϔ>ry`Ck|P9 +8Hq\KwY| O۪th<qq@\V>~k;Y5@<+E.ڝbUy,ȘЉdG=aPK)ST/,֕ƥʂy;D)"9B'I@PGd!.ȿdtGK!| qrpUǀ(΄{T~O%حwF%Y˸7"ԹެH;"/ɔz٣Y4ˡ X3݇N ʗ?H,QƄׇV>)ت p݀֩ܭS:8sьi/i@Av#B؜5ɣx(lӏZpy P=ξP۩amC@&]Xȵ8ʯ_<:v[ʮNF)ؓZWع0'k9[ɘCOƶ5h9d4ȥ<Ϧ ~MѮYJ܁83H'NA f O9ˣM -sǖWr@aۦ&xw˗MxvkeF' !;Ar,FxL BX BfCgKE͵s D-+ vrvYt>,G% ^U,0K 5y<V4@xR0}Pru\֏\HA-ִ.D}؛knڷAXG22] ،it̖x@!AWu/lE_NC۫d A9} :a7 g]۲Pr=s}Ҡ6ЏrRK6dj [roZ7 x!)Ec w=&cWum.ZXȥh 0y"ydrxSz38TxCbl2E<yܴ}ysp/(^u#q]k`yb&}r\'3.PࢺK2 jl g!gn^k_֗9y {k6<2ζV So- ~LAr +P]s<u7 ɄjVf/BI3HՐnUٍq»b~CH <7_+e{᩷G'. ɫ(DR֫ zj-[tdVs*Bf$ .<j!a@hw'Q]h@QQF"#x6+h97*% Dۨl}ݓy6ܖd}[?{K،T6yx(m٘m]ZԀ?{@A <^\uv{<UJ)jt h^p Rp.M AHbSU!z q۩@FF GgG >GE_xsc~J7Fq IzCD[gzs*)QN2#˕%̩yҚSPp`a67 $WٖYېR|bWK} S\ٲ܈9_aO̖9Sb|ZU Zi z'-WʆCWKhس Su ֌Y{hP^i؉sMVYط,q͓tu!~zD )x"Xnd 7l,Py ^՞֥c[Ʒ:ogrI?PӖʘ}*ȓd"'?x"ӑ?'y{(aՐ})N9C{؊K] | ʏ̩6a y .#2_RO[ }wSc?s?U'>rG* { 4*2ByYȲIӗ٬@<_%5Cd2HAJp_F<ddʸLR@ BX\JmFOrwo2xuHEkCڎG77k3 x 6'fYO>H>%٫xZ~" &@c̐:dg]ٷ%5H.z.ɽ(ɵ:={Gʪ9ֆɚU[݂K[)(sJAZcIH]4}sWs̔;,oNFdXks :=_ٌ϶@Xe'|Dki~]u1U@ҘԫۅG q⣅'[Oq};R02}*uOwIx<w،gv6r٦:C z`a׵1,y+|%aOx5%"\tIAfLSH{(q̄%9F7r84Õ.8Vp]{(zv  Ш:­e~i;Vմ B W. ~m}yl\aVs<Ҏmyŋ ( ;pl c&WzDr}QXЁ ɵ_xş{N}/&[Lx >zT Z&k BǠ AlbK$ސxRt~ؓ 'hoq6~ocz.L*b|}"-!ͥEm3٬T,J3ڑP>!%Corߛ" 1W\ ڷ$mΏ lqt aVr¹k8ݼk?Y0MkД9  ء""3;2w\RXwx x&M_q\?VIj Yh~QZ4R4܂8N@oCmʬ>!⃊8 #ܖ~ْV3ŕ, HbRӄr|)í)żBςM[x*f Ⱦ;edևؖڿF-[j{ղ 8 d <5dyܥk=6G#w' RYӗyjn}"zɩHλpM-T@Q!pyXUx"ټyx^} b(ʒE&33ؿH ޡq$x١vcBt[#̑SL<✉~2Erc~zlx͖0Iur%w=ԁ{A+Ob5WNJdP*ǟko@\Z5 R9]v-V)P@:c7QqT+; 8&|~!S!4i~K&] 0 1VLavގ ՚͌kj xYM݊^e{6m 5G:OƶҊuwٍZt>osCmj[_U6>q@# ߽RsNCz3xB?w~%qyDɐs#ϤGhWn Ci ğ7>wnS<cɛi.(7ܢ`qiŗr ZC_dϚwnd&D4ӷPJ:5νw A8B7 ᡂxxGL;sH ΁.!0Zj٣gyZcȅroAqb;IoN|?ׂ!ef{7Krk_=S2rqO&puͯЉ6شL*^jogK[]EApfK0 62 ̀>B|qKm20zGW{Ȃ652 "5PzVG"xt $AKKks9 GVrqQ6QEz m|9A5аGFխx[~n_wD] ypY(7US"1w] { 7y/̖, օ`ŵ.~s:zET_HUT"  }, ]k˯bxIhF%z`Б]5G@٧=>ج7lb-@~y%| ѻ\9 BW<M+ūSAgц>zǿӚrXԁ\֐ڗXl!1LyjˏJ@ͺ)i:xsR^<YϠOGSRlG~OG/{S-;mC,Δu,swPʿ8r GГ> նv}zxiSnOxѮMyydrۯ)l}EʤѸ}B $Ǘ qG#̀_\->٣Lf| ~T?TC 04rl[!%ˢ@!'}@> ˑ2څCL?D*ޓhB36 %^ .jaZ ryݟ<PZNaq !tֵ7%a#'ػθFz$[Ȅ3y (K33ɴ4,WmKf^L q y} <q~͏L@ށWa"ټjߤhlf^:x٫G G^yz=ɂ FFu3s{1hBm7TmS8zL\C\VL|"?F`$yʭumEԵui^Z:Ůhx6݄ _S_ʑ* 4G Քv{ȎN}`dWOM}S@>^|nh%ͳT8-'~m,*>+ZǗ{+ԅA 7ρ*Jc8ZTȏVk=q9!~7s.Exv y|4 2@ 8LV6jx֕.ehۄ࣮ߍڱU2S;4o٦s" Ӌ͍Z/8;r}wz: N}J6k!f59K4kK`fO:v WannU_<҄;rfh  8Kdysܞ\[C3[zۋu G 8ow˫6ER)3$ɟشvͽmdRI-eGDɤc ϞE4+v͍3O <O,|e;;9C ִZiجTDsG v}8Ex\rRO| fҹ] ᾃty02O،#"xqp2poL nY ̦*|6v ywFPA℩ݵRH ! ɕ]ӈrފJ*PыAՊ٪vGõXK $D4̖۷!?*Gvճ/5AvxbF m:4Տb'5Qє&|h V129\)ǀm>Qًѭ9Xؗ5Anj{u1swcUвRSk{=E؇'Cr_-R4S(2\zېؗOއ^̗ؓdXPѾF ȃ?'>x }ҷRGAJ/C܍W[؍|PO]6IԈϡ{9vݴlB? /zf \һ;f1>]}ڢ82E $/ WU͝qL*f$9! Sr uYxɄxl.Ƚ #n+< rqq1a]-Yi>I|ܼ`&I lɷ ѺܝGu~T\ ú?w'w plր$>Mc2s7n%ic_/;-dGz~Ψ A0Ўc 5'8v@j2o8;@x&[ȑWnHqzG)ЁDgnHgWt̩9[?7rSƮV}nE|My\ yCN4|PڝK =x͕`4 wq7]Suw ҝGjh ,7'mxztN?G4?HrɔK)LrTAqƍ&a~ ُͿj<Ƌj0wn g,Aղb:șE4`t5q>\\'E KM_3շOx%!auy>ўIWwݼJʦ)?fOj~!8ݎlX + n)my}bѮx}R֖PvqM>18Cm8al3N dFzl{ٙFyUrbFj;yr@ӔzV ѹnҥ$NqJ^}ڃrIŎfH$ #:}&!B3y<wLʠɑ1ҀsyO٬)Q3 /9=Ѻ?4cv R)mTq|&{'?yȶYRoshq@g:-t5b!@u_"kj+,ѣq۶|*Ȋv: ǟSx(4iؒڰwu>x(k}-X6ӎTɡ*E(f9I ڤ@=jm˜Ѧo[ 6`+ڳk{ŇiΉ,+ +e(Z9ڹf!G 6zkN٪Rwř+_L]~sz>1u} 7f!Cϵglj4qފѧA}e@ ٰ "i_Z߸,(,yg۽49z^-DZCS*iB5ufW(0dٱ?5MѩIOM DkߦSڅ~6؎qaxMtd ax=+|B|mްh2hL ׊U  BdLU9*dVyՂ=ҳ.q wtl amZqj^3y+1zZ :׃ռuJ?}l>~&qJb1$IGLټ0(IQNҠ }3[01q u<pPQKug GUG҈tYK.IIȲ!Rzl6!Q{5o|# ɝzx(1 d޿x݅ ޑV̑[3Բ+*r=Ͳ/i;5T\#tr*'ubरذZb)2Ǩr˹Ґŏ tғijsx)E**f*{ȯ{1rcu?&X]sQPݐx"=\c#Z3y ǜ`k(P| L0cǬ5 0֫s wgȿ0It9sw O &(_lA14'bzm˕ y|r+(?Z}!1-T hcɐɥ9OOLh !Hqsg5N,pp3l6v}tˆ-Ы.r>C̫LVdp װ]Ё~}Ben L|pE(&_GɽҝPZheځ+4 `\|-ݫ.H<|cC~=rPpʮ>ɹR 'Pi~8zAQ.׀Xl dQy%ZYNrӦB|ZJD!<YHN9b>  ٥8 FY Q}$nv_L4xu82YPĝPH 9[!΀vr\+ھ% Te\ oK-`: 66zb,hK5F -ҠT.oپbʢу ܫҌ`' ؎Y7Iߧԥq/2tR'P)*މDq}I$G6v/8 ռ6]SD͂@Z9_6 a|NଫBg xzBJ nYѥ>Ҡ^5MzQN' p ' ևKFZ*|esDNjbsg5;9s}kXޑ P^BӺ؞@ 2ǧ[Ÿ5NZrP7cKSsӲضJHۧ'k݊kqI˚_Uh<u_7݉xފi5 *U|\eSҨnɓ,S>>tx0WãU̺7<]+Iˢ6K{x[9oK ʟ֣EvoYI$iɘqn ɋ~v,<sKϯF*PD2Dsvle0\և(܆P ysq sH>,;nEu܇xxkPnÅ0r go֧ZDܯD>8v>a;xR@*9y 0Sޓy qqe}#P %:b I; ,3dQ x"o !-_٫Yˬ[ f=+7)kX&-  L9 $NԻjX)z|uǹا5{;:7ݸacK6;HZthaGNM?y^a9֝trJ D$ҍSpVf~'ZsB=KؘvWqf\fƎGذ2ձLPȎw˺dht>YL, QFTBp |<4o݅' fr7٠HRzpM@;)rhΦ9=eC=ɥͿs gJ jڱMar "QΣ;esyƂ3eOɗpbQe-i-L3ݻCl݊0o{>X>Ŷ`vȄ1 TjvmhQxWͅ΃9 N$ ,l:Ws7zVqf;qց~~T0us×j[ nlR A0eвx;\Z $\VoDg*?R-t7?qf̥-{ԫWz  KCE :*tD۟(ƢR<Ԅˍe-,B{=.x*;1T7Ӓ|-uQPKb܆#ey52>S#3$ɟcP]-b2Sݏ>Ɨ%G6*Gٔd(FSE68Ҟ!AYRC O-,ۊ5N~ Ff@dҎ&.)ʱBI|)13}04WwZ݇yҰjvgٖv~ZU /yݫ[ ؙc+C#ѳZ_}^ ^ v"0ҤvM? QL775-ѳԲZ ;B<MIp~ʍr28d@+_iewC2qG+ov޴>9|q":*`ɌѰ*ũJn5 P4xԱ|gl~ #ׄSȵܫ|ߏ֪| q/U};ЌRx=A`eW%nѻטG34TȘ6@%`Ղ FN-e8qS[-~.|_%&{oܛ#&Uv̈Ѓ\qn{O>[܀[(Pٌ2ͳW݀|ߡ?XZֵ,CRLGٝ|LԦ$1Ճ$Њ% 4P җ/]Q<0")ئ#.%{7 MqIH7 iچɡ/rxA!y-"M|%٦bܽܭ ˲}*!r؍Lkot=} p,6qZdJ֔ Z7|ž '4~ՠ^ \|{^,DX]u>(:moF0>B; b\(52 ۩p=ʊ*ΨGX OݻtٻX- d31Aj RVA6~C-3:Hgmȵthee*@~_CgA`ry~ lܺ٠8O[hX26m]N>8*؝ 9;BF{ۆha q|%*(s7' u :d|aހQLi'N8;y}ݐqFk |Qέ,͓,͘$8!Mb9P_OOq {|"S{syRu[ɶLV=XHd~DMsBݴP S $/`I <|[U~ Jws3?56F/sϝ y 3yiȝvCD?kI ۳ȇU^ytI5iҢɾXm&zI-t~Th\" Oy=qCѨ ˬ $ gŖm 0-xiqF_̗٣)X[d!DZ}G7]Άa0y ~A/3B doۂbA б=,r([[bTvDB: 1 RλƸ>tKr M8w۬ޢrYiا:4 ik CV;InJ2*ѫzaOҼII|*z[ѳG%ӕ& \$>z;~Yy(w{a 3^J'MP?Ӎ.HF͢Ϻ4q};]ȶ_fVz@Zoo N/n6`u JHI+ґ6rxW Ʊ% Ӆ0ܕLj"r xkN+y@+e5 +M~Bزx]8hiEɶ~/*%kWpqrܹ|NzYU(ދ gQҞW~|sUaj,F0R4_rak֙ Ijerr `dG-pjZϡ݃g4?{ӂ2J$df% V^?q+` o]WzPVCtփW[܀.G.ɽa>0d9"إuT͋ɸQ#n~]ǷkȶpMxǖzr(EajH5vIM>͏wȲ'Fސ! a ^Dq`$J OEKIi.Ԟ9##31;3n)k J( \؁D!C8v,Er`ٵǠ1% ~x7G(bqjY(xnrDܗ F1$1Whq{ЀSs3\o*creA֊Ұ-3S~xaҜb/r%.! & nǏݷ^~VyK iɡ K3)ؚFR@ӓǎU?ߏgUʫ2ZGm Ln<6Br4nNAԈerۛ"a<ũIe!qj>˱3_Gm!ls+HM*'D`q| җ٩s %6 g.etsjՉ&܈ۭ4#JZ-U7 ,ڇ6A }'S҇<tz@x,9q0`g:Q0DMKC'׈-zVV}ԫҩ #4 s9ڴ܃~݆ TS$0Ъ8 mqUB 7ݸdbB7UgŏMEޠTd4ݫ$!٤/-<qepVwqF xQԫʱ*z* dHxbū|z-ES$աrEGy6 [7ۣ+v*u_n 2]M9}B{, EߡӘB%™R۟:|@ng9Wܑh)v0ݸGzbNm(ί%8mUen Y=y>ȸȇ-Q6uyOhrO9>Q FH{<==ٛ A7Nػw ۧ6rQ`<$Bkq}1n{֤!"?Ѯ|` = eblDz)ސz!NJܸ`'Ԅ5H~|*{J?%ncbb br),I"(Dso%5 p!ZaRtJGy`=>s <tD_*Ų3{!e Dݳղ>@oD u@H%͎ћ`9Ǧw ,P84yyP 7r+xۡdg,arZy ,%GH~'z0:U#UZL*fkS-5iR3N\g+ }8~nzH'Dw?Gxo{5Q5jy5&KZŜe|t(|%>7Oo˨ >)91|0m3 B8*Ϳ|ۮ6 fjRa?% >Seoaȱۛ,ADNdz!ލ{ @wbHnDݓϧv ĸ17neطz1[̎z:+U_* z˦MN$(o[5/dԀ")e~=Kkyyvbø{f25=~L(g8̻}r}z+K   )O-A,k.i׃; F75jt~HR{UۖVnoʪJ١BI % x8Y{IպF~G/( 2Y ay^cN4 CБ qitů L,ځNLzs-W{>Bgx ib4ry( _K | ۋf~jGgF%͔<ēqؙ($CPh 6?6%UI<7߯!eKOJ@0N֤iw zLgW6äz SޠsG) ֱ j//i4Gn |f4˱bvڄS_(B6Au|oS"U#E=mQz62/ VF_B Ӥ݈mNDʜލC1cՎ>2r!D 9خjhFڣ%<"Kz>4oȈ.Mvhˢ[!nWם٩43T 9D(ay,f{ iP yΧ#r &Ԍ4 ḱIqF 7ѫܱؖpnѭ_֙kّ;'r^-{m'պɳegn5ٓ\.ձ[3ϺɴZo}.ٜ;Д٥gF}rqԜ?b2_;ԭ^|{FH}vƑ݁=C#) ȗزq*ťΞ{|Jric xewuℓ^>D{A E'/ǀٱYXfԧt`quwnn7+v fbkۉ"\w`-)zs4ۛ C!Oqr-֋Fd!|iXbѠ/t ~H@ٌ\{{S[BqKɿeTF%}EД} 9Wv?9H1| zZI:$$5DX Lm֐ogp.tR:~ ۅt Z @pE@yqR!DŽF$_ ۱'҉(Ƅc8͍,02'ip{UNB|qLݝ$Bq ٩UcE fTh,_ HC/JAr@yl4Asp}ɯH/; )|Wͺtz+ }qBFT:ҡs:xѭ5%˔fb!#^҄v~3ii ZeOYU6 #hch .zEOQ i;ݼֺ1B!{' iu\z <ΪbHʖ-Mhar8mo2N.yq۫bZA45$ɣOԀׁrً9n+p| e^~x9ސghuyv.ں(ڠ[J!ot'ɢ) t݃ ;L_yŮVD&i@DDO\KVwLJ~̯΄rMV{L ֋#⏇َwHځ|hO̓ mH~⓮pN. Rz*V5N9 ׹|~֎զv#̝{Lhf}ʦտc/eǩ]3i4۪7H /$FyB< MsG{]ƥ yϡQ#*~ŷz0<k<p͊ ܝ#{P3tQȍ٠ ~ zGsoJ0/қΐby"uK.o|gQy}|Uʛ؍MeN\z7Uμk0DDTbl>= Ubvc)-؆UcO$E>*T q.)S@|6 cQ^k֡Շ8&oqЇg|1~Bc{af{UiP ł yL ؾ8Jڝ !q^˱g űy10J@o1m’fL2 :_Bށt h<ȐϤvߐCBЭk֑/߲ ٓW]4|[6C?1iۜq9bkM]Kz/}=ୣFsWz\ sIRLgg9US6SkW}' tI-l\ቢƅpu -*vBx9dSEӑw\m/A8%?؍ܨ]Ҋ<L~m LM-:{*BA 2z37?j}y8*T0+MYSqDʁ_Nk4շe|f?-rR "۩ ,ېf©C\خ6>Wm||M8 C W'ٔDO(\RHq\/L<N A3WQx/Bxtk7ڄpJrJ6b[6%j"!wq*uwXrBS֍\BϙxZإ-͹~|eimYVĠd{ۦD*͔ 9Wۇs۪DfP~J a۞dOT]ҙ4ȊkErT#dA,Lf_/w~]hyF?- E|Y~UHۼykc<GS\Ԑ^# k!;2ޫ=ÿ́X˜JI.<՜aqyv>ټ7ykʰifnt$p( ϱ_BJE)NNձ y|, b?.)w^y33fyϒHݱ$ uEݬɓy?mJ7xmD~.V{+G/F#CCu,! 2E.4hqY 8|S <Y۞r Dj$&ze8SdgTbʷAYtݣ {wլgD\ hc$Ռ;> '+|x!|xvxσ l="CiŃk|-rHˈB6A3E[ٔc;ycl(1&q}]q {}ɑ{'ȦA.nQxXK!1? qK.ռH S%K|(D "݀!pnDO p`1ܶN .l.΀ɬ_!BO?3ٷE}i|S!:oO nKBֲlq!J9z۳Ͳ_fj ?LlQG D5Plyer63VjP0 |gŸ@ &#^F6-O-,*I%tԨvG՚\eƉu=5~~TP5O;ޗ)Vs9߂Pw֋1~@Mnc,Oihl٣} bi'HW⣫ Uh˲h>|.u oa¤pI)> Glz^k<KII"?"!{uaX bJ k@-@ǥ>8)nT@؛Ѐ-:j֫/B T2~|q7lbٷI ϒt T)ۘH Y fWXxztK2r(6~d|bwh#Y,686(H\h94pN1~5s+5$ҩ] BT\Hynt $9,ݭy R) dgG)aq 3RqS 8P`H^ȔɓIڵQݓ/P|%[YI3b.1ٵ5ǭ6',zؑdRȫ܍mtǘt8C8"IUz˗v`dsMMQʺQ/gsܧq*ِdQ>,uq=(<? K029d1r.9~_-/ܭwq}qm# o @qdT@dK?kLlM̓grbZrfzRnM^(ڰZ~*w  Sz$s[[˕H2%3~=q? + 72 BU 9pHi,خxFUZ}r-BoaJyQRȅ;!IBEۊss>$'Jw ǜ:JT`];٫ ԭˍۙddda~&]o >(ɔ}ذߥ xSz{eRǟ<Z1(1Yfz` 3ŀYZў8ҞvEմLq$8uJϛ *4bzޡnY3R\ tFUCDQڀhW֪LYC]1`nAnzRBybj yMw@kw!&o  F̎ʽm!9Ŧ-Б pF^yeVy|=erZ59b&F|OͳLlG8eArOȥ?yzbׂ j1OR }:,3 <]b%d / z*P`F8 ȿqߚɟs"wbr~iJ{۪ɒT$RUݐ(ցv4,۠tF0? f-vіIDœ.AcԳ6|PB^G>VnppVϋzu.H B)AVz0kx&H9~֥y={1AYhzX ;  KI~~m c]?Mȋ}Rv0ʼ +@؋y1'Zxj 4WOH D ]Mӏ`u.Ҡ΢jɗ02oӲۡn>Ȕ k%Z:x lUjU}VGFxeaɟ Ԩ%ٕܤxԥ0Tɕ ժZ|vQܿDaX2[5VtM>n ʓ( Ǿȫ!-;Tɖ+ǹ|ٌ!5bQf 9Ku5c؅)%VxpsuC10ۮKۏ/z}wعDž~ !t1iЕv4ѷ@9q ]л!}dyGAAZсDٝ&ȳdd ؼEҡF&01ÿzd=v=6xvޡ|?` H46@BC*֪;9fԷ <:G8d(SLt݂7ۼ4ٌBgopzj0K٧"{ ~BzDlX)1 Y:tɣFcM[9 :H9RҾ5B%S _x.Կ0oӕlם5Ӕ]`iF.s b /vk2rK*z.v́$ ,.xx#y]͂O{]NޖO oʷ' ᾽/~H ߻;2-tKsH+ҫN;J~sTÚu^ۇN$I٘Dm7*ҍz' JV/ǻFGT8hRԵz͏yqt6_ܔ56r yaȌٚ9sOx/Zq<+y9LOd?sJy kp5rp$-:8 ɸ =DʠΫbŃz3/AB y3Ƌ'z0vq_6k:3:}{h+h%%/̐Yyg!./@K% 'eD)k`Ј1Tř1;ǟ"6_*xSǏP ܲ4. *10W|iMI Y9ɥEJ̩3j;όUɳ GxgNwT~ao:}.wmH}qP_4p jћŴA?h;:D'YK؋OιXܢQ!Ka˰q}Rz}Yr]<;Լt[ؒq*6˝-6xƳX, 6VRqqc ;PU<c!p!G N7Pu\x`Dl|޴➲ǀ']7ڢiFG3wLv19"$zCfJW΀x+Z~{ٷgOU45$}vQQ|&[Śd Y81 mF=E#?߯O|Uއě.ɕ xvhxs!s:b.*sy=~~xnKx-Or1=ʴortJ-|,}&xYң&L}~A} |& sܪ~a zKtȏ#ѻVwd xc̶ER2w|KbőPdqIy6x'h%Ծ/˘+KaIs>ԺЊ1s6ۈo:SGo xnx̀rZ%"Ȏ3Qo}hK DщG wP;~;RЄ&l bHQ`dQ\ ]~q}Sp+~NޘJRjEێ[0,E^kr[,s(`QRZWP2snr>a\ Q}. |&k|xr.X2gY y:#bjr Fϊs""=kII>!-5|tҢ\q#&Q.y{J,M9^qT٦x&0֣MTMvl/ WڤNn}}"b:ʢ4r*$}JdѦɭĹͶAlSɵ5Pᇚgloj{݂v@Kށm3 KI)b۟/| h]} Zxܑ@Ӌ cHլ} |{N f&B?T|&ִ[HBmqtx6gT8nz=1 3cw~MvzLs(3 D\p'J5 6U pbzZf.nQyQdZRC8!؄"M<*hw˟¼)Ϸce =nCfЊ[Ȑ`qO|ǩa4Z sP&I+]~ }Enٚ[ԣ sf nFL,88%=̺3+?َcr<5V"Gi').?@Ϣ|4(h7$%**Ҙٕ̓ΦNQ:BIң"ੌ&LϜFܯޒqr^ɓ)7<b16(?tS3q9/֩-| Ͼ0ǭ˨6Uf:DZ}m74y{gج(B;~yqyݦize7M؝9ދ9N+ebӋZ˕Xn wٞk; jZ U%,[ҵ}I`֪̤!5)7>D ː`Z z8@d@ˤyh -k1 LPuc1Uz[nSXUJQNUW7Q+/ֶ8ޢ; ߬o 2/qU.KY`p_+1Bڰ$~t!$Y4Dذ-/60(DI7&ŞS-.F^| WKqǐ~ǣxd)R0uh=x[xִϘ[ڊ|݄NYZײ/ҧm< AHEm&[|[E;Z݅ik}9C!8P)qȖ ym٨7&;w;AzyC?kVEvnL-L=!nx %)~O[ɹM_jI~l~:ܘM n5XP S^B]gɦ " yUqդʒ +_@@ @U۪?_71ɦ"Gw.a݁=#ӘM݃ODZLuARXI JCٕZQy(l,"Dxq ɶI]9 *V! ٚ. 30=0ɽCum˗Aӊw3]#y2 HZ $M8P٢^gQ r,sɕT4O.ʻFuj5Sqi4٧zϨ1/U%w/6ri\ߞݱQpbgvߨ\be{C/gR":maB gPV]'jUCk֨Ϝ@ݱTC{ =Ej_81ֵͽ%غlBwBY/vN\ҩt^"V}T 7H-+-#~{ض``z|c0$K|6(mW$ç: up C ݔ|/7J7Txo~CܬHE8$ёy'؀E3/p^r5y}0&ݽ6te_؎ɴyf1د1{Ӌ_"A$k [6er1վH}B(<iLgȢ ?OEMy,Зܺ A@٪5z9FǶ(&.Κ} -݋)v6;"Uk~?sѢ< Ⱥw0j٠%;CyH{OGJLF{ ~c&`bzϟaxN=هj: dgZ3lx^d1 xRYȼzpFwxAϭ~'#N.t=ݬpDۅTVVrmh,vإ>Lp>ŔߦU^nj'rd(l݂? Tf̀;Ȏށ)\81֎zsy3~gnz1hhK`%Rō)jMqЅg"*( J$}!ЕGʸqB1iH2=Oqa۽ǸnY\psfc7^<̒ oz$KQIcSV&ɯvzH>* acxW ԖrI' hɠ 0 ?ݠ|w4EȐ`lgN0]\qA.W١*uL4Y(u1ڲS <ּ) H&ѭFќإsSrz؋|N;UɚeԃCcX|g,qiPܳv{vd7ǖ˶@܀ ;Vۙۈq 1yNc,ۦ٤zZi|S@b??l`'ٿ_Y#)/>br޲Bd.߂}<=uK9 TOr\u(}V24!̒:7|Loȿw ؕAλCR~ܡW(FbA،uKؗrbIbMλhf~\D% oAD[9&U( /| }͗Ƶ $f@~3{Y2{GzG3xKzVګC/HǻsA\Z? JJ pwuh1 <AFYӊM>QݷGI0rBq0_T#͌"ݗ2'=) BE ?~A 8Pd}ҽo$=M` FT?TD~9 !ս؊YUݕ%<:h#L  |fx^ UZtimc.Cxy9^|X7ϙ[ADOx0\NK  O ԆkG6g*`+ elpmėAT ,-x.J4$|ȋr\g5PoYoY,͌̃\\8i~U݄O#"O ɑOzvTzܸڞӠmQϛRRD~bm5"FǿXEˤx7(N <ܜPqwM\| \UGgd b^:>Ye',0< I,lf !uyŬpfP͌.buP%yC'{'zD$+~10yPwiٲoy@sGV1yU2G R .h+r< ~Q2lcyn5I1&G d1"F2FL*A_.XՃL},SH6Ar6GV֞|WKwXyGzظ#Zb  rWҡ} AaFgRh6xRm܅3u⃴S;Os nw^~\ONy|DVk!(SNWշ'֦)Bƙ< զd0703``%FMc)`~}5R}^ ְя<^$ه$QVk~U q'_uϊ[ˉɵ.ADW؛;ۏ KW݄/K W-tp_yѲ0x->bR-<U~@hS˘=r˻z~]A 2ӂ^]%T3)c5) q" OȐy %wo2gTD(:_[ ҫ B֙*=ގTǥ8M+I rؓl lWRϥ7ǻCV{5"y˝Dx1@&E  t&݁- MYixoeުjf؏b `[9p=GɗW?WE=WxTQ_(ب+۬ ]Tѹ~Rϖ;t]֝qoqbD}b*/QL'iz5u7-b**ovV%x4j`bw_ʢxa"Ȇ`:G Ҫʉ15!+Ɵ? ih}cޔ&د5kbRU؜?u`cAnceA,Թϧ0&'MQqZ ѹuH7mcڋIБ-4_ow̻ YCO!cLpTv}zW DxܠuR"պɑϥy%߆ ȉEx0fy"(2i?~0K~:ٍ(hFϨ b$a ^Ǥ϶( ~- ɽsY'I@[^(c ӆZrܖK`%tux0 X]c%j(jlĵx ߙūTpId؞tKȸɵY ؙn Z j(G)κWJЁlKrnžnjKr֣s [?$z<DlʽfY۴!] ytj'} IgxNzO8>$^ȮJb]BL83P̿ y||ypͬi%A.S y{s>PZ5 g )9+1 !"'LdQ=1.lr_Z3^X:`{Ӭ 6٥҄FJ0=Hi*]$]4^Lʇ<qwTr{N/ca~?r.Rq  ZF;m۰V-n;{y#n݊nr Q% >|tȏFAr$ю0ۉGMP1, (Q+ 4Bf{K1rm!me7WaYviޔ IMB?఑:C j,sG okٴ Eh( Q !_r{JH`Ȥƈ`ܪ# w^{OTq̣1?Xܺ-e~pHdݝ sVo@bѷ-?_?sozTfZӄ`9ϕm\q:ZA|;<aMϖR~< [ X)i:Ԡٕ-ŹA:& AYя 5~hJ])3z:Y:=!Гn+|N[BUӖ}U\ dNp.TL~dEwF1v#Ih4Qψ$@~ΌUYPޓ;aD|&˗dϕcTGn1Z10PC @r++\ɭc Җ#&ʠ9{(Ƅ3թciذ~qǾN-v k@EiiTˣf2Kq=^ܰas/ء ۩;o":O;'qqʖ3$Xxx3CԾzYqKY%XGء6rE6ȅV>޹@:ui7uJiu5 Qnz(ʢtrEt v8UBc.erȀjID"}ևx _]AP(4zye֖ƑӋ6>Btw0E:+!BT{)_=4Gծؙ>o.,Ŝu&=gNڳ?AVᚭ+iWs[ɭ̂I*P,=PL&$T9gbMm& MIGơK5Yz}7r|5&nyZǎRaՉSCb `܆!4AaiܱK7M]}Cc}~Da\f$ޅsoڌ=։0Ѿ 4%{-TE2>~^ ԀvOLɓVShȃXrH؊?)Xz Ⱦ,vku:٬m$qa s&KP_Nx)ݫR&iEݵN٧P}`ȗݔP(%v{drj+э8KA^s7D  G΋Hh\|ފH ;!8&qj ͮ*bۚI_#_cUГkzUH $cҢ8Ae^ő>>bLҒ Ճ9fې Hx_y` (ƟirDɦr ͙D$Ɗ m˜%Q2:Է;YUA$~2+l^"}}ۇu ȼPVQ!V ʾ$сE>y6QyO/]M-ַwEʙvL|Gq LݳKW0ק. p{)'ܚo~ׇlk Rm u3*9.ry#xc ِ  S/Oe3xXL~. Qr_exhҢ=iҺe8f*{-waT;ڟϨzyD y tBmaB|کǜ eUaݟ.SNlݺdt@im9] K\<H.~[В,DzqW_&IomWӄʡ2%~NzP 3^lǦv hSc&7 rb9(`C.Rqu Ms6 =h=0ϷVEj*X j4kMۣ4@@iVv | p܈  ӏؑޑxax,[Zorٵ!zr- :jj88=ynF"D4<K Av>sܭ=xrE֏΂)ƎrwX H(x[ slWbB UT@{Ant7x(اFJ,\ʺT0yǝK<ۉyCMc,zɬ\\͗E(Z%7pcKB3uЊءӸ![l#4D>%sO֚2ɂl {E[X%HSؼQ 9~Q5؊ih&Pr9|Yhɣ`pI!>g7wx#o/X EALjlmZyBdtϭ(#j٫  NG5{ V(?R }(Pxo=;J Lqh)E:0b3}.! Qc/9϶x kseFV\.hɥ-қExɷf 7բNңNccճwʽ}( 3 ǭoioڳ( #{<i8=sˌ,ˡ>7pQq^D  sWXՠILab`UۧT$+3܁ E۟wC x"9h_0~ .Xݕh9{A=vA֘()C0٨a΁ ؔ3T1m ;4^ EM$=<yq! ىPG*شi12L=s(Fl~$d%% ٞ)" aD΁cѨد^$j*Oy_v5sұT-_ ֌6 aGҥS.}@\qD{Tx PxRmnȰy(`NAxlؚ}zK;y|lHK5؆Y5?Z əݵ ONٽ kGJ{:=@{!n`Ȇ$` ۼ~ޅgdӖP2$oh~IV D~=?iK& Ow ?m*LٽlO< -qXs Gg'C:`)%R3;fϚѡzRE.js ݃9V9y9 i& k֔;+Ly|ct #P =ۍԃ/WڸqMCCխ,W% uJɭAq0ehz" űxVc^եޔ=G2:#rt~)X.S٤bցlx Yl$ϒ}s#J-,9ٟܧ<&J$E!6Pn9͐ y7 ϕ= yc0̭j\ _}8 C*pRh782YBv5AKlخKБ ?5eQ8VG@ w۳W{<?ؕD|AVA{o=Ңnf&Ϣ&v{4ٓV%̨eM8݉J=K@ۚߏ_1z ޷ҁO 4,͘ubkBNa UKlxNqcQ l@zUwψUl~}Be15[H[Ԅc]jŻ]hf /LaNO[K@˵_ eq= rbr^mÉj#ۧd?,.r|J ܹ׹ 5ۢFg;Jɴy{ؿ<Zt8ϝ];}ڣF E ]Nk´KVwYۭ>|Z2~2NY6hoK;>A=˻ґr R۞E֯''ly)tՕQ,*"A<%?lTfeЦCkz, * _dU#ax HKfNļwy*ۻ4LK˜9]OA>R?[^mf~`iyW(8q; z%/ծmQ
tOcJ/m P&{cI"j` <  c > k G ^2{F+} J6|f \ClA8P)mV1pH9  U !2!!""b"##S##$($w$%%^%&&E&&' 'O''((Z(()9))* *R**+<+|++,;,|,--g-..F../;//00\001E112'2k22363o344M445(5y566Z667 7l788U889-9m99:H::;;Z;;</<m<==g=>>8>>? ?i?@@O@@AApABBKBBC"C]CCDFDDEEgEEF:FFG(G{GH(HmHHIFIIwbt[?5]~oY T11ɤi[#0H yyc18, qT/oG. e(*~%҄ [mpS "{bl60OZ$*i;ƆcvOt!Z_%3$µ} :H%B[oH<L~B[ACHW)$\/DT0xu Gu(Wʖ<9u*!vC0,TZGF&Z1d^,_I!&y7>!?c%w%g]1DTIʌy(>ޜMٰEE2Y\IhLfwXR ĘBzɺM^N%W`t8`:)TY[ mj;>WZ -Ծ+v_,Zinn tVM].QKN~~5^8VCYbޯŒhb_švM ߬L_ \gʯuܲ`)ȣ ,|2`6uaf /Y[Œڢq]טe"<6l0=":m;-y7I^v? ps3+̛%r!-t!Bcݨ{?SQުstSGv4F@ 1)} V^IBK;p$qx ooaPrivxk6Ȧă<z",(x~ 4#fRdLKɔJ*3ynv0,z9K2{RחV)>nq pŒڦ- J8b!3{FmU݊<+8-NJYuKZu+D I:ȇu)02drfVΏwHֈ 7h6tЋtUZ qd]pܔXtAUD<)\"#lI"6$ V]c&]SC* ƄuR}<VI7ӛ"'V};| sx3]y"M2Kʗ~+1:j@_5PCV+ןb\eY87$%,crmJNj)Bt4߭ U _]Ii"!\"}˫yDO6=վ*d= P<q#%L!Zu҅FFAΘO*pc'+6ek1I*6wdXp|phzCbJp%V:Sޗ dI^puIv`N>A?c` VHN⧥ ;'.YK,ÏdRM?` -|Q-[y>C( S J(so di ǻb9綥t5u]%-:iQ@OxBbÁ'  NhV 7N$V5J5d_Qu]6x)h߿!)(Q9f0}$4[hBD_X'/A'fQDn5,|5{ Bh?-;yPD/o!30m #se5`Bw)ȩ<OlO@ bAҾ ´d/_pCRp]ָ%|}G@b/( r< H)9Q4Id.? FvEpT9 wnSlg"VpU2\_=Tx/X8"q[7@:-Y[4_ hcA:A^<ym)(mro'<`c+Z8:D5t`~h=!zI0ViF!wߊq.w4olbdq:=UK{itE RW/ vhЯ8%yq{Pj'rTװ'_s f--R + 1 3r : !_OJkYr~}ofݑO[kvr;F/kWXf ,d{%V -6z|+N72ުs|55%ciUث\Y' 3u+7F<dOxc@"c ]j+jU|Ӈu.`]BU?&4?P{F4P:T eի'Q}b;x^ĂӭҬQ(Jṟ;[ 'bmj>e\Ü/\Ǝg#ǒ4Hɏw N*nYizUH_[X0`<ۤ&y5 !$Йdhv8=cfvp 0jyev5S>c͙2O0Յb̿jjfvb8!3f h*T~l5]xj%d,uLu+mjt#j@CWQh3,;7$ {ܘ⇌d`P 7r4sU PGRz艋Ւ:~˟=C@m (:clѪ!a<5ȨpoXqB^ܬZpO ;*T8*-Fm{{}FN9NrܐX4SjPGg<*Lj&y n|/dJA fS "O9d۪U+!:)Ӛ p-c#5Ī\$8գ -ݺ)= (9NO-hyAV"-$?T =JQJi1]T愝IG9]nLminDi;Jzwy rMJ#^sɿa 6q7&g>'fx1\Y 9YOƽB(W#<3@dX^>Q}w6.=Ki>"hȑ:?jή ?^ -8 h?qBwNC0SBMCLJ~b2I} 0*DDzTxJĶvT<UEOx~跙|oȢ2G v1s@+Hjȃ= 6dLr!疹/۶OVh opH2WoVHF&R[ioC+.1\L"_JeiNz[a!ĉ]"j JM%B asa㏘*:P蝟E |MC\\R s$ DI~F%,0J\tVӨI;p!0ى{7xu8ӯnYI]*26mZ` EiF+=_:PKi{vڳƸxғ-ac:& D6`aU<3Նdf##xDy+~SwXqGXV ! ޶*U"K'sTnO-ZN2bU-wD [pPsHzӦcUhOC^H6`{tsl ޽_fqK5O CΊ)dǟӫ E{s#~JExT-eTjge2iy?7؛g||Q=`ټfjQ a%+n82^P޵@[L3Hfa^I{%k[UP+4DͽiLZ ƛBW]N|NK!$c~gP2IBXN$Dh 3^3J7)̯UV# 2:83Iܼ},d!礼.+ڄ XfB8leu~[0df|̎ɼP]O6ŋ\/ȫT/az68*畐2eNK'(X6KU&_헮 /* -` \;?Zi" 4L(I?xUX5$邩nJ<P]Qzk"4Չt8 eC H.R^DLLW&=́oBW`)nR^9 0؉k3PWq~P^2E34*3 aߑZTe3IY'>,e24V1=7D\_& tkL2<?(Q͕#ÃZ==xzi3ɦb]В@$nZf^yЋ̘JBwSv]t@)3H/3np7_hfBZHw5Kpr^yHf(ftfoI=h=XAjTTWiy跶Ӥ\g-59U'"g7VDWZ5XWΰv~c.0_H#$\8%h sc ֲ{e-5/gaaIt4ȶl>yK{;ٮmГ^qbLF0) poN!2>/Wqv= txZْqv (%ou:2J̢(e+Gx.P1AYY!h0:ncR>䃤6'/kڎ)J,:W/ᧅϵت?.%ߓŭ8msfb͘Kb|bNwI{%)g (!z6꘹yF039,Ж[m s[VREz'"6958 F[Zt2mDeܶ{oDZC0 Ϊ{n ɰ?KW&7j mdl (i']F<t0W. H`za̔VCdPԷa쒈=jx=4-èIKϫ[%ˊW'I;ͬŤ6OϫI91%BƗ{x,P$Y; G>T8JJ$>* !̸7";ΰŨot?@ьjjMhEcei(GSKsrl HaMtNw69IV`JOORoDCP?Ard8" vTޘ]<LAٶt{S}Зq :k r.(m8zL_+pB'Fs)>qf^ԟ8]iSI> }s~> |\<VkݯD_`f)Q«#1K-zwj(G{s-3giq=j?Gwb9ߏ{Luؿy%\6̽uWtTԛn틛a# f"Y_,'FZv-+cvubO(Zۮʧvb%dh_nu$ZpA/*!G;G N\N~;D՛*,J5EݻQ[nFsVFץn=ȫ#})s.$#2Ar (7C9EHV (7hy:`()OKr2.guO{R\R7z2OyRj5rkMKݦTn6%`+4%6s(3ED 0:<~O9"?.*,)T}q4jU9A=OU?Wr*,a3:t%ı6AD 4IvPi?ݥ}I.d3NʾgKۚhĒxGS'/&p<>BzZI a{- aZV/Ǝؚ`5%]7TB8E#b)+xeA&0#ݴEB<e 3Wj|rv)gGPWp*(5h]6KNKg8Wheđ85Ip߂JOi8_pP踜mUl}avw=tlYvе G52IprL@ ҳ@@qU3[!ڂ_z;'d&Qs6&SMz9]@&ua7ua]3. ,Џ8}&EWWѾgJr)nHmY_ozA~$MsԏAEڳڭ!Đ; ++誏i 297yN椳, /4Skv$nhΛH)OM%iBVž^7Cn @B"2<. 2pY=d[_m(1^ OaKk.)V#fS& OdaO9I&n >;X%l4\T/C4N„st;ŏWod178, ?=I^gjo8 H^.ŧjGX'o'3Kv-bT$\YJm]^U{|+4rWKĠ݁hpFq{$uK}<g-#m2˫ٍWg8kqg9؟bƍb }LF#/KwRT V \j.[qV߶y{kBoTᆂ|~|1p*b\W Á4x9itKI=; ݬ#+V=aV5~ dІs?D0E?Hn/أݒp"C˚$qyq~u&V 4.g̯x(xۛ{T;5d_SS+hνZR\^x}OC3h7eB?e2;E-5}k oҼ~{S.z`Gp1#ƿLf&4I;2E+!3-׀ *n,t\J4vC i) DP~8 ѥbUL5N# o/y9nj\k#lp_uZMRCvD[JxZxl'رێQO HHN p$Nj2!fSna$ d&K]a8OE&9ǢuWP-1 +RK2EG6<)S>Fo|^EU@*́?ܧzKd},KK1*+]fGz0XMmwwXӤ3PY;9^p Z;Hal쟺Z!TJ=bS,{5/edG%cnj!isSi:e7HL֪WofP[p&6gf\n@0 h-,fu'-rTh7c%3 ľ; l[u;n Kş=nh.6W.Fq3a r t,$bx, ͨ/p {L)iot0&7|*v́-yqcʸ"@+%" *1Z*<pÀdf֕2+?G,b|AHEnd-]ϹEGл]1n"ѻNo?|.,' t\t w26a<;t+ <xP3}^ԌG:GN Wi 57 襵vXBģ1n9#.(Jmِ)IVn2պ)v~i~ ^V)`m _k`ZzDj^׷Z7LkkN(dV@g@buSz~=Ǒk 6B 2j ɠ_6cz5ȲuKɲ: ock0oa)b>I7+pxwOpbijsl͚pirߌ0DEabCv)Oeb"bߺ_޽<{0ޓ*c*mG:R@k|tIˬɛr%Cusq'\<({?B7J  c<0D`0s+ug-FỲmY(Rd ^QpVW ;%Jdl׌vFե r*kuHb_ۏa9Y^ E@U#,3}ۡbaN5;SOU/Ά:8asop+n ͅ&5_-AQ Ot'UJg'z O 'v*l9,@ǥP@!B̩-΀⡺K}כ\SqdQP  N4f[I2Q=}FQT9\}vqJT h׾rP_́?UsGDjMvh<' PY!Wv_QIދKM<L!] neK`1$ŅV^ 7&&P.;}g@M6x 5(HaWjI )W'SsR")?82ҋN-^1Kemx42&"d(D6;82lN_J8:/rQY;UL3-='z="] "@ l6 ݥk5 JM?JjM^;DFJI^z\{DLM9?0NZ״U"biNǐ_rqA"_ ,ONPY3cO?Ѡ03|0ޒP^(b~Qe[d|^R9ιNv;$ZRoMoRDv5Wpu0$*S n+9$hØXYE( +9{ZovhG|a`:[a#]WQ).^5oBBO枒^n bav)Ʉ[o7@-5C9DE@DaxFWkz 2Bx٪ DV)իx ST Qɣ1[]zQ6(ȪtM^l|(CN9<ЕĹi-]ĈhZUOCK3zqA![#7&Y]zAӻX/l51gx"QONWkZ+p,5ݔwZOrFN {e#׵*o|̨sxDEyB> J6~K'L]+~R+,b>jC_UdSpYUA81K}:(!KO6e]5B.W $Hp{./hH^D"dZ6L$`Лu6CHAN(ur $ǂz(Oc[s JB<5}TN՜M͸!b6%Lysٽƒj"x̄TҬ6 JJVuYy/#۬nX((Rę )$03Vh[֗wd&O+ĺ.Sa6 t}B]H0DS$2=z#,;\cȕ/O bMKoGWk)5Wc -9)aiTpVk;fl")Iu5qjʍM)a .R7'ԝ<xS$f6ODB|8b,;2Sp5Y6.WhWղ=/t|T;gH? _f3 =}] uc8Ռ"7b:ud~G>@DuijskF 2Kw|0B^<4c{"mg?ZG"%фHx4]RqSF]Kt1]HW; MX%kF5^B1uOj(T9օr6!DԎbu"x({`UՃā## J+HDJU$``Ҝ<~0OS$v((Hjg&(ץL)-/KZέ*У 0"zk~v9-X|f#S/Jr'\Enbޑ @f9D'1ͷz El%ac]H19BՎ/ֻU.JYlN,Nxשd!^ͩL]O8mq3ț5>XGP*<:d$*NAPYR2yNߵb#dNc tR;q ` Slވ9PSᑀwej`UWIvc#@Y ϔ;\N!"Z}v>]#`< *oN_YN# a 0K (]JPeԲ2^ET)ehp*\SؘC@}qAr9wcr(y7<\Vr,>Bbn>5t3EGRj²}mp}*(ߟ???lm.#V:;1N#OCËwI> g=,5}1j;e3u(0ܲTzWIZ%M>@gӠD-1)cf+g, }/1H{:2vo#҈eÁKͶ4z\<D4|]tpíG SUaxWW)@HHjH@h`,C<`9I"/운Ɖ6!ݥ'wem'?k63(Ο1v J8r}}A\6JI\u3@P°}am.Q DȖ.&[A;PKF' Y) [pLDUHtݛo>akzGڹ;=ς6 (;~4,kΈ:bVrp'THC]vY,4&S0cSoP&;=Qr1P$L{Cn%fVtvaJ.U#ThK9TW;}c&9L>Hѻeԙ.M~X7x=vM):/㚫 s`V}iZF<1U`e~5U'>˗p㔓YOK8= H[dҁʠE)k)|wE%4h#I* S^3&IxJXҚnT|!ss;47(76p_UXX8 y+U PnApIɆ Z td(o )خepcMwi@щdqx+Q&ãG/A/8)@:|pײ!t1zߜ\!qs"M=uVNgYA{3 B=%8])X!<BFݦe'LbZ"IY*tB ߺ$;@^{t +t.DZ%N?#"U2+BK.F\ -n`5+vҥ 1Pd EPᲾ^mDR<2X4 =8w)#<:y0iܯ fv@ 6i]$)T9hBTl]/kӫ5E<ݬ/GTC7F4<򲚚͙Y=G*8hPۥE3Ofa%T zzkVYdԉե?\BEmg"r jѶatӺw |jʫcI7 9,NIBe_ \T}ntvkI7t={xC/9kQu3uR{(v)|5^q-z:S| GoGıveޱnNڂP1#݋ +~[|?ѳqS.iD{WqO/M5ñ#fÊNa0gO}+N="gjXu=?З%2\X,xlȩVy\*scF#=-bK܍-eա6qϙo.NSCP.{,Yסk}dmAنrjZx?Ý{!ʹ|ibۻX3B莛V+oTηO XCi\;!.n҂3 vns}sJ|6|>(TsL$WF[e3nf{gjQ I2 Em #վT ,8 4>1ИMȻZ;%f*84I~xyv4kl !/Ev@Ec/ӔlF"z Cy&חBT;3 ;\RbT^n{&W4cU$ؒhJ)S!,:SP0PO~ȟM I#`S X۞( )VŪ;ϩ̡r\vET-" E^D(q<~wb:ˆwPhvԂ2䓲CC7R nlVsPWܥؚ Vl&-#_ '٥ -'A: a vq+AW]~ Mu9 pșح휔 =jZ_< Β$ad- Kڱ i)t8mQ=\ 5)Ϡl^["-] m*g4A- ZzusHV ٫o,uF aq;u. , p=#7`cb TSn+d0 IT/:aڞZ_" M_|OyuM ?t;#S? "gzjkx_ &CNw )ZOGr%( 04 4F ozc {R 2ӈ<z͙EC [ 5 cKU4_. 9arZ<Eo1/ 9# rJGW :Vg5E <Cx8 2h >6)RAbR JM >Rx82 C]ԵԆ J^ b(8<(δ&m K d;4 LZ?TɐF T2H[ڌ TxC5 eZc$*)$ f͍W=W k3-x_vC&8 uoь eUNlB {Rva2B+c 8f%F:p=c o^$rNq 9:TF\14!~ YK]=K9N"0; LRc? RWY ,!tbl|^3h( UCv~>_WkF Irg̿ǫ,r\17% i5.f^  D%:h0"MӸ,~ o%YXZ\ hz U2sa?(C j,9 !${$+ IEzd4EȻ0\ ҇#`/3 < #w|0__Si ^AΏ8Z7ʴ Y>3UH 7 ((HrU\gS_nW ߷c4HΞ5գ YT-yv% oޛjqt+4Wj yK)9Kg y <b^ToQ& ?OS+Snr7 %! :{NuHz `ރl)Gx& 蝅pUV*2 !oi7eEBH ˨-pؽ"""e ²!.* 5Vg i dMZ8/V,@ v`EVzφ ̶<L@|hv{h? k#R*k\1ɭ Wh|, !dPAcғʨUγR Z&%2LX_u KJAr Gs׼,8jw  T" V'$ܣ/t& P^~sg y3s03 UZP%CuF+ o"hkAS EhM]n I^*$,ָ k-97B 듔WR$: R7o>l؆@<H.9 A'6V u js)Uh̄ (JSժc6*Tr1_ )NKġQQ1[i )D(ղc{ 43li[:p3I AA/&Mɽ BBPy54ew? C_UͺJ> Co@{ ET*h8 f64!U G} sHPJ{c Gq.+9j>i^ Oq!i#fւWnQb V!y&=`8> W+,C0Z,+) X٠Z8VI; aIZ&Xѫ htt͛]@b #3 xJ)NQr> }8zޅͩBf'w ~`@Ѭw02 (4 B/@ 1=+`b ј8WrS ]m,$hrMeֺz E,vӝ- .敼OWp2` 8!iz\b jM4 `Ry[=?= Br0M$Go  7_cCPZZn zDb\5fE |ihC =,} j BAhX M=vYAqU_ u^#)}m)E &8(@E -4IqlUR ݂ ZjYF2 zFn d{z6: g&Ɵiʕ vIӏ꼻Jcwɇ 6kUgkMv]*& 5,KKj? kμp4K?$z )O+ yK<G,k/J ՛Nk/)&vj 7ȚC>?Պ? ݞK1G9x6 Fx `~eV)E{;X3 !.d\iAmQ? ^wPm]B JFz5,o 3Wd>m^#)vQ DN[ B BmR /Vf$NϺ}< vrvGbkA T)kͤjh>i l\60O UTR /V>z:2Ғ *qGdpzT5 ЁKJUjfHs 5 JV2ڽ j|44p6  <q7TYs7ՠ# G8E3ZL?ĚlDH JG2 #Ie} &SD/Sw/h)au 'IشaD Ĺ &1alW$Jf s |,b (DX +" [xfysj ]Ϲ ,dFQlOd .(@X]?, 4w g*nC 6k -,O ;:,c.Yw Ax ᨁnߚ_ BJ-p&MHZy( DL'o G:cd*Rȋ.8 T6âقv[A戋^L WsBMAJP XD6k^i!ݥpo YGovq [ ] 'cP^${ў̤ax ]xᘂp`WkIj ^xGb[1bl_j ba̘ȅ]QEi fY-i!mgzrB(| hcZ:Ϗ&(ѐ l;LZOh@F v\"vvM#o ykP_[X|=`V }:\ Ye> Xïduf IKb%<sf0  mpΠn@,, . V=g;O5d7st n`8YVoh 7 Uc7'ED V,YL Cg E6CU^V(t Lhh&pFH DvzRd5isDӞ Fs[ Utg` : 0f5Q׏ vL]^ M7 tP_ʹvI XͦO"Y9@XKX {A]dMʴV!Y j~izϓpQXp :sdÚQe iI^{Jur 3=u\LLn ږӓ6(U jo#X3c\ τ[d=75 ! ˣbvzpNF) $qвPrwpkB ռGNa}D _wr}-r &h4l  V Z׾5y GP^kFwDwR wm|rs- -7s*/N~ # `Oh@ՀHFN.f nkZ1Yֲ4+u ̄K)E& enEQ>-L pתJK5 5MA$n$F_ U)Q+,@_ JJtjW & 4e4 , !Slyp\#w.` %o$fX)YCc 0xm R) s@G 4Y~gd0L@ 5iHC(> <-GʒT ?3FO O}9cx` ?NO'v-Pts @7!ݨZ-[c B( ky# 3 IX*p.NϦ S^93o&|+ WjSnj^;%w \} 0|:V]Be#ث _0,%as N _$81djʯ2Q bP1L**T5'4 c2W(d 0+ fb'2T/oA# fYsL>[,1 jLYE6R}%E k'#d_ oTHSq t"ޤK{8$| u,r+>tj^F w1ﯻC׿B c#1 ys Vp)e G |_t3Fr@SV: |Ǎ=N h_87Д? ̮_̡W1 ؿ=ұnh uَ)~+ U/7 a|)Ƣ{0a:  )Q9 F=%;6_b 9 xllDCl Idvԍ/ HKZP 󾠯F 'Juj`8O9 0009 .ޕZ J8fwm 1>k}$Gp0 E!L 6 z<% v]Ev ِ7 j?p1,^.O וxQ{" K >YiH-W(شS` ťuERHJ6BD R+ï ,@i` w!N=; !<@ДkLvr ؝hEj2`2` ٚF*P(S&<sPE{ + S^ \, ݒl5j cFsE0C ª 9X-}Jɶ- hHQ DD^V# k浐/0mTÀ} Qc9}pqL$ (T _.: 򯲾S ,*r%0 }{ڂ#z 2 B^‰i wD4RX e- u ;m28&Nb)[ vCiKٮ4Tp "9F2(ƌ Rzo?i'  |'zЋ6G psѸ"qG1x brFH 'b3G+ɷ0c.+ ./pK+% /60U J 1O5-Xy9&I 2M竜5M?`FZ 5@7XD)+ 6` U^}O@ <Xld*> Ak;Ja#kCs: ClSѴΛ D <aHau Iׅ lt K=8l'+(K L;1t((O\_" O k7q9&1 Q9&% Ǩ7]d; YAL7Ł({3ú _ԥ'P⥃Olu aSoêK։m a aWegL( d! x3bĕra (P^? CϭţԐ9:O `)2ʈ[rD@/@ @gZf#ͭ{mIi 9fgD Xp! ,PgQH1m*9 W5 _0bT`9 sX״J>y-e: +R Ч\TGFf:: Tk.6@̜'}Z E6",D: Wzof&&}X 'ܘBPzsAN kvvL%^>aM1 Q[-~O{ 8B'e <}ADd9 0UeJQ/Nѧ -pUeN>!C}S Ќ@m*)Bn J7Ung'c!h zЉixm`D \ ko3>̈́TǣS +ąq,bq 'Dr{oBև 3i 'UKv\/ ԂXG J]|V*XTq8 CΎnёym Bs "r'zax? ߙlV$1R`X LmnI>ASL0 l69 ִ!|!-8} DbDLMDk ,EF "w:%ah. J@,:zi둿 u';ī\[:1 biV&L>i }n3av;]i ԑd0>?4.²2WDzK rLzRPR4HWF 85ۈ<uN5y$M4mKbUGp`X_ûOR cJ5#,̦XV'uT{i}" ͥ=<pj̖%@ ]N;:*H*$ͧA&>I+^Rsi4XB]H!|-k)c G|+A޶%CP.jo$!/H 01D䂠17WRm8֫y 3:!oeRLN3A͏nPq/j3W51G@Q]ʒK Ӕ3bY`@ܥp5Bh58-\jf HD6|mH!<꙰wj8}O45ĵ!49ggÛB[:>ԋ/iL?g?(pJhTD+*n?HV}hN#lmD17><3{dDd5<xd^2kVxrYPO,?Y)6M?\ioc*`Z2{h̹4Eae*~duGPvecce5%-Jˉ 6Qbd&VNf,s6zh!!E`qU?dS8kFX?ghǯl>5Wq anPVCM5rܢ fLBZdtD)M" %`K_J=vv(1{BkIYK{w3͉ԲUxRrX7{96:f}DxjS/V7~M5c'qy;~~PŃ>Uke!I d[ ;"SF7t! q( 9UqJ@̌aJTG$ਖ਼ [A(dˈ󘶓Y N(j}093,r[ zKA p#\1CwC`r7*:`O9t0sJѹRD>Ս9yu-E4>@ޣ6_sU63T(G =5@XR ZL`y-<%Z$>6r)mL"OL/)|m ~'0m'MkN_9f`L<WAE" c?As)rϙʭg6N.aԄ㊯f>W)v);ڮ<(ՓuK2H;ܽ\<m;L Dր2 ))ׁc.7\4n+`mf,&2V -8(`cIrkNgy;QbDq@52ރs;+$_f&䳚qn7p\?I 12e5s?H?ejOB p\.ˆW^5K "MJzWCwN"g4;5_i :0iv2]V̫s_[9wftAؚtܚb? H%S#_4dó+BGƄN[+(G(1la"FCϩ9&戶 NTc SP>MN] 8nP[= z'2oԜLaؓ]3]'* `ȶӊ) E~n]%/P:]rnFע l%r~jE_+.XI3z=*!}4nŐҢIƺ!|N]`"px`;iK#}7}dhVrȰ$fOUP*`'aqLb/3D.LO)T4{vZ`)p./,'ѽ1̑~2aM̒9` O}1f5񮣣/4cosg6H㊜cH4㣫\568_Q?)PѭS.]F:Y~_9EzN\F=\v֣  oA$A6Dmp[L7B!MaO9Й0I>O :9(tm2(㢑J;L[V6 \ELm(|"dBxrMjjV<3m,TNQ$_3[O3ӂtQ)mF ɺWh\Q?џRa*q=V\<PP]䄓CѦzW?c>jj(_]pAT7%g}@w^6վ~0drv~."^7H ᆤ<+BxL=[_ TA#teݔbŤeݔ[eJQ Yז%.짐g ]Y2,@~1h{Ƌo /\:%=p H8Zsc髕+)>s{*wV\B\dJ1yuyvsU4)"@k&Zwn[|70xjU<b$n->=m{{ Ig}䟆U|i@ \5*}ki!6K|@]Eni+ƜKEi2 SMx2- KKLX_e6[F"86٫ٚ~+EN B F|Xnr+HAx5~ZZY>Sꭉ^̓Jh pMJi!p_Ĵ\Vs6 E(M8HCoYEVh*q&d49xN)la?Z@Qz,۶z%t4}'`WAL ( {w]U飡>*Q_߇x`[DζSsvR)燾ɉ_E;2nOwѐt-x:ϻ 4 4Hu1;"̱3X-nb c;izM>W;ud%-6 ь]la>yTڑq) _)ؔ`t VRٺ1S9J'T9@ך'k{*dƾJbMT-j4M?H9~¤E6IG/@'Zebu8T{RпǑ΁ +h 0nWM׳AJh23< "ۚ*RPn͘ ɿ1g{WZ8^4c5&Xk)nRoR ا,zʬ齙FZST<=" Av+z2č w+K:':x3 521I-1 $jdj3uz"gzX}e9*YZM3fPQ'q[6k*Ҕ/NȔ}Mj m_9h}܅2K> 27<!2 !{$h}𚧦s6"{HQ#=x G504 W !ԈLe3wPYw<L;J5NÐad/* TY6wFm:D= ݕ7N |5|,:]Zv! $Fg<vI l-?G2>|(o\ITH3)v?01&u5;ApB([=2|C̶Ibh`SUgE拲pSAˉ]R:Ď;~PsmU* DmuȢP-Miƍ!_#_|PrMj0ȿ1eϦ :j*1oY.Y|\\HToӽqd5%ز?}*cyu)څbN>Щ 1!~hRhvK14x(R[KKRUgpvM= ^6VvLٍn`1/]שPRFl|-b#65 u󕣄ٱheM>Կ5̸o`$m,2ќ4@y13^ q@!O*G#azwi>ʳ4g\p?<(A|/uwI)Ѽ w`'b ..lv pWcQqS"~!XfL#*|%[\W/U%avXq0er4m̖RQ{OwHe?A\L]=Nw\CjxdZfU$b *<Ye% ƅ=]q _A@X7Mġ/UIV?&5˓?/5J3G.ON#cyJ :qqXbt$[_G{g%cgT2&s(bӎgFQJŒ dt Zl9W?& ix{u]o-gNbC:(?犒_bR"T>aY<6pQjtivS&pA&wUZsO(7sl€d$a6\9u`Е¾"c+/8O=@ǽ}#PuOT6d ,_C8mp/A@ȽM7Y%'q=6m7z  t ]lFuHs2 mdGSJmOÀ0!2K%;8?ٶ&KS6JY+g{'eSw"w"!pm >'!Y#3&V >%(h Ƚ0* -M`2jJ`z;X capHx.$<PDbK+0cyR2DZ"LՅʤ.z<b㰂N#[7MfN5PA拻P@w-z%Y:yQرWU5JS,b}=X)CU;j"d['V.X*WYw[M%Za& S˩a9;9QoYM=)ȗi@K~Um%B$j! 1/ΎqQn`X|^|~n<{Xs/tB|l޴b}s7<$dЮmO@yQq'Orp( t}hEqpX+A0}T48<co-v>g 07|&Cѝ\\@BBBP@-T[Q7.﯎Bj-0\,Opap9U ~@ZR&$ڿkiٗ["o?L7qhg)?yl$`\R3 vIm Rb \ń+Jj]BtUFbjsX})H)˽d"Gpȭcء !<`"@*c4iuȴ9H}<MpwvJ!'G!F 3,5x*$Ќ2bP=V1sz!SXi`P %oY'l15UPޣR(V-ng#i6Z<&+\/d\Z79JzKIǀ^0tAYjA!ǾGZtk +!6JjC+oϹ] wSqVW3A*~kߌMɺӠX _=~*4ӋjIL q< 2mZ=, lqltWąxҌ|'6x]h3Zu!/G*8r12m;R9lT<7ԁU:Uʡ0MUH{g\oK$ *!ծR$n 7IG9pZ1 +Ϊ| z$ef*> h np-I 7Cz)wr䕝U`L|lלD<xΐ?ɿ jȦ6\7f\ 6e-7Okpv'G}A~?ެ4Ȝ0jM|qFzUj X=#LiWR}/NKӱE;bxfbhi 8#C %b(!v!h܉}-@ )0l|TH-<,8k,8»,Smy]n1SSr1Y um[ (q8z!k!}E$)`;D32xU;0\5)#+-m?Q{tir-+C,) lPMi_AF|vx$<?QÛ*tT֒"R|nBѧaSň~&Yļ^ sOUO؅^X1>^]{UC( gwS?VAfw ]2}A)ɥTbBih=No f]R& dC$Pi}u0ݚUVq8j/ zt>e)`[j #xumQe<%3.M^JRnأ<>NqpeBvd'2r5>RMO\Dv/^Mݿ-<E8r .|=v7׉7p%1d)s@Uwg94KvUx`8S0 ofs)͔7ZV`QeH825.cx E1S9:mc !]]4f~fd,pB rk(ס;+Ubh5u3-lN"8$vE ۸c1 ;Ѯ\~[+ qa~{n &N)?¥ϊT?=*/su^cƘ%.Θ7yX+xW,SJl4$(MqՀ nbRMq빉-^ݽN ۃp6laqYLMʧkRUE'%e Klڰ-\ڑ!*(F8A!)M'RʇnӮ@|6>*p#+K'yL!4X/2k'ZHᢸhEߖəofQiPbA;9#h@Q z/,_|.xpKMғ?,: [2$33 K⊁:yllUg]3sEOO y 녑wi Nkz"mMYϙY͛(P)7]N+cS )gZ^ `"QɎc=SYNR*1~O&Y5.J7y>Iu ' 6:js;+N{%Fq(KY#L8+~H ,T 5f2TH8O7uu.VXd,:̺IW(~LoeK۪CJOfb?oO>+*<Q+f O*WR})STZ ~x = ar%|\{(d'rUSIÄ f D|.^S gM%^u SspiUh%vf"˜jS{c4iLR #H^,z(әliz8:)Pnېqs5eL"E2vù5͕15 xq_S Ⱥ{]N}͓[[Y ;~%"3/̡T>yuʏY|6u{arZ9|a 3Gixk!tDp?L|ڔ#a͑!pQ(&(h2:lܻtt)0DHk*/`t3\?UD+K Ӵ.Npe$TkQ K`g\j4z5I._>0m ɇFuU~6o3T>OINI{ nMstU7O>=E"\uH|E\<`oV>]暗bmۡ8zZ["_Ͽq頮f9Ac/KjΜƖg2tY>N10 :[04=nS;FN`Pef(_`58?5;B]Knmj@3~-=\:'J]t&-vRra6"vHJ>-߭Ax:Rva :UJL>U]-p vQ-KTu5wo9s4=$Clsע#.K}CY9);*l5o8/2,Lܟ&jvRj-26V4MiEqMJӉVg5Suk }蠷1v@G^&aG<ACfv$׃GhZ_I DM<qKBSD`t١W;W܀t'YLKˆ|e`=DP:<CRAR-̟7kQ9ӅD젬PvZx\1?UwNC!.tŐ|4RX}\%*4 5t> WeUg yA.Pר{#[h )䡬M7 215@0S_M T9wov"~dV56k| ϕpC%.JE7b\GWnQ_bg`Ok[8\t͍@q<+JB.p?Ű|R,`Xw2>|4pcr=Py{/&j4WzgoR&~GH"Y=IL;q(H}2) F1wvs-&zDmϻCB -g$.xMJǼ43& XG$xIERmŞN)RO XΦUZZ`։γ>Y|$CE-ɯ>zXXw[kdʳ[ʽ'uJX0ɖ^0Jӡ$^tI]_0t$&Ƈ6PcoҺhepk&2,Y${}kZߍI%L}6m:a74Y.Z柟 +plލ&>v32sC 2hZl7etuqA~T{Bv5@Rud {t ,OIb\}l3A0"36և>軀@5};euVp1&<JGSY {oғmhjFDg3JL O-Tߎ}@8#g_6+qaQhnxJN뷟iSsאi֕qt }}8Wx5GZ2\8”tI</, Xae=g^\vOd|ݼXgzGݭ%]}H( gqI{"׹KhUb[vQMpsF7P5ԶytDi}^%NK\@t¿Go6LSvŔۏGl)+d lj.ɀޑi;?Eo;GZm ۫jbY0A19n/4=F d>~ qZPuV$>tWT3W` +%R[6LU14 GZsɓsJ-NnR3ܣ1YAP#lt<j QUku׀T:iQ۶ZEuyRqW\ =f7!XS4oU4^sgTnlPcMO<k~VP904w\L/jHvX= `G ΃57rZbp6?c6$>C #j ڈ"%o^ |r$Z<bGzCD<olsO]3zjړB !Ffǩ)ŷl8й>"avZ¡. җe'f}&$*G&3M'PZbwұ-_-cfV'ʔ<oXoá !0v5Mb143؇p> ygҍ9S]Fí#><5+_8$ߧ.+?ufC+a=^PfjN^ 6ZOaw> |jց_gZPsE}/ XR4QJC8!kƤ߰WxBzq . |\U}j\^I*vhvq+Fc";J_Ku:܂鱺hC.Ɯ|4ȕBטhgF=l_ѿ/efy<F>;bP]*ZL?6*ENUe[a˗A1"9+hfXO|#;8ɹ,;ɦBF  Qsj;z;?%[Q9iF25M_ p3-"eE`;*4ȝ+KA㯌7 7[2EfY4Ai#ܔP #2Yi~ycځmھ% tgGgvN孝JSxsc>qKVT|wdgꠧHw`+h>_KŰ<PkE8U vf^譭S[9rk;-]] -ZX67rܶ|59 hvcGx</ϫY9v_ԴzR9܊F2g_JN'2bH̆Fr B݌dϜ !-.U,&<mľVY\]YͼVf5QZPJx\7VkۃB<Int&G+צY*=C9g`) ߵ+-+Wu@N:5 agIQ +$OtWGTf e@pKE~0V E:SQ+Ή/q)o K gO_+懘 KZNZ=^޲cY. ݵ2h8䯵]&2뇴k[I_yԼT{D+&r QH~Ÿin= ;-? \ݘ\$NjЎ?\G\zocľ&'MtJh_'Ȓhs*݄ t\Ӹ-i-xH|qVX9"/:;)IE˔~mr29!;(t-5Gчdtn@8xS*ʪts2:jfb$O4<8~7xq,?RWaxZxvCot;o:?"G8KbtU;JJ0 :v`jn|KE*dƻ֪aPkL~F3ScWy8S^ 6^8'q<;Ud DФf7]eLlZjNj9kôaWZ O|? Hf\Q(T<".y\`SbxcO%b4PLOoJe_gMB^2T?Ak$Z2%HٸpLWKpi):Xu}**yNYa=.wc|G'=ٺ|Džj}+J- |:Yr{^*g驰zpWG MRzive"&ؽzL_{>a=nUVi3),">9rAeszw\+(ahaÉ+$:qlO|@BtӖZӬh(g;W\85e1U͏G*vWү2~Kl${Ig.q4Й^p!$Ⱥ(wm /(C;كWKkS㑮t{{'d . %;(a@'_J3P%Sk"{)z vH#Bk}C?ǏOHl ]J 8) NĹ 7NK ;ūcL,jh{bƽF jy&|޳`ucK ̖ qK'iyBl7fl|ClϮU <y̟,K6L($棤Ἡ伍= H9E1k*=T^6QWc2J3oU淮>>bnI R׵b3Y /aVZ= ةoBz|( ;dvЁ H:1`e Y)>ň;5l۷Pm7r#5m5 r&K]١Tol],0[d抩Z;:~*xc]l> , "mUo\'AXe&vK/ T^2f)84dAVfO|`8ulW>*2x#(FtO]vH'םsp$ `R-lv I>/^EFd,d81^"1tȎ%𺕷:sx(&![O!># Pg^2qk@VbfmepӶbgy@N Z*:)tEZ i ,{CS5Hr^]LUEܪkAh Z|u\9 1CxV_t.0:8-&;_E3K`I y ] Hh~`Q&i^)@togI(OA;%Y9h?m$4/L"|M.jjERrgk k#l3 %D { p@m6M=bM/>Ǣz@ v6['چeqz^ʹFpCg$ݧ4yX._4kӃL#֟va4wһM޷AvAis. bghdOfDkJ S} eř-}}kt㢑G#ٌ/R(]5EMn j3;q8h_sLs6mTޭ K.zk$(x}\m^S}'ϑLn @^j/-6NKo${KsQ]SݣCڐ)d`08҈FpJ [jaRHH?g;i &\ÿjH-9dDIzdN.}*(ndօ! ?gUiXV45,zܱxh|s֊^a681Qv'h".vΝ-^1||~N%6uV͎ϵAD]gI0w<x0<8(f͔)mUܣ<Qo4TP{B{7vmUG rސգ~PC.Fto1LT*wx_t/I̫OvH*TF8þ }[ݐ{w乏Nǣb-_𫴣ϱ0K9&,޺O8K*C)i+ i},aA)Tj /6gqWc ;B+* DU+I{w^K+Rf mZ ON yrt8Dw߈G5K χj)qUxܸ$. pϷw>^A? .k9}_wQT/pt%%56./r-DaU-,TT, 7A~gwT|J b f,n9 rt\KqT)q(I,Tj U+eܶ\(kqO!.0B;=hK1hXV[ɭ8\CH6YQYauL,OŔ7Qs WFIy8Kd@~9P<v=eY\{?94Gk5:fAtuW<SCJ3ꐱE]8gUAjFZ+SJ<WKGqMgM0=f J"߂2daeKifj^{'ힿ ;SˣsXUነU:w٨lZ5XK#&j%F\L˻ ]uombb|4l<:I[E?˧sp<Z_k[ʣs j2x@;^JJ1JPj1z:Dŕ;{ꓦq}/bYO50`~̕ӣa</P#zS).(JAȮkmLu3FJvo2}8wZ/?H[`別p~J w3 rJsrF1'k6X.dj Aw5$hIJmazvtMA+-z;Pl;[:Blk{lrX>Q$j*Í'-/_sG~\ }2)ܠ/]ȵTiuWyv1^Jc]>\IFZEs3h9u/̱dQ!јʿ1b£Kdywa25' \B|25[}}&GǔNYr$(*Q?y ;{usړjuJj%İ2=[.RI*ssqgv dZMb'(晙%͵Rc`~ZxiͼAe9$otu.0?W5ș~~`je2a`.m<De~TpIjŜ裵Z׽_Xc3*hYrk\62^sԊ"J9^hd=VN.l9aōj$*ȼh@5c}߭Zqlc P:MEWkY\T<k[a]U8(uM(ed"Ol*_5&4I(c#V`4T9ꂰ k? X\F'rp;}}1xWFc4~>:/d07٥`hz69gz^RpJj_8_Ck0Ɓ.ڀ@ >NBy]D0Q]5m #ZbaQg#K$* T0'2MUaQR(wl*e)/+xh$mk#%};1$m|V3#R7Y4%- ׿=e4W͌2K>LJ ÿ,q@<s0gݲm.ȻEHXP1{&#8Jz7C(0Hln΁NKVv#f@XK;*͐lDNQyf^BS̈́U@LVTr|oh6FȀW/˧ Տӿ4XOOo^cRUX%6敧R?:G]kIPspZke[ _N VF82Zߤcl9y2 U7c"yq^))"dSRaO3zFEi%hEf<j H?kD7[˪@Sqk E 4idzrT7w:myk箿ʴϽ9 (rO5?=7'vu4s =TQёvL ]ǶxK$⻟xsEzMG?쓝(cZeW!A>%KpTgO#<qqXȟ̢5s35j:"bN&U7G?s-ûw W٥IGQiKs}+hʽm'uMht!1ѠK7eWKPxF!MeuQpWٓDQl+6iqdq@@SGYKWl4%-H\1DKA(ۣE]gjƴfrCwhn <> M#X`oB#Î30:\^Z|bX Gw+.ܰaVCۧj+|ց, QWck Tx =ʫEkn'3|==~,Gp#"$Ɛ{9 d@G} ˪9Ѷvoq9գÚ~0!v5+ S(贓UixL6{<} vN͹C4XN% 6[:=l60.O}-0GXLv GÇ!_6C3*Pڬ1?SȲ B6oiR%XΔk2Y#li ʪsKMtPaGkh<RF6Hµ}eFllwQ`Z!V/9 -';ĦG/YY$C$]5\Y&+5=x>]&4kL Iy/JLyb)Op P5$H^#OK5}ujj{SU_1z7q܄PFtmxGOuluUX;/D _otоnĵWڅ.%p8ֆ(O8IR;oS'%z ?Bx {諸Z%@$MZNma~Ldq>@JOȚ@V"HF(O$VJ<;%DeE>֑T<7&l`B 0 W&#m?2)'%ãZ@6)"̉--|7y@7U-ܞYٴX0e/OtS5˵Ox10f̩?nҝ~W&1EO{lq^hܡd6! ذ 59 lLM98u^^1v/ē3=-G@D'?RW:ܳ(U!CMaę4uG<\C,wy2畍zohIbĆ3<#T8s{%Sod5YEĜZ|/G=Z 8$,[jpPlf]\=0:XY2+]FlJ'Fb_c$k(a;vbW \9N{ )dY0)a;!eh(>f^e 9xйQ/˖r8lHN$CI Q;=md"L2 o eIvJrisyf"As 9 V s(Yԑ6=q{q>!> 3|g]gg[x8PRf~OW .?&+ 쵒Uu=o;t8cO붤9kӡ^j*NK^|l 8u#*XP}d.:^ 7i:7LH1SUw0IP *:N&5#qrزTu)dd&KzwLi\FAP q#N<XYځ]P0jqx/ dv4 =Z@>.Ȑ|o)P't|e3#+7w6V.}dZn7l3egaRw^=?LhҝJ0PZ]H5& X8'i^!$G<5֒ϯ=q(ncQ6Aoj ;ą_FȒvף_¡gtߩFzWȻ X4޼hLvg>M 2}p`6kѝ*cЇ ʀG 06?d;HmEm׋&cl,ox0Z;BIm9O3U3A}6rp.TvI0|;FGvܚ)<~75ιAvbM7K+)+4 >>+-;0wOB(8b|A>2ߛfs{_I< 3nG2 Nb[V^3Ԧ=Fzt7 @fͨ =YM'T-c)K=7.+ȊI<ve+hзCyQz #Mu`uva/bYZ\厂* Y \4a'B%I[7%ؾjk=*):VSqb;1_Ý-P *p3Sרwln-6`8wQ'G5Z$f\9rԝ2&/s{:܂Js},O>^W](&#M>1 wpl??H? wpAnP@p!鰓o U H'Je KkLN}0^uuZl=񏝋q7\D|wM7ۊ%c{D/9e0ʖ dV_9ghkTǭqa˪h""l\q7CO. dB:vnۢ=SQsI?y=rK\Vn{W5yd-syBB%d93Uyۂ ~ߕZ/MUk7(ݵ=k?|% @ּUUnѽ+MHl~T"&bOa+υTK'6kfSrAw3gL cn[/*?ؤKı5v2Ė[*"/  n(θh[cKLH|tJ~V^$K{B+&>ǿOt0׃N벐BOHI%@x"ukz[:f bI*_68Q8EW'n⯈oJv812 kzpBKӁe9w5u;ÑVHkd&?[1V,#de6:*ӽá}^=J>v^8MǷٔMK</Wk&0v9y)(\(N\s_W<$>u\ٓIߚoN'}j?ҙx{N/y)SC܈NqjGbɨRؾG' eG^}JW^{QrRu(jߘKhb(ا XU7M- !v[|Jnz8 (⧅Ct tw &OY l}x?hb|jT&lɥKdwSQTr&*{1948D rlm* {j' ٨?QDϟ2BH?(u/CU/Jpp#uDG[J_xpMlK İá r 눬Ns;8p 8+*]F-KQGp;|+9 YI6(^IJ[d6n\'47 oFHݧ?˵ c89crvИmȇFu'\^<Jvo ~M{)UU#/s 8 "5v.ЪRmܲ,ư $p{U2>Έ/g*9I^ua4p{Nω# 7z $[hߥnH9 _@&bh忣Bю"BdUXY?V~H>L I(ۂKEwaSdȓ+g8N&G2p6VXyaVG^IqD&qYeK+-V Y*jhMsaoT+blb@$f0cx`Y9X*dV-Ѡ{,v- uu:"av1+~>:䧦uy98ZĄ)Yк-LGNh dM3=1ň= |? gFg{Zw´]PMDJ9)K'ؓ'D%[_CX! e` - "G2X2m-=Cz3l(PJ7;0 ?ϏbIHg3RǧQ`>hcb!D:Z qR'%*Ղ,Uz8Vfe%H8.۳k(:ǟuWZ9^ ccaAЁ-wVALG8Y3]V^ kt<^9dsd ی+ +^{.(2j?ffvC;sA(ĺM"D)}7zkoO[xG.t q!"Li^=#,_<v)pot{SMp犝 #VI9QّWW*«gQBunQK-}!!^Xc[Սf^&Ԯ 99ot Q_ R"An h:W:sI<[C-X !KX69P54n3X<^9ݯ:v,@ t?2&$:4O H-tgO!$7v;a) 335>"F>Fl]x"c_NaD#&p*Hi^'5n|d+ֈ+J) ÿIFGx1w,F_7$G`hA)Q3x;8kD /&=Ҍ{!_/NJE{ ^Ksh|ݞ!Hh;NJ'klfƗZV&ZKLTD _y46>]e:W!&w5cR^0f'Ntdh.Q^hܢdA?;EOt&z `mrD"0yϣc wf0gh25c}G fh Rh\1ӽkbVqޭYM7lnVNK]s"=m-Ԑь _>$t owp-uܧ"(RBv_f/$:چ۬\w!僼R\M7}noyT/Xdv4Q-ÏO:TT\FA Xp`)`24:3FIxW] X9P5 7\gJ*3$`.Q1:[|Z;&7W$f젌NX K1+(_Enk()i2AEf|ňotYmwhnuƽX|ස;.sti=;)Q@l)Pv卆UXL>7 rwi y?Yb:A㢩3igKK2zѵO' d)Ћ쩵iz5S_"*CDȖ9JI@'rI1WEzYq:k}|[^t]M%r/t\ѿFNeSkvGe[i:,#쏲rb4ʼ^u9Qpj.$Mt#Zv_,agDagٶtls|θ (B s(le -{m8 '`&^?ӳD_bED@ )Zډ k٧X 3|ud'`e 7ɠ!^F5, ;>vX&%gkM?VJ"$%$'Ȼ_ê |M)Tx [?;SŹ{p yw )a9" 3~2= E +v&JD9WdMJo(QUDD IA>W}ޚ豞; 8A.=zBZ] | 6p+dI냀T"1{xKbxi])=f jk<Sg,}H7o&sfv4нx F4ٺW7RU2D<"q]ZX me'+C޶\th*ڥF9FZЬI0FUF(8~= EKnħ`Ѯ6G#T}GP6`"JbRLUZSjijW ,d]<|Wu~m}pQX {ok)`iZL;9ð .I\MO"QEgx29p\H" P%X2^[N޷H/ A1$ua z$YGeW<bF\%,[XsdjTDW9idJM7dܴb(dF3 pvE>y,h3{/cA3$o"?l.V,u7Tzwn89qۘ skna\u[Ih ӂpK]Խ85MV)Zw/M6u>RF=4}zuev~n˘# ٹО)d}dAZ@7:DoMAq%f>є :zJ |<.x24WA%P/j)41ޖ}ZQD,tq2Q߃M`nB跮z; q5.2}P匋ęPye.keko@8}`_WU| )>VQjHTN l?d-teK1K, p1qJ . z"aQH > \?>jG`wB^,#/mK'KoۺYbw xO-Y3Ɣ$_vW[QwE1N-" ZM:ږT=瀞P>,>w],/+d>Y>:n(!}NT-^jG>G3:AG_Z;9ߧ(T4J&v3?ިzM RCĤ)L , cROy8*z_[+{.ev&n3>Ƃ_z%,$>vwtҪT^5?Gr9t-XQh?M#Pb=U,0qao$TI+l#K,E:\2\0$뫣kf0<655QKT)1^] ف":K-Dt_ ř~Rlg 'ӟ0;KZU%fuгZ1&>p) k +V=}v<xB"=_SOt7(ڕx@݈d+rn8+Xm-`~VP"tG6Ny/]Uv( /0Y/n5WJ4}ɝ2 :?v! >~jQՄ[@ӹrV2څw˾AqƸ9{9*8B)z|X$aƋD߲YzFaH?"kQ[/ QVe K>Q{+eNϑ̲V*\Uiz6P5M>v<Q4hF^hQ. xU&gջ}%4^[_%gb^m1++խ)[$ PIabϩѣ-(NH^txetVHaQŹ*kᴗ@^`?/zx:R tf2|}t^r2X̉~ , -S(yDA@ģ쥙Do@d|}J!%.ϱ.)ںr!'jD.W 'Oeh.a wJ$TC&$_!ʂ퓣8Ҹ=uԔ ~ URTR XɵbےR[dgTP,{׶6 6𔓕Ը8yg?Wu;Ԩy$kjiM:{۶uHvo6j7t 4J2(ymNo?*۶% ՟`&DE}B-{HR0Pn7 I@M2hjZh~S[W C ͅOɓ1чb^쓲Q \f(Ez${\ɬ.j.Mospr*MLM0_k.,J>šږMTERڢJ{{YɚSڨ%R$ Uq8 i=a;h ;-fJ&41Xlj[Xz -]5l?o&>_؇fsU`C"T`]șij d@H)lV@RE =(oQUW 9d>ӵDFRN )G9uqcPaKL" h?lO+ (111ѳ1tnS( QYBFtq  ';*ke|x Ʉ4|ҫKܦ2Ti9 Άsgx .SWt]dҶUǂ & +R3c҂k-1, +-Y3]OngΕ -֚^]F .?)(a0KMKl .O:-_P 1m7KPpT^t 4_QxTe 8b:xV|wp - 8}E\<.?R @uwQ2iޠm Dcc* I F/|U6P KC@NI.<A} Mة5Do[;1 N|$|݈*j7 S6sͲ } UBʔsYJMx VzIUQHT XwP6QW~PXZ ]Yd,<CͣP _I+Tq, 7 f]+(oxs~ wbF-`n| zWZurWot }{PW k7 }CꊮPcة kWt$`u ;ՊY&q\j{6 g^ HW W/F*'kNv`$ xi;t; K6 S=IK P 6/ux'B" @cU:e.Twݚ 'y.!?Rş< YV-԰5?>h Jh dxE ;!J$c5'  uo^LX6{{h. R WyNx0^$u( esѪG " 2t G@ڌ@q~ ^(gԵDTԬ mZv9 >1827cn .谒W q8 'ym ϱ|6 ,e# Os0S2 ȍ$󿀟 Ƙa>ÿm;ɜX Q(njB?.' ۄ|RJ&N >~l)DQ) 5 DlPk S+] 4Zm\1RR C Y=*Y~%& we53Wg}~]+ "R餋w 9+M**|K!zk++,G~.]!O A,zH ! P %+C!Rwu2!$>,ppRp!<5p[5B.=>!*֟Pw72=y4!GTTL2a,W!gw l|M;b>{u!gyeW!QF?9DQ}w9!1/ TQz.|%!`z+U%$!΂brirtUI!߶%fPng!"GNAU4}ZN!* QQ+!,l5@'ǜ&NS'!/b$y7Xj!2u9lluzlY!39cdi.K=rψO!7hl QZ<!;"Q@o"ZpgqR9!=Dؓ!F>b}:Kg1t`^zD!N%f;fd=Pa!Smՠ)+8έ;!WZҩ btTZ!X;*࢓1t!@!Y . :*GQ 1(lP!`@pi -f.h'!`lzPmmGS ?I!a(U;yln֌\DK~!dLiX'g_].EvuN+!hTX,H4z!i(PMJR,!jN +mKc"M!jQpRtH!mj?VNM9n!rh:;DE~!sЅO "|T?)!v%q>!vFR C#RH!wM%2d9]!wheD#Jشy!zal7ќ5a!~<K텧:@Ȓ0!PG`mjea^(z!nj[1B̬PѷnP!nȩsshE4@z!5BsZ$3!!۲dck[#2!b0px![N:@,ac!01WHCH!7DSB9%oɃs&!}eM8(xMfC!)d.ϕ] !w ah6ձ!H[2n,7!H.㺷uM[!}U4WB!df~! V{*5n _)&r4!.RA O?%R!c6(W+ !WU:c߅Ni!siɀܫL0am!ߍHK Ee܊ɬΖ0+!n6 :q!'ղ'PIi!MNU_2M:C3!ǦG y9[20k!,d75Yhd=!ɝ*Ј`͚­<V!ˀYy =/M̈́ !<`=Yq~:S_+G!Ϗ{plz5E!F 3~ENat!S8|nQ1_W!-˔/p.dc=œ!ڷaV?ɘ ``f!x@b/[ !ژ̨B79(!rOy1d]si!hgR[W$OG!4z>G&Zg'!F"V3@ikiDg- !R<\<bE'X".(=D"eYϵ*"7K([Rv2t"{&~.3zǎ"pcq#1{"_z ]e4G@x"Xԟ]=',+4:"'yT3:b3?"+D2Q=,?f'".h0U)'rÃTw$"42_6>[ +":lt*9 YSc Q"<&FI\dD"A' *jk Z "C077EUë=("EGSIUX_G&"KaW8'ݓF"M=뾳8Ut>K "O]fmTj- Z‘"Q,i &/'Иs"Wcb_Q<UIdʙ"\^hOJE"`>G*T}B"b<P6=粐M"d$J4}A ֈ"j Jӂ-툛tUs"lF"4\]_I_OA"u t)v#H2"{Gm1Q e?_rIT"{YM /0MX*"~Zx>M!ӷlљU"@ko 3q"늳uWA|Y)"l&M&Uѻ"B@D]."G*`nioIŬP7 "- yL\PƤ F"hĻkY۴gbK"i}Z UH9V"g븾U۵~s#ֆ{"A9S z~"[IV i53_zC"g5ׄ Bc"#RMz `( ")_rX@1 l,"l]|o"邫ܭaiA3/Fu ":egN.["\cߔ# ["o̲SfʺoZ"NRlbQI"og4AH_ 8 "1zh`ug"V@B B^wE"ĩ`VUT{".X[r T#F"-n>~%r4"E7sR+gpRt #0" L9*%Y2"ޯI^piK Ft!;7"SA~qcwƖӂ }"ߕcWy<.KY" /͢oMΖ"p"-A^՗tҫ^"c+B , ,p1Q" r~(nm,ɝ$2",N?TuA5[]UU"+JNY"}0`}$o V_,#'`D<-4̴#Sw>u̓u#h_03af,* #`5w*dU&)Z#oPA~!zK&Y$#Srgַ%Ձ+<Qa#!k %yq<EXui#//@3|FS r-0# pG[űE}s`M#'y<}-\:F#*Td4U|d@ʹ3#+RCIvm;k#1Tɞh˃%#3Jh[9F?i#3Kff6LK: #33#oWD#6y˵*B<s#%~#CϿb9="6#HN3%WS-7az#K wl&#:Ju[n#aǍVU1]Lon:#iȴxC7\!il#lHS˴@4غ&Z `#m,PlB:4U|߀83#mwƕ^G.#ov 1kF(X#s~V\5qy2C\#t z]:y0^̅Ћ?#u=Dkz;>#u 5PW#wx! T_\RŇːp>#z|#|34yVL?x~B#}z1$50Kls!#G!SC/l E#NZ`11G>j.q#'hv(P}1Z#{w!lcϏI9]#48ud1);A#Ĕ[ DȕM#STO:m)+5Aw#C޸gseg, ?4 #_+bX{&<#)}#(V1/_xM##וS}H3i3#|~8iz^m#LJ?6]7T[#0q=FE#FIe4<:{J)#k9k[$WV6# 'z J'kԒ#ύOET1&i#h3d_i=v#؇Sr&Z9#aXԬ`8a#Y^-8##mZ@`욓:^#m:fi63} ##ReO_׀ו#y W[!`#sIm \Vďa*#ɔ) niXE0#L#Sx)-{RvD #/I"!Vf#أ zWd5\wv# FW2]Z#EL|T: ʺ#Ϋ5Ygʉ܏y؍##i)ͺ5RE$# 4%>h#nzC<a+ dW#M"-{%? է#ѹ&A* -6"m%R#釧$^= b#&H¡C0{`#8ys$)XF#::+ ҙvDK##5i?[jN#c@Wћ%#7Tb R|Mqo<#E} `r8)8 O q$ałQ@ c:$TKU.ͧӪSɒ`$Xkp,{E38]$F8Tw^?v Ţ$ ] `oT{F?^)0$ܕ!cc- !$J_Tw*P$!n">:L޸JYGc$#v(Ɔ?洸<"$'7]&dA= Xh$1XF#LHN>`$<PQ=1z-/x$@O%Y(@Dn$A]ﺈ`j7O1]$GE4?weP$HR[2[xe1B̯ɑ$QQCVV~}`C$TY޹<fkη$\ gR/m $\{m~!n:$]9,lP0(X 9$_Rc<vxՏ;Ls ޖ$bncU#$KI{@$fPȌo<[ $i:B'ޥ ;$ly]Ǧ}~# $l`Hh~-$p̘ DӀřלd~x$r7BY[46 $s0t3WH`$z8l⩬t$}UvZⰦWVRPM$~;a hGwd')$skUڥJQj3Sy$Y';-m>ʦh{$USq}S2s%$.kBˢq $[NUDӧ4Z&$z{qY%v y$l6tA,|$|'(6X_$8K*?㮚6m.ud$sYeiHQ$oe Ź,h$WӅDi[ht$WV 򎹣3L$C&+Ibn@ $9͡vG]f J~Eb$ƁqɼOq|qf}$Ȅ,i;X?8ea$=$k! $Cz\Pɝ!8($ςD^?J.RS$ ˨{fca4$XW^I1K@0a$ M۔ \f,$`~VQv=M$&)1x@Gz:? $ި6LgaY*#pl!$⬿O_c@l]A$[q35TJzQ@$xzTI$7miJ6xz$٥,GV\ۗL|%z1/\g11M?M ;%NPtMW"%J=d9N &n\%K-D^Zqnh*k;% #m&+MXi %O47tpX}i%ڵa9T,ϵV>_%K8 `>_/\8%*՜4<o%"OprUχ9%"D,78P}Pq]%#$D&ddfh%'*=B8%-IP!CNrBM@E%.N, n]b{k;s9%0:^`|XdyV%0FPCȆ%X1f%1!@^._L%26+/h&{F!9>~-%2^12wa\rl%5G*XVT\f8%6/A-o%L\F]_Jo%MF )*q%Nk|bU ] 7%V3++*%bq}dOɿe%e,<^T@^y%eyupPW_Mg%fȿBCٴX轲|%iRR ֩ΏpOgYv%l11 Pn"6Ԍ֥%pw;0px٠O$id%s8{]YXM@5:=%uH mǯfsAݓ%u~i|zG0a4%w,J=I]Χs):%|!8 *'0J!(7{%|7ڻbv;%|n*Uԇ'3)Pe{%}P]k疟9Ձfl2%/:֊S$DoO%zF\xC%̀EM57sI%;G4i}t%~zh3G/.}`=z%nEpeo/=gL%g|9Q:uskŸMb%ARj9K⳾j%->c] Z%~~ >DZXZx%tr4?-RHƸ4%O'gQ,<E<!km%ײb%Wu_Q V1 %W"%U J%bxd$FٰdL%?cg'}%[=+}tFVg4%T"gkIŹe %Ckn1VЕ %ґNvv%ҴOfYDO%0Gf|Gc.%F r!{[j0f%ۦP<ۅф+]%N煱Vp m9;Jux%a|Ҫh1)4>#%ʬ.^g@ .}%qggT%dE{ܼdX{6O6%dnzC9hګ%Ey(#9N%dzF첿_v7&R se&9s)L&7 ]=Q9ny& f7|9K}Dɛ8& LL1o쟓o & Vp]ֶ3T&km~$ps<&A]vcs%53H&ބ qĈ@&Z|*Vc"B/i?& q/fCXVYN/*&r"O$}lǀ&#ťDF^/t)ﶤ:&+Cɀabܥɨ6-&-[ĥb<xy&0e2yi]P@`$s&25&27=BxS&6/@{)n?d&8|q"Gql|=&;k'UqMy e,&>ó$)5f#&N~?Et&O&5$mU&U'f jtΈMբS&Z^+6N6 xavM&^sk$׶/j&_1 +wb&dza FD ư&g?V4=(&kU܃m_@q}m&k#4tV\FZ&mqJ2cb~&pBxx=u &q-jYCEoV&q/u Yw;ksS&v+4//6oS&w T", {73}&zB0wo2#sr훎&zrwb8>|1> Y^(&{^@@42-k;T4bϞ&bMtxZ2?& _Fj}4#5?$+U&Q6Pt]0)<&Sw{e1͔)&UѠt (EX Y&Ue+M f2vh>M&hEzek%˭D8&B0eh!&HVx\3ڣP@&qX3d* "JaV&3#vVǓC=&o  $ӑ&/ӷx7&4wv;4aLM&Kg|Gy톐/&,T>ЀIR3SZX&|Z ZO&΢q, zۇ&ԅ%KaӰf^j$&P( e月`Y(&*夲J̫s&ʈJ}[&d^$yfٖrn(iq&jAN~ntqQQ&H*YPv\"&!D\-˛Kأ&v"HGc|]_&DAXq*s|X&@|=Vrk jKvfŘ&M$ٓ;F 1XԔ&Le9 z+'"t;d B&#&hcp~Q#\'R=T.@!2t*'<Pu[ B' ʴۘiW%I' 2g er2KVv'=' eڶyWMz'֌n~ |礵{'PNc6`1/}'IWfK Re'YHuaSz-I0o'UZGdj M'Ċ+|$i-J'W~)=K 'Ivmp qOC'Պ<CB]T53HU' ]EHwoS(қ'"pOpB :'17pi]]=9rLA'4}/Ǩ b(['?7uh<\FpCb'@0Z^MS"L<'ClO2oV.c dput'EasjU)sH'HX-.+ndr'H ;V;Ԣ7(j'I0bL'K 0k[ {ß2'LCJ@&NdW:h'M|ϛ(h'OC2|5!'[X/CQx'^(Г@1l+y'aaɹ_K&3 kݟ'b1prP1̽#ci!p'b%zE7Ʊ}^'f!&+/'la_d <rQmm4i/'nn5hei'nag1 ݹHp's"߱pl ݸ'{ e+ovn>='~ϯ Z돵\?o'fO$k+z;'-^*.Q'ޱqI0\ubsk|@'26"0)-1';EO47׮p'RRۭT<v'z#,3FL'| lxvW yT8'Lχ:"aPs-X'_![qa' d"N1~Ys@ile'@;0- E('NӚ U?W`' a2Rb.O;'\ Ɍ8~\i'qFLxCX?*C{'EΫ0j&~'7@t9j/ g\Yʸ!'d3ʻvqۖ'm&\صp]l'yҡA>ԍ'}X/0!6ׂB%ą'Լ϶C_j.o_D'k-,E#'yK+8'ؕ[ YbSzM'm R./N'&+$׾oYj')yӂ̞'kk ie't<y/X#Q]7˞'ꋉ V/c(|$x'I8g]'G@]Nâw'FQ5V-' ܺz@?4߿'ĤG!=͘"x_'( }5yJ=(Y8v/<kF:4Qyu(|Ax=>l`Yy%(zUU2vv] (`Â4˵C-( "K"" h(uuW|bo( fd9I@L(Pҋ<`A"G(;-8cn$a(5eUǤ( <}_1f]4(0-A}v:ΐQ3(2ׯ&]Pw(48$tBΟ(5EɦH=POg+H(?G w<*e<!(?ګPfx;P(A9kÐCzlVCHʏ1(EѸmq1jI'AaIƲ(GܧהF=(NXA9q|r2Nf.(N^qS.U?K(O).2uM(Pjg>?檲3_L(W mo‹P(YԿ:g7q\eԩbM(_2FGN(aG5(` @+G6p9ʵ(d5lBͧAIys(eBXKZ=:,4XE(g?4pc<Hoo((g =Ŧ΢ vA(i{1d`D%(l tRC&5U >O|?.(qBH eDqq# z(s\c•:gW(t^*[qR}({kzhQuI~vBq(y'r=} 6(s6_/92](o`EbES(͙0= پٟ(^3Xy(.*:+F,T.(ͬ x"EO']{s꬞(MZ=ɍM/9(hFNXxbd(VtЦٝAno:(Qz|t'4`֚(83aAA rn(PPM3h`}(ȓoY=}(dɵjRF^6$iG$~(uG{` ?r(7O J⼥SC(*!v'ɍӎ,3Ll(HĽ51A%(dOk(a?(uPU%s1qթ({Boe؏x *!x(ujh^q (υTsQ? Qt(ϻzfz80(?K-rއ0Rm)u6Oܠ(+U Z/2k( O3zd}(dSi7c-ptËD(cO0]3:d(}&ز]7jn(_bɞ(Wl<d3(fhZ;0%(a2 AH >"(1ťIlߟw(:c{>1R& D(=f#7F R)9M&"G{)`Mt,hXjx)<L|~_ۂ)̑~#V|) "k_t)0#9S*HiB)Vwz|.)kDf!xku3OdD9<) hW;r( )q]eoVwB)$# O^NzW)'l\7<72d)(<|y',򡒫jY),%|9>[Et }b)/Uf_aju#Ab)2nX\#ġxק)2>鬶Qq")47(c^;y n;hT)9C&ᕣ&njo ):NKQ6):3`^ RUE免)=o"ni!1)Al$cCd4)DHl[ %vUd)QEyΰq5-@jp6 )Q :qp҉r)Ul:<af`)X%"HAiR1o|)Ys|m<1)[M\ Rי)_~ Z/ ZÁHE)e™7e0{~w$)fw|cp)kkgFJ^Xl6)kd$`j j)l{C4)2;"CsCQ)l6膑+ .V8V5)ncQz+N@iv)|A(U!)}y"i@Qۋŭw)}WaC~77׳{)Cκ)*g~ cYKk]F)$z )MZ;)y]VLͰ)Ǥ8'qʉÝ4)[^筤|B) <cHfV )pNÙ͹Gw|N)hNl:P);=ksg)9ilwOҫ:Ǯ)tx2QY3GL)o~d]ߪz) rPzv4)-5SXr6!S7)Oӷ>#`x+ɋ)'ݶ'&Ԟ'7)yr9U뀭O2/)/h^_n3);Ij)|HXǢ`f/D1)ޣwѨA)=\kIN*T)ɳ8U]8))G=3=C)]y {@GE:x)ؼhB0) 5hb{ص)`7&K4. ))ݺB%jM ?w)r?6A ,#)>#fg){*lj&ҎI)D{as$<U*j]@yӉ,fW*ռ\˛003}{*aI*zp{Zq* ,ڝa]e%~*,uY9ۊ?5* 9V* ' aVs]xNSZ*=ݮ *w>Aw=+ƪ*FY,f~"ڮm* OßdH0<yr*2,7jm8% %cm*5\eLFW sC}[*=2 V[lKkkq*?hLW!`Q *A[6?$]_z@*E*7s0"&*Jce_OS/k*KkR$z(O.2v*QQ%&iq*WK(IQrȣ*Yޏ<q7CN{mr=%;*`Dbownl9[gI;*k'K辰UXk7*nKY7gǐ5W9*vrٸkr QKY0*|43\hr*%ȥmd2ϟ*5ƭ, }ݣ*b_qVO[zW#x*hQtRO*z)&6+*k *-j|E*X|^g(y*n }_?w*%@Gb*~IyiX䊊*.2=xt*wi|zL-*jOńrYvPg΋*&>NizXx*S$K<;j/aZ?*XщD@U ]G`*f!CE״>*wHl}B-5*&suSy5|3Y* mM>8z/*hsIt}J,g*}b,B3*ŸDim |#*!? 78V[U *̓|q .{f_k*HvZupőp[*iLU =h^-*աotWcي *վ*މgRo+3*660'?:*W9 Pf?P88(7*݈vz5Մ|d>*+ws~+8UƦ;*ؐ؈*L;&yk,AgN*KSc?8/}*${&/o*v>+@ő ު&E*v#:WR[*#~x#@0x*C+tR "^ `+C܉;}N+h<G˔_ِè7+-TS(mGv6+x<G oR5|8+ DPKԀ+w(%;L+ BA Ą,S(W+ <9t_jf%+$MqvȈ8F`+Gg2ڴ#TZV]2Kg+%}k*[}+fAY,+)Wr+Ԗ~s+!ʟvݐd)+#}.N$J12V+$({7&޿= ^g+'lhT6+3ͳC񁆜'+3Oyhi-_n(+4IJ!@/;z:+4XC,AO'+5ǚ' L|c+6R ,~VvHc؈+7杇z/kKY\2+;f,Ȓx^_'B`(+?0sϽ'l+Ag͈@٭"+J;l<006x'2+K| vM+M)Pd": P.+PӬT@q]N+[,cHJYa!+fv <>?ڭ0!+pf .'dTx+w`H[e*y%+N7^ ^.]k8.ƌ+eEzR6~u,M+p%j7 ecڅ+ 3[]olrȄ+`IdW 1+ })>)< j+b7V,M!xy\+p#ĀsYZH+"Q(HΗY,`+jts_nA+l [B9Y'c7+SKUm_+N-/v=9oX+|]]+R+K^kJ]+O=u~ Β}W?+kqq[А B&+%l.lN88oծ1K+Q'L& l+=yE<%M +|+f1j"찘R1m+dO#cjA/+{O{d]*b+ÿR&E95g + 5 @ ,,+X*}+u_Fm*&0+ؑI 6T\OfE.+a)Z=s+.Oz"Wx՜t+2% ~¹@||y}w+ԃ<?}x(+usQ04dr'+Yd}=1;E,'Wϥ{J&,0@ӞZm1Wnk.ji<,%TBBR>',+cJ0z##[{,NB׌ޓXGd,!nl3cSVB4G,: fY\l6݈n, 5 OX0[МK-w]_q', 㒇rXǢ2x9j,C-9/Jh,eߥX:'nx, @Q_f%FKN,&LdE=;y蠔y,&%׸>NЋk,' 'A“m,3D򔘔<?ςB,7ÂMxG}Րe{Lb,9`_wױ݅pj,>M9zA!l}V,@nAJo䟆v_ f%,@˩V;2 1,AUr0Ɏ,J`HUl #cz&B,Jŝ> !(: ȕM,MDZ >tȭ,V@0Ar<N:GqG,VYFwGƩv,Y{U1L(jcܼC!,Z^ nnz]x,\M~D.\ QV=`t,`N@ZsN)DV,b\ة x$7,d-V/d>ܢݯL,d~#ظ^k,eYp W*jsW,gzYP "l8,g8](q.,kNNω\S'Dv]z,oU<gꎟ,p$HW٠ ]3[1!,uu[LyF8ܗ|ǐ,uJT.9#/k*,w${^m.;p,z5yD.MuSN,2>▮(. ,4qpp*QH,tc6W;Nz,R$ "*@I8,W:bQvס R`,͝4 e,"VGy"vf 6,ޕ 3, ;vLx<ֈ,cF7 |)b,SGSŔI3Ǯr,}RrX3Ԥ 9xO,(Q4Ik: ?,jJbᨦm,cLMLiB̐7G,GnW$'>ϖP*J#@,Gce)0R`33K-,}%$^d=) NlW3p,R>U@ۢ,܈2R6Def ۖw,zY7VGkYemC,A?SK096,b.7vc+rnj,ڗKkR/r@,Ý kQt$,5AvYDT~,ʗ<2P%{'C,?ʎg .@HK@~,^B<LYpe,rXCi{Z_e,ܫVCfd*ۀGX,ݳtl! v,0UDUʆN,/7L nZ'L^ U,+5kr,0,jS/v3M,(8䡩!Fҫn2q$,E ,bF 4i\ ,K놆G"O('i,-pA7;Te,?Ln.ds,:6g(xE|_3-;Cg+m5-P2S;u[+Z-{448]yVL-,񜑴  6- yRЃD_A- &#p] 7|(xm-5}Ɩ̑-} -/ny]-$(t7Fwk-yOՇ}l-7"y*Ƕ-6W3T6Hv-&DaَTVfpH-/V-QAP0u-6 >'p3--9o 9ʤDoa-;Ĺ'{Qk__-=fU$>NTyK-@V<Mgh΋F QV -HG$V2OK-J"}yevd-Ue NUw6,-]2QeG4qv^ -ev.2%f"-g=(exl}#m+-pG]#ѽ{ 1s-qo؂|ü-uk 8!ٳ5zK>>-~$G{-m}T qػ|qL-\ƆgRKJ-"x9Ǘ -S@(i:зt 6-$K帟9ʎf-*=mP+'VNX-i9Iet-D=;5ɋv3HexQ-e%K5$Nw-W1jf%cM-|x-T}wY-n& %V B-,[cQ-J.%m eo@--[cYcn-`ͱow`yRcP-GCjw/8 iV@`-ɟ+G qer-˅Ձ^{ |~|-˽C%f׾]e-ս+ky{ g- _Wn9y Y-U_>PN|P,Np-Pp߂lÓTʹc-݁!2zg)m-1X&х\UM-&sNAk 7cU-9`u˂cl-k|]JSM?-ag ^(;qoWC-/kjk8X/ l-󶵟s [9`%گ9X-Gm<<yn;-WUF%%<7 h}IU-O;юA . "峒յ#JH!%9.Z9q]lT. \^C 4Z k.dWpB ,KʚX.0Uu,-1.:`&AP D.p9zc+bfOb.'ET /\'쫚Q.(Q/k,Ug.)|"3Le\ `T.+/XāL!z 9L.,#;/]󚘽)'\..el'̓M*Gq˫./"NSKy^ô.9pGo@i勵.@_9{pHu.Aoa7WЈ:{BԴt.F2rW_f'n.Sh3V]qR".V0E9Ƃ5%<.W 񵢈RҊTdA.YЍp( /m.^ ~s 97|R .bIwxfEYs4<@.cױs=|ps.c 6 ~ XxcԮ.fw &.gvJZK[J8..o/[H}w_D.tCV: {J~.t fOА.y K|+w.~\.t`٤. @y=%[!;2.qpp+)|39䍁.K{K qbf8V.޺ѫs0.ZF jsտe+.8bgql"p.EvҌ$gw.Bts&VHm.͛C< M4.7ޡOK.Wx!ϼ.=ZŁ%΢uN7.|cd5YS_udtz9.fhL:*^UL.觯?a]..1@G[ʙ<3_"*CH.'jD+beAfɂ*.D[6g6[J[33i.uRf2.~U()IP#$%NK=R.=;W>+.ɺ9r ur.qf;ǽ$'.4A\ONH.ѺG f= aj$.ҕR.jCeC M(1.$<1n~]*a!. u}v2Fh%.o.${4vL1-.J?_28ps.[ψִ?H%Xˡ.-?ER_8cv.=חfcX#δ.U-orrʽkOw.vtB yV.f$⦃Й6.,4:/&۽jeo)/&=+BD/SωRT_/W cĸ/ $HUb49/ -(ϸmYi/jCwWgM_]T"/ko<L&I/Rr45}{J /e@q- tS</{&x<Eu0ĠQ/?ϙ_.Bٙ k}/"r{|1a/%lEgMnAZOy/%nK ư}AXq/&lJurSyCu.`7F/''1,lQ{2[l/.<f2m/3VbC@ʘEE}/4*N/h|&"Kf/8VVv3"L=nN7/=dcq8U*3쳤/K6cE'clz/K IEL /SslߞQi4v@2/SrG6jԵkMPDx/TE4?b/L/WWiZG4/Y|ߪ YHGK, /YsP54 v/\!_Ûz8H/\[ ڹtBٶ/\(%6)?L{)p$:,/_l^4j(3m)A/eP:%)2w>顈/jzDQOR׻S/jLf)CXgn/lJKPx`{s/meHΥ?_R8/q2E=)9.K /t! rEd/tdh!%:Oy/xoCB#n?Iۣ /xɮko^Eɤ/zu72^+&ݼn/zXqp $kDe`` /Sx&cDF"IwU/0 c@o?F/aWHOuB/Y)F:H/ځbHVmg/ir6c57+]2/AĆ/ໍE(͟U/9<u\&/ SC 1~T/G1ecHnW7/!Z䧼 ~?Z/IMsA/ i' !/*ArhgHv$<jΛSy/®?2b&ȃX|N\y /XڎMݥ/)+^|$r'YT/Ľ3Ɋhc*/)i7$9O =d\m/W\8\goֹ/</ZRڼϐȚ /I!Ktʣ&/}-s&VCR捋4/̾M1q6&KTzNQ/f"^L`95Bb{2L*/9-@\3//*(lH/w藬/uzB5B@,u]40/|t7u^y*|0?ެ.i (0tT;&# P0 "?]Դa8Ԧ(/S0 b<޺ǃi0l&r04A7}N0 Nc J/Ĉ0ˏ^Υ}fg-0E qN`<f 0.(Qg)O]\0Rb&ݭ~000du UwZ0svtrK?^S@j0!+滎*'40'cdwLJ,0-L,d_mG0/OfqoG:-K00~'t53=?03nwbDpd⏭06j ~bdXzH.H?07{\V\5W08:[yhF<l0<#.k\c|0@/ Bk+zOC0Bp-ɡEvdt0GE'p3ǩLqla0Hor ӷjHɹ0M'Ym0ݴ%>0N3Gd/k>&0Nn0׽i<ZcR0Nɺ^%)F\ʊ0PbP@t󀭋U˜?G0Qt*x~AKG0 1v*0\ Z .LraBP0]uCfz@L0`Ɲݮ L/PS0arפRen`0p Тt0mq*0r'vbSsښ~ɤL:0}dOj( Cmzb0~k.cH璉<50)ѲVI$.B0 ]H֠+ Sb0qTwXjm0> v)N;F0Xƺ3\800=Cb&H|f09Lں8&S]0dCqzSeX 0~~|y֏0u$}Aip{'A3A0<9Z'}0X)pAд50 20Qe3jP' Dsle0ʨIu6$EAw0}hRgށ 09z_~rO8yh0<G81(0_v41U7q 0buƤ;f,{0{=iF94Xz0W:"#z>$0eL|pn2&:0$Fa@H}zL0׌k.IͶWD F v07}-ճQ0/`o *tDC06se7 tӈK`,70ڥ:*.Xg0KGv#}v \J03"WL~E~0ʊ OPym}x]}1ka.5mB1|6OZ|]m1[漜m+ )\1H.z!w0qm!1 )Hܷe@1o1Q]Xt [q \ID5K1Ye%2`_v1&|qquJ^11d49ٿ11nց.> Z(13p ڕj_dB16,ONt(ˮ1:1Hb:RJa1<[ٙnlFQ`y1=[i[)y(Wn1E:OCUg5ڣh1Eja_.IIBb1Hj AakVS1O:8O:L @l1P=O*ގPwx{;1TFY JTh 1Y(Զ s-]sJ1Yr iN&:41Zփ 3h6; 1Z5|07ʘ;1_w2^+HO -D1`{8@-!3O1b5.ڋ?Jk1dk#hIq]B1ikJL!`||t1m_7J5701nq4H-Md{w1omn+]).6߉Z1pv[Ȩ% +ٟNx1t EȽc}~gr-71{t+3F|2T!S7K1?9=eCsz 1?o! gZ Fp1pMGWKKP+1BЅ/a B1*Ϣ*C.1@Yyn#1q2٠1B5rŨ5V4b1C[DoH̻$P1YHHuM1,o1mq^!4NlR1hB]h nB1:Ƥ9xF[M(1elUñ=y}t1CB D#gB?$d1jıp 0wƘ1J~ *`q7 1%:W(Ww1ûFR܃gL5c31ƛb An%PL֡7p1,++zb´<u1z --zqsD1cgx?1K1j8 | W1Xl)=Pٜ Mȋ1ܰ+o3 өE21"%ZxG`[1?6WGuXN+]1rg1š׊1ny{o cG?<1nԹpyx41v ;ы/W^;^1:l!7Rb?A17(N z!I*;18R#4F* f1hۙj%\K!ʕ1CYҤqE1C }s2Vi딥ڈUOB2 ]wx2D|rQG #.2 9xW&'VDy2 [;K\HEk2~ג@ $A%Yu2&£Am_2 aᐬ6Qe" ֜2%M ʄʔd,=2:7[xPFE2'qxS?',o2':1Wz.:e$x2)ќ!kʎ 627N6}xo)]wڕE"2@Z$Y1 >2Bh$sŊ뱸4C`4Pu2HFn*40#9qc2Jft%8s Ly2M:B& y9J2Pcøs?`Bs2QQB1XW8X^02T.lcpk1֏uZ2UEK H2]a74O-a,-;32]|kA,uMվ2^\3)Cp1s cp2g `'Bvw-22qK<D~J~~+ɒ2ulԃ!:ű%2ytat֥o+8X!n2|8ƷFFT7>^2~,gex₰}6-2w{7wW۹2B5r/} 2UA8zZ4 xR#)2g%]A{ii2wDB$ܺ22@@m9G= R=d2=1o:@%9= 2&ZZ([,%=,lT2@cXtl2?ʅ>~}2I(C(^ …y2YހNlUBS2PVzys '1]2rny2C J2=!fcw28;7|B`2Xer()!2w)4Ara2m$||]2զ]ۑYד22Iڧ`#.ҩGX2)X')0c62BKj{4/ 52Yp 2hq0!pyEgE2AcX$FeŌq|" Px2۶Sl<bipdd2ɑF\m]5;>L2ʌӲVLKEb0qE2+@j~Y{/}<2UT9@O܍n*&2p٢Qp"O2RR m`582ۋ>(!  K| 2۹/7^b8.zl2: @'WAWw^@2⁝* +~pğr2N>v<-:d{k)~2-UMu`o| eN2&'9{ع:Vͪ2ת)tqr2[&W&ˁ2DVr^܊rH2u#DJP=2/a[j rM6͓2Ҵ[Q$7NN823d 9Oqfä2k=qꢁyP3iOn3' Q'3|IP F3 JVJ'>t o3Orl t|3_ k= i []33f=p w $3bͣOZ3ph//W3%764yT;3Ǹs%Bʝ Od,3ӼZf+}3$K[  詸d3(J2$t䈷y[33gfu*ab==3@*E~ꁱ 3B2?Sˣ u3KDNv__'X|l3K\f0_ЈNJ;:3Pq`O>3Pt3<;3QQIc@'܇2g:#3WvÔ~m6AI3[㐗pt>gr̭3^QSK޺d t3`T5ZT57X)83ba y#7M⒡3d$O֔u9]Q3e7"'K/ o3gluoʉէ^3je(a34&K<3lū;t= u}ݫx3pհ0_6\*8;3v<\U\w~.3yT4w\`mU>%3mҏٿ\9Hoy*.31Ņ{p$3{]|' ; 3vO(U9_yf 3Ftm][>X/3Qi%#GX5Aˁ3fا6/aM3g^s%)K3iFk5%Sd3) LeYn+6#Q93'v3'mk3H.Xb C*Da3 @q >&3$9W;03ǥFf3+W36LEe"#W}`L3.'̳4XM'T3,AhO1?Z6=l3r|Zˀ1:-G3?SS֫k23:ރhNS}W3?A$c9'S~[93؈(bb[ ~Sl3kI8nQNw(93]I?koI"PSO}3nf&-}!=3Bcq(pTt׳/4Iwb_Б<q4 U2 a,OF4 83ՂQ ]4SUyCӡ%4lh(Uj@&=&v4]CTӳlPy[4#{&ϨF  f4(̙@y [woeJ4)KVADE0e44*S3m:vo45 +{ r !I47{,wn d6 18Ґ47ј12uDž548`\O֊#{F 48o]=!MEJL]4>Or\3ۨۼM4A(w޳YD J)4G=`ג_38Xf h4Gl <0 lW:oT4H\속J4Rv^C4I6 c|4L=\:Ћ)k! $4O/s~Xx=]'/4UVSϤkHl#z4[]{rAG*yS~4aMW/aamT۞4bIHU] 4ctz^r@l4f)Sp]Omzٝ$14fԠ-( i*4hTy)nuգiB4hڍ. QȤkſ4k fs,bqi4rmt(<Cl_#\fs4y]ٍHOLlU4y!it_!4|_f F"4~h߷j-Zh%4~Eh"!*n6Ѫ4Sq rg4vƵ7&KTOS.4-)R 6F4Ӭ@_w4PW('|(GG4 t(:|U4pYPg*7w4FVqxF4NC SA p4"|J S$4{'iLql44i_uG44& F*h_S4L/~F꿼j4\ vA~2M:7W4/?dZCwE#s4]"f+RH4u?^sk/a4ʐd+S2e?>4ΈvLBE'q4=QU>bNV k$X|4G* @"M.] hQ94ݜ$,rΞb4I%xΈ4pi;PaUfS4RtѸx%)hkA47kìF8E84tUj+Z_f4hK9$f~Qh󿙀4<o.o!r4.XXb.84?#M~ ҪD4#9{+biz4']uWL"Z̑}5A 0t<5$'~-g2l-5 nD8x]dTfr::5z$ivΓ2.5Ϯ&`XJ]!5U3H@@T'xJ5oN 5 \:5ԅ >5 M I$^5 yը#5%|Ψp5$Pm"0'a1qϲ^5(p ^tEiɇ/XO5)9+G*@5-YIYf'AoH50/A \W,r$50߯6:{Y{51K[ p_ #`姺(51**x~3_D尝55%>gΛfU581I mLXd~KhX58Tyx2zd8'&؁iC59pԲ*lTL5<4 ;ɰ7iiIn;ֶ5@rdm\.؂85A4SBbbِ݊,5GB X$ )<> 9N5K3. Fk L3{5Orp75@|>5Q0|QA%dsb 5Q'og)75TLi(jOP{-/5X> icT9X5b%BcU6?Pz5kQE.^1$,|5vA_ܗhѲ>S9^5w\4bqW$&5y-8#эH#5zCC&u,Izx5}JsԸ왼3J5I[,Զ&5 EhK;N5`٠O8c5&h"j߆r׵XA5K!փ [;x 5`\J+y_>5u0 3%q5ZZ5k c=Lhh45y^~BO(c5PhX\&<[5/>^Z-5ȏ] X3@x<]5|m5׀F55<b|!5 ^ ΤGǢfCka5j(o@Puz5Xy{W99$5?Td5ރN zM5͙"ϚӨ]<qE[5Ӈ7T)R5A[Ԩmsq5%5־k<>~9'O{5zQW 1 uxh5uAw٫=&#5ڒӰf$c85RC>ͯƄ 5<,0I!3EAcQV5Mxj- t[5<q5PE,]sZE,5Pfa;j%m@U5 (B7i ӣz5[MЈ?>˧E 5Y;+1B{5YA 3n)\D/5bg/P5ʤ5y+|k5ʟ4Wzz)x)5] y6hJw>+.5b#t^j5fJ&/vB?wtaf-6%J|lﱱ u0"g6V=w, w|6m*+^F}%6*'P^ZK'X/W62'Ra5/v6˼hpsD!6 RuY<&6]=2Fi[4g6򞋋*m!ApC%6d}%( Y֞\6!CGE\ _]96"pTHJE?L+o6/p(f*4K[y67r!*ȴ5i/e~68X;N4-Д]6<; o\6ƒ6Lqm֠Ow6Ot#ጏj6R7~14LcaD6hx^T?c^Ye6hMx iZݛФR=sIlVd6j9t'y'Iw(46sxj߱U<Ur6u}]N'K X@6wƉȆ`eJfܻ6xaE$mZ|-6}q@qLݛ$6L~k(6oywn@ə)r62z=$69_ <0-G~ P6mLpjXFz2`t6܃7hƴ>*z.>o6*];G- CS6b覧t˞"]L+6mm>ĥhk6 g4]wXp.XI6zoϜKi_6MaGe@ Tt:6`2o=+ e6 M"Б6DŽY E#+B6ҋG/U]]&96Hn>"٣8s46V&k&g:d5 +6ѹ@~]'43R6I;6)*{d~w}6[#“ $Q6bM6ۮtC ~h~6ʄz]~z#dA6T"\r;'56U2M]8r6 ,kHrޖy6Rċ O'II6hٳO!%ԉbw6xg-xI 6 JZ>5ς78H"*ԅ`VFY9+f7>F7,{+#7f7Ƃ;j &`.7 +hil7{k.Y*oG/W7 K;&-٪i KeДK7x7# I]Y<6Vg.7))P&i)_h7,kBxTS71D$tBDG4ݑ74 0cpsQ1G@/75B{chxz5W78X@H#7@Iv+787ѽɟXߘÒ79 ~tv7=g*YhǺV0u7=;S ȿ"%7=̤viJ,P|7?<mw.b7I4 8 7L5o7>OP7MQ[jC  ~7WO׼rAHdv57Z4/WKNO]Li7_@@ =,!:.7dqpڀȔټ#7gB#@7it1us59i7kLc7`~!dc]7pU婪ױ4b7]lA~;7 mCF:PZPFS7P5wo:5euuEp7B0G`6g7=prӎ7裠_$"l>47Fyqi(T->7x}cT|6)7l? H7gq}6%Ugf'7{ϛ&ҹc2p!7a؈ύ_qǞip7kkOEp?qw R7aIqVn7~P^ն8$Y7m[%l1(zz]7 헡j2{˴7\WޅGjR@7䀟Gcx 2F7k޿9[U I47՜7ԪsCI:)>F7ai4&+vqx[z[7ъ8SU8c!]e7Y&R_4@Hu3[~L7bvV~c 7 rWK\"bfH7 +0M$a@7,a/FT7oP$F#m?mƑ7ޕ3g`^ڞ74h! O:13N=7ꭸ9)I]NўV)77 1f7&7Ց7Cf 2Hȡ$X7iI_$_ 7.vzQNn00jX8P&^?Hubn8 t@mz|8*,v hޮ58uu2 @w ٽ80l0~T~1yy!YIFk8!tlеc:LY8#P4eRDG.L@8#했HɤpNMd4ui]-8$~h :ә܃sJRn8*r(~G28/% I,X̷&i82-KeI‡)J f82[6;ˆɣ94H87ڥ |xg㾻E88ڶ Jx1hfT89m,%7L<8<z`9;58@]lE(}{k.Jl8A*<)bG@zP8Cj&f(`8L@z&ZM9AGͤ8L LȟYK8Qī' -wGE5}ٯ8QȹO|p{?#q8Y8ޖόAN\8YYʝ% [)yq7w8ZQQpg̵J%6I((!w8[Cj,-2/wN6U8^ॷHJF7KL߲8dB˲J< ib78hWK.΃6'u8h55褠 8iGUw+sC"8ji[LpO顫ĝ8oh-cah};48sg/'8"0!С8|8: #E8D՗CA6#&A 0B8rKOtbai\%8a[tsΨw8BO y 80&Y ^b8e[<7V)[T)8{ظQ]6w;*8fj^B7v88&,vΌ]0fE8cs s5)& Wv8i.ӎ9Bt@87 xI`b "h:)W8R4vz} {28U(r8 ++_8CvH8ֱ^=g%yz8Ala(k 8H^vǪK8?s8¸9Iѫfg_ Du8ZnF+={?_8fp8]VI*(f8e 3ٺP%8C":-1j 8:XUv6 }$8:2g 9K8e#ImIktY8ۮGEoJ8ݔ5uծŤ`;}pw8uٲ>M+4w'K 8(0BFms>/8<sQ308dP=>K!8k;ڲAE 8S<J aqSAj8I@3$E܎x2e8μ l</^kF8tMg_z]AtlR+\8*ʤb_ \&%'8"HFTYRhݧG8$05+!ދר8ed;/|cnԡ8RMQŃ rLk<8gBtm͵I&9]8_s|D޾d9ў8Y`4"3bg_r9 #Z}zp:SѲ$9M3;ఀi9m)ja9|o8P{r9UE5]C=ӻ!9!d1M+uZ9#yy1MNi>i 90\* CP:89237.u[#'u96dWFW^?xg9;%°aQ᢯9<WUpYT{M ꦽ9<mȥYk T?U9=E0eBrmRY/!9K6p{e9M<7dvr9N|I/+cW]M''9N9Dp'-1&R09Vz㙡 rw`9_8N,BL'$)D*9f.0g|1g⨽rLN9jOQұR9oͶXK|; /v9wr\:O$ьH9{hb,q9}A6Uec=W\q9_+E$%%lp9n.2i4k[9{ s!) .9*W~,y 9ؒ,ػ#-9dޟkwMc[[9%44މ[9 g!t)9H+ziJ99RGQ)FYҹ~9FJ SQ1$d9ˡnbU;.9FiQ!>s 9FFڙJB,-'9 S)k@ܗ4$R29;CpV'634^U9 ,9:&ɳʮm_9LR!!d՜9jnIJHlᏱ9eT֧49iZ|@4M 6G19D~DfȡO9Xd1@C{9NdljTa.9_9~@|ݝF'{C9LFc.]ɖuDL.9ξOȂ3shj9ԧ8-99|$SLIٿ9}A[MO9,fwъ9Y%E6*+ajX9Jq2U B!/ĉW9|IꗧLš9 '+9Q?@v&Mj9D1b|GN9`@SW@.n9uM1s6iRϘp:8EwZE@BAh:bo]-Wp1;:UϴRI|8w:j Beyyƭ=0#:zk6]Ek:s䔖_)'hB:W-Og̋/wWL:ѡ?avRwr":|"B0@X1dIւ:U2 {HY, X: k!AhLJTm:$Lʯ_E3q$^3:'\"GNBhv`{;:-L?wIsO3ϳnGq;:/H]P&wX_>{M:0pᝀB8ߨmSz:55hqśmPɳ:5eK7veAZ"Q:75(Wtyjĩ :<UR)Uv}/:<zv+u6t:AN?aD~)8:C>†G+:L\@8|hmA:P{m1DT~N:Q 72`lxp흰ò:Rz8O[Of:):SC|l"\j=m:Tfɖ"+ Qk:V/$Jxi.,؂7^:VZE1Aěh yP:X:3 Dי)C#:^O`M9.Ap?|:_DCqџ o?^!:cA`PUpad:eYi)p${<>m:gW<+N;[T]:mg idQ"(ځ.:r$4?չǫ%s`K:sL̝D  5HB:w8;IvHݛra[:zP"` ʞȿ:|9P)eη4nkU:~u)Kh8Vn{:):6␯$/:+65wR,:]jܬр_S=:Q/GaQn^3:it EMm΢:_ NܷOFR:r{fQ?6 -:W  w, ~*k:iqW',B@?:[:a_r z97B:KЀ?֫Ns:nHR;`x:Âoz4e:U:^άg< $ˋ: Nk +ka0X:wNZK rd":W<C 3\r5Al:̣шjL9bBn:Λ +R;!Q8:KU(-4LN#JC:psɳQ:J3n:Quy6_VG: -5Do:ڋJ؊61*E:ނ Dmu_2H%:0Z*h:uzL! kd: 0AUI-)h:2Sw>B%jY o<f:d|1ێQ^5ܲc:D/n;@5:&QSryS:Tp8S^sj:/xdv'â:`#^"Ɔg?:"I0Bk; KJ :}(5O@aDB:2V*o*u;\I-܌ݪKj!;iT#{hE+U;_J?7 $8K;KQ@E/aE;D/ruDnA/; 2on5J,rS;~xtxfx$;@?8@6F ; +}0(Dpx;B.OU5}ViyT;`ݯE??x&; ]:Iy- ;OrΩ8[ I9T&o;u1ONc&"&b1r;" ϵ0 ?l;'8퉤϶jkG;/Ϻd$c{R` W&\;3&%`C{;85;LM·]&E)2;8@o^^|M]oQ>2;9t/ гĝ7p;;:r Ԍpf;>Pu.zR06 7 ;C v>;kE;HnF3~YN6!ma;M$+ jnYB^u9;NHW2DRTJ7~v;UZ?|M][;Zmɱ1j^;QJ;^{`mGV((CնX#;a!I cG;4';bZK+/#f;c{e~R6fSjT0;i3E=g%;iֹgcsI.;keQp% OJWf;lw3#+mKvNmx;oC6}5` &,R;ujemω}sT"%;y ACTd4;yQRzFꮋIGAy,U;z/oh@U|I][;zzr _?n;;=;}psY5bt: ;;}g Hi(W;giZCnY;@FXP<I73;>e<:$v٘Y;t7K*N_;e?suE;˝jM8;\<7^[C^bP;3yKam+rX;|}-rf TiQ/O;8zZip;YW-+dL;MFgV>?;Tǝ H@F:;|znLWoo;؋:;M'S;yupIia ;h](xx];ZL3b#;IYUQTC;zTsHC܇'];;MN񰭜 o;u,K<+b;T}CJ48b~;x dgh_g^;8w9*יDt_*;kL av ~rb;ݍ,qfD{tt;gِ/\懎;=;2yK0+;܉Umf}S30m;zu^{@D͠Z;Ji=}2 D;k8+˫h }'2;G7M)9g=;χ{zbON隃;o)O9.r<`}l;i1.Aὗq rl<l"\7K<fQv-كa`z<;+yɕRluMu<j$me. [0`<a"gOa;ڗ5.<fJ1 RC/L<?`NC/4:x/<tm,7{Q_QLF0<:Pl座3!L<"RGC#:0j+7<%5eOXtV <'2q@ 6ς*4O<'=p[9ꩬ*K<(4 1j&'v<0@1fZY<7c{5黎x?2#<:(0NZi:b<<gr])N<?S:\NL=<@Ye;UzA<B[{.3*mZ<H;B ] ܁^~<LWH>?T`nm ^h<L~eua?/5@iw<LƔ慛M }"<NSuG%6%{~]<\>#V> <<a?YuBaj<erý 5V C?"<hyHR9E$k<k и:(u|ࡈ <nDY^`ynY<rs*c50$<<rʀY0ͱb x<Qʫ wO3Rh5<6C,}PȒF<G ".N< /ͺQ J<TmL6z_տ<k7!P }< BU`bA<dcŘ7VѕQH<01w;/-6<iE3M f~-1t<*$=9*0lS<8M*á-<uh (L⩦*o@7!<G7yN / <ygeG!d<pMɋ>P\m<xoȝvV<e]յ]*ss'<CIL8}Sn)M< 6m,Z09Z<SvV  <;\ЎZW^T4D%<eKJɏjr;!Z<W1e _<oidpD}-k˞<>51ƜLpԓQ0< MҸ*Jʺ1<]NSB<Ľry<NEQj< W78 KMu/<,sybN>C<߉PzV#p4p<259 yS/k<dWD]$E<hNXIN&":<O!>V<,mV6u<z{GӇ}t{+:</| fK=>54E ; l/t=ߋN.W) (2=2B{l<= Hu[e"= @sNfSY =fO椸NT=Id5yw7i5km=gN!L`[M G¢= ĺ:݀𵹺lR}='Fz\+6'Z=(ǽ;/{I,ȑ=)!J'-o=/Ǔ5=3nѯBzԼK=6thV=:lߜ=9ӗ4> 2=[=Ar0!wD@z;]=F}*ޜE|oT=W=K@މ͎{v#=LLA U/.mF=L8:2lgc3yb%}M=\:D{ѭG=]y x?`{^=^Iɥ<JM),yU=dL93zE%<U=diǃ9<z 5%``# =f֑Dj=dT"nQ=i:p(,{<ã=k^8Au(bTz?=o<AVSץN ҭ=pD^gf e6} =r٥}8'>sf=u1^)=wנ 걱Y ={}tE]]f=}}3_|U=wo{ћЙF9_=d8eaY+G=Iqebe*|=Rrp;bƳW=Qr4t9p)ŵZi='q6"P^|[M<X='L jAԛ=WXnnVlZrV=QӾrO: ;== CDnѝc3=.ɤ^P80==<U&=#=of֥D mmx=#yNw$5=g{`{t7=e9z{g(U?T=?ΫQex;"1`=( SBciHj=fh%jW\=? ^ wM:W=4>WY{a4|c=C!!FQm=)ŐP>2c :e=Px1j>SC =\ZGQ*D(X}i=n(fO|$=ĝ3.^$=䵆d:XF{!%Rm=1z_>e=O.c?=dє*1 NjH=B9b^]BKjq,M2=蚋 a U^d4+=J0BCss|b]5>$IaR՚>NBf0}wc`> hɑI*|3'x>ۓG Ft~zL>:jCs~~Ɫ2>((m) {w>DMWb.,z(>yGD,cդf-K> :I|Pj0>Aev2=^a_1>B Tj k]]a>dzR:|$>4mggk>p޻S0pN>8 0i\O)ˀi>9OnjG8E0%>EZ 'fDVӈ>FGMӷ݀@?j>K+{Oqc V>u>NhmGْٙ8.S">R<4Z~9>Us&`L~7.etq.>[-Y_o6=7"]eAO>aAhԌH[nKr>cgD̲ Apn>gap6u.h0>is>DxG4+>>mL oqG:|8~>n\QYof .>r*Tw]fӜ>z_aUwPK>r݇!~P B>nf龖$K>i;u)>qx</"J>9.8>e%I3C7>꧔UviaXp>)l(ZHpLFb>-E}5K!k>x wƏ >34stVLI|f>uT9 v G> h0#/6z`Vuܬ>?Noqv~_>=&XXN604=n>J{k&q-zJg>cou=@C?>MX'CXl>pt6Ɩ_C%)>fs2_mM9>ʳiqpQ [>ofvs'eS͙v;[3>:op-`Df#ǿ%>̂Fk)9hQ>OƎzE@E>ȩZ IBbFC>|.F%6ں^7>o$ZgUR#_\>a& ;hr>ג"xqi@UX>FUSj<G">\ m2j<j v%>h?QcBe;mt>Q;W4BN>ұ3poGwn?Ay,@Dr? OM,,9m5? NR ^>v? *L;6#r6u?bX|U5?CvλYz[t6A?Ȇ.|P\ٸL?]~cs宖 <;?7kA8UbysB0@5?#F2'̠9-s?$I*h ?&4tNgΉyE p<?/qDSt{rt~?56C3A{?6ay`G]?6'hZ"^<c l=?8^W[k}Q?A#wڀ,+?C̿W`wMI}Q#?ML<O*qM?P\[90;Kl@l?R9\?=PJ?]ds*/BwW?^뎿\%1uMn?al.^1f?g`,.ewRx ?qus>TN?wbC~WH$V<˃H?yS>qe8h?zvk V*|p?z-!nYLXUj?{lI ]8hcsn{?WVGP!l `d?=(6Dl6Ñ#6?<Ji|qKdʋ?WAߢ<da+oH?*KӶK j?0Dl~A\?n|~LOliu?2?OuGܟR3I.?PIb:U%Q,?9i\Eal蜶?\ho<k}?` w[N`E4}2_"? l4s%n~{+?'`#)l8MU9Ì?*&5!5fbX5:?/ U2I(hD?Rʹ~|? X.)F:[ya?,*C[Z5?ynA墶%,l%ww6:?aŠ~ގϤ+a?YmYCw?v,SXa3I183ǖ?ţ2g~NMj=?0퟼q`<-EeqO8 ?ѣÃݢu}m.?I*r2kR ^{Rv}?uNM*m!36)?֯S_C$y'be?(5hUG?t=aGql=5'?73-[Hc{v>?VuQ6͡[2+Ş?QD..bzgD^wE?@ 'WF6?9W5Ȑmc?y"~</H?bcq:+? {5 =,mJ@.?.*G+7B ? !pGFMa?apw@ŵhgJC@(*<w_<`F@bՃ, Tv5s@\{Tyڰ ")@C駒Lv}W=}@ ڱ0Vz|":%2@ Lp?t2 fp@ <1C6\qRwy M@SaњJ^d,@y/{*[Sb6@F׃5)~@GLX$Xg<@9m˚@#GXyk;c@&BdPYo$K!:AP!/g@)g2|SÔgbW@+MC?C:~[@-jЈGsg@2SYbw%&sRi@6:t;_}-h@7m'_C=C_@8] SU/g)~l+@:j/2Æt @=;)T T*4@=VgPY7(C/^5@>L]cM8,6)^.@@eH44јE=9Z@E[k*k5b&Sw@GcBǸrƐ@C@J<pCC!@M2l鍬%yPqmV@MQ%ԉYV @P45ƚf$؍4J@RHD=Û9hsjNk@S[+d_ƺE@Thu!kO h/L47@\GwS7?nhzWm@\9,aYgKk@^~'Ȫnd e|@dELY#%Z@j׹:ضpHZm@l㝤hs@S{@l\\x1z::3 0@s9zwklVo6@xm @]L!a@x{;݌ @yub"nyQ5#;@z{Q@H 9N@|cݮ>,!LlW@AޓJ]i4<CgW)L@*gtax kE@ ~T7yYK@=AeՎS^@OextR@]s,s"Ԃس@]:Q.vdd@8P*j5sCp@~ R?V@&Iz@ 07i.@=R{g4@WM&3AQ;c%@N+"˂rQ@m"m;o8P`6!1g@Cu{H{(gN;@\SWJkuZ+@R8 qMei~TE@~( $)Ȭηge@%]+=K2 @yn!3F?-Z,Hr.@= 5WVmx(@>7ÏyۆU8$_:0@M|$J瞖ATVɉ@@)+ʮCwRj@]TC>CLpst&@A +Wkn)@ی _+#=/s^ju(b@!3 1o[RhKq@xlc&栙Y8@j#<Tq@WŇE[u,WC6@zDʋC18g[@JPS= [@eGTv>F@aЇRʡ@;mqLZ3`:@P)v0koF@O^l'S@Afz:jx,m@DId@ kJJӿ҂fP ŽHoA?3%kM[ekA6$QbAp׫EDå A|TKWZDA 0h"}ד :q@A UCS[TGW#AvUF5\cr5`A/]u ||wA$o(&3ZYAdSW&wش AaLU$DXpA#cH%q &UƉA'fr`@#R[f]A'F A ̀A49%- A9'4{=)JA9FIVMQԇB{A<0OlSg7OfzZ2AH_o =N6b̬&AIdX"7WܱAK;_}rܢ}ΥCtMAL3mK$]֕Q ALNqa9vdވ%7aAL?5Rf\w IZ@kAOn$OiqpAQ;W؁aAATBQ`PN2㷐 ATRY)yFq6AZYdq!jLnPA[~St ]UJ8sk[A\^eGE~TkFr.NAbb6@-Db`0Ad<$.pNca-Amؚtcy&AoU&tq ArsP!q)!p1(Az8?s>$i|4A{~4n>} 6vAt KZ4Y]~A&BF749"WΙaA2| U%AmVf1UCdžEA_A}DE@WaA.+z9ُAYB7U[)‡#PcOAgv3j`$TAp6ņW3A$877S"FA{ :z)QA5 ÛqCr*A,NovљOpAd2 =hRpAW:)8W,jNAJj{ Ѡ^V =ZAHIɀDϽmA;OLEM|r \AVa=n=\[EA+S 2#-JF A3AJŦ@-6\^#WAs D0O3y_ACcW͢Ze%f$9A_@{Ķ:(YAܝ.~xEW(=bA^<3FPLE/A[i(#TvAď'@ ߗOA}c r#Y~/+ A3>VMv=/˄BߺoA#PU#MjD;)GADˡ7AG^ ?ot ֶҎAVs$U3m87AW.Pj pg$!1BZ_aR*)&drOBqlڑLjĝ+VAB[ ]&=L+'E3B_qVk B PN. EB ]8ԯcxBEJm6OR ; B g~Nqo$aB΁ٯ:?LlB~7iQy{ քaD%B l7D"NRcBNB!725(B"pZ=0Qվ!S.B"LC/eydB+xv)ȹqB,D/^HB,\_og8daOB,ExeB.}6 c>6y8jB5=#:)4!)UUo5P B7nepMB#sB=43d&<=ll B=Ұ k,GH thN(ȳBDCO/=gc@vIBF8HQG2D6gBL G;CRmiBVO $$6BWųp7 +`BXY'7 qdB\A"v4]|4cJB]~uqqLҊokBaI_(ϳئ\͟Be]J>dOJC\ZNwBhnSrPO"{Bs:O ;`8VByK@ e BaSLC%K^B7uj.dAy2BXl<#hD%uB{a떅Pbr0vB}:$/D6whBh^yuF=Bx jr&?\B<rMQh%sBNkeItwifHBNQrq7s.ҥxBĜs_;%3Ɠ)PB ;2ad#;BM#u't/~1}M|\B7F742hZhnxBo#EEfH0m:rȂB\EMt]<sbB%*ꘙ\8?9!BJv'D*?ΈBO"UJ9 S6B~[ػ2MiˈBĞE-B#(ͷrBņ?N5Âv`boAB-"3Gn 7'B,16Y#ٟ?)Bd8 Q9BP'%A sBBΘDzɼ/B6$3>xyß=B鰟h.rdUBOMOUj~B짚T숯)Bo>M։EB\Th}y(#Bxy:-Z@1XECH)z 11C m±|_5VTCij\^"cI]Cc/9IyPC&JN JMMCP͞^I@vPC$1X3> 2ƚOC'48Q F-5C,bО}漖I$C- 5#ijC-AZsݸ;+W3q"$zC1ZjGLgҙkn|4DC6#]1F:WCC;O}@<b2? ԴC?xfͩCC1xC@{~U8Ȗ-9ԤCBp~2~ W>%XCDVxOaAFUCK*=''` !/CLݿ,k,n1Ű7CP) )Oq&LtÇCP`3?1E=|ICQ8xhdDѥ(CSӞ<--HC]O<oW XMC`47 u\uzaCeI @c59B4)3CmI053 3_mF8uCn:!|QJ\:ы Cq3r]πx`Crbt KMlDsCsKP.4١Cw(*dͥSJa CzWoX+-I'"3C|r^d)!7<9~ C~9 ؚ%˜y&ΧC$Z%(` Cm5|Aj=Ytr< CP2S3R<@W-l]C`r'";S\Ci\!W)ix9@CAwe6~*C8<V ,7ڠC^)r(a UCt xV,чqC}cOu2 }8 CԖPc (#8C@(\%ŽCoҒ9N&@*#QtC+{Vo*CNrjHe?5[6וC{0{cLפJkޝ1C&'MyAϭS,C݆?ŭAi;Cxi<4u"CaX)C>j(C?wQN ?fChm 1kS-SCGt_*Ve[JM.MCFtџZq]r}\o2C8`ϱOMBbjjC:2VelڞnZ]C9m|X>U~#dJTϒC@pAa?7CȂ5Ea{ٰM?6C!!/~NJBsCa}*8MtCւ .u߶kx1#C 7Y* @haCڑˁ:Yb vSCFgC{,DiQC4)ND|b]#C鸳ݵy~Fҍ9zfC, roJ8s޼CꮡW>!CxӒ-Ûbu6'C.|쇛7/C$.ݒИs.jiCVim>UТCcڡ},y9C VMRl"ܵG@-CHg['pr8CdQeGgXitD=b0oMD _TEP:ؽ'̯ Dw)t mQ#~ D1WdC9w'vhDGEIuTG$0?E]D>RP<Z3&-UD?=2#bXD_8|U`%WD$xr\X9~0CD%L{B.}tRD&г {gD'#Mp>"gmD*9NV2 ND+r ߠ]9lySeD4J_JC4MmD6,+F 咽gD7CcȪ3Ǵz|iD>M3Pfe.ѕEDGԫg 'o%05DK:{]|,b1J.[%DMB'SK`m~'ʌDM { /Bm&ѓzDQڭB :鰦7DS!drq 9^D_0XX}D_jͰRG-ThDaC!TPzBDa%>Y5JWeЕDb̷RaJwQ<,9ͭDuF y8%/TDvm7ggC+ Dx2#/IxD{.lDHPۡڱ*D~eiԕID%իv D|zw0D^m`UJD"t]=ʁ _[D`)v! =Dvyr3Pv D)G6H]>3SaDh \y CDf\$ȂDt!o7{ADEX%LD'+2igm@4JŮD+F` DSS LYNo D mȕ}m!6CHD_ d w@ֳ6LD ʙJEh~9yDW*ξ_שHBwΊD-F@s?DsD& ѫ9DɎ)+xǓ;D͖_b.gs](NDҐ  G?|k?3saDԛ~5Z_0aDT(W%[6D.PRXVFDe J0ɩHȳD܆;N+ 5~CfDRBώ{چ.+DZʑ,UnJ[ɖeNBDD_LRpnk.D"L|XQLK!:!D8z-!#{zD"i|k"ܙD-D|X3^Ʀ'(۷J2ADxΖO 3'qD=j%WrF&>3+]/Dj?e겆<@mDqkdӺTH_EE6m]=Y{EB20*]EMQSuK6O#g/"EAAL@N` ÏlzEnqɸt 0 +E?ZsQEJ9\ 8׳㩋E64&:4nq4;ETJ }P=v͗Ek5?\}\.W7KEnX88:6ٱElVE!8KDS6 1E%`<, ס{E)K˩SUc$JE1i!4v tR?OQE1B^Pv3[Vh2E2[}ZՕGi(GE2hbKҬ̏ "uf|E5(5Ts|^/E6%zN~01¥~ E7HQ#[n@E;Wڔ[IF.EmE> mE3sӗEE' Aa6)4Z6[EIͫ=?9 0קB+AEK5έ JrXERMӹ-V.YESBJ${VDEU ÿI_▂\hEXk!W 1&L}ꞂEXFڕꊻEX*h"ᘯ!E[.CF)ORtoE`lm5@EcTJ3fI/!`DEd+)rN^jȉpEgmp>e ;XzEh_4EN3xY 1<ϢEiX *oVEJEoI-ZC8MHZEup\ȫ& Ew;WUJ\8}E}Zlr/G x{Ek8Z yϩwCEkÑnU&j|uE&(~AR*sZzE7R"2d#E IhTzj"gXE68}8H.E3{&,E'>+ )A—(SE__tE[pgVEO5H 񋛮fS]E!>LH ޔE)~wzBH+<gE횄 (UOEV4㏠8E'54lQZuE_[u ,<E8<9RF酗-w-=]?E;MGY_Een&kT 1adEvQr63E>Zws6u;E5;l/-s<E£\{h.y%EÓ?| /P#oFM~*jEƲV|:^8_%;#EȘ$٬u_1ò[*Ek1Q`O&[Ek#^nDL^rE2Se&ηbEЍ$FG49%f`E5yoE68ZϘF5E꾵&$$PD"E^= P@1$QjEf-NϹ8*p|Em '.NK*OE7/*yF?I6it=Vt~ KwXFq7/F-ʳ4]MVF"¡6U3FHؾ -8gבGF 8!5Bj?yI\ms F!=gw;gEI8Fi 摎_:(#CFx6!~ PgF?Z] "bZ F|&cu4%^F': #_iѮF@IUS:XJ'F!O]?/=lb,`F( 28ڹnr"F(?Gw@r @?F+]&M3W[ۇF/[dʒpUҠ޿F0|FnH4AXF0Y,Bp'rF3Dak&COh\X7HF7a%}Cq@a K}F:F[t̓?ϤAGF:UεNnSݿrF==xBeP=FD⻯rU 1l&TFDZrGxxnMۙFEN LŇNK 0FKؕ-dpf<ꉤ"FTgJ,WFUI@3-MCơFX+=kR VFYK{39Ff8B$Ff>1FH9 gFhk.+FeiԨFhaVw}yi21b&FolYw$Qg(ȷp^Fpe`%y@ +}N7Fr؛\ +oo:x΋FsqK1QFtnUWd鉛Rcz$Fy3tbbF# 0Fy ZA)MvFy:|x0(P_inFz(N{lT/ٟ99F.[_nj8 e`޲ TF+WYI/tF޹LFR!#`5*_uhEF mɕS;F#rv"^,1.FiAʳ|jc )R @FP}Z~ X)FBzc?UaF< =ŭ7E_%Ff`z~%Fny0 DF/IHh.3Fb(BJߝDAnF:I,QlXP2Fg8׍YFɃfק K^l_/'<F xPx㸉$7ҌFQΑL#.>aFjr4j]t'F$njsW 0.\D8F~qNW/#ôʰF,(]+OAA3FȖn҄O 09Fͮy4̐kOh YF`2d5ZjFs\ @v+զF4jPhXZOeR`Fq։ۈ'啦אF"X H{h*QF2R>(|;.\\#RFos0FnV$F瑫Vb 7|C)1F:X4|wnot+n3\F3?L_]Fu@R &=㓺FrҘO>&ӳGVqdG{tBY@3]XQG  њ 莏G5.<36+ 6yHG (.!!AG */էUAG-~2Cm@G++[vs rYڿGD=_ Q6I0GǛG>l+G70"Qi%?.uG' )D/FG< Hcp<uGfEL$<;*G1;)-+b`ےwGt#b_;ԐV@G -4CU%㒐G#Ú}V2ˆD`G$x2;!iG,TT2 ӿhtG-9| E-G/c-n^&d^G0"%Xq Y !G0rO+,`(!wG1g@P FV.G>E¹Y>Jm C(GBc*6WFWo& GOe޴vz>>?GOݹ>.fr ZeGP'lAwzDCGVx#aӞRDGa3|=ny Ga񥣐Ag(ZGca3!4%׮#CGf 9od>BɺWXGhsVh1}O_F2GsB>dW8ȧ 0Gt~` ZcB`u]Gu2!TNdGv)5ȾQeGyh/Q<e`WG{,$5e,E2$G|Y1Bpk|wG11ܯ{ G;2x+aG !zwoG}'0͏rG9RGDCGPoO%D}U6GAؑմm+IJGgmd~GGw,B_GNQАm3@]NGOz!;KkbG˜Jqk"F3GTiɣw@˨}Gv~*DSLG+ NHcz>HGAu9 kG[29 l}{7!G)nOУ ϕ*GVhUn0 G:̌42YN&&G4&-Rj^G?XHs`TG xۅ Q߮HG-oG keJ^GG/*-`{~lZ BGn ),ȥdG(w?ެ3tZ5&ɜG9K\Bh(AѰG_ЬO $̏EGpQ!%]>$⥽GyQ0?$C)tG9}>Ary-B:GI]* u}/;G&' UY CBG1q"x'<hYbGݺKZ$@VGNѿ5s@G}1i,@aBG p֫7r7CGL'Ty͐G,R2ð# :HӑbL!:;`HgNQ317K~=H ia/iScɨHwwH܁\iHgPw:P=' EfٰH#"^S@'Hy(RϤE9 hH"P垗"܌{OH)M_IW8@KH*lV6'[H.@ZعC$H.஭ o{jH2s+4?~NH2$<깚 oqH3Y)ćK[H4 v͉`j1yFH5|[4.E\Lm_H6RX?GPtH:MJUAxA `fH=F$YP)wH?k lz+HD@ٻ$&$VsHL^S W1TڊHMY rZ?N_HM2DGlHQ.+ȵF^2HU=#3Yn?ygYeH[wY\|:7 -O^)$4)bH[ޜ⨗Y޿OR4H\{rI:ԛaC-H_&% -t ֎Ha_Ъ2\q<HbXлaHf3 |P湞dHHg&ʽ&uJHjRΟCP'P*_HlE H09b>yHp#9Unb`1,HHpD_W D-E*L-lHuVG-{^],֦Hv ]]1THxB|{ŮHRoUu3M=eXHY$MRY҂еAH$Q k:GvHGm+/uZ3P*Hy'0[@Un^ H$ՓOT1=(HhbTv+_H@2 'qr8HZE xP!i3761'H:(w4Gk&[H Ke ]m)"H&[C_pBN/HLJ!YOP\^HԲ:ɹCFkHHS?hn/-0H չU_Hl">m@CA֓Hgl34tu lHݣ$2/gΟygUNH&_``ZH } W7OUcHp>HԎ*tHy!Ÿ2SHW&T$tH@jsj1ju"/1HެTv~{4GXHָ 3gKQ|/&9kH؎蔼LsH;\VJ02uHdvx~sׄ1n*Hߑԋ!ϽzVYJtH"/Z##%\Ha5zҮ-"mwHȗETkDjHL`5!IѡAWHŰ{yF7MHX߮mLɱnH157x/F/?vHlV˱yk u#}_zHIV%vj 봗LH.+ĒE=<=jIWy8:v>^>#I_71@IMEVk>BI\*H9Lh$}*IZ}_ "#ZI G6lh#I aެv7 ʿI_ @.3Id^ӷP>}iVI9PQ"O}RI"임hrp>d\0L IL&2޾ގ<I?g^- cI "D';d:8I ql3)/92ZI Vk˿?~8KfI lۍAD"uuSI!=YᤁKI#iJ ҊH;D4}>I#+2=1c<I%kiIt[I&|HwHƕh!dPI,~Z;ozk۲kI2t0;~Go)w0l!I6ROaD~I8M|xV1D9OI9F?Lj0Q<S4<I?7ѪczR #V`5-I@'N^ d橀I@A[JuK@>IB\7XEc'qIEb<J9CN]IF}6^ ^#F2TIJgBmJNA#"IKKEyJKX0INUhhM%eYDcIND˼\N=HwIOI Ili93X:Of[IWȇt;fWa&EIZ& qw,8*ĮIZ^045 )VZSG_I_"#)F bRXIb, -Rݣ#cc(Io`tc2rPIqqD W%%I{ç.~ +WMKI}\.% NP^rI\/nlK$Ijj&7].;I #_')I(x-zw9}In^SĖDnI:k}}B\"I9i`@[ElIֻjU3aOJEI=J:"޽WIۖC@}XRCtIaxqIaMEC&+ǩQIm*P~K*HIF75 "H?^%I֟D_'F9SbI2k1tcIi3j?L+JIPŸ^TeXtxIө(d;DYL<[ÌO ] J ?sߓ>JZa9}_J[Gw c?JSͦ63:*J %T5JRs4<fMP}5I7Jk:%o\ I\i5J`AVT$J"9'G^8=H6J"])S q3yJ#%W2$Te9J'D0>kW/ׅBJ' ˠ$-w;޴tJ(y al'UJ,a5c[iZzy篹J-EwGT)bJ1e7|4[@J2 ]jS)5tJ6V Y.LJ7 ӗhZX6J8<<Ɍ"ZJ;.Q_L:aojJ;h..)gadKBJ=tTvwAљ4)]J>ΑVsN d7fJAV 2fl(2 d^JG #`WFZA{ JH]Fḿpx %OIsJKMԘ<٩JLxv 4v%JMݭzۗnF^$ \JQ$N Qf(ɬ@JQf$Uڭ:o$5uJR+mNoJtVJS(*dQ—BJS+\<j\?rw4!JSrKq@i<JSޟO0Fx1ƂPJU2Ii>],J[,{_z^TcJ[ޠ?aᇊdʪ4J]&?y|oX/ J`i^D"8I Ja~5n(HωJb 1@la˓(JbBDϭc\FKEJh#abp,JnL񏟅h.uhK&Jno-EZ3y$Jn?c\frKx8יJt^YUufG34dwgJwçܖR =vA,+Jy0e!3JyxʤJk_=pHD3&JH~}o4J𱲣L4|;J2*'v::KMJR)6H glB~Gl=J xEd$J#AiE4!Jn$<NNyJJKy8!P(JPih5 J $ҼfRbJ`WSeo;ڨJE>)1QNFh:JbdJhX%;^3뛸yJ(UֽMjJ̸,=;iJϤ\6?7 qF&JӢy R8Q/PJ 9}9bbJզEӭ#nxQnQv?J֧^AZyS_IJٚd.Ii7N0LJl ;J-/"$MhdJ;ҹISbX:1JƟp,2s[޿<$r͏J.5ցf97hJpK`Jci~Jy/3~UNJ2 kXTJ!PB'gu803wJ@Ki:7}}I1J=tƄ !!h[љJR,( JYJ8}0Nq~4{ KЎ|MU!e@ K؅0Adh cK6Ȯڥ;(csLK ^ oښCK hU?gƹ݄K | xJj)HgK4 ^6$O:FOKX qO[dN?Kzuy5(K] CQqnK!k ^l-AK# 8(Gr-kK-$L?Up'K/vsņX_\kK01[qnQixXK1&\xsw6.0K9uX!pP񅘍K;[JZP!EK;f6z !aќ³K@4^KEW JKC@_d~>جFKCX2X M6TXKI@3-ǑgBzKJ׫vPSx4KK  vД-%8KRQpq⠯ܟ.KS~zGND^RKX2L6vk鳷BM<KcΑc9h{yb9dKcpȟ vz 5KkGaW͌ sI5eKn䧹Pq )Ks$j\z P/KxN^1A]2Kxƕ-Xt[,5ᴖB;Kyq́ $0 AjKz+&h63,NK~j47=P5˙'bK=?ENW<LHqdUKc1疟JЂK4ڼx,%#tBKծ<E%bBل2՞K^ꆤ$|50]UK?t"ΗH󗊒1KnvRlVi7K5Pc. 73K KG]B-+qsI8GKkr#@ K~>cL>;A-K9r6nPbsXKɀ˥0V&m|LWKM;R <6cBEqK8eHF-KzW:&sK)fdPä2]*KK@oAo+i ^v_K LիrK^'} \"?vKT3]* Є3gK;PߑCz}KY9n;B[EK[/;K2%am9}UdKHڰFAo|KgB@IؑD !KII:c UqhK֯{|q9Ko KN3$UMwKi| txN)({KWcd:}˫v0K׆ 2KaJ YC*rrevwKA]w-4rA4KF^v`1K(2@<'6R1sK<#NO\m2#KhU⬈_O<7N0K5 TLudLU%BPxUXzl(Lu(X,aӕm=L @%z A8L$IyyWHoLfD2{r=t9]LǶMjDLk6D *ShGUL\[hYCW1|L8uZ̋jLJK;α4)zLt~#eѳrE9L(<+Legg=K]f.!F^!LzDR/=,O92UL"`Քƨ@%UraqV^L$fU&LG)Tj1L%aڸ-qnL':uD>́r,[uL))d; Y yzܩL,<\GYF_1u^%OL0tw? Y gML1;Li;Wn?uL3tn.*gW?Z;L3"Vmm ^ nPf#0L7ih ytaۘKv&L7}.5q)r^erL8lĿe=_.O HL<0h* J}YLFgi"yqD/jELQ2sF,? LYr no0Ы#yLY{8`g~@s\L]X7tVÞ.b!JL`&rJ7t<F˩L` Pv:UzGLaU*3WTTLd2&kq{`FNV~BLe%?f p 3{Lhsyz tbLjg d&:yLkd#CELmXF*xOvLp!tvYR5:*LucN&]ZNiiVLvIm}'["V%Lvˠ{2Rq !Lx:a[T7t{ 8rzHLy+i'Lz2H%\!&}3LcP򞕺>i LIkQi;YL,[]s0^{L,LiVBaq1){LzuXct[ ALlܷC:VL \+M2WF}LI6$T{27-~LOVĠՊ'ϜL0P<M颌{aheLt 9U[p1Lu٘I-vL<iLX(L (i^^L~MF>T:T˫oLnB:4%=%LӖV~c]DLdǝN*fE0?L>',&pk6LGܳ&n/T冬EL׭Hn3`GN.LĬc*C?kT5LXQQ`tvWL͵,$4O7zjL7U*LKnPjBćLݲiGİa‰L^}0 |L梠W1 v;i"L譜T6~݋JiL/|;domd R'*L@=߳JMx¤8L Mɮ|#:LVBܹufcdLwsSTؚDLf6he&&eTL 3ge⏺2U839+LmCC혉{'LX\ܔ&w Miez.M=:I"oZopM %4ߕg30n=M #UWjkmOx`M ,zJSUzyfpWM,2)7z3EM|%iKLu=B˲Mb5LB [UW0M^/%oԘNq>I`MJ?`v֚t/MnEP XU=GO?M1Uqڞ! HKE4MZ:ڮ%@jlBM $ zm3yGjwbTM!*}n'"#xRVpM"e؇[rKVM"Ӌ;, iM%_NTKkAHyM*4Bt.N['bM+ xW#a?oM.7t=7^B/M/7p$P[=QM<, ,O}8婚B:5MK>B>]xML<q\%MMظ };A_u@WMO] P5w)IM\gTj+m4TuUAMeS._8cv`feXMiFjO2Yi.MixoKh*[LwMkʅ9ڦgi,#'Z?MrRX߇)NMr!k@6񘏟Mu'ްm\^t7Mvvx*+B}y[[1\Mzi .bAF{f2LsS3M{AI+TqzRvM#m F'&M'uy{HM%{odOy[D;Mu'25Hb2 WM~E&>ӌr!M ~XsRZ'wvMȇ΄ f7MK!iѴMZܸӊC[I6MQ0G̯6 T{M2ms6oz)TM5h 01aqTMA96!=:-Mg5GGٓ}M<7s1zT:bC퀔MRm% "W /TMr@I6 P?ٌcMʇ؜!1_@$M:FLbgRMʕqۥ1I蒄QW:4M<VS%*#D`Mƴ)'ór$4GhMؿU~QxĊM# 8Kmo͡1M+#ws%aMIӣm?-۳hM9؟+tM%s}.K2#}ݲaM`M[o0|N䃍}%r45=NrtBLk]Nϳ6r/INo \4NFƱUp[N{<!mIOP{XN ?Lϋ2k-UKRzǟN##G7z;N.A]9im6NbaDM%TuioNKl-19NpqQ7zϼfAP,N!&P 7|kyN$hؿnI}dN*Dj+opQN,^6Wߪh{qN0TVMVN1\SB<ͦHcN7َboyY1{źkN8nþoUN?3z˸CN@=O#4.NA<BL;Ji!!ONI<ٱ;3`8tkNLmqikm]GNOSi^b6O}jkd=NXGB+NLR{sշN[s]+;›jsNbs~3 h€Néҟ Y)^<Nf#Ъ4 3OXz7icNgQVG|{Nb_RNlܘB2GR}Nl,'H֯/Nn @iFBRQPSNt.iPGzZW<sˢbgN~:B5Sc&ZN G$w4ޒN N] )$!Nlxs üepN[Txy |d'aNtlq>v2Ѹ<NFI4>z̝YVXN2T@݌fNwkfًNHY&j@NcH΄`I>*?NK&)#RIӉNz;gbDFN>nBN''Y Lj%_ipNDf?3vޥ ktuNWۺjn+N|>e?o+۷NW8-%Z] N=L]TxRgNғٍӔf˾/NМ˅elNc tnN=ז SqqNtXz&KaN\iFԿbxNڿ<ϊړp ~N듖DD̛DO NCT.GTN [1C3U1N/ C2:53 Z~N7K.2&YkN7BG C/IMO|TCsʥO8B#ހis ֝,O 3@c`6ދ@;EO JȮEd<OϜfb*ڀ]IOdLsŵkL<6O L*՛S[9O!Qڏ"2# ?O$@PM &mgO']{P#M6/ j#O(_4,O(ڊ<%~p;O*4l'pviW*fvO1XFJʤ@?͇mO7RM,TO:\ x8zdqO:X'1K%j*1< O;:JBxLpMM1TO@J)OapB7ۅ OF$>;LjL-OL#xEjsG N}ѭORFC6e#)zV0OU|rʸ#몕=O[,',G)#vO^#ij)7CeO`lj`Ql0[YA3Ohv` ϙLDOjN'X5KPeݴOncaUer0Oo!h5*h)b Opte(dckέOs /oT=9X0FOxu+6m ]OzMn(˃`3OP*бTo1WaFƎOuCzi1I8OlX?Yv.ߧaͪOy[ֻs OJ)d5 =O;` E57g'/O9QQuE x0Om/N)D6 J"O;G֛h ;D-TI=O3 <cK=',O1ngX$vO!Wcֹ K.Om 2fNO.oX}PlhO˾D2@ @ &eOԴXɢ!O@s{XnˋWOO>t+kpB)LWO nefbI߱Ѽ 9OiO7!m-׆BOxXe;RWO܄T՚s/O.a l`(qhujOƋLfbA_́pOƨ ,t{_b")O5Y[QЬ<O5Cpq2OхRJf7s(O"{[ E9pZLO֣$1^">V7\nOw-wTXQ z4.OW*$e~Ű홈WG>OV3ʕT _QKcO/ ZoOH*:#p~gOoO'I](O˘/T R3LONQ|Ro3oOi9ϛO ij;4O 9aF"OTUMൔ3wΚOK]F϶'9*RLEBOsm<鵞}O Xޞ5/Ϯ܉OouA;-SPݤ:5%vX=TPa, D%^ Pg(fN򼘆3PFP 58ܨ&k0H6pP 7}A0frOHP s|p|G̓,o>PFz5!8/[^vϾIP>\&7pPD;>Rp@PU.60ݪX:iPZ9ލ>dd9PVy %.˫ Pdzs)fۙ16P/0W/8P5}9mL4EP *uСXA?(P!̔?,chP%Ձb6GdP/3D8·'ݫRHP2w_wW`.NP;p;zàHk9PHNÒhfҖPH_|3n`<P]@zPL \a~GPM!dHZ\{E~sϐQ"PT]XYג,v!0PXjL+4zFg]<P\^ ~[ P`I]A?`ɝ\vPa- ݀wR Par'1!MDPa{%KjvE_Pb#b܈z ,^0UPe5Z[h;=kDL>Pe:΀$PWN\[PgE3\Qy}nPh6>DfϔPkc-OlT.Pk[7zPrGW0E&[+Ps"6H1[u4i-dPtLZ knPwݚ0H~OPOqd6ker WvP?31 w`0PWJI $a{PBh n7WM`Pݹ Rp[]MPdT@ZݺrP/i!nPq6P<y8gp 'c/cOPDi:1UasWPY]ܭ9+!+=P0飉)o5_QarcPh8ʵ>з.,ŞkPTet!##@Pד_x-qvoP8ɎP.D{@}<P#n<>B捱#RP^ZHʟ>!<zEPկryu+;`)PyW.@ &K;CaPӕatDܐ6PBު[}fdPN7``F6PG--yѭ2^\5X/P'/&|m+1}Pܣ;^wN>_ӲPZ NʲPb lzw<P7񣏝Cf{O#$P-QfKF.30P_SoDPeW ǰ)YP?[:a!E1=Q3[ ްI kdOQ8ù /EZ=yf/jU*Q 0 'OߣOQ6736-*_!@Q v*4ٕQ'JQ wW8I[L_Q!TLdBsQ"IEgHJɅ!Q$2@]Օj#{Q'&I3N#Q(){t㢴2uDQ+'jʳ/)kv+Q+λי>((3pQ.z )vB7k{UQ.߆ٍ鮋周\YrQ;5FyE wYw\NQ?x Ɵvg'ofQA{kI I=2-߸QC X,ʧG HQG2rOy݅k g QI+xAE68)QJmrTFlBPU[YQL'14,+L71VQNVrP\(: QNۗ^J0PFQSIkqu AQTO ?EXQ\HD4AJ]Q^uc#$ QeLHQ;T̙]lQh0nq}A!ɳ8zQk4 #x_煊0-Qo_,trp}TOQosds4٥ٻQp0j^S.u!kɆQsg6ԍL EQt2ڌKDaaIλQu/ ھz.~Q{ Y}\z"Qh Xy`JacQS8l=q  CYQ&D`sY#Qh>}m&nsQ=Q:+J| Q, _jvz{ԟQQofeQ4z:(Y/ yL XWQ>R7B99Q4ql"!6QόL8Mq,:h{}BQC.N>.Qi _Vq{q@ 2 QkFM1v)% fQ Qp]ԭJ ߫wQ{Â\ 1QΆlA+h53/ gWJ5QۤC,@~>MQj@A2[( 'vvQk19(ixZT'~\Q1v [%]Q5;r2H*,+QXI-M4|QK% ]e[8QAQ}r2*kF6Qz~09pښ?:Q,iK&%2Q+cQu9]IQ4 _[iWR=Iӱ>N3kR {y^27)UcRx8TG#IP&Ro5M>/ {' R ~D/jۚ&FoR ^,O1#s7 R;aA̱~iR[Ğd7ROwrAƦURkۄtedX!1&R#|6=G􈰔ӸɯR( &JSQO%u_xnUR)<4=PƼb3V~ R)IU=]E^tZ>R)YU<\K+o*R*CA~VUU\R.B;Nj>u4v[R1 ӰV s^tzAz9R3U+zV-R5K\kczϳ/I3QfR8 5hTxR=P=w& M-RD!4YfG/.něRD3dWKD*ROf=3PO6R[TFy/ ,g&KRo'K|IBĢ%dvRo^y (onji' RwAӷL36Up+R{&ܢ˝RT!ҟR}MŒ:GR~M!=iB@ NgR< ېdr :xLXsRM.v,"2P-,=RK÷LtXoوE)RA;?NR]g+S֨R#]%RﱹؾS/R#<)k#yRoush5bR!=܀OWTnR![cz3 iRk(UhWR/){ד/Ri3:M҉oTO[R{}K7b@$۲ :RWՄôAs9[aRi4WS3 R-*NV%v/O]qzR]j-]z`R5>CDRɟv`k(<YHRo`yP4%ṕ Z*R!ou|RG <RfquپRɩTszwRiAcңi?R`H)pgL&&RFZEcz&R43k(u`;~yRA^rm TsRkfR{Xw6yܮ?&R!hs@:ѧ2RM<Rd 8$R1€n5:XmbRݹvƒ=pfRHP*PVRwi[gR;$maqp+ Rf])j^S.e/RE25"ؒS4h"c'yP'"aSڵ:0ǂqB/lZSj녔 zNSYS/Eǖ-@\>)S M hI=;S gw*׮D\HSEoQaqoJr_]Sv|] 'V&'S-m~6y<CYw ~S!30F-} Xi"sS"]Pㅑ8H'hS#̡#C/GS%=#׬2a{P4+1=S&-{%I֚]w < S,h}}}цoXCS/sBfZ%#u-S/!4Xd)n:S7##<| ]7}S8 HeE+d(S;<R )}6b6S=78HnfB.dGS>6+8.&HS>Zo ۍlhSA5i!5X݆?SGϣJ4*SNǀ.`X]ܘSO'r:f@tST T2b U Ū8S\v5AݑG o,vS\԰C5wDZ4R-{dS]I{I+wq@S_^4G blq S_!Qը蜯Ye'eSb,]w,l)8Sc V'e%Sc , 1xmiPSd/e݉]V[؞jSd_0Usa"wSSg (f&&)5y$ShF<yÒpSn! Llyn[`].SoifϽ%PywSxVBf=CRSxI>Um\,ZSnSy d]/{˶yUXS*KK#.0SfUghG+eS./j/mj8<[%tS[4h3]SCjc6+H.xqRSoO?W!ߡKSzGaI7@S*0kjSt).NST15h0bjWS1Z \sY]:PSAbEgዸV{=-S(T _%#3JnJNSRY[)x\ vShk ʆí 8S {~7TZ{;3qS5)_^oeU-cSNcQ&3aAvJeJSIY':>^B-6S/ֵ4 ei[EVSF]~7iL,#yS:Bq 2z&SJnCL'Q9SUNPN~FbSFDorͮ2#Su&Pxa,;S]e>xه?Q S¢Ed@D]tl7S'ond;SΗtDۋ:%1?^{SΛh%:gPŕ&4S׋!_AE0JSoh^B%ly}pS٘M#AS⠛⚽˯Jn.zǼSյ ozJu;7a"r:S<p*2Xu##S҈ ;6̯qfS!vtDžSxЄ3|`T2r=SsWB`gr8<?SCb1T#1x(7aVT(][R!&T@mhjDqpl$@T tIH 'v&^T !=K}mvT ǽUpWXJB)TTb̹; x\PT#M3Yv:%K!vT-Փ,BG)죹}Te<khșx)ƤT脬v9S5<üT [+@yKe2T  CsWST#| =c>(T'^㞻inǓT-aLjDP*T.fpbK"մ2$W%\~GT/J2%qg*@v?T2HĥΗuCvT4<aT.;T6ro24LB峌T<ꔠi CT=,Źe8 JMzT@:h|eB,ITG2݀')7TGaEg ITGe!>fM4oTHˉr_Бn<NTQAZW7㛨TRE(5wFu[.FTRD?b`niYJ ]T[$/~v}T^׽_bWV!deGFT_zF4 4~%TaFzjٺ.N_TcyI*K%nwQ5Td be jDY̍1TdxD1kU0Jvs1Tid]}g-DRsTiuLɔ6 :_ETk0'.Ң>Ɣi$QTp,[0Fd2kMTvh9?XxH;qaT}ړUOvMZzFG<gTb8x;r\ >uT\T櫡gTD+YI02 B!TOD/)t6hTMȚλODaT;5"D</@Th0.<hն鄮Tî?(،c%fQC@Tg Ğ~l]vNTI1|zibΛT;ܣ{ Ct[TrᆅGofT>c@I48".rMTG6| F]iBTC%Z>7} T.8 w5l %kT$SqzT֏ˆYWaK ETSo2U?k%^оIT˽& HPCTJ٥$ʂ$(-T?8*=Zg4Tϧfǃ2ptF,."hnTUtSvĘۗBT֞[xL Taݟ͚7X'/T1}AT ?$~Ѳ%o T߄J0ӛ,fgoGTgD5^*(dyTy:΢p1`|ǬTzƍ \4o Tג1.e<\Te3Kތ1;T2KRζ{Uo b݇xDT;5 uU99O-8pUܕKᵹ$'9U 9~, r0NQU \;[ nU L|Bhٱ8Vv%x>ѦUe.Ļ'.$ EUƙ&>EgM2U {5oއUevm'(;U "Z4IôU# c9֚U@-O4U)8hġIНxRJPq ?U+CH^力)s┠U+~(=nJ.kΓxU+gUfa VU4ZWLvsOPi[M}YU6$arDU6(^ i&4)BU<E8W$3ԼlaU=XM2etU?D+Kr6 7!2UCK?IO6~?UHubTt =UN'fFD( lrUSgPhazy-GUTq.VH5 0.ORUUjb0p4zUUDj2ev˃VtUWJp#O7%g(UXvBBloC[0v.`U^Ă5$}/{1TgSU`)H7:Z}^Ub4ih `O4UgL3V&LZUgɭ~Z3S`RUn}FS}di>>Us7w.CWTUx;|m"vd^5FUxɦ0ϞnCgIj#aU|:dv~6U4E9ɯJ{)U&2p/P=q}Uw@Dbj*-җvU/nh#W%/ =A3U6>Ή놼h#mUq)K/ڜEd UxHGέI*TUQ؀ z{lTتU^hw33UU pdUGJ0̳z~h?sU6=5YU̸$FU oؓcxIDU|ݤDiUPZּ߰ٴO7HUXzKK:#y2lU,CyUp UpbD8P|fvm7UGi*,D (UzT;U()lU\ō f@߿SU¯X +=_|T `UӔiB ;2!T}DBUΥENb6<$HUМ`b(BA~RUC=_zopyp͈oYU$ЃnaKRS3i~Ut UOk _JU *w_=UlmU -oGl׽VG sU|k tn.63u@Uֵҽ(?VU,}$~D r 9U&qY%g Z1ZW|UTHY]ƪvqrU'4vP7I!dFUraqg W"ˋU~tq gpXUay V KrM;UӞؗ2yNc V}8G)8V", I1 =%TOVo"ć\SAS\GVqʤ>,Ý 8MV6+^vК_>VbUkh|HVAFOmlej%spA VD࠼X&LV,^Q4i"HV,Dv0{RifV1Ȱ|hx@Sx}V6IQLүa?m:V69Ap8ż~AV>ݗeűğCVAyV@fVDksW`&VEM\AJ@rVFk=`ՇMVL&Hh.CS#VMLW VNPP8+.3^q VP/Zxo 1VP`s:hH &Ӄ VQ<uk1ܴ]jVS=ԋ!hwooPyVS!7ETl0ߨlwVTql=U,/A7 VT$.՗Oh+VY?Ox7MثtV[Dh0y/[úV]?k^ Ok~Db?V_y>17epViIJuP6Y hBVogjZ{VpN`c,wV*ڸ{hrqr^b(VU0cCp9V%Ohz@^J%VtV~ P;ib$^]V{xeoS- =Z V~hˎkdZƴV]ĠtZh0r&gIVy9;cJYBVc~鯎!/3LVo_$'+>L+IcV;}",,Lz] P8Vs{S)DSVbFڰO^X8ڙ$VGj+=|>Fu,VQYNgV7~c6];FV33O?"=uanVS85>?@I:;V(V%$O^ aVDdR+\lVd-|2]m'$V<#q8^Da?-S1a1V{Q{TTKV]gy~[37V٧cէlOVV\98tY/ؙVj! Ye|6YV"& E gk%Vʽq`mu?n*V]YgLKٸVϋ8+5IV'8P94V~znvV;V~P͐U] VŪ&ZSX@w,V=+TkvVҮF)7݀wAV$rTMYަppVV7WǾ}+ΊV e u(otWe{p=ڶ7prjWMY3}Fs1݆W '݉,]gaEW`L|\|Ҡ,lUW]&NҴf2nW";_@iS&X&pW'2Bd'oé{\W)BKA)ny IǃW)/0@C$:w g'W-^&`WQaV.W/8p)cuT|zKDGW2K yBTv&@z[7W3:SoNyuW3D*uK2EW5yG&]])nW8O_[IqW<c cj͆obބW?I!aP)F©WBi6Q)-"WJCW1!xQ$WL1(6+a"h}~WT ١=4*}WX oUiҪd EnW[~h -ҡu}.$W`*?ȀW`RR|Q9.S W`)@ adя XWa)B ;Ii!Wb 3 (M 3\XWcR%X\`8K3k WeUЀNB<bcT KWpmW1Rl5FI1WrsKrv>XPWs>m1ڕWw^)-N3Ww.z~8p褾ʍdJW|AD @g?KN1F'WEIy}a)~c,W$([3t,@k²2W5w%8PޫrWGҎ0VWP6=T@_OmHkVWԌH M*G]W7a:mwgWNS9[ODgƌ\@W> Ӹ֟^GPWEѫDW{NIߨWct^Dr]WRG$_EqOp%_Ws$AdgyW_FU4o^uTEW|1)7WG%njWGpIݟ +%پWPlIҀ6tŴ=/sUI*RrW!#8K@Fh"qW/("3Zٹ_/}d0Wĸho\if!wWcǸ7b$3WMK[BL,充W̫2Rqm#WGo"v\Wخ^)q.WtfW޵R)ۥo*9YWr/(uN$8WۺvH;yEv4WhDGz '[nWL<CZq<:]W vknH WRvH5e\u?X Ub4!m\n?<XL*D2e[[H֣BX9N r!C~ WXd4\O k}[꡹6X3\ld,ƵXc++F*qR˃XNjX$*|Ѧ<^<ij,1X'XQ8fs1t2~X).}PTXTX+Ɣ4iݲhX/WjMIɇu{X0~T7Fi0CX24 KV'`9X4+OwlZX5j F0Z|NX:aO煮.me .u;X@fؗkn7'V~XB"+x6xgIXF>{O96Cc奞XH~1vzby9XNC")(a%{XNt4"V][o@iXS5Syd*$Ob0 gXSΏ5伅5KĉXWvBJ5g9_^X\gͫǜcX\v*Й cVkݱX` 2}XiBEZ;LZ*@voXk㜚 @UņvkHbXp" {SOeAiᰎXq"ΐ2s;4NOXXr&kU >'Ha>TXsaEY ~);Xvũj(%ME XsB-)z[XVtګe{J87bXgS> xWeXUMAj1RYyfXF unee֛9Xm@+p+ᄇ@&DqX`;D1 }2EX\},;9#Xy zDfޯ"l*=\XLCalNbXWv.bonX5&r3a"XCs#w$aXTa1E_ânhlXvI\#lOց*nyXœ'̣Fi$crUX`tE0dD"zY,yX=_~< 7;8eXn Vbe#X;rJ<َ ^X'5^r´aCxGX:۬V{6XÆ޵)^"3eX]ULECXw*(,R<XCg,&&bRX&H+!Kl8cX@- 81,TJbXI5[P3TY|o1XdA~ُ5Y~KLF1{CGYko(t$YêxSBZ3HBlYBxH>6AXzY^@JD&3X(CY(VY2hoYbَoRTY/л1HH5YׁZ:Bs o,J}Y!@BS R?]![Y)1 c򅧻FY/q ~s6Y/|_ͺٽ=J"3Y0&|nk>Y3M;x$W'G&I XY6^pao&L_6Y<ȽgУ)brY?-m1vfiYS[YA%bC󏩠yIYC<ڎ`n1ztYCYdꩺtbXYJ?Ѭ@Q1W:Y,YP7ba؆O``YQ|VT5c2-VÜ]pYUo$hNLYVtωŕ|gFYW> e bw)҇R YWTs=d)k|;Y[w- O?uYij4뒈;EO]YmB8bڌAt2}&Yu郍nO8 EY~BP6<BKY^~^PWC^+]/<Y<}J-I"Yalu`F<<PlYۖqq`+m˳Z. wk Yj&M__y7[lYʞ^}`=q|]YzYqg;-$l4YEy;"x>HY-fvHx:6pYWS 83T<Yє?~A\Qr~GY\frlXfF` Y` & f'f-=K$Y+41v$_|k'WYW #2-8JJ5->dY)nm2xl8zYZ <Q=U^ |YǗMsi=ӼC"֝YǷ`x8JiYg0\GYhқCs tXY?A Yp>Ma_`(YY;eUqǤ Y7nn{i4?jI1XY⿐GT-/_pQYڵmX4m_!kP7BoY|xEtYzb`!Bpt(ԟ>YUnJ3ZkQEv2Yv`o}>G|YZr_ ]Yi(_ږ >+eYyQQHd l0jǻsY wqDy~,3ϊ~Y61(rb'YdVjFSm}=V2YHF}Om~'4ZQ[< \؉ZWMC5 5GZ4NdZN<yUp\rZAayhsgǨ? ZOZ9vfj2ZS(^ ִY\:HZqekhhJGZ<SI0_qƏ0waZ'BGyDۧqs7Z(VEVX(O† Z-Ca}/Cg25Z0YxOq:<0ň({PqZ1:vR{s;oZ4U4*L9bL3BZA cR8@p9AZB|\eG=*ZE8]N~jSw˲W)ZN30r6(K_cZV “h7@ZWA܃uUZE:VZXddd x!s)8Z\iD#-|` tRZ`hڤpw8iZ0fZaÙQSTf;ZfhIkzQ2Ay8tZss.ԱulԽ/OZuб3K <Z}P0YMAr#Z~Lyȟk얽^)#ZRŗׅ˞|l)ZgTSe-Zp/pԉ13h:qZ"`H9ŠCfZHؕc}iXZfCBpnHZ( C[vK bZM!19`z(DZ^rsU.ԘRZ'Ro g=Me=SMZT:5|g8Z ^|&7/\$)ZG KD$_VZݕP+9v/Z9  JkK<'ZDi 7}Z͡^/%sLS#ZҤ5 NǍJʼnQčRZlwf&*ZpHd@Ite!Zhn,k_HT3ـZ^ɁgŽgąLjZu#]d+s&(Z{@dO>x(պZZL]qoeZi,rݼam|3#kZqt,#ˇri> ʻZ7K"$Lױb szrZx`w $Z 9']6E.n0Z~#3!wx)yZXߑ?!(q~,x[OMՠP#F]C[5s~7O[l}Tt.&,&2%.[\OteXqXOfO[=-jHKm9hjF[>\XĘMR~*[¦9Δu7Ή!a3[~x1dϫ$n[Bfq:d[ :7$-c[.K@?oD^L[/i!s4S[3WhuN|-Bq[? 0g'.s?[H;;壜'4N [M,nE!\3"c[R|xam=> [SGP<Ghם<[VՒD>5Inu[[n}օR.E[[a;V+a?[c$^rO..rD6[fή4ڛ)Udl[idDGpB#Ik#[nV%MR [pA)):9*r/dt[r'gg30[tyS̆y? j|?][tЂ{Zx[u$`%-[w0{V+qs[yA&0!]\'7+D[|Vc{Er2![$/rH 6(8[?Z2O)<3f[Kj<ߐ## M&[1EepNN[1kVgy5Ef[j/VZY{[HXOD< R3V'[5%47| G0^[ccd [=hi[|`gjxokQ[vץ:m 29/K~[ƨ&/l T2[Ca`^7;?"[1u!ّ[mt`F$ș?[Mօ#rb S[u75`V.a[Mų&mDr[ŋ$ڇmGv$Iq[ǞtͅVX5D[[hY64a\9@e$[. \HK[H^ n} ?܊[{p8>6x[ԃlG3<gQ[ݥ Ĵ di<WϦ|[/@"ZX\݇[KFWq6[3LJ)сhZhd&P6[a>" Tk[뱃b0j02([Gj )u#[12S8×Pw-[Y[R\׵||[ z[0t[9.N?CzƁ\\ Md<*#L|\Z ΰ~d&lq\".kͰň~K\*Iz{Q0,w@ .\ ‘-3kfk\:*j6i\e \}jqBBdř `\p<&|NҧDܯ)5\%%G.6]\l*+UC٥=^\Xbqؕ}į2:h\!Ծʌr[IFաY\'Tp)Hyh*5N,\'Xw==Ņ7!Y:d\'jw?{Q@\*a eD Ȩ\5 0'^FEm\6Fyޭ$k^=M\>AIfrEK.HO\>n' #?Ԝ0w\B,5D\DI'A@IMV\I]ȫZ*vfl\J-J::3PQ\JqQ>ީdQ\JMOf$ m\Kcc48C՝"\K%I$4`v@\NyY$%WYjT•\O/' >T,O+\P[ iµbz\a'3un+5?ߌ<4K\c1eGvpcK)j uC;\jt8c?x+H\rs:}'.lR<J9 g\u`ݮB);޵{P}!\wOK+hJͨc3ߵO\xQP.Nue\yD o:2H7KQ㽕<\}w8k?MsL$5S\~=#N:" n\~l_ _&S"J(t\U:E'r%xl\nt^utP_)\7 pod<\lG#H~߭Cv\ZQOK"Vҗ G\J$@LV\9e!g3\Bff 3 R\v=01C\&{JCwY7\IQc<Z:ܦ\(9Ş{bZs+A\N#> %Ww<g\cAa\gE lCp~nK\iVChtξ\sد>/q\x inx+k\(+-F>,/%=\=X՟ Cܛi\3Bٷ9mH\2U☹=5~h\$cˢ\ZgsU7\b}T~étN*\"lR"]^y\VԊ=Ix*\ݨ+Lн)\ֵI +@~_",\\,`l"ӲH d\qZ)DR[ x\;Yf|lDЄ\%Z2́ b\ܧL`|\f;} H"\d!ƽLq\M2T%3 h8\N6,&@Sk\֑.e\Fm\!l4Rfa +U\KO5\ ƼbL!"\~Q|, JȌ\i Ϩ.J];'=crd!6OW]iu ť] FN[ib1,Z]{'yjUk{&\%b]mqvMW|w+]qN]r`Mn6oyn6 F] 4 a1Sx(]%TB M*ͻ]'-vyE%},D]0@ű7\_u*]41|.dB/p(]9bRsF~I8ݦ]DKz : !ŋs]DqZ"&~-j$]F{9;.s]Hjn_[⠥uhjHo]H$'\Q yw]RLtr] w>s>]T.bX;(I&]T% $^j#^ƸM~ w]X \w~~9 !]X11'3R][y(5tsՉbed(]^COR_}"]`(KU~ =v 7]a./тtӵ ]l!oA*̤h(]o2( N뎅T(]okֵkxٹƒ"J#]qbCKy9MS]rߤ[="w5/5Z]r8+k_XK̂|/]tۜkw{Xllpc]t *`zIz0r~e]w3LB?]H9)Sb]GMG +5VZfP]~Vs` i.(q L]?7|80 钚]a1dDW _]!OdU+cʽ]yNq`mDbZ;]<A(]f}G*"-]&LjkLSZ$U]@]3~#瀐LqV]@/}^]Ésķ[Ž\]0پ *ˡ?SE]JA/O'2%]b9N }l]4aHKjݿ:pa]P=Sek.l]M#EdS=$-]·V х+BJ[]ӆܐmyͭ#^T]D._edk`3֢Y<=]+p?AvuDpٲ{^ls]}DŞ[X{`0a]ŹB\WfLJ](A{mK#s ] IcQg]oSovMF1\,]JUCW75qoٍ]l݇|hBb]aVFh*/IƲ^S95MH$,^GK_09^?̼~xyflYd^) :;ep^O*Omݾ2Y^]A(aDex%^EgCX3^ H@R+}r`^!#.L^pwIӀ'^#Lڔ~ax^h4^'zNnBPpml^( jAkhgX:DiK^/8O1^38 V/D*Bq^6"gr?#RNLn^9^G{1P{# jMJ^: ITO\ɂ ^^>PߌYLJ`w|H^>*{x ,ּ1+vjb^?8BP>dR*^Bc(G-?EM5l^Jn5ާdJT.^N BnU_5Dia^R 9=!ڰG^U7tvAlS^ N^ZvnR\iT4'iE^d&ȕ'u9BG%^joRo4ẳ<H7^lC:}Qp]|K^mwMnR~}`I^}RAqX荴>M S^~/ ipPfPW)^~a n?M*7A^5`J*ۻ&S^Xx [\^Iy)=2Fڌp^El$VK"ye)y[^{%"jMy6^)ۢ.Gԛ^=n]jxu>^NI^١g;~zM^ֶLu)V4^w$9p^TN9bP^{qސ^hc#>׈>mr.^#BY_T:SH^w>2@Y$W-L^ǿ W2!Z^(f^HvuO݇^D13Q+19C^I"XOs<lV^^(jj$LΩG^H=eT74E]^FXMN:Ő$^8nktl\2h^ǥvX; 9FR(֟Q^DFcOwxd^kR|Hz^GdBHсZ/\Jn^Uiq/L׆,^|Nx@RVN2!DQ^1°^@`ަwb^ތMj~ l^ڹFCҩp^Wn)W^[4_$iÊs^X!`RbŢ鶳^&?zZk^˨h^2۳9'}Օ^zQXhƿo/NhW6^3(Jf^B3^yӏOEez$^XW`LȿԔ_<VP̵tC ýp_Z 絤L '_p  'g) _ \1Z,ZN"_˄A;שcZǴ3_s?[ ʌjѨ 3_k: jP_#"8GL(x_-}T')çYT _1L1t] J)FX_7`#dŔ'Z[vB)_G%">Cko_m_Mmw(k\_V7"fhm7I_W_y "_$cW_ZZb?‚Z6UG_Zf zqQިݻ_`Q*sĞ9wŭ'U_`~?B c' 9Et(_aO3pKJR<d6i_b`I:e wd\(_ey".am-^1Ci_fa gTz ab`_h-fx$d<!2_jreƥMÃEb_nim$,Ҏf9(_nǢ;"::C%_q29xvRK$6bZ_qݚ( C(40_x.̉)cE{E_{X9{HMW_}<n^ʌ ,_$˴m^^_ɜbʜ=`R_߈:psX9 /6+_FqC]ߟlm,5cڥ_߻і|v:ZRb^P_2#l&ٮҥ#_w@D.:~_l9{gZ2 f_.xc~i-_;ZmN(Z!h_Ϧ)MrUe"Ѵ )_ѻL7ΐ"}_HaoHI\M!&N_JS[D?9kS, _Im`){_(,QcEM3_ifp?n؂(3_x&[H#dz_231|(r _Wh! <*_sY_r<vEkؾջC>>_眈LHIy&ŏ_T@Fٚ'__~T6̨r_t٫%P Gw_% I EmK湭c_87b/if5'_JM|al#^O_eFŅ#VJT_h`%PBy>G V_܍򂉎i٤1A2ʒU_caUQS_(,&lm>5_]|HOTƳ>W_+3ILAr_쇾!ۦ4T94_;O &, |(i_4IK_> _:1hv8ש&L_|д <R5_`Ft-I_ʡ¤F TXK`5&`퇯 vk[\TE`![` VyRH#`TCpj 69&e`0K|BSqBsE`/qKlˎ2G` =Ms8` ԑ[sc+\r!s` .;7[f-bsD`1E60k.FEr9x`6G"xkL<Pb`11{.w $L5`$ eOI^)`%/W(C ?q N`&k؞c0jC`(z.Rf6CU`)8U)T\AKƖx`*bX*3+ `* ~~C 14 `.un:s2`.;b=D*Ottw&`5g ȴW. ٟ`85#.NA:Ǜʤ`:Ldy\u,P`: %D_Q`;I Ae^o2`;P-^0ߥW8`@pjVğ}2Pv`AwȈl>1Ɂ`AoעZ#ryrdpo`A䎸 HpY`CO^TӤj `Dz#:3<s[`E YD*˘!`K+ ڮ dS_`O'g3`P;V(Zg5䎅`P?"SJMEak`V»&LD'u`[1J O u:C`\0W("]$ `]7ɬ{D7n@3*(`_o̗۱U`jiEw1P^&`lư 18jAx`nih/Ftq 5 X`oM=ѻA8LAh`t$Ʃ U5b Xѝ(`tT%_B4mJ-XK`uKB7^[E`/0bm`vAr5Mџ`wsLB(.iQ`{']j:gˍA`D;1W<+e<`SfD'7ٌ%``F)eMVdl̉k`,ba"P c]`P^%ᬃ`ڎؖ4EP!6`Q`]R}[`le*C1_-|&` h90Qu^f`*j=mڟƽ'`,̳x9,PX6P`WK@ 740`yn ;]&0f`2 [(iRYWY`YgZcL0=2;E`:.zdQY 3x`~ajXel `Tp3x|a` nq,,k![G$Y-`rv4.`ZA_yR3<_/`ΟqbOr" 'x`n:ff{&.v`@P)lLh?#Q`CqcPi,0$S+Z`)!LgcB' ,{`W(皙c:/Ķ`׃jg`͡y,5cm|`%zfVu''`<Nk,}\`Va4B"ZzAv`oۏ O-5L0avذ欋v1 [\ax`ZG eaU=N)/vRGSSa胍u 9z%a l<ujЅ,Pa K_&*tea&Lڂ4D]ôaD7z ͖/k baPZҩ?CA5a.p(O#<ş@Pa_(96r:daO;sB Ba!Z 09 pjk0_a(S3-jË wcZia0A=bȂ鸔a2Vx8@8V(a3S9 z>a<w>|{1OR^aBtܙodG )|)FaCj]g@IK㹇aH0^+6+i`e(0aH[p;IK^j,BaI<ؠIcOaJ<r0t Ū YaKۅ0Q~28w]Jq"aL` ;@@F8.aMfFC!+^d2yFSaPh(_W{| ;deaXe7QH¢aY,3.(]|aZ5cc_@;a\B`+ .K@a\`w;O>rla`DwJCƜ0B&1ad2 v/|hafzߡ'} +Ta/;aoo/S H.&ao,\Լ{i⒐ar%ǥq+G@|auDfU٘hy9ax;[ϮpZp~bA}}ay-UX XcH\،ay?ec`d l9ay95 aŭ="sq:a;t8B(:fbGa80Auzśa&!suf`a&&aʆ,2gLt-aɊiˎqIefsah{q{ay&>ip.Jda/eX2l a#n"F>Ua֜-7=Lhaoa;97y-檈aV@*!]Na˒X53%.SvaEY8b%|>aϴ=+F<E.Һa+Q!6*924#=aۚF-94shDaz2ûcЈʛ_naD4s_T$Y/a$TP#1`qM&aᖭU*3[iҞ뭕a'0,u6]aW(|bMߦaA*yn/D#A|zra:TCiEPaÒ>F7*O^a{edpTo6>%ǒ _auiߜwrRaVagXM:/C:}0a5e ŒkEja*T=5)aOލt-a2BvaAWhna.>x &bIb8| [;{] b,KΖ {{ ǛP"6b lA6Za[ b7|;+%dv&.b úZq]\巉b[ ԧ9. Jiub*QDbkmpS6~,btձ1G&Tqobc6m'US:#br AG"8}:Z:UQزb%Ӂ9)]44cb+ ].ЄUIM@Yb<󄺑|Y&>b=]Wڠ0ZYbA++Ӵ7'GbG%*)CGp2ƳvbH#>fcmxRbH$e6'{L?R <jݓbIFy a-`*bK~wt#bUdb(qNmjvbX#X;j"-%TNbYh7\ifbZ Ĺ8|jb`k60z@%Cq`bd[{}$Gbiwݜ' S26blJ&iܬ15a(bo]õ0>Ili'[v=`b~[&yg:/+])Mbn.]#51jWʿbtB+\U bE96މF0(tbҥG4b؝Uz"$-0GbqĸA-H>7mpbDB48bV`nzɑebޚ!Ww[LybJō<*mZbiOܮA5 bW.֠e.Yy\{Eb <„@Wc^bHrT_lrjbeAΩlAa6b2C國5l]Rլӽbv"͔L@A ~bl w=Eb1l8؝!N1/RbQE ͳlubD  YcStZbw!islUbT9<H̸)7 bHZ˒Ga{Mb_O}QG?z;byT^2QEKbQ1U9 y{#bQ2<*P_Jb=xzG׭)b,ksց'8:bYGog}Rz7<Sb9](;!RdǪ$4c]bAQe!WN7bڞ{ժLb4kʃ?/l bܾCN>\NojHbS:l8Oв.AdOb35{8tv#`'9-b~9_1bbf$h- b"`t |t (ҊYbV(̽ț gOa2_cjJp{߱/cQym# ,'I$cO1f=VB_imc[ Aй"cogȷ)$Yyc'LϯQ)Cc:,u P_?-c!i}YNQdGc#l#jF(.-M~3*c+opGB#g c4\Pț`A}3N,c6ط9Q?B&3օ^Ӡc8l$ kGϷc<]~n40Dkz\^c@鴹p[>›eS3cAQQ5hcqcBZiP@-)i+9.cC6ɨ- cH wьq~R cH9|`*cJs<^" k)_cKl1v›,ROJ cN)Vg8t5D9cRb}cHPNcR]jsY< z_cVTlLJAJ/!cVdMں R޽cW };ܘBn#>c_-XiXimc`:~-s9d{͠ʂcexؗT[yeR#FX.ckV>GPSS%MN:cp%@2z/ǔϦ7ycqcGrEJcx<@v7  c{b,Iɷ bÀ<c|UƮ\'cukd*{^va/cԓ!?cڢ!ҡ`xa,Kgc%V-.8]c4K&)Qcr&oJ[cOcMtfRL h iɎcɔ9Q2#Rc5!5N8 FcLcZ{5T9y<\_c h%%Kc>yIloc=$c<u].c^s7]/˃H-eܿc2tOZ^ҠW2cƋDm|ŭ O·c 2` RO!dc˻|§iro%b^cŠ``H>l0)cJ Cśa>c됚Rn3jrcӵlg9HSZH]cأ/<ӥc>ZpcRW-cܞ!8KoEO(8ce'ylpcaTCc⑹sBosG..^w^c\;|W ;c Q6 u8c۲ 4|i]d (H#+hE264dH+<G=qdU g}*DdHy iTdy\k5;otd*O} 9rktd!h,yԧd$ r\(@}d,le\uM睨d. ֍]O8I2,wqd1G t-ؓd4 LVm8?YdHc *E\$ dL.إA<XBl`OvdM *V&@dS$z0K1܆dT? Roy҇sUGIdV^=锈>˵<ʗGRdX%d0OM_@X҈dZx>T4Dda ŇôěI5dk5*<S).dnI"K4%dn֌rkw|,dp.+SqNdFzds6 S=c!dzps*H $. #dj iPJ.DxdM\ܻs){ :d7mTsK͡JldC0;urRsdGEb&idJr0??kldȍީ`fdsR3qsPc&vdcu}Xd; ѧ䮂UdWDq{Pj{d}`mO0[) &l:d%猬tnddFdOs3d$rr{?%=`;d_I!dErd:adڒzD`|:v>d$_)Bm&CKdòrxqd1.!2dŕI5<Y3rdƿ.h_{[FwIdϹeX%6C**PdҞF$t$ޘlPmd\IFQPD}(id/Hlx?0?jdPApW[mt\dcLh?5| :drN>ZBYFd[W7bbgpZ(dڬPn.V$Id3:/3>?E>(}d?cb-ٚ^dL4N={1 d׹5"=x8Rÿ];ed>\<wjd4 9=kOøSAce9yg|k-[Ꮰe7p;~mKGQ7sbe_DSecs8eg$SoYZ/ e6eUJI* ;eКL.!"9IHe!W2wGF"<3}e" @ he)j,AYQu:Je*BUo=:fe+uԜ*vӚ_tg'e0}"?+.g_8e;nv0GەLoe<1 ңPM "`Qe="ߠ?وzeA#o߀zZ~\E]eDHy`͆fV\ nNeGymెN͇4eR/],leU{ž~8F^peVEwaԩsBPAeZ8 JP+le\12֗c63 Se\V'`]슁eb嚒ҚMJ eb= ֶemߺ4 k^en7_:q0H]eqtJY@\Rer7yR%TudzevIn¢Lь͆ϭeyX4l_yHšezN>Z [Oz^J]45)e}F`s_ֳ@fye$ LQ"kϧeCKFOɓz)ye^W,͌d2Ce:80wKh"qoenji=jue3/eh;;e/^t}4F`eJx.< Rv!eFЬ9F r4{,e<B4}>#Ǒer.G }BʓdeVO<2we_?VµXeTzOHQe5 !{O]|}7$ebN^}[e6ǒOe ,>$e3Wo3gٗe/Y̴cY?edّgi{,e Q}wIPae${Qkke#}eބCw/=2\fe߈ynlI%qreS3lB]d?e눖(1×ZdaXe pp׿GM e 1\e 5e zVN3e&+%o_Gfqj\˺MpQ$|pfjV|K|mf ",:hW^C3xf +l>"% \cJ`f ۞dŠRf(,Am6yfZ/9ee&vfG1#QGǴf'h;FR}L f//]@V76f1GUZ-KzKbþp-lf8;\F 4hf=&ϭPcTd-|,^a0f@wDv2~BfC:_ "~rn~B7]-5fCU7atɂ9w@fJ)Z*t=QQfK5%.ЇQwǸpfS^lCoĸ7=f%fT}nyEaf_ Xn /<Ǘ+ifd'yUc3(|&x fjѣRuUCwCǺfprC4Q(˫#&fpLuq7{ "7ftBU vR8NqA=@xf5<6򻓙u]2fKG=~t*>2nfƎ沼hHB<jlL\fddt%mIfF+Lժl2\0f'tWZh`.˗/fvt.$pP|@W(%6fڨPH㡠@f+7K\&fmiԽsť(mUΆf /y$2cN~ f/J:v%gSyOKfKfkf·/(nn k_fsk\ DS>vf(q3)9QD_f] Ø_nƅfP(*]w(Od:\fPM6"ުcbf3|%5)BX#Pf quoIY3Vfj7ʋÜ" m(f<O,[Cg_SD:fj.4QlnfҲ TZ`^b%oOf Q$I> Qaf1Q`V0\.A*Hf}w+=J(|fjb̫oCC(Afpm\يa.GO*]fK j-jzJ{Fff7 tWcpfx %×GoÍfTMAbfnH{)Gbg I j>fhp9g*AnB͍u(gWt6yhogcZUIgc޲]B)&!4g4e|}5RhgW 5w!A`hɏbGgYE , ~>Pg FzЮX @pXQ٪/g! 9fI:Y\ eg!*SL6,* u0:g$4[5ӢHMϛJKg%Bl,D%Q}*Jg)[Wa-ix>ģg)}cVO笔`ŴWg* &LS-~g+Z yk s/tjg- 9@DDx)TGg.{._8@84>6gg/ڑ0d{:V6g0{'V cW}qFg2rGdB6g21 MN5^g3o|lScZKlg3柸kqu'8xmg5:>gH.ިg8hƚ;ُMg@!^ayJCgAjhgkHɿggCBnrm_/Eq ]փgLZ/<,bCgMK\jWçBgO~6PD}gR7}lܗBءgR`P ѳ{QgYBy`o.1?{ĈSZg[F)b. gb%g[0 `Dc&,#gbVj[YN3kmge.aD"NjBmgfGy!TUKbggnӷhn0ggl;y 1ȟq+^gnjSRZ\6 goOőuLj4gs@w̟G(GW'g}Hb4u ^գI׌Tg}y(nI42Gdg}øR|eЫXg}%դ픬8͂"gU^ W}i~zgh}Oubg53%5w䋏hg߲(IT^X7gNnYGg ڮSo􉾾g~rZ7#u22yg*5-G\:[Jge4C$!egP0$v2E |gud#$(,ٽ0gՐԿ QgK/G=U89Iܫg|BZ24mg<^*xSNgccv [, jg=x)Fkg<Mooc 7N*"gô?F-TWd ^g:)[97$[&EgiB_Y+w8feJig/ IUV˹rg xvպypgU mu"iU/g͊MM"g|P xqGg^≶o,g2$ eyg˃8'&jM@g1è$S@j;Tg _>s;m,DgU?iDS'q<gٻHۋʦnőTg 4;eO.6tgroG^dsI g`UU9.Qlg`؏&Zـ{jkg>}&a *hײsg?YU80YHgP]N~0f?TgUW$tӯ>)gݿ01,5#PMh c 8BNrBh(p Ost 3_hg01"@:O(h%+#- g]Uh"ѯ.ED!vs''h(NC\Bcnq}0FeCh4tKJ#g8jFh7Jl.%aU=h7T#Axe-4{oh8Wtqgcݽ}ph:Nѹg>Re]nh<RO31"t4h=zxM|;kh@OUly$bW:YPhAc>wBߦhFgXwdu6CJ!3hLQz{<$R3=7AhMmV׮񇚔hOaKb66hP&T% Pkڴ/Q.ҧhRIKW47{"+hR(ڊd'hVj#"WuF!:hWUq5tlSThXc7qh-2 $hZi鄕z|!k_h``HSN+whigAFQshm}> XQRjhwSz } `Nuƌ2hyG5q6M͙%@ (hz}GMn*h;:l ˭!ъh2o˗aILh٭۠Ao\`} Ih"LzwyLB~^]h p>XS9X17h1-N1w_hz32fX-%hhTBo9 Z?7Gph򂳀;=)[bT3h'z)Moyett}h7jĔ9pqIh׹J>d?c=_ f*h}j|&EUh;o Nc<h"e.\{wlhNX;ĝhC7YzJ K=$hp›u*WhљK3SnS^Z!hd hvf93`nkhnVcjtbZҡh`˜ϗ|ٛl(h{gx h&xqP(tk j h."y۾Nf;awhɚQ،u0p/ha[y<gðchLw? %E*h21oq6h0CZZȕWMhĊCq>؜dhHRr]X)4hխ~"'Ph,ٴ'Sv-Ib hn!X%c$Yh7)8CT/3$~h0[uU~5BYhs>ֿΫwpch,}$4hA䫯RyƓBh]h]T!%7^ i՛qՉ~08ji[A muu@0Egi`yTʚ~jZ¬i er42>P7,)<fWikU-W y|.ioO`GW3i ]PPC9iL %j%OXО i&^L^cS`U3!i)S?Éj2!\` i,V}V!%_l<Ki-./ʏFm{u`7i1? ez^LywFBi2Skub}i7- MoqI}1&Ai7XM'4i9SA +_-| t0iEsWƣS4p~"vgiGBL/Sr giN4[aE1ziRdw?wR0]iVu2Rxp& ܼTiW:L3uA~x폗iX/N}Ƃ\iXm® V "&iXrY&8Mܤ5FPi]Uo7f CZwkAi`<VU%6M!>BCihxh*,Yf'T~z:_ijȖSe-&il~NU 4ًACip{c; K'g*lmiq$",]itQ"hB\JiWb>iv=i;b.+NPizcHY_CR`7i-2Q``T irltmmF>cCIi(>ajS`ia@g8~;W[ "8i802H{&WimEƜEcii!%BanNy Di-ú: Nci<!diu>&vm}׏i? 2VB s^i!bli+uI9: ͷ4iw11ܫb]idZ6nt|Oo3i-7_ ׳ <5i ]\`yE"O0i $|riFȔ̊d$t6iTeHoY1.LEianM0&K?>]hbti Hp1 i7w#N2RPciWՠ0^뇀X+fiՐ6G%@*@bWiϟ5\V6%ݚy-<i.^YҐF*itM0XN~* i(;T2|ڬ.ípx'  ؄i<牀*R@.i^K61P}R)HiODhղ\" tIji4C$ _#|V5Zq iG6hI `f i(johjdϥiu$sȽ,[email protected]Nyubn ui]AQ1\7>Xi"eUU 0nRi,18,9A*iM;uà=gcg|Ti]Wzfi]M~gi ॉEJ~4,컖i3Z,3~/j_i!1ci Ω+;i(8%VV0i4§_, bcZUiT $ato"jh>{{EЦhu=,jiN2^jetmr#uTjhX):jleSoF_Tj>- v{j " _<J|1jhj N늙i+o"bj|<>$~Gj$nYN὿zjVv: pRj^ËohPYiSjiCr{WwӶ=tjki^ՅGS%j!=÷oq@фJj*\J%%ej/Zk/4SyMpj14P(=ܦr8=j5 'zQ w'j67mhnb;) K3j8rYf3fFk,ߧ+j9=֞i{DveDj9TVl8GK;j=1pHYsej@~;<겚(jAG=~ĊM)^jAw'O%hLN&|:jJ8c-ÆW ,CjMKL> ƂتojZ M$}֟jcI=+$'3~,qjeenNsm;IjhUM3c%D{B{lˢjkGg$Wrֿmnjm%;R2{gjjoTy_Cza{mqjr6`ڛb,Fqjt3NC jxy' QW*Dmjy+?د=#jTbpl)Emʢj%Wз)JjHgېPDX:djQ$w |;ňj2RSd;=A <j1xTV2qRj gR*$ j?!\KxGOjX K6ӆipjUqQn b.j=3d(G; ڤ?jY%eP680?Ij:xt=U/Fj;[݉|1PR:8j ,wq^qi;jSDp#:e93jfF ob:jL+]x F 42Luj`mPиj 9#B:oj S7ZpȖ2ܷ|jIu]P>jDZ8,/(&#jΉnN#w[R&jw1'2UV|Npjjײ7 ~}/eYjp-Kiyj/ICj޷.>n^OPojі9c)S{jk[ wyobȅyj爰"[JfSC4j*Ux^{gG{vjNnf" ,j >QT1jly-jOs)P]\hNjn'}%QcqGrj\-9 WֻtjRI\[2nLGLjWA {ۭW^n5jg>obp9 4mWkk]0kiBϰ3k+=ւvk_ O[dDCk E!P5:1zk G!+7kks`W||BkB_txɯmhtJfYkI`ʩTxwk)+\Mn}&k.Z$:O>ِ1 k} h{3~\k(uI=?Ǒyk *<6w|Ћ5k&EmPJԃS-ѼQk+Go3PNL-H}=?k-xW^R wrk2.D+3ߤ k8 VNy'%k:R"5uQ=:ak:Oi+}>fV\Lk;p8l.?yhokA:akCԏdfy{΋~5ēkJQҞA2[F4QkNfb]kO[AlN^vF˟kVlV iܼȳbkW5PvѶq@9mJSkXMD]*`#XD.k\ư@9*ORn\,k^s\C'i ,k_sP":@Xby1k`<'w#8LQmRkbCEuhuZ4 kbbPc wt{kdJ́vnEz`#@kgbB| V.Ζkl?eY/G.F=km ~jX6iknM!H  s28kp(TD/!0_`kpV+׏X pRkt7%bQ hbKNdkw@8Ao?|V SODk}7VULLŲXqk~/}5K7p% k|K٠O}#\k|p Ô dMkD&46i(k% ~iц/#<|!kF?Z@{nkhD>H;s skȐ`kC0 OkV<"tQ;Ul&k`#]ƊepڪTKkK](w˱[Xk'Ch=kq`{܇HkT5CKwbdc}k@?q~+NsYn J(*k q:{Gڅ=Nklq*q0lZ٪k.q17zN|?qk %l;WJ1Ulk0b1FvMkGn8EȔ.Ntk :WNk^RA!k}U6 n42<qBkS1PHurkY,ʰO¸֌2k9rj[c^kָmY۔Kml<ʵkS: ;ãe`kA{bd}-R^n'kA}h 2kaصk7 5 vc&kO0@/( 7ka3⥈ Uzk.H沗I$ l`k2Ap~;3 k4fkP /2nv`JAk7:`FȚwtkMVӷ[=sz6h(xkJxT$*2ck\}o@kXHCG~kVAIy¥meVA>ke/xnmi8 VlBkTC`2Jۄ̪l Vsߓf@\ l _HHN*A<lswk,[Q|,lI_LtWMǜWl_3ZM? 66l&卻=:g279 lohPӽҠl"ҵh$p$lAl,vD"qk=-l6P[0FU4*l6̙PٻoZ:J:l8]T4NI%btl8u$Gd#X\Y:l;'BF4/OQXF<tl<֗<F:['}Bl=i IEl?v` Ϛ˂lC㠵 {JglDv'1z9H^(Y!lJܔAԢiHlMK }GGlT*%@ Yim'l[.Xwv l]mƐ(毪L\ld4W"U@ɒ:}le)~ a:%mpǵllL8*;\.qsvlra\) HM%o?lsm!З/ClI?f_:?grWlY UTluhG UPܳ. tlC,x^X_x[8'i:l 5DOT&ilr~з5{llp"ELTm26slHVSC_$Cwc,QlúfbmdHlKVKT{ lYi[uս)HClLa#F lI7l 㵨1Wl򛥄,*" 2/lӈ=L^V]AblBЊ t0&"·Ol^s (#l$gvrl(Fa6&]lĕ% _JV㓓lޱjk8__l~F̷V]KlYζl vumD'dzl]y0e> GƓ"OmG_ͩC\5ھZm U2d:<DPm]ABF/ m|jhQm`6g rć tJjsWmz}C2 w'Vm'Ɔ2iXum5.HM۫m PsD<m"߶U~=+Wۧ~m#T@r֤V+fm'Я3XT]&MI^jm0`c1Rq>Jnm1%m=cx >*29m5Cc_t xZNJחtm?VV|W̝EmC,f &_218mDشdQmGsAmI輕>@ny\&mJzdȘڷ{XdmN{bݙKKK<@mOc$2ۮ`!}mP<Fe*d@=e=.tmS7xU{ɇptmT.X]g=DFTm[FXaq:m[`ә,#>0bJ Bm\FaʇGm_~ʼnt=6+2maw];ۜReN|Fmbr:bk,4S>Wmnˈd / Mo msԱbb/8mwd dm aS[umz̎$gţi'5.{AWjFm|.b^J Tتxm|ÉMjS m/` @@̭着mSBu ׅ(m;kOW0||%kTnm ?0imZT(NT"6mJW1\bƭ]m3OKaZ'm~ ŇL|Ɗqj нmMfxӹms 5 *೤m+zIa%D]j9{uOmO ؽE+s::mZwvUѱV6mɢqGZZgσmG,4-0=mxslxzysomQ r!0PSmCו7-;^W]V95mZܫZtGIJoml@$c( 3mc:>BjxBZѹ}mAm`:/(ʨQm 1)g3Xjpm^'`m+lȇ4ZIe3f[mc*c1eM$mc`S!SP.F2mffɾ3ROnE5X|zX4GM9:n7G R7i n iID Qyn7 Oȥf[iPn 7Ktl -GO5ln 7nTWɧ&rlYn4/!yJ{^!"ns+ >qJ)nLp+f׿;ٵ4]n!)Ĵ=ՇvkH{n'1?O7n//^"m)K;>n11i]j KLn43-aG^z/ On:U֡Vs ]n<c%'0-h^l7̶n=BzGGbl73n@9T!pvKq8U2nC;[%ަ%nCҞ4E͙IghFdTnN)3ڟv?E+nN>#x#K2nNn4Ϳ3ԟ`L%nS˱p7AnV;8$sz k nV믶Γ]5U%="pn]u~ԥ<$29.na !ӸٕnaP(uM:iI-ncp>(דfDnd4bv[{c "#3~nh* s+tķniY*g cAni fb˱%f|d!jKnjIџ dʷOj^n%>-~fR:nba6^ ӍF`MrWnkZ8^оAnK躴Q[慐N(CnITh<mn׳L|?VbN/n06 - .D?n5L[9OdG"nO(Sd=z5 EDnNۡ^\;^jWܙn8z]</nl"˽4sin")}ۓ2yDn8@4n5I-Pn13|[&vnpg*bb1H dnRiBBb 'bFn.R'a[xn\b.Z;@- Dnij) .Iءv=nCpVC: Ein:8eC9`d3nEe\ Go׺/nmH9MҤaMn!{nvsXpo `>nɕ|ıp)Enc_l$X1Ibnizդ=,Bn^ta,{P_܉FnS }EP#'NnZ"X;ғz,n#o(#6 1ִڻ`nz[email protected]xMp\&^n; Sxa|25nD2"V+VScAn'1!:ژҟ[./n҈{:*fxn&}Bϭ:2ұ-Zng4_xڢ@n-UvC,ve>xn?Ek =0':xou߇Q'o ƴNqB*Z,olE%grE_ oO4KP+smw\:o3~i%6Qo3V(MڈA>ao*lҟܑ@yo A!D<G}ߛEo ;z4ҶBo!ffW"91ZPAo%F7 l Jڥao(36$+<Bwo(VBaìz핈-o(%r?,")o-oro-Ϫ&hL۝o-ZEҕMUbo.v+N#n" o;֕ &y Uo<5e}1e{oI蟴e F oQ,MۂiĚoRG_k"<J~]4 oT}o᭞Vgc=:M7?o\åOY0 -7Fo]: BgZ)co^J J&亲PAoc_FkRӢ31U-'Coeb<rPx=nFzog۵%\j2e6]/oib9ՕNKHaLol?@p<Pp6om]W \hj0-ѳor5*sn׊uosYJ<>Ȋoz*ϛO Gσoʂ*ibh!2%ford]D_Bo.R9!5fG`]oDz<lm!ob*pOÃolX:(5ojˑ'rX! jYo0{$K"-oee6%0Lj扉Լ,oewSfxfZ^ogĞQTфo;opĴ沭5 voC>MDWj lÃ]oEeD>.bGr['oɃ, +)`voAB~t D&o@Xޖj)=Yo^,46bL[겢o޲WZ}uo`뀬e$<F7oSSWwa$o@]oh'h' -os4"B1+r0<o)R&;!c,F Eoۇ߶Tz*?zWyoSvk{ =^zoLY9eoJg#mGs<}oKEG\֙,bGdɽo T/ZQɚv&,kko5),bUv%[oĸf*!aE|i5oqVu{;o O(z)3JmpMJWXޠߞ<}x'p,D(=W2Ju[(pТ |/E p!,YbgOTp6a龆_\2"pnL\9NwRp~Z$'i7q?ېt0P7p 7^S #:gKWDp Fډ]A<c(qEpsl] H3JSnp0{ l6N}p!{IXgGǮp$⡩d pSp%<1-2 w@ ap%"-<fp,⛆0D¶7fp,Mg^m_;p0aHzpNr8|p2?p?<{Ҍp6u~7ݖL5'\pFNo*9pJlDXBA]dpSEv2|HpYVo^&p\`/V"clp]"k}JzӐW1p_C[)p{u$RpaDUQ! J2pby 8g6P`(6pb.N~.T>&oהu8pdM9}y]c3pd@4B>n6pjH[@Ѯ.L1pl{Jٱ< IC-;V/px jv! 1/?p{""n'C!tp{ЇvѝNzeVsp 8o,hTp29R,4Mz(0pɕL*P$cj Upų[ճ` 7vVNkp W.+ߙDdUup;d A3Ht8psǜ CgMKVpaA:\c{T }U#pNFdӃ̀o~pQ3xX(U{يEpά 'ZBNpy#㲁`~U:DApm&M_X4qXp0% B 2@p>w|tҊ?pَRJKhˉhVAJp3/C[pTDDR HzpEuG=_k9p #&"dw!p֨ &Qqpn<]Epk/ܠRnRmM2p;3Ҥ ްM=p{>-d m;}Ap8${FctJpTΤ j}2i p;bG,=G8pʋ*#v 4]ipׯ O0tJpZpr#g]S Q4pVS`lWCՖ|hps7;*{'UşK4Op7P&Ph%$t w* p,k̅m_o&pPh*V./p{dSA.$}pS>:Ppnuϲe݆u6^prmUT:1 VpGR[,Tݡ_p{i6 baZy2pn^ +^;/qHrDN#⁏q _TA_[#8"q rp@f P>$qEZ/{7%~߷Wtq0;>5I0q+N1UTU!I!q /;ǿGȯq%5狔b].Igq,8~}]8Nq5>ח˾82=3]q7m,uu6q8&~ y7:aq;S js ٢Z/eq;\~Wi6Lb3&qB8eF;9͇uqHa&B`V.d^N9nDqJK]q# 1<'qWԬwenФ,^8q\ɜ֘xt8}#FIqapOZ|8AR#qf]<U;羦Cqg LqcL]#qxmqk2#W#CqnyyA['KqoENWuFM}qw kZ5zLpXCq{7v߿r« z60&mqFP!G"[~D,qRGXzhk#8sq3l\2q9~ExEXERY[0opXqMCd|C9մbqmILʆ>-܎eq.y.iz%ž盫Jqfm9~1q6k'熤=G4pqUbx^VOq 'ӈ=G0)!|ƨHqD_Y{%S:1qʞ|F'lqYF6F!'3wqueQ<>:qlRηeБ'3q)w\4"@0 zq - .~fPP+qEc'He%#BG_qr12h7yTdqX "l)"2eX׈q3 ;vpܢkXqQ%[SkiTLtq:@BsH= #NqPӷrBYrk`eq̮ 1OQq -X ^P36q#DH+d^q>s]i Xphq5"\} qlgzq+FQwq<{^ nɗPN"q՟n[U8G/Sذqj@+1tOoGBhL.q,̀T]Zŕcq/LZLxeq xk4@ 8q`ݼwZ ~q讳V_5#Eq큮H ;3J zqi^K|nm%yq)Z9U?t~q=Bj&ctm}q;hWƢlqqs)r{Pj_q͜~ \}<rRnaAUT3(kF4r:`KF`pqjur*;ECrtf@$6#J59r PɃP0r!/F<}/N;9[yr!T`*^G"k(r'[pI*LHaPgr(ӶL)E$]S19r*"E6r+@}kc7t#r=@ 6sXc_r?nI|3TydrH$k"`ʿ]rIH3N1@rK}![,PkZ>~rLm6$E]}\MkrLYYت=KjdrM‘]HԒysrOmN1-19rW1҉B?SGќ'rX4v JZf r^!jA5i+rdgU%s&ZƷ7rdJ'1dCX֖3] ܡrkNDh9μVrqJHcoܰ uwrrPnd_Ú~Ͳ?rr|RC4Hѷrs`u'6,rsAJ(fR(Dޏmry#YkX@rz2*P)wr}[n %4dfr;L- rsݙmrqM oeI{Yrv"5t/zrg\ @yY5r΍MK6y`дr Un*'VUL7rk2xBh]Dhf|rް bt\&M@rΟ%=9dyIBr"eGJeOcr|΂sg=W?_^r(YŨJo9OJrBuxڳb"Rrd'\aNꜲrMZn^<yor16{@(n'RgrW,=A_wkrPvum_r+(ċ6Blrx8~_:IRUZ(rL p&EVrAE.rԋ)٤+xr io&<ymNr L;mwC+ p,xre>DG Kbؠ}rՅDآuMrZU 6rKZf' 6OoP{&r.RQ,Or~iN뜳`e.r}uw {~=[&rǰ\~[{Bǖ9Qr}uY[i-8r˓`-{ hC31rfs ů72Dc9rΕlBb"]_9r?'}olSZ^3{rrVr &I"tΥsrcm$Jfš>1*]:r~X&KcroJp$)Zb r_E$7AU rM982P!rgHDXCu|dreękF^ryvӪ.E&]rXj-o< !Arab]u#0'ĨrO_:#=sWyC[s%B`jdvT]L_s ҿ[h2= 4sQE  r)]q݌sg9~~Us*욑N Ps"e g3&QCrs65W8G0sdnN4P|gVf\]sD^iF+ņ}usuņyrxCQeM s60@ u s1{\g$~ƢlQ,s7(x!4,OױDs@&%XNo=w3BksB6Xz~+(sF\&Կ_2sH,;CvsLp~F|EsPsM.\tI7*AsUj_"V;$u4ResVW$ꤥ|fLMPu͉sX5m2aԤ s^^o~qV٥(/asf'|$Eh7c sn3[g 8k.oz su3%"oMnn1@RFsvnH` 60s{%? ]s||NWw#ؔQ\s~?*EbRvs|#0p+6lG<Mzsn3*$vܬ W!s O13ȐMXs.z2RYvT?(z`sw͇ba.sVwZ֍}&Qs)]-$Âe)s7H~c*spY6_n!+ j$sű$6>^.s#Adda}-Xs6#<ƌr&] s4a;5~ūs@KA4 z&y)>8Ms-Ms>( hBڼs{AQV9ks&pk2Ӆ8Is1nvoǯ?ZpS>s*ױiJ|@Uk1njs5`XGs&s`r=T@B;)sթR˰ΫsȜX@es0B[`>_%*sԊ.ȗ)f/Rcn 7s\\hnsp@U\p+ts/Kӟ%vj͛j%s6 !s(l . 6'M t (SU) 0-wt ]$^e#29Rt S'Kj"1Rȥ tϱ!1 Ἕo"*t^#:cD$OxSnTZat4Aɠ!dtU X#ͣt9,^gt{N :lzk|E?ft|FataC99t#0"`]5z6 !t#\FW+±t$<h{S 6%̙t0Zc106y2Nvkrt2]9O{uk3J~%t59j\i<v6t0t?Ӻ#?l%t@2 oL/t@0䖚v\2.Eu4tDi<^օTH]tFqnuH֘StGx}Z,9!>tGǽL<%}tGņ cUtHdi #5G.tIMC? 7d//adQ etM8o0ZFaitN9q5b! TetP+>Wx<Jt_+r6ѣ!~J[tb||ZD8 קf{3td4G|\ɪTtinUp BP$ѵtxPڧLOCMϛz8ty絞TމǢ^Y4#tz+>bMwꦁ;t{E*(et}DrJw+Ua̫:0?tp Bq){/ t5 aj5 /~^Atae,'ڸ'wt&@)JJ;uTp_t?Z)XFDfd 4tVnKtSOftgA~",u#t}Dn(8t1s'N*v{u,tƁHlЎt?V1t 68M[toiwltkE³Ag_L6odtPJ EY9t76A\gtN}VK5F#/<0$t3?+in i;Atvf\5UtIl`x0t>I T{.;ctV24J7Jkg}'JtCF4g<Ekny+,t?bfG 1_Ct=N@V h4 bzt~&^ gst͚ 9 ^$kz(t!v) MG~YFt'[5MOQ<tDz\x tj>D,>K`\BCtAP,l֠%tםr~z6f@tfa-NPʭْtjU wJtk4]/t"a|?!=tgtByۯwe>@X?t则96xɿœ;R1t[KG%ήI 'QtJl2ѩ)ZtE0XRPtdVDw#SRst+oW9S=bta"sKSmvrZtq&(wW-Bbt a'ET9tn),  Lus2{Ϛ)r,uyf|X=D1>6u "# u ˩ bu"WH#uM㗓xh*U[u@F*~rQa5ud-%$'bQI-ur'Y˰ރZ-u`/API d? u 5w.K%hXBNAu!%P:՘o&u!:D5|KUQXu$FfxAL`Ku$鄇R:_6u%8tb7 Du=mz?XXflyu?LU(5a"tuZuKS~V o&㱓huR?檠~RDŽouVY/,n5L vCu\nD_r\tBמu_Ve@םM0rub ]TI_+AucYHh\Bb@sucjfbU >'GudCacX؎G$jo+ukgNn&Y?s1k]ukh"4dxokunD6@&O;oMeupھpFySP91ur4' ~ Q)~#6\ uunh# uu"J8a,uxʩ8R.!߿$ux 'Lڦ+j̗uy|1p(kP=u}&5/򇞒z>t%BQu}OOw_i\u`)*0yTzU@u9v*@dSڪu jwf{hG:}u9˙LnuMu)aجj ] u:{Q x6 uy͢j/SGi%uˤvk|W!L`u:NhJN,.ϞuxJ!eh{4|[ok% uzOȐ\ # "uuωuߒow~A5I'Fu`-ha="ugoi?9{p uTts*AY $ u*(5YTsMB[*u4 uGjfuȪSȈ)Duu.j9]sJu6t$ˬz+uzϐrguT ju!ǵy쮹Vu~Li[-$4u4U&JJpvjduQaì1t$tduԍ wO\>t!5uzQ>v 4u 7uޡ 4a L)1XBu d WM13u7#*/[G2 1u1%<4=BP(j+u$=CX[+'[ TuיpJzTuDN} A^uo]KͯB#T v>_ Jk>@vN{,,m v 3'`sDi_7v _(v}oӕ^8vE$f+AT~0v/$u"yD-4m@vJ>gܕ9bYjv%Bv!Bzl4h}v$@gOXWޛv%bn1 :_zv(nJP0F܆?D)_Ev*µHuC -rv*o_ȭ?hv/aN ?O͝z14v1:i<C+2r+SA6v4 `YEn5-?>ƥ<&v;2_>dj%vAn^֡ރ%h$(OvF(75PUTu %vF+o%۠'[vF[_CFޤGujvKkz"?A~BIh, vME,)|*?c{vO\_)/7;NLvR9~98vYP,xbC2ԤGݟvZ2gY#՟ v[Xf/$`l$:^M<vb:>UzR;vey3֩'w |svg}VCǐW@*vh=Ʀ]/.ԀvmH{ro(|ovŏj R?S0fDEevsF X"r\uvv}/ ZLDe"1Nvw+ԺٵhDjvwp_Iur޿5vx`ϖ+4<Sv|jO%It`v}2vԻZfv}Ds5L-Qt"gX>vB-릻i v92'0ϏK-v=\r2ò =+9>v- <ΚU,Mv`C:srQGbvZ(7ھ-R%~Q'G~iv`~ \h9`0@vMEO cgv;,h L/jv(3Be޳,ؘ0֍vôTUL⮄.Nv5)+wՉOwK_vhkC0!;$vǥi(Bm-Gvޤo4mnv%8Mڬ Ki$vzzq9R vvϋ D`TvYӓXaNNSfNvМzc3rc d v=Bhx (AvӲTC~w˰ j*vցΩ""z9xv:`Jؙ9^v ZH]p̚Fv]Cpwk.5vd' oW7vEU88Bk,*d8vxm^ I[ȧveإvOX`AI1vcĺ5ga{ vΜm gm=f@"vN{zaq"-/v&6xNEwn"<-sWl1zxiwy-l1> Xzd5wӄ3t)v߻`Bw J@8Kƚ ,?w xCZlQN`w XO3~}j|w^.DQw~+79Ȑ{.(wE i*uqNj"~wMYq1j+t> 1[w c0;=㶁ŕ:dhʕw$ sPy9mzχw+Y0doWk*w/97&q)Zw0ksD߲_8}_5w3X.493_`w7GUo  ZwB`ۙ4WTh癭^QwDl}Py*pwFN$C*1(hcwJG2ns#,wT0eܐR3R3BwT=QnLXnwX Z{З~6`wY։jyVN-ww]TȊ1ī6=w^DcAn:O?w`!jAvOL3w`g?b[kBwbnK}&_4@(PUwg+ 媻%$L@wj7J(^wpN6zkWq wpJeOIZSD:\kwpM<6b<Uwsr0=W8ô = wtt_'Џ^0Bwuy}(+~wvA!w;e /9wx nĜjZpv;w}s%wCj 9q^rw}ܢ<)LI5#,w~ʁ:0t,yNzw~5[t{r9$wF hw]4K v:LVZwh-5 D\CV w1,'h5Q3Xt{wOBgR7iuw ֮g.I`Aw k]7G*;/1/wEDNyvw"MזѺvw)BDbkw( s)www`΋C>/3vcɲw _K\A tDwDG",&YtX_aqwױOu$”0Rmw9"|Uݦ#owo@"4aWuwb^ݪ>0 wC+ gb<Tzw? pp̡8x`w޹lʯ:DywV{lP/VWwKg06B>swW`j<wz2wsqV %wB$lqz.wK1^JPJ\mwټ. #%Ʌ^ ~={wܺ߇\XA0wViwb,Ҡ? w롳w2f&Ķ7N"~gwϔ61roF6@wfp8ب8:ޓ<w#iXjkPyKZwq?X ፨PwEYrs??w//Ʃ[zw*8vTNn,2 x|]"7#cQxG" EOC|B`Ski\Zx:U"8ckux [&E'̦] x:Y+8P_Gxs7;e -UxBsb:aw`gxh  ' PjynxP("RzxyX쭏ᕐxUvK4N.-J/bxD~ͥ+ig;%Ox @Go-[xaJ;. *yox HG@b#<~=^Sx-[{ Şn_A+x0;u4tK9V]px0%h}WĿqspAJx3#R-t!)v4x4PHbۜm x4fdтзdrȁx606՜֗$x8q-[pU҈.ox9J=Z (rrx@,_B>>[rvx@+A б/V]F;xG_>z:,lnLxI :lqxMVU  /2]xP_50}<wl xP;KQrxQuKxRm!ҶPaq-ahxV9ћ af-<xW jS4"<-=q<xX+Xd[cx] *#S{xg%t2ys>S}jMxiTnn,xf0,xiH{F.':xk2C~ķYڊ/lxp<Q\~UsAE(oQ7xw?9D镯 O>ox~;j,Zwox]o }̑RAMxbRdF(r|N.<>x< p卡1"SxNޛKxBhٍe~x+\"qh\xyE1aùux}¯F5DQ kxY]7zQqx^4VJp^x&<itK,"8@x m{`L``_x"_m.O BT*Wx0 ~,9e2xxӥX~I´(l Tgx C#3 )ɭ$ Wz]rx~.BO1XxAٟ]^mh%7V xmԾHRk"x5QF݌vTx^m^C#z&xP4@E] gxEt cxDDtxθ:?1kZ2T!xtjוTJC#x,E/CcPx=Y5/6;&8xqzFPp|',Vxyufȁ%Tn)(,xƨ @5Zk ,h9xJp#Xxr-шnlPUHxݴ`f ñOqRBxd ^+4~Cxt8܆3u-x|+笓nE*ĺY=zpx*B+»'lbxQ7&|;x>Qez ^|ye 0ĝKhB Td ymz9k5`}LyMmAy 25dmv w{y  ;wq3ϳ9y hEvi}uC{yM@DhAwJy>oz0ɑOΒ5yVi| =>qS.^y'Hyq%hh{ +y%jPبq~Ky܉EtbWe*y"Apy$:InԼg,;}y$\K:atJ"0!ry%=Tfݙg3sy-`H,oRbQy-ѧ[Ҡ:˴Ry6-l}97#y8[Hw8("ۀRy;0I^/5}y=,y)шOt" Hby>VNK n/_(ryA RJ_&uz[yBF. ~;f7^+yDf2.r/v6xvyDʢX'7yK:+ &T'yR*!\w݉g<7yTmj0CdݦyZe?50-IYhy\F} [qAZV y^g`va:V܍y`Raw<"3>gy`wxD 辖Nskuya/.EΦjLVNyb_i2&<s6ML,yd{Ƽ`!LݽlkyiAmۥBVAytSjfMc+Uf1#~ywy 3ͩ y 2{2yK2GV}#<6ydr"+Kő**'y k ,,$yq?Q/y ,{yL$W(zyݢD+m=Qy'8 >-G#L#yʕkx_d Yy`zf/- y: B,PgyC\fPS+/cDyAkY33QyqƳ#gy@观UmfE'ywI4<ܗsayuRMGwQ&۳qBdiyM?ӲA`&gM,uyޅ =_Ɇy*̮EyDZPayCS &Q_vyPi7-aF:z"y0ũhHs.41myPizؒlt{y4=W#Ɂ="dT_yTV+ h,N4({AzfN2Sh Fߩ]zd93o6 cD6ruYzАy8mֹ?4Ŭ]{z ೦{]L(\媛Izs藵Шr?Zz(\iդdDo~Avz9D:(%*IC:z#B>PYZ{z#F< Oc!i~hz%_sNM|\hz'|h:8LjEz'D3 Q։cz67#҅ tϴ z6vh㗼jJ z9D eNf6tWz<NqmQ?}+zAJyP34RzBwVTMDzDnx.\nO1zGF\ܭ<izKäX4CDŁd}bzOiwVHHQ ϪzP'.D[}rnzW^omjzWՃq!lgqaWS:zYT)ug=ZUiz`Wf0DxwKwz`"Z-ءS8H\=zbK]Cga zdW5]I .xͿnzg )Z%JΜvzg3bSan#czk ]foޔa`zn11?!ͻ|dzrft*Wl|N_sxzuޕHsۖ$z}&Ei'<zmV)NhA&z֩cNIҿsz閙oʬ_&Jz<rw#IᅲGz mUG/Vz=j u ;?mzՖwX"N*xzo{/h]|F#NzJ^dU#kXLzy#Ǻ]M0`SA)Gz> TuvzA !AKGMTz`}2p6xIm z&~w _yUnz0W=ZJ/Fχz%_m7$zK;ZCuM'm5zTyRaX\ ؀z!@c~I$2Nz@)E4,Z1 z P@BKoK ^zݼ-+Еfu)z_OVaCkzi@N[ZzVU{tӘ#`7zjow y T0zj\ahňWz=D'gߵ= Hnzu AP}6`w]8@zbD::Ϥ΂z}[b[ ޶"*kz `RQ$=l홿z>{:n]xն_ր{b9e_| dVo{!+EF{ݛ.=$m^Q"{Cn}Ht {3 Q@_NW?{ n 8%@ {#W_2C9)2Ea@{$*%ʭvk{$=I;0W%sa{&~^OrXvBbk{'l`b撫}~|{)&PMāڥV {+a KF2:(dq{,Aij#(r%hd{- KB;t|N{.CEHuyqRp7{66i "e.VLI{7J9z ՛*zaR{91,f1,r}{=}*G-h̵G{=8Z*tɵB@VnO{Dn_?q_ƣǣ {Jԡsr1ȶo{P,{^a͝5{P܈w/(Ņ)8{Rfi`wD{SCvę]0]/t{ZE; d5 0uz{]fزŤPpke{_QC;s,{`Τ})<JSו{b9X]hf=ၼzb{f.,[ޠhjoנc{i{~JF5sFy{tv=CՒb١^YN{v\EM߼*Àf5{yPV]v7p2a{{=І=j9 {|5XQ xfӒ{\39rOůk{lL.4㭇s{=?ش${;\guu{D(M$h~%{FmghB\  {{;M``/{ J=ܵ۳=3Wl$B{n,"V:9[{D|-,sa [j{u{m_9a{n*,0?WQ{(CVF\n[<t`{v?m`fdX{F.y6g]Od5*^H{yG,`<p[f{k,% ^"R{E&|n{-{g>mm#{QgT`Ymq@{Љ]DtWu8os8{Ҿh]?42ޘ{ވmXfӞHSm*N{?E&Bzwٍ({5 |-"\c4>J{g?[fdצX`7c{MÛes7by#{[J[:O{z)cXA(szQ2{{NYcGY*e{ΒceJM{7-HBȥI`\{M!UH{3#EV8Q+^{{@\" _`_|{"g&,z {عʐYַڔo<q |1[g+ #l| !#ʠhm6Z'4|ۼ*_9BC.IK l|Z$жP|]( TQ;|$jZ@!]ex|ojL;P\(?Fµ|!㺸2d |#HYcJgU՗@k4B|DGKHpl| yN^S'%|"2شCht'Eq|"U'Pi@u}}b\U.RC|#ɍ[email protected]cf|$}/M$S|&r%u`?VH|+|FDo" .|,,Ɏ5.un>c*|4z&}=P=.|6e$KIwQV|70SV0H| `|:{D|Gq $/(|>ShƎ3*_e|G"|><x?|G~5C1Hs㮩|KP_QGPa|R>+^:r|Y*dvA(n|\,,=h|\‹Z%Ǭ%/|\(}~Ch:(-X|^dE-_H:*o|b@MVDʓodv1@m|bd)Кyꡦ/|d!/K*06|eA*tMq}G}w|eޔ t' eIAÞ |iX*h1Mml|j }f{Iq5߂|n1@W=|rG!p!xLX|v 37/<|x`+i7s|{/hck$.J+J>|Bxsd8W1?|=7|rF=;|aD@@e-K˞\)|&TEic ,wLn|@ߪYd@y|,g97bn; A; |2(i==&Dڑ< {|MF.[p߃pO'c|8pF0 H|=mЖTh[XK[|?oI kט*| sgd{\W|<YD}-]Tu|c.42k|Zے1yWY9|◍m43I>e|ŕ eXy<<O|'NU AZ"qt|* 8h}D ?|S8k/*_Wk&|Ѱ,A6X'D9,"i|ԦR$\eh4 B|;h U^i-| {"Ys<.h|.+kHK,hϚl}|@wh Ȑ|ݩ1n'%)ZLx]F||DzEWE4t|Y>D0/uO(&.|εPn Qq8|NHC7Og} f |Ob(M?b|C TE$a |}X;N"ۧ;|i˪O8|} 3ɲKBǽ}}w.Kȁ&\>}!vXh0OVҜ} ,1 '(?} w3ONohϱ54:}n*B'RgSp}Ȟv=+]}._+$jI J}AJƶ6m@g`}Oo${kBҢH֢y5}7h 6?H}kF\Ğ }#9{A8hXl;M JX}&puY*Y<}*"Ys&,|o}+<"/-/Б},2uRq3A:3k}4k?p_jQU}h}6UFu7R@;bxd}:un&[3?r};?ΪDaDHZ٠5}<DrXx!Z+}> ampq0;N}N1q[0C3Qq}Td!EG:Q}VED^e$gԯDo}_"nL=<4<}n"2eP*F_ }pZB [!w7{?}sg-zBk9Z 4}t2Plαl{1O}v\]#/˔k]}v}ũ..}|yrA,8O`}}]2lp}+&ew"/}abcO>?@B}{u$:j;}:x}'~!}յIY}<}AnM|òy}QflO&5}J&ƼtleY}B]Pi%0L}%O  J}r}]Rz~ " }qU6rorT}_ey첂 +X}یd&hROCV[Z}&Wy8&VMoD-?{/v}6*[A_ep@B^2}0GBS)_f9}8Ox9$C H}7}MMd }%醿%B_}0&&`$+w}|O& ̽A'px-}s- s /R1Z3}DmZў4ZE#}GKBtp-&D1Kgz}QoXvW+q}Bb<%+6ܽ\b}v'4 H8}ibKJQXp{y$=*}* NC+ƙ.o}>96\GsxM #q}6B#O-:ef}Ѣ`6}))MD;W}Zr< 6]v _ܫ}#8{ghQ}A8<(ʬ)-(E3}X$C;`$DVb[}_86PsZ}Pm4U*=Uİ|QǾ}t8ErC(\I}hrpGv}_HWN=~?v}KñxUt3'}!M0d"0"~ NEޫy/P~_4Pm?r&65*~w mSq O ~T/\UQ-[g~"PVW9+%~&uQ@6C * ~+Ux81m ~-Cά L7=h]|~-(KA~lA~2|^f }=~2\_Ј=DGT\Ys~3K+ne}WnEp~4˜ ]ihÍ~~5; ~Dzp"2~7HIo+ u~9jJwE~9vG&SMG~=jghQF>R~Av̯3J(ɑs8~I:TV##Z%RD98+~IiG`WgrJo3~LI`V`3~O ߙ2[㯌 ~Y8f;NMPZ~SVnE~Z)-(Sΐ,xw6^~a%6/S!E`~eDž)vϘnC_ S~i >,~pc4G:}=LI/h~p`G2o+'\k~~FXqhV~~IXhkrYsI~U{T!E{|aV\~jc*f%.~T "%.~o az8]iئX.ݲ~ E0|YiǃC+l~hHc&X!g(a3]~DPp18|͊~'׮TҊ$bN~AQt|_R|(~z;х !}ɬ~m`v-dz:~1zwp.~d,ozy Zp~3+%^/:_ֺ x~OF8˺6~l.+|~JSߪ+pL_~Yy|krNf4[~"^ /;i` ~*n_p&~ݏ\ka: ~+r]C0}gh~AnuJ4j"'k<=~ř>˩XkJ){~Cxh,yZϕ~t^{I K92ɳh~X@mXO% 2tD~ւshuڎ~2뇥.qIp~JcHö:xe~ޙuB߇~bYrQⱕt~a$q "z,_cp~']`U?ث%O~~gL\ɂӯ~쨒b%q^yqtvw~j t|/~q$a0~Q!~%Sy4GVk~RC@aE (5oo )sn8M/T4C{pbT9@&2xՙmr!yU()[2~R u Ѽ|{voT6fwcodd) pn0,h: IuH4~^{`s[eU!=@HBl:ey3:ahp9׾40,D^bի+mVư0ڸ,5ہ5A94ޔcZU4:B_x?+Thn8ͯ0ld[W; /YDMY]b?]I SVh!LE~A rLB4U+qAVUs;UTzPGC| Q>Ea!pm?̬Hd݌c>grK$ BWie:MM` &cl!OV^bv[?wWu[Cusֈ'-XXzS{> A#2^4\t J}c\u Q!`ܢ'cj˄}T>`JV/JeUȹ:Goe%s}" 6+Uh)dm١_Ogei:QP^ xnkDV| 6Pl kI~TߕD- 2n eocbRPqo/}_rDf{z7t Ds\:Lщz;tYX-G-sLQX6Az:J"U#~M?M0M3$5!;Zg k듋ՆW]^ sV Ȭ;3{sT{i2ޡJU߷>q)u]!V?Zo>E!^e{NK'|O{<Sk{\LIS};DF3]r8!^~ '%f3?w a2p[$sX;R:=WeOfd6->D"0 }P&4D.pv¹/EBv6Ü_\bgn~Ǩ'|x@#Zbj ҥp&[Gs&: ﱚsE2|~Ċ &ͭ?k"Q:tG}nj:4Kk[3qhTИ[3JHkS'McxD_^2dV%Dti-Bⷊƞu HCEak) ph!.PU<SC :%q֠F-FYd}80~*Mǒbv* Aɗv3_Ň~&4TmLii{0d98 ~GExf$f}][@fuwdi^ e^]ۢ nh+e-<&66r)KS&^S֓XiL-xPgJXnorhV V>o( ~ ~ /đ">{͎SXJW>XpPAa0*-~6Du`sx\57NȀ"b F^y ]t *<=]E WI04d׆,x @;S 8Bz9eLEbxB9QI5V:9֕=-{jG񚁑qvLA+Ȩ P GĀBT?b\ aBoCD;z+xJVe!G:RپPog rK~҇(SpTU,酀M}Oh ۃR>ϼ0MHz%,JxN'q`ِ/ߞQ3kǁ%T^sXЧO\\.]{yegW|, `y.Nvt.k8dn$Eh[@th_Vtk m.&TU킀l' ?t(㹕Qm$`Q"=q" ,n_m-Qdjkpo@Dy+`c} RMq؀.Ɇ8ye:C8s<$f+oY~ ͹L2\d-ۀ~ᜏ9V_؅7%is^by2?bM/kV̩Wȋ2B㱑〇,T=e0F]W}ѪW# XSVG@ݧAȚxAdX†[ yft*>2(^^h۔wIvPm/%~ I=Vuuc:xr[f͗qN8HD^bY@7K;u9ԀiY64T(3uY4 GdL0CSfm3U"ei\I C4?TO&=WeQ"޾̸F "!41%$+qm+Xp[wGCYŒz R2Հ_ÐfbTj{粣ڥu ^++RT P-IEvsm=rSPhC!ƍUԹEvߛ@ߗ4;~.t|ҁ$jh4d-B4T>Fe^wE<ahǀ ( ;*?3!%*!rVKBC#[ F}ɳmӧ|!=rlhw㼂T4.GĢm8BV_fZqFί]-_9Ɛ Z=CKDƳE^I<mmG^^3!>?΀%8+.Q@[g|ID|,/}A ݀En3RSLGcz K]?<\O2!BIPӀxJcT"m5C/+yc/a;y%܁&CB-@ٯ2QђQfc$s]q'P}ׂ[uݸ#&aBMBGu7 A]kpt?tt!ï hcXGNفƄg,Kn˰]& ݝ[w #bmEq}Wv/FXw,'5Q =3[oc}L}"5_=L/6$)% k?8KLƸ4ٵP999 5Gq߁;BMWqN_i>?hHaZCŭZGGP7:(D(1p[L.ͪ) [/S./cgl % :6$Y=oxˆ!c.2[$s]?iٹ#a$YxlMށb@Q=4fCc}>/[f\[ЮEkIj.`Wg8h/i[vj2QWn uY!TGq% wbeQPԁrb0o>CU/Q)s>dU1W{I D=]8H^ttWJsl_H? {2r$yUU`xS|'F+W|ߑ2STu๟F30h]ODV6)T6F@&/zC4zW.L`܄;ʁYhA{:,Ȓ_$*buˡwӴ`q Rc?K5\6,&d[-0/' e8 Vz^IjɅ;JsH_pzv7F9X-ԭ1>wk׎@8_Gfm7T1NR0KBH1R"zKzw\Ύ۹bj?,T.Ŏ2I9j?~5QNɻA+ZǵףH9=!Hf!|,S l-Qas Y[0MN3h+Gߊ6ⓣկ#󁻹l2}YvIz߁yweǕ)|n v=/󁽒k=C|Maz 7N8`{E| 5%wY@BV'M>]<çmГa lNԁmUs&1 i4av =4?'сLuR+[9ˣ嫁 71|}{~kspcy@6'c@ʐOB1lp 9GSpERqGۺ܎,jr#"~4)=!Lm^܇nSsB=ǁܺ5`Z{a=zϚᅞY|#mE.V<7;T-.AbD5$Y TwT5y7i|\R $A!~"c,0ˁ{s`9_hSu+wh^@*0s_&rbtR~ҁMѴq:  "ݚZ)#l)YiLsRUߺl MǕ  ѐ[@ 0>cBSM.0l  By@5^6`!{7,ڂ~=[Z]\wN Bh3zc/, h+N|#diI`zlUd&cn!T`<%7(Qa!)Ib.nEcvX(Q__T·))! 1ޱ_E)hNirC֬8ȭ+cP2RX+tEo *)K6f-I8AZ϶r7]- "iA,a318-;]RVa:<J"S/S 0Ƥ4gGI0~xgΨOSJ$_po6q:ʂY^8VLQM n`b 8$=`dKn7gAU:Qz]};=h1jehNArg~j/j)]to)!k99EJC[al K?k, o:P0~H0xrɤZϱwu i.ur2<m;ufvCy=k(sle {  BhZkQ 壂|{3}1qH9l}JԻk0F` sXg8i/)nR|~v JL`dG>F #8bL܂DJl w[H 6yԁxAoNcrK3` ++ʋGh-_b$H7LJw{0;jIFSjee0̞c* "Ey x6Nzn:@1ox9O,vj.3唔%#i-" Zr[$\~"QJiDyQS )Y>[n4}98> K'U%h-)c\j9s31ϣv*X3@wjQpӨPFjMEc]2Q^du ۀTkv: _\BĂ߻$#Kw5u?2}cy%BlK#1Y\Vv9܂&V$"#Jޕ+GfuE L#"}dmu{;$ΖknͦP<oK>,U6 $\aۅE|;I?B߉v z/.A tO?xv?G"j %o8ÈNwLƃ[qeXyIYWd- ܗKgx E PFCk@O8m@1T؃ݱ{!_(*˼-XӍ {Mdt<bnqу ,*䤵UѭI +G-Q/+pƃ"y=w# { \ufa]&΢JU(lCp^櫃*6}ݜ#X J+abI >}5t6 j5H<{'8V[\+J>9uXD(Z\<A _xas <ƛ+OJcWkAw.秎>4wfO΃C(RG sX(lylE@ϡt&gFXHTLu/dӺMc>Y_ GA?N*]ۑ q RKR[h!5;zԃ`6$̂ܣBeb% _a:"[wV:,fx&Oz߼:"Vmx&L=(,HC{ݳ192)_}@|VdK3= <{˸y,0iAUU >+̓H?2݃g sbdzڢDjσ>*PCc,MIhH6(rVn, %R8e-`:FA;76w4\IcB$p ca,u50)P8quq2%Մ'=o =}m[$#aLmbTGM0n qAT2ƹ4yN'Vzݢz="y^"{R)bS;s%ʪC<@ҿeb-BpzP]5aF %~3ˆ[m/oD_?r6cvA#hϫ)8M㝓TU~ Lc/5ԶKi9XNV|8 B$2ÇnQ[JyȊ<R`u\E̓4̩q?]'erJWiJ*X'}pl,/$JMҶg SϬC(9L7؛;؇v.#J KvʶLe[[ãZ.ۂrkDiqJ\֝_7OH[Byp3/TrEN暡T姟80P9ShwH gJsN 8е/`O/ad•'Q"mJ=t\Xańe8}׼ܬaݖ)eosVQu#Iގ-*>M@HR 3vKLȚN$qaK8e]`+Z:-ūhMk˄>돀Ѹ`x?{{VbPMـYBp*"&FG@PD BTᦌұ؄Lt/ݓI)Tcj`\V]|6Y5g!gW[hiQя0kݭØ]B R5٭Stc2e~΄lM:i1x>FJ„mf  `hHy@66S pr Qy2tyd KrbV|G.2LM&̥\ҡ)>*O TӹTj+xDՄʀcΉ>КCI8Sj4X鄕ݨ'~WE67Ak_n|pgzpsAI$bYAʒ 6ؑ;Q!/c D ַF㫄5Ԧuܤ h[ᠢ qV QEĄyg']!e~XAvϛ\S?bg)Ʉ#A.\nH $&sl  M˦OfَP4 kQ7C鶸 p",.KI1 a- \0+GQM0ˁcÖ}B>Sfx77*U>6̚˄̢_I8#eyo~Jd=8i?4o:$-°FڙubB9i}_3w;a⋏M%1t={GmKHQgDxSF;'NKw vlx>+,T"վ@!Qvд{.V̄O9T|bz&8znN(,k5WA̴a䐫RzS&=x 橩Ǟ1eIbC+6Ҿv˻lf}QS&5948Ylpұ;iTԅ Sª{Q oǣbDž lx1vlχዅaHK  YrRZ6{5TOc6`;$!L1t$ީ$R; mf(ܺ46-@ ȅ 1,C쎋|n!gM}fi(y(!߅$宷| /t_&*fEm@XA`&1SSIr~+ V+LAC-N/k)ۧ 1X~y/8mϭH70jrϺhI ~>5 IAO}BeiV5AJ6j'ӝF7Aš!M9R9*RSqzO(n܅=jWSX'NFsy8 Ksu̷M")TJVNdHz;u-m,Q_/o*"RVU3u#ڮ7ȖpQP\ZgB 4|^M`}B_=%f`q* ~<&cǬWbEh`:r+&xAu f m,'E=IJ]v^;Ak19"O}]zy0W569ĭgh$'WjV])Do$</$6 J!Z86,#^4;n;5CRA5WQAhlϒH'SHϜs`7fBˏㅛ4JQc\R{ 8@tKrd v6ޖqJ3:d<l<A3afշq֞2)L2fr?T8ㅮ} zv`Pd9u9 rܺaHd_⭇WqE;#e^}^t܅?;v;c얭\j &#ԅ͹: z0f3:M 9pvvkhmۈ {rЇ(12NtЯ]A~Am7.Xz>ؾ:]@0oHL7s\"F7K"{(KqĤH\>O12+ 5BS?2[4뒢-(օD/+Y93̡v] |;0Fn#'hz#;.)wWR͔} &Q<ytDZ" |8; Bdj*$FU;^U3R]3]ՙ^ )/>/у?pz OT{ϾKs-{@qPMij2;xE6 S61j ?U`3n[sB Eƺ<5&Ag\ yڊqRD>+ irBɑؖ@7P$# %J!H&Z%M,-(D74qͧ*j`8&)}y|5 4tmiǶ@uf7DႶhc QJ=}ph"ʆE}z_%#U)ZcIp~=ń YK~f^ϧaQN(*_>H KT# mtQ^1rҝ@{fxUo.Tz lڤZoۺ؆c8.?m#[6gfeUsoA:|}gz3d锏Xhy-sooȖ"j0{⡈.D!~E\n e`[&h Dux\PRr<ւ !ܢvs4I"`z>k.yv 88D0MH+mpqA.#̚r:`3c/.v" Ytg(٦75t4MJtk4D>./ۆ~)a1qEv熥4_ߙ1 & a#Wݖy?_ykWIֆFqƵc4(Ն0ҞH}'0+k YKX<[[j VZMm אoII..Ox`g$QqU!w[ɺ j#qLނ )ҤPOֆ-X|;0 Tpˊᦙ =k}GRxrZxL yS@gbQ:zgi(f[.&F2@0 l9 j擏bH#UA?ʫbҍApb\{ eaeִs/%3Bә2gn</¢Hթ`ǡ3( ߥ֊wpZ<u.bZ)+s+<spRm*n'١`l0qo<)RІ)"LwDL׆Cb*4_%_Hb\ *WB 5 Q=R= "2dIGF9 ! ayˇi W܇#W~hVtqGL;tn5(Jv@\Y֧{Ȟ +ڍRc@ sd|<qFҫp ';U(ocu:N…%>G@F6fǼ'^̫2ɇ!ov"vy&;i{Jʗ'ka'$n*?a@+]`APC{!.dUJ]C|20\Navjs(@0ҩQ)\oh7cOlzL' =<t !Z 6ef9ԇ>R ɴ8)WU8@D9u7V-IO#hTG{_CIdpݐD(N,Lo-~Vx o5Nwd7:)iQϙ Dn*$ |TM5<ıSY^fkm S~F\w\ljT\hgW`[6mh˹9Kkcm|y_FYf@멓sʇ}t@ܣ9k} e*8 ~[[MBp32Yƾ 蚮!1k/ܳqQ<fB4){J`IYc-ռFϫcg5Z)V9'[g᳇z9"W%PMOZ~~h-~VDWV8KHZ aQDDKA6wǞqH1vh0sH&LЇQS3Z`Ǣ҇<ɫI2X e,c Vy;?ML;҇@Y()ЃBfƤJ~?5<󘨔NBy/>K,кF()n }}> vẋҔB_G)N@̋g4O9~>P%ì\]>s%%WrbN a망O *ȟZys`Z Pɽ%~0pހe!i@~nIk _sP$OIip|pòS5gy5xj \׈q(yчZGDaXD萇ge<q=={_־3Mg\;ڝSWbI^}?z),NozXgf7 ÃJS)t,ug= j9iУk*ذ=f`ˆ i~:3s1u4#X ʹ͜Ik`w(lsT%oѐ(Ä ,l,(HzCuy)O5/rse?Շ$0_J~ViY2VIWx14'2鸌NEv=܈5w0235li :ƱyX0I8KB;DMThBqQ uH*NkbIN ɈUR*/3®m`NȈVs^|0H\9Ս` 4\w`+.M Wcǟ %"7Dŋg.TX֧A-tob*mXcH~o. R;ajjpVp~<c9tV_̾s!ܴMhɵv)0Ի{\ttziCd5е[j$5PFNJ݈"H|EKbVd,ddûr^7 QғZPHhh^҈A)ItL vέ+e.rb=m <Y*4֦|'4rgד-:1CSv͠vJ]]\W*ň=jIBy戤FߗZ)G[,[?geV,ӈIKkŘV5Bev^S_I:-lFyŒʣ -x97Vڧwv/Hk ^GE,p2S]QD'F/H0Gx_i><nϷanpĥ7Isl:# !ȁW vӁ Jӈ˨S<,vQ*"TAJΔWm(mNbgHě7XI=s/4{NaP~($"ec zi(ŔIgV1Ni-G_::iu5D}üjtpxQwfňqWƸʋjTmʼnz[|-,&^`O)~:KG7˂ډ i港@O!ɴ7~rnWR`i='?k2Nĉ^WSG[$XJrtKiSel܉"K7ʊ=]U!>& 0j!#.oz=)X n<!H㏈d*ޝeʤ yfj-M=Brש \.D-̝Ŗ(ȅ|7 /Jϰ@kv=s˝0/)S X DwoPzK_F8J !,YiWGy0td٥SH TytK6NbEJ?\> uKcY7DNU( B77*0qOal:ď1!P^QW 0Ncܘl20V(ޅyVpVNz8<۱7W~2U_8Y!za-BGU0;xŧY0OL帲x[6TMRUh "ى])Z+ҧ d*gT-fz?f3c58UTtὄeBdfAuNY58Ǝފz܄𫯀 V}d=|v)X~k*%TȎ+!"yا( C8(4j;5{MK4זq>KNL /d6#dGC3 _8Zv pLYQG{uDZ 0@kWR.&;L ZL,щ;_\S< [Fx:#gZ$j`e]z63uK#QzC:>p|h?5K-J;WDthj1HC} ~8I׫ɚ⭉ w.5f)'4sA^,.+6S@ЉV |ݗ X?*&f?߶eL{])ZohoTkcHuc``}Α4鼉-}ݼk {ԋP !*өe%8u^k1syvZj6䡻1WiX{ygncV]|ea{c;CE׉Z~e`ƞr;2=ֹFTᑦt[ 2ow=MVOicWSQhhDJw{%;{$PW^[V2Rݝ}]!s fg?<[/#%2ӬD,^eց~NE^!NWcd[6m繠@IgW=~*xh54ޕƦ;! (Pqt!ZJaCxr@! 5,CfN% mT\r Ul׊/̯#E\蒟}fŽ4ky)bׅ|tO9pK;X!Ӣv@2q$r C2˦&\A1ҊG0逅 z, <rLߊH1t/Q\=LK3SN_p}06 ՗RWXJ mz*WlR<zR3cB)P[3ϼRUДk)wb' bi#HV33vX8~;[ * JgۗN[岉~3#V7b##c]0JRf~"VR_[8^:(+hEjX3 0FT t>Ȑv!2I(xj'd Ƭ=vu AN5^<sv"S 4()J3.ɱ624v] 9P5sĤ攠BFS fF 7!N8cLZoV-_ѹQާl􊗔"M |n H/SYlE\`;QYX;Q[lrR׫ي"6sxeUbϡdA&< 0MTOLb6FB[I΃kPNc, uѓiT@./N--F8:f㊮}xs^1_:`$upQ*YPT *Vrȕ sٮnM(Vm}g7pKOה ijυTKPB*!6izDžW_{:BJɄxZ^{J16xEIǡ_RT1Pn! o,Y#K Bg\Ɗþq:!dƸkFˊ8;a>|V(6ÊNYOhK+4K*9;Ɔt&`Gk~c^%xboԳurCEŠ{?5{!|uxNbq̟q5k/De2+mtH0oE  `ݔRBOR88uG_.:'-iLB `ĿA/ hcy!p6p 9Q$X&zq!B02u]=è3txyi'xK {Ћ܋ގ5{qY9S 4ᝎ!@ c276̹b"Ԧ:? S'YݥK9-P$x23~=`jh̵NJ75C̷I7^59T4&mc@e(nI$P` F:$S*˝,ʸKn9Fh99薙UД3H 6MǞGT~yzKv93T+t3-RB0}=oFd8,-k3UM96~UCK:㊑c CgW-&9ŋW.l}dC 1SBeYH~ɕ&}+~\}Za̢zuCm\];Y`ڥPlCC_H6EfoK`Ơgջp@6#,׋sRbnT;w~`?sl0 ^̈selOyf΋j*l"QR72ᐋ{WZ3{)_(M`kӋ_}Q: y]ȻǾ/Av㊛k8ލT!<'w+CfKpD<g3AQ܈4.#o"j`|QAmJ(O'w.싏 'RwE.]X]򋏮MW%nT'ċ4YGd43;d PmJ<̷݂ͯD2Q |>s:d>Ghm"YHAVtU3;Ak?~g=G6"ė~. %+]-$0x @\ !ӿTˋּvMVķGYJ9JUu / fT)MdҋK|FTqnNjW1l1+vL끋BZ:[/z7+RNԞjp& D(ޡE&.g_aWtߐځL}`¯ ֠$B9BLa W/T4JwaSi\ev1lXW4rtagWwb@cYqٔDBƲ򣀭=JKXq߳k2Լ$ĈLŀ:|*s$^ mċ6rD@OZznÚr᜻R}uY`ZesS b 쟬_;{t2FkG۔^P z箥!}#jX~xl𗂣omtΕy]\+G1OT\A$D3ewSrZEn<CRK8,}ь ֥LQ$O`=9mF~ ʝyT>r8^"6 ČTRi;YƌxoOZ3N^/&҆whdh._00,N,yCkdA$KɌD049&>̷!Fv73s!zTV~'ʌ#Q8pE&t@0N#y7.$ !9)k-8l!-,&;AQapГOM/%b>gJ#gٕ50JE!V\|3/ 3)pS :F:ԩ7<T|a(9#mHt+ԋ{>Ci ./X;솵D<ϭrфI$1єޭv%쓦L?9Su_!q1x>O6DǴVٌU:ڕ5sOYa%nXj9ϝvK,BCYA؍pH5#4͌ZWN=V@F \s(31(Nt>_Ե:\~0epb֌p hEeMr<4`lwEJUL-F1hoZ=#l㍿G$ݥXp"m3'D30.-ӑ3mSu('7~/~{č@)]P04ᙾ9`@{a>:+ؚ08UCk%S,"S7`QX8;.5m]$֞E FjQ%ڳ {Gz䓌ƏKňgE@c8kC+aI*l$.]bd KOKR W(<ۓ.L4˹υ2ia1ӱ=9:˧`+ќ-m[azY[<`J-WE7~B7=?J})X{o1rmڟ6vp^ kαD?g-UM3v@u3v8?U^xJU|]Eڼ" 0r 9EU^8#W B~lٌ F:e'iOP. `Μf9k Q\Ќ2RN19VĮRu_p7ySA^FUd+`~]vql`g3VQlt!eϣBny=)1m|J#(Tͺ)}e,|aᄰDE^CI;P$囌 5QVհf<kMz7 9TԌ Zș#R7@g!h*ʰMt?H X'yX. I̍3!w]__,c堅0󰛍 _QFدW[|%`;u :BB`N_.tRtqU[6o1\@ rgF_L36pR\H48Ì/m,4{o!9gj.BJ7l_JBVk+Ѭ"1~Wݱv@u(Y05 9ѳ!pmO /J LE/X>,秞4Bq_dN׿EC}6e8O );52+8rsZGi2;Y=ɂl^wߍ;LQ5fT*Zս'mF$>r :NG F.>Şe"gc˕}? {Oa~4LXn?o ˹.vMNJAqZ@IV?̼[wՍ%5V@]KZ:mAU * S^a?DP6"I0EEvIiH^==g/M g#aܲ0 ҍQ[DWTB<T9`~k.JT>rLv1; zY9c,W</Xm}և[6^D+) `!@N6WieCz^ɍjE)[}- ˍqEt]L_sK[媘M uy>"C|;C~ ΀*Bc_gi6ǒYN>)'fkƍ2ۻz`i__"+&|r8(k/gp;'ҁW-JTM)t_;= @獙5ꇰ "m7|p3#Wiw:_*ba9OIi[䟐-rŇp98eu9(AC\Do2`hβ$`/0 ߞ'?RYٹ?Ο ߌ2\RH0B*A iZNT čĄ-Zr*YwgPǾčM&2 |9ͼW~֥M _'JF-HB?)^;I]Af EL w]gXͦL7b8EyX0 $y Dj-NO U>B緡i(U~G; @REDN#@Ͳ3nGq7oiçD%#HY5)H]f{#Z뛬#щsdvg]Ƽw|O܁~޾t%}5 d 4DWC ³,B Cl"gWrWBv\t,* Z>od28'!ю$XpҋLAΧ"g&v#RrM4؎)2hˆŴ vȎ3U/Z^ƴA{h]*<@B5ޟ[:5>n%U1KHe58ACٻt/WXϥ^G%[ 9y{^ ^H=Oq^ bi8I+GTJXzJ9WB߱;dɎL j/70SҨEi0ox=^MTp%Uz_O-0qm\56(tQ0տ]X4Zfa!;NBVf}x94g =<Qg?R-NBNg;vrś),U }g\orDRENǎm ԻHD$/8^wo0i?[x=pf 3TGyZDv&c%'1ޑ Ŏwߞ4PjYi_8Vώx5ʑMtԘz^x\`C-2XcZ5ZN]622qdLI֪ms7ֈ긞~-+ڱ%'&NwV}NE xƏČA͉k+n#X_w^z*{3fp{X$@dǰp';א.ˎnB"n@y\t F@ 7iL_%c?톣B펩Эō!ʫ .)B(pB x脭=nU3B Sw//7܏TwF1p<\9w+ yzc:VۑDS]3a[ߚ_p⎶җ1`uiOQig﹖{.fT5ᑎ?Ӽ{ 4&<\n~ ֝tX/ȅ%IMn4 $;Q k񱛭''ғ_ $Խ4hqň)e7V2 㳽nsqK˟FeA} ڎcoȈ/g.WfK)uܝohճ4ifOK4Ԛ54;`_zbɎ/jPXa\@]m4$gN]tKL4?)o͏4,`k. :x1@$/a<Dm7AnW:bȼ0;hL "H%A-`CǺW:`4S=R[8tӝtMtOWpퟷ]* B$|ǻb ' ^ &?;of i3|A j/K-sL@0s[AxUf.7$pz0cH2,vg`,2HF4Aa25d((ML4K{Ӯoٝyۏ7<xL-z,9  eb:\ rj9<foiR5 `  ԊY A<lلE֧eAߏC7ܗUɖ:3dGA(.!<(؏Q;vh[Q5'HHV`'r:#cZ_>O$A&n]w+v_2nnӈ;`*R\LLh32=4@~Aleɏp ~%dmH!Š#޼s`Eq ?읧N.so{ޅbpR.IhNFB}.& ̌XDN#s%ZЮB軆][.p V;QFs2`)@&].95'9ё%RI~ s^$2R,vG`z1nM@_VQ5>MyZyߣo$4TˁWGG q`n_)w`g~KVP j6f.nّX;V? /'N/ ةeXc{9 qD~ʏx}0Y )Sg=(QS cxi iV YY=d'Ժ.{z$5ҏ𩋾2RBqEFɲ2Nspr+s}{1'j@/&^C`\Tar P SL2(YvA%fm՛Sed9_nf+4SѰݛ"l4l]_+@r]@Ϗ`m_drm}6$}zn7ucC+exn"> 7[` ԏta1^;Љyj;(om~ ЯN*8JeǏ?/y G4SgQ]$P.G$*.96fUo#pR޻Kwx%@K'1avikKO^|)!|cdEDlUm׀ e>|CdCqCvѳ+/+bjBw5 /1! -HHD0ϕR[Ǟx"xV֎ɬ,~"nJ%wb8k>p%l^&C0)CCl̰Ri)F~vf,9j@/3t.: 0Be[P*W^3Цɰjjn4%5&\}qYljq~z6ѫ. g8{a?!7E@Y<74T߸A09:㝴( fd @<;֣5̖Dr0qz ANhߵ4ǔqVW¾8Vt @ƨn,>bbJIeXD!f)F j:*Đhn9;Yxtdl]j  ?49Nq=̌Nc6;hW/r;m|Җ uLuɢS]ۖd5uyZ#Xԍf `+|rSe=O$`mUW na+W5Qwf Z_4n nWL(Wskʤ&VYjzw~dVސ^y{꘧kKCuD m=g.rnʃemG?.(S:N'߈4X{쐘~1)0/W="|ocϺ^G_wuIB!vjlÅ,<WcLݠO8!|oֽ9GZKEqXӴ9͐,sMd֖-vubƐR07a6Uڎlh_iJϜo&^I␪$|;.&_)!t5ʋqOtxiDã ȪV  H-rTNEbq e=+ }JƘs"ސ*2$[]ETAZoX)#f%Z%F}+ +хn<0ɧ5DtN ҙw3 ė4ͺY䀗r7c4BXq٦(b,rNVڗqˆs4%t791.'|S%ŭۘ0N <WU$e3xI6~%ucKYnY]mE]:vPQ}յh`1,W><p}A;lLL[Ac23Wo$?'DL%҄-`,q'fI7=א=QS#QL7zcJr<.Xz [ѐPv{ ~?D/Xw~(z eU ܂ 9]@7p@\h=ӑ YMk֤:+< _|ns)M-ʍ&1, 4đșD F.fbV?ݴh;!Rxh+T @u*>`y,{(Cc~+f8͆4ĄyM-!+vN6L8/xâ$‹U#55(*e(CY\GóWHē*J%z]\x9\_OQt2ݰP<7(bDS*2S-'Pik:F(jWRg\:3iWȘ6AF5KZ{K\[ ŹY- aմMux:NUZJZڑh#{N\BuD-yΑh]Ggb8o.DZc8iحvYZӪ@~j^Vj~]m<V:ԸZ őpGk]0·#ݫzU96q!Vyk< w͓%ꡊ߸+p7{$1$)m="7犩JPOcU^_H1вMڨA VxxsfāP:[z@Q?ϝ|z^2"uTR="Q!?=BqYKj(U[ ,hgjXl(fhud<O(u:- М*mSC3jQJ~jD< LiQL;̯0°D H&78D({\dkR1SxOl,3>Oe )]\\nӑE7fUu,[Pǃh.1I~ddzɍ+YڃfڶtfPb@~<F| +q뫳D,MfHܑ1ꟙ,L2:$ $R4"WĊ\SH|M-H y[aRX5>kѯWм^Hlks#̹y32=->iAHtl'dptmN׵}M*V'Ӻi 7Z/8U2?C.X &-QKD^kEP&Fl.hP8eI|?$~BF*IpohhVС"o׷J/;-Z-C?(Pxҟ ѽCb־l~%z7`DdI!;pJDUs3hђINoQ=l14]qIf ?!Jr\֥:%ܺJGTC](խ$?&d?7,oqE5 *&aOoD:q? i$ג(Æ e 뎪S`^^͒+c5_& Cuݒ+ '=8.s=͒+mg-b/7-j/iG@.]bƞ3B5`M0aY14psے78~<]ZZQ}k9ͭ'.}:vVG0⊞,SO-9]nHO&-oRoD:垜IMis{<Jw`\yy)M RGRݷjLN،_7 aPP*wZ$tmT<;RrLU\U\ 42{4I-[٘c&KK>" 'c}./dgX3T(KHkGd{AHDn]'veă6)UT3<j6Dk$[6?qKP/w^ɶEr\ۯ W 2݇wAD!#Ixen"&D520xͪ0]Q10'ݒzw"A:ܹL~iE%5"mW喝łAKog2/i[qzͲx{YGxTa7~+n8Uƭ=Aq ( ]j{9q_T /)Oũ!k;g|M*= )xV;o-Pg1Qk&'*풠3F#BiU+ÒC\6,츒xeB`@Υ 5ge/ u9AF璺@2g ᫓٦;C|0Ln9RY鶈ze±|%ܳ|Ӓ1VCp} noyEL+>rc\ݚ<[ZX䗒ǡ@T}X! _݁ d~5<C󋾲ۜ*Cj ieޮnZe&a{n0jT2DӒ߲I%> n:/ܒ)!wݍP$G(ΗG%t+wu[O-WñI-+G Q&c/`ƹ\[({a-Ӿ jQz.7Swj.ǎbקL& M[@CGt3}YSjDظ^gmx28?L{]~?dN2L`v;vؓýLbSֳ#1H(&qE1oRG5\xR[ IIBrot oMWG "Q!^NK=i EOtӥB4|=n`^kt@}0xa|&u85NzI J[pZ ӡgɽRŘps"5"zncyjI^'$+&Y-In'HA!Na@#8Pѵ1E,'xsc zkZ:3Mvoya|g4 jE!NrNAy <i7|a آ?\U}qitȕݳ 9nS@3}ԚCKSXߓ@:@4e!,k$D<?Цc<́8Dg*/&JQI5̡+L߳cߧ'R fNTg"m9cM 1QژhB;b}}~UcFȻt=-!;QWUo(e]GHDXMCo3ND 2OK]2%ee5O^^zQ,MdEb =eXB<4<,dۍb3XO_Q=e gSdZT“iZK{A/C rfw$9 *v[#pH?ؓ|Bw=e@+^^e|; !|<uSJ듃r]5n8In9Q ˔oX«h4qUn$лZ'tZW #VSPlhN9=Jf铔ҝڞQv4.)ENN6s oolГ*e=e:1{ ʥ(B,xJ㬷i߸;RuGb}\|)bj~",0^*=ѓmv4`j3|F}p%Q:E߃@hHg<1TR|GyzZ?{EAݓǢ6ͧԇVfГJ)B)r[<k9V'm_Ω?uٻXϣ B[;哿i[{0}+,lpiT 0@ M"GNFPꪰOi|Ό]tߍ?Jz~|sʯmnK+YBW%>/ Y6eb_x"W"#uU1ؕn$cx2v\zr!}㖓8+'!}mY-ndLa.|Z%wD1e̐ 5ӓBղɮZS&Ė=ŝZDޣhlZw-y(W%'46uL^GN~؝XJ0m녩T,F ,Iҙehܔ Ѧ#D. pO1/[ 4s B f/V1k7̫44FW@ja"˴"̹fp`_b?~'9D(@y<X- _3(VVl<1Th"gkUǚ12N9$pG .`z2:vڊ%/ƹ4¿3f뽇W?76fQm>&mS[$8 6E8(j8ƿ X>+V񝏢.mB>T_H-ע3]C4nSEjeρyyV G~Μ\ȓYrr~MC!Hgγ#FkJ6KݵƗ@>67mx܍Ll!H乔iM4! >|QpOSJ=2)<)t|:O| Ĝa f䕂kT`{~ޚW{V7{ulX]y'|f:2(j]Y <O=RB@bq|dZIFUecġb 5r(e>dbd4I$9甅s3(yjHI4V_Y*ÜZ"%K iQ-su'?BBݔ|KmޖY N7^$^uDݛؔ{c#۱ r?*̥\MdJK\ŀFJ{ԭe)>, AD` >b@"w80˭V,պ}5֔\36iY(vKë}ޤmkL# MùuAOd4%uȷj#i@Bq N# ŠKUɔ6n8|} 麈@7ݯVINs-'`39; A| rlrϔp&%?[Ŋr Vbh;U~ڜo0 oS@h%sr;ph*/iVbYZ>ն=N0d\-!A'+0oM:՝ԔED?P c}&AĔTNQH]uޕ2-6!{(ao”֎kl 7\􄜡sߔj>GXgUȟ(pFlԾrav F—Ũ|B.Ah? *_{VI0 {O YS2 "<eq<r܁_͔?#3so،dM' Rl.d |%34?wa_$2.~ܯ9F, , Kh+-G%^G1vg*ާI:)#UT# @ZGٕ(+,D u2(n2I'(5@h48f3[|pS4x3ɕ4_o[jT8P)4Wf47fѥG;DL$6/L^b=䋴+@2(. ":3Sn@r?@nKT\ACicۆ5DEj:}Mh*tJFCsE̴Ņ"TPiq w'NcQ%ch+vQ=Z"6C[3xܺ256ua%U/Ug)3iV GX7gj?IOf\b]qjklt;,1klуq,lG$*PVK> bjuqR2 ærQmkr>uFm {|1hFZw#/qKK)RU"wiG ejڑіؕ HKȆ}@W[,"~jc#RKf&󕆦׉K1OB͕͓`ɕCc}dAaS$Z ?L~\P'LnlP巢*}0{NϴEg~ە 0]}U6UKj8ƒV (2 }ӑ<s󘯳3bo=qӓvXUV[O?Y{@=R+ed^P&] 6.=oYiUs?Ch$ u)n(w{G\"ꕹ+EQ;lrѶ2zb(V:q…LMgJ?MǕK٩{qb 7Wǻ9o6Y[^5v:_LEWOMLʂ~-d7,SeW B3tn%a= ؼ=@ug]@BfDx.m4CoLiIP}~icIz\_Ƨe꾕MoJ}C.6H<1sWd~WEȧNu ?0aOn8qYئHV<맧rzm)DŽIEȦZ?M5zؕ8sRIx_WʜsO! 'Fwԟmܸ6R%0 ׸$NŴ͸uQTK$u8,iP(\Qu#O00D=My:r A4"v,À>n ;jG%h'+ZOqėvJ!hrR_Կp\Υܲ͜mu+͖=v xc7t;N!͍Ra QoH\Ȗ(N}}4ӗf\Ж13lMh/@{3Pm{"B,&KeaOb PC :įb,]Jdo+6%N~,Sja}KL9󲔖U*< Ŭ'I0[߬H9߻߶e]A& ~<}~$3]@~ZDՙ.7;_-jDIe_ΖeگekH\<M e3f7#P7QPMj0:GH_)m\-˵J]znixQ8fz.!) (0 @喞1}B/?yp r^O!lGeC%|ĉ'C}] o6̴Gi\{?Əz]$M#|k.q|Du3Y\;}M(x^f1B"dtj[ !Cdc(SI㾅l))/",D!*1kx痂V8T6oa(l%{h"ckv $nH~ǻԜߐnzk ڗp*B|q#qUe28??U 扑oYJoX:K0I[lPʎkRAtiYZ6h谥 :Rͼ XaW7bV2똬I/Z<L}TQmXpGL24gTc0 mԆ^ ey*9YrwE.ŒЗ,!yNBN1 =A;zL55rv)׾N[B1E;ɑx&fH%1lS}@XGOv`!Zo R9^-~j5]1+BGLQiS6 dPe9fk ֏Y=c<Gȯg֠K^Tq$ԗ@)qvSrfZ[[W@rLƗZ΅{I?9nF!Pc=INƾ8Y_<?җJpcKe LP+^_2JƝԗMQϥh_.yP1_ED,՗QQyl}iWS뙶K2A]U  fFf[MLV%pF<a!Ɲ@V,yqK9;*^ Wes6wn! `Yrs==>^}Լ[Y3%;h_$ֻ]9Xe ``dIlWu_މOLb?kQ&&e av'BDbhs[CQ]\ʹ<{lS1$pqIT:n;tW#xlt>*q\RH{uq|Gin_}{٩JLIE,wė}lW1)<Sf.k~_Oa~g1I}wP)CR5ftEW7ٓ"z'p nw_$*ɗl݃~<OA~~Ag^ RVȗt AG:Zik#pZDf-~X\ĮV~#OE~v$Oɸ:k|b~<T4؄T#ݸT(w-N& mIpympˮʗ+ϠmvS6+nXeiQNSglNҢ'cHwxm~:]bV@ݔwʌڝkL*oFe՚U& yWiٜpwpx/RbLZ, C{}C^y/v(̝=1ؙu*AVJ_Q/:E E6ႼJ% <JP^#|עyNV<l{brFs ńgÅHCkKc[uBHYS%ݡeLƇg#]KCC*0>м^oWRRK;LQo*$Ϙ(Z4Md\vگ?#O 4j<ɄG N(M_3 6 *{NQ)(?'vQØx*VelZ4y }\ =vYmMr߾m#25(K$:" ِ;+)$^t0p]z;lh*~>ٸ޽ϯs+sXrY-l 8Y64i0c-%d@=0`+a=w2;1 mo<V3Gg[?)]m{|A%,)9+N` 6 r9[,PcXw;pi;5emb` <beF]hjK?*3V&l$c?GDx9Аb[yQlIG \>m ?X`},I0evD^3ڐb[VS~ ~ [u''\lyCOޅѴEA`lnj3b<<\Ga u +##bJ{|VE#i=wjSD,<]c^D|ki2 u8qhBk[,PU_טs6]@ 6Kƒ"ug6SxcdX\m?Ƙutv-b{.y b[hvF (#bfADL_d첊|GSO_):&-+߿42#_ۆ'=-:qԏOp'E2w? suqojq}vݒljya~SYr׆F8wbI :,IN4똣Sģ0ͧHx"Rn?И $`aF2 YSޙ-$Fd^}'/ Mj혵K.8'D&ʄ/y? b1()aI?Dy"(1_lRۧV89jȘ%],/"<dה?0d(b'+FBE``;5<Ù/wֲ#MέW5&y7/l=)$qtI_y"RlDhM;''ꇙ%eT~Pֽ4G(yPA,w6*M+uw!V L"[?s1TeTTeT%d3R8vHS׊k5_u;-$CAI'sjay 6{1<c v4'Wә l`dqr<ND nua# Kdَ̎2ym8^d7QpLW^z/$FSz˪ LƄeKaP=a 7]|Մe&\ f-xKPAII3H-Pp̳#/BI+/hBV~d$?>P`JxxL$\]Vz$*Zdݐ(=sU&wmk+ؤH\#_T3B3槊M2N } y0==uk[ײ,-"w]]B(̼Uc /ZbG(^ Nx'd~L >雨5lP5P8#ĚR8e~ا~UVJ|5i\SUQ)\U3E%  S^pe:r>@<Kܻk!_`uw_5zb*96e#͹%)L˃'h1+;I~  qr }mah7齷uX 6e+1}Vc>;&*-7'sa~_FSe 9ٙ/!'M5ߞV5mt4X<Աr^ҙ<&Y&2 X AQVh!AҍxuxQQ2r6d /+X!5g}:7ZQ.;ң܀z;5Hm /ZBsÇn**&pE֚3%ڙq\Q_Et@e!*M8̙ó`;5{uaUł-"A,n~/b,Ũ5bZ&g%ǙѩF$S5p4HJIܷvvzؿbHasԉ[ `T&CayُGy<'Neڠ0P:_'󣇗Q&;zmyn~}0KD,`f$d`t9RѠ {hXNn6 =7`D$i˙ɱ[*e U% (VBsB)wL}H6)kC) SS"R'k {% MK~Xy#OG-q:i3i- \yH\^xZJ/{8j`kx$E_|€=>:Q̚;}C0s <!0WJ!&6wGkovvfh,%@;BE;Q-,{2UI8PQ2l.rS|cێ9b" sYvÉDzSR0 A^DDyٸ;HxvdV.P:ښM܊ka1 !OGtwf*5CRB=_I9U]2΍UjV':y#WXc %YAsAZlf<3)qDb*L[4 VyIl/Κ^|ʣY]o`b38:h&oQuaaטlBL[zb99ڃʏ&FӚc'+Ad&ib3U, T152 j {r|%/jgsjce6^YDk%Y aum@6}K,=ifuxʥ$xclG6$hס9a] C/NJgN)L#H抗@NR a77Vk}4vY7魦u}߶!'ɾ\gQ ̰шj[s}Vpp\/mYIaI$Ҁ9Қ:Vz|q4@"G:Q2ᑾ,*-ުLĭ X=5[X7DRpٚ ^*APooT<X0ġ)\e*4r%K@\ߚ )?F֑+hRX Uљ Had׷WEo|WRؚL &Cw Q"6[ƑS#bq3MKN!hƜ]`|Ⱥ]O#tQcF4lN>lL \5'5;41"gde\8BԚ҇uq |r^?lL:5e|h H18mtr<뫑ȁ1QCVs7ܟTɰnP7Цh+9_ UH0Ka?)P0pd+Krp}6+Zv߶q6 \,یZ/_1^vUgg.I!J *+ja$q<ۚ 7s}<dGxt!w\ƚ)GNIiiԚ0U9}BB,ÑOI DqGO8$ &XIDƾ+o& gOUտe$?wvL0 T]i,=pg ϛQW q kN(1C{+AgȅʁTD%bÊmG%z[$ϛ;t'" &x-j]NV+R<P֠eN!MKz0.E^'UAnYγ1'k쬙R X7O(P= :-7d`/H){ bxyMMB1*]ʮU^A%=K,d_߶h{Uc"ϙھ,5ßYKs"ji-2 V+FMZ-e:c>7}!'d?1^r46"i%4o4~k^\b>7j["DM`A$]K"9NfnœGX꧛<4"vr`n-3໖>@(ƒzenY*Q?|6r5/K'C=u;@Q@CJ{n :)<~TjyDʛL^娖 YB}M.A-e{cmCO*˼zD WśVTkVbࡪL,WT5<wڿ5*4yFZ4_=)>B9^[`ՙd S)_2W&俊m`gS a} \𘯙3,:2a2?>Ô( GN8c xμvkb P[O?g3Gx )@#WA)śj4IaJRAO&ujr`L<'zn%V٢b뷛s`+LQD!sM~V7dY>p$wb [; fwanka&d?#|˲\~tHIJ b!4[ZVNR94G5s߱]X5hV< |<79O.&+~qTJZ>e{XW9 )vkqك^źjSkX*\wAevڂ(!M雕bF-{DhȄL|!!ojW9u[iC-5^!zmh_UaC(TUBj/FvїH\lP vG˯+5^R⛬>&Zm,R8# rh@ECB$N?2"V"!.!]By/K[7ࡰBzT.M!9]:?Q48 S]cpSYTРʛ1dywv@O>Y_'@ n83zyuw-V0ŀR7_ ha _s;U8zI8Yܿ)D!~AAgAxد3n̕T-Ne뱭EU~لǦhWυ7+$oAIipD%W1et `ϛ9zd6'w\jBmqT LWGXFƛ1N6ؗN š픒-^NƴpQx"W)"^$\Z"aʇB+ijn6Y0Ў\Q=;o3s1 ogKr6'Į` !܀N"oun vCݜ 8'*QD Uz 3jW <[|mf`w 9Sb` CQ? U&Sd: 5MOTwǜw`1j1D)’7,i ]aR(PS?NTRe k1"8C`hWc+ЩU\*..('|MED tF>yd|Ddq#d*5Ar-)([.뮰 DbYۨ4EQ'/h6Z\Ft`4mS9ikR2J.Ï@_GBH~'!LEQGgHCMTUSloq&Z BVjھ䳍Wr2aeYwJ#XaўR &2(`1w7S[ aWR%JJ_cG5ӚmQ,G:$9cl 5$u(gUӇSlj~7Tljo?+۟^n‹_Mݫ.&4rPԭWRajXu霒 V< :?duA`<4⟥lbwH_LHo yay 6p9й{lވh~**kۜPS*:`sI%R@b,I fyr3|nkSCf)bto.I6ϊ+Z C'?|mDsT俏:T0\BifٞzḲ:3XyYYA? v0k0@+*Gu4w̌5mqGQE-\4`=?a|vQy}wD!LrM}#f ,Z*</6.G wtsƜŵV \тc&mŹCrEI?Vbcp%!\pɛ:Ӄl *u[b}dmB~)gg 9̉& O6ژ sfCY&pFxjx;zEԧ;ODQgk'lW95C}<3C@ٷ ]P>% o T!|NM}՟AK`2&/^ڙu?ݼ%J#Y5^|e}>aAS0!!$\Is, a3LYF`&~K40!N_;#[>O$ƾ *G2wLw}cO>aQTUoU%á,F@ma ƺ>5-kѝp?]4+hBK%&Ϧg<SlU|yGŶ?ʲt"@~O0&SD'\ÁL1;Hj%-kRTjd5?%M.*ejheSre1.o]v/vg#Ν0QnvJI0Tk2a+2B&mY4ӷ>)cN29ڋAo"5ħ1Olz) և6=HrnE,Vs8YQw늴Տ>Ȣ-JoԝB/H,$ fMEsE"%aIɐi_FQFh}_oW:DgMW[.t"enxĝO%S%-K_f/zSğsl /)Um-"qDջwkC`}V0!enȜu:”VʏaH= 0xoa{8~X`L92!Mc]u<7dlN؝d/k珜YTEǻkm|I/Քǁɢolx]w x0(1Zsf́kB!if{;t[aVco;5V )ԇru%22"ﶓ6Lo+ˁđ_siLL&\:K?2%ϖkG. 5q&h,U|վ?S8p^uJn ħv]$eW'e vԝw.ͤN~JOJӝ*adj_8퍄ddQ!c7َ4"rɳ䝝E?H~z$z`H}FcaAl%StЧ7-yɄ炜=/9Z0̡Ү^SNpGHُ$}INQ2BF9S7VƆfX晾ݚ[ǂzT_oiwQ'˕G%n^M r͘Wv+Xgz=՝Ϲ!ðmT$AnK֝aUȻ|Xmk*}Ӌ|UvvG _^#>Ji;{D٠BPH HGa.۪Gf:TĹ]ם^tIB=ğ?yC# ),(rHHX's#}$/d=ڝzMZ"FD2LC^޲;#s) dK\>hߧ]F,="!3j.p<~9vE*jd c VU#2VFe]m ^3)eB nsh!*R$ ܒf/ZS+rMK<`1 &qk/x$d<Dd`>^4&0?,u%5$\*rm[XZvLq,l : 5zWj5Mp@?UA "[~3e[ kZ?#D$|X t~W+Ƈlᢚ΍>2aFwZSj\4ZJsV>ъގ{!㛞˵IJ4x`F T2D׶#M` "]p5}&r#c:olC&#RNV~_Ne((bTÛy3X`B.*%|DF_PO5=pQ z5b0=12,FwSC_hHܫztOb*儳g NsP뼔EKޅ-s d\QIvel8 ;mU_t{ږI6Ҟ^9%NZX%_6_s͖Tkn"!d3_MiAm@?[$Q¤C7oh0G oKžtmr:w%rZ+Mgq"15}I6J뿐)vh6|}}Lq6IVO(߅ٞ~>a *n8}56's,ᱞW u]|=,Hs7{`1 Iw螎*̀*EV x,9<<՗XasVN[\{՞nHgawm4ۙ=vDi|6D& CqX<xB۞+csR@NAz$.gdoA]+5ʝN̽vŞ枨qϿիX%.鞬:ЌKR 8_%+"\w>xT~HtqLO3 #ڍrM1;C؃ i:k13 %BlzmYr^v94:Z]TWNlZ@`Y<õ\1JߞJR$O` SM~ ^-S ؞^W!;ݩ8۞ cæ}9Eǻ~t8 0MR9kjԬa Ƕ{{GUKwb)4@o6:bKւ 1C5Zݚzdu!Cڮ`U*5k(t/L4^N8yg&yҳA'w兙*2SqDLgQRߟ "'%M$#QQ息/]HaU.ћω9u D؞F,r0/Mߎ_aR,@?2+vzq3BV"!{8\"2C- -O>+}89%;6." `~ņt\eA-!@Yϡf0ğ7B*@Ű<U1[ $L+q`w [UӟLcO3i@Kq0ХkX/=$:a19,)IYH c,NCC3{}hyB}AR Ɵ" 6GӖYM$ɟ&h۫X-ogFo 'jsqg08)`JvWK/2ٕ&ٙ3w mNg5ڗ[5yax+A#I@biC0:jp X~ޟ:O``q; @*>q/j5B?!i5UD`}>tpKPFD+S(fM`cW!@A}ϞEM\onQB)KvP|j蛗ieðS9OAhaW8T|W['ƞF^']P 0[ۿEKlZ;|(25a@z~釭L}9jr&Q`B 讨mkcIse4yleh <#ɤӟqR(=$G鉛/wo]q |⮟z~>e{2NwkZҭ%GpYi.ŧ݇ꟈE=QRk y%{o=d '?8!R0ݟS 9E+vdKM= r`R,2*bw^eeyrv=omnnldyyiEUẁ g`y*ȡj `HZo|3F=$`ub$oɟ/zX+,?d}̀ s؊䘿C&E˃(yAds'eQCݤ/=>cCYs(;'Z<C p C慮N"څi ܟ[gȓ=abCNA붼-cBpk +ʔfAVvB[4̀uVs҂$@Bq(N[$jzrp&fkj Е#Š#&&+՟b(R9^-myk4e?j g8NNR =„yF 8*I>ȥO_|pM @YbxL]>*hoڇԳ,\z[gDp;Y#g"͈A_L!,W4z1#Kh)PgV=vn1s-n7,IXb J=sq\o-q, D G 6N) -"gv8QRmZR#t]i[_?x C%sdFzez&)}n^BǦ͠)}$pj^IR+w$&#yF S-d7ٻp%9.z1X8)vĹ&%3& _Ж.|sc;.2ɆZTI<5Z;?v?774d;s#-"VGΠ<; ^2O=iP~9j > >NFSed x%EC?Brߞ륮atJg?a>=bzz yHAOz}OK\1A_ȘW/$s_8cŷCEe 76 t#G6S d ͰbH7GW`hm{xpJce󂀚V8 QM\^} $ ljr詿-PB|'+PQ T e=ZvR P7>2͓0Si,'坥rV9Q{WVkbOυlr䴘@m;Z{@łO:EΠ^(T"pNG.^Dص4K77oN֠d<O$2-/5gf.SkK$>hzUd:iziPP_n݌ 5phoz[b(\y#>zc!>hy[{7l* ! z?mW>538gډ{ӱېQ#S;52{yѼ? 0Wf8?H+<ꠈxᝬ =5Ю~s9D!.mct]c>KYBFc2ôϖ"cX<̒C373PXe렫<\~?2ܝ90A蠰 Y~bo<Jw-3Zy蠶B![?*@e^N̠+VCD;79pC砹x2݂/C砺>6+[OKoz2L ifJ%Q@{Eՠ!+*WIBIP] A1t=tf"f罆S?WN-ȏ\3ˣˏ'Xҷʎ&Ġnh anx;ύ|8I}_|Lߠɪs I<@.ܞU`ÛBד딓נ tW7Ӎ=`(m$;݋8rGUy@ٮ)S"f;ldTLp_yFea18 YiȊWQY(vOBQnOh>.wHg];z;;_C#a [>͡];lÏR3Ti r,ʵ/hLByV5*֡wN3x:5iQ5%>G=UZ^ꑡ؋/ŬյV С;WB`e!w|t*t8: t#ߋ*gΧjA&/V 5Jf&&zaeW':)f_ '۾ĹZա*r]8쵑3ق^ +RˆO\򱊺>.iA Ԫ\,>}(/TXc`}C8[/eL)Mg F5Wka[9Mz gۡ7mwMf?G>!7L@e.\b:/IiPtPL+yIſq*WhEu3jNC: KO=fE w7OFHh{Y{Y.YnBO0G_B /\( B}UL| b-" 򱮡Vdp7%45 fX#= bF6[8@RTQO)GMϡ]VI$C$+Meo_W^Vx7[<>|#auhg,31 wS@Ky'hu'\A69'{i58W7KH `.`nuDž;ň|0/ p~W3 |4ڬw"BȺڼR0|5@izqw2Ugɦf(Sρ ǜݜrm ϦY՞7g +'iR@xbhkJw*AGRj0 3_y!?eO1 KPIU"o*к-֡kfѡ?ե矶IwUơQ1WF@3x G!QV{@W:Mcqr!GVa}n+/'pvo:u!ݦ|qtwHtI3Wy8<ۋp3xKG۩DLt Y*_^ˎڏbKN}˨̡Qs|. NAxSH(mR ~* qCKF$ψj"rF(@Ȧa[KMȣ 4DYv{G&ڡ*+nF.71̜ѤOQ[Wil4+^;Ȣn:;xp8`jZ;D2T W*W1O ەvdOyq>BNH5Ct-_/_0hZ +g,8&en.l(Ǜ $_;vڃHH?bi ' ¥F:kų sN4Idŕ~w)ʡ!J$F](qrnS7H. -e?ퟢM7`AlG#ög~}6St'a7K,kjtā$C>ic(!^V2ɢ @դJ9:b?+Ϸ47WS ^}$c'N&*)L[D1,Kbj_AΥN k$&w; ' d:O'ũ6JJIv쐎*5 #Q^RGg+u !@ЇR #lΖ<aSz&C ԵL0&Tљ5GIGp)vGvwr(^(y@*ӫ=y_2^e72@wn ql(g:.7m¢=쾨BRt ?<97uq6h/%HD DkZss]0Gw q{R8#/)&GͰ'%‡hM¢M?P&<iA7{Q1ЃYUMSVm'XPZRsIspWON5.BY|5Z>X=~q1\Ssq̠ݻ]]Y):_TxaNkn=R-Gb i`ad/^Zآj $bI ȆsQk(9q6&}Ȣmt ~Du.#Vm8w"%|n&SJ58I#osDuVPzK̎ykNXGv |I#(an!\4w&y% " Oxax<eT`Xxw /* zMmZ*\հ.%%<{{UF%yL/𝁢,@ݧl#)eϖ[Ѻ>uy2/i㫢Rк 4&FI*a[d8YKie`&V̢ mClw-n=<cyТ:Ps;2t4䢚*:6'^,xL"̙xIT7.r1V6h),݆sv-7 >gBygO)IxY#9 D썢b_Pyߑ7FpdZ{lnnƽ6wu)斸eނ "٢@6~8V0>MGɅ $2K{@Ȣڽnm'SL.up⢼ϚŸ@Y}@4_Qܼ(؋S9%c[J :~]2mwYS|x7i_$FԮCa@ܢ njq&,ֵrW#,!V@E. C32v`N-o\-78M"j."{ lQN|#f{%_Z@74XӢMj}RMe+R6.pkbf6~l#D&!i꩗mt0`tM f6+0!_bH؀ȪiEGY(NjgК{)7l ![?]`-n ;΅M:TZC% H=qf"ZCmvl~,Lo!C+9x}Y";^ YzkݚڏO \Z 2y{ BZdyyCLp׶W%\ 1b b J 1**ީ =Ҵ,EaR.Dwۄ hÎV{(^ﱴ m Ђ,3z2*5o̥M/R: df74-2 ngш=vˁm60ڔ_UI 8<k h0}F,ԣ9*-.d:?;\~A(S@/b-AJEu" %VˣGVO4YRxKuo\߶/__NQcs墶p+IJSL돁Z/2a.VAke4~v6W]?bvl^ޘr "_-FPPx4dhM_eD@Ă{dNS:ph AcK>)P#`i5S_iR8q2XjjkYI?*fl/M*0H,qTlz"W~qym)|hH z1h '=|2|zF{Hvrꣅ[ REr\K -6#VzM?=\| E-\"#~Řwr6J n' 6`&sbr<FI!&Vyrc!'ڃmǔl~iysmhJsM}MV3/CtN<p"XGIj95wВ }K棕Gb6L|0q-ٴg]R,w룙`Jv-}lRD`A$ɛ⸍uթV˞~Hp>reJ%GKHQz W<\Yᣪd>d \G_~m"TD2կU˂S(عM2BA)ӀUys]£,_Ӏ,Ob' *%4፶^ &_RHDy{^ci[Ʊ=AmchZun[k5lSM X!'^VCԋzp{KqK-ѵ&Ȑ!cTsE~ϧ#9T0q>2K0AEDvICزPKih>`X~ak66LOI_.w+<c#꾤Kߍ@/ÿvM)dԣ,h`t+6뿴)хYoP]%A^#wz@aN11F;9!HXE#i{ei@OG<'Ӿ>d|ub XԞ]o<Bi1i8KPHihpI/PH~ ]<F`ƌ 2˄#WS ?1gfޓS{{g1tp$҅L(0c+/U~6l FO^>_|(s" Fs~!\H  /{ (ۄRi|#aN b3MY#7ҎSO+ULF3'SwjGYU7RhOuJlߤ&ª09=S$kev-$OP|{؛fQx5(e,I!qlvVvb>I hxM/')SjKPզLD]%u7W!‥1 W [78HcV\90eA;d[tyἁƤ=1*<fmz>W^zBl?-BT$CX1H& 'V/[іJ}ON[kÍɤPk.o=* XvI⛛7y _nZ R3"Ƥeflm8f%@euXYX]ޒ' k#8)cQw? kUYΏ;`)lApTLyk}nunX1ZYrlHpE:هӍ'yn" |6KP x嫹}S!rWֈ#h 1¡t&f>$ڷOY`jAL|߆Wsob<^Gļ=ÿśWמ}l6Fi`?1Uq;5TqgV-tB9A! 䤖C|QBQxv)TH}j#Y O|뤶ƨ%h58*1 ?"bi_L {qjP }D٤ԑ`;#>ٕ3e<Ȟs 2Glx卥 PFPJ}閿Tv͉x H%z@u=cɡu}p,Ť֍i\[h}$.3{[hh3c=6}LӞb'k1izGὣy)3n0c&JC/ /@uTBڝ >&3b`k.FDk8,?7bK- SH]@*-ehxa 2&.+ӥX"݃aTt&lC? u|#79:sfڢR kAcIph7(Sw㧥 mv[Qh8_jݿW07R#zUl:Rae\`pm>!"Y؈ƃ@* EbǻVhK4`ʥA`R?V=}I&fa:SKHإ-jxzfB6'>ܗ89=bԆl \\:3nPeJ0mg:fT޷8ar=Ņ5𡙜tb?"alZ+N "@Dm}Đ_4C(t}ռ FǁR l߉HJaiHXv O/,B!*QoLWU\W4FFh37DH[bDʳQo[bI]o EVi&d8ԜXA>ܥimu;OȥnTd56v~vXwĨ n:I}=S95^x vD'o|z=AyJ%w1c?@kfUrs{</襋NYSD{K# .eA?us-S:5}ad~EN-V3jC ?Oƥ@g jQ+1j ,g,n Z 86hh&d^p[7x?7d^|DW}iNpef7YfطR =jPngP![:d&_BY. 𿓘vkG d nU9FyF]eQ'㮍u i~+^ u봝t~}ܒ)t#ϳA%D ݽWQ8wtOzܛ5f3Xav3GOmįbIFy<5/7mIԒaI>f8;wjĿ6%.BLС,}UƥſvK&d3z@P-RSL)/IWGwTnf@Jc,f?XSc*.`[t\3wa]ͱz:鷚,brsؤV! wYGІ 9 Q\Z;#;W}iՖ&DpKťO}EؕUTUJZۥ }}k ph6pz >2@"L5nђc̒>q H>4 9ƾG義\x,Nn#N6u K3D+ bQX=6(1Jn'"P~se='@T2aOS{O˰'0ş`Vt^=>:*F㦦:OÒꭢٯM9Y. zwsD_ tK^ce^:S~ 2 `S}Z U-Ef 8"S&g C(+Tg9t" o8. U- */tQMtI{"83Mj2k^܋+Eh~w5olhaYmPL|alT)l1#^ĆPBcPx3.CGccR[`]6&#fɦXԁ}= Ҧ]917:Â?_g^Bh;b8L-"걙XbaՌ$֦?Ylc֣]!{{<e%ˢ)IvrNd͡g鼄WMHb^Ǧw[5dJ%_{*G RfJjOiA}0,hWqH⦇:, ~L%cVQV=T3 "æÖ]ƻͲ'M͗g|ڳk1ڦצ]4QH?+/ )Ǚ$KtStet < 1p3d+SmZY@Desb_z\kRU5>)tLT$F4W\7jZnS+O%Q-v s.ncϲڦT};yQNDE@tukDwG6vZcf(yUw@覍õAZ:`T~]ŃSq%~>[δSQ hslOmt߳$2NaT^鸙jvs (դ>oHm\:DŚDC)&L| Φ }RzeDa~HƦ@Q u~7%UBFkM ,i:'۞~r3j9 nN3@e 2ER9nP*gS'.)SैY"r@nBr]%UA$NJM"L*&IFFzx$H\tlk2S+7̦5Ь9I{>hV G仦w7MZQnx*tL }Ռ2-Zfæ<y'. 9U?;}2ԕLG|'. f5mYk ֆo &+=7sTәڧ<{950>r(r}f/lR$Kn17"O h^^T3L k"؊/7j%#.iN-`:ˊ-%a'Bi ߚE&b6q| i$kyE+a#/}B /p`.US0S{܇D r2KcTN7ܨGw4G%,=ASDܗTblf1>S |bL/?7Az0BL8 Yz;B , '8mW#E-񫆍oGVG rR׍9}KJZ~ٔV!6X%B1=>ҧS򋶨:w Ys}W#6MPo.mQBZd1RɠgTJ]ʕrgUZ`R\VߟfkbJb^G[ܗ+ufgocL:$<Xj`ɧcQ=sS J˧ckkHd`m f=0!LLo3XmݥqJuVC<fmBл3y AijR<z{WMc_rMcK4$-'%8i˱n.¹*nwij* Fꧥ= jA0Iv͇^ݧd+rq?`d3zuY.fQV@JE\m6WQ5e˜{cSU#B٧1x#P U@mnFQgq?eQ ;|fM:+DJ$Dx.1ՠ"P.#P(ؙ~Mt8L/ re䠾["ˏ5 3{`w/-e( @c;C8=!M#͢e,enי%GΆfV98c>Y9 A^ڢnTblN3(=/o5T*V="o.sM,Su<sCO5yo<YP]!A3ާӎZT,J~v$s1ק2jtt3G@Vrڅgq<}3u%<"v) Gs3E@(a u.;|yH{Z=Mh 9;v%.ǝ̇NbuM1\(v!72Ψ4vt? hun1Yͅ)w򕜧]ީZRdo"XYC֨oI?)ې4) 5|m+ X44##ĨZ%7s:/ņKWr^?I)(r?{&Zm(͖@`9#p⧑A@Ig(_g.48c^\$!eJ:/w܉#j)hU 7lGT05Rgȁ$̤<Ę42nNJgKND4:m-0a"!b6[F'e)Cd卨7Nu<|JgmOc 7ُIoQ0fHy<cޘVIUq>bLv㦻$AO·9_^sKZJ5qr2[4aO|?0hFFՍOq-̭TSmR6CrdYB*~CVH>jK76O,יִYAS)N=-7A]۱qp <d;IVe\6.s YBe{)s՗P':g`X(c&`Mi%<l_.)j?|#)?WܨrQ(؄/"7tmYE51Xu m-a֡w%nAJQ@\wtP%k=uGbqآx2(j#L':l+ :xlY2f[nNnXJ U#!ur2GQΨ= ȟq9G"żGmL~.e<E4J] Q9bǨ橆!t_IT6 95i?/*tX[i<TŰ]39\Y) =c/*n>~AkoZ$?s(V}/0:);ioYlqT)+邸uφr-~Jofn7^tD̈4=hcħ+eH娪 ]AJ*PQ5Q-&S:Q L]J^"vͱ 9zJU3CZ1<UM\wj4HIzt?W|ƪHK;Tݚڨǡ˲O@ KSJ1`(L3%`et\NS+L2[ƾ02ŨXC< \݀8F *!<9Mᇱ巢f|ݷ#Zw>NjUc>=E%(٨eD30ѱoAG7*JV^l$ȩ*}p!M]$'N96S '^5#]KA &"u'!^js]Nd2eJ۝勷!e3T>fppJW|*?w0è_ط荙`w??̨7+v <2bgRW[Yɸ?Ϩgoc4^Y*uPZbl0\5=6*-<}'TwkڗIy:fM{D6$aLgJv/?:@CqUza!+֑Uaѧ3^( TRZ5tDBsJ EzG}X|jOՒ +M1B憝fX,"+>:~3Jv2$ _ve)Y%aNḃ4- w,*ZǼ bC1M>-ӤYDD3ik\ߏ,l4iLu`5.7\,'Hnj;bJm醷iHK^~@ESK3hZMBHrکDwA=ݙ&kJEH+8uP,Lb3cޓRc_jQ0;t)זp0B)W6 ];XA/&`C,]_'\u0Cv_v1_k"t^`q|;,M^s<bul{*JVzVFQd<%m0%o-+BRM._fޮuj$ւa2u&KuC)Lz38(0z:{$ eD^|aWe#!c2Xa7Çr|ս`G''6?+.;X9M\T]sT~kzL(No?z!&eZ6ĩ-|=ɿlw6 X.ΐB{hU_{!vCrgpB Ñꩩ|AȪZV<:uehjVJt #IAQa*S0?QDW6SAw"[]';C!wY{KeR>(4S'4!7F ahnQ 8]C?KLOfI[<N][k!Hϼ3M0!RRh<,'Pdžf;~$W DZ<Fyd捨=A, "]̋ة3``j`T꼨3ߔXW,(J̩\['OGNRO.w7%CToU;vҙ^{C:K٬-ExuSo~i֙cY<D-Du6 P2N\sa}ЯNZMk&'3L1/M )>]4V[&'Ӄ S_fJGsl%-$˵?6>17i6ڱP |`H# $g!@ޒY!p0;NQuw,+w[h[.L'8mhOif냪 F&wCT M:phTflQ&NPjB*=%1 T\elGh^t \ XOy].$ox:<VcUS,sEk `"2<Y9qc !z0wE/sCBs`5 QA&sX $`0 :ܹ2笄]v@=a7Ȥtk.'UCkXA`\Fczu'L%) N{cIӹ^>)aQXW'MaJ&Z2wy7(=%8j(\,#KаFG4cCR Ql1ުecr:FpjBf07Л{4m df;5>nh0XpzM0w".Wb{q3'~fE?zGgRb"t]eOqࡪX{;<va>Ӣ? -/r_JFRhvNJo;nH=3Ht~cw) TP`I(x\8e$D\ g:FRq]ЏC^؆1媙;gST܏/*C}jUaX*tYǪcϻR#%|E6  =PC2k@Si͔"qj=lQdsת[f54358ĉR Pb/6Vڪ \xgdFGM3Zy,%G`E2Ռ (ߟ%_duP0y#G2@{EyWmOvg6ƪ'߃%Pdp>$ *C2t/]qQeLG܈6<5@Ǫ?*Y4os2ϨFoJ "]̧JA ?_{]>͠wGBQU\`W$#4s<޺|qV%/]2Cu^ 6P}zs)L|٠oa#Bbl'r&.|lOJS{wPAcݪtb./?k )E6]miIt'4զWiR\ڏfLHBKTet<p|p(~ͪ8K(^F,}U{{!)gR3r ޾m A"cPA8)*fbX` t>hTNqW .]nƀ -»;-,YáV,ݧGfسWQ30m R{SF!96ZP!apszʇ!u3Sl"5ZIevaxL$&rN*#R!%aЂZk C&WN>U%ۋg':ۙwz=//z(оpm0V *t,?A\6ӈ445V?eu= ;%JeBZ'@Q*ݥT`BvLuw,vg!YD<pa[c_XpKG=#$f_MG0OL;,v+MJ,TP> D20U8 hXY6XCBb1"oZeˏv].WB"I_&/iR=Dz.W`(cՌ5Hdq,j`}<?F Qj[!bD!g5ǖjīe\;1%<u[~Ыi&h6TӟtҎz6nyR箫wzSïd/RxEѥé#V7S,,vM6"+@I3&㫃)B0<qNSFӖ@ǜI*q%3x%Er x<`9&[s7 Uw}#&FhT 8m5AW?@A恎14A̎!h<Ji$MSG}z8tU `RJbҁW_Xv@N%l閡6?["KDzUdJ ]D&+?ԫ9==X ,$V\xg uKJ¤ݬ<p.\Im7\yrb}M A΁FpMPw-c1oMiGZi:A[z]w^{Ð}Tytӄlݿm@7TKQ*ԫ%-m~-kāaFDǼv9䟡Np&ZȀmX|@Ϻg=0Ɋ(FϨ3 Qk Rɏ.>^j8cZQX_$T<*i̫C+YpW'AKj:EEث%fCU+?)6r /&/D.aޥNF`ּtF1Eou.٠N4<5:NȚȫSB@[$=x-ܫ׊b/շKQ^ږ$ E&\fܲCξ2legٟb0堫(6d_}T!FbЫZ`6мXtҡ=9<ťSyeYW?|J $jPMEyYhwL:ܝfk8مfi`ڻNEGff(C&|pJ?U(,M'nImZ`UU$'D7#R" 1*'N~k{>xN6 9Y& 7ם  Q?VcUkf;Aڬ ^ׂ[,]\7:3K\t=M&!Y0  -eQ:3ìc^7*HۯcELEZDB!Ċq  vG?*&$ '#M"-l1$@#* IvO8'@AI4i`T%窬(P`Qi7KWT\)U[Éc1+)٢5*%f4bdقm+-5I`L \t8RY$+t[sA~ |,Hp= Sk0~$3xz504Ƭ3o}}Jaҷ ;,\/no+Mm=e-<*Y>KOS=.Q QXo.1ݬA0Ys6<__>D~)ٮˬKm,sؔF嫬N.)tK=20_R X}]xV"my]#ToJ8[2 1ypz9_ n5P8VEg~nCt_Ak[bD,Ob%cVӕ$. ۋѬb͹OG Smbׁ?7+%8b9c%tpLh@p+BfM\FpZ g=~:wPAwh(S[g%oͫg4l٬i@ ͌ `OpN;dj9 .84mx}2қs!xcxjÌJ嬆y5S{#i'4묍ۦ}6y+Gz̙JDeEms $S-"P2 7N+[oNtx#Ĭہ_EXI^PfKmn~50Y PG[ߊ?,le<l '7\ >[ :]=E|uZg `.b[+Q!Bxٝ9k_HX{/rޓ7,jw;Va$$AtǸB?3^6D:9F|'+tvX[36W5wmK+T5ZP^( G)AK}q%5Lb;P8ɏU:GxuԍUb:ߡo{ ޖ oBL}2iЩR]A4M*oirQgN<ߚ.Sbݼ o<dhu֊L4DzCܱD*RVGg@'#l1d&0wP,#W;*+ԃZ'JpL3V#ua˩;4:"/?$Vy:Iɭ » oMy(60>?'Xt@)|QCɮI =Z5Mq>eB{wੌ&"7=!24ZC|q%w+V՝ ф^&[a\r6_)ULtyv- 4Iu,RS~ŠM],C-[}ɞn* ɭ-@~֓'ϳҭ> .5QB3_+ >\T0!OG2 dDA(7v@;o&IȵE:|X@L4yhs~jHOD[$24#Mv׭I\qx/RׯgI}-Kft])\<&!_eQ֤U ZI&&P&_V1n)Q2qS+f\@=*%<:h>,GjNT1 ךje+\p^"0㧭kk=y~KY6k6egb|;^n"F73A*ݠ>PXoz>7m?1uT,89+ц-zW.9ˆ$S[+qA{f(i m1=Y{IqΧ.ԭ~&^ ל,UX6R?NͥYDpv2NX&0]a^/&>QvQK']ӫD4?L]ޝ?FH]W'x pgu^|aO <wO)d" qjMjh]O:)@DHꭤ3RE}ῬcJE% h;8{孬ɮWc3tQ]ȭ:c#1^ZI%$f\Y%u٭pY->K֨Cھ7],<ءǁDO*ɻFIS_r{åӭʰ.) NWDqϣ@˥4~_76Zb3ѮdWhMf8`j7wzb}ܧؔ5=GH?R螝e)ٛ4͇ݒGUuۀ8,s~A†OwAy74cv6e摊Z`1j)(SIJ Y1L_ խ VuV,`4?GX QO s+%3Rݩ$!xx\4YְS87; @4>*o "rs+w$TفanUJf` 0IQ;$\#NͮOIM\*k([#懔;[G(ڎ<m TY]<2 䨮(zSdzB2o.+O1BGeu .SeYo50~~f#2G*GMSZ ti3A4swMrk;K<AbƱ 2U] &Gn2mdV)sLw~0C0aˮM}M3e]?-ȫ,O.;)(QH-lE"qvU8Yl0d>{8A ,[n;$oMrRV}\Ghy!ػ_J@2 /ۮ`z!0W`ot_bcw & Ize]x}CEMj])"?F@Cj(5Q=^'L]j^^x+6ޮmcC6pWnQ)}] > /Юq]i8|b֔ڕv`8c$*w\1*%abDA6"ROq[u[GOf4N Fhzخ?!?,n_uNFc@d2-K鮍*j|&?٨ㅤi+,C%Ѡ^?{YEz.gI N6#cɡ:!% ?hW@3> ;Iͩ6Jb jOU^,IL^-v<3ph\C;Ճ罇D,Ԙ Bټ^09XL Zj%8Hh ǒrF}8v3W42h9RˮگԵ>#1%8mx״K郞>X@fFR Y' %&&MTe&Ӻ@7cof>y |amkjͤMo в~WC~䷫Eb7-Hm#fvz} #GcQ0ף*BhNBwdW Ҟ'+ОnFCY~DĮkTNag]vޖ.Ua-,biy0^7fO[dyrS}~Q23[7fA|d᤬H{n)(x<39w5W+i&{ n)̱fzJ[ ܄o'yߟ4(JD~ !pw|-O K4֞i7 E;"2ɯ I) #ʬK%ْl6&Ulo4\@)lZhR2pEq}L {XKq=rz%hYߤ<Y~-0fAlNsk<#0"~_0 '/ օү:BQ ͗t˯<ڤI^̛c[u7=q¢T$>:#=7͸U <*CeiNd㈉=HIjNm|]&.N|hKIk%uӶ@QU˭,J!^=Soȡ'XMX"[ײ,܄-ң#F^WwCtxO_NƊ(P3:d_3?l87QPcȯnb_e』 %w[ U=l`:J~)tbr4oR \ JEбG"̲NdJE#,Ahb9\h0+R "2AT3nfDwmf 1J'4WO8b9;& V^w䯜:MUz9[NɥdC;3+e= ֯,2|Q,LL3@㯮T*"#䡯_݁r:yn؈F2l#-s_E$ S[g}g%MCw'mܪW<@ʯLqb}.4 ͤH- hmX/I;*W"iQѯ]rMTKH{$ppO?pOywڋ[" D_ Dc>ys<'e:$!+05w|%/9߯&n^|p:WRȤ;B|0zmn3qjLmXzl8tCZ=cڛ\%٫Q' #6WZ!;G(d"mcev;XHFcr(@تSSU2y@며_h<(S!#Vmr[x» L60Α |zX1֞ %M :8ܰ,@CaPYB.XF,YQ(Ѳ"ҋ31Ycq5I4# 饥$7 D]4QŜ?77G"6A:=벰9΄*ׯOfJAٌT^FgJn\ yѲnJHdctu?>PToEMQHS=7s%~(PُqSK=RnsX -1XJ5<<@).$\A Hv<VR6]D'oL8"kE4HXNTnl]]ʲB[pxݽZ zpa~;Ƽ~ƫ.Fq)$H^\DreZ3mT\5t6 %OxM٭ ]MW-"6*|6T׹ ?zE|僆&K;XͶ5°a4J%*ڝvt>ژFO'fi {!Y33u9V9jNnZ}9R{巭r(@D>ZR/^&5ʟu(YDSs!n ͰW4 +;4s7YIZ;lnQٰ[:1qAys*?M.θT%Lja΍ v۰_i)!mpdRmg<.:%J.T찥ml0xO&tb8R}eӰ5dz`Ap[ȝQ`:4akؘ Wurb so 5~pA^ MX{O3ܮ"1ǂ)P#(8B_ -V(W<8R\ؿ>z)᰺%? +ϫ=#+ǹÐm]8X~a׮ʖ "K)IyD@rq!) DpJxNꙎ"@-SB1ɕXmR%ONIN*:nϩ X^gLk2~ԢPu~LZWXDǚ)4]<rL0 } L LZ9zY$NpI* ӕ_Z܈Bl4s #$9ӯ7)y&,b>f8fF-CSA)Sޫ/͇H\qVj?L+Od{FHHd ܘ;q.x/"/U5ώ~loA,଱ ^uMխz] V Q[T*5*^XV7vqFGZ7t$z|WA5va&Kb#)klb0sls'uD!VٖQoʯ :|Slfp& 8'n~#'Kd-}Y& սUfЄV8&!S EeC+Pd^S&#0i Q,F3dPd,86>,)~86w$-01>1t$X7 oԱ4-Mz,'Z`7W6ߒ"r-Z:ZXO;osG\FN}&ePJ>|k^Z<KLUL 8ut ^HxfQ]a!QsE`ԅMS)oS`tS֧4Wr8ADjVr0r ֌0E15IxvsXA+ 5(Qk/3N8T4ߤ;Z`%r6^bO 9s%R L%{ږc*& Gƕ=2` &'@kڱ`-39z&y f/dNotgn)q4نC쫱]8- o Z8AEP0:# [+Cľ 40(lVV7,0sܝ.%IMsuQ֚T^N%@,[k1iDotH*?na_za.l9N"d7ry&R('S78>P2JA̱䒩̤A6НZz@p\D0 mTP^W1hC ѵ4@Fȳ])-u4kU:_6)(e^;Bfǒb?3SD ;T ԣnХ3'zP.ZB_)h>N0YY'sD.lIʭx;bO"BE%*TaI āt:mq*T߿lٴ̊?b Kb3,s+#稇yp:,HB‘<*%PM}3ODTȬl@,&1`vZe#m*' d/igvrWD$A`Pl ڭ;c$u]5X߲%͖^;N-2J!E*rdٟDvDat+lS:Rп+j}q²1}_aͷW잷i<Z3rnk9/4 x1+=P(Yz<26.Ua>P*84,Zxp3nl OVi1[[@iYÜŗB/N} [0dBvtJ^5,5Po^^(Er0"{A/cmiJb(!ncp V]}~ YE|iϒI2ŲkmmDHֲmb(g QQ{Ln+;wsjB,Hzy" Dzt`%@.bO /T-Jf#{[yղDcMN vOxv~Q}__@qSƛIJCR,>!QfypƲel|*vN㒆|*o x\L09m0 o6tc(Y{Od t |ײN,c@ɺ)I~]aL((>2!Tc![3C aGUnKͲX^cfJ zR4\'8ĮI Ʌa걥MhP tOņhٗeդ˥I5y֖3GDs U{AD٩١A}Zu ڪ}D!Y;gA[aJ%iO$ӬDo _y^ck#$@=|cx YB2)UB1u>_)XplWpeP.pFy6[dž_G9=:xޔCſg/57@V)M$>W踢JIl >.V D<R;NL.7-?SC Gc:t8Pzj>͢bo}w&!@Ǚ6ƏX;mL$S۟+mt>>w+}S'LDn70a}ճQoq`.mڬV*G;pca(&[:F_v̳g7uiguCy9B#<&S0 1y *,9ĔAQC W/#˚z2H$#|$#5-4ų%>C@Jz *2tx&aBm2)/:ȘZ=d_a)Tlj{'i&6Kq\*MzlOڨ by, ߦ> e`{s3QIB>Xs}.b5IͣEuڧp)60BqC`u7t}e8\pzjY]7>VDEH=&\-AT%Q\l>S>U YA7F>t7H*u3 ^@]vb=-rRPٳFX ekeoߑDuVóG ا^yphG ZqLLX_;ĵ'ؒK!LLruNG-t\d$SV7Fu!˗5N%W鍆c5p5+QZ9i;hBwĊ_]E@ozJ:Xg 0V.-Z+9nDg!Q']B҉Qhcjm1h 3JPmf!j9DbhNAQ׳YnFGl@Ͷrw(}6Gm V"sɑ ܒa>``[u<H${C_y޽G-{^W8VWq%=l|]7K!4αixQ7F T(`M m@L?Tfgk;_Vrd5O#X(t%5pJ_B GF,q1f- p Bz@鳗 n1r,b7>5!m.ܦ3P$.ubpW鳡QuMcU0 8@&JٜK1?xr0 b/d=h\D8jX[?{]9$+:SZZ2aLDsyyY{dϳ2yU jOH0$rR,iYo5+<?kw<xxu RE&3 `mK(6;U?40 #i*h2ׁ@;.k| ӋL$ ~Q &$}9 Ӧ7(vb LÇn5둑pfI}bcC8&Z ;"Dž%9ʜS:\2kt[&.Ɍygo FtJyF8z_k5eJ=$:ia\T!s NGf@+#,`"]Wh[rs6uew=p~u*~nJγSb~.FqXݖz(O]Uw7qW\.ϴ跖.+9cĴ+3|w8I`kp)JY89z E}s)ڨI9~ ' SFG\΋kR:lnMY5L!̴6}<}״$E<gNHZlL(HY ' q*Vr6ue6P/?߆YxȎD$k)4yeIaܴ8dU+%,BW˲ H?{wo_ҵMz@7mv;6te1=uBN)H]F8靅<E|H-b[،>/ҧ28HF3_/w3,ecZL 7քu @N5ȟyS%XS3)1yK⫙U?8cb~7m#`O1 z$’Pf)l;k.Ů *(Kk` /7o51).δpj4Ѵcj3apQ], gŀHdіqE`%jC+KqeyeEVrNT<yhdyr2wf2D(d7)1dd~$HkS^jU8]X/k3a/2.,G)p@ E[/ (tظ@gn}r !.w|lr']TQPTsp_D]Ḋ51xSBE oE|y+v1۽e& ״6CuV ȀC!yɀ@ýE4O.*[ MHu $b ZrhdȡTz%#fgw&GӴdeN 3 ~xϴ8`ȢAQ]Y6?#4Lf,B%|\ܺVǙJ,hȂdfs {ִj(g M@\Z'7Uy8RA;$΢;MZ { ]K6~-NGWxOKᅾJ*$(.\B[}r$Bwߴh[c8Ѣ(2=9FR/G@mCָmRu-/JuugUB?e\qtcÁLmDά<aWSm*ZB}'"bGh^G>h񋟡y^=+楴N&B (-Me 'U}Y!κL:|״mY3dy ["$xk0cӮ]GNyi)¿aе|LcC#pAr4A2aZRzC+dL;'_) \&ձ (g+(J! u6:M,yBZ} {n,%R;h=> 9BvSf%!hbpKU:8wH4 9U(_'ʹЕɵ ;L\}le@8r[(""kpUPӴDQ%P~Ό# 8>21rY9,1QLhh՟zR-riXޠ2C9/Б2P QG3Ay:ӂtwhG .,FGJkD_죝q/Kfg^K#㇘-z"eA6GLq9E^DеWW69oY]Fh$Qbε^+$Ap"e``nE3{.`mf^Kf uwf}<f~^鏟h ijZ2l׮qkA\Y-[ljtGڪ+ۇ#εvjJB 銷!X,,xl Mhpw1Ppc{jHh{Qa=/ {|1B<xR3~r(B,`F7#޵])@A_~B39D!OӊS# U#72^keQy1:?61LWy~@|?.&bhRNs |A8ue2[l$|Sw+j&dʅNtyrCBwCx`ŒnDo-qwjdC $z 1Pqi?Pʺ$㜵Q]ICE.ܢ94|fvJU2?[$hK+t(H/BRihGfL +7|pgƿ f-sTk7Ь/)fӅ??]-L7 Kc?hd*5^> c^3ƵݹVr%XnX>݁gP:-B߄Nqhh^ A T7gD)+)~2xT4O,fb#inu/g-z-l=-3w<z T<k9[Ńw!9r0傶 H|uZ+=x )=c k Oz  < Li:rΔBsi{\~`Cln?L!S-L+Q([O&ܒ#LgzNu]~sHL#fV^CL>I#3*u4'm(7,(?Hi;͉ua|}*%ppw?3+@25Ep$3t:0Ti}L.? d6{];8b4vs,@z:?͞2o(֥iRю:_*zkdB, _lf>h)L/Ă10ΰ7򞮶?*J 2|YChah bLZ9܎GV۬ *Lql8|mҶLJ?hGJtFc#Nγ;X:L[ WOgv3BU4'iԜ3uU}n}E0b2V tMm&V::ƩI0oeLZPmm$r.!x_zE5]5ae磍⊿eNyf芡bզZ:z<Ufǫ806.C},hm(hcJ/0U 3-hۛoD6Fm l| ؅Ł( 6piM>42x: |q1\}C׶rԯG˼,\ e@Ͻ3̶v2j:k&tDHu$|5dJ<j"$GQ訸i)8zRf릠54WI_ָ)0<kཫwI @ȶ`\s_mB1Bٶ/M2^ qD\S:a}#\=߰s9P]֫hJS`FCfI"һSH=!D|Ɉ.R8>w=m4& ''3]mkQ@h' %s'l݇5Nz ޶™P.9>&cRT ĉ6Y%Z0'h7Ի# B?Jd^dcbD$(綷xKɐ[;h&.pֈ9*T{} .(VXTFPCb;lKhȞ&'sT\C&@x[]?Eq 8&9<>pȶ7a*cwϕ,YݶMt.c$ άp."Yx𬣷#N)U oғ&WnhpkLep18"9|ö҃b,hAO%crʄ6rތsu+޶pڋDPp\1ŶDcZ` 6xr4)۞f 9 ]ж,"#*}q3A *«}-JdWʀ0y1 =/2x(/s]610ѼS M rV6T.=fS^7y]֞|Bw^ K'}9G>-Vmdޙ?KxuL' V[nɖ_ %SqL.o GQ.ﵣ, |Iȉ3@ѷ։5`_ʑGb$*fT{\un;-. K?Ʒ/ rh nNڤ1'HKO1%L[g8(+ BW O!t˱qN81h*Ϙ ;+?#ͼC|K !,UOqCBY[APLI+-Q?6."L E[@zЃtd}ַN~"^Or {daN`ql5զiv-yO:HHݳeKˆ?rS{g؍F)~Yw V4ϤG(8 Z|wUQ .ʛOѥط` t”3%a,aфl@d!𞛷g=W]}ɨr8WPbrp9 6]#NJ+,_V~j:t냫|l -3`|< ?!ڂvzU,S[c'%e,N;-Iph2QUSaP3hr.A%3C"{݅ h<5$;NaFtďY7V`jT}4S)NHw~%D<\f#طXHi.ש) ǀ>>HC޺w޷z<3 p7Wwqȷ:HN\!RFá8}o vm'8]&jeUʥvMgN-]@݋xWiuum_#GRzW;tfΆN~H<gRDqHoʍ7KxUþ{D);K(C^Et( ;+9j2ѭ\B66ٍ%Èԓ K%q`zo 6 x|v6''g[1]kr| DWhS0|h$`f5F_җNț=p['b74sP82kC>%R` Q T0fA#7].a8J`13=V(x0i-rCj<몧Fb<)R1FJm' [yeV f?pC5O# Zgs٭Mc^Gߘ*oS${iv ʒJ#Ƹ3' t 7|':w#8n!eO@Uf0wLhu߫5M0m Fy_*C,&adcg6kh*&Mtko%PK#JeCڎѸ%c w!q'ѪC(yoߡi{x$)5Q%z~wZ2${fp554]̸3N }l `DQXө6TH_D:)x~8,mg e*EiĿĸ@ZRW9mk.C*ryx6? E (\j}ٯ?vВ~F-x}j>8`LIЗغ24O[zUENRJyfJ)-L4VZpոN*%tÊ{kh+N7!ܤ nm7QD\yœ$2-TN`Z<DӡHF NUX1oU%]1`5vy OKE[I̸dp AR`cfq&"2X4+S]jWFV^4yZv}AиjU *Vál~|pw0#r\}j̓ժ'θu؟'1'6!gdL Guo1v"b XxLx7H.sS~z4]Ok c%p|gBXeM+jAn1̃YDV:ա ;Pk^/-+곸4vI04o:^1OS(\JBn#&͏%#}MFո~g| $Diḑv7/(ܮ/@zosdYZ<[`L}FUB%DXNgK e <ݔ.Sȸ 9/ZQAjLk _ij4Y]uYu J]B&ro3P2QjO2tpFYU8>4nux,a\'퉓)θ嗁 Ufq2*mLf{4iW<nJByd۸k@+ WVrn)%PAnDE;[1[KemB+.Nzh?_* Vdd] 7f>:֨b zlĸw. k(or؎U59l$r0C(\|:f5颸8ba*P#T^3lJI),~xK |nw`v]G(n$5Xu 5B G aUět$.r02r۹uT1(xNJBx2$=P#jIcȅ T:#(/|]%1Md[xOTc-I|2$'v~kϺFj߾ sIR_4##HBx:lMv7WN߹ۘDl,) |B%gyq"/~4H7Ԕn]7U4EdTp7-38[xl3j3:]eo[T޹;2[IG T:ݹ<@҈d{8 Z)y=6p?^+Zo eɹF~Xg;'5GL۫75&) UYՌ2My?LeBuY Wβ&ᐬ[9FHß`&d>/[Tr*ġz+]:b*ZoʠI3!_L1~ 7W&xJcC$2 O .d `R$qm.Ug;b'_8i"gbS` {ȏj1pՄŦv,mGX))3E2‹rnnlpu:Yзane_xF|4g)"u)݈f׎Ѹ^1v174? (+̽6dy t 0Tء zY#*FȩU\ܫ.){L $X(oL~Tl#?+.\44y4lʟ-~5>k8+2>I*4 qPgmrדr7!og>L  6鹌E\yP6ʲP2ȑ&Ŵns6ز&Vޛ%J(h4 Sa %mGh}3G*=).Ϭ¿REKUG\M3~s!0u*J'}O`{QL[^ -((kdU0m! zxp(M3K>^-@s'۠}ml6C_c$Y̹#܋[Rͳ0tF &.,X;$'Ү?/M PN qBTMm+ιOPO-k~[(0| [ƪu+y`LLQ7!#cfȹukZ9ˬ+,X$}kwފHu Bt+)$zLħ*@À猈%(5@X/EȑFZr]<6<8Aٹ#RV•uq\ RNz `x"K"k>/:/\e(MH6"NrM6m]8ıXo5.M ss&'|DKF@bm 4RmGg +j*fF*e{+aNHPdw$VYpzLi#ԍ Li]k,,{\=! c]1zYPlD 7g ٲ~^80pà".}89}g=SW?t@474sq@81u).y+IqMμ4~}J" [Kշ4k:P5\:|m=nBU/0ƌ +%+Wj A@\`l9°^ &C m+r} E_ƪw\;T$l1. M)`W:"TOesPԺcGFN哜0dL% i2rqsYd _o{sTh;tξyP~.ka)b폶jCOnU=]LsLnֺ?j ֺoUףR+Z5YXqTOL̦fFLKЂJ u=ˆEek?}usLa2/6uդb544LOL*FvHe|v3avw!}>b 6'*7bP@"C𺁊YSE'e}au!b?C:a"HN%c'cBp|0|l0Jq`QgczYoƿƄecY2NOR vdQc庖֥">-Ǫ)aH%@k׻XJAx_\_xZ 3!OJ*V =逺~ oOj[{X @I>{1bK.^u|; iEoႽrt|ˊg4q̷f/ LQ։:>e#DUuK1FBhz ^] uZÏUh%V.4{ \&Œ7 ]uY/ oSI*d*y<.ȅ5ɤ /ӜT9gΫ-Z׮/v 95xBZ''-#Ѻghs٣ {[<܆Bh^ger[ Do'<Ϻv+ \ћ-$g0[CF~#=-cDS2n7=l A\[N˞&ꄸn{,) }.ׯI :,` Uڪy''\>}#pP XN(P3@$W,iJ qے5xc!DA IWZ{z1r5'9AnCf_Ǡv» f{=x4ӻA0wdX6!quoȃs$ cxJdt@cл$灦4@15xW)U RS1`~4^Xcxʻ1I\~HAp2 5E{8=\\g7P nR_<20 <#kK#B<;\D$.Z ~Ok^Ko)9I]SdVJz<SUtzbUR:C!hj YV{Ly/eE!lN\Z@&ZЊ-[H#Lb߾L#\#['7 W|@hMY}^AU + e ucG32U3|cdDE`^j߻:e?^ 7S3\Yi:py@):iU#CA6dػl"8^IN+5Dm)~ӭ1#o!φ$s\Zp<EgVr|7.,r!+ 7|kJv9Eyr՝'3wVS%Ho#jMM Jtju[`2081,?j_Lqa5 X IW0 jN4~H"3ȼ9=9a^^ GmѿLf $ĕFU,FW4곋)cw= nWﻟx@*' ø ԩ::?SFKiɥŠѻVK䱃w5b[Ҩm˭6pﻧs6de9?廭Д5d`,:t_1g;P+ȓIuSAa_;+<&niB@ygJ}"”nnT |͌ FxYD%WM%>j\N#x24_L؀o_٥R(% nWH}WpR9n:?TKMk5"?\c6N$ͭ?J0e=zn^Pl-> ]Yy".WWu޸g $&bݝփCہa{xEMlh蝮/">XK=.0_.+%F_PD6>.^#qU!vF իwrg`)WýgQ'fۏhPcz~; ȓ9i Z'-TQs׸ߗR kvI}(˃8dg7d,n1{`#-)/P:L+cDǯpVA<Ձt5X18`08ZO.34>56 s r4|4e_J9eі}{]:&[V:z]Ec@,~FTem2ӭJ='wą]xP@k;I@_]ɼRmM\2(=SsS5((tQPTl_Ű-X7[ l(S  jMd,ѡHWo/aʊr!F[n ЍshW J9Oɖ xh)4&_ߥlcU|{wRB E8WE_ڻ2~D2h 2HykX? <Sf&4dn_E͞p7~N[A$8RyQn2v&GR32J=˼((IY(3_.:'^xu]񼞈f$1,i.jDyV8nwv39Y,Kȉ!Vt+6u_tMl_u D,Yg5k0')=5xX RΧiS{X]o|zewR @2] ̆ǹJ2vd_Ԡ>ܤEydCBA7L>H߼<Y GMY&;N 6^TYJbg[b$ y#lk\: mkym(8kXIݡ4 825[$ Q9oWqP MG nbr_  BwZ-:?|b̼/]!c.+#2'-.]9P!!W1q @"< 5v E5#GDq€C)U]4c*Umu&>Ve[ʏ7bV3-D0Ăs[Siqz.ryx6,I"0^Ja]i0rE:o׈#@ڨ4e3) atQ32Q"}4EU/$i ;`5l\PYHeB=8Ǹ<0SG>#~pFYGP>ZĽ>|qve ݽ@@!FO6_ܽA \ǾrG,AqK\beɽBcWWh Dur'[ٽI6|w]cIR<v?a YkktK !|o^ucCrxKN-q`RVV@Nm`5~{Pp&E N$w[ʏ:ckp[jUcY_ܡ<.balgiBw.kg} 焩18?(GpT@MQͅr=+p/%m6pjʠs ;mYhYf97t iouyNgwg#FTiV |dw||~W`G,Ҹ<-x[]nù'h @}&lBmb%jehۏǼ,_T> sPMQRKdlFR+꽖+DN?ŭ6EyIe-< \c[H<uǽߥ؆3#X⦆1]}) <uRU TR0@̼lo|.k0 أ_DM‡'[~ahVm"ruj j> U)h%hMa 6ՁD+ׄgNyI\Ƿөc_s[ "\B4rdF ,[)>N8c(ܔژ{/ЖSGO G Bڐ<5CG s`'ٽfNW&ނhMI? Ɨ(w%,(sȽPSqkY"gA(f*}aYL{\p5%?H .ڣE_oea8w$<A,W]{aZ?;HfD~;0;B~_4x qRyufCZѹnHjbQ|Q=ypv(cF7K7eG  Zz4|vKUHv`tc9rsDk(Bf6U~;N⡁Xu[7!ୗi^:!LIb_3l_"} pF{P[02Yn\4@0Y.}oGk-1I4K&_ws:4H:BI c;M-}{3iݭ8Yo;qV$.D8XT>^tMxi5AP sH:ǡ>TFC(a -Dvς}zhϞr\F0I3fqA >f>MJO d-^ gM٫܄V]#K[Є?O&.y Lѯ \l[AUO Z_XJX"3jd'`*_IyfGbEt Z 9Qq^f"`<W*7o]#ɾiJP,lxnMO%M#Ծoo^Tzˍao($`(캹A#%ԾuNX[ch CUxWGu &jA >Ayw*LRa H,[&{κ]zd6"fNVB|_a}Rj}).,v~?@'@,龀\EÖ K Ŏ5BT&@Pe3,[w$d8õZ"yv)R澎9F``o)dFTPd (}{@9*Mi ޟAҢ.~im>4r6 w2bWX&mLdzTW"b>jh A!YC(Blϣ]ྞy%K5#3dLJ6=U .Vp~Bb&ȁsZ&L ӾӸIC..ql*l,/VFeosL٭=\ )K~d=db|I^]děC@dqU5U+r쾶5oDv&CT}R$MBX6߈!&AF5K&J,nmVJ*}3و!I o.ROO݃R.`eB~$ZxVBWi Z>3/":ۺ)n](1GhTT+7[`Yj˾O~a~rZ5)76~L& #վḾ2)fFw]dlB\ъf3o`謺aTo+cLh<x oqJB /q.{)XI_rc2ߢ9Tıa?2nکVu\0庿 Hy<ye9 ^Oz(il%5:qE |#f|䬤h11(K6}m4Ckֆ{!|{A!CP4ZWxq;_%ct*ŵyVᛒN+ϼ=4W01a hb0p;͠,-!;H05#n\Z湜3Jњ#v! i4 \`^pњ<,/c^D6<73ˎ1Y<NX`?qhunaP $eT,zV!X<1ONDGXI&tkYT:Z &t;1ъKZ b @u䰶Z+ZATxQ`[ey>X]b> 8i.}T_)· +"0`1CP+ViAaN}H(smlc_&X"Y"rf҇,8}<_8Bֽj=>l$^4' m.Gw"^nuZB]ͩ딄l-u9hғ-m63vL1p;OѸ ]{ wDu%xķ8$^z(9fJU!<l,}Ҳ][{Lrm/TP g<h:;KF8XRJoNM `*JgȄ==uؿQ=Ig y\%تPީ1E0*#8`/L*D@W,PA=j- 0*XL#m2$y')aG|',ʃi, , ҄8?/5MQ w ,iIPEL _S]0ںy@{$w[e#Ģ~'2(M^Dv[ag]s_ьS=,y+-.KQǿvӡԒ_Dߛ꿴HmR{޿p g)p!*ՄW4iuvo@+k Q {\By/Il$Y6f9x2M25g6eV50^_FRڞdXt˕i 6BcoFˠS&OT2G8bWUGԓT9SRa^EGP0ʤ>u^{nG=-B9d(ޭa5頍A"kxqG!D[_տ=z#_R절HbQJt+*TMhvc5θ55]H/?r N?Y׊BܣF/tݮuW@_mK_!:zByyD?>*٧t-5PQ. 8+{ Y jܢʌHd YYjݟrh&7=90dvXBY^VL1cI۹Vċ?fp.{k 5nsͺj'l]tL'd?Ns-|Y&޲$9{nTnc^gBb&bؗG 7jmo''W{~X8i?-T-1h'޺9VҾP'v[9:9| w:|v@:XL ~oA;O^[K}%<[cɸC?Fu=CVW{x1"EQldܘх#ÊB/pe#d_`Fxc*i|K.Ç i1IfN5E W9GKS"P88֬MI69OfsQR9lR!ѵI ,C\kbY  PGB3GipSԅ[Q;C UEΩdde|~I)r[ %r.xs_ɬ(nv%,%/h@WQCwW qC }bl(i={cEs T~POL!b]>o%Œm *Q[ 4M"ܚM,,8Ӏ+YrcTA 9:1.;~a%kh;< ugud@-i.'ZׂE#mC]U֩1/tAo!H6w_\ѧoNsK8a3eHwHm`&9\/FֲG&CK(JZukzz(x{0ACBj> ʋJ&TH콟4a^ r?r8ZYS{Fzb%W qXhX c/ 0%_ykYYicS3ɟy)9qv|^d@zq[ {Tb%*̎Ҕ-`]45#EYR)؍q#G@ilH툐a)GdVu_ [}Iy\VAIj (ءmVPb=QO=Hr7d֧ClQ0gM Λޖ=At}E9;;K?Gso؞%έ7" n3ʔ;$~"OXN&@ګ/c-qX * i[ Fx|N'$n8'$U9C!w O4y/wWXzZNmXI: EO!}\J;pEv ԈրP[/!7f%q!O|;f~r.H#1SDlN+= UGxsKzou?&!Kx(1L s㘡5"{,Ի+=3ݟh؊&0?|((iÛQhk*8}9ܬOP-{pU 0r"V\Kä0aOBs1͠{\#J4D 5vIXu!{lܸY; Ok<+Lea?X?0iS/d]W 1V͐Akn}O ȤvB.ɜuNT"#[܈/gIY/jg^!s m+hJX s@jRwdL2 .ȗ/aPmk/O+l]B(Q0ᛀ1Q%P1K%Q9px#}JT]Sjr} d#Z,3XӤTEװn%cU52yZMZ\z"hwVqfpz]@Z&UJCYL2 [email protected]ӝ+E~AliFJBU(c*am+Xlۚ7dNm/e(mM]?l0OtmŔ !cis!vtZMI]fxww/:1lP[xЌZ^oà$yKg}>πHP%t_hNJS}4zR%epM }E*Oa `Rtc?p2foـ,ݛ{۵;t4 7R3ɴbdkeЭgz8J EK=U"|˭q"y  >ML dOk2[2heXȾb#ZαiB* fSa)4;݈.,t[_2rj߁5}Դ˄nu2)_hû)u#._P"b?])bBI=MRH4X4(:̖xjQ~.BPn~S ;5|cveA5SDm%ȜqY.|zhɈZ4{x؋‚$SU&k}x M5S>ׇyDAޙ7>㇩$&k9 o=_H8H(B^iɿtEM.bl+ zLרt˕,%S/mٰ_cE9W؈ <3$FwRDIz>8_`lΧjGd1s+?a'RmPddQhlZ8eGܔ'ب_V{b' Z٠s# rIXk7P͸||yɉ(eY L /#daLS_ 2~49ـEX KU  x;"kU͇\ׄ;'+WSd76=Jw g`fe)ה)]VsϯQ}.)ϰ[YgYDFij ZM-ęGXt_ssZ(Iy4.+ێh$N'pkU=F (y=C$2pu"2#=[ShViYLz(@y*0Se,}P;WH;'80u`^ KAjk0C |6wFg3 Hhek{ z=42I6sW7JD nݻv-ICjd?+NQ3dJA=vFNi5=^wSeB{KU,LJ;~QE8'U6ͮcVBSZ[A ϴnf\R޺J}!r]!778۪^CN_ Irm۾Kf(pa_koUѸD v܊bbxLZB&yˋ?e @*زDZ]hЏ?ω;d1~&Nk8 w['1kgrX82,1v!gH魌~ ɔDZ{*o|~NjVCx<{;Qo pk-{OԌ0 # 9%‚8wO~f'p,Y‡^&,X|J4‰דM>+V\Š~s~ZGJV /Ž 's)u\.1 s_D ~0hjC;CB3mI'[v’h_)L ”pyW@š G6]'0z_ ]˟T~P]/Pn¢\#)<v?2¥?ܝg59\i]§+dţƥ´]/tVQF¶o74IJo·7c&m²1·6rP]zt[I2¹aןH3cO QpRxQφvyc,\F4l#k/WHi}p2.IIG ۴佩.ڝ6B,GA[4,w0#83'by5 &*[j:[l4'p5@$'C|%X*L|a\"S̄2H󧂭Հd@Nxp Atjn=pP#Udl-]˝΄P \{(]xTJey@}*Pn|$ [B`4B8wO ^w@ t<K&#5צVEy ȡOѦTY8P|iOhM( I7RlC.Ş&\$Rm>0ͧ?[NՒx(~m~ܣ8 ]0/NLa6IcQϵ[ѽ;h13K)/t\ =RI+ +@+AiMF<[uˠAҝvشf(tDAke@_ZbDL6ς񴑠aJ蕳"ID/L <E|8 떿fP_;L9ZCh=2FaȃFP ^tYD?8_Ri!LURbA*1#; yW'HOPGYv%z{7-es[9|<[@v^LK,.C| \_8U礴81d&&rc~e.[ƭfGwycUHk>5kaf疦)1tHIfF6yd?"jS6^ϧ6^ k7H<rBr/l> jvqBqaH@լ{.9 9yyxnF%-Yf|OgS#Dm$RklÀӵDYytibJ%Ä/_$ۉdhG>ÇQ=xgxÇ=J<TTP+8$ÇܙWZD>fBÊQX-w2ם%9Ë""ޒD +67a6q6Í ޣի{Y|MÒǚ̈́,'LXÕH>S3A&;:4Û~MݥipH?ÛظOx`fOÝtL zra,ZÝ.mk?&qeÝʩzW sclß05+7bI|áAK;}Nbl'`æ嘹uKǒSç+kz#|!1T]5ëI=_ÕwP Rð,9?j]lբu{oó+T{['ZNc5YQõ谌f#zö UV%1̡j<6Aø" G)SJL;üCEؖYطGÿDgN>quO]&\qn%ΆjQ<~֦:…| )ȞX *-I{ {ipgNaj<.V}9UAOm<ؒ],fԋTpޓ6U17^o,+ lF[ۧWc ,Mpc"_7ݴ'!81D.7;:͠Fmۓ  L\6& R00.c`Un.iO- r9B`u&CEBv]p"s8(Q<bdP)S9LYF`+K8x3:}zS.o#A<%)/-% DK3)Xix9T*q1.S{Cp+R3~v3p%2sJ]nq+jbNf',t2 hR4/$dwP!U*;NbfSвAe:?S6[K(=Hs{mB,5׬u/+,E.i)YD={1O46dZ> s[UlL  ֳtncےV;zow8щWoBndXb^g$rW,CHQ>Q-8jZ2+rZ;b_>W:~[d/3h^rN^Ғ\CyLä_uз$hߵ7_”IvgFsvaK+fҷqprߪbxI}zˮ[*dN_IX =MK>eT$N*cY [Y}:Qm e:,B BymufRs"Uo"r`yB(9 Kbp2<ظ3HVt^]hZ"*0|< cmU_;(0U~/T*Ě6m$ڡR ą B0ws WR#=ċC3)i?ċ33P腅7S_3ė\s7R&g){pęNy?ĝE>hXT ]A CğU=i~:f=Ĥv*$uf}{%#  SĤ,n*;ʩk~|ĥVZfZDe'ҋĩvwz[#ȉlīڬZQ$#oTG/xY\0v .*8vSq_ܠ;'j7=;A `y[X"w+hEVr=L^5B\C)VeUhcNJ1x&.TIi]aꕋ΁lGΗ=ކ Plܪ޺!M1u ;ttw#`FrcM&h .1t^|Ys}n5&C`S>,&ĴtGF[μOHd$ uن'ua>jqdoMO~>|e޼0i1P⵼\h؀a0>.zW=ktT }08bR ή "J-N¤1rשWYW{rEu{:,F,|wYs<6&p-ϊg㣵iSl@Qn5 VN&hrw^ !S~K,`o8=s "z/a5_.N V#諚ae^{AXNLrŠ32֨u>)ghT{_."ݮ]P͚̽"Q@oǿ(CtUDfmXW߉)~&L@^ј+툽#>WZh/^"`.uZ!Ĝh2M=-P <_E`SA3q:36Q΂pmrđ3 ɕ}v|qx(Kpk4| )x6>@=6 5/ڐ.v|8lMh;^`Ml('w!nJ^@Ȫ}[< t7DߚRA6I  ]:-ؒ)SI amG6]Jj]x] )"PFRV</D;^Ђn](nAh3l/E}=zl<ǀЃ(roohIvk@*`I%)|L&!SB\IńGqS>==|*Ō|Ddbյw~ŕny^>ŘԾwElo([|a6ըŚ{}]R}7|= ś ;t0ŨUU $c&EzIűG`ը4a絬|Vaųv-lJ΀ŴR1<vŦvpAſʮQNxjF! 92\CШZp';=6`)WçOR"0ǓdhaeAiE&C?4C'/߉-y=ojyAE0\-u\ւ*xܴ`vTN f5ZPo3! ;%(V)~n+HҚ]H:ʽd&õgӿ m,Y~ 9ADC7u&EϺ D1f H ~G3`)rO#\fn <<"3uV;rټoѱ]_̢fݽ @o)ߵj?I^,p-rdVy  cisǓ7 ڗv*Roj@ i}T+v#ӛ+ڃ"<q,{=9c$&=7ƑnK0mmg3JtaYVR317FaGnJ٥+o>ߥ2=SsKŃv.K(rl/xN_TOov (pB}X+5b,c n:hTdUJϠK{gOx1V $hzKOK#pi_CmT{ `QY/7mȈTUw{Sq{K3fEJ~v`0њ@kGH,wvYzޘK| K^κV-}_oYV~ XWڔZ ƆXc¬%04XZƉydn` 99ƒ2S`"0hWYl~Ɩ7~%tCF{ą]t*CƖ!SCa:DƘ㊲xyl7TQ)ƛlZ62Ɯhu.;J]8dқƜsW=1Ԇ_+Ƣ*4r򉵘8l[Ƥ_ל,ƧQΥhW;`bƮVr"ylMƵ8="[DƶaِDal=i|ƾS?SdIfƿ }+, |5 a|z .;zeeý3GowTJIW/Ϫ٢'Cu#Tt&no3aVơ_6ܰQqϼ=p{Ǣ=ۧ_ηb**Ax"Wa}z͂c0;==Y+]\b 75)wQA:F#ND`~ɜ6H9+5>FݗS53LxqKލѧE)9J&1_r/czp< (7 -W%r됮Um9o'f.*"3Vq@@wylzҀ.{!5p_1 cbxJQ8}( -9M\[bGH ׮tղ`:ؕ[E!Ev4z!J{( X<"& (R93b)l YH#ZV]xc0T29n!t#"S;:,q/k(G7=ǃqt7 ᯩ;5;;1םR`sCa>^SHu$6(&N9.TYO &%p9MbN w!g#I%n9<19!BL|fH@ba6]*ˌer68. :4F2>vp_ 73$]S9TWB?TG `<2Jq_t.:e>0h gb[%wD[/߹BtZI%s8kEJƎ84YiFiQHm߽EDvB JŎOh$>DzK'2(/ fӖ5N1J!u;/gdNSXsGfʼn:OɿFzy?-%ў_dmNO;\EiCG+Žc>z,|qF“F{lyF;'>Yrņ/i,lu_mPt==h%|>x5DnWǁ{_4zu,OLJ&(3e _&LJ-/y+`W NsLJ:qZ/CХhnji-@ HBzL* '.ǐR?!ÂS. GLǖy?"y+A9ǙařhDauo6ѺEǚ%,hZ(ǡ34dOToXsLǥ83- ysMbǥg>;2$Qu]Ǧk;m$HdǮ?ء߸<ǣ˪dzjzz4zoǴ5> kS!a%Vǵ:hEs_8<bǶ-_1S;dKD0ǸiL?iM?s0ǿ,XC4^uY*ʜW1 /.7G-T-glIڔI B5P:}Dѷ/ߴ8sbkR)Rיmtr`AaB;:? 2!$KNnn]F{vS#ro*&!(jmeϞ&k^Դ?k8Y7@Ơޝ%\܄.thÇ< <ɷlUYƸWCbܽʢe(Y[OD;!*iY33ɪ&/ Hz~Wd &ʲx(5l u,N]\)T=ϻD5@=e555א]+"}$\Ηwڻb8nK}`B9S?@ UҁU.!8Ѩ,[jY[whO,ny'u[. Fnn߅AB$i ÎCDj +pP"REkh eLI/ddqnb3Őq87.s:<;!p81+ز)˪=CӃ]m8dBX:M qW&톯=|1SQu>KwPl l=2>1<c /nʝ @!^Wh_VXcuY|Jk8n^+KI9dVeJpp"aHi a7K"׽O>4?:`?P"{^ˁPP SډŻӗUWnU&-Te~[3 gi:#XR2[Ӑ\r-Qc[7[עŝ2fj,gW׵~$>Iq`}4B?}*f$4s ]8m֧U*vQf-rzfFu3y10tg/)+&a\.ȀDH} ~T(DrȁeI- ӽC%Ȅ GvL)Rj#7ȄAkmhm;mR6;Gȅ@t ASo>Ȇm4aO:CE8(ȍxi9_Et;¨ȏh'э1+ɶ{AeȐ[̓^Urq<ȒREE+ H6y aQxȗSf7+Qx)+z|HȠ5tp 2FWȡ8<[4aCf~]Ȣ$pp#{γ3 ,l\ȸ1Pt6lHZ8K\`K̝8L;J3_7 Uߩ͞ 1Dr1}9ϗʊMTfFsfxRT&g дE;;ݯkbӭjS_pn:>a*1*"iUeH<RwLE!n'Hbi@Sj !w] K~TuHqP +v"BTF)pEr 6X7W}w*6'P8 9g%}K)O~ܶf6FHH@48:)85'NAYHhtoaCsO+fA#< w!s Бe0C ڛYWkk0(UP ~9 q륳!3xBᖞ nYnPwN),v%s|Th6 ۧ(?JSwW)rE)&90,h_róYmue`k0 gr qS4LP4C:b3xmn$_H0ZxhGkLcTKYDx2u0<(yѹ<khk9)B{0{d*R V7GuaJ_dm*;飞O0 xl+ϣ[Lm=qsy-te cr{ p.yPC9̱X}Oh.-fm^*E\)0nW@ "0%R2b혐PlWD51k0߃*oy6Yeq3>=81,9H&. >:0˂'5Vdu>+OQE#'nBBҏU*#띓Z$cN!\4Wk_3{mNS諀T!ӭObu}M͑ e6+P ȟh(Q;!t{RZ\ =h»]\xhwJ\Qƞ]uI]?BIv>p6ؚBOQ]+Vi ##aT̒%ŻhԮbA*fN z|trdC'^1T`][-X6V uqנlvMZI>Ʉ<SnœXeɇR0CȞz $ǚ?ɏ 6wjRɖo  -D<əFL^_?JP);.ɟI#T.dϝɡ>hSW 55ɢi?:_t+dɣܧbǸi7X6ɧ#JMҀ܁wdGɨ3Ϭ˫:gw%ɮ=zSKU|-ɮp p1L8W>ɳiMI?Ak磡ɴ/$>Kɺ^o14V`T-wDuF&){3apqzO*sɦ̦<#MàtVe2hňB;җSYɫ=pnfi0v</f $&iҜ}8Uxܥ +:2uPfͺXS+u ̓Y؎egWv?+F(;=I޽A1pc  oűCRLXQs?;<N=:Hljf(+KܚgíXVtI2뛫̑ h?%P^nш\CZ_$О%YPF!*neqg6>x 7ֽDD8P\ D"X̤):K6z|dy?KwȯF ԷNDGϱTޡ5uEz*)9aT(btU"E5*\򓃋M ;@w,)eJI0=!j@SuHn"t!nIs.f;}E_Pc Cl QSk[BKOL{\K A9 KY-nn)7Px+\$~ +=Wת] AOYP-&參 4%qv-[s'sb(4_Ɇv=&61m[ ߻zͪ=v9]utL>'nl=`klKJ y^WF3J&wLX5~L·f \CoM1lx6|LYN,W!'^ [7qOJ#`pk0CPKo9}Q}j!/L *_Vbn1ҁ^9ۑp&o쥠Z *$`,2=\o& 9oUW!bc/P)16g18i168ʯuMqkMW>j"s`L ٝQ*x̭ihQ3,{ *LĶs-ш~gV0>ŖO-jW~<QAd0aʁLvU=(Ipfʄ+J*O+:TʊEHzԓN~ʍ3҅+Ee!lʒ33 kz[]7pyʕi[߰1:ʙ)yCɪ ./)Uʜ&:D)u%D9^ʝ ^=` ʤ "ﷃ:R}ʪh7Kʟv~ZʬӧZgdrҷ&iʭtFjjF^z߂cʯ{į+봾m8ʱ5ޡ'1LʸX =;x=*wwʹu p˪ʺk0ZFtiƖʽc_5!D?1 UgB E777`y  &(NSiA/60,W'^`A$VцϏ@8VJ)|j;kC0|sdCgw81.= y/eUZ쮧 RIlf,J>Z\Bi)ΊGf~ (3}!\PTn#ύMm} *bPAq +Qqw7^&r7"g%ͬBK # `6R&7uɅU<tL|e:syJU05t T@iW淹[a28ab!Z4U$eU&_HE'_!o҄Iv> /d.# z>7g ¶yf$SK)YQA^ܐk^%wd/+Ο#'KjFis{˰:'E6Ѹk1iT4!J.)y; 7;5^X%0s9%qVCnl4mYv{6/Ңb+RvM{8 Oz~F8=&+><3U V!Gë>̯W d@ٸt7?ʲû/TDoCȯلneUG.$Ep,T#@NC<GbIWb9m Gal4 _ݵG) hXb{ȦlJ4T7LG_n KEkQ[nFKYAX2K?1M#g 8vpCwSW {X.y:ޑ(p̉u[/zcV9 ޮ_nNw|uoXi+H5;\noZlCGKR;r\sY.@ЭRLwI x.n=O^ܶ|vO @~n*T5' y{$"1 ˀCeA5))W# D/M˅j/5\/Mx˅C#fEq/ˇ;>˷J.juZˊ5oytZ/m=l_]ˎЭ(,%Sdd{5˚1-a=CoB˥U ij\ ˥s53fS ˫_CMA ^oF˴.?I2!˶ )AY: j˺j 4)3NJ˼C:JՉKels9˼0sMtNDG˼3ŹO^'`˽^؆tMl) l/&3WѶ˿=|!6GtZekPO^7i2r F{<UlT!Aka 9Y|"bo{i qau!+l [x@5勦0\2%}{NX$}蠶w Ӫ|imMx8W l~C՘; 5(;`a<Z:w^<#]RYbd2Qz'{,pfM}6z步GxI?d滕3>L㮣ܢ 6s=q2cU@p<lF ˷v^8d"/VPr GN:*N|a& icf䓀 ^n q˗u8 FG]f T|dpn Ms0O|~VU1b BzweL*f) yZ\&A'p [U09hЕwQ  R;7D&q[Y|fPԌVixwޮe !⒛!qvrm"а9gՌH,*l!CXI< :z/r7"yДoC7/e? [AsAtA ¤wu1B0 5; L"@ R9LCSe350wQʛƝo4Qg2D&Bu_HRV` u)@HchQX~K(Y'גdI?%"rt[(yGtYފՁbK,@aerTho6@ 8j! k)-G4 ކ'HTl%FuE?/w{;)lsOԘ4i3lsvo/rmZI]pQr&[EyM9 s 5JM@b\iƙwĕG̪$vxhs!ϻ>̃H{ޱ,E`;{̅o`Ü0{uzGh` E̗*BP*x̞4X3~ ;08ḍ|?bq4%qd*Ȩ1AXylĮe`yT̩2@}RJTR<̪}H1icķḓ[{-d5b OzLn̲Pqj"]Eh<̲VA^zAU5̽v V=yS,ip"힉b`0 ?jφ/e37Q*QQƐgrSآ={q|~U7܈xWhXg>NrjyS X{F`TQIǵ5KDd.;ZsiN5tDIje-jr bX:.[]ȆW34BJͳt c1mQ(risl37hlEC?c4+ S|0 x렖<ӋgrgNH<TD |gI ^>e ӌ D,PT,D\4^.K@EC0hp+1W)1m{Hqja`ح ~ #ͅ4»\nk1.3%pT!`"$R)WH$$ iJge_U#KZyե-(xFpbHd`*AڨO"Nb.\ڧ뛥-EzNB;32"I{`mFYb};$iAm]}w 6=K@̈iV >Cg* ּҊ@ó5|=M[L;#N3-\[ |۽#͛v,_H:g=i`,l`SC)HaǀIbU;*9U!uhOGbU)ѝo'BoM6&"3(wVrMWך[7t{]ޖɳ0HS{#\1ZS@!-9̈́*&\ODAaͅ@L^on%r Rү͆y4A< s͈KdM95y͌1Wa.s[pޜ͎7 >-9x,K-͏oWUXʫMw8͒= _t[PUb3ɯ͘sré}eWF'͞H ڈxcS{$L͠u|XX?-{Tݘͭ~Λ`jͲJFY~jO,피 K FWː!-{_t e̢KhN伥\ f7!Vi#Q~Q-&T\<񒔢b]O7 f;n5eWw 'tq;Oiim1 kc?o/^@&7/]~;h%bk+/Shڍ ˅R)s|\sr>UşPY2G[d >[bxdpuZY5./ J~6o접"5ZBihܵ8)xI5aL^J`3M8Tgw޿ʼn֑-i=]@mU73ø0>H96pC-$T!F>_wx/>ֳs3+.,Lbr 2WSC*-Ѐvq:p&(IJPg!B6 <%7}j9˙Wo UOԯ@  l:ӯ 2BnuQp[Hs :b!eն+ /vK!y4dv$k~V2?g/#ʩ&7 g!Wif 8^S0%CFا!A)s\!,宏^rR\uN[`Y--|hpb봠/n&VXsߍwkh/"{M%N9U z06Kn<8s*4 D>>W }s7JŸs=k7} Uxp"9bИ:2UW=<a6bM{4>gŊ\z> 3:Tvu`]$RCq#\jEv@CJN9M7K7bDT N7-|.½E5x62M;J|LjF[\fj^[#ZݚGY^A; (zjnGqwقIم$} #!pn"R| 6qk)}S|sǛ6'/ko;CVU3V2O'V[r^PLZZj 8broe\x-.`r`w2`]V%ɂӬbȵz|ىjϾLm*#'|=+'DH+Q.DT|&*Y8s3@IZ:N{@L΀eJQT'>6C΀)@UR- (΃;!0Lu)"·bn(6QL'"?ΈDw<3"wDݴ΋S ډB*U. Όb/ٌae:2`΍ӋG x$څ]ΏiJ!PdߴC Αs?[`ΑvDѥ_ps&,2Γ=`E?Y"XtFΕ ygmsfQΙL:xA>3mΚVs^_yY@w΢k ≠7*d#Ψ `_AZ:{ gά`y5=nqiέ)B̔?\C}/Oί?vDij$2ΰ |+~*=PHбλgѳz͠ν5'Ev  rZ(JAbhCGpڢ7RTMm<vCHs1yᣆl;,ZCS҇M8y*_[[Mդ;HvEm"j7ے?85}ÇT6n8AٳDa9Q h밼}B/M$lkPdPOrݗ?c*m}D u i&kx8Os lTݟ @q_$]ZC>G`>`͒z2bH9XKu i}DP, [vjˆ}\= [p(Ը`8NnXb *2Vj ,{՟]^JZ;Y= 7z~M~fS1t l(jd¸#< RK!m^G3N,AB #5>z KB<SQ95I]I?<&)\9޾|[aC#5VQY-+`@* JIJP ,WT5R A.B?^ >}/ .+l<l%|&/%ŸCaէ w8>1?tB Ѭ1WpP83U묦؝̘@^˖[8Z]TlK脢UAb|V9n As΍ ߏ:C}yƒ$sCmkH G}{_Leϼ*yM=.KD W($R? C 7]YsWTau=> Kma>VI?;~یm.JHWڕ;.똎^4yOMɍ] @)4fb 'jgS;(_+h= 5G5nuL<ЛFyrP) ,kw Ѵ#40:. >wxo"FsePł/yߕM0?8JJ|:P]vMq̋},)ѻU#ftjDρKW>pDA.D'ρ gtF%ɿ2,τ5w #υz)oسŃr"ϋm*}\DYj3ndό _LC3;Cfͮ,ύK\85ᨍ[<ύV5b Q]s"ϐ {ǽ翐 ϑ^pB m `yHoϕѾ+CK<~hDϗ\T& yϙ !FG"ϛ^`ˬVk-`OϜ@LF3\Ϯ+pϧL"$M.̈́{ڛϫ;#yEOϭ^nQK^کy1"ϮbFh R. GZϱ@7k^ BFϷu-(0oNQ[&zϺn؄>1bB)5qϺ׌ӎgcΟ-ϻ̖7stK$[R|[%φ~( 7$ť=P)?tS/'i9L @FWpZ^#^& w+Px+WqJJ';?TkYT7>(hW4>ӟϩIq# &1Oy*Uډ<h6zh6ΞW./³p@_ggc8lAWhuyv)Pc ΣAKu kdqc u.l nwkRC{d0%cyԭSh_%*&ty!#5R "|#8 d0n9|&&QQ.'J(b?V5Pc)B.$ZN-#p޸z *;,X /NN+e[ DJ哹q/# s[ɩ /kɞW$wA,i'09nI bD3l `4Oja Y<CDك,F2 |+KDZ xӑ eNM0.;1D6_YQ˰ҰNllx#S1v1C (-u^Jm3A [jaS\73\&gjnsǑ+k VKߺ(iwA]jkq9!JokipV!]}+b&Бٗ_9K) CКXddz^b;3О&-FClډqТi>EI`3V,Х9zcsN mS+!йOڅ:iFpкfk"]5gJ~1лK3^Z wRe]м&3ޯa0)j@Ͷ)e;K'3Ϋ:U(])fJuSHסQr*F}Zʃ.SS~kZ6o%ౢ^$fC՗ ot\Ͳ҅9m(;מtc (5>-s3K28❥<3`KAL4iDbQ.6eF l]K/~m캴{_P%vUdi(:6놸95E|٩a00mIAcR>vA|Z )ah b.iF j-*ijW{-:ɐ w&'NU  iۡ]*q W%AF\ M;ݑ-wAB 4#/< g{vmo 7A]kڬ 6f7!֙ b *wkb#Ė "혴fn܀$EJA<By&?q,'k+oS7-(e]T֡-&~{5܉K97 C8ߴRMxKOng}A86% NC k 6}zvDC`3ޭ;~NG}vDW1YV\!g撒Eߑ0,S}zuT3 Hyw[iGH5EReNS)Q=Sv91' FVdʄV0._[ԒwYLJ_˿ҒcHH|Vϐh5 5l|Ӛ>,i[GDcB`=@jf2~B8l2DVH Ylmݘ(lS|Qs=/nv3k"{WpSF`Yb8qސp&Ǽ68fnSjтVF|QZ N*Lч0ϲ{lч067maқэǟe>9}: }љ@CG-9=Y9љFk5#9ޔ=Iћ/&:<Dћ3r!NHNZAќ]f]3r۟ѥj MD|Qjbѫlܒ9GY7LѬIsPdw}MmeѰB ޑu[ 61^ѲW`2# Ѷ=ܒDFܛ(Ѹ3^63O1NmѼcb.^{ |%nVJD\e⌚n=0g\WX;ŢMx[m2n.B5}hfiI BFF6MD{Q ˗/@U(%ۥ&±ύb\aM(ܴƠhiMA)ZOG#S :VO}DqwuN63?C-.=IEC5FCJ<]eNYt7Kh *;^J>!yYX]xj6rgQM:eOtMp;zADªچCI+Hkdo0EQ5秦 P X<T+g@ǝy:K=>LH9;#rFѿ;*07:Q:O?cو/3Qg#g/)z܀c);'oMڪ/5-뮪e )M>'O\g.(v hs1,Lä>O9i;F2Z8v'ު =9K@UH9O9644iK09ԢXE?ԿE; >L+$1|i}B>pudu@WTGH[|0wrC&K߹XCk ^Qt}/X  Q'rph>RLkIQ'"s; WT>G{XU~-@Zl +8[]f^Wnk~7<b% CV"$"9wcBM-jfoR-j܉^I'z& @n .Q>YIr΀ʘzo45tE!qI3yhr~ 1`|z"L]}~f<l%goK TҀE($%,\2QRh0J҄c]ۮɜLҊF m@й`ҊH:޵ &\.ҍ=W0)Y@8 ߑҍF\j24w@(:ҏRk`HIRSLҏ&t0u 7YҔ굺 DIQu@Ҙ#r"w(SXgҙ!9詔 zPSHҚ;'x9\@ ҡhƉ>`yҧS ki/ۘKxҩ_ťsw>ƥwXҭg$up|X)$ҰX02X(VҵUF/Q8pi0`ҹZ\Jr&P#IIһo-zLV@2Dҽ&cR64Pnĩv oҿ ewIW\R53=yBH\&~#\}z'SRt8f5J/^,۱J̬!$8^Ι +AKѣ"J"jZq ţ8Y&;˜{G%lBҘA!oRV_^|g?J> &NƊ|/y"2K7&G+L5{YyPdZ!^*}m%fm[K$]V=оzTK\b'F'o+<1k+H!b*Nʘ $F!9}OjgWHؚjpQ[սz i<ctq,z<2A;lr׊ZUچ E_u']G{ru. h!0$|<kD%*dr3Mؾ*vgE^&q;0*zPn9ӭlqegP(1u;G]82ʹdy#SNbfmJ'_0! mp)hȇx", A<ǩ͎<1}$\Y3^0}X&3?'(%x'*QuCmm F"(~"Z6'0)wL҉ e -XjJJ׼nX5Ք.>9 ɴ~DH)+q.hTMo#)(008~;J50DJV l0-6­{1 r j:$O'&en<4c'<)U|u75- &f;X8HNecVIL{9'?A61~ieʷ(;-NKrδ?1 9eTDRj>8@X4Q͌OrjrBV )֨#+L/E9L,;4@OwdF3lf0o JCu GdǖK#- *\dBS,ixXBݶdT+EgAR1%={T@"#M3τ&jVu¼P0]QOǰwt^T@ dd")_ 4hE&< F1e|@daC@T2dThEa Kʰ?*ktFe&ćF4$m7u@T"׋}m98(IZF1t[? Byc]w ߼l{Qb1h,:ӁX7Cf"Ӄ)/>ɲE'|Ӄ1V\^~|D2ӅG,ou Ӈ4嚭| /\ȪӍi"3Vz9AAꟐӓRԫi{~ =zk)Ӕ@_2,/LVӜ0}Ҽ26Qw~%ӣxâÇލdO~#>ӫ}%vY:a\0>ӬRcؐ˚2e\GdӬ;ڜ 'ynmS _ӭ@;7.ԧYxUbFnӭ guyW&cӮdv_M P6xN+ӱQW &ْ5ڨӶ!Hݷ|\kOVtӸeA~rQӺ>)m$ӼvaasxaO1i|pF>l(6%krR;<1J z)nKMhBCʣò]AZ܌azބuǠܞ>s*L{I暎JT-{^w*؜†v ]"U lG{0I껰Q߱:w&E]^%8쫜! oT9numO0h4WS3.QUN>`dV۟84o</=bD ~S{x:nOb3R8b),#B| @w<F3𚋵]|upZ]kY\S7$r,STAzFCR?T0EׁXtԥS:,hHsNyvq WG /$K_c+xZ  n%oܓ2VPGe1݅y劢ӳ3gB'ZZ䨮MJM/cqmuՖwFoJ',kxHm@W}MKlW>f[q Vvy 2jtet %~)[x}yT'%ThW +Ww'7bIYqǍe$P\+|v:gm-qki&`2ihL5XڤXG;mY;3sN!I8Q +<k,첥49!mu<ĺw%]X4h>Ǩ,ln~>>Yn>gPp%8??~(r+$-F#B@CPF*-&_HHJU<qޖ]K'xq|d#T .jmzK1Su36:K VMxιjC'YM2rgĄzaRv\,Z؋ Z[z$fxQ[V.?]+*EП`[` ؤ򎷽s\kd@*wf\Hě:qUirgfZmEmyi b[f<gSP@[mp~?N#HprԿg3U?ڑw򯠹T҃sHSԃ~Tu C@w+%aԆa]ns4_U%Ԇ|8: &c p% P8fԆjFuy\~螤Ԇ f3b1E\kԇl#1<ZL-iԉJ̈́*ޡIԏ Af~]P\+4\ԑX.[H%ԓ~:pcy~gԔpZqX[0|Ōԗ]Z1]Wd Iԙ^DL˹bEKupԛwztbӴ:{ԞeJ,P]/ԡG  l)i3Cp&)ԢHQƤkD Ԧ^ kf"iSԬA06Oql1EԱPEBd.VԴ5NH R8:Ų$$]1.ZIB~JI(80m=]z6^Jpl a%Ttw B2#jmygW.sIZ*H ?٬]\!R ZNZǁR@^7a߅!ӵWϩ_08t!'DX}kddO:K\|}p[j2>9AQ:‡F#mmuCCdF7 521`x=l+?]ėP·ZixhUHYI#QB&+]"TBA6&GJ> ɤ=7V"SWS UŅ==𯂖9صaX<"Z^k=!$#}W 9(!rvhPJN "^) V3Z#=*`U W_Q+V5i+&QTA0{)0Ҽ#,r|}5Jt1"ɤ+Cdl&2=! + 4ha^i.FC&8"L15tcyYhPZAf9C~?cr})?)rVm m@ik+V2k]o-dAR1W6\ě(B<܇MXQ"Bj^j[i=&4AAD&aŹ٧[`χFj$ YG4{Z԰t6>jH ʫm)wHH2W -lmdrJ i3P*LLy~KRu0#^p~Pv<w@VoT$m&[3tR UC#/!j=0W^tzZ0X^36Q$(0!%X;0ZNq^0?<]7Y-g!FЌ[a :J1vZKbXNo09e$g{Š<}gj(oN}Rh5ulyV8b&oj Ѩ|+Nxl1QoLH}zu&cg@"ՀbXVRa:Յ%%S E:DՈj⭯,d=]pGՉ=qr'R>O"Y4Ռƌg f O-aՔUl Lvȑ,X#՗$VG ~Ǥ՜sO!m!Wcu_բ|(_la~Pըve*+lթwrʹshέթI'XmըJ LտBQ~C7*2z @J>IMcx`$%^VBEi[[tӫd64ëґF*wU}yjb]q3ikœi~$Mձ L`!ӄۃȘ39 G|/ ʲfiа;0{[֏=ͻ[En׋u<?Â=WvX[|zb@^aJx͖8"eK3?}:ǎo%9'5޼XvK ugUi!e؜3Gm879T}c ^>R#I)="vOBo#,1Ps&>Il|"Eڂ.)t:0DWZo22pI*c 2w*CTN)9XSNw{xq;"]o̕\{_;Y~ mHOTumG@K?QAc{}OK u)ʣ*A= t SF"dh'=_vZ{c@(ňx)uEi~W< )el`yBƝ*s J#soPk,DdF$,Rhz{`.(hpwx"d=Jj}N> ,=X󗇎>U0IjKppg21>u8@5%BGc3xM`Dc~XYN(2DpRiz4yEP&"KBv-  L \CAbtBEc<RPnJ O#Tn]yBN(fFAUj\/2_ކVj X: *Q%Z\CWXS`D^[X 0Җ]ɕ}rI,Y'`MnxkJGsQ7ua;$mleaAfe}-5ȷ-L, whr{Mc)PnǂAi>j ψ;mÚqqV\ː=pn29Y@1 KPuKҿ<Kvg+4v+6>{ j8r {lJ"2! =m".v}րX W~Cޚk[ dօ]&~<މ}uֆfݺÖT _և X%4PI>"L։ي4qzP+%֋7=b?SS"a֋ë EYt.֍\Ly k4|֍5TUEL;3{֏b3У ֑:!XvT.E֕f9tV y[0T֛mO/#]֛nLE0I֟9aN(O%կ61؛֡b4HIO!kkƙ֧{IiXq瓓#2_ֲHAO`\I ֶi+O 3hָ& ?n]L.|ֺLN2hvh7;SMEk־`A\uEֿ ,?9?ֿ3dAӇe"2, +g/A W"սPO} Ϧ\F6s޿Њ%;JֲsI^ {n&p#5MB@B p $.LButJ}OFCMi81]T#h6M~ͨĖă6nWݶư>f= b~d7Ve*R $L84gqp9$ Y en[P2 h-aW_> 5I>b.6k ؎3v/69Ehi)q%Nҵֺީ٨uf(kH/}.*+T),d {J.Y·wh A1ꃄ%Hՠlq[Ԃ3T!s?M?3q4砮eЬ9/vp<:L.5i7b0Utvo[:xu7m"͔I)A_%P}i:/CIy;a; H` rBjáE1kҌ]"> f%GGwU^YQ:K[";רtgrRbLHl(vKpŒ9MDA(kT"vHl1x![xj?ѭ'o_Jl 4vd,ŏbbvw677T?dU^I 'rCk)?/Άb6p1&^H{m=;¨'rU}WhqXާv8#=7m@m9/,#ȿ~QxVؔwV5׋@}5t׍*)Q|+"׎~Y}M,%,בvQPJh+y^_UFב8sN{oCYKcoSM|לbuRן6 9jîWcVnןz*X*nק]5Ȝa`|שJ5ܥW|`@W2o׶?SEz`ݱ׺f ԲKuc2,-JQܬp\xVboEgInys%0%w@l&E&.Oĕ,Qފ7N^YbD-"ab(-va$+b,3_#}Yqf'3 E.%Кƅsi bUeJ|A VIku#]wˇ~lXS' n-Pi+<Yx F K4axԎS -o;^>uդC|x!!ܯ*WM' 'AE^E0зn(k ݊tM6l}GF),N*, ihwȸ$[!H%e69Ln1'7cS%PxA/!,)/d\$F3eKwҪSf _:s#j[; NԚ ~4<w _thc @I. S P1DR4JcRE10"?F5.ٵzMͽqM[ЎqGrIj{\WhKGtq %,-^ `H2)$ )X?kX FyΎػ6+aX32 TzC]]֌9 ЭRT}y^%l ̝I_-<341,rFd:Z h eQf9rw4#oh7r4ցv)rtwUXgdW=Q $Qxǚ-i #5F&|^+]ɰT}Èrhʩr؂.ab4*Y3E ؊ ?8udrdGb)؊@zԜYh.m R،\g]!N [[L;؏-'7֕kP`&1ؗ^N|$ a\ؗs2j=,UQؚ}D1 EQ"Ϛ؛{IU-iaq`؜5yx%;4؞xږP@IwPSJ؟&J؟;=7嵨;ؠPeF{BVeGؤm7Ĉ5cئ$Qg~0[dةgVA)vsOث .W+teCqث W?@ ثƈbPRh;ر5ǓQ52)شDum"ņ4fغb $z|H~X6f]C&غV>ذ`0_m@ػ]W;Az}݀6"ƨL۲]ZGnh%1{~Ĝ*f~fͳdW~=LM)3k{p#!F9rŴKq m3L iBXsWUL3'JcqsKч>zSCB*{_ U&gYL'~x`Ì_|1[٩ #~H s櫛SLxLټnOWY-k$A ل~-18^0 ѳ&+h͋C: 6,V r&=U %h̓Sn" :mN.O5a9)2T2*Cx5b9n%^=.i`Zs6;&ms[F=_W,_f&V_ %h$¯_l|[T ?CB<t0<P%J)MS(x3qHP-R0N\nni.@b<1Jƙxpn+E pG|F>e= 3k `NL :z7ck/ua!%ӓk834:8a9~,oZc!,-v 177<$NPtO_$=YVo=-Ȫ~șX-ZuzwD}<׌ 3K#NY1^k 9$43<:2vG}D9Gu-o;]}diX[SZ<ZaJyyI>@eR U68AX.Y!eo%[Al40ܰh3JBX$W& CbFѬw0=IINc RkT7,4Q73*´TOBcs.iSH><V 3\ഁsQצWQNOT"C6(\M+E_*n]d3QiaCG)[1Y`)=)ƒ&aͮ`Hߎ3%I wa츌Q R`L Irte]0MeRә1'n'ʷg E;UM(5}g ϶"l,Pnci,qwpph py|i "]d.!XqʇN145Y3iw]@,/%_$FcHxoG#dR ۛz q{W&zTװ`H1{4`yh/j|T!ToL [cف#9MZ)Bقi^,&4zBw$كO~a<t<(QMلQٿP]~'Uْh*[w~5ܕٔtN(z&p٘Yvbq"ۨ5ٜvWR&t)١9' J3>':lN٧b Rׁ٨U5Oc3Tc\ٵX!5sYBCOASBa<4e+,wǨYQ?X~aǡRIrN/*w!s ƅnEE_5^kR . !}va덙+FN2yOtP*m4[x,/ /ۋv֐* 0Pj*yz<jhI`M9j<%9QT!rIueqDWHe d^j_◊& ŢfIm,D 'uZLsu‘ΉWN]¯7YuADRmnaL/]snN4ЙuwU '⑟ZLQ(r;s<\bC)Ƕ13: W:7x8(s_[b:r#?]PtA:~$ՇՆrK<Y. -=kj HGKzPߩ@TdfYYu4<AMS.' pA BޏjEG| Cң@nǿDq?ilʽNKT蔉s~rT1UQS!Ȍ7=Tz3zmYHɝ.`jX͒ɗϐ^ Ŕfݏ9a ._aŝ"6#@#gb;+B\v^hra4A(ZhȚ:9Ri=\jzyji.,ZoZv;WS qK}+4{L&-Ir\MW0_wDP/p!>+( a~Kڀmc  Thڱ2ڀ(~XjZ%ځl**NڄoɏN5e$l$<\ڔ6$j|0moF:kSڕVڿc u Bz?ژ`Oͥ鋾ڠى[rʆɁ=ڠ@H\Wmvqڡ@#݆6ln0+ڡRI8"KFڧFOQڪ]\Q=/x93F+ڬK8O&v)fI$yگy7=Pj4e;Ňڳ]~O UxJڴ_ʽ9 ڴHZ:jظڵ$lne+5q@/ں3(rW6W| ڿ[ ]n+b<-_9솹~FUhz 7hMf0!w#| 3ݤY7KJ5)I?ևwPlwdul]Mθz/C^liuO)B =3Ш<>x)4 ؈>fY 2UGsn>X@׉N;ݱKky"B_$~fڃdmB|a2vA*KpObɗ>9nug4x)u9*µN.>DFݲAj~5(_imw1QVj&Iqu2\NfPoӢd 1?5$|tBW;[(Q V(r>m糬" H <DYO: ]0(zp}*o)QI"-V{? {ÍuV/CNJ{/^]YjY/(f;=POi.^-k[^,8J" $8W`W8cn)[8oΔ] ;b%u鸵S^@^'8_i}F1(*u2r9M<.uMLR}5@lM@upxyw?MP+pajO;Mh|p).%7NUV&63~<\R'O[E QXph忒}Q^X^>S{ ULYR1 U%;vRY{U_g: ZшCAAfy۫XY ZtĪƸՙlC>]xff92_'jώua3JɧYcԖa)<GE)װ75|bF'8dT틸x":7shhhvaz*zcSiEۊxN)F̼kLuM@HkԱGMzACjvK(:+xspԥyBHܰKӍkہXFBg~_Wjwhۍ14})HE'ۓkRTr;7Mۗg8Al[ۗtByYK I,5ۘ^Ku۝P3h0CFF4lۥR_,S_̱hzۦf3#aA2݉ۨDӊtynm۬ L$[ۮN0)!qU(,ۯ]ukb@ٟޙ5nE'ۯEr@@p |'YlF۱؄c6Qs}sm۳X1]"T^ 3ԩG ۷ !fŗF &۽L]qeWFf]0k[y-|#<[oǞb[iHvvYZ”%JUAH'y]څ'3_F~&!NFvo! b"8ݬt|=q ô(9hQ`6`/'UT7X'VMs'H#21Ib,h&^A[tP`OAq2LV]bfZ>|Je䤾)~ afUT;'ݏ풞V}k&LD7;-2j%UoE!_/h{4CIkmfTAA°PѦ4C3OPL"٩6824*{CB"dC vϮ_'Lؘ)~y[r? d,!>Gޑb"(~ICSDY@%۸M?VPv=TѾ& !LkWKqc7 =.ll? ΎX GrIۛ3`T\?+ͳ= FuC,;qߡ6.0t|y'W}F ;PF [DI*<S `B(Ǽ_{q"|3H+WRtI 0:ymO,^Dl84d 10+30f l1 ѯL921{NL4z?"<{dk85L?=HWט>R& )W Ī@I(~?[ zcA^JyjOmȌU.Jyl̬M˻q JT f߿(sCbNZd-n?1'n O`="UUU.Pا4{P {DXOX[0"䴗 Ym#}W p̣5\Wh.ժZr*0\ f }=`y^BwZ 0 o^<, *J+}:` @sJtghe׳#ă[yC曗nw3`~Xk#&C}nq)@7gkeypk^A$ŪWEp1r z&pPU&wtH՟\j'nvht(y7m9}#5RLXUe{7N)Ew 2~ ܁SFӚJb&Cҗ7܃Kr@܈W0tЭv7.>T ,܌k/Pv{6@ ܒJ 0ӚORBT ܓ!&aR,ј=Cܓh=5c:W:- $ܕoD!eJȬEܙY5݈odb$8$]ܝTs ΰgSO{Nܠ5 ?3/\W}ÛJ9ܠ1M?~XnܭD8M@n>(ܰ{D!?Kܺ; <a*ܻ0NOɌBFPl ܿ b+{n`6=Çc -4!`0*Adg!E2Gb{CsSQ[haWSGAzRK=2[a ҪF|C-dP@[҈e:HgB^Fķ{wcdd0N3[:"{x];X%Nw0#sAnE0.hƞ/BXq?Œt=d9#@5ց{ :z;|y^O<~YW+xG Xs/s88Nk|$Ȥ E!* 1sR{eaDPm(pu2*!^`.<4ԃX~ )ϩw |Qz?nya,y Xכ#Ϻ#E y86:5&!b5TD (0&`^ YbV .8a}A1ʺф@iZ6&z ,u#17zoAh9Og0rV:0vT݅4d'p;I%u~.F%?:pTddA_*kyd#{mB@OxM/8=.!C`+<p Gt2]]DdGA!_|D ;fvb8l<40VGY:t|kJIvb9aI1IK&VndƒӵcvL'T\wԪ )&sNpA)Ԓ25h^ӻOV̀[4j?PrC\5A00ٓUsws;S;_b*,f|+][X@wbK.X**G /\ ! 42.Oa\h!ŷspJoXbsLl{7έ_ERb8V7+?8o +WʂPf DirP; % u}8;WP!v_ؤ g|X&8jxx!I)}Ԟc_i+=3qp#} I[z,{GIDpM}/pΞ/h_gZ>%.i_H݅FK$wM'H^t݉ZVs| ^;2ZrS݌TV31ȑyݎ*#| @ZDݞ8~m:Jݮ܁ݟ ?.$D/EݡBYj -G ݢ2so7#ep̓;b|ݢGDQ-F ݧ;H?I=;uݪꍺ;ō ݫ>dh !l4ݰ&8hCݴ}'t()mOqo &4$Zx0Q Ăw;E38i;灿%?z9tFڪ;O"x?lԠ`]O}宅h Agڏ/*)+'WƸPEp4Wa]lmUsx@|$1{GH}#>N( }cI%wRmUX o!0 <?fQip*q,~9>/wPqt*9SM8V==0vc(%dn2hEW>Ȇ7>Si 7LYS9O-<=t \O"E{b .?x%/:?>~p< -$\ Ax 8ze[|\[gU SBʲ eW Z4+O4"fB$ !2ߝ}HN# T=>o)Z͖d&نb#1h)`UqF $qf ]?U'} 2Ըgtug"ožEod%0mK.X$"w&/^' sb57'%{yϺF9{Y1*d0C+ m,P'crn"}ra,%Ĺٔtr,.e re.2zై. HB $,+S0w🵄?X$?1(2qjy 4^Mr4`֨36GZ{B{<:_&VfK=-P6q$ B<fNH$%EHg,`&?DI*Ǽ+.xLuKo;> _K%C~po~2M_GtMdG 24>MwpƬזOrHP-tıke$(U Oء tIPT9U :0M1gq XCmhՒ1 [$E~R׹ _IfI}J!gQs^FS/mqh u >mzFv[OpAp8Uοsj߱*fB8 uUy[oEˌZSHUyS~nDְAXDtJҴr{ )ĝX.rr:==m{o79ހdIX a꤫XނЎbQHL5}I<\ކFbl>IއT@iR͇q;2މhlTr-r>xtj2tyފ8t S)*ތ\hc8gAPސV N枻7}ޑBs9?_sk[^#!ޗq/'U1 lޙzv<u2zs>j8ޞ`rne,'ިGjH=RNޫ}S ¬^QC%m-ްH : CQWMްbčǑut +>U e&޲LE?^B0pYZ{޷gժ$J\3=ӯ޼i[yLHQm*Xd8^0 Mm>3ND2ԍ`5P )Ȣ-К#6-Kb,O\7ޫ}epVH+Uܶ5 !.\ZfۨGȦd% KAƙܩ^64HCCq.$34U%fQ<ǯU/m_iFͼPv bŮ ^EdSBl#HG։¿Ei_\* Y\k/ l c5UPP\͢ wdlG/ɏEC2+q׮ ނFHJ.pFjSfu,=K-F8 2l2 \T]l/ʧ -W爲TU.^Pͪ1I" #3RSqy%Ll 1WB4'Џ&LhWk⃊)z\K): F{ +M7yzM4<wcB09 yJ:*#b*Vx6;;˛h9YO9f<oN%JjqA3TS yDѷVeZ^ !DNQٔ]v!n'٧F)c2ugᢢM?RD]`H"&Ox%T]IiuZ`%ZtB%Qh*[yjK04o$S%:[˯w@/ZËUJ\F{]ZF RyReL<o6Krt BUh֐Xr/޴i` kn=غAN_1p ! yz^FM3(|߅LP#ez}}j߆>`ds<߇AkGKdr;G*}߈w9Mkzԑߏpbt)N=vnlߕ9/UaP %6ߘW5B(J;^Uߠf#>Sz/gߢ"b225Nߣ}&Mn5?.E߫%>I;~gu:R:߬;@ޅl7 EA߯eYĖi0fߴ@tIVLQ3Od?ߵv^w+%4.|߶sި)OKa">%.vR߸~7dkϛQ@{4Bet߾u] +GGDkq|QICP*U<8hgaihcօSk$].] < _-jcD!HHoImS y/Ѣ Ud&iB'<'A᠄/{Ik?⎥uVIKɮ2XZ< Tx]8H0D(R߻IC&Uo? íLEã"{$ M<*HxAW8B} i$D=\"w%>i<[uDNCr``%NW0@$3X}I+Yv#?bRs9i"CӔ뱝llD(( s_8a(9 H\|\%i0IIIC L"V$J0IaF$Y&B t*}-#k (!g&NUƔw ,0':gkX.0o E:vBj?H0RG<_\Z% $ZAtFg%~Y<##>1K)ʡR0]P@ݜAwT4(ۓȭ!dcrS %!R|b`G!MQ䳕4~w(Kz`J&^(l*q#6}y|o"-,@Ue-qP 6h.0 ~M`40I%;;1 c1='m<7s #4&ik,vc5OP_ŔE2 |S9?*- ><޶n_ So:GERq@*RF'ڙc+AzuVWuyK#܈C8G?1"n'}HD%@>F%+;Kc@=:H]P3}tKu=]x-S .=>Yɽm*`vD-5kAgz އgo^o59 Cs<&cʭ8zTwf# ZM SG!7w<{篻쾺жC}&)ZT[X=Rk4~ sdwG2HpYG$ݿUE$Ud@dշ[Cnh$_J 8[o|oͩ&&=Z|{hk|H3 8-:௸[PCx](+e˿V!"nDH๒/~ |K5y'&/0gp4~3r50V hJ܁hw8٭^i|pFɠXSim|kBXD/p)qoFU5@嗯B4RlUy6dy8tPmZL\trS8M$ѓ(eS̠pzF&C88ݖiehS$Դ ,Ԋk`Tf^;cDb u3+35p[+:O -*޲dd7ol*Xyh'`n}p^=zqzN{*Rtq@ :dL=H)эG4ˋga}[ oHs}"Ҍݏ bW *\#y&J0NߍQ"LOtmy7PڼIUb²5.B88+ m1Ճ |V Wq}ZB k=j,9^DHЮxy)y ҂r7"jK 7aHQ%޻~ >ɶ}܇pE 6ohɘ )B:N#u: 8=^y'JY(9BrnaLY@/mv6_C#Vk7FpLoWiڏqXhy2eP6e Ö}Y ĩNGgs\ opHԣ(P4Z[f5 UVj92@˹hr6r*fvx%Ru5DpRx5v8sਠ7:Uwwi]pQ<O'y&>\&}fgm4 5SUu d3ᒍ>%gDiYQ8d֕!6~ߺ;]( Jˣە郊Z|ީ<X-K'(Y/>=nCќ^Ѵ@<jH~4|wC =nC2)b#4ᥡXIi$Og`<h}T|xyLB5GIe TQCI7ᵫ[Ӏq5J;%J)ʛᵶ?K<Ea==-9M ジC\<?b@zTᾈ/r]_rgoR.vN-2Ta iWf 1 ,)2֦]Fv4+T̀*Zm༮i9D}L1b4q #LwR`hST4Ga Q=׽C"m$Ixwa,%UUk)_8oȖ"-7R~S$#Ҩ&eZsՓ >O~$tOE o8`y*@l.·U[E"藾2 ҀP쫭2fN6P7]Cv5_n<0h+jp[U6zQ?m Ff9[J&S[iqIS< {zUe 5̾scXh)]ґ&4l}Fuэ7)vuht4d [fuwSx>M@f(*R#̕ 4# 6L=͸b<!Stȱeo[,V<ay.P d).^DxlKXY WR/"[Id\Q6~Є.}yX9?<P"sҪ\<\MQ(@0=t- [<(|`A-Wݾ$)8.(BHRJVhpbH~]^IHПA襄$=ʜvC I6s7jJ'ԡ/VMui(J[9$ʾWM7o ,] qPvfΤw߷ ⲐTU9jng AVDQYsJ4˾ej\4sG#眩qC4]BH4o&DΆȁ)t$nb'XUlhMj#apV~.3xD hPXHPpnq ~jT,c}2nҷja5of!ZjKr֤jq=z4{tt@:ELUh t<U!-:UtowWb@kNqJwcꐭzZ S:Pz}Gx be3l~}0GAs`Ph6~ԏx;If+By]Z50icg4$[6zs JICD{nnkI@$Jޏʹ=sDh^^Cz>QdK_jiݵIxJL.ļ;TT`wGԸWt7Iu?a& a &5iju◌n܇̗ӥmv4|x~uFkGdh9⡭ed<$}w(ec ZV5)XX^+Ie;;f0&g7_ź: fͥ r⯀1u~#D/ѱj E{.H ~иj݄ILj:c'o ⼷Q"]8]G$?_ͼ9i! >$Hx^1;<ooXg,GM,_Zi͘+TM̻)Ԃ2j>| JgNܽ h; FԬ\:mGU=M9\h4r!ڥOٕ9R10<QbζN޹,DZdk۟/#B WjsϠd fnVkRsc}Bɴдg/F UJ)ق w huEP@79Z#,OD6|Saia_M /TV/9:Na~a7Vs˹|%\}"ĞArRMn29 UNv鲧Xo0V R`8 df.v?.݋(U4Qt8.pH,w2tA8}7U6L՜lyJD "i]rRx  y 4f&/HgyO(Z3}Fjmel9H^%R׀*KOhՎ8wJT(0N9S!1MdӨ6pu9&L C3KD=2Pݹar'%}=H8(gͬ@ʎ>S$I^dyTST'Oi8DM䈱IԸrטOc3†R*/AUntR!NRX,' Y!c8j_ÏfYrO+ੇL2n`ed퇩DH2i[$B4Snbohڻ=~\ov=5]MqoK Xe9 _x_@3XNg-!Ną|6?oyH &Ѱ},4^ǃRerXD!I2FŘ^*&<ZGJB9lD2E >,aC=q% 4n[ .>BI-mf[Ztt:% %~ϝ-<UcL 8HMyCyD[vP};ϭ@Ae襤Sg-C˖!uHTzJ$\ŨDFXU[^ς о[email protected]Yo/y6)67 W4{t<}nM*; 3cK4:Ɛ͐bqYƟ 1sL)_O嚘B(ivtO3*2>1?_dSļަw/ռx+U|wS0&܇ T6:}#]Z`#>m eQ=bf~RIuf!jwR2V=LbһW=]<9W}^^:yrKt,? 8w1tuL ahg,s˛%4晳k0mk7i }Ow-w0箭pW0[e:07N@{JŦ띫( B2L/YzmM<eҍa9A+򐼞; lhos@Yi0]ZΓ8Bκ_5=6yuO9M'YOkN]?٤1)ԥ9g3˘$3 {KyL7ɞ* I /cN 6? 4&SvF[N8T J%G\&m!mZ+C ^O!p nѳm%LzR<z`8nD&xg1jvȻ c/TɶG c}%+̞̹%I`PN*wL/ʬ(kZ*5{߳OOW>6 #Y[|16eL)SYRS9:oF+Aig%7TY|,<+1]7YhkefǾW 93Pz[{@!Ax_4#h? i̅ah>7Ɖt)Kat=tJm4ڇ'{?0=s*ȼB6BM|\DE}~L8 )'CEE f!Dg`D3InȬc@_ߜ IPy~JGUX4,0VPrPVKMo4rXH> ;Gg$VZ! So|T0b P[_st}2csʾ&AהiCp;l}8=\ɾsa2넺f2!wCEA&.כ͆r 5t ҙq1DO` ?$vmR`Lh&AQvωJp䎧ӖC_ cc7XGB=~)2wyD1|M ,/K[Fp3S. Gb䛕\͗0\8 7v䝎:'5<_ 'FAtڲh#Ε':n \/\JE䠃p;Gx0c7atY0C\}KY@ D@(f7h&EcT4YП}Dž)8#V~[Y?$ůg+ˑR E3?!'oּ@I^䫪 pKO;kԏEͪح ";&q \ބ uu$m qCi,"܃_wtýN( S)^Z^͘ Bn$*[9vfQJ^Xd\ 5axZ4#f$yXHno~Gpy }G) !ddM77\Xt }7#6-[XC߾ 55`nMӋP ۝<˖~_.1ZkQCDNxtC+e+d܅EV慻đfEb찃IA+jKiOپ-5,p6}BaE5eD;L_N]A$K4, has) d\gSɬGv-#A!YmR (8ǒ/AbH<uvKq嫘Ycsd=ϴUGxZX1[X<~Ep, ?oUߊ?PE| b}uRGH‘&~~xqٝ͡UF :mG=,;j#3yyXkN' OJ0Fe DF7 }Loh;L=߂S"8iRĀFAY &EkKnV)Mw5b LT;G![5D|J3ܝOT.dlKKkجwQEQB٬>GZ] ]R} hoAsSJYM,HT_@[S~U #gMؿ';,VזoQw( v`X9$kC]Ը]'#Q f;uykzz~y m* ptP[m˹Β>Cq9&g,wPa٢xA3:07ُЪVn)$0P 4`e&4[ H^hBMJL{0,wPD@\F#{ۉI;nÙ$n台:Ա7tU5ȘsA62~4BΓln^#Bn P <嗕`;:/tgI(:ԣmF:}Y妩|2wI}(r!WKsx^T害킄a Y]b0kOFUa$s',SjEF&3 Q*.Tp巧vuJؤ-R+ї5SO2n8HYZ1ثrs ąl$*-ȟcr \pּ3UZH[y*DmbE-蹠#2 X']h@A*t#.ÂCoЋ\=s5;r@~&@>)K֖8?>:5:HKn4L-89ز^2P+GQ, "y*y})cۤ>1ZppډΙƂj 6!t1vTߒ_OxX6JT](PH~jDE%H!`!Ι5JN0ҹll{]ys:MS ̞,Y-{y6 *'(W1s> L%/Nֳ{Y%mf35eH hvmlD"ʱ_?<aAfP4 ao) pyuW&Q()W_EEARa/ՔX7dRZfC[t\Wd;:AH 4d 5ʅYWX`ix^k(olVwJ ))}ߔaB6;*lC&@>\,~yIYc*Κ{lo -ԃ{z[ |&T-rfү@Ҳ.'Wj^F9no.:2SGYogu^k=e)) =!tWC_p)rsd! NxZ2h3d%Q5@%z ?S:mܽbCb nwX£;,qT\y%ji+6i a)qg<,Hfomb6Q c |Յ͒MzDf~Ӊ2_*+uy9GgxDqKMW_hO\7X}>\jh-~"6?qpkt5Kchx<mٟ9)n}Dh` vOz=os볧 -$ng\w6z<= #݆x2dS9D=s{1e Jj}c:~Y/t?עEϲ  8ه7{S/'XAUymWa҅տAb`x! YjLE?喣B_(gOt%7O_p~;Ck旘W` ,Dv$Y4w(M⛲CK)wZS DHK;جQōr%5aClyP;DƢ) Ȍ9&fb%W-X ǀ[}w6vyE+@NrY=P5+ ) ڮ y洘G.yD]Gᐹ&nCHf漿޿gY]{6SrYJP[mʺʈTڶ) -M2cXC:T=sY:oz4,SWi VNCn ~"S:б}x:G[:^~=;r<7=5&Lx8cTKVMBN/(ESEKKe66tQ3@@–2id<w(9]WkW( ҽL|J-$ZwQl]75saNj<Ju6_Ǹ=D/q/Lgb(" x܅o'3 Cmb<w#c<;* ;cdWvSZ5gC97>jYD<CYזHO^1iZkcb6T ? bޏKcaR`#rJP̐7\dGGmFv ^)Y1;&+Ur!a`_g`AGK%Sb*|m~E{PT&oIzkIR]ZK2v6 KT^ڱƚ:cSZ KB5/dmQ diP'ZȤ3 cyco\Z½dg8̓A$5%];8h#3nQ*wJ !<RpP8Q;Rn/<4#'x:S3oDF#K;  kt[>;C൜P{+L@%JJm߇$?Of+2;HKQ[[+`7V_'n X ß9 X-FQ+A&}VYogk it3@'%ZҀ:!5AK `[AdP[Q_WoH,cq &aa5:ˤz.?bs3ɮ/|=Ed`ٔ-CZue1txdmkSi;䢠ZmeOQ] H 9ې8IvcKNJZd\lx z/ ,"`z{Ki\KS9p%c{<hAPhx1{ڵ6V e[E[Cq֝|9\u/Xc]8?fx+"蟂Ќ瑢{;#A?28;*tN\McU/|w3H]{祛S N%*?!k yNv M競NqɆȥ2Ҧ!FQLa=DN҂JeWBbM/&){ pCϏI5ACJ=)M׋%0tme5AhĴ~ )-йhE-`X Ҋy ӽX-O⊵hӥ&&([9({%FD9ʱ$W!KU (Ad㿌Y>KrB\KI*)vM[#$ DUc5XSK2':H|+SM50I.\7so9A뻀,[S  z&rbcSKD 1=9XJ|^ΔPT31Dw">d_[.hdKgQ"pR|ǃi)DPjw˗f6÷S<Dlin &n$m|} $e'0Tʂיg֝A3cG꫃yxV?홣uA=$o&.koF&nZa.KZ9$Q/&N827!DTšeV+BN#S2!a"R7R#_bȪr;򵂈A5a&5Up7RV` 1-A=׶{jH2n hX X'z2K-K_遤@*%5y=ȩT1"ljl#5hVD7%ЈcLFGbSZۧ7+Y<F0]hV:֨S|*ˈ<aRu\ќu><|=$92VvE^vB"|J =Hg6BU\hE2߰RHNehk6&IWY3V7xXRcNhMΪXuldhNϥ }W _:qT74g?fP(}6q5&*5X sQy깎1R 2|O.YZj<|GWn(z9])<}q;*e@OR}ٞU<DamMX&:Y#y=1 3PĦ2Awødُln[9pS]|U)<5a %(e"kʢ0(V:`Ê9_Z},誁)zbЙMq`_T| &"JOd z4WJ ~\\B/XU¸tb2[Aj离( 0䔡zB ]qJ./H*Z ҿ+yuUw6<LiM٥S 7m7sIJ''wE ::'E€u{٭<3:+nYe섵ސbhOBiPRY¬-A^m<:ǿD7Ț'Ir,!|~TwAj CKƖ6dO(_g\hM_&*]m `V n=neƊԝ~UotMlQsWl=^ qqmB ®A]bٟ+_ 4QDfPX-5ə.7Ul8g[&fO?on<PPmX\S{pGZW7Ov)Upfj"GcnR@/&lw,G_^BF&??") N]x))r<^ D, z}1.C=aQfzU.UJ>_Y~׫USA-ywb CocNgJ^Em"N A neK:#-ϊGM7NGk6P%ϹnP;u*(B}07OU<\ ZgW]fszmBÓ/ݰ^ϯ'E9z-H:@(^=ohu-]u_O/!;G<?DLfjP;H1k 9v<u.yeuen،fX=)xy?/5K,P b|TƹiKe~2t&rOI ( A@wq,?*h,ϊ>reZMs^".Az#b"FIq鏒mU] VϪxN1f,ˣrᲑ鐪gAkS'aWoaۀ '/Z ,gvUu,M_A1rp89wI։ܾ}aф~Nzԉ靵qd<<<nm+"Qu*I],WFsC{ƽiOrA0q9 $`<\p鱆 Ac] (.hau;Χs*=S9MB1H@|jFdP\~|*#8M"1*{ .Sc,mi3׎4MD/H)?P\KЕޕ^A%m:8a/6 8>Wg>ժYΦ:Ho ab2h隘8Y۪rs\A }N +X h>7ᤋ_*U^cڷa|F ϾȰk+8KL *BDu[F9&k'-` \; Z;HM}frk<.$bYV@̧tuc-`hh4aӨjgx3 (I,l!m盿N=95V`Qt[u%7k.?2T&ߣJ>3D,l'J$gJs:Y )sҩ.ڳR?)q,T0dq}Jy.-گj358!1в,q'nѸ'3k%*׼WuN5{H>a}2%п6PTac,d6@{?./U.sl8Ia/[0vC G)2+('lB޴dtH2]iL0hG).~ RʎidofBH[T-)>K[ν!^ްa`˕m*WpO>XlgQ0bX U-4 {.MEzc5f {"+sYhUO\`u!hMl`V"54q "1xo3JņvF ʀ#oZv[r?C@c䞶weJ4tzhɂKHh]k̈́w6""J1UQ$`9I$W"3ꅐ: ~gn?`eH Jd-sAXFr>Q&ظ&bdKT%j$# E(8 Lѯ*G25((X EыrbEJwV9VR{ב! w_2XvwQ[}]әد\TI;+I.v8ܸz_L"3u}Ȉ&Nq7gWZMކ@WnbC QMQ:[4Z4;JɍHB&궷 _B<;K<]Y}g=r˩gnv&q$BRBP꼵.yiiM~0K%6Xqs/DZkh3UWŶv2-L21h;LCy{a$aӊ 0s9:j,bESX.Mj#m&۫Et.\Q8&o\MO4Tyzna!ѽӡHr9af  HقEzIHZXQ~fkR_5'm J$ jl3/¢J^;Źiq!=n_Sa^Nf락9gBZ|~!)lM0ϢOiP~5XWѼ2;L ebW@! >?w0=e'9oTn)Gpk4.zm<'XQ[IP,J <8\pC*&HQXJ8h,Pa&Vzd7,[zqEY/ aptYuI4M} Gs)rR6c5kܭ 6H 6A56zHF{:1vQZv+<_iX <TI<^B< B= N"79Ou<W?&QxcуI5@6P@SLiտ9;F gx%!Q$LLp3cJg;^!<eWaLӨ+A`|h!!TLM0-;Gu2OD 9= a&A5vwPGj#~&$2R'yaP aȘؙ`*AvQQL>?^v(RR=|%g!j ;RNc㎾COeZ|T^5/8g 4Z.Kg=cNZ-˶hnSӌmx\bI~AJe\[ڕ}Ƃ7;d^=L/UGQk+ `_44j"Lwj-ko&KPHk nQĢlq'J2- `o a0n9XaH2n<n~?e#j!a>!rj7 !Vg-:z0Y$A۾RtV8HsYwP[>u8*vh*Mf7#Q$޷[z~La$x.vɧh뉧d+x^ʶ{kfUU7VnoD"y1F-<[o+xΚe똜Ϳd7>;ϙ20t\Xvaqp<زh'3PLaw'l-S^ 2ބ>` ( `DD)bvfa-!.%S7\'dIlUL󗳥lqB붣䧵j$qk<rG,RC*e3u ف([!zvo7C=)0[уןy1}^~H`z۳]Tݸ͍YIȾw'ÆFg NZƋadi5҄* dt(W^'XֱiTA=w>kVB0ƲG:{?<bC kA3Do_@Zy۫8v.(,fڷy ^8*ބNs13ZV>E'U'nv"UDGK]Ѝܠ2맜s DƇC-tvVᘻ`KBIlf4}+\ 8 N9j cGxTsxd$̘>:Hfwn;X Ƌ׈ d&*ֺ&@b I͈(2t")rzFC,)u*<Ц`/_- PHS1 .n@숞Cn;?<az*s0I=(!YjEf20B6?ʳx 1 I8ơG} RW.:&OL]ivV >_<&䃇2NCFh36DǵP f3m0P̴Ie{5N`H\T4mఛF}U '0=M{zyٓs{W4a~(ٸoY$ߝ_|a;F? \UtLp z38_<NUq)l)kf?!PV` vmQ#kdLk Tz"ECRciv)c{Zȧ&5!k9 _O׵8e9́\ڂ.n٤{m>쇳 dM|C$,rTxf課hBYB6ݮ9y4Xt+>[-}? n?u쌃a/3Gek!Jy;-d)7/?z!?u'^d1)'wk5҂D2rGBKiԾ[ogr;PTqQ16ynkdg{M[Hک.޳y,c`V K "O`{7Ν'©(STW ^oroXCz)0u݃{ sq{@?8&챇d<DNTwJ|cDsuI[Re㽍A-Y8S!11gF` å/Y QV)b+V]W<s=#Q+-|y?Fň.ox7fO VÃ,4}8N"`jA9+BDvoȆ"s$6Kk]mvtg6~|bg16h| QA #FYUٜ$qr)9TyNgvNIv+Ʃ(Xh?Oo-h|Y4bP{tjFfa!>~fmS!(V֋3c4Tm+pTQlk2hG0('`QlWO59ic76FU&\Oj滫j<;'—t?q&w?ivbw8%"Eƥ! XG("2Ps |%;yk^)q;@8AW50}(*hpp2o,Xh P-F&yx{ "[email protected]}̯(%\#H;ߧ} =~]e$ x$<v֭ &s#qҀemant2&G+}*_v_6'@2dhe4t(|`dK-).%-ts~ B,&.1nC`1XƨmTʉ0tC{2B94r+_Fٯ'P;T5mS3n@~qXua=LيfF;ACqNƜv%\5VFOR`嫥٭]Ly!H7*} ]folB`>iN?u"J"`Ttwu3E*=.c@[k◒fnw^=п>mS)Nޕo0KS+ pE $eȃw~[<*5yzq }mu$ȭ|jio@ Pg(~KqMM"Ϥ}[fxX"_(Lʫو6Ʒ!+*ejiY &Z8#5o폻GvB6G'l픊48$ pw/[w$vOp##FiHe;}훅%- y`PvFu(4k,% wX?W%;qw!M|k"xk%nNmd0u`r{`pLkƭC#L&ɏ"!pl(qYz<i%O]lƠ# PmT0M>;ӱM -K,m AL^(6<6O;ȓY zTnNt"Lᖺ}(H"`J+p1$gdx|zkÔ @Ny oeM-e6|+y^VV+ 5$䪞cgCՏd#'nüC[w4L9t¨U\vWjGqN$.l!mJkw/!Vzb_R:Y<3<. T{.ft,yZYdaWkrFc Ϫ;pc Ή3C$x D`s YȉP@ҁ-)= Eh+ij\k6)S`6|eL!F]DcP^u~)#'-z*:Ϊ`\(-6w(.wQ;(J"D<o‡Ɨš-H >11(Im|.BnPwWP@wTZrj2젎V kM9Z9c(32Q;.P:,uh5?$䔟üN)TƲB.a;=~2oos$ѰD{A%Q#AE%ꇱ3BGPY r aJRpƌ_B9"PJ,ǝCkh=K'wf˥&Udнk)QrX XRj/E9>GkS*yC,jTѳ,\B`)ʢT{Z_U8VHY5W,0w/[2qTod 7cL"q %1vcʙ]B!n|5J6dEY5BۀSd"+:+(iw 'n\e3M:dnZB;lATsq+As|9DFfRw(ӆP;1sl ⨃/hRn{lS)<RDwI;BaS*Zk%Oj7Lu,s7^t3%FϜOJg)IT- :ڢEG8Jfw)=eh쥔HC[)FIU+]R-U - ? XnmWh|t: PR-%r"o?2ۨaHXz;E˨^W(Kf(deN _&AتHm=Dl)z2d)V2S2mvz3qKz- !6^`$ \r6d'\OtP:@v)8X`K}x*^AI#Z$򥼄aRnF#ӣXH*)o?nf,PlLDxx .~ ;Y|ckbr9A; n:q|VU٬SE) i݌ zVc0P#]stEF DCOqdD#_f7b8qΏԣl,`?р=4}H=-s6JWK9zs?S1ܰ%iɳ<J@aTOiAfwU-iVA"vQ?ro@{4 3aW}vKj99573r+~,1}/,hm]Ne@<R` `c,wh]xk]Y Qkq.\tEklUF8,q k.>UA; R|dS$.m ZFwOGX+Pc=,#&Ϊfr-Wo)bpp4)c`d}ָډ7hL7ѷM4()8*`S̴,P,;_@@tZ t!F>¤wGjZ*<Ƴe\MBȆv$w+NN9md>LP2Ox_#v&+6 rQ\5Qm\àυ,#TSZfH_Hɼ I"Vj^j64 [6 1WW0oA iH{ͺA^}aubZgXa.ߤCt摨sdOx;]fLfXs:Gʨϐ/#jS[``[mdv˖JrxPvoEFqyw}A 05>m:Wz}zF$PY^S$q>D5N>U`é?2J,A3z YP9X1_\&x_ToZJRطQURrM}9⩱;d;&X"N8>:y$DhК[4M"h5ήA:vvO s!x0ՁݐIS?z'nwyXGļg 6W@dKMp?2eSn]n⦱+KZ<ڬ ÿn^\ #>Z@n*@̱}<}Ͱ>4SRg78 Փp_m. ﴣBۅ^g(sOFﶠW {5۞`zhMmXCRHt'(C8@IǗ3B_]7Kɜ[ q3Nʜ|):XATCER΁eQ"oNuAӢN q,Zd FYސp[kt? ',ٮRCSdg^,RJImzꂙ=ۣ>EDWOƀvBxjCR 7dv62h-OC=(ҙ?.U6A(.e6>t/$G~;PRjՌOe{FcdbCx >k=*l+_N  Zӫb)w q;x @Ps\43E{ë#9%%(SG' tA sgﱑ!w ǯJF!>r/Rahz\v"o,Gh"PRݍ71u.g5){؄!J򳥱+-D{;o42641к h?.X6X L_@0j&8am+k4÷ 8Ţ V_46i F9]PֿwR.l0W;c0ŔLSAPH]FB<4w;..IPŒF<`隰)>Kz9 *$iK3<LBL9>fM{pNi8Q8g v P*8QŪcw;W4~Vd.뻣0E. m<sPX%+ 4B{"Z[b3bɆ-[++ZOV \dզq0y3/d_1X=4%}תfJJ4d6\K\ ^iZ3a 0hFR~j(-l^[EQev?f\8`5kWwlv 櫚TJBxH{bO2ȏ y>#|Q~Az uAq|ꊐ#_C'e5 9P -WD~heZ9P\Z\RǑa9#Ĭ1yK^9#Sx'G>D6oM^TR0،m{kO .k(e' ,JYQu [ jtd2C_7,˴Q,>%eZh!ph [qn(a_bcG U2rF,ǐ;9pz_ypE߲/@YQn] [gN3<+EUuwG1ٛ=*t0Gn55w@ iv( µ ~Z־Ebc$79ofibJs|Z[?&v'b 6V y0(bNn'*ڪYѤ-kx^E*ռn oaHoׇ>֔` abxP2$+ gtDuь=f}\-QmmG+L 8͚&7}RhAdZ۷|UC 70u+-(:ߵ9B}#aݑ磴lU4}KoX:64?Esy܆̸ 1N(oͤJ( 1G7߂21NI?(a(I@vYT%:83K&FOǓU J]XӒH1C]pW)}sC[@0G\Xɳ ~Bj7E^o-C F2@-D&R<qMF5zfٷB7LfoyҊ%hkM{MW+s=hҤ^U!/U"KUԄ_A?t(=i7 V`+nz΃>qiWk\@Y5P> >na,VB7Z-8m)\*A$m<rToy]thtz3RJ9_1'{SȤbJ 4 -MuPd7:6VFr@g0QT`*=@|u`!4-FvV9ua[>+C)vxmyfD}xlڥS~" c=&?﵄ߨɪU`qqYE`Qv[ x3cb(AMm*O<V.Nr7-4 u-.o k%JdTyt hNJWS)" cһFBvҜ\Y|)i:#>xu*}PXrL({T ,{>Cpzq'{ET9):̛$d")i񺧄*\DžE8M$i&&6owkq%M}3z!$~Ɍ-`u:TOIbJ!|R[{-nRB!pCAwܴDќZ2/;ykY"_f D +ȹ^)U1 yڧF0n3$w Txނ8'=]GJy].ėbm@B{tg섯wF=R*Яym}?5wI"vOIi |}ClG7F'A ;nc)>}~_ mNRcѤgnJɛ|krV}ޮՇ5<EV*@(1'-\+m jo P<ǂk]0 lB !h 4<Fm87-4N %-~s0q\/AIV^Xsl/!WUGlf[0;CeWu3$X3"sD9-6-f1N f񲯦:/:7fFKEǔ~Al7ݔ-kx@9_T=@ U)YZNڜ4>q%Jugn7(Ccۡs(/*D'Ղ@7‚?pD@J 7f|X×OqNRW6(RΖ[ oBe=ʬVh͕\Ǝri lIqa9(Ymnzr9cXU7"uM"^8T>4g2(Ʀ1mzzX !jFEΛ`J Krһ|{U9϶UZbms8Q7a{$ w9J+猿$@`/~bT=p>WC<~`<y~Vw(-02@߽$ԊWraNn9a򅆊$%[+$5lmnrUZ1򆱼xRbxP&A!ցsV_/vҤ g< qG~Ke@3"hMP}h!$(wWwE#Zi@[ [\$h4Ǘk;dԈM!‡ ` N-iMfU!|]LI#Hs>-r'o8s }>_=i\X7c,@ȕѫ4-Ѕ܊~-\+YaA*d:_˗f> 8Ar+WvGf SDo=)F9Շqj>XXӀp"L#Fw&WQY|i"Lp>xBu$T!0ed*Dgpp"GU'Xx3FJs?0t{AXq)\8_\7 f-Y'+b8,_>TQ0 > UqzQIZZ@[t|^U{WO#6$g_ԭ tw'%[d{6zzEsWBDfnf.FFgC@}eO@;T^罈ɽ ![%VpMyŎ Ko/e g; b ƊB*>6޼BSWЖI:𱄹Mo %zKeߦBOTQn!b.mE,0yƹAhrN7 B1pdQ4Vz=2xLD]t@ebvb|Z*㾑/m$ƭ+JIHTʐZ/N.c#@iZ +Y&<Ƴ4N";f։W%mcd^U46P,FApg=%'0L7rp_Y : SU,~&rf/z_-arF6 '/xɅ#u\11/MW)uh!D氐3D+[٬r,6̨a h_|gaH<;=0xˤ@=%<3`/.)=6Ua>s/J}O@]z܋})"@Gaq8[#M D47󥥰dEd꣏(_p-O?NF_bf>~TV6q)'XUw.#Kŵ_:XE|`L㘐~3^o2ZX~ޗxa3[}~etP]e;\_9Vk‡`e1$4v`Ƀwj/bӵ+cȥҪvn@u&ɼ3Qn4\Ȟޢ(Du{Yx3v$}AR'9Doi_{;5xX[N袔NъȀk- `A&_OtxRԘY.Bn=~ϨwkHR7Bl󘓯p!I JH.Pw?hx+2>'z?jS73-`CpWթS,P&i{ubN'oUx󮟾G=s+q󰊰_3 ^_Dp[}GĿ?lP$#\: ^Uu@`Opp "EVp,yVZІ*wN[50y2gy],x/ 7}$02w74AStuC[tM ~E6bB(lGd{+FosmYYtYy*7\Rk#&DOSez}-':6\hopy5hxࠀPڥF۠ww_ ݵjX]yItƺ'gh[(NwLLL(Z3Xy_2},J{ ;K#yӭ |E~|m46+ Jh gpZhv#hb@}I.l W˂€wj-'v]y|[لgnOր^P7)Ρ}x*īfD9BHƊTmweک</`6%F<m k0; eBƱqIn|CN; n#l%\X#wAs|7nz~2( ,G:ݖm uh)6>bB}j *ϯ+-mt˘_,Z++?F=s*)hYON8;2vEvN8V7LEkel~eCr8D KWʣ318% ݼCwlԆJ3?A"柚rJZB-8!ᩣզɆB';DH'&uE:Z:evAxI<ϗFLN]ЦvfṬoO|PMX,{KQTӪ^MR RP˄՛}R+>zTTQv]ipyη)A_+S *\ YrZb ?\DePbJ玧"W:*cVE6ȟ ;l.M7eAu 4vY'[2eE>Dg ` lrt蚵%o DߧnSxN"M9{qȦfʯ7W:eº+rin˺(6k5@0:wJHmzYU$|b&{Ӝ 9 e};I?>Eo) e~Y/[pO~DȒEd}I)VS`nāX)9􁆣L%0J^FRNy { OUO HetkY%jrxH?T,s\#׵D]}l톍r%m􏻝 ivkrR!UW#TKt8ۮN})HKΏNǯ WP hLo`{kGW2 V$AMYjYp!Hs؞СE'bjANtr26*l!*vIƦ]r=iU#&:׾8(Z>.8`NJ:_4]DX;8wiG~n+ c`؆*=ҚI Nԉ2:;SH][ni ]xLO-MWCʴH&*@v<Z_Fˈm$n`~@)%l-FQn#*%۶N;%]"pL? ?Ս] )k%R$JSBB6Wp3 C[H>_c]>(ݼ\/fJ*]kʔ _QXC[RH'ui=9SFUߕeEx" }[kd~3Τi!}=ڎ$zϗ]'~bsCI1[N <Y ,c@%1 x 4[}-A_Ak/vn҈7 '@>iH⢼^v6g8C.ƇGZz tjlc|jF6Hi5B8W] iʬG~P^ye=⛋&O$pޢu:dQGƉ)}_|0ɉ{ z3h)U%Vp+j08Lb5AW+ 5!s(5,BCö[X0 ԧ-'Ɓ5tU^/1pOAZ}R0*DiXR6_F~^1<t gANj@2XdQ׎Zԥd2@56X64HFXAJ8Qx/ Y@W,9p؀>h5l7=`g:ݥ1 ;~'{S ?:+HLD+50,SYAG"tDO)Nl)=HF?Z/Ye1;9I{;ŵ5II`9Jh>V YT8MUQЇbx_@U{WܑzgfZjBcq[uyYC=3X3ga\B߻ܮc˨7ye\o:D(@.p4`), ?61~dc FSڴ\?omSTJCQ9Kwo `Nv_By <0vvCJBKyDc}tZIke<i|@PO 3Ur}ȇlMT±_qMe "$|}KH٭7"`3B7. ɫ;{@k)9!FS[NF1<R[ +`W/SaaoEzvN?4kF Xozd,n# @Lo*y4M" [ ȧ~ 1ogS `'jw %wF#{tdf̈tIV)v)AAvc]cpd:$ ]emfV^iû[giʖ]Q-tG>8'O0 \ܬBnW#gOJg&+PY:o&zYFt3ʊ+\܃VޮقI΃c*,SABƂ* DFvᬘ6ˋIM9yD8 ؚ>[U[&bgnZe7G)$L7W9:*дے9횔**o5t;dߵBT],C<mI=W7W ʺd**b})ױ&=Q2T^IcA]IxqW@@[)~ocY_ҹ:^z%pfU'є;(mN?` Uq15x\Jq'sk2 V̪\՗ :fxg0zO|8]~:~nSf tT~c 71X0S~+QvT~EK?ETir9}AopaUsYwݮd&џB~q㭨/^fMyf;άƑȤMx6f~Deu?Ix'^!8<,5 MAƟ(Ƒ_!͘#^um)A[ oq-`tAPb$p!M41!1 /3<!SD8Yz]=r[jNAhK4PvOoD0FgZk=<݅-K`)8YTlKW+]BY%IkLq+yh^_'P%]ZGBZloR)M)1,ѭyS"A6IƳ4'˜Vo8y֘8K"yW OP+ZoH@f,2E H#Z1NP` ]_v DCa_Xcl})V1 b H/r(R3="bgp3woA1 c%א|S_*Y5eh(W>meժDɫ''imeIԭZ[TP8Οp!ꑪʡ\pDtáH,Mc v[T t_b\wy `@';h2S)w|,!:+Fh(c??LhӒe%}P .gXi~,8ih|+HŔŐio=Fx˺N‹ 2aS9U;AkT&[ր?soĵzu3s\we#m)Xk=f+qF :JU]$',OLQ6[rKzH|7eG w5ې E* d8WI?<!$ *\R&o63j:y !:s<'R]*ֽ3 HXM{eZ+5x{BXKrGg7 kZ(? &?UfǷ_pZN8AiF +bDHiJ*q^!Rc_WA-K 1"Uי5n)z"Fܷt?KJL%waWn_tQ&\;oERޞ>#40kg 3jQ&-Fh̏-h31cJZu!Xsl ,E!ŔNs~$ϬwZS7]aTo{Q>74`vZRl։@\Tn )W](̲Ɩ+T:pz P/Bbo8h-|ڦOv :! à#fv!UvU~==oC\XwPC'81 >OK#zRt^CI <Q݂<bK8H!(Mؠnv"#5FH 2LC&n-P ofN7lH~f6w3)m<t$ @C5T=#4}Q8EЭ?1;ڦ:|C4a0N,y(IR EO W"Ri;F# i4kLd$QHŽ|uo1e|IČ3_B*<LݙRO)ݥN^ICSt6׮@'rTk,U'`<5A^Lآ{e(ƒ0\ΰwK2e`ځқ 7r^vfBkCd-8 =gignȪn kѭOJ`d mx8zo2ܑh$naRٽp ]Ȃh-J:ޥstS*߸^?v܍|,CEUza5w Bju^h{s5A ~T|c bO0dQʼn'<C4VQ O:Bex~gLȰ 'O}F݆\.!XYRK0SfAS;FZڧlZ Ns 2=AT$JxnA6kB2\L7^Z&KQ)ż]aić(5bzEv;f-`B@Gg47]UWG3%uD[)MGw0C.7M* &HU-(ܲ!Gmˇ#2 Q^T%F5lo!/upf^Qlc"_66wl+* $c,1ȣ)tߦ n-$iĂƑ[K[ăayҊgfnn2%2<b>t_ŎLKfu :Ҟ$k$V .Bд;Lj}MN2{1cJ 'b[{jTL<[$.>`M))K떫WNl#F⁺P/BҝFiz秒0ªV7'UG1[ہ`pb(VP¶TݵeX+u٧Ǥxm 'J -!+NG #ʸ.9IEInt)I4XI i*iD>.2QL]Lbmk>gj*-h|_/O`7,!%{ F6ϯ1n\ʵ(EHX0fVh+; A0jt=b!cccm X8jx__l<^?/FNwWVdg@"(Tx$F)TʬN-1>TU*Rئ qF >W;^ hԍYe2q04Νh^<.p *~&mT2B&0!~X Щi<e^0U%B[jx&VN.\ףT+OKBGnrbZ!++*95-e[[1?UI\OI]4pCҕ^X>Z55⃬B6u#V=V[%@FݴMrc*܉y+4JgQˈ $Y@WHM wYS]KN"Is>{1(dIO@Y=lZAC֨P ïzYVx6<ΝaX\ԁ? R۠0PNbHګaS 92jQl$1?e{NG*s4z2G`Su0u[o~U.-!8'Xx]T d5+B|nP;E-l6K}s{E{a㺆+*} mA%'_Fb0 LbIcJ?mx{q^-˵ 謕6 FFOl&:s=}zΞ R/[ 2?׈pYz٦m\ %k"MubiQ7C:hk"%'sr|97P+lt[ 0Yq*J5ro{`<OHU^nn#u  BΡTѐTB- L-:\9(qͭT[5!N@@r0r?]B<}t)r?FM. }:*t̛W㏥Ok?(ܷPľC3 dV-1Hco xm mJO\#C. \.R;o4`b$MTV:>{`emq0quE AF\t CABOΛ6q8t'SWN͇\Σ =<z)-V0 Ѧ]{2Ý,͊o_h %9`jVj!HnV6 .Eh.)?+q[s㲅a۪ebDo7-dQFE|$5t| ?ݕ%Xe^j ;OvAYVtKRZv 2Tx} ߿S/a[zh=̑ ګ:z֊gQҽVVL_ Lo v-=UlsE-fH"Yqa($چ| h@f.Rm2b073A͖Z`jSuB`6# qڤJ >il>u|^߮Gr72qO1$tU\=es WC߂/_ȳ$ r9eiPPg C o:7q1 ԔӤ2 ^HQv R f01QNulT3 [y@u=*=Z®rnlq:W9'Q I1#TQ Fg3Yƅ!6yTumk_:D;d}F Y.H-_&%ivs'穅^)Wkxh5k%t*= 잺SfM1`*Q6|4oʗt,UP9NBx, yMƱo@.-N~62YP ּ9#s58tm,{6_=R8}"ܼ4HNGxMi: ux秸Nd!<}MkFyО|ÇJT<f4th9$M{ X= V[ Oc)g݉=6NQ\]9 rt?-!swY&pƞ$Bt$UYԗ}+}BWLdz.it&BYPpx.9H.\ NqrOI٢4]!s"4J9l_J? ՕM!p2u-)O 8YAG3~PaO?Ň4a FSW.!ELT(K"BTǴ&k nsT|JҘ!iy.V'eVe{Wt,~m`Sdܿ/J S*8߰,hݥ<^zip0ag]p//,ڼrNM[t] i6sXDoFnRlRv.vل\*azUg\>Q_ <zUydž.Bæ%i{'^6B᳠C(i)QP=zN ]|L΃f"@W?:V (ۿ7)a8h{+reN|XntȾMMͶD_G5-pG bg ! h&!,kZNKKY4 g>VOl5@dvή]Zr}=3$1mJ2t"@}'u,NJfZl[lNɵ_9^7w nu1O0o-P~k!+F,Ѐ>Z5Bc ɋ^H{[i8 eV%"!ڞ}jɆ^|s $>Ճb/y¡HiJh a"e5UO"c*Kσ=ݔ rMg.၀Q`y<(},Zlj{0v5g2lю}?[Z OC(D⭗V' ݒK둴ktY9 "ϴؐo"E8KtʵYDtDZcBdy |z4ʲ2SS&TMF,Vq6gz ^UGӐ2[<%y럪eh AerK,=P6T<햸eQOz5=kIC~guO4zC# V O8E\O8."f%6!7GɊBP w."mIS*w +;n5JKLà [M)Ye" q/5MZBwc.biG:jN߿/Z#:&$7 4x s/`FX.0f}cJKX/MΝ(@Ð#.'4Qˮ2qX-W#o5aJ.bO_=穤46M'CI>gNw|8{KQx|ӛ>åR[TfY44?u1񊀵@~.BvEnލ+bSPD'ä.c]ųq`@2Eo.N|V{\I}"}M-S,yN0|AB$IuOso&VPiP{ih}erVP V~_U;[+Y={'"ׄvmc1I`Rwe[z;~Tnf2HWjDouOGlob5XZ#ylM3,86!_BNIY@4Ts˕D_\yuqUJ5ߗq 4@/N۶P{f>RM<M&!dcƛY0M2tNңel~Lr׈OHf v_]h[ -me<)S.DaY$dˊ(,6gsPkL[OS;4w*E4^.(2VސR-ZUY1*"M0^)yAyg`%m9EZ`]YV鐺UrLOC̜@sP!>UW̬VęLyBU&`'Z;^N-'i"G̼@|ҙ2׷<t"C%-/G ]|̆ۗ`{:GSUbF#PIhV[;0R_!u˾0;%M8` . y3vKi ~׈XB`7p@豛5P ^uSN?v"Be#gvPzH D^y&m|V;"e{fdoQ_Pն=^ A]X8^uHI&dPO$ާJ^N{3&!Ʊ|BSM`ƎXAz9!tӷ1桇JRu<LAdX@H$iK1Y  U9lE*K}`SmM,x}֣j\Ix(|$8 *{U7˴UoahG C+~o$m nfIUFV-H#bvY)Z[=U6k *GA-N_2 О5/>BO+t|J#Q/!I4zSX*)7Wx)k:"&Ѓ o絩cK5E_J9!SjQ A`V{V0jH^pS&X0e ,wHϿۯpXXoMi#,Alƈ~z^Y6R|WeEq\2P"ŅÌ'1{g^[L(H8%c\@#/̩,pH}f%d{Z ~obYreFPߡwqJ<\-]tY[5>話e<5%7tdKMxI$.XۚK5zw@XkLTiFh|ƫl EH{ʯVxs0/d'5?@#ִ4e)RKeLTfpJS<s[Po#^ }vRw5$TyP&`KEߤ8gUpO:_(UmHe B;$M _`t[Gq enjs$"Rmr딠UR]n&.FIat)yGiJTV'aPgG<B's_Z\>X컸&#8vP(7XuN5QJFj-pB&,4ZZ~s^_X`cJ[+Sb5MMD>82K+Kd6В&ې'?ɼ į9/O'ڲD ?Jql " xR h N}P~/Jbb9YBN*D_HK@f̤Db|-Qz."m8erBPA@]xO. Ec̻WKy*4Ѫ:͂n$jz=p]CCJY|H _$<4'&uz% p\rNR Vr%Egl.!nޖ JDb2Qzx=uB-XZ@SS{<O5#?`ѥt;"`Yd@u\u<A&Ů)͊iND(,&H۩E\^-1 L?CkƓ)'k1gp%8x*CFB= 2Aw PZa̐ÚC72x8m۠8 H;8*"TBYᣏ+ ;n/Gb*,>Ƌg1ץA'DX/p }F*&A4ihÖET` x_G v "Oɳ c<HGv]6[.jlzJTY="I*HnK͠ S#rcK^L[$mvyP.LxVsGP!UMmH)Q)DP*lۯug<N9S:ux8"j$*.S6qv8~b[Psu [\0 6m؝s])bN31$Ӗ*`T ;cr5zƱrb$ Kg䯰,&:P$i]1ia"L.'o'kORO$+37lAuZpvCmUZg*MK|çFno+]x>n<?f 3uuGiUiCPOB xe'M@DtJYC"'[{d$Dn-` q鄇!i<cd̛ n_{6szIt \`CXBK>ve'vNHnٟIQlEctfdxlG2IlBQQvL>0eDZ)=zvԯ v뵏4ۤe8]HJue\l=CfW c-q4*VQ~, A/S-w1p<w:9B@rΥfjBb=zäI;+x[ts &Ĵ13͔`FξLT1G)ʑd3E+hꋐ:f^XȢ1G{GGV‘I͈Tw:m(`1Esh*]/"|r4W\.d@}eԃ2{ T1d⃦h@R_ۄqȃ Ჵ6+\'ϗEg)vRzɴVBp R-A՜ZtLg7ױR907/)J38ͳ <vG^v Y{r5| "h@+ Ca xF=7dBbۙ¨ke;co>-3˅MBk!Y/v.V@6oNg|#e@ 9X,Sظ7~j?ꨢ\ISĹBXWH^ iL{T<fг^0k;8FSg FQ!6Y_uw;qj"}&aԾKfUB;Ei$T_ {钄jAI& d_x}k*o NDc-bAR||.?d:3XSu-c =[Uk=F\rDh`\3FA[F2إQvQ9 ђ&B7j4_8C{Eʭ$ t4WH Ό|Fh&=aHu #5HvZK(y!)2pLy2 Lx.9'X;^P!R6.aQ4P¶t@Qx0=7 (#\X]5{ X!tޒ"ZThzI']Jm:k_1]IuhdB0DN {pzdMJ]DPlL%uK]AY6nuLrDgDlNxF}O狘@PyjRR^._@OZz\)DOGs[4~|ώs, M ՞}}:78qN1|r?7c ,raxx A\yh䔌 *i y,de%n2E*ʆJhG.lcD'3t 3&X6$2InL6>ETbP/F09[Ko=\- կ}i$Cfw-cq_ۥIpc\q1XڀM۽\ZW I$V"9'7 4dO7a& pgwp~Y`٥5ži R# YrAO%D퀊/=ȇ<X@NKga·ĶjW οa5u"H ;|W7Ƥ-"3xjCRQBԽ l׮*a:9ѨT|!zϺm"S#<ێQdj5W UB(VIZM&~B3Aⶭ[/?1BMm?/7fU3"%dҿBK2?<Չ;dr8|`E9) T3j[?؉@ G/y !7?>ҟF5/2 5H mΔ C2?u'l[84H>qNghZC12Ye},텧sCZђ@ufvTsec&B ER;S& 2G%"##eظQO#C~]0;aUU@-5e>jE}B:I(/7b,sbQr8'Hbu(xf]C#>Zlڝl)iD^]GYy҆zӨJJ-/(G ?tKcM$#a8$M #6)6@dPj]`2Ӱ9kvgY)gQGxlkS!2̱Xrn (Zg/ENk1ɯ\q挱={I]^5ݢq'JD_/ c/Ah[}`^ZRly&"bX3 H.+hoLt0CHm(k`L2 y܅LmrQn?s-CnVrz(X8&wn*~ }tы= +wX(n[4LM,x8&wKo ,b*y\O)*>F 4{=>tE∁(U7~ B {'N#7#<yݾr~}h|m_Io'3\.I p'jޚ15`{7NLDTox򵮮""8*nBjaG`Dfʦt"øvL(XgM ' =2OۑRtkz9]Y'#ڏHMRU"PdϚ2.G^a5Vo }ۧt@/)k:#EC7S8d]ڻshC3'7f=ΐ]:GkaȱzXUy'v"_O$M~U&o15ڌ9+NLjm:tCtbK}Wˡ-ʷ)aKx'16p+4w:rן]f(2]'g철`%5/@H>'}g8rj@ 507gbl7BpZWQz!EY_4.>pzi)xi<8/.mg)޿g.Swb<ĕ.Z)4~${UѝKed|r?`n=ڵz|ɉ&'+K8$O8; -Dѻi~V֜3ۦ;AN%Y0zS~ ϝHZ9OglSP(Ӑ|n$fSGѿ̜%jO~(#XDKP'ەR` /g;ChGN{Q;#?]ƾ*ص=siJd:Hg.e1> ۬+ؒS/:(QDDeN\}ohU$u^:xf0#Lgҭjsy&'f% nw=*haj7>-|qb/5h2ZgbS1H7:դwRv 8'~feqpfF#:1&].1=4f9 G: MBRir%)p}7CUo'4ر)D=2,7O"Oe,H$۸bAuQOFwW"VQ⟒`+Vu]oWPGPS}ܓ6Y-Nϧ0bEPxC[kTO { ^~qN!\"6r d_XpILUXZ%bZO H4<y%l_a&B@<eJne>T|BNpc"g17D4JEsY?r#J]mWtXk, vP)|}&E b3x{\o^ʗg(xz9&,5,B"|Fl=3t7Wr fɭ/orpS0lуEDUq7^XoeHlݙ=J 0u[seE]=ט953]8_0ős({..uL qcjf찘'';I'ԇ^?hV97R<JMO=.-xLr׵c\"AZ+2wp9e2.=^3y;{ +A 2{U+]b3-ķjqTL)W|\ʸ=2(, ,b,IaFȧB0SΥCu]# c?Eӥl5'L%Q4Ϝ6<(pۦ-cӥebcNʭO1sDڙYahxHP!/y[qĵҢ^v&}vW_ݲ[7MLviwo/!3N^Obشr5Z3iO ȁCitzrf^0U#}OkSG Y.f +vܛbd*ԃads袔<5ɣ?WXG`frehp.AǪ[#=?(ìo vٶPVO{α^mAaxKZ`tx`+zj <܎ȷ."#ӨA%ժ`<S3eaE|C1* \/Sژg_>JLվή QTU3Hy4r&5QWW>T/vpWavpȆ%amCg Aa-)Yң~S]T -<'<ZI 'n** )r63-&\Q^ɶu}*ED'\ۆ'?5mP!9[n!#BL)Ǽ{$~LqM7Z j1Α!_t26]WR] ͓]Jbgć&(B׽${(tc^rпK6Rӏ#k:)U cX2VRDFg!N5+„`sתґ+bemJ9^MLk0q`y%GnϵxP_ψBVǤKNOOЯ$Q>38r1헸FuUhI%K>1G4 D&C d8Pd ⫝0GQ`c/9V;z 74X[sj)Z' ,{.GPni|^2l7~g82%L"P5'c&0ƃ;0Y6Ζ>V>˗|&bsE.f]0q+; UxFRy,5$l&ܺMG./ 2C8jb(۶{WQcRi/((0`]FRd"ɭ&)J9brvy}XmnSR"'&pgr,~}VCm>- ,I8>qG2V\_+EvcaŁeQsT0nPF2x}^卣$?\B^D~FS~$usaq=|(LE/fB<rwd%.hhayYc.$4;M#HxCҿ{CuV}44}~! ?#w;=r w$Yp Ӻ>Ej2^l_m(5y^ߍB807G&Τڀ0fGբF!t^ }(ts6Oﴡ(eWT̓'c_NZO8Ͻ2ҷ-UUl2(Y7d)P|J->5n#]o4Dž:\OVgcKn%l]7F @ڳ<5< t;IA4V3{p*4H8A+lХ$o2|`6o\gakRgQ@1c ,vAMh+VPo>uB4V`s-ŽFRݯ=<IyN+&jb 6fKj}TuS.9fMpN[.?) Ƹ I 8`sUVP 9ՉGd̈DIv0zr@iZ M*Ŗ|y#+:aO5j8&\BS_<ao '/-tǓg q+} G2;#7Z)"~Rո<7_U4E.N3^AZ%#&r-(ϼy50u&dޕ'D*4xk <t9=C4LR^LX ;z) yJgiTS0;gWڨ..,폩M2m>UQ9ԙ\_%EHvFԩ4<֞ ayi'A;/^D#YF$̆agsewSNSv5b$pQ<^Jkf|.~>ܹ=Օ`A`Ίe7SyB|Un ቇH!frN}?`9=HӫUR2kt DنkSM.ߥlU:ߔcBڱQ<&Q1}Y)8`Y#wa"z9əY7鮊$gQhж:DP4Cm٠bI3<1yCv,b»Uc 4 mrjrI_haY9ig3 TgM.$,J?sZ]2VH6<G"SJ1^t|Tgsred Lz|u}92/ nU{s_ݾ+ңM¾1OGfms&;3DZL?3r$ǿI\S9ktŴv\`mڛ\nijW<45$T-8Qg* 1͑-CwIwmC -pt DYANÐ|Vp2WAD6y,?T79?\];ٰ~$ vcj 4'ylTյÔ+(1@6pciDN4L<5svfPE,v(?RCڥb49&Co=[BNCWcȴξRV&XE&E<$Gp auC<Ǽk*Y|ݜ_pw +.P!Os`>+^h2Qg GbچqD4{V@ 7`ɇuimC&XK`.9QX4^oe87P,fO;E%&J>C~J 5uu#8\d^O1/wټy&~YgGFQX%,]FL'<Jm &3ֵy[ݥ$>:>OKB+TrN% ނ*=ExǙoަ?m,w["#ZOi7TMM'`\NLLnh̹>Iԅ6n6pzjg<ۑhkLyc?s0.,_ݒ܇h9~!6gi M 1Nqi̩ξ7{9 Csf[V=}ViI.o\?jqy#2Xdq <寤)QN!_׭A7Όߟz<ښ{Ǡ.}搶 MDv(Z+=+Vjk<-,IOKo:h?P>Kr]LKp[[y·UZ+Įɢ9 l%Z冲n-\BGTPҊ/a18\)=}м[A#yM4xf1hS_sՔ7m8D^tq{]uV]TriGVC8u>No1iXElRz&){Ukޝ |JֻiikEmP%GnG.dUa"SUL dE{0ŇBݴ:17򀖴)DmQflQSF3l".X K )U{d֝5O ۰KU1eW*N`.3]l}y$lC+㩘N+i^b( 0I=+ p~Wsh6ujbԋM|<jqWQHmS8~3F6Fn* M}ffopCTw-.X؈~CpAl3b0*bvr 0}0_ʂJGh4ߜ+_>Dz2a<]F@>`Nvmf@ 9՞ಷx xL&` d9;Lczq)IV "$: `=G;%)3V_4}W쵫.%#V}GK#}FkjsjD{M%_%'U ;mv(^/DFѺQ>W8؀WU7^em̍ٿcH&Z-_8博 Zϫ@7))%GjXQXB~jWgc!Yל1d?F@Q`AY5\@ fɺ_ 2̟lp:I$<@ p(שּׁZ]FG{Ԟܕ(H滌I 4Z9; @nǏ QZ{Tۃ< Fm&*jUzﵓry;ATpF&iZ4JK#]+>Ĵi4ʫo`1c !z]!$Ļ;&(oN5q$`M#剓jQJfx3NW-C{d~Ր $){.d^a$}"n6?[yD 1oTv6# 1^%a2^s<yn&ir#bYA/ <.%ڴ9HB?;> jKE0IHTt~K`ZA+Dw+qmmR$gԽ9J$uHWvB&"{ OjU} T@YV10@b{vһL8Xխη+ ;h5&T/zǑAρ(N#\` =-{fg' |- ߚ (?&S0'&>KaNljZ"E+r\cքu8(Ua)jJ[ ̃K cllz1lYqm%@Ź18Z~Hk U!dB5#~Ge-R Q$tE$[0ЦDNˌ@&}yKQIeU`Vj|Mď9/BSj&}e^u!"P8X̫+sb׳C̒SqYn0OqTQ㕡4DI~6A_ch;(8k%LoN Я(\&lo"k!Cv\({`;o#G51DWKtuਭ\ug`I6J!6W~bA=L29!$ϋ/5c0T, Fca(AuOЀY?af'AJ9n(ɼX2 Q`(AO(LU'ܗLdѷհgE^$0+[!?ͶaU4l;HRW2_ET3߹~FRIЛڞ'J4TUKޞ~w[t !6#PjphuV^NvLF(TJ2G_[`! =So tmK˻Lj{ో I~f1/`p.H>zb<Y|D10crLYp a}OJ2.hӡ)JGG.h _y, :r2֖iZ[{bQ  VWm}Mbs5f]'63(ڽx<I!Ѳ/K|5jn07 u,b)ۉM4,k{2YK:2 ZOZnoYsUYk>O>s OeOG7zJp|A+b @M'P\98mDk_,I(ZYù ybJ1pARd4w!nWq+Jl)K?B#+|g5'־k~<^,#ױ̊ޫf$R0輘5NI\W__?{Q` O"C-_ T]`ZQh@ڇ]p VBG j͌:TWܶ.[--Ȝ"WV;&?j( '>4u&1p3KLF@4?u)+N[|KLU,uإNyxNA7ug@M\uhoMsBGUOZVq5vP̙4N}5 Mzt9o#n&vFf#Qp/^N ɮ+R $^\X^Go VŖJ zř"D6NEQuk%Vaq~bgvSӍC&*Uys`Z{MՈB((j~M_0,'[aWsqK6<k)4x%]b4v[WG:1GWc1AJL(pXb'|?3C֥0٥. q=aFi~ɿ*i3D97Fh{%5مF%*zQ󁳖6SC}tK_Vݼ\>n4R&>KȖ8vܐ9GX;_fmR,w&ZDmsND %-ZN߮ؔCFw(C1F~ Fg { 5TYТR jw ,{8u?*p&֫b_ -WdA2\4WQ84PWˈ2rrkb HgрN}g֏-:s 0J>!Xt 8hc(`ij> w`W"<@|M=ӱeƾ] C63<t%,* 3.,楄UB2h&\vRL6GH݆Ie}A;j,$j/0c$|9I9TtU@֣Z5Z(%wBx,몺@y[^+ 2v`S^V`|2BYŵn/0(t_cf==FPl)V-L5%\lF5l~smOa{GL }rG k#2p|OG038ieAb둍$[7sd6jpb,NOc#)mX}b?֋bSK(>.-ċ1b;3>%}E3x'ꀵI\gf˲gЩٮ!;0'ƗBA}윴*Bg_<~$iߌYlå E`%qי !+UܶfVuq _&X1'jȦw'8o3g\^.dÔ?̘:#29i,|]Wī_)R13ݞÔ LotX-%YB9[զmmikƵɿV撚D>|`-TE4ؑW'*6;e^_o[؜u{|T-D.=>$ 8w6hïPG<^2rkpk IZzAQ^=*垏֭:u7L/Wiȃ2+B?sY'8Xc7C7FAZUJ2-Pl-i;"h}ӿ(Di5>4Y 3-= MR-oI58&1z1GXFz#[@=H<Ȓ *;sf1$Xx&p5ՀsLPwBwuGMhhQ0RR~ ^_t,@$bL슻lxfS֏.# 52Q=2s3GpA{Qnu'zpXͲӮ4^*cE97f&z6/uKw氧z?]I(@ϑ` 0Ndrl!+q9aSYj\T)kY>Í2uA!rqhJ3/ѓ̜:W5gN'ĺFyj ӿZwzMsgѰŒS/\lH Y5 %4:%ԦdIt Hj4G4=Tw:329rT)ꭑ@_љ#INwZ`YXsRQZ f4 SXX"%@ngq}xW2oix^cr2Hyi-LvTL{R!JEr?PC9\R{|i N{tQaa"#?w3dOs.כ럒PDbi54JA[M}тǨ>,873n`W8 w2dXC1*yF,2gXO{y̸F`J3ىyAbU}\W7NPv%V1=.dC}Nq;rrc?U׸w<|Nqv>lB͎FH9PƒQ]'&P&>e>(P !J㴳-1tԴnadPvA+ďg 18,X\RM)6>*fe i;UF3BcL((l}CWӖ0&_s*`> ˎMA%X 6~3 Z&Ga _!t(uy݁b o%DjKY.-(.C>CFA < /kmvf Ķv> JƌK F%;oh{= v.tQU&Y_+K]Dw2ptX)F-2~`1nGN6LJ$ 82M!6s F5*'eΒWT' jJ ̶<iN-RX~NlH|y)A1ϱH/ ;=܍a57B+ . ؍RiyC Ne7b zx(eZi)l+QI =2w8}dq qdm&%~W 3nTxVSZFZu.a|:#vPE&欀Qo vS,on9IًC%dS#%j2#vvYp>}\X8:ءѩc]\O"#P1<6 'ix}0a6Jʀ(R+#Ҏ^BR;7dLB)xvCYڱO{8h4=Ҵ$R2:WZ'SH(LHY44"O?yD%w\JZCuoL7:(|OeKJ }/wIڤ)}8 q@ؾ EsUB\/ېZܰQBv_5y)9M':Q?LH ; }WsM)A3T(`m6pSbbmυ- ĵ]#?3ꄈzSN17VƟu3VQ$,ד L0)6!RorncE+'+CSS<^5<\dcn D_:NWb)(I${f=,qO(a|l4La18" `UeP e6oD 'Ʒ\h|3plLCTtFDx兆75[`kALmam}@ӔӾD$䵗:y/]FToD,mw>'N &{w⑟lMU?RZ aG>H@eqv+`VE  WN QՌa2 XdE,2X#KTZf[g4E}g0mKSjW0֯.3ӣU Pt_Z)Nc!Ig;346+(liٶ xNOQHi~KŘ4TYaW @Y(57R~)9ns^33Ac~5ڽM\k1SU}cgtnfrF5ɾh1r={Z *aSTF_\^!O gpV4y]aCv8m6 %vc>63`'K!n9{h'Vl2T<(AWl5h`k5Ztr!y-ɇFOFJE(dITfY@Suk <z*=JQ#a^Х5 <^.V-v/ zp.C]W2!]ְ H*65a7uu6u'= Š;GbB'&I(GIN|_’Q"X{ުG}?͛c>f50pIO~VeOmrMvh{f'=?NROlC)2YO˰E}kS_˭-e©dtJEuĽʨT G]ՉXǑ۰5l6J=L(3ڃz49@Y4875:APgݿa<5,~'A{V#:ah`aʧ>{O SNkX$ @Q[j7K+]ԹHnt+ ^6.UIzBH^ |L+GdQ # LHd)`Y]ЂqbG8#r daԠ'S㹓 J'K={'7Tvъ+$U߾OBiI.DzcUov<?re#4ɠlǝ7ă5eEY`9 aXb %"#.m<C>|$%]St3~Uz mu:r_r_D/-DHnl_|I4-ü }: ̈ذ-Źe< .%*#%!]-8$XL)I ْmsbQ(u#ߡ?nʠmקD]>n"aotp6x|!fКE rLB|r4"dR۰쮐=jܵ^WOѷX^|J>MOW}lU|ҧ!lyztG+F'F+ ST\Jl0n K'-ܜhyGRi֨H*+%'l.L_ƌ|"Sکvk,kCEڟe(;#u3sP^?%'v$*+Q.Eٞ>4/tzeYWHG]LJ4?LsIb>}ޅUch˻v0_N.{}!%d7[JTҙF~O)jOʷfӬfDZm7%' ;QzX!or^ rcn"T`*'|<m ڳrT[Vݯc?{b^χ);OG<@ j~x!QN szLTzԱsmz."ibtPjpLqr21c3#.$\E.5nA䷌w-WlLK߾<KK<@OZ &CN5YO6=rtXwm)hE0g֧}0lS|ƦgZݓ4j5lo%7Z>}>70XP19W '5ͬ@ÿH!&e{\, ݕuh$ B8J}ݩ৐mu&N7H:QrO•򧔀>xA!ܶm A-O6e¬,vħX 4`ͥ3¬DhB(&:_.Hk3!SQX.5ڑs][# Xw7w#lЈSG )n5)-];^"ٲmQDP?R"[z)ǒ:. HO@fye1}n>k0vxr' UZGR%1p%Rf1 )K+:2IkilhwǽlI1Uus&07f,wJ׫92sXb)?=ؒbbi=z.)G8j0E5Ú[ "c> Ӊ$MsaMPu ʱ<*DŽFy-&]<FBhFw94C x~C.*͓OŢH xgdW!9A+iGwEg ~FiI ]vޢG.]a`솋Ր/ ߹H_KaT&j< #D|*E3UgMAxDb>EL!~,OW_)d9A_)qYRٖEo٣<f,Pj*emIz|yB8XM|!y΁٨?)9*gb7Y75jo ^BDї=ִLBs#ݠVf,S); #QX*k.#BRIv'e.7%u Yc[Bm|n%0Ľ*utW{z&SP!V\W4t$#"c}54yjdupH) 3~.n43s(a߲YpȏzIcp9۰܅3wxvY4š!Y+ʗCiwؒX.<HS̟M;~Jb>b#)F8@No"νAV+T1 j;2Xn{ ߴ{mGVzʬ5ӭ!%iXHBri{rͺIVxٝJd ``ĭj mNh=g~?~?(zFV`ޛ*iH֗atTyLXC3R6չ-֚k UsAD/([e]#JLN< qBo`Nlx_[f.ZV쒙0~ :{ ]x|WqRs/S5HU7f.10>O[TAq{%F"泾-WabʄQ]k ;V|i6~ydR t# 7;|@@!Bpl#=w.As)K h.gCS>&Z*O9sx׏Jѧ~[-;2rT@o'" &6"`NAi-|,c_V꜐3=3\ǃ= ԣvc`kR1LL;PMxhCZ 0[W)n;PADROeSc<m~H_ d7N?a QBB|GŶ'%;W6ȂMOy: qG5lqs6geU9}`n!6h4MyV8M7<4'2}+{Y\ѢhXAT:pD{bbuf'I'0g-R/5l4yt{', Zj(sMg{YU:Oys@r 0IVXg&wd W!@-hؿܔd@WIY8瓌;vs̸sadop<&0_]32O:N9C}> (z<tmV*;˭\M1{ IG]\^R|meLN~ 1ӶXh8"ֺSJt;Uz>.@ys/jnL -!K朗nʤU&zo*A\|=[n}[C/_Nǰ g׮(_,;ޥĸ7U<4<s2/\PF͙j4 Ҏw Ѩ1 );Vԓ輺S*jC"?f;kje=]9%64_<"0d FGѲu*ָM +EQ!J^RJ) E=lzA!auc&Of^ ΆhrG[Fosp1x7M aOZ D ?EEv%Х6g[68] a4< inսLnl 9ep]!$*" <i^LJUX;@-r]2F K@+UJ3p,:SJ*Vn;jDWrpumg)\խ=Y@J7*^ KdPQgZF +57~*3ky5ANEbCΏA @6K:2iBFjFDaEv 4$2c8G N-whw*!-j˰y`5nԠܓ|9CB hRǻXs<ʑ͟jN{,tM~{*ƔWZʃMX1cwQu@W>y"Κ?"Y3rE7 :VKPPfmBB%,䟴Ub[X)VK8j8Ul䲪~gP1};?KL! r9ԁZ U;> Wt;kB:.J4j R| iujR o 0QTY-hFv ;@* ^:›d2c8^bM<X8˪F*lryMEZG]I83bMP(^U߀?~>nVhP:0]6B<>O_odةWR~&g[*A"h PJcغ"IȳccӽjޕJwogE0&7BSge"K{A]}syqV?2 rC<7̴<0s7] ' *%Bn pT-? @ nc?gsטbGGWZBHQJsVd/Cn5)a܋pM"tcVU="GIbr+_dx&uLEUo|WtVj uyW>2l 쓟: BOr\["AG&FDž˽j7W2/^*FxY>9qd UW>xRJ6nQբ]*ta4f9?^ PRĺI %E]Fõ$pbGzԚ x&6i_A]G'k^Y>61y(\r"o鳹5 /PzgëA<޹`Ξ4 2/| qGT WȀ5Be4~Tb֑@jQ|p1|BF5Dϗx_Pg,y^ |ǬbZ[O=:д>ΕLhz0[Vc ]&_9|kڲ99OH%>޻\md/O"~VӂW,A[!''"c,h7`XZ瑥N z+SBb8=Vٽ )ed#|y**;P# >>\)bX@`Iޅ1Urp H?;G3z~ a tb&Ӻ!n$|Gw!Mimjeb0-12='q]-(j=D}Pse9-W 4+]hVcO+́jB'Ar6ƙ!8%5]/4շO-$ &42SRW8GZ%SV)\=Ud.-89`"8[gzIVhX4o^-BϷӋJ"|gW28 u?:Qߋ&gG'ȧ %W(w?ΜZ¸#k#<Y?3DsDPTq<eP|7yd$jnקi@z2f 1En}a}r$[x?jXz5K`7փ6ÐwkZ䈭+'}S:0ʬOE(@'FtE0ȣ״22=Ys]9%N GBߠy*_"#2iv/* 'Ǻs ?Ap8[<cP]1f0cH8eG J I=?wQf8H=4)DՐܗ2.?6R[`<˾c뺰<꜃ &$lG7N1ʪ`G4v 5 qO.:\sv;{A~peJ+ƹ?뮂d]"+" 3=VV|*> g{b|e Cga" @UX#+Y ` O0I"pU1$硓AbhqK&v#<Ia4.DH7bg-zMyZř>a2`JOtÙqtI9<h mo5uG4LHҭ2NNT1tjתC7jlhCmDF72RJuȌ%XY~J٥0r2?==oyΐ@^Xi?_(nRvPtwa,"~>)x7l@5KJWԷrMh\rc3k_NZ,xJR+ﰔꌹQO΂0}3c>9? }8ΰ.GӾm^6Γ$ױH~4Y%%d@xQx]<`?Ih!)ѺKc8iDK+5m$+D6@m]l}'ָVB\unM.9ʅ_`n $h˶IA*m8I~(bא !AI#u,݅df&ԅ1S.ؓ+cEfY z+Ţǫ $EiLhL$ɬ*3a ?PGW8o__$%EuHԃ@|kW v4 9ujW0\-V(DF=Q"ӷۑ#oo9q!nRy1GfpՂ.$%ѧua^ OJc1grG߶9٫C^$D4"TvWj/7m f^'ob~P$ ( -A`$qxqAC,Bv)?#PB䔇 6L߮wxJh/LN7ܬZh]OfsGAT[-NQF +4tN@FEOm_|Y8(>,TY{z-nު'_A,%œrV_SXv$z8yCD%w{h6[P`V.Dbrb ^1+h=trNkqϩL\gi{r>yh*^7fC O-r0Nqrr+Ճz|VF&q&ݠNH m@6<&jQ ۸^:B6-_1tSѕxK2c=8`&@ G961;e\Kx7e3n@*?d.Qҟ.ro: M-,"KGB<Atb,l!6W, @BV'NzK_Cv8@k8Rue1E~KGI:ƚ) eZc̈=eC]ʮl4K%9'U3i"%DU#Vh%u˾ r 5TΩ}EH:pql1φ #44bҨ׉I?F(-&9 N(Ҁ7# d/ k}HLJ_IelR6=~+z!Y*&fU[ϲqΐ[I*Ԏm5/i.6 x;xir}h̀CL\cךd멶IT2֖tH%RJ36=죊"cNVp/XLw{H _@{/PA+wfz# TkBZY Q-@•u1WWעgrDž@I;ʱmo 2dWy>ߝ!u@L5cĩ=ͅK&ݹȆť: _݆K]::]h Q$e"d(I.\X*e>cUNWz=zD@'wZp hAz5! 1Iy[YV*gq`'e `\sçkߔ9!}pzF끹]t[ Iڕh4b~&XPB O/N3tg<4HG j0e\2|3 &M]<k4.<YquM"X !s?hB{q Fkc42R{`xPmsd gp$K:myKf͑y,` 㗙lG`5љ}%  |%8YqגtInEU W徂j*0)MseLJOC(uj{~Cv8 3T.Є[{ݴKSǤL!8a&-6aH'o>$D$S7AN 9s'Wp7C]S1<zJb!P'GF&|8 yҕ{O)X7,=Ƭ%&M}UX.FK|^N$lvprOx?[{hv ~>bŜـ?^ߜ/&! הLl?xɩ='jbXۥ7Prvy92>I6xN\(`Q;F !"s^ȴ<Rڼ5]<]>y"Bvإeb饢e_xWӼܩnu2>fh:\4xvd'd;ߞ~ fp$ϠOMn^ j] z_Il7TH7_>n묯 'ҵ5QgT>ufϗ hs.5p'6!%ju*>|U|QIj\vȮl.`ħm<땕v'^ZݫfduX FK dU߳/4.v㝟FG<{`qyK^JOm)Zj.%2 B҅ ܰItԧs ;6{DC\bztn׷^F"jB?۶zj=n)Է>~p3ճ3F)Ňw-՗8:UOaWRo==L\Rpp_jCfzL^5F5؉2I18"˳KR6J2#bFK&L] ܎Ψ5?]IUE/ܞީpڥp$ҦWm͸}TVdPS75]kϕLI5T幕.qܔcM,,w.T |2Vxg9[iMȧr]ǯ6FA E`6Mݱ솑 ڿQJZl۪%٪\gn7Ge 3Oª\g+!~G~LGF˚*&7W{V4l7={&}6bRcQ9[-&(0"þ\/@n80ˡ{W(v\e?j'Ĭuȿm'\vs,\鳵:^kGDA2wX2 C|/؀1{`{YDU0EÀk`!cDegxrآc/}Ղ3#N5;NIf"4N[]%̟k72ܽ4Agf|ׯz%c*@n.MwIΫBxnx &дAea(ǝqMjsGHMS<iGMb}(a XJ;imsjoY%׬ i<//;.4äraG|U5DHkf<W2CKgv$6<mt*O`Hy yL?K:JM$ , ,li.%ai?#GR$iO6jxĴ=>r8QC)5FTl{COZsf\MhQEiˠ'B#{.b W~zJk4qՃcrϘpq\Fl|9qƇ&^U~&tGM92Њ']+OYW j@bR' m#63 rFb$}zZoV 8d~lRPa~yrTM}ޯwXP-L>>dMJj Cc :,SЏɎ ׹&[֑,toѴOk0aˣ%JM8{g%@i!yro~|VsAeɨz8%bEw<Cg*,sZX, Mz`C0ㄸz8+?F ժdЍ?#I!_B"GJ 9Wqz0 |GcCƀ0Kl eyVql D y2~J7&[=#X+Nw~G`Ѝ,~FJ`jmO IByHtTս^<6a  3tocVHxmuPN 1WJ#)c }=ՉCpMvlkA!U|fj30"d2o9;xĉ+x9fz/S/T\xC>?Rl}~+V?0g::Wxwݽ"ЃýB8ȂQJQnV 1Yqh+'/6B̧KJU#|vm)dD5({ yR9HWݽzXU/ ]M_R& ujOjbr$5Y*G󦂶6|')b@[I#']0l$ fe^Dod/ 06M~e|ƾBTC! BAǎ2ښ|бUs].u.I/b7q#C+A;\szL-mN δH|ugh`HBW+Im) u$ܥ?/S!tp='GtTӂUnQu#㑼 ^zj,}WA8Y(0.W@'@w;-*dU&rXDwZh|\Ek:=yߍ?߆GC=g2Э`x )SZ}6:?W#p FcvumHLgiwO@c]@~*jZҹk䘽^2.[h>0RAyEۋʝnR tbƿԍ=P>"K^lR5=B= Lrˀ2QH(u5 ƈLOƼFtc?[9 8]@^>AɐP3n0ԏܧ1rH)J!* 7R$8w_O-_~ٟ]|G_xu #A`3,صWqS@??Q_CWuJz D:^y0_e|ԣ@B2t3%ϜQx;WBVs B B~DAɲV1#TO{h@v C08n&[tݓrr:Z'ߤwx]M (qAbt=+CrM`os81$0PH]]&)5x$͵*Gbu?p*3 {\%+7` Fo ܢY:m ^ '8np u*EP(x̅#%yKc3_Jkn]H$ .T#mD?e!XT0#X&GPz[UjdtmW[d8!q5̨mioZ?(C[䃷& 7T!w3`G 5=Qxoo;4.7닢7DskUZ[UQ}F@鰙p8?X4w%r_ JKoj\eiVҬխ_+DzJ;BaXǜ7*N?F3}?Gf:L'_9NB+VӅljr^&fb.!891 'C|(ڏ7BᎮ ۡ3;e], C.aŸX&xS'9Gaךfv$BѲM11"3@Mmˁ #tHj(vE5SU$LyԛG2Vz'Η)XOD|4'{cdTnl2MMvv 8rwv-d4ZLjUP!)Ulnsq*cb}}>A^~CuR'jrc4oQ =VT؈KnR)88Ԍ{,BJ]CO Šf;ľ^~@U1;TIyI3}\!kHYg("8 5@d*03{]/)߉)nWF$nVjBx3!^!hPZDq|k5\Yu9Mm>:|zSy˕pT1%wЉΩ%w~>@\6[.]Dp5)P5 ; \l82'#tٚD;jntD6cJ͍Fmf众nb ]<WjPfC\=Hg׀ſ;c{YXid׼A{wV%W޽ f3 i8)k&z8!mnhc|"T܃&[V r-;mVtlqa *iaDQӳǥbP9y/F]_ off!L\1} N&=CF{Hӈ T&G}KR?:SGeͶXADo!Ճ<izuZG&G*Gw bIh@\dhӢdJ A qM G%r B).}dطGOΐ=c^#G6m"[|[#ufTQ*- .^<sªc1C K oO?Ubt!L}Xj JE0yYm  w;ƭ^sIU,sxxW!něQ\?rx}eP}F!J^0-py: 40r==7wnd#e,H0d5Ss?-b: .{o3\+'xB!tɈ" b9Z0g_Jr@=dGص &]->33 Ecȿ6"t߻nr!h74g>t"CɻnA3_$.aA n7L lY1\bS`Z Hkk}>oFdn&6g7Pmhjy3[=s߯/F`qJYAY \E ^ޖ1C$~WLh00F4؀K SyiGerK 'TE8LL\]Bՠ05Z:Y!AlfJ$ 8 xP\O(VҘt _::g]jş!kyQ74qLM1 O5Hf_etֽS7T(?庮UMk%~&Ƞg`A{u7ٿl* `@7TQo z$7x gݧ6!&GHwl@|*#cΤguW&MhU ]i%JYF1qzf:La=1f' j?2H h6mEV{\% =ݝ9 P+VqӯS h|?崾X· ;Oz)vwt;;yh;%}g@ϑ\0v$;_d,aE%]/sr[ v,3)˂xTX"lp}xs'WeʿJl%Ϗ7Ego2NV(j"6턳ݳ IoCˁ,/غ R| fv~bX%0īV%S|Nz &-Q mb_<u꧃Gr<9쓑'8l1N#k 0]첂Nʴv%R&zY*Č`Ik[ΔcK>ܰGK`dױЉy Ь Ԏ8 l*֙i)a<";nٗPr0ek,hPh~6_c:'`bvAɴC039x]RHy|S[^gAo?Jt8M<v26=lf&l=0S(b'-z&UY8pEdg#dV,ge32~xy$ [nyL2&Z"h|ɝcܪoRH7~^c-<D)i&AҲJpa=K,3B'[L'V@a 0K=1vJv<FRqN2(6le;vJ/l`9d ,&$Wv:0g NE(PA?uYGTh>'A,)M.()_ -Bb|1QX/m!8p}sr>XEPs?H=_vj@ow}?󠢸@NQQ>h8I ;u)| h]M5VIѬ10)^1 zDzy{jK[ߡK>eK+JtD7&cSH` o< q@9IBD2z%IT>>7E^=},U7́?n$aGSܫMTfZ m'#՝x(0ZK!#(.'IMiB'ʝ0i!|tӭKt ܃}YyX@%P#?e9JQ"uztL)ꆈJmJg^w `ߛ| "w:Q0w3FLYLXFRɊ'\׸ hMDLjUŭuZOd$pyw@͍hv受%od|MW:c8_{kg&Ϫo{jJ](^ZsG?ȑwoA<J/gN|fiӧ_6}JC`T$u-u#"˜3ήG;{ 6e8!St锚p,$0Ps&9O8A8"^4/3,DBVyxsV;y !Mq {u)/Rtg eF*u3B!a.u3Us"94%SOEZI >8!a#(l1\{lRĝ E,4 ֬*^KPPc@AMy̿6d9F/"w64.BkcՓ~!MlN'453! ;I-fKEZ{E lYz0_-én61\ zk>`;h >3|#wTBkbRDPo_ҘƑa V5{A.hUnG`Db"ST|X;*$d2Ug#@-j^;q80 LLڏψjgm4kv:<^d 7lmf<cBZ e¯y + $15_TV)<,6S>8\Ÿṋ!nO *I5y{vOK&<sxAֿŋD%ec*_燴 5Kf Mr | Cw} I)>[['" kP>3(yߒ̅^<FtK6F|;^ք+ZxٰDAJw_>TdDy)EP @[@Eb4x"v$]Lu]XBhlzb)Q lcS~ңęxG\ӗ2a&|N潫DLiS~]tGm[oM6"6R?N%r^i;>9웘E7Rpf#fv0/ ?cyLQ6ݬ)|`7a뷭 G(V*F.G1ovT6w b6|`vDmŠ%m#ld;L/J5d/L0xڹW|Ht~7Bg&]M9CVán{e SQY֡ V*V{]e_UOTU_~r5NBUvC׏Mؒ>gs%fM`<BtuҋK{f\widN`d9谮{nWK.G,v?ӎbȒǯf kSV\,lPbw7'Ezh^* DfT0Rf?xo.ި{)"釴eeӫPo툷O5 E=˥biEy4"eNvyʜ8ڹ <.U-Ra-dh( c녺+naH=HIRqz :'Y."K"^O% e0]I(gYo .ORc@hvq-Yk߈qXГ?+6?}9N h{;x)erR[)*%Q)zU,,qJ6؃||Tmdzذ%xq'g,g@TpO-K?>SfbuJi6;qB_& ,lO\^ȅ~/rB~HN VFLm {-0'DJ% ZF}5W }n 7oRSoퟓ‡'9ի<lO|Mqy3\r#jR۽Ё6*APfX%̌p} ywD&WGHoi"3(Pm~{rT<KKgQ_2`P|=ZejI UwG]6K[}y}~u-5;䎡5d M0I;IQ-:IV3~=C$O2sJ :[[uVx)+ԦŚ+xQa]G9W[w79DMe)0a!w5/,c iJBgDѕwSuWffsLZ ҷ6RȝgBϘ -(:kX}k`sԈsC EFnIva#Z'AXlhU}EB{q)>}v[ ?u(dᚖ_9M7(O|dV1[T3O`Ϩg_/ڏ>r(Z;c!!Y΢Hfv G̃2XAfY4UO6b>e֨ 7'[Qi"rLځsxxms(S(^+wAߘkHYtv6)ێ n;#/`[ 1Ui3Ua`,kM+8cӯ4[J6=?(dMӬZд͛?N=Z,=9OCLz_wS`~i&t^l5iޝ:̎[=ye>YjBonAy?D-]'L {"ͱ|XY.`5ΠjD׵RSLPƗ ҥ ۄuxJ1<$L>rܤ3Tp,TYEI ̌=[H_[ 10Q:{qHc#jI~zd|qz%"~I u.iu|beuc(Tq5Y%{wU*zѠRZYSBŢePCF g~FH#nz ~]0b7h(E̳؅{]maxYi|yhyG,gNr7/Z&e0p^g#Y#C9muDBt#|?VyB #}n㑉;|44R$2/Eb>k&>vs}L 5 Zsĝѥ_tGtIwH%褦dgqK!TTSEx '6FWbUL鞺.!iճ$!m#JBHG9WGjc|KBlCa+is$33nY80{,V'ESI >ww֢ U3AM,i|Q4e)S1:0_S<7:9XcK!6l cj<P ²)$qN<^deV,)So&N#k1o7}έеtf*dXyXZ&/.Mnoi MHspziU2~ۂţ xD5Y^EVZCU4A"]QgнQxi;6k8,eCD3`M Ihcy\6qNC]MֿPTɇf Cdxrwhߖr"b-3Tq 5$A[b '̝jAe 4;Dws v!^ ޥhY<jRaLZye7!.>A=z!I9TWl Ĵo.{@w4M? :1}i9/$=z9 Vq3h >$af>{T6WwuB<PPG{3G?1" 9wLis&sy~ٟJϞsLeۺ 6n% `*ʾƳUMt][=lZ,v<a ;б~+XESPg wU&{v>vYYpD2{@9 f KŎ! @B`Soq(7Cd)YI..F?lΗAT^7D.G~XPGT6d/t`!.3E DE+jaizh}L`N J׬P6և]_+ze^q]ӛPm08 GѬQ_w&T%ٝ+v1 OXrJ5GӍR܆7l'O+@c+tGtBP9_TV2FW6@Jdz{&dPW˼qz3:jIď]YǤ6/fuȋ WHA/:o#}ؾQTvH];SX<T*7R[d^ǐŦb\<+Sy@M# ǬY$xú*fsf,ubnS\: VUL*;e8Gc5S9g)p*horQ?W쥿܅iScq(1=uf+,T#+]0c+ R9@EiOpF8Ŭb*d[a'a&~3 =XQjKa Dv>f A֐3*LCj'.h$~zbOMZz"JnP.]Un͉U[Pd`*qHzH\1!C>fm%D?"QpӋ_@X~\V2 ΕldxZ{@ɂv}Y 2$z h zKޭKqχ+|6eBjpHkt!M3j{wW7]|2n:nAI5 u#Il&bx;l9_[7"f(Shn[acxڄ(nvP813="ni RsU`#ysO6(m0ǵDM}*X!S?]HkxF9t&/]Y.ð Mh^(\1X>| Z5 %'5KuB> PgԨO:_ma"_kf(e;?m5gHM`07oN В=Xsk;3Sl[I{=PF,HsӰO<YVwZ@d=U谄*Ozv`"^wk ?Xffk܁˳4so{evVƭO ޘLMd ;fZ$ϙ|Cw16|^thdg oZU Hݓ70.P1EkeIfu[ZEYkDmMJh7 p#[p<tm1v?)4.:*=֋5iK'!-(hWuStSOO%T^wZoldtNhٌx&KT$\ A_Fnr&8}<ff qZ;NXdIle\VO(.@Ծ}P5$ fćf䪆D=2WNgO-,ih>e!9?`W|W5BI' ?Hhxunђ)Ds%eQOgg<yLx-ma.bM 7D@=<<6oF4qOܑ7wW L8k[=uMD"th]K׭h %`QD;-:Ϯ >1pdT!j82L1J~3G7>nabnBl8)~’T ٰ#)TJ&4Q1Ѫ[I!ׅ_lźu"Gr7 ȶ@&{GX`Ƚ<혮#4=a?l!Vx;Č6])]R̮[Yj/AſfZD8%h qm)k ?vϽ+f~ [ &6ԝȂ>Չ1iCBB nE}]EM:<aujW+/y}b+ˣe6Fc uMkQp1 y?]V5n4hJCNV\{bX`᠖6L V~J'zEj!`?L^VVk -4 o?H m 5wzubo_##%ߒwkZ4NzKvG_`udc o:кBN j]2%|4 80 nzY$:zNZg2We+GV*`48s?"|Y%ÞWS=Xsj=Z}c}djXJ!DP8PKչvT:X!$Y}8M 咗_qZ7sӚb$heZ =_K{=4A -&F*FLqq34IKV}eO˅D\&oP/ I,Q/2_)@̗A7ax&R@ l1 ~lǷ2k"K|~uʤ$UJQp0wճѰAiB]cQ[LFxkС+,Kl.X|z,u#uqYRv|l#mfyDm1/2z=ir7lin.|`e9l4e~%\) (q=L9e ilsq]\glo_=ܦI rY(w=vq]; M:4:oE^(ɖ G n ob c 7Aĉ@_&[1p/2?izJܬ(M 1N y˳wFqu@$[{EwRy4L*f"Mz?<Tq«DеDa\&Y[ ZEM5 U/MJ}?jfaFh"22԰;p"pe Akjx+驄^'=[jtD\;bd%r'B(\PJs"UPJ9臬ߵ<mCJjza3P[oSea1,u~ʌ[Rk@]{!TWu;-Z"¢D_vDLBA]Ϲl*n *Ɩ/[ ?[)z$HprSzV<'HJ4LxiMoӆr%ʚb8ל`aWojKV9҆<ʜwֺTu>__-rzȖH-(fLB~`J _,/|eD"ۂ i6am5OwV{#0"$&ٹj񍅰z'֟,J@e~[ ̧84Hзn2"ׁeFtES3sABa-Q7R(}d {q|P8QU[P@\gmӊ.rkSE1Ykq.g,k,^(RC)t"HC{W,6Ĩ6FJȺGG3v[3{3wq Syckވ;0CN!|D R~EWFEGXd+N#/o?$at5@ $eIP.n+~r#]ص]S oq8%|‡'y>^u1 D_hG|{&WBnd_ұRxy;[LĔ$:+ E% xZp3Wkݬ@:oA=%(.QzÍ3ˑ>bĠ==[̾ 1vGdRd32' ?uH?ނ[9Um s6@f8~hkpKǞ7dJ =+| ͪ&\St !F rT(ͪKC8߫$i yNHDW9n8 alyXUд<.8KRĭE)F߈FFtR C9yVP돛jh5~hLw!+~"4>v_>'*z0*&auK^%sʡLSH:K Xǣߧsqvqe}&FLP%p 8eFGфU5?\K5w&PU@YOXqG9=ѷ|f.Lj_FM@jb'=ly1EOPfl>|I4~NN(?M~=8IRJ+ּ<u$Xu՞?AC"<Ǯj $%X"d:+!;f)Ԍ4&]J]7D 89hm>Mv#S%@*%e~OҜSLdO܁b41|ֳ6vSyO~cQl4[@-o(o{V[#qU0^fVz󞆾I `\9gɀSC.7G1>~W},# ?Q)w=ρeidv: )۷@?3#AeT-ln.ZgȻܟ[j5л񖍝zPʼnձ^ ߟpV/:|>hsZQ6GM =?5=x`4_z#xޑ4UJ*jTɕ";9O$>jOD7 X´ZwYVyg$#ys6փ{4!wmܳ{4ْ uIIj; }P_<?-w%ʛZ"E J'Eo6ëT<g)_୴[ 0RgeHL;I:8WaVKf.KcwCN1s#"<KvR;&ڏPQ)mwpH˙HO6zkU,T63Bga_;Z$D!=^IJ¨c0;4/ͨak\量d]9 d*AmrF?Rp} <p)AĜH_5{/fXןK&ZfOذv|E XKv@\ k,3AMNg.*({sS3]rgƢW{;0=o0RPՂʼn+=ȣS1kwQu=ǙrGm'fUgQᪧñz&u3aG_6,=% %pշ.⑴'Tj8➃#@egYI8B[kҢpnKO% 1H3 ;^ҜNG\Z\BB/C/ =36sz߂ y(\R̗mޣv6¢GE霣\WܶF?eGB^WzLKƟuW[~c/ щ-0 ;;ϻ4x yψXkmbm@߀r0ZzekY.|6",?{l:|2TIzP5( 2T6l(#FR;*&NĸpQag|,û`&l$|ِ+CRq<ekT!BrPN*Z*NV.+sPߣjqD(x:kI8 +Yb)a*ծN[PC,< >S42G~oJ)P()ҘEJ1:IӾe!g,14I))°4Zϙ7|p)  ʏ]?rqqM'w89/EDc)|¿~ZF42ϳURRRڶ dw}h/Mgcs}PŘU>\U 񙰓_|$y,km;UC)m;7_}cS>vB^3^pIﶴƚ@, Rg?wjXDf~6|!Bѵqk't'4ꯗta ƌo^~Ŀ+=ۓO7ƂTU]Sai]i)^Xo? ܬ6[a3Y,uE~=B;(z5`X)!6q(jmU bVZ\ccvPC=?KϚIeQ~^|gODeUɪCr`D%=Y=FY<IfKQTb!T&e#^N!~cp3ۈ^P2}/1/)8XXհn@]qmwۄ)gS-759o!-H"6FG]^& <Lk):䧬t;?'Vus8lƺ>ǜeVe!-Q?RZu)v>p߼Fq9 '%DFc"fb,k%4YwʂۘR3]0Q^2|4UT-ynw]•օ(q<Y&+tso3iJDA9rrʪƺ~|"ٳ=*,.[/ aVU$O0*6b\JV'K9{5P5Jezw  fQ*PEmwg<8O0UIQюn FqsfsdUc/IW h&R! abǽSOy8ǂ#rq`<ܔN*E6`bHL9kO~kB]w@X\M{rˉU{z%BG{,H\"}A*AONȡs7jjKq]ffBa$P?CpQ$jKl=8fqiǗђVմ(wbb&2-\<6qSZNَxa;"-ds0-d~P<){ 1}V ?Mx:9r-H儠TοnyPkGHX^qxNxuIA",C!$LRB Ƃ~/~"R-=24{&qwX> < $G#? =jCm8n97\I6/b0N'Г˼R#AU-\(֎)wz"q 1sL^6h"Hk&eX+ʡhIjo/ /FC|;]efk٣u%18<Vl R k?)( #kr2tŃ]qLU-mǪo{K/\h$ gЌI~}>>I4ϑ 4{v6ٰ Wofd_KX4W}YghjhIU =rjX a;`zj.G~$ťpuPg@_ #pf}+Hgm}j;_D8fOGb1kwΑ<ȹ#.ZM"Y;;¯^!HwL{en{M^gξcV&c;QoW!H @œ#EUӯ6Ea袞[:o Tj}a^r'vFN+튆TИ nw!_p ]Tzӡ4J*`@arM/|pRk\3Jṕaʦ@pq18}#P$9]Xһ#D|`kEE['ocWj0xE.p0`f+!Ԣ7=94XR3Ҡe%4p<̂ ̍6e ƈD2:ZCVœE[+60IXdՍ0wd\zbɶ{~;ܦYapLj?N\Qa3{|+wTâ$zBCI3RFަ Fve<n9$P뼜'uEZ̘;ޔʢEG`#8Al{,LR|Z(QEh6Ƿ݁&(n~?Sge?  vC BwF<CJ䳺-|pnj&gq7PmH~9sAsCӭL;5H^IpzxG:HH#*(w+Aqe0Es!.sUj鲈Sa%K=wmP1뫕[)~IJoFVѦAPF,2g7~N:RU^?S|Jm 3k_ ޳QE#|5J̕] 1*~}֩~8$<YM- ͛byڨfE[x~1f:Hc{QK+δ؋;2j#ϡ{(oRD+1ݣ>銛:'ZA^$gZx)QIޗenqS.5iv䉻( cN62Socs6Ӕݣ:wl7Xڨ;׿;CV`bmwL+k1&9?(&9Xt#K/pWσTl2J%%J25yg f}\֟U-3v Q]L# +^S$&'ǜ6ݒej](c2!Q<tCDmKnU9l Fo4GdAo'wm@K3`,{  "IQ(6_ydt'eE%K=y:~ZEeٞn85({v?MwW65M܍~0%uQzr!& ϩ2k҄\V72to*/ I\^v ̦ef䂊xX$vNOEM<|K :;ej1c,F }8⁳mp3[ɑU0 `;=´ wQ(zv~3I DMpؑ}d!hiB2wL4qun:ۯ+lOBw`E# \ !UwY>B&3L2|6A#k0vȓbKy遰q|vx"*晱җ;ÈX{lTyԑڮ]K gIy E_i-W{{t%C8Dy7ਛ5}eڈDIH|lWS6)Dl26ݵ5G^g\O'PDc9(ȦGmF=P<L7Ս|ܭ8.ZCȍ!G}Yaj:'dV;s"A%- 4d5WJ%{#L_W[MvfJf#.~prmDL?*4,ko5>CB”_(^uV*@8G>>=oZS=6b6K{]M mQ:R;^|jD=',g_Q  >I$ 6P&_΃4 3Y#O0eWsaH!nDL垘hMІ1lY1YA 6?4.B 2 `R>1D.ؼc۾{1IjSVw?B)qoOَ14U%f;Q_U/^yϔpGjigDZݲGAA%,{D:`;W`Um XV)|*ZT@,&x~ 1Asx-aW .qJ.SsȁBcNDR8,M<Aw]EqcB/L?t8Ų͕ZT꥕pyׅ=)-wXc 5ٜrNy&^:bf7Y5um<F^ Ԟn&JAzԷ8xTyT.3:\}aXvuݣS*a^5ƈK:i^vup,!M|Y$˩{RpwΈh!ݒj+fLw2qrL*<^*\)"|#R‰xWO߾݌DrAJJyݓXHɞOo⍍b"Rd=.ѫj--&=KC<lꇩaGREý5gFUr0(7#BV25= Ri/0ν/3e0{+'_(WKn|WCQ4a}V0>Dm(N~D).\LhEٶ$A^圜gۄ:_xkZL4P0EbIK0Oc4s' 0BxXvNAzW1,g$|=;6'N I> Du!.&hp\wG?l_F4 Ȝ?,U+OW?޺US[в[` NR!8[Ϭ&Vmr9h;20lQA.䙑g4 C-+H2nAQB7mJw&'C>"DgAhO9 ;6lCjirFM蔓E`7=I fQR??9anf|+'jV6v^C%ssjF#^cVMú6s/{1Bι>Q<o_N|^`{ҍ s*b3TDqMP<O2amhoR k5Kwg~۞3 j᜾)&y\+,nArdx#a/|{ ?j q^z0>rSl~|rI)6<݄#"^y\0"Ϳ'uFΈ؜BuV"#&<[˓key.QPSgؗ߮a u+ArdGw:͆Igiܔ< [h$$Z@V|mn{&m zP (r{ʼЗy{o[9_Ԑccx6  Q e'\} E;ңp~hn9c03#(; g  C3FG2+Wo_ .\Qzkx#e_yY'i=EKR{D -\\ԕtcA@3G }&aHk3',y)IP :lLd&qGch\ެ*Sp,bQ$o˼z;Ͳ 8}{~c#VMǯbn-`Z'ɣu8Ekpnj!BC i*{@̗.Nv՟GMQC䃟\ '7ĭ_%K>p4p<lpZ[ŕJ6kәΟ՚8hP)$B 4k xB/m2Re $*3yT4<3<B#Γg^(!\C.~v ZM`(lY ';]w¨<7 ] C-)|Ce2̈%olMUUH|ڃT:o24MbWg\QHGlxf3# q2*HD5~V#$dtuj"+0Hb7 4TSƕ3nޙ*OgQvﭻ8~juAZn *4|+IF<!jy 4=?61 c#p7&c$jXip7ΆV˨_{*-(,iUKm˟lO#?>Y^[/T-x( i-P#IDVHut^䍰f(tj/t݀ȸ.HXh,>i~S5h6]ʃ$QU-(V_̄ư6~^.$A;`)W,UlȚ"(g"5a<Oy!rJs(SJ+dpj1 'h+Ӫ%|42]B:;N#Tj5'UW_K%`6L;HrSNkړbu.=-|gIS6og>?˖hb  k(ُ{s^h]r@nT!n5{<60(~f'2.) ·2@ODUY/ER|3(G\<޿& 6~1SFtm#n6U^doQ|_TC4Mq|}&*טBfdeeg&/U _9[9kq㩱ʼnLm|2+^g@L~N$^*=gKUʗ&m\xv||-@,8Yo, tjOvf#mB+sQPv'f÷j0+ ʴ&DF#܋ЙU=#g3ZSﲷw:V c{~¼vx!-=Vbݔv!ʲǎ={əFY`z1iBlUTW F][òhn$F~f "_:Ô5_͢=P, K.@]_K%!5K%l1</W<yNp`LósoZ=TFk%`k\R<r#Z& ?M?4lZ+Ki<#<6s P,sP‘:IURHzjv[@-1袧pɼAeAr93?O`?Q]j\-Ԡ hG~ac kfhsxOJ%R(pDFff*WqӔuE ! Ig.`Ab(Y_:`f QRd62)ZlHПK(eHh^WSsUmʦx`uފws^(;=ܦoQnuq{8LЕGV%05!:5/3%n>?gcuqZ+ "_5icIrk %0;1s,@kթڙdՄjwOxUU.M])%wOkTG綶I~4KXA"a)V2,5Qs)\ l[hO^oZH')]1B=1g1Ϙ5Uiۈ& ?s9mC}5ŵ- u0 @݌I#.b804?ѥK>Ε/dE3S!2IJ+; toz9%} #șNPvW1a,ڜou Zr:W ͇IfBcr.4Z(HN;.l.KW4}Q ~?-o'75Nǝ*O'՟2knW R 3'i/9aY'9ujnwo40(fB׊VasyLDUq[<xI{.Bh]=Ҩ^zd<:@W!kd}\?QJcsE>hDѲO|jO8Tp)&^tǺR Ɵj*/[ALEȍt3VNks !* wi1W:ȓrlUi{ ڵ\Ew2o^<Eq BNUTإ?6=1L7z-ŝȐyrנcKрvYL 07\r5]!w[mԓFwK>$a;AzOYD9|(5V,S6g6sc 04/asϰMű*L9<m1-2h(4UǔHt@* ih!Nwd0jFka6{ ΟGĆW|70eq(Nͺ6 B:^Į.!m4%,Ԙ ~DReσڷ'6Ohr,cmWA+v t/ {ecr HR#љYCܣ"(f4o:kp>x{L=ՉFR7KPJ.XwИOrV'w.vvIca̖ &Qo 2p:pߵ mB(HCR:GDg:My"l߷mǵ"]v ꚫV97]z1F+1Cpj\ěh:[웃n}[$OgaZW-t;Z-+jhO:X!uҁm@TC͠LͰ%* > k\'mM28;LOOS^/q;s  ^'@{dD*]-#qǷp@4T\ &eqڧ+{lX4hXbyNR^19%8ԥv)( 3i?Cf}1tTd Z<H?%.ʦgx7L|Ԗc8ǝ1/ְ)asqoo++]k 81?&ȧE2+XX"opijeyimԁqt{-1Au켴"N!ޢ)+ -tD\Hz|avZucriآvVH4ߑ7Ƣ-QHu.b򾝯q~yuĘ:jZnBK W V1p7uۘ^3~ى!][L Qԛ\mwZt_aGB5݀6%MѸNd({̅wIUc>7~T kŚJEڣ ]Gb>G1:gv }7 K*N^?EZuZ18ufLu ʳ1 0~bD_ S& 8pPƨ `0?lʖTXaNe|)^J\C&e%XJp5ѝf&Z}6(oGmQ3bC6[JBj#3i^H1fO Xjv*GB1r{5HʏW>1Ƴf{\,E՜jZ#7X$0s!ZykDRg>b!X(cwAk>($|HJfO"̀H8uY0[6Dcj3"`Ȁ!8-N0_E~r{(|YBp\/4*G#ş(?wHP;$*n:ümUS4wUܫUN :?&mIP kuo%mh7zjGJvz9q)$qb iێ\4F6sR)h7|p #gWZm\G9i8Uz+agDR s>;̪v̄S"5hP W:M-B!qxƮ/vJBgpANšҥ幄 )ȵN)́‣KpMz]\u^83ŧfrlU<#bkwc6AWbz<dyV߾j2n$Sխq8˵*{Լ'qDW(㱍os7Vlk6Rr;Uώ"'6hdRgPO=3ςkѯ_IdAQ%1Ib= 9)lE*H[β&q6RkZB!6ܫw:Z!_3O+q1G/̐y:Z@Ke9V}v<4dL[6OrXk u08C]Ch;⋼~+f _:XJTZ7$D_߭1zF9bp; V*Bar[xMN hw1ss?> "/$Z4 m+ <v dĕ1Hk B_)G,]*=u-*U gqˉ*ar>]>DΈ\z:ZDBOY-߷հq<:¡oOiM^asL!<m4vJaX{l+Aп#w1B9Xd;IrnyDCF[$<;ۏ5c$8@s^ϻa`Sv ш[TpF@REq{°wZ/҇q2ALn0.9MAFֶ;ԸaEe1[.#-BOƑmY}Cx.(+P7(-muO<p`l=!t!@HL|P=ȯykZ[WWan5[b&$T AJKGظdJׁ݀FKUV_~]{r_j2Вj[FZ78ΣM4~8!ސ4S'7o<N*P \R>lθcEcaf@58JR:'U+}~+SUW=U9r MCHNjp26cqA ZuC#p?A TKa aB?30>@v]&\ 3c77m)qWQ& )۶Y ŌpeSrj= w.YoA{"z9k4eN̒u SCK_*֠5H< P8~\Sd玲Yp X(87)VN!ޔ\GQ -$"R9pã'V͢A'/<VBSj`,1~֭3 +6m'p5v#UZ-󁺦0}6ZV7!^d70r#\Q/]Qpj1q?n 0Ȃ^|Y;ϕX<6{C[Vs`=аʸp"(%wuCl֪cH>YI0G;mCP^?7SH1 yHkeC?GIeY_9k$0449o9O <ie^jf F8FoheYOspkRjaHAM&c~5II|hf @Z޵k競ՕrQ$lRfG{T6GZ;6 :S׸R6ȅ\RMV@ڍ_ ], NbjXk]( O ղr˹Ц\-*] ]5ï#e7HM iۡTdaXj*jZW]A"E4ɢn$F*J{{ x6z&=" [ p;9[mi,-NcT$Q;mMsdW vDߙ2 G<UQ0q<mdReQ Ӿ̅C"%?ybDa)5V~ٺF.<ђ!`d#aPy߻R]jT[1X˝CN !M\~R}?゗^R]x{z踒/l+} H^JeLXA& 0|] bG<quJ%Zu9To(;}f=0Q60EA [=Pv(V!ՇVWB`[><Kr0<F mB0@}WR˖9D 3_)JΙuҥJN/](} MEMԵ<^I&ʞu_9Ɖ2Py (?n8]TSEK \ʹ Eo- 4#Ҭ߄4?#rAT@:JMnK!: qj MLltjuF\{-h!&=@MTFć%P&.IeTbֳa:<$⣾+6ϖl]vlacj[ J/k1a.l/]^tybBK~07P2$S[=Z% JҏLYPH.9_*-y$ cVpHMwXU흪-uipX ;iWn))TD *lp3[ot2c->$`OLho@&>')pX=jQ׵hyAԘzN$^HE}Ht*;or 3{)aQb3g4]~L(KH}wN:2W֜Ld{&[a8emt/5 $ r{K4^/TLHaPf).VB2SgK~@NZ;L-Q O\ 뗾ʱPXꑹx 6(F7a\w jLbZyKxNEȈ^DM9zgc,3{@(zt=,*f^|FׄAYc9p)5NXƶ$8\# 4&8Tb[8QW,9|@LAhGjw~N8Dk\ v`[$Zcil 2{‡ҥ!NwX- M%BJL3䄋k~Ȭigmw6tbC9KBZo;4BqJl)i EaKvQɠtMU`4. H&^Ԛi'tTsa.B-W*ei{i_080EY ۋ}VWlހ>cnR=69S7Y߷juTq6?T)xw> !ifQg[c{BAIIn=׭b=Y@ >t 1,IjLAE08#ڇpĕO*ō}qT+>pKAQ<0^8> 7S~=,={KQQLNH)jW֒a/}]H[cQTa VK4lc%ۆ ځ:dm-g#^$c1J@4a^hn'%+{BjӗϸV|7.PyQxb+Q0Lojn̤jE tnF3 Y}ɵPUb3@+=#`Őܨ=(YIO9%eq=/fRӞƢFy!e]@6klh6@Fe%U:񤥵ng4ڎi9bjdڏz<D߃98,2JWA{^Gv 8Ȑ7?Vbjm8a[S{Р HM3|BY!11m4lwICc)Ep쾜I+n Ѡ<'҉D|M:~xN;O N mvaECB1&_ Xޑ+$~9n@(rV'|O0 wMY M56MER}T*duMt^#=$U K>`AJ3?N԰4Rwc,l&S"gPk0KJS1H$ht|rĒ_u>ue^v=U/ (4mMT"^۫tп_(2v~tYZ/6ZwHr9ȈU6QwaUN|> ' ۷r kXprƹfC[&0RPA,rb ~F1EQe{6n2%6{u/K@; :wYF$\Sm !\?F=!նD>{ !E`.v͇]·HzZ:=J|uq5dt]|)Ƅ)NƎǾLYܐVixW7<,N:S`Xe!]]g;']kρm״=ƻ񺪪L[VXY9a2Kcukf * V/60`I|(?,]~^0_I`]o7oLG!4ê_<1dz@U%2m| r5ꋸ [eD' XO:]Zۣ5@<C!u`@^Ws95Y>%y.l|a< iYA3C"ú)JΡ;&'m X \>@DlMZXOBrNpFĜ^\[4lV#G;/ui寿՚n$ ɓ{iM ߑdok<9@j99%i6#7QJS}a/Ԇ&HDU˥2₩9ߕW7ҏ.c])7߰IJ ?Z<r<'Yfg;%$mTy2O3#hZ:eT#Pip\D}j;qj"2`(@b9Ye_ C K@(R!F= y*e\' S7L>L Q1`kkxؘ7ED_[6DہkRtA؇2TҹY-$UP%j"%sk?qWؗ\֝Mp'g~KXV@R?|:u"fFī|*OoER: 0y[$|IH58O(I \T?lrD~G 3ly2Ux^l}? _1ȯ<bk{m@vC8eRx>1>AVvW`F 9k} y}1 BoXs+v$K>g=xMU[ #-t&S8,>m\lq_quQ6QUoU-N9񜛘8oĦ;AqcZf'8QjЅV\:18#$!\N,]²yL5bPՇ_زt&;:X%<3oR2Ek/*D/͆b=̱jCfy(@s/}!LOvM5n*W]MәX\삜#4ٻZwԘ*a+:$ck 4r\O*CTR9 D%⼣O+ˑd~*=AX/R6R9JwD$&#ZsWZ:Ìl .19S-bt2Rt#IŒ0vE-4+~CHQ] r2ÜgT~ pCCrjvnhgHG@Qלp?j-}-~KɘJChMlIO?P7/dǾbjҰ2햛b/x+/K o/˯o˓՚^'94tm-`mraqH;5uN<|I㲔*5?q*g4]VR_$0?~6q1n•Cn* Ha,?rkQe  43cO ~EŽOzX׃%[ s !$PbQ([O+~ոEna\vgU4Fe?na|)CKi@C>;b&5J%KrS=ئ[cޭ`s_&:՟|F ٻdP:0POvivѰ7GF,ڶ[Կ+L|-QlsC{hviA;rꂚ/3JtW$<rôۦߗUh9 E mM?QYC; X9BJ6xM1: Y-U")P\w.>|o Uk*RP_%Ax6MJWtn*/#'99Vf>Q0g=9[ҝdZnn[ X8}q) )м{1X\|8[d黡?SKޑJ=Z`dsk } ـ=*^`Wǃ(hphW=Zћ7!+<j"<"a?O[g!AKDH/bXcCz58+,uSk5.߮q[y,a;푙.(4$V]Zwdl1A1 In 7MNq1UhuhŌLC[crN6+0Dȉqs 0ߒ-f+v,*cqOYL[-;y=GBQ*_vp3%ӗvݴ&O^%1 CRz;e*QQdZbf51j?}EiCQ B%^[O5!&ȉCЭ3lOǧiHT{i .lBv(%Y<x>]=]5X~|p{@ݰ 7.{n2͔7QBΓ=HVV)aґ⑧}.,݀.dɘ쭙8 sG͛u M6ka?Wb)tہϥ5;uW<_f}BRrvp kMK'I*sH\FJņ0cVQo }tK/zGV-B/fMܨ<^L!e4ۨRyᏻKZY.wݒUh׬KŭSGAd A aRϽQvk>.y6 $j6 ^~;?(m@UdThr.po)48Կ&]Z|n`DQWL%:ZdtC!wsQn fScosgT,tO,s4 Hx؉Q_ˍ-x3N}AiP5ȯ~ĭ*#Sڣ4{8/| };odwAnrB i)$?YG?^j#~Z1mnv|Vڟܯ:? W7K }i0a!D1fٶ?$O_G;6aM/L񨽜@d#U+~Xߐ;~YJVEEQpvw@͡!M&^y3HU! rW~8c1dXcR6-%vUڛ…(3ēeRCt=T۶F_ڻy¡[t}b(g"`oXޭBYmL_|;=caFY1U7&Xj0Bbca }ȁCӜ擣JDJ/%EK! Ĵ82(L.Br0%^gQ[%K7E&ȭJB>)sSϼ}WA0H-?+J<xMt2-;ycZ\ P5d\Ajz)'j8ix2%=5;= 3XCsJ tzb3 QMx7.4Ϗ1Sq {B79yfl]Vt[u$Qkts|7@1:dZ9TrЁP &$^K7A9sǢ6Ҙߨ Ơ\&9`5naLr YtЖw$߉~;N<k4f=9>q\'j_ &zٴ<,vME/و2ŮgX[+-kv}DӊW&q]ܱlQAõQ;Eѐ{h?+dx|.yqL@^!FU7 oNX>38LldMh#6\p*ٷHqPtSI$N*7|bݦ#b ;}MW"$ō~-]o8FdbՎ*|g_ߠyM'Ş$.<`ኣ+ܳ9A]/PmQڢ_{q,7^ E TFkhL}n}z0 jVuk%ߓHLcYayd2rOT PumK{B&BgūAΚtgZASDZij95eвnw@YgV8ϻy!!AzI^ ?B~|yE 2׹6{C"δS` kL=HYV_p2ydB^a|y& <;J&lװ91\~ćq_PasyyW~'+kx68KfRn _J%q'+aG͐ʼn/7rBYiU@`PI?`F[*h/dNqqP<uyU5Vڽ6l%2,a? {pJQ4P^if P7Ϟ(kpOWud[ȸiWu;C}d)Y-$oIA,}oөcANzN, \إ̒2`81fnF;s٪MҁN=JHJ>0!O$Ժ3/E&ZSI8o٠͊lK3&XrJqq٥L*!W - +8<8b,sy9& r󖠝RT9=W|bo#wrdv wv6rz Q}QNY׿cJ6m@M^QĠBIphӓdW~B2<QW^Ϗ';kq+Co5ނ lBX04NQz]2/Ϥd8jߪ^=rd+<ptJ;$0c~֐NQG7j (޵kX&]dq.Zd]UݔNSO{u;6<Sŧ;8I2ʣ Z!OLF֏}]r{&ܮ df~RX&x<0fD:U`O1Յ3o;.F:qiYY߅12%/%$0D}`]|=&HC|m-0p*Q""d01D@6#yаN (k dj}e0{ʇ5r[ *&P'@R1ؐ KY%=G3KC(ڌ%yGC ) = <GZGah=?6~Lyߴl^@De~wbg~ - PO)#10"~(n,K3KqN7=(Ofra)O~0bQiJKZZkCBllݻi' ׊n3Wf{X~HFwU Ui*kE/K5d[E|=_b 7LY!!CN@K )H0ʤx0UJE^"7hӲ.Ru1aR(A N N#!-G9k%ʇwSuX<jF<v13, cGDZI[Rz%3=s<"ФPd/A <nQ]]ߢj:ZIÛEH.s T 9)C^-~\jT# 1>+3f[z43_(XR{ R,OgP!LC$@B39$ IJaZ8BsrPJk_үˇb^d^C+}kH1t7||:K٠Uwa-f0>%&LJ%Dx¯ פv[aTPGJ1i2p mY4=79PWM5/4&4nRTf|D:7v^N (܈$S[`ѧlX֥8@o녯Rf'Ԅ ?p]%L 2| ss,э=U$kq2?̼vW.%zd^*,ŶO6ػSrUůUo -?L.{Q4k90'If}.ߺ"SP-yx"]Pm"6U~PH5ѫ@kZ]9$--[ݵЋwGѣyo ^m 0Ѭ)C\lr@7%^JfdŔiw=s'6hVNQi7i+Z<\3UCzRt _ Xo{ 7LZM: [F*RjX\S`IGt\Q᠆3L$( 9$}]V'R gZOQ3 Tco*QV͋a1;:uķkT|Q@viPcQjU)P2O9Fns)_Mw7yfJK9OR6:)DO,d;o6QS<|_W5-#z=2<+NBsHKwÒB3E (5{fһo{.ZAcMv dáߒnakN T*E]F= oիO][6l [JITдR`i n!Y5">t9|ɋ )6ckiQXAv!TȊ+\I^&d5;5ځDD.(v86v'1_$O7.C3^sGdScy-YP:v_j,>7JXjqD$ PL-ÜR>/v6^ㄉi@_ō[O=ep'zoYC ŖϦ ߏ9b)V4SMXkB'Zp.FjҺ22o@&ebpvx7Nu/Ƕoꪲķ wV,lPWɱ=Pp13%ƟNȑyYlY9QZZJ=M[8![-H:Qs^bXo>B~_PԩM,tp9Pg02pwqLmS1m"1CfZ Xhvu} slZV)Z~Q}ljߎ}fZV^mXhL)VR V6~9Uvn7k7+:Ԙ,5xkIBL>wX.I9^NL}kD("BdiSx|񓼣$ 5UfAr`WXLqyh!4i aK̵!,ܚqk;l#M2kc=i\6H/T^DG9þ(qd#ן.U0(t*W%g趭f$!*'{ 鎷 F6C 8܉u  7dCAC<@qS)Qz(G[ ;H! G}GXwH e&, CÚO]E¯AmiSZh~^*YXKRb_NHa:QI8nw'~TL^rZ$;Spo#[a4<^áT*u0oTg2Jv!TNg/b .K\ӝ]Jfk,,@Oo/%6_z܆P~+nP+ҸI>5Nэ# OQ.zSB1ʃ4Aj{CV\Ԯ5{.ΐOatd#uX\ON.{֓o5ZA|q?9OG%4lIt8o Ej͕z}bԵI0ILFH*F#4S3om'9L4]WcS͓09f1 S&"rWQZuVwFc;0ro^(9]8S jbONOSEތOr1~Lu*3ZkMWW[m>#wETը_-PEQ*Nাoᛛ9S1YF;ڦahSAT\AԻ!VϹ/:1&ݕ2IvM{ߏ=\C=!)[Q[ ͏>bdnOOѣPSSaD P__ϽL=.dv.ҤP ^{"gHL(SRUO"S}]E(GYHJ^h-GI-yZ۵.B>>t󇵣vS5=^/ #$62|i5 S4, ܯ$tTx éIa~|)ӃG:aWD˶-*cEb Ha~hk~;iwxy^ wfmV;O3Dx!H8쇳z~X <}Ȑ|<ʄڮݷĆXa{,q-YW&0PoF46dyxxhC $)m;iEV_ }N2kv}¡:3/J*ZAzEb v'bN3vAue仜6+kY'!юkoR(NGq;0~4䤸UGq{#ǭ4&z43OW Τ7qNU뮠琧xÜoF<'_6xygRQkߊ>>7m;,NرV[Fx'L/3NDxb!P[>e&C?^bL)>=pkG~MY|ڪyFOGYыxKtbS$#dF;ZN"is=@A{ 贊Tkm)m!Y نZW5AI},Zg8"Rqֽd{/lhAL }Ax`2۠0ffy0z{ aFd>^x]^ϑ͟h5Z3L[{+=$!nM1 = }Q :h `ې{i-79at?oZtӴ{6ffEݒ-S4蓨OV]-VH;LȽ})at,DǦEr `QA1mqX^hTV{C{wQ])'ʋ1%͚_LS'3$R|<3ߚܩsTẬO+< aGAk-XOU[)zaLѼ(:ykKg_HZT<=R_ 7Y8[-&8(@V`.UPvm9WB b'S`衩[;,|B/bs2z2 xFtC77Z$rJ%_K7@<طA߃g9NCFO^(o@(OUWKT9قJs;6bs ۖ<[%`q*lලߏ1 q 2̟r]OEqFݤ0] >bRr eDkAFq <s0Z)3P$۩7crq`ܢ>#\.P0vUg/aX_9PG9Lo z,wwn%>iFbc՝Jcf BA^N89ӧ}S:@ul"H=X8;8_D(zyj͎㆖+2V ֋SoOVn2%;6 buUm -6=VR;ݾ/Y٩A9hkgU!s^`\ fdڿZÝ#<(\]f@oCNebя;m f}Kux,b ,(SzѮ*ą%NZoQ(EvF)@3'm@zTB>C8-uH,GcHY ؝;t/QxZjnhk1"KNi~a}`a_1.?~؟{Kj8)u}ɘ}j/ܪ*YSMh$Ѵ2 8>DTO4%}ڤޝEcl@5)!-JXÈ[lNq,94cY:~{\LEH8k?_ OH3-#)u 1!:thGG.^üoPS0jҷ:()I{TK4cvjJ6Bf)Ry"?P[–kv 3&:жUl#~۬cF9ihEX'x[R/x$b0rOFr0AB+Ii\%5Z&8~LU7[qR "9ZH#k , DvȪZmFڃ]8ҺP9I@2餘ᶥ[{9$#%$d|3`s tcR} mދv)m mY WnV7wPE)E8Ңo yWmFgG}LSslj(E\ "Bzn9XJ bx.ӚuqoDƌC3?A|oEL=<6Qo$JȺFː1ې&AV}K1$2ڑq !Ɯ(z* ao$/ 7pԕ::} EQYҀQQu yp0/0% Dݖm,T4aSnAu C޿$bi]"ѣ{29A.+*ftl9ewfNUؖ \#hJ"C~FyvБs[^er-䒉-.ź#r O K98' ht@-3VagM~I`DtJ f "ұZ4,ޖ {J p5b,J/DzڭN`t=I3]qwHEJDv[M 6Cp<ǬsmPP̞@;rT㫟R4;<nҧ=zB;)BQMgC$\^%E4~+p %v%M  l?T@ݮ: ͍.ļ[xAỰ-Z!+c[G1wj}_\ m .`OI 1wd6mEl6`Qmԋq qAf+_G)Z >/k1Ѕ*NzUX#8n-|jr΂un'Cchc:|Bz1ݍjÅ20aV5,%`.P=]mwV#b/qniڤ%U1.fvLc=o6d%UY[ysbJw\1&X='O9Om+Vl?#eΓTAF ݚҷ~ލD4@y@~Nk f; |[+B$u.]\Lj_ oiFJ-Im$좈m1CyZ%frB?XhXs:r+ yq) Sk~t]䛷hqghMSm+zMktqhMR>6!akq9B n~I [)F1aVg'g#{"'fb2V)'>b"C"֏Y1WDs3%YMuK.N=6˜|Xw"ppjO@c^ W/\`_E*-PEJ|Λ[A6YIi'm)rxYqE4oKIW|1C0@]SP>{0 z[_r$mCc%U1K%PrQz)8ݶ}QE)-t=ܑ nXk+LJ{>T( $.d: |tUi.'#)3*߉G{VT\g֗.MS(6aZb7j'L-mo2@'We7sHwruW@A㯰LitPOi>^7`$}KzxT<Ƹ,X%A89x vQclђx[O`sj@u (c6T1 쾟<3`J q!_?>:o6U(Ԁwp?@`ư dk%#saWܞ;˴[} Q<zp "{M(}G/@ui~tbABf%m_"X\@dvP&bMl`6dIĀ 11-P|8i'MOxEoxO<Ty>2SwoJx[3Oۑ M,Qg}RE\:z-n"6ui;9O택>0?1sUmQ--;ۈm?ꖍMK)g+9;D8XOщD&hoYF3"0kJ>Pkc8C\~ ݋׬q<R(!w|:ʖ~k 1ASh:O%sI<Jnɛ2yl-A)1촇h1]2Q}p288e?k,4ߔihf>pD}1 2OWЬ1'4lB:pm²`X0ۺ8R`6eD#:<URqrn:\Ϡ$51; P,O=39B/egsx2{)TKZ`4m_ j)Tk@O?X:Y%@]Dr$\A6 Zѻ5I\%bm)+fwxƢlcܺ4Ͷyټ1}Õ'G]_@C<S6F̌PIJ*7B7d`<JllE7 W 5oBno/O ZVIUł-1AuK Oil:xd/u#NP[/mXX2D=6d?4Wt/&wXDc;(2Sr$xlٳF>.4y0+ t ":Xy!]NŬ&rtFLJȉlUQߓ]/>fx5jZU1ku{[q8O_B s7Ɍʝ`cִDjpݩgܙlĆ!։=r|'g?<_)Z }F":wAQ6J0f[+ gU<4X^ifce\7A ǡlwv/A,"r7ia!LዜFڔc&_3, X p$dLdSgA`uR FmF ,XM<*}^0 }#]-];=1`S_璮~JI0*Y2~"ܤd%6U۳u+i[̀z6Nt+2 AevWOʹz  ӽQaכj]ʍe#APb,*ut(C7YJg7.FedHzQt?RbaQ[>m4`Ѯ ]3?o%s2lt^e? wEOH.;#+ 3KqvK6LX7cEI>)PW+!z6ykϳL4ec"bϦ sE qd{ )]Ѓ 0% Ff"FG s b`8͡3mXF͏kq*[B2T䓐hO *+^ϘdžS<.K=@,L> xa7&XkL>:`s [G jj z" %0Ô 'Q=a<W[/Lɨ&O?O0]CCGqɅ1a4EIW/yysĹ ګ4`\&cDBE?虀e85iYi1 BsFS֎ͱjEtyUqPHVnvvVvߩ:أ0x-ޙ ob6Î+%] oe!3dnJ E5Lە-Wv<k/O+m/2Dapm]vǏ`' G%[l{(8яp8x`%.KjvsVWo|VsBXws:i/ca# .Qgkrw#y,RMt `+:P3BD>!p*j#kC'Z(ԓIDU,wyOy̚ ֆߪds]GP2 9Ƅ19i4o-ُnޭX03Ws9`~IvW,$Y$ÿs'emhaQxY4EfOq\p *@bnv)_/*ְhk<𙺛n#5gpS{qQ˚H_w9\P@5~~ȝliPgmN/okǩH<VS GH\M`$> Iy!=}/+I41ӊTZKwu{/4Qйw&liBk VSkFܖ u !!i{0D-s݉xh c#_2U13'p&I۶Whs2+ d_VFzzz/&XH՚9-e68E7"^E3"ϞR'&ʍnȵKq!" V:@62ߍfʏcd^ES*j[,6O v~ OAaoas&GM 9 ||miiP2֑$.sީZ}ɄG==o,ąq|P?Fk.S;S7wlu/CSjVOs ʷ{7[K*A#=m Hwr}'s^XgwmO3V2~+=3 KKtWq}Te숱?Vek2hRu&vi+ltH~Y` A2<h&ؐmzzVu6@ʸ$lj ;U1ZL~ǂd\ sۉ>ο]}"u룞^qժ CjSټq2 2xI@ת5gd,R Y*XEt*4a@ZG(Ё3 N)Ԍ|N-ijrt{΄?u Ȣw_jF73q\cYXc'[P˴O"]P{:FRm0뒥7įWU ys8F0G7+vR{uR"׈t|D-3yL"VΣġqG%l \_@ubY\}eD";xiuIw-'a}x -Pbc-[ԩJdCHVC$1hE|)Z,yV3#4=_;k r$QrH%A"nDOIR3LTnu+er#^JsG7tk/-ކ?|#'͠owM^ԠR SLcd猏\`Ф}oN=m-i|͇ML{z1'h3لS쨱rn˟?'V]K- ~Qs\ c?A~Y,ia-{42 EеP DrV푆 C">%2J1|mpFbqZDr8?<:94iJJJkЕ:z8rrV9#@ 56RiOؽ@,6{YOiʰ ++S{H5Reȃcd$ O=+'Rl/(OZu q̶%óKCZC<]RTRGgDXYh#*ydצ:Qk(,J{8Qh [@z Aiir)p9gL\4ݳj4>mٺBL-w|2Z8}Ը=ޤycd~ +^ C<%ESaM6Oci@.;Mв߼>>Md`MG8=9 puzbrQ kDMY)e0+e=ɶuNZHt(JB-V[y)lw1K:q3P:@ .ATAr9㕳AN2}gg;OqiCc?d͊G9aOO_>W1̮sݰF;; n|&C>qFc &^}bKż+z hJ@gʼ2*K J]Fum)0z4cb007{cCGG41ɾ[눝K=ݬU"#8o5Rb JJ%18&J<=_9{b|H>jPLkST哂? dKտ>`,br Ie}[T#S_4z5/dR{ا4Jtic/H)gkqss-ڕܬ! )Rm+NlS Fhb2b"RDSecq}Fv"6E"=R_rZyd]0=6ͩg88Ht7ڤ(.>%\L%7>SOƠ·#֠kL<Neʀ~cW+/bxux2<jqZ?Sܗ+vad:˙s44%'[P ɖPØ@Xi !A*#:Lwahk;ce7D^ jxb}l_ʡZ*}T yɨ0A.>iRU;;\ʞ`<348YX<Cy ;<9Ŧ8v~6><? i||QTlgƸz [Ƌ<!P;k̻/.:Jο ܡ;qdxsޒu8 ߪO׎slI[#H%tTjmz=<F=~wpet>]'pa,geV:tN\ʁL[^){Xo*,Kȹ& C@6ݠJ9+l 0 a5P>k',Ltm0,F y]ݷ\К,ult8VFHC?,uF2H$Af_( _uzFS2&O:!MPТ ("7gUI)<zI)DJ_;[`juNE%n,GDD#Ӱ, 8ES٬@R'A*'`[#!~C!{6cNt 4ߥ׸Rc]T6m$@z4YV{"/tEyפE*p<F*I?}ƶдϩ:1oe=+3/tP֣^f$pJ7T /]ZnrK q^wN{}Ṷ@p!>K)t WA-mG"(+F&k|/=z4::宫cAQ1{'/;E>L!PhiXi'(6W( _w5SI(6/KU q}4r;pߚm轤!*XĮkX,p0OΈø%ȁ/ ,hp-3 F(e?2g&5p pU'|gntc8y;ew`36ړ abRUS@mkӆj+6`{Y*/g4E'{ x>Ϣw~wǂ@H}6NL,$~=?mOϓ{0B s@YIx:jgvݒDϐpISS]?Ҡl٬g Q]7c'CE9# )h}(hw-+/}v.".; 9۴908M#7\tH1U$TGOZu蟰zIGgn@ ¾ǦTl)<!S:YL\)M3|M.Ӿ=Ed~Pd^l)"FΒVF T!WO5C@ "UBd1=tZ\c;@Fl)XB ݱ<moDc_5Y"lh6KKppbnqi xx|;xeckҷԚz'xFY/BL:2SsxdgH,BR\j郮Yt MJNJE%\*Q֣6gx(%lX%HAUc(*byAav6dDyg# |FyG!E'ÇW7kTbx ?JVdr䛁H!%Fy%ߛR(}Fñ`Y?FmA儼__"B$.~(>dK>xݬ&bЅP~BѠ?+ n3Q#A] E;nPлy!ގ'}234gLI@l7y' gB |nɿAIz+L@ ։`Tpu){Ynf #uJ8'mvUPnT/ye "píyB|Eu[?Я!>)%8"_E)n̉jQ#{E>^Uv`$GrHj6 |RR^O1v8d~]5|g-]ƞ>ٹE"H+d=qjk!?,\,!9wUS *˟O!N}x}ΖȾEddٙU$Qk?H ſ{ނKFg ]*!z+Pz T&EZ d  v^b$NOb^o4v!÷Qa3$&7׏3by2Af|t܆E,Ͳ>vE'5Zh 2Of>ّ)a\H#q%ďwwn_1Ѣ&Rp 7)V7oʱLǕ/ג6@DWer9(iv&aq3ᦌŜHZ |ёqGi `"ʄMZ/AxW24S<)Ќp1%/E`kc3!~[:)U6(\66ٱ܋7}yk@D>Z# 0Q<9Z F\/&ʲxI&# SܟVzؕtEYK-+Z)#Q%r6O_d,T9ni]'ʅr<9ŷNܗ--@P-KAE RS@JhzjTGu~9MqSl|FU,`5Ev~‰<jPt ѨSJT> n8+@T\a:Te ۆ%Q5< iJt*vaI{x44,nϸ]`N*YExz7 f(,ص!$ծ%}">C#8"o4I|OY,  Kx_.YV;tL1R S^qW3se@UpJf k!D&EzyLqqz(DԚ~)b|m2mխɅӢ,Fk= |\V}{5LX; Xnș~1LH/ТQ|$E!|qd]&堕W_ qaz+*+) ٰG^<V*Ìl{ڥC1RҘߪr$ce,ˢx:p5SxI{_R's_l#&(\;U{FZ r-I(wAK0(h/Ysk3)$׆\/<8@'/XS.x3kO|/jxac2͂τkwLZ`XAcZmggP0oF|m %Zh"+}ɯ}l3k@5FSuLA:kPV Jqj|烈L\DAIB Z୨VIT?YhcX5.> /kS"(F/Y,'Ţ|4PD3k8[EsRm1̌~CVa4[+pcG׸J* mB8bw0np%ƕb "ec:?>H`):jGO6"TH.?hյS /<Iؕ~[>>[hI2zFVi(T،uxwvBa#U_>) E]tz/糐MG85Fr2?ԒQ[l.w\G#LlK vz)$~ x Ƿdz]a!7=a;$qˮ\!WM){rqE7ɑc澴^֧d~ۯry #ӘM1mN-J~kfC)kc%j+]; d[<<2MAY!&QPoEiÒܩhi 9̭:$f> O| E$!@LSa鰆KI=. T~$)`!Cc/|O)7JcI\y6WQ(S':,kBOz[|+'16 *iC+"Y\cg?Nㅐ&ke4nTD/5w, ,ycvS2-\[ݛ`TcSwc=$ؑ.l""c\X*O)rZ}\K?~ql1U7st*{nkzbEĚ"C=^fAe^1?SqhYX iEtfp5^Ҏ CRno" iڌ$# tzFiHyi =yy\)V$r41Gh[p5&^j__ʏN gYʫjeDoLvSo o@SNWV.7O::e4إ+B5*Cƽtn_-0G1?K}fizuA zP A[{!\F8yɭgE/)rxlxuKj !x^FÊ Y͐=#gʤ L31p6+||m$֛5d$piV~+`"˜W)ny߈cj+ *!ͽ/ʞ[$;Iuo»Z^ wg'tM#*Le^cAvEjmΩ8 ԊZ *ms3#Sv5gݣiY.ɞeS;1EqݘFP'Xɳ'A.k Ewp&]DREOݨʸ"݊1 vr pDS|P-~ t_y^΅cǃQ#+(NArUEZ(HQ 6ŗU4<ZY[T&ɝȿB{ί5;xv.Dֺ}P>.P~(ADwP8&u9x)Ǭۚqgfx-!"RwԔk_; gNJ+׳٘iMn rtlxi6pwϥHBzR,|$(+*qE|Fqe9`ф)'ZsGw֗&9 <ڮпrUfKƞzŻцE ҳ[`V <#Ȳ}tmg ,<U$˶OYCSۢwh}5ѲD, BMF_ Z& GCٿo\uLϖ$֠twŚ W2`[ԈJ2ۚxrE.,Z <O^bAtņ8/3[vm2?pLAE:`4*~ESJrqrH܂XE1 ܅9H$yRpzT$5[Pu UьXۡ&˳.@nfݭڐf-w"Ѭeiz,/wEDʸ؇ +RI8{~\9~ ȳMYi۴5_?k܀|oEڇvHT~j}l3 +d*!*::ءu܃тMQxĆ)Ȼy"|x5|s PLl8M"1GqdVy0wR "mxIK~̏ y&ޣWnG]6h3X  owH5Ҥ93Kzܕ، pa3@p֙9vyagۭqP.8Cj#ze1܆ѿxE"{S\j@ɴ 3GqwmqnsjN'q}1˸\)ٴiavߗu2$)#^ GЉ f;vG Bŧ]ʂ Uόtؔ:u(<܍4DQ\2 \K,9xDHTiwӒ]O,VknƞNy j?|ۭd=7'y-j xqaBV pޓqn&DtҩGquo%\\շcTr=6˔q4A K"5 kDmvz W q{%]U0xjuWlk 7_`bbXd-v3o^ߐh83I!2;{ۻۡwKi q}A=-# (ZdTqZIfSȀ-XIZv?-Y Z؛Pڑ!&5z]-xL|xmO .`<GՓhz@ϟfz4۞Y~*P.ڤ}ɣ0_ve[l~dprtRSm)ޙ0mMoPsؙ>ʣh iZßq9]Ҽ Wej˔Oˉ7H ٍVӐ&yYz|5٤ͅ (?<3 G ?|}Qşu>tl|wD[Y.2ݞ Lə|غq a ڱ'99v{+٪Eڹ΅"n(/ѥʭ}R͹dX|fճʓ!4T_7z|S?u*+$FwQٴ{݆s)ظvߤʼ9xbq-YF ]ZԅA٤ޓطZr`ڲ$WD22<Avy  ']̜у8L<b5ہre+8Cy=(qIMٿaTnЀ љr"г/ϙۤ(֔?ۋCݟGis* p:Թ47"kN"O+a{ +(AdP^i\"G|TPq06Zj{xV<W)Xđx#vJɠ/%m*zAm[@%ӤۋJ=Ʉݪ%8'C~-l? eӘzۊI<ODs|BB'ۉ eދW~ؚ/ V3:+mz5"'ǗP 0P8#Y%GP^o \sOq(vw>^4>H |q/.?iܵ= @΄ѪȔʝ-}%ez( 9/>;\؜JMwvlψO}1r` C܄1NGYɢ!ݵ>Qv̦y| f&%svۅ}ؓ. 4 ^ ց  BZPdA$n$ˍY$5yř^Ɔq>Z!1q}$z d y*w|߯ӸjԸ3S66+ڴY>(l{?:ApPw[ tm+]h^FtGv ?@St[Ёg-9~J*[+$ 2{ag?Gn-n1xO.;Յ4!N~(q6) 6zSRGlH*p)J~/ODԧ}h؊webfVX$x/%}oqn Y{p yrD}Dakz2 ӓۭn͖z Gϧ/',Pɣ4 |[URM_<4vgl1[ۯ"5ISI(P~~%'EHnRyZ- 2z6 FqSyS)w6>ɿ@ u8.aܗ(>݄J<VE Mڵ zx++mYnӁcѤqP7ݸ9brqүDP;'Ou*S֕Վf]yp$ (g]dig1*e~O$rr0poHDh~5n#/k"rOhUٙ i;nӖՏօM9͓_XۤwC˝e"]hdfҖǽۖ qCgɓeFЊe(6v"l/@Qލl]kkktt˪lB!fP gAS_wؙErZY@'جIڰq|.:a߮Nɧ$ :t Te pLȤѷg݈ɓq4 ͉+IEG]2q1Bْ"٨xH1Dx4؞5H?RFkɟ~K˛yLa@<NXo]y{ؽOc+;8~UG gc٬E{=/B21< |S˹@ٙHA='(ї ЎRxRCsy )H2ɢq\rg>< U"6ʑ7Bql3v9y} w;A`o^ qtx` }e!^}ۄwrA_w% b <l3kK+p`+i B!vUv)|L1{P"Y;٘ɐ(_2:ͼ^j!*6Zʞ`xʘ3!G)KgNwKEakCc/T9C[ ̕غ0]uqTWx:qZy]Ҙrj)sBWg^m=HCۣhoNH,;{SxQ]a!'?.٦$ξF} rqobrՍ qP, m +V<ظ/֠h1F>@H|X̑ڢ9پЯ՝gey0^}ܟɧ0h~7Fxuv 8.CDrې7*V~uqݽ1}ʠA~mX ܴz[,.ǿ{Yվx^޼\3cœ6Ͷǧ׷˚ < 4}mҙcU'cmͨOq$@Ve|CKoAɧmNq7OB4u \PQ܈e՘-(5FO#!xt)xCQ0rQs+G'J8hG0jɸ7F0hR w-ڲU0Nj 1ϜU8@W\x8j lA{Xֱ Xz`I4~HU.pzW%ȑb8j>Y {T}V,&)hzZDJƞ8βRS[ɖ Co}:ܘٹA̋dEZpBOAPiZ |~qNy8rwGF)| <SԸi7ڱDP݃!ͼEF8\q ZmsK{wo8BZ+: deNw1~r8Y&eZUȰ\ qf`{wE%*~am6 ou|E m޸/x}J rg&RܤO΅ȥ>aN{55q6*po9*EAU'@z0=˘tx;_5`w rC<^Kx' YV͎˱Zݷw C zi+ǹؙ pl2*J-ޛme m59exw-D^Cx0No "X8@ :f ~q_ǝ=WB֐`~BB Vjh;QH# 64.y|ȲeV!y.ڹ!Vۣ$-;qxgA͞Y@X|R':ݼλ=,9M|ʞx!Hy}8Xsֱt rE$r\\us$,J.8w Jkʶɒ{q@z%Ȥv?l2[_>4ٖ!Z|]EHhIM@86"QϠxwh}DNkiٌ0> jmO`tж+ QNJǿ+&U7F&ᓢFMS*}ʡp>gSˢlCBC۩c;; }w<)PSWx, (-s_˸xBعV;HspsYiT<R36x{/ʬq}O~B/JݬJQrԥZTH. NBPdխZ}y& ߶=*i)J W4;y-փ:KB}OqdwXRq~ds pP9 m4|ɏ٧$ 2Y l K,',:SL֔fZtD:6Z5Ȳ 8i ȾY*:w +"Ϙrs(_ Ҭ\զ[`3XٌZdzc9 q#D:`m8(@LwPВr&@1W|k&̏ ͋ ըԵ#a!Ƀcm 7ܖ6V9؞T{2x~շ tfq PJ>r> UfȚ7˿WdƈDqoW@|fkrօ Ђ7VJ?8 :>ܥlwchaa 9={ J%XecWo2ZYN,wα&.Χx1giԧ؎DBw b =7@)Yc7:|qg<qFIN<kU= +KׇL"YR chB8J/T΃Ћ >!<,ťYѷϛ sZ2qaٽLxϠܲ} KBH_{mê;݈1 Uz?~07.3o $g yϡtٶg7 ~&l.ɨF>zșN:Dܹ:9sݭO]"ȭ(z9-m )ɤ|7!iKzNׇ٨֏U˕p7>wZ=ZEzuQ '7^;,xGk'tG 3R ?WҵʬgYJT|!ү/\yWwIbf(ED_zɢqǨ ^d{>!5)"xt~Rl9Z*\Il7ܡ>w8ǎ(7+F3x!G[Pb@uDžRרOܫD RB{e6ع!a;x~#ҜSmmXܸ E6CFwlxeү ONU'U_c݉}"}ryX.@jܓ/]nҝ?"ny0Y$x|F'6_Cҵ5Wlސ4ۨ6;|u| d+n~?LjŴeLqt"ԯzϣ\s=z+BE>mE[HyP}r?O rbb7EdQPG~yy!d|Ϋ9Bq\ #Lc}A ɾxi~?XK0Hin/TH \|T=bܨ{hUދ،&ڱ3V؎ϊ-ɶw޲ЯRLpz!ݿϛ jЋS~ǹ9>wևWN@Dӷōl6 ]wcId-"s'2ccrx]aF|ɿ>5 Co՞x^s2]BUq>ƅx**q^`wU?~v֎m .C~u} &}+Tr}.ٖxuN'}s˕/%<u6ɐx74dbj,~CP3k}hUT07ؿ|ukO@lyjr4ғ<d=ֱH M+9ܕ(#t&0ޘ1ვܔ۷*96CI(h@вِqz(KT@.ŻR@m<&m`1o'`}= A[rS2aإʓ˖ O~!#ELӎ&E[BؖBg۷}܇;s ,j)QzK܃6 ho҇u݆22eҊؘȀPv?3D="jɬrb~2ő(7U Zv5$5ҊGAQٙ ) -ڀTMR c&pï-Iߓ3e΁ TÍxҤx'ަ)p̤<FT-϶e+q ھ  ֐IzTX6'V 11ZQ';OuEB Лp4<7 s{+^uGɩO$Yeri^/e"Վ؛ bKCoҖUK&/ʻH3zieAͅKW !!GVhcžbb'{| ,JyMȃnG:;h5<nϐ ܮpxPθ~!j؜i8DP)ر"AdZM}>{2|ĎkC/R(yUɑU<̦ۈE˗Jϲ@8/8x'kX{^aʥ֗\y~ dzTѨ]w j<wGc-Es <4I<ܺvcϢDѓfwNWM#&qpx8nҬv DHh 1OM huO(.Ɂ, ڶX,Ց{'Ijl $uat6I2~Xl"YmX[gD!Wnz;un~lȾCɸ{hGm;5UFS}VUE|DŽ\0%?Ҕ B'53(Kҙ]|KfܥԤpcOKޣC~oe`W*=^EeG;_{x.ǭ*Tqr/r#z2KTݭ"ڳWK7ѠK4ʱDUR6X7|wy |Ҕb>+>Ȕ  ʹG^E˶;Z}tK:|SEWBiqxz๿z*{ w) *to)ӍXمb) u̐ )F9 ֟.vem MD# GHǟo?>A2nABݠ){B9~5wX{ ޭTG] hGnP9$JS sFkzrhTܡA%}8zڵd)jIɦriroI)"Bɚ ٢ֆx$)7̗G 3CdxmiN$x7]&(RձZZ &}Y U4ԅo`V> c< \~]͙kEM Q4զ4H[;ysyZ3L5քB*Ӿ3Sa`U#yϞ #s!mQ̉xԞ2q-V?*%/ݐ&sϷchFb[q~>(cǭtk,kXW̓S -KSs zM7"\NWbЃI;٤SPJ7; wn; c$C 6.P*y BiӍ,%W+(Ϛ T+WAf,}v<}Ӑ -3s9!l؜wɼ z{GpDz'EƲۋsހ ,ӄan i*&_ fƸ ? ݇.yGdq9q^;# >v~rY#bTހ!$KTЁ`r03j Z֫(lۨ7KP:\IaU=˷Y#Ӎ2 ݉#ʐլ\3n}ϟ@vOͅ F4՞qt_icxVxnz#HeЄGۣ=ɻzʱ<|N;<~Dz O፠Pm~!CxMg~@ɂ Qg1O/Ց @Tuh$JCxP{j|jM~*J_͹VGfz)rw0 [ Se~/xrS2*? ؖ )=|7",Dqҹ}x PoFQU@^B~K"̖ Is*,ɶ4o`*[ BD6 p1ȁrx}`u/yu9D͙{rʥjݬE9,ʡ!.7 +z0d"=qg֗'J ߋtl {.ղcLLgdr+<u3&.T2fSR݉4ɳp1xmg9"@x6ДED޵xrS1P{!#MOe1F OX^%pρ́mGp~9 CJs=-*T%,,Fٟo_[r6ݬg{Fhۦ˗-gOW NGRV}xMWa2ţǮY%Aز qrː˳jΞ}fͼz%Ҥɝ%|xSΔP"YlC,y/6/yd{޺θw-v( !Q Szɵb9| ^Y beڌ{ŖU6L-j^2Isڌ^Cc(zr|۰Y~C8GcE[qy}B@1 Je؏L"FJ֠xA M VC}Hb&aS(IuG_(U&<Wc+HsS~yی'G>e1 mTu~NmB7c:g%3d<~}]8OM-6B ɔV[~W>h5^݂{~o͘Mw/~ ٲC%mr2 !b}iA]fG@ =c֐x+yG>_mc ylL/ هhTN=vE۹e/* Գxѳ=ڰgf}H!9ؼrqxQj t}k7s'$:,K5pnoٰy3nѬǕ7ʿ _Qط*C !f1u3̌ Υtx ؚ$è0ˡVHeŒ9Ҟ( gҝa!r ؂LbޢT/!pb-\,Sׅ~|(01q-:9Ddv$ѾHڃӎZs5|l|Hx}=ɮOpw|bȋ-ڸ~Яgay٫19ym̊}l3oL/ހ,ŒFkQdz٧AtheD u]1/}>9lD>:؉|%WTR$_|xm?P$H? 5xv(}Vr#X-bkG̳OַlD32ewB)C? $XHuxamSk1gRvfЈrew}ڕpkv O =B$2eIkvt%+nV~ mևqcmB5;/7aHWUMzZpZ; !Kdە2֒&mTV١oηZ7 ɤK"v4≞~Ifοx:A0^mJ}Y^;8Mpyti, ؗIUl@@Yr9rqސIqѩ8խϞ'yVIjԀS7]xöa՝MĞǀ xҠb~gg'~| EPh}x klׁ|__;l{x Dpb).&m-Gptkɀi1$a:XMrَܨ-tЄ.[|4x` :6Ѕ<ϋֆv8;1Unro(0@3;7ET `qA>/hX<>baqt)<ݶ2Gݕ ~f?̦Pޑ05=,ǘZDHw/{3Kl G43GW}i&~vʼnƉl1ə iO|ǟ}7yd\TPJyhSGwdx5n.=/ưVegRKT~(JSտ5}ڋ4WozпQGn1 9e4nCx2>J;u>j'sS5͋%$1Io Vf0C|yfl׈gG ӅM^{ Pad|Ɍs4n^r ̃Y9bs^^> EGfisz _6 z~wY։zl fǘ Xk- =Pi]W\37D̒8I5ۅ ᆅƉU<  !=Byn|[y-f Z ߅2x٬ҌǹwˣGsK:~i ^E,Y_N~a\:N۵LVA@y+aSƺv zbDn ~MxJ vP%<?T:Ђ DWn~t5s˾M_4exU gդd>Xp s+ɤjLm^M|q|,tyr}2+I%k!΂}ԦGvh09$:}4h͊ xxؒEHd(nj.ˉ9Ņ%J |~Gzxf Ҟ|t DNִ_cVf2b5T@Z*Ǖbق+ky{p(4ڸ"|.[8  Sb "ֻwaqH#*Kr=@ؾ>~z]99B؁a&ׇ  l'W2{ص,x,[}|A|:jmY\pHz3MϕL- K ڳ!r}Iwvjހ0l13Dˑ}[/ ܱ3{(:I)I_w_K&u}r< zsirJS;]6 =Tnd͛PՐ50vV(vٲ)4@ [(q-gFM 7җTB Q)ʼwu[֫Y &SѳlRf} c:٩/̔=~q\yϗH $ӓ\|1j&]TxIٮٗ %PV C0 sJ9Y"qYޙzVN@F- Hsh bNO}W )`Gݸnkٜ?}VS`qg'zː؎ڿx9OG en3+OU_6ڸOη?%T`u,q?K)_$Ҡ1Ƶ% Ժ.3uOB xIEՈߌ' 4/Ո<w ¦Ujh+=+w@Z2^a};>D[v bFՇ z'!9U=$i qԦ`, hFٱkҏ϶2 =ԭ0˺&l v3{қsUCg")FL9 5:VHMr6Nˢ_ $&[_&<ʘu0G\ Uv}%vQćR5RTȂraZ5-~,˫yjD gavE Ex!rD҈14߶N &.n@դa .qN;p4}0.6{o{9DPC=[<FhJVAfFFq ;!}sErrǚ ЀZZɞ_uܫ`ҟY ݃ R| 'ŋO) r{ؕo 2W>Wzp~ r -Lh̃+_љfL U `jnsˑuxzٌX #cʮgJf7drJzyPeߪ̃&c9؂N _y&r/-:GC\D8Ǡ:"}k^pQ@OK.ܪ*x cүȄ~Rϔ>ry`Ck|P9 +8Hq\KwY| O۪th<qq@\V>~k;Y5@<+E.ڝbUy,ȘЉdG=aPK)ST/,֕ƥʂy;D)"9B'I@PGd!.ȿdtGK!| qrpUǀ(΄{T~O%حwF%Y˸7"ԹެH;"/ɔz٣Y4ˡ X3݇N ʗ?H,QƄׇV>)ت p݀֩ܭS:8sьi/i@Av#B؜5ɣx(lӏZpy P=ξP۩amC@&]Xȵ8ʯ_<:v[ʮNF)ؓZWع0'k9[ɘCOƶ5h9d4ȥ<Ϧ ~MѮYJ܁83H'NA f O9ˣM -sǖWr@aۦ&xw˗MxvkeF' !;Ar,FxL BX BfCgKE͵s D-+ vrvYt>,G% ^U,0K 5y<V4@xR0}Pru\֏\HA-ִ.D}؛knڷAXG22] ،it̖x@!AWu/lE_NC۫d A9} :a7 g]۲Pr=s}Ҡ6ЏrRK6dj [roZ7 x!)Ec w=&cWum.ZXȥh 0y"ydrxSz38TxCbl2E<yܴ}ysp/(^u#q]k`yb&}r\'3.PࢺK2 jl g!gn^k_֗9y {k6<2ζV So- ~LAr +P]s<u7 ɄjVf/BI3HՐnUٍq»b~CH <7_+e{᩷G'. ɫ(DR֫ zj-[tdVs*Bf$ .<j!a@hw'Q]h@QQF"#x6+h97*% Dۨl}ݓy6ܖd}[?{K،T6yx(m٘m]ZԀ?{@A <^\uv{<UJ)jt h^p Rp.M AHbSU!z q۩@FF GgG >GE_xsc~J7Fq IzCD[gzs*)QN2#˕%̩yҚSPp`a67 $WٖYېR|bWK} S\ٲ܈9_aO̖9Sb|ZU Zi z'-WʆCWKhس Su ֌Y{hP^i؉sMVYط,q͓tu!~zD )x"Xnd 7l,Py ^՞֥c[Ʒ:ogrI?PӖʘ}*ȓd"'?x"ӑ?'y{(aՐ})N9C{؊K] | ʏ̩6a y .#2_RO[ }wSc?s?U'>rG* { 4*2ByYȲIӗ٬@<_%5Cd2HAJp_F<ddʸLR@ BX\JmFOrwo2xuHEkCڎG77k3 x 6'fYO>H>%٫xZ~" &@c̐:dg]ٷ%5H.z.ɽ(ɵ:={Gʪ9ֆɚU[݂K[)(sJAZcIH]4}sWs̔;,oNFdXks :=_ٌ϶@Xe'|Dki~]u1U@ҘԫۅG q⣅'[Oq};R02}*uOwIx<w،gv6r٦:C z`a׵1,y+|%aOx5%"\tIAfLSH{(q̄%9F7r84Õ.8Vp]{(zv  Ш:­e~i;Vմ B W. ~m}yl\aVs<Ҏmyŋ ( ;pl c&WzDr}QXЁ ɵ_xş{N}/&[Lx >zT Z&k BǠ AlbK$ސxRt~ؓ 'hoq6~ocz.L*b|}"-!ͥEm3٬T,J3ڑP>!%Corߛ" 1W\ ڷ$mΏ lqt aVr¹k8ݼk?Y0MkД9  ء""3;2w\RXwx x&M_q\?VIj Yh~QZ4R4܂8N@oCmʬ>!⃊8 #ܖ~ْV3ŕ, HbRӄr|)í)żBςM[x*f Ⱦ;edևؖڿF-[j{ղ 8 d <5dyܥk=6G#w' RYӗyjn}"zɩHλpM-T@Q!pyXUx"ټyx^} b(ʒE&33ؿH ޡq$x١vcBt[#̑SL<✉~2Erc~zlx͖0Iur%w=ԁ{A+Ob5WNJdP*ǟko@\Z5 R9]v-V)P@:c7QqT+; 8&|~!S!4i~K&] 0 1VLavގ ՚͌kj xYM݊^e{6m 5G:OƶҊuwٍZt>osCmj[_U6>q@# ߽RsNCz3xB?w~%qyDɐs#ϤGhWn Ci ğ7>wnS<cɛi.(7ܢ`qiŗr ZC_dϚwnd&D4ӷPJ:5νw A8B7 ᡂxxGL;sH ΁.!0Zj٣gyZcȅroAqb;IoN|?ׂ!ef{7Krk_=S2rqO&puͯЉ6شL*^jogK[]EApfK0 62 ̀>B|qKm20zGW{Ȃ652 "5PzVG"xt $AKKks9 GVrqQ6QEz m|9A5аGFխx[~n_wD] ypY(7US"1w] { 7y/̖, օ`ŵ.~s:zET_HUT"  }, ]k˯bxIhF%z`Б]5G@٧=>ج7lb-@~y%| ѻ\9 BW<M+ūSAgц>zǿӚrXԁ\֐ڗXl!1LyjˏJ@ͺ)i:xsR^<YϠOGSRlG~OG/{S-;mC,Δu,swPʿ8r GГ> նv}zxiSnOxѮMyydrۯ)l}EʤѸ}B $Ǘ qG#̀_\->٣Lf| ~T?TC 04rl[!%ˢ@!'}@> ˑ2څCL?D*ޓhB36 %^ .jaZ ryݟ<PZNaq !tֵ7%a#'ػθFz$[Ȅ3y (K33ɴ4,WmKf^L q y} <q~͏L@ށWa"ټjߤhlf^:x٫G G^yz=ɂ FFu3s{1hBm7TmS8zL\C\VL|"?F`$yʭumEԵui^Z:Ůhx6݄ _S_ʑ* 4G Քv{ȎN}`dWOM}S@>^|nh%ͳT8-'~m,*>+ZǗ{+ԅA 7ρ*Jc8ZTȏVk=q9!~7s.Exv y|4 2@ 8LV6jx֕.ehۄ࣮ߍڱU2S;4o٦s" Ӌ͍Z/8;r}wz: N}J6k!f59K4kK`fO:v WannU_<҄;rfh  8Kdysܞ\[C3[zۋu G 8ow˫6ER)3$ɟشvͽmdRI-eGDɤc ϞE4+v͍3O <O,|e;;9C ִZiجTDsG v}8Ex\rRO| fҹ] ᾃty02O،#"xqp2poL nY ̦*|6v ywFPA℩ݵRH ! ɕ]ӈrފJ*PыAՊ٪vGõXK $D4̖۷!?*Gvճ/5AvxbF m:4Տb'5Qє&|h V129\)ǀm>Qًѭ9Xؗ5Anj{u1swcUвRSk{=E؇'Cr_-R4S(2\zېؗOއ^̗ؓdXPѾF ȃ?'>x }ҷRGAJ/C܍W[؍|PO]6IԈϡ{9vݴlB? /zf \һ;f1>]}ڢ82E $/ WU͝qL*f$9! Sr uYxɄxl.Ƚ #n+< rqq1a]-Yi>I|ܼ`&I lɷ ѺܝGu~T\ ú?w'w plր$>Mc2s7n%ic_/;-dGz~Ψ A0Ўc 5'8v@j2o8;@x&[ȑWnHqzG)ЁDgnHgWt̩9[?7rSƮV}nE|My\ yCN4|PڝK =x͕`4 wq7]Suw ҝGjh ,7'mxztN?G4?HrɔK)LrTAqƍ&a~ ُͿj<Ƌj0wn g,Aղb:șE4`t5q>\\'E KM_3շOx%!auy>ўIWwݼJʦ)?fOj~!8ݎlX + n)my}bѮx}R֖PvqM>18Cm8al3N dFzl{ٙFyUrbFj;yr@ӔzV ѹnҥ$NqJ^}ڃrIŎfH$ #:}&!B3y<wLʠɑ1ҀsyO٬)Q3 /9=Ѻ?4cv R)mTq|&{'?yȶYRoshq@g:-t5b!@u_"kj+,ѣq۶|*Ȋv: ǟSx(4iؒڰwu>x(k}-X6ӎTɡ*E(f9I ڤ@=jm˜Ѧo[ 6`+ڳk{ŇiΉ,+ +e(Z9ڹf!G 6zkN٪Rwř+_L]~sz>1u} 7f!Cϵglj4qފѧA}e@ ٰ "i_Z߸,(,yg۽49z^-DZCS*iB5ufW(0dٱ?5MѩIOM DkߦSڅ~6؎qaxMtd ax=+|B|mްh2hL ׊U  BdLU9*dVyՂ=ҳ.q wtl amZqj^3y+1zZ :׃ռuJ?}l>~&qJb1$IGLټ0(IQNҠ }3[01q u<pPQKug GUG҈tYK.IIȲ!Rzl6!Q{5o|# ɝzx(1 d޿x݅ ޑV̑[3Բ+*r=Ͳ/i;5T\#tr*'ubरذZb)2Ǩr˹Ґŏ tғijsx)E**f*{ȯ{1rcu?&X]sQPݐx"=\c#Z3y ǜ`k(P| L0cǬ5 0֫s wgȿ0It9sw O &(_lA14'bzm˕ y|r+(?Z}!1-T hcɐɥ9OOLh !Hqsg5N,pp3l6v}tˆ-Ы.r>C̫LVdp װ]Ё~}Ben L|pE(&_GɽҝPZheځ+4 `\|-ݫ.H<|cC~=rPpʮ>ɹR 'Pi~8zAQ.׀Xl dQy%ZYNrӦB|ZJD!<YHN9b>  ٥8 FY Q}$nv_L4xu82YPĝPH 9[!΀vr\+ھ% Te\ oK-`: 66zb,hK5F -ҠT.oپbʢу ܫҌ`' ؎Y7Iߧԥq/2tR'P)*މDq}I$G6v/8 ռ6]SD͂@Z9_6 a|NଫBg xzBJ nYѥ>Ҡ^5MzQN' p ' ևKFZ*|esDNjbsg5;9s}kXޑ P^BӺ؞@ 2ǧ[Ÿ5NZrP7cKSsӲضJHۧ'k݊kqI˚_Uh<u_7݉xފi5 *U|\eSҨnɓ,S>>tx0WãU̺7<]+Iˢ6K{x[9oK ʟ֣EvoYI$iɘqn ɋ~v,<sKϯF*PD2Dsvle0\և(܆P ysq sH>,;nEu܇xxkPnÅ0r go֧ZDܯD>8v>a;xR@*9y 0Sޓy qqe}#P %:b I; ,3dQ x"o !-_٫Yˬ[ f=+7)kX&-  L9 $NԻjX)z|uǹا5{;:7ݸacK6;HZthaGNM?y^a9֝trJ D$ҍSpVf~'ZsB=KؘvWqf\fƎGذ2ձLPȎw˺dht>YL, QFTBp |<4o݅' fr7٠HRzpM@;)rhΦ9=eC=ɥͿs gJ jڱMar "QΣ;esyƂ3eOɗpbQe-i-L3ݻCl݊0o{>X>Ŷ`vȄ1 TjvmhQxWͅ΃9 N$ ,l:Ws7zVqf;qց~~T0us×j[ nlR A0eвx;\Z $\VoDg*?R-t7?qf̥-{ԫWz  KCE :*tD۟(ƢR<Ԅˍe-,B{=.x*;1T7Ӓ|-uQPKb܆#ey52>S#3$ɟcP]-b2Sݏ>Ɨ%G6*Gٔd(FSE68Ҟ!AYRC O-,ۊ5N~ Ff@dҎ&.)ʱBI|)13}04WwZ݇yҰjvgٖv~ZU /yݫ[ ؙc+C#ѳZ_}^ ^ v"0ҤvM? QL775-ѳԲZ ;B<MIp~ʍr28d@+_iewC2qG+ov޴>9|q":*`ɌѰ*ũJn5 P4xԱ|gl~ #ׄSȵܫ|ߏ֪| q/U};ЌRx=A`eW%nѻטG34TȘ6@%`Ղ FN-e8qS[-~.|_%&{oܛ#&Uv̈Ѓ\qn{O>[܀[(Pٌ2ͳW݀|ߡ?XZֵ,CRLGٝ|LԦ$1Ճ$Њ% 4P җ/]Q<0")ئ#.%{7 MqIH7 iچɡ/rxA!y-"M|%٦bܽܭ ˲}*!r؍Lkot=} p,6qZdJ֔ Z7|ž '4~ՠ^ \|{^,DX]u>(:moF0>B; b\(52 ۩p=ʊ*ΨGX OݻtٻX- d31Aj RVA6~C-3:Hgmȵthee*@~_CgA`ry~ lܺ٠8O[hX26m]N>8*؝ 9;BF{ۆha q|%*(s7' u :d|aހQLi'N8;y}ݐqFk |Qέ,͓,͘$8!Mb9P_OOq {|"S{syRu[ɶLV=XHd~DMsBݴP S $/`I <|[U~ Jws3?56F/sϝ y 3yiȝvCD?kI ۳ȇU^ytI5iҢɾXm&zI-t~Th\" Oy=qCѨ ˬ $ gŖm 0-xiqF_̗٣)X[d!DZ}G7]Άa0y ~A/3B doۂbA б=,r([[bTvDB: 1 RλƸ>tKr M8w۬ޢrYiا:4 ik CV;InJ2*ѫzaOҼII|*z[ѳG%ӕ& \$>z;~Yy(w{a 3^J'MP?Ӎ.HF͢Ϻ4q};]ȶ_fVz@Zoo N/n6`u JHI+ґ6rxW Ʊ% Ӆ0ܕLj"r xkN+y@+e5 +M~Bزx]8hiEɶ~/*%kWpqrܹ|NzYU(ދ gQҞW~|sUaj,F0R4_rak֙ Ijerr `dG-pjZϡ݃g4?{ӂ2J$df% V^?q+` o]WzPVCtփW[܀.G.ɽa>0d9"إuT͋ɸQ#n~]ǷkȶpMxǖzr(EajH5vIM>͏wȲ'Fސ! a ^Dq`$J OEKIi.Ԟ9##31;3n)k J( \؁D!C8v,Er`ٵǠ1% ~x7G(bqjY(xnrDܗ F1$1Whq{ЀSs3\o*creA֊Ұ-3S~xaҜb/r%.! & nǏݷ^~VyK iɡ K3)ؚFR@ӓǎU?ߏgUʫ2ZGm Ln<6Br4nNAԈerۛ"a<ũIe!qj>˱3_Gm!ls+HM*'D`q| җ٩s %6 g.etsjՉ&܈ۭ4#JZ-U7 ,ڇ6A }'S҇<tz@x,9q0`g:Q0DMKC'׈-zVV}ԫҩ #4 s9ڴ܃~݆ TS$0Ъ8 mqUB 7ݸdbB7UgŏMEޠTd4ݫ$!٤/-<qepVwqF xQԫʱ*z* dHxbū|z-ES$աrEGy6 [7ۣ+v*u_n 2]M9}B{, EߡӘB%™R۟:|@ng9Wܑh)v0ݸGzbNm(ί%8mUen Y=y>ȸȇ-Q6uyOhrO9>Q FH{<==ٛ A7Nػw ۧ6rQ`<$Bkq}1n{֤!"?Ѯ|` = eblDz)ސz!NJܸ`'Ԅ5H~|*{J?%ncbb br),I"(Dso%5 p!ZaRtJGy`=>s <tD_*Ų3{!e Dݳղ>@oD u@H%͎ћ`9Ǧw ,P84yyP 7r+xۡdg,arZy ,%GH~'z0:U#UZL*fkS-5iR3N\g+ }8~nzH'Dw?Gxo{5Q5jy5&KZŜe|t(|%>7Oo˨ >)91|0m3 B8*Ϳ|ۮ6 fjRa?% >Seoaȱۛ,ADNdz!ލ{ @wbHnDݓϧv ĸ17neطz1[̎z:+U_* z˦MN$(o[5/dԀ")e~=Kkyyvbø{f25=~L(g8̻}r}z+K   )O-A,k.i׃; F75jt~HR{UۖVnoʪJ١BI % x8Y{IպF~G/( 2Y ay^cN4 CБ qitů L,ځNLzs-W{>Bgx ib4ry( _K | ۋf~jGgF%͔<ēqؙ($CPh 6?6%UI<7߯!eKOJ@0N֤iw zLgW6äz SޠsG) ֱ j//i4Gn |f4˱bvڄS_(B6Au|oS"U#E=mQz62/ VF_B Ӥ݈mNDʜލC1cՎ>2r!D 9خjhFڣ%<"Kz>4oȈ.Mvhˢ[!nWם٩43T 9D(ay,f{ iP yΧ#r &Ԍ4 ḱIqF 7ѫܱؖpnѭ_֙kّ;'r^-{m'պɳegn5ٓ\.ձ[3ϺɴZo}.ٜ;Д٥gF}rqԜ?b2_;ԭ^|{FH}vƑ݁=C#) ȗزq*ťΞ{|Jric xewuℓ^>D{A E'/ǀٱYXfԧt`quwnn7+v fbkۉ"\w`-)zs4ۛ C!Oqr-֋Fd!|iXbѠ/t ~H@ٌ\{{S[BqKɿeTF%}EД} 9Wv?9H1| zZI:$$5DX Lm֐ogp.tR:~ ۅt Z @pE@yqR!DŽF$_ ۱'҉(Ƅc8͍,02'ip{UNB|qLݝ$Bq ٩UcE fTh,_ HC/JAr@yl4Asp}ɯH/; )|Wͺtz+ }qBFT:ҡs:xѭ5%˔fb!#^҄v~3ii ZeOYU6 #hch .zEOQ i;ݼֺ1B!{' iu\z <ΪbHʖ-Mhar8mo2N.yq۫bZA45$ɣOԀׁrً9n+p| e^~x9ސghuyv.ں(ڠ[J!ot'ɢ) t݃ ;L_yŮVD&i@DDO\KVwLJ~̯΄rMV{L ֋#⏇َwHځ|hO̓ mH~⓮pN. Rz*V5N9 ׹|~֎զv#̝{Lhf}ʦտc/eǩ]3i4۪7H /$FyB< MsG{]ƥ yϡQ#*~ŷz0<k<p͊ ܝ#{P3tQȍ٠ ~ zGsoJ0/қΐby"uK.o|gQy}|Uʛ؍MeN\z7Uμk0DDTbl>= Ubvc)-؆UcO$E>*T q.)S@|6 cQ^k֡Շ8&oqЇg|1~Bc{af{UiP ł yL ؾ8Jڝ !q^˱g űy10J@o1m’fL2 :_Bށt h<ȐϤvߐCBЭk֑/߲ ٓW]4|[6C?1iۜq9bkM]Kz/}=ୣFsWz\ sIRLgg9US6SkW}' tI-l\ቢƅpu -*vBx9dSEӑw\m/A8%?؍ܨ]Ҋ<L~m LM-:{*BA 2z37?j}y8*T0+MYSqDʁ_Nk4շe|f?-rR "۩ ,ېf©C\خ6>Wm||M8 C W'ٔDO(\RHq\/L<N A3WQx/Bxtk7ڄpJrJ6b[6%j"!wq*uwXrBS֍\BϙxZإ-͹~|eimYVĠd{ۦD*͔ 9Wۇs۪DfP~J a۞dOT]ҙ4ȊkErT#dA,Lf_/w~]hyF?- E|Y~UHۼykc<GS\Ԑ^# k!;2ޫ=ÿ́X˜JI.<՜aqyv>ټ7ykʰifnt$p( ϱ_BJE)NNձ y|, b?.)w^y33fyϒHݱ$ uEݬɓy?mJ7xmD~.V{+G/F#CCu,! 2E.4hqY 8|S <Y۞r Dj$&ze8SdgTbʷAYtݣ {wլgD\ hc$Ռ;> '+|x!|xvxσ l="CiŃk|-rHˈB6A3E[ٔc;ycl(1&q}]q {}ɑ{'ȦA.nQxXK!1? qK.ռH S%K|(D "݀!pnDO p`1ܶN .l.΀ɬ_!BO?3ٷE}i|S!:oO nKBֲlq!J9z۳Ͳ_fj ?LlQG D5Plyer63VjP0 |gŸ@ &#^F6-O-,*I%tԨvG՚\eƉu=5~~TP5O;ޗ)Vs9߂Pw֋1~@Mnc,Oihl٣} bi'HW⣫ Uh˲h>|.u oa¤pI)> Glz^k<KII"?"!{uaX bJ k@-@ǥ>8)nT@؛Ѐ-:j֫/B T2~|q7lbٷI ϒt T)ۘH Y fWXxztK2r(6~d|bwh#Y,686(H\h94pN1~5s+5$ҩ] BT\Hynt $9,ݭy R) dgG)aq 3RqS 8P`H^ȔɓIڵQݓ/P|%[YI3b.1ٵ5ǭ6',zؑdRȫ܍mtǘt8C8"IUz˗v`dsMMQʺQ/gsܧq*ِdQ>,uq=(<? K029d1r.9~_-/ܭwq}qm# o @qdT@dK?kLlM̓grbZrfzRnM^(ڰZ~*w  Sz$s[[˕H2%3~=q? + 72 BU 9pHi,خxFUZ}r-BoaJyQRȅ;!IBEۊss>$'Jw ǜ:JT`];٫ ԭˍۙddda~&]o >(ɔ}ذߥ xSz{eRǟ<Z1(1Yfz` 3ŀYZў8ҞvEմLq$8uJϛ *4bzޡnY3R\ tFUCDQڀhW֪LYC]1`nAnzRBybj yMw@kw!&o  F̎ʽm!9Ŧ-Б pF^yeVy|=erZ59b&F|OͳLlG8eArOȥ?yzbׂ j1OR }:,3 <]b%d / z*P`F8 ȿqߚɟs"wbr~iJ{۪ɒT$RUݐ(ցv4,۠tF0? f-vіIDœ.AcԳ6|PB^G>VnppVϋzu.H B)AVz0kx&H9~֥y={1AYhzX ;  KI~~m c]?Mȋ}Rv0ʼ +@؋y1'Zxj 4WOH D ]Mӏ`u.Ҡ΢jɗ02oӲۡn>Ȕ k%Z:x lUjU}VGFxeaɟ Ԩ%ٕܤxԥ0Tɕ ժZ|vQܿDaX2[5VtM>n ʓ( Ǿȫ!-;Tɖ+ǹ|ٌ!5bQf 9Ku5c؅)%VxpsuC10ۮKۏ/z}wعDž~ !t1iЕv4ѷ@9q ]л!}dyGAAZсDٝ&ȳdd ؼEҡF&01ÿzd=v=6xvޡ|?` H46@BC*֪;9fԷ <:G8d(SLt݂7ۼ4ٌBgopzj0K٧"{ ~BzDlX)1 Y:tɣFcM[9 :H9RҾ5B%S _x.Կ0oӕlם5Ӕ]`iF.s b /vk2rK*z.v́$ ,.xx#y]͂O{]NޖO oʷ' ᾽/~H ߻;2-tKsH+ҫN;J~sTÚu^ۇN$I٘Dm7*ҍz' JV/ǻFGT8hRԵz͏yqt6_ܔ56r yaȌٚ9sOx/Zq<+y9LOd?sJy kp5rp$-:8 ɸ =DʠΫbŃz3/AB y3Ƌ'z0vq_6k:3:}{h+h%%/̐Yyg!./@K% 'eD)k`Ј1Tř1;ǟ"6_*xSǏP ܲ4. *10W|iMI Y9ɥEJ̩3j;όUɳ GxgNwT~ao:}.wmH}qP_4p jћŴA?h;:D'YK؋OιXܢQ!Ka˰q}Rz}Yr]<;Լt[ؒq*6˝-6xƳX, 6VRqqc ;PU<c!p!G N7Pu\x`Dl|޴➲ǀ']7ڢiFG3wLv19"$zCfJW΀x+Z~{ٷgOU45$}vQQ|&[Śd Y81 mF=E#?߯O|Uއě.ɕ xvhxs!s:b.*sy=~~xnKx-Or1=ʴortJ-|,}&xYң&L}~A} |& sܪ~a zKtȏ#ѻVwd xc̶ER2w|KbőPdqIy6x'h%Ծ/˘+KaIs>ԺЊ1s6ۈo:SGo xnx̀rZ%"Ȏ3Qo}hK DщG wP;~;RЄ&l bHQ`dQ\ ]~q}Sp+~NޘJRjEێ[0,E^kr[,s(`QRZWP2snr>a\ Q}. |&k|xr.X2gY y:#bjr Fϊs""=kII>!-5|tҢ\q#&Q.y{J,M9^qT٦x&0֣MTMvl/ WڤNn}}"b:ʢ4r*$}JdѦɭĹͶAlSɵ5Pᇚgloj{݂v@Kށm3 KI)b۟/| h]} Zxܑ@Ӌ cHլ} |{N f&B?T|&ִ[HBmqtx6gT8nz=1 3cw~MvzLs(3 D\p'J5 6U pbzZf.nQyQdZRC8!؄"M<*hw˟¼)Ϸce =nCfЊ[Ȑ`qO|ǩa4Z sP&I+]~ }Enٚ[ԣ sf nFL,88%=̺3+?َcr<5V"Gi').?@Ϣ|4(h7$%**Ҙٕ̓ΦNQ:BIң"ੌ&LϜFܯޒqr^ɓ)7<b16(?tS3q9/֩-| Ͼ0ǭ˨6Uf:DZ}m74y{gج(B;~yqyݦize7M؝9ދ9N+ebӋZ˕Xn wٞk; jZ U%,[ҵ}I`֪̤!5)7>D ː`Z z8@d@ˤyh -k1 LPuc1Uz[nSXUJQNUW7Q+/ֶ8ޢ; ߬o 2/qU.KY`p_+1Bڰ$~t!$Y4Dذ-/60(DI7&ŞS-.F^| WKqǐ~ǣxd)R0uh=x[xִϘ[ڊ|݄NYZײ/ҧm< AHEm&[|[E;Z݅ik}9C!8P)qȖ ym٨7&;w;AzyC?kVEvnL-L=!nx %)~O[ɹM_jI~l~:ܘM n5XP S^B]gɦ " yUqդʒ +_@@ @U۪?_71ɦ"Gw.a݁=#ӘM݃ODZLuARXI JCٕZQy(l,"Dxq ɶI]9 *V! ٚ. 30=0ɽCum˗Aӊw3]#y2 HZ $M8P٢^gQ r,sɕT4O.ʻFuj5Sqi4٧zϨ1/U%w/6ri\ߞݱQpbgvߨ\be{C/gR":maB gPV]'jUCk֨Ϝ@ݱTC{ =Ej_81ֵͽ%غlBwBY/vN\ҩt^"V}T 7H-+-#~{ض``z|c0$K|6(mW$ç: up C ݔ|/7J7Txo~CܬHE8$ёy'؀E3/p^r5y}0&ݽ6te_؎ɴyf1د1{Ӌ_"A$k [6er1վH}B(<iLgȢ ?OEMy,Зܺ A@٪5z9FǶ(&.Κ} -݋)v6;"Uk~?sѢ< Ⱥw0j٠%;CyH{OGJLF{ ~c&`bzϟaxN=هj: dgZ3lx^d1 xRYȼzpFwxAϭ~'#N.t=ݬpDۅTVVrmh,vإ>Lp>ŔߦU^nj'rd(l݂? Tf̀;Ȏށ)\81֎zsy3~gnz1hhK`%Rō)jMqЅg"*( J$}!ЕGʸqB1iH2=Oqa۽ǸnY\psfc7^<̒ oz$KQIcSV&ɯvzH>* acxW ԖrI' hɠ 0 ?ݠ|w4EȐ`lgN0]\qA.W١*uL4Y(u1ڲS <ּ) H&ѭFќإsSrz؋|N;UɚeԃCcX|g,qiPܳv{vd7ǖ˶@܀ ;Vۙۈq 1yNc,ۦ٤zZi|S@b??l`'ٿ_Y#)/>br޲Bd.߂}<=uK9 TOr\u(}V24!̒:7|Loȿw ؕAλCR~ܡW(FbA،uKؗrbIbMλhf~\D% oAD[9&U( /| }͗Ƶ $f@~3{Y2{GzG3xKzVګC/HǻsA\Z? JJ pwuh1 <AFYӊM>QݷGI0rBq0_T#͌"ݗ2'=) BE ?~A 8Pd}ҽo$=M` FT?TD~9 !ս؊YUݕ%<:h#L  |fx^ UZtimc.Cxy9^|X7ϙ[ADOx0\NK  O ԆkG6g*`+ elpmėAT ,-x.J4$|ȋr\g5PoYoY,͌̃\\8i~U݄O#"O ɑOzvTzܸڞӠmQϛRRD~bm5"FǿXEˤx7(N <ܜPqwM\| \UGgd b^:>Ye',0< I,lf !uyŬpfP͌.buP%yC'{'zD$+~10yPwiٲoy@sGV1yU2G R .h+r< ~Q2lcyn5I1&G d1"F2FL*A_.XՃL},SH6Ar6GV֞|WKwXyGzظ#Zb  rWҡ} AaFgRh6xRm܅3u⃴S;Os nw^~\ONy|DVk!(SNWշ'֦)Bƙ< զd0703``%FMc)`~}5R}^ ְя<^$ه$QVk~U q'_uϊ[ˉɵ.ADW؛;ۏ KW݄/K W-tp_yѲ0x->bR-<U~@hS˘=r˻z~]A 2ӂ^]%T3)c5) q" OȐy %wo2gTD(:_[ ҫ B֙*=ގTǥ8M+I rؓl lWRϥ7ǻCV{5"y˝Dx1@&E  t&݁- MYixoeުjf؏b `[9p=GɗW?WE=WxTQ_(ب+۬ ]Tѹ~Rϖ;t]֝qoqbD}b*/QL'iz5u7-b**ovV%x4j`bw_ʢxa"Ȇ`:G Ҫʉ15!+Ɵ? ih}cޔ&د5kbRU؜?u`cAnceA,Թϧ0&'MQqZ ѹuH7mcڋIБ-4_ow̻ YCO!cLpTv}zW DxܠuR"պɑϥy%߆ ȉEx0fy"(2i?~0K~:ٍ(hFϨ b$a ^Ǥ϶( ~- ɽsY'I@[^(c ӆZrܖK`%tux0 X]c%j(jlĵx ߙūTpId؞tKȸɵY ؙn Z j(G)κWJЁlKrnžnjKr֣s [?$z<DlʽfY۴!] ytj'} IgxNzO8>$^ȮJb]BL83P̿ y||ypͬi%A.S y{s>PZ5 g )9+1 !"'LdQ=1.lr_Z3^X:`{Ӭ 6٥҄FJ0=Hi*]$]4^Lʇ<qwTr{N/ca~?r.Rq  ZF;m۰V-n;{y#n݊nr Q% >|tȏFAr$ю0ۉGMP1, (Q+ 4Bf{K1rm!me7WaYviޔ IMB?఑:C j,sG okٴ Eh( Q !_r{JH`Ȥƈ`ܪ# w^{OTq̣1?Xܺ-e~pHdݝ sVo@bѷ-?_?sozTfZӄ`9ϕm\q:ZA|;<aMϖR~< [ X)i:Ԡٕ-ŹA:& AYя 5~hJ])3z:Y:=!Гn+|N[BUӖ}U\ dNp.TL~dEwF1v#Ih4Qψ$@~ΌUYPޓ;aD|&˗dϕcTGn1Z10PC @r++\ɭc Җ#&ʠ9{(Ƅ3թciذ~qǾN-v k@EiiTˣf2Kq=^ܰas/ء ۩;o":O;'qqʖ3$Xxx3CԾzYqKY%XGء6rE6ȅV>޹@:ui7uJiu5 Qnz(ʢtrEt v8UBc.erȀjID"}ևx _]AP(4zye֖ƑӋ6>Btw0E:+!BT{)_=4Gծؙ>o.,Ŝu&=gNڳ?AVᚭ+iWs[ɭ̂I*P,=PL&$T9gbMm& MIGơK5Yz}7r|5&nyZǎRaՉSCb `܆!4AaiܱK7M]}Cc}~Da\f$ޅsoڌ=։0Ѿ 4%{-TE2>~^ ԀvOLɓVShȃXrH؊?)Xz Ⱦ,vku:٬m$qa s&KP_Nx)ݫR&iEݵN٧P}`ȗݔP(%v{drj+э8KA^s7D  G΋Hh\|ފH ;!8&qj ͮ*bۚI_#_cUГkzUH $cҢ8Ae^ő>>bLҒ Ճ9fې Hx_y` (ƟirDɦr ͙D$Ɗ m˜%Q2:Է;YUA$~2+l^"}}ۇu ȼPVQ!V ʾ$сE>y6QyO/]M-ַwEʙvL|Gq LݳKW0ק. p{)'ܚo~ׇlk Rm u3*9.ry#xc ِ  S/Oe3xXL~. Qr_exhҢ=iҺe8f*{-waT;ڟϨzyD y tBmaB|کǜ eUaݟ.SNlݺdt@im9] K\<H.~[В,DzqW_&IomWӄʡ2%~NzP 3^lǦv hSc&7 rb9(`C.Rqu Ms6 =h=0ϷVEj*X j4kMۣ4@@iVv | p܈  ӏؑޑxax,[Zorٵ!zr- :jj88=ynF"D4<K Av>sܭ=xrE֏΂)ƎrwX H(x[ slWbB UT@{Ant7x(اFJ,\ʺT0yǝK<ۉyCMc,zɬ\\͗E(Z%7pcKB3uЊءӸ![l#4D>%sO֚2ɂl {E[X%HSؼQ 9~Q5؊ih&Pr9|Yhɣ`pI!>g7wx#o/X EALjlmZyBdtϭ(#j٫  NG5{ V(?R }(Pxo=;J Lqh)E:0b3}.! Qc/9϶x kseFV\.hɥ-қExɷf 7բNңNccճwʽ}( 3 ǭoioڳ( #{<i8=sˌ,ˡ>7pQq^D  sWXՠILab`UۧT$+3܁ E۟wC x"9h_0~ .Xݕh9{A=vA֘()C0٨a΁ ؔ3T1m ;4^ EM$=<yq! ىPG*شi12L=s(Fl~$d%% ٞ)" aD΁cѨد^$j*Oy_v5sұT-_ ֌6 aGҥS.}@\qD{Tx PxRmnȰy(`NAxlؚ}zK;y|lHK5؆Y5?Z əݵ ONٽ kGJ{:=@{!n`Ȇ$` ۼ~ޅgdӖP2$oh~IV D~=?iK& Ow ?m*LٽlO< -qXs Gg'C:`)%R3;fϚѡzRE.js ݃9V9y9 i& k֔;+Ly|ct #P =ۍԃ/WڸqMCCխ,W% uJɭAq0ehz" űxVc^եޔ=G2:#rt~)X.S٤bցlx Yl$ϒ}s#J-,9ٟܧ<&J$E!6Pn9͐ y7 ϕ= yc0̭j\ _}8 C*pRh782YBv5AKlخKБ ?5eQ8VG@ w۳W{<?ؕD|AVA{o=Ңnf&Ϣ&v{4ٓV%̨eM8݉J=K@ۚߏ_1z ޷ҁO 4,͘ubkBNa UKlxNqcQ l@zUwψUl~}Be15[H[Ԅc]jŻ]hf /LaNO[K@˵_ eq= rbr^mÉj#ۧd?,.r|J ܹ׹ 5ۢFg;Jɴy{ؿ<Zt8ϝ];}ڣF E ]Nk´KVwYۭ>|Z2~2NY6hoK;>A=˻ґr R۞E֯''ly)tՕQ,*"A<%?lTfeЦCkz, * _dU#ax HKfNļwy*ۻ4LK˜9]OA>R?[^mf~`iyW(8q; z%/ծmQ
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Setup for pytest [pytest] markers = mat_ops: mark a test as utilizing matrix operations. addopts = --durations=10
# Setup for pytest [pytest] markers = mat_ops: mark a test as utilizing matrix operations. addopts = --durations=10
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
class BinaryHeap: """ A max-heap implementation in Python >>> binary_heap = BinaryHeap() >>> binary_heap.insert(6) >>> binary_heap.insert(10) >>> binary_heap.insert(15) >>> binary_heap.insert(12) >>> binary_heap.pop() 15 >>> binary_heap.pop() 12 >>> binary_heap.get_list [10, 6] >>> len(binary_heap) 2 """ def __init__(self): self.__heap = [0] self.__size = 0 def __swap_up(self, i: int) -> None: """Swap the element up""" temporary = self.__heap[i] while i // 2 > 0: if self.__heap[i] > self.__heap[i // 2]: self.__heap[i] = self.__heap[i // 2] self.__heap[i // 2] = temporary i //= 2 def insert(self, value: int) -> None: """Insert new element""" self.__heap.append(value) self.__size += 1 self.__swap_up(self.__size) def __swap_down(self, i: int) -> None: """Swap the element down""" while self.__size >= 2 * i: if 2 * i + 1 > self.__size: bigger_child = 2 * i else: if self.__heap[2 * i] > self.__heap[2 * i + 1]: bigger_child = 2 * i else: bigger_child = 2 * i + 1 temporary = self.__heap[i] if self.__heap[i] < self.__heap[bigger_child]: self.__heap[i] = self.__heap[bigger_child] self.__heap[bigger_child] = temporary i = bigger_child def pop(self) -> int: """Pop the root element""" max_value = self.__heap[1] self.__heap[1] = self.__heap[self.__size] self.__size -= 1 self.__heap.pop() self.__swap_down(1) return max_value @property def get_list(self): return self.__heap[1:] def __len__(self): """Length of the array""" return self.__size if __name__ == "__main__": import doctest doctest.testmod() # create an instance of BinaryHeap binary_heap = BinaryHeap() binary_heap.insert(6) binary_heap.insert(10) binary_heap.insert(15) binary_heap.insert(12) # pop root(max-values because it is max heap) print(binary_heap.pop()) # 15 print(binary_heap.pop()) # 12 # get the list and size after operations print(binary_heap.get_list) print(len(binary_heap))
class BinaryHeap: """ A max-heap implementation in Python >>> binary_heap = BinaryHeap() >>> binary_heap.insert(6) >>> binary_heap.insert(10) >>> binary_heap.insert(15) >>> binary_heap.insert(12) >>> binary_heap.pop() 15 >>> binary_heap.pop() 12 >>> binary_heap.get_list [10, 6] >>> len(binary_heap) 2 """ def __init__(self): self.__heap = [0] self.__size = 0 def __swap_up(self, i: int) -> None: """Swap the element up""" temporary = self.__heap[i] while i // 2 > 0: if self.__heap[i] > self.__heap[i // 2]: self.__heap[i] = self.__heap[i // 2] self.__heap[i // 2] = temporary i //= 2 def insert(self, value: int) -> None: """Insert new element""" self.__heap.append(value) self.__size += 1 self.__swap_up(self.__size) def __swap_down(self, i: int) -> None: """Swap the element down""" while self.__size >= 2 * i: if 2 * i + 1 > self.__size: bigger_child = 2 * i else: if self.__heap[2 * i] > self.__heap[2 * i + 1]: bigger_child = 2 * i else: bigger_child = 2 * i + 1 temporary = self.__heap[i] if self.__heap[i] < self.__heap[bigger_child]: self.__heap[i] = self.__heap[bigger_child] self.__heap[bigger_child] = temporary i = bigger_child def pop(self) -> int: """Pop the root element""" max_value = self.__heap[1] self.__heap[1] = self.__heap[self.__size] self.__size -= 1 self.__heap.pop() self.__swap_down(1) return max_value @property def get_list(self): return self.__heap[1:] def __len__(self): """Length of the array""" return self.__size if __name__ == "__main__": import doctest doctest.testmod() # create an instance of BinaryHeap binary_heap = BinaryHeap() binary_heap.insert(6) binary_heap.insert(10) binary_heap.insert(15) binary_heap.insert(12) # pop root(max-values because it is max heap) print(binary_heap.pop()) # 15 print(binary_heap.pop()) # 12 # get the list and size after operations print(binary_heap.get_list) print(len(binary_heap))
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from datetime import datetime import requests from bs4 import BeautifulSoup if __name__ == "__main__": url = input("Enter image url: ").strip() print(f"Downloading image from {url} ...") soup = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image image_url = soup.find("meta", {"property": "og:image"})["content"] image_data = requests.get(image_url).content file_name = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, "wb") as fp: fp.write(image_data) print(f"Done. Image saved to disk as {file_name}.")
from datetime import datetime import requests from bs4 import BeautifulSoup if __name__ == "__main__": url = input("Enter image url: ").strip() print(f"Downloading image from {url} ...") soup = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image image_url = soup.find("meta", {"property": "og:image"})["content"] image_data = requests.get(image_url).content file_name = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, "wb") as fp: fp.write(image_data) print(f"Done. Image saved to disk as {file_name}.")
-1
TheAlgorithms/Python
4,881
bugfix: Add empty list detection for find_max/min
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
taseikyo
"2021-10-02T04:03:28Z"
"2021-10-07T15:20:32Z"
d324f91fe75cc859335ee1f7c9c6307d958d0558
77b243e62b09cdf6201916af6762b03c54d8f77a
bugfix: Add empty list detection for find_max/min. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [x] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" An Armstrong number is equal to the sum of its own digits each raised to the power of the number of digits. For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370. Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers. On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188 """ PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401) FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None) def armstrong_number(n: int) -> bool: """ Return True if n is an Armstrong number or False if it is not. >>> all(armstrong_number(n) for n in PASSING) True >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: return False # Initialization of sum and number of digits. sum = 0 number_of_digits = 0 temp = n # Calculation of digits of the number while temp > 0: number_of_digits += 1 temp //= 10 # Dividing number into separate digits and find Armstrong number temp = n while temp > 0: rem = temp % 10 sum += rem ** number_of_digits temp //= 10 return n == sum def pluperfect_number(n: int) -> bool: """Return True if n is a pluperfect number or False if it is not >>> all(armstrong_number(n) for n in PASSING) True >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: return False # Init a "histogram" of the digits digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] digit_total = 0 sum = 0 temp = n while temp > 0: temp, rem = divmod(temp, 10) digit_histogram[rem] += 1 digit_total += 1 for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))): sum += cnt * i ** digit_total return n == sum def narcissistic_number(n: int) -> bool: """Return True if n is a narcissistic number or False if it is not. >>> all(armstrong_number(n) for n in PASSING) True >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: return False expo = len(str(n)) # the power that all digits will be raised to # check if sum of each digit multiplied expo times is equal to number return n == sum(int(i) ** expo for i in str(n)) def main(): """ Request that user input an integer and tell them if it is Armstrong number. """ num = int(input("Enter an integer to see if it is an Armstrong number: ").strip()) print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.") if __name__ == "__main__": import doctest doctest.testmod() main()
""" An Armstrong number is equal to the sum of its own digits each raised to the power of the number of digits. For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370. Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers. On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188 """ PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401) FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None) def armstrong_number(n: int) -> bool: """ Return True if n is an Armstrong number or False if it is not. >>> all(armstrong_number(n) for n in PASSING) True >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: return False # Initialization of sum and number of digits. sum = 0 number_of_digits = 0 temp = n # Calculation of digits of the number while temp > 0: number_of_digits += 1 temp //= 10 # Dividing number into separate digits and find Armstrong number temp = n while temp > 0: rem = temp % 10 sum += rem ** number_of_digits temp //= 10 return n == sum def pluperfect_number(n: int) -> bool: """Return True if n is a pluperfect number or False if it is not >>> all(armstrong_number(n) for n in PASSING) True >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: return False # Init a "histogram" of the digits digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] digit_total = 0 sum = 0 temp = n while temp > 0: temp, rem = divmod(temp, 10) digit_histogram[rem] += 1 digit_total += 1 for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))): sum += cnt * i ** digit_total return n == sum def narcissistic_number(n: int) -> bool: """Return True if n is a narcissistic number or False if it is not. >>> all(armstrong_number(n) for n in PASSING) True >>> any(armstrong_number(n) for n in FAILING) False """ if not isinstance(n, int) or n < 1: return False expo = len(str(n)) # the power that all digits will be raised to # check if sum of each digit multiplied expo times is equal to number return n == sum(int(i) ** expo for i in str(n)) def main(): """ Request that user input an integer and tell them if it is Armstrong number. """ num = int(input("Enter an integer to see if it is an Armstrong number: ").strip()) print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.") if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Cnn Classification](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/cnn_classification.py) * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/boruvka.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Luhn](https://github.com/TheAlgorithms/Python/blob/master/hashes/luhn.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Double Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_recursive.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](https://github.com/TheAlgorithms/Python/blob/master/maths/is_ip_v4_address_valid.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic_mean.py) * [Geometric Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_mean.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py) * [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py) * [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Alternative String Arrange](https://github.com/TheAlgorithms/Python/blob/master/strings/alternative_string_arrange.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Indian Phone Validator](https://github.com/TheAlgorithms/Python/blob/master/strings/indian_phone_validator.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Swap Case](https://github.com/TheAlgorithms/Python/blob/master/strings/swap_case.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Random Anime Character](https://github.com/TheAlgorithms/Python/blob/master/web_programming/random_anime_character.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Cnn Classification](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/cnn_classification.py) * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/boruvka.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Luhn](https://github.com/TheAlgorithms/Python/blob/master/hashes/luhn.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Double Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_recursive.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gamma Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma_recursive.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](https://github.com/TheAlgorithms/Python/blob/master/maths/is_ip_v4_address_valid.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic_mean.py) * [Geometric Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_mean.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py) * [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py) * [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Alternative String Arrange](https://github.com/TheAlgorithms/Python/blob/master/strings/alternative_string_arrange.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Indian Phone Validator](https://github.com/TheAlgorithms/Python/blob/master/strings/indian_phone_validator.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Swap Case](https://github.com/TheAlgorithms/Python/blob/master/strings/swap_case.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Random Anime Character](https://github.com/TheAlgorithms/Python/blob/master/web_programming/random_anime_character.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Convert a string of characters to a sequence of numbers corresponding to the character's position in the alphabet. https://www.dcode.fr/letter-number-cipher http://bestcodes.weebly.com/a1z26.html """ def encode(plain: str) -> list[int]: """ >>> encode("myname") [13, 25, 14, 1, 13, 5] """ return [ord(elem) - 96 for elem in plain] def decode(encoded: list[int]) -> str: """ >>> decode([13, 25, 14, 1, 13, 5]) 'myname' """ return "".join(chr(elem + 96) for elem in encoded) def main() -> None: encoded = encode(input("-> ").strip().lower()) print("Encoded: ", encoded) print("Decoded:", decode(encoded)) if __name__ == "__main__": main()
""" Convert a string of characters to a sequence of numbers corresponding to the character's position in the alphabet. https://www.dcode.fr/letter-number-cipher http://bestcodes.weebly.com/a1z26.html """ from __future__ import annotations def encode(plain: str) -> list[int]: """ >>> encode("myname") [13, 25, 14, 1, 13, 5] """ return [ord(elem) - 96 for elem in plain] def decode(encoded: list[int]) -> str: """ >>> decode([13, 25, 14, 1, 13, 5]) 'myname' """ return "".join(chr(elem + 96) for elem in encoded) def main() -> None: encoded = encode(input("-> ").strip().lower()) print("Encoded: ", encoded) print("Decoded:", decode(encoded)) if __name__ == "__main__": main()
1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Wikipedia: https://en.wikipedia.org/wiki/Enigma_machine Video explanation: https://youtu.be/QwQVMqfoB2E Also check out Numberphile's and Computerphile's videos on this topic This module contains function 'enigma' which emulates the famous Enigma machine from WWII. Module includes: - enigma function - showcase of function usage - 9 randnomly generated rotors - reflector (aka static rotor) - original alphabet Created by TrapinchO """ RotorPositionT = tuple[int, int, int] RotorSelectionT = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase abc = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- rotor1 = "EGZWVONAHDCLFQMSIPJBYUKXTR" rotor2 = "FOBHMDKEXQNRAULPGSJVTYICZW" rotor3 = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- reflector = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- rotor4 = "RMDJXFUWGISLHVTCQNKYPBEZOA" rotor5 = "SGLCPQWZHKXAREONTFBVIYJUDM" rotor6 = "HVSICLTYKQUBXDWAJZOMFGPREN" rotor7 = "RZWQHFMVDBKICJLNTUXAGYPSOE" rotor8 = "LFKIJODBEGAMQPXVUHYSTCZRWN" rotor9 = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def _validator( rotpos: RotorPositionT, rotsel: RotorSelectionT, pb: str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """ Checks if the values can be used for the 'enigma' function >>> _validator((1,1,1), (rotor1, rotor2, rotor3), 'POLAND') ((1, 1, 1), ('EGZWVONAHDCLFQMSIPJBYUKXTR', 'FOBHMDKEXQNRAULPGSJVTYICZW', \ 'ZJXESIUQLHAVRMDOYGTNFWPBKC'), \ {'P': 'O', 'O': 'P', 'L': 'A', 'A': 'L', 'N': 'D', 'D': 'N'}) :param rotpos: rotor_positon :param rotsel: rotor_selection :param pb: plugb -> validated and transformed :return: (rotpos, rotsel, pb) """ # Checks if there are 3 unique rotors unique_rotsel = len(set(rotsel)) if unique_rotsel < 3: raise Exception(f"Please use 3 unique rotors (not {unique_rotsel})") # Checks if rotor positions are valid rotorpos1, rotorpos2, rotorpos3 = rotpos if not 0 < rotorpos1 <= len(abc): raise ValueError( f"First rotor position is not within range of 1..26 (" f"{rotorpos1}" ) if not 0 < rotorpos2 <= len(abc): raise ValueError( f"Second rotor position is not within range of 1..26 (" f"{rotorpos2})" ) if not 0 < rotorpos3 <= len(abc): raise ValueError( f"Third rotor position is not within range of 1..26 (" f"{rotorpos3})" ) # Validates string and returns dict pbdict = _plugboard(pb) return rotpos, rotsel, pbdict def _plugboard(pbstring: str) -> dict[str, str]: """ https://en.wikipedia.org/wiki/Enigma_machine#Plugboard >>> _plugboard('PICTURES') {'P': 'I', 'I': 'P', 'C': 'T', 'T': 'C', 'U': 'R', 'R': 'U', 'E': 'S', 'S': 'E'} >>> _plugboard('POLAND') {'P': 'O', 'O': 'P', 'L': 'A', 'A': 'L', 'N': 'D', 'D': 'N'} In the code, 'pb' stands for 'plugboard' Pairs can be separated by spaces :param pbstring: string containing plugboard setting for the Enigma machine :return: dictionary containing converted pairs """ # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(pbstring, str): raise TypeError(f"Plugboard setting isn't type string ({type(pbstring)})") elif len(pbstring) % 2 != 0: raise Exception(f"Odd number of symbols ({len(pbstring)})") elif pbstring == "": return {} pbstring.replace(" ", "") # Checks if all characters are unique tmppbl = set() for i in pbstring: if i not in abc: raise Exception(f"'{i}' not in list of symbols") elif i in tmppbl: raise Exception(f"Duplicate symbol ({i})") else: tmppbl.add(i) del tmppbl # Created the dictionary pb = {} for j in range(0, len(pbstring) - 1, 2): pb[pbstring[j]] = pbstring[j + 1] pb[pbstring[j + 1]] = pbstring[j] return pb def enigma( text: str, rotor_position: RotorPositionT, rotor_selection: RotorSelectionT = (rotor1, rotor2, rotor3), plugb: str = "", ) -> str: """ The only difference with real-world enigma is that I allowed string input. All characters are converted to uppercase. (non-letter symbol are ignored) How it works: (for every letter in the message) - Input letter goes into the plugboard. If it is connected to another one, switch it. - Letter goes through 3 rotors. Each rotor can be represented as 2 sets of symbol, where one is shuffled. Each symbol from the first set has corresponding symbol in the second set and vice versa. example: | ABCDEFGHIJKLMNOPQRSTUVWXYZ | e.g. F=D and D=F | VKLEPDBGRNWTFCJOHQAMUZYIXS | - Symbol then goes through reflector (static rotor). There it is switched with paired symbol The reflector can be represented as2 sets, each with half of the alphanet. There are usually 10 pairs of letters. Example: | ABCDEFGHIJKLM | e.g. E is paired to X | ZYXWVUTSRQPON | so when E goes in X goes out and vice versa - Letter then goes through the rotors again - If the letter is connected to plugboard, it is switched. - Return the letter >>> enigma('Hello World!', (1, 2, 1), plugb='pictures') 'KORYH JUHHI!' >>> enigma('KORYH, juhhi!', (1, 2, 1), plugb='pictures') 'HELLO, WORLD!' >>> enigma('hello world!', (1, 1, 1), plugb='pictures') 'FPNCZ QWOBU!' >>> enigma('FPNCZ QWOBU', (1, 1, 1), plugb='pictures') 'HELLO WORLD' :param text: input message :param rotor_position: tuple with 3 values in range 1..26 :param rotor_selection: tuple with 3 rotors () :param plugb: string containing plugboard configuration (default '') :return: en/decrypted string """ text = text.upper() rotor_position, rotor_selection, plugboard = _validator( rotor_position, rotor_selection, plugb.upper() ) rotorpos1, rotorpos2, rotorpos3 = rotor_position rotor1, rotor2, rotor3 = rotor_selection rotorpos1 -= 1 rotorpos2 -= 1 rotorpos3 -= 1 result = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: symbol = plugboard[symbol] # rotor ra -------------------------- index = abc.index(symbol) + rotorpos1 symbol = rotor1[index % len(abc)] # rotor rb -------------------------- index = abc.index(symbol) + rotorpos2 symbol = rotor2[index % len(abc)] # rotor rc -------------------------- index = abc.index(symbol) + rotorpos3 symbol = rotor3[index % len(abc)] # reflector -------------------------- # this is the reason you don't need another machine to decipher symbol = reflector[symbol] # 2nd rotors symbol = abc[rotor3.index(symbol) - rotorpos3] symbol = abc[rotor2.index(symbol) - rotorpos2] symbol = abc[rotor1.index(symbol) - rotorpos1] # 2nd plugboard if symbol in plugboard: symbol = plugboard[symbol] # moves/resets rotor positions rotorpos1 += 1 if rotorpos1 >= len(abc): rotorpos1 = 0 rotorpos2 += 1 if rotorpos2 >= len(abc): rotorpos2 = 0 rotorpos3 += 1 if rotorpos3 >= len(abc): rotorpos3 = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(symbol) return "".join(result) if __name__ == "__main__": message = "This is my Python script that emulates the Enigma machine from WWII." rotor_pos = (1, 1, 1) pb = "pictures" rotor_sel = (rotor2, rotor4, rotor8) en = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
""" Wikipedia: https://en.wikipedia.org/wiki/Enigma_machine Video explanation: https://youtu.be/QwQVMqfoB2E Also check out Numberphile's and Computerphile's videos on this topic This module contains function 'enigma' which emulates the famous Enigma machine from WWII. Module includes: - enigma function - showcase of function usage - 9 randnomly generated rotors - reflector (aka static rotor) - original alphabet Created by TrapinchO """ from __future__ import annotations RotorPositionT = tuple[int, int, int] RotorSelectionT = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase abc = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- rotor1 = "EGZWVONAHDCLFQMSIPJBYUKXTR" rotor2 = "FOBHMDKEXQNRAULPGSJVTYICZW" rotor3 = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- reflector = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- rotor4 = "RMDJXFUWGISLHVTCQNKYPBEZOA" rotor5 = "SGLCPQWZHKXAREONTFBVIYJUDM" rotor6 = "HVSICLTYKQUBXDWAJZOMFGPREN" rotor7 = "RZWQHFMVDBKICJLNTUXAGYPSOE" rotor8 = "LFKIJODBEGAMQPXVUHYSTCZRWN" rotor9 = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def _validator( rotpos: RotorPositionT, rotsel: RotorSelectionT, pb: str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """ Checks if the values can be used for the 'enigma' function >>> _validator((1,1,1), (rotor1, rotor2, rotor3), 'POLAND') ((1, 1, 1), ('EGZWVONAHDCLFQMSIPJBYUKXTR', 'FOBHMDKEXQNRAULPGSJVTYICZW', \ 'ZJXESIUQLHAVRMDOYGTNFWPBKC'), \ {'P': 'O', 'O': 'P', 'L': 'A', 'A': 'L', 'N': 'D', 'D': 'N'}) :param rotpos: rotor_positon :param rotsel: rotor_selection :param pb: plugb -> validated and transformed :return: (rotpos, rotsel, pb) """ # Checks if there are 3 unique rotors unique_rotsel = len(set(rotsel)) if unique_rotsel < 3: raise Exception(f"Please use 3 unique rotors (not {unique_rotsel})") # Checks if rotor positions are valid rotorpos1, rotorpos2, rotorpos3 = rotpos if not 0 < rotorpos1 <= len(abc): raise ValueError( f"First rotor position is not within range of 1..26 (" f"{rotorpos1}" ) if not 0 < rotorpos2 <= len(abc): raise ValueError( f"Second rotor position is not within range of 1..26 (" f"{rotorpos2})" ) if not 0 < rotorpos3 <= len(abc): raise ValueError( f"Third rotor position is not within range of 1..26 (" f"{rotorpos3})" ) # Validates string and returns dict pbdict = _plugboard(pb) return rotpos, rotsel, pbdict def _plugboard(pbstring: str) -> dict[str, str]: """ https://en.wikipedia.org/wiki/Enigma_machine#Plugboard >>> _plugboard('PICTURES') {'P': 'I', 'I': 'P', 'C': 'T', 'T': 'C', 'U': 'R', 'R': 'U', 'E': 'S', 'S': 'E'} >>> _plugboard('POLAND') {'P': 'O', 'O': 'P', 'L': 'A', 'A': 'L', 'N': 'D', 'D': 'N'} In the code, 'pb' stands for 'plugboard' Pairs can be separated by spaces :param pbstring: string containing plugboard setting for the Enigma machine :return: dictionary containing converted pairs """ # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(pbstring, str): raise TypeError(f"Plugboard setting isn't type string ({type(pbstring)})") elif len(pbstring) % 2 != 0: raise Exception(f"Odd number of symbols ({len(pbstring)})") elif pbstring == "": return {} pbstring.replace(" ", "") # Checks if all characters are unique tmppbl = set() for i in pbstring: if i not in abc: raise Exception(f"'{i}' not in list of symbols") elif i in tmppbl: raise Exception(f"Duplicate symbol ({i})") else: tmppbl.add(i) del tmppbl # Created the dictionary pb = {} for j in range(0, len(pbstring) - 1, 2): pb[pbstring[j]] = pbstring[j + 1] pb[pbstring[j + 1]] = pbstring[j] return pb def enigma( text: str, rotor_position: RotorPositionT, rotor_selection: RotorSelectionT = (rotor1, rotor2, rotor3), plugb: str = "", ) -> str: """ The only difference with real-world enigma is that I allowed string input. All characters are converted to uppercase. (non-letter symbol are ignored) How it works: (for every letter in the message) - Input letter goes into the plugboard. If it is connected to another one, switch it. - Letter goes through 3 rotors. Each rotor can be represented as 2 sets of symbol, where one is shuffled. Each symbol from the first set has corresponding symbol in the second set and vice versa. example: | ABCDEFGHIJKLMNOPQRSTUVWXYZ | e.g. F=D and D=F | VKLEPDBGRNWTFCJOHQAMUZYIXS | - Symbol then goes through reflector (static rotor). There it is switched with paired symbol The reflector can be represented as2 sets, each with half of the alphanet. There are usually 10 pairs of letters. Example: | ABCDEFGHIJKLM | e.g. E is paired to X | ZYXWVUTSRQPON | so when E goes in X goes out and vice versa - Letter then goes through the rotors again - If the letter is connected to plugboard, it is switched. - Return the letter >>> enigma('Hello World!', (1, 2, 1), plugb='pictures') 'KORYH JUHHI!' >>> enigma('KORYH, juhhi!', (1, 2, 1), plugb='pictures') 'HELLO, WORLD!' >>> enigma('hello world!', (1, 1, 1), plugb='pictures') 'FPNCZ QWOBU!' >>> enigma('FPNCZ QWOBU', (1, 1, 1), plugb='pictures') 'HELLO WORLD' :param text: input message :param rotor_position: tuple with 3 values in range 1..26 :param rotor_selection: tuple with 3 rotors () :param plugb: string containing plugboard configuration (default '') :return: en/decrypted string """ text = text.upper() rotor_position, rotor_selection, plugboard = _validator( rotor_position, rotor_selection, plugb.upper() ) rotorpos1, rotorpos2, rotorpos3 = rotor_position rotor1, rotor2, rotor3 = rotor_selection rotorpos1 -= 1 rotorpos2 -= 1 rotorpos3 -= 1 result = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: symbol = plugboard[symbol] # rotor ra -------------------------- index = abc.index(symbol) + rotorpos1 symbol = rotor1[index % len(abc)] # rotor rb -------------------------- index = abc.index(symbol) + rotorpos2 symbol = rotor2[index % len(abc)] # rotor rc -------------------------- index = abc.index(symbol) + rotorpos3 symbol = rotor3[index % len(abc)] # reflector -------------------------- # this is the reason you don't need another machine to decipher symbol = reflector[symbol] # 2nd rotors symbol = abc[rotor3.index(symbol) - rotorpos3] symbol = abc[rotor2.index(symbol) - rotorpos2] symbol = abc[rotor1.index(symbol) - rotorpos1] # 2nd plugboard if symbol in plugboard: symbol = plugboard[symbol] # moves/resets rotor positions rotorpos1 += 1 if rotorpos1 >= len(abc): rotorpos1 = 0 rotorpos2 += 1 if rotorpos2 >= len(abc): rotorpos2 = 0 rotorpos3 += 1 if rotorpos3 >= len(abc): rotorpos3 = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(symbol) return "".join(result) if __name__ == "__main__": message = "This is my Python script that emulates the Enigma machine from WWII." rotor_pos = (1, 1, 1) pb = "pictures" rotor_sel = (rotor2, rotor4, rotor8) en = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://en.wikipedia.org/wiki/Trifid_cipher def __encryptPart(messagePart: str, character2Number: dict[str, str]) -> str: one, two, three = "", "", "" tmp = [] for character in messagePart: tmp.append(character2Number[character]) for each in tmp: one += each[0] two += each[1] three += each[2] return one + two + three def __decryptPart( messagePart: str, character2Number: dict[str, str] ) -> tuple[str, str, str]: tmp, thisPart = "", "" result = [] for character in messagePart: thisPart += character2Number[character] for digit in thisPart: tmp += digit if len(tmp) == len(messagePart): result.append(tmp) tmp = "" return result[0], result[1], result[2] def __prepare( message: str, alphabet: str ) -> tuple[str, str, dict[str, str], dict[str, str]]: # Validate message and alphabet, set to upper and remove spaces alphabet = alphabet.replace(" ", "").upper() message = message.replace(" ", "").upper() # Check length and characters if len(alphabet) != 27: raise KeyError("Length of alphabet has to be 27.") for each in message: if each not in alphabet: raise ValueError("Each message character has to be included in alphabet!") # Generate dictionares numbers = ( "111", "112", "113", "121", "122", "123", "131", "132", "133", "211", "212", "213", "221", "222", "223", "231", "232", "233", "311", "312", "313", "321", "322", "323", "331", "332", "333", ) character2Number = {} number2Character = {} for letter, number in zip(alphabet, numbers): character2Number[letter] = number number2Character[number] = letter return message, alphabet, character2Number, number2Character def encryptMessage( message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5 ) -> str: message, alphabet, character2Number, number2Character = __prepare(message, alphabet) encrypted, encrypted_numeric = "", "" for i in range(0, len(message) + 1, period): encrypted_numeric += __encryptPart(message[i : i + period], character2Number) for i in range(0, len(encrypted_numeric), 3): encrypted += number2Character[encrypted_numeric[i : i + 3]] return encrypted def decryptMessage( message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5 ) -> str: message, alphabet, character2Number, number2Character = __prepare(message, alphabet) decrypted_numeric = [] decrypted = "" for i in range(0, len(message) + 1, period): a, b, c = __decryptPart(message[i : i + period], character2Number) for j in range(0, len(a)): decrypted_numeric.append(a[j] + b[j] + c[j]) for each in decrypted_numeric: decrypted += number2Character[each] return decrypted if __name__ == "__main__": msg = "DEFEND THE EAST WALL OF THE CASTLE." encrypted = encryptMessage(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") print(f"Encrypted: {encrypted}\nDecrypted: {decrypted}")
# https://en.wikipedia.org/wiki/Trifid_cipher from __future__ import annotations def __encryptPart(messagePart: str, character2Number: dict[str, str]) -> str: one, two, three = "", "", "" tmp = [] for character in messagePart: tmp.append(character2Number[character]) for each in tmp: one += each[0] two += each[1] three += each[2] return one + two + three def __decryptPart( messagePart: str, character2Number: dict[str, str] ) -> tuple[str, str, str]: tmp, thisPart = "", "" result = [] for character in messagePart: thisPart += character2Number[character] for digit in thisPart: tmp += digit if len(tmp) == len(messagePart): result.append(tmp) tmp = "" return result[0], result[1], result[2] def __prepare( message: str, alphabet: str ) -> tuple[str, str, dict[str, str], dict[str, str]]: # Validate message and alphabet, set to upper and remove spaces alphabet = alphabet.replace(" ", "").upper() message = message.replace(" ", "").upper() # Check length and characters if len(alphabet) != 27: raise KeyError("Length of alphabet has to be 27.") for each in message: if each not in alphabet: raise ValueError("Each message character has to be included in alphabet!") # Generate dictionares numbers = ( "111", "112", "113", "121", "122", "123", "131", "132", "133", "211", "212", "213", "221", "222", "223", "231", "232", "233", "311", "312", "313", "321", "322", "323", "331", "332", "333", ) character2Number = {} number2Character = {} for letter, number in zip(alphabet, numbers): character2Number[letter] = number number2Character[number] = letter return message, alphabet, character2Number, number2Character def encryptMessage( message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5 ) -> str: message, alphabet, character2Number, number2Character = __prepare(message, alphabet) encrypted, encrypted_numeric = "", "" for i in range(0, len(message) + 1, period): encrypted_numeric += __encryptPart(message[i : i + period], character2Number) for i in range(0, len(encrypted_numeric), 3): encrypted += number2Character[encrypted_numeric[i : i + 3]] return encrypted def decryptMessage( message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5 ) -> str: message, alphabet, character2Number, number2Character = __prepare(message, alphabet) decrypted_numeric = [] decrypted = "" for i in range(0, len(message) + 1, period): a, b, c = __decryptPart(message[i : i + period], character2Number) for j in range(0, len(a)): decrypted_numeric.append(a[j] + b[j] + c[j]) for each in decrypted_numeric: decrypted += number2Character[each] return decrypted if __name__ == "__main__": msg = "DEFEND THE EAST WALL OF THE CASTLE." encrypted = encryptMessage(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ") print(f"Encrypted: {encrypted}\nDecrypted: {decrypted}")
1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" author: Christian Bender date: 21.12.2017 class: XORCipher This class implements the XOR-cipher algorithm and provides some useful methods for encrypting and decrypting strings and files. Overview about methods - encrypt : list of char - decrypt : list of char - encrypt_string : str - decrypt_string : str - encrypt_file : boolean - decrypt_file : boolean """ class XORCipher: def __init__(self, key: int = 0): """ simple constructor that receives a key or uses default key = 0 """ # private field self.__key = key def encrypt(self, content: str, key: int) -> list[str]: """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, str) key = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned ans = [] for ch in content: ans.append(chr(ord(ch) ^ key)) return ans def decrypt(self, content: str, key: int) -> list[str]: """ input: 'content' of type list and 'key' of type int output: decrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, list) key = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned ans = [] for ch in content: ans.append(chr(ord(ch) ^ key)) return ans def encrypt_string(self, content: str, key: int = 0) -> str: """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, str) key = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned ans = "" for ch in content: ans += chr(ord(ch) ^ key) return ans def decrypt_string(self, content: str, key: int = 0) -> str: """ input: 'content' of type string and 'key' of type int output: decrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, str) key = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned ans = "" for ch in content: ans += chr(ord(ch) ^ key) return ans def encrypt_file(self, file: str, key: int = 0) -> bool: """ input: filename (str) and a key (int) output: returns true if encrypt process was successful otherwise false if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(file, str) and isinstance(key, int) try: with open(file) as fin: with open("encrypt.out", "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(line, key)) except OSError: return False return True def decrypt_file(self, file: str, key: int) -> bool: """ input: filename (str) and a key (int) output: returns true if decrypt process was successful otherwise false if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(file, str) and isinstance(key, int) try: with open(file) as fin: with open("decrypt.out", "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(line, key)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
""" author: Christian Bender date: 21.12.2017 class: XORCipher This class implements the XOR-cipher algorithm and provides some useful methods for encrypting and decrypting strings and files. Overview about methods - encrypt : list of char - decrypt : list of char - encrypt_string : str - decrypt_string : str - encrypt_file : boolean - decrypt_file : boolean """ from __future__ import annotations class XORCipher: def __init__(self, key: int = 0): """ simple constructor that receives a key or uses default key = 0 """ # private field self.__key = key def encrypt(self, content: str, key: int) -> list[str]: """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, str) key = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(ch) ^ key) for ch in content] def decrypt(self, content: str, key: int) -> list[str]: """ input: 'content' of type list and 'key' of type int output: decrypted string 'content' as a list of chars if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, list) key = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(ch) ^ key) for ch in content] def encrypt_string(self, content: str, key: int = 0) -> str: """ input: 'content' of type string and 'key' of type int output: encrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, str) key = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned ans = "" for ch in content: ans += chr(ord(ch) ^ key) return ans def decrypt_string(self, content: str, key: int = 0) -> str: """ input: 'content' of type string and 'key' of type int output: decrypted string 'content' if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(key, int) and isinstance(content, str) key = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned ans = "" for ch in content: ans += chr(ord(ch) ^ key) return ans def encrypt_file(self, file: str, key: int = 0) -> bool: """ input: filename (str) and a key (int) output: returns true if encrypt process was successful otherwise false if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(file, str) and isinstance(key, int) try: with open(file) as fin: with open("encrypt.out", "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(line, key)) except OSError: return False return True def decrypt_file(self, file: str, key: int) -> bool: """ input: filename (str) and a key (int) output: returns true if decrypt process was successful otherwise false if key not passed the method uses the key by the constructor. otherwise key = 1 """ # precondition assert isinstance(file, str) and isinstance(key, int) try: with open(file) as fin: with open("decrypt.out", "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(line, key)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations class Node: def __init__(self, data=None): self.data = data self.next = None def __repr__(self): """Returns a visual representation of the node and all its following nodes.""" string_rep = [] temp = self while temp: string_rep.append(f"{temp.data}") temp = temp.next return "->".join(string_rep) def make_linked_list(elements_list: list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List. >>> make_linked_list([]) Traceback (most recent call last): ... Exception: The Elements List is empty >>> make_linked_list([7]) 7 >>> make_linked_list(['abc']) abc >>> make_linked_list([7, 25]) 7->25 """ if not elements_list: raise Exception("The Elements List is empty") current = head = Node(elements_list[0]) for i in range(1, len(elements_list)): current.next = Node(elements_list[i]) current = current.next return head def print_reverse(head_node: Node) -> None: """Prints the elements of the given Linked List in reverse order >>> print_reverse([]) >>> linked_list = make_linked_list([69, 88, 73]) >>> print_reverse(linked_list) 73 88 69 """ if head_node is not None and isinstance(head_node, Node): print_reverse(head_node.next) print(head_node.data) def main(): from doctest import testmod testmod() linked_list = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(linked_list) print("Elements in Reverse:") print_reverse(linked_list) if __name__ == "__main__": main()
from __future__ import annotations class Node: def __init__(self, data=None): self.data = data self.next = None def __repr__(self): """Returns a visual representation of the node and all its following nodes.""" string_rep = [] temp = self while temp: string_rep.append(f"{temp.data}") temp = temp.next return "->".join(string_rep) def make_linked_list(elements_list: list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List. >>> make_linked_list([]) Traceback (most recent call last): ... Exception: The Elements List is empty >>> make_linked_list([7]) 7 >>> make_linked_list(['abc']) abc >>> make_linked_list([7, 25]) 7->25 """ if not elements_list: raise Exception("The Elements List is empty") current = head = Node(elements_list[0]) for i in range(1, len(elements_list)): current.next = Node(elements_list[i]) current = current.next return head def print_reverse(head_node: Node) -> None: """Prints the elements of the given Linked List in reverse order >>> print_reverse([]) >>> linked_list = make_linked_list([69, 88, 73]) >>> print_reverse(linked_list) 73 88 69 """ if head_node is not None and isinstance(head_node, Node): print_reverse(head_node.next) print(head_node.data) def main(): from doctest import testmod testmod() linked_list = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(linked_list) print("Elements in Reverse:") print_reverse(linked_list) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This script demonstrates the implementation of the Softmax function. Its a function that takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers. After softmax, the elements of the vector always sum up to 1. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Softmax_function """ import numpy as np def softmax(vector): """ Implements the softmax function Parameters: vector (np.array,list,tuple): A numpy array of shape (1,n) consisting of real values or a similar list,tuple Returns: softmax_vec (np.array): The input numpy array after applying softmax. The softmax vector adds up to one. We need to ceil to mitigate for precision >>> np.ceil(np.sum(softmax([1,2,3,4]))) 1.0 >>> vec = np.array([5,5]) >>> softmax(vec) array([0.5, 0.5]) >>> softmax([0]) array([1.]) """ # Calculate e^x for each x in your vector where e is Euler's # number (approximately 2.718) exponentVector = np.exp(vector) # Add up the all the exponentials sumOfExponents = np.sum(exponentVector) # Divide every exponent by the sum of all exponents softmax_vector = exponentVector / sumOfExponents return softmax_vector if __name__ == "__main__": print(softmax((0,)))
""" This script demonstrates the implementation of the Softmax function. Its a function that takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers. After softmax, the elements of the vector always sum up to 1. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Softmax_function """ import numpy as np def softmax(vector): """ Implements the softmax function Parameters: vector (np.array,list,tuple): A numpy array of shape (1,n) consisting of real values or a similar list,tuple Returns: softmax_vec (np.array): The input numpy array after applying softmax. The softmax vector adds up to one. We need to ceil to mitigate for precision >>> np.ceil(np.sum(softmax([1,2,3,4]))) 1.0 >>> vec = np.array([5,5]) >>> softmax(vec) array([0.5, 0.5]) >>> softmax([0]) array([1.]) """ # Calculate e^x for each x in your vector where e is Euler's # number (approximately 2.718) exponentVector = np.exp(vector) # Add up the all the exponentials sumOfExponents = np.sum(exponentVector) # Divide every exponent by the sum of all exponents softmax_vector = exponentVector / sumOfExponents return softmax_vector if __name__ == "__main__": print(softmax((0,)))
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket") @patch("builtins.open") def test_send_file_running_as_expected(file, sock): # ===== initialization ===== conn = Mock() sock.return_value.accept.return_value = conn, Mock() f = iter([1, None]) file.return_value.__enter__.return_value.read.side_effect = lambda _: next(f) # ===== invoke ===== send_file(filename="mytext.txt", testing=True) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket") @patch("builtins.open") def test_send_file_running_as_expected(file, sock): # ===== initialization ===== conn = Mock() sock.return_value.accept.return_value = conn, Mock() f = iter([1, None]) file.return_value.__enter__.return_value.read.side_effect = lambda _: next(f) # ===== invoke ===== send_file(filename="mytext.txt", testing=True) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 72 Counting fractions: https://projecteuler.net/problem=72 Description: Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 It can be seen that there are 21 elements in this set. How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000? Solution: Number of numbers between 1 and n that are coprime to n is given by the Euler's Totient function, phi(n). So, the answer is simply the sum of phi(n) for 2 <= n <= 1,000,000 Sum of phi(d), for all d|n = n. This result can be used to find phi(n) using a sieve. Time: 3.5 sec """ def solution(limit: int = 1_000_000) -> int: """ Returns an integer, the solution to the problem >>> solution(10) 31 >>> solution(100) 3043 >>> solution(1_000) 304191 """ phi = [i - 1 for i in range(limit + 1)] for i in range(2, limit + 1): for j in range(2 * i, limit + 1, i): phi[j] -= phi[i] return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
""" Problem 72 Counting fractions: https://projecteuler.net/problem=72 Description: Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 It can be seen that there are 21 elements in this set. How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000? Solution: Number of numbers between 1 and n that are coprime to n is given by the Euler's Totient function, phi(n). So, the answer is simply the sum of phi(n) for 2 <= n <= 1,000,000 Sum of phi(d), for all d|n = n. This result can be used to find phi(n) using a sieve. Time: 3.5 sec """ def solution(limit: int = 1_000_000) -> int: """ Returns an integer, the solution to the problem >>> solution(10) 31 >>> solution(100) 3043 >>> solution(1_000) 304191 """ phi = [i - 1 for i in range(limit + 1)] for i in range(2, limit + 1): for j in range(2 * i, limit + 1, i): phi[j] -= phi[i] return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Normalization Wikipedia: https://en.wikipedia.org/wiki/Normalization Normalization is the process of converting numerical data to a standard range of values. This range is typically between [0, 1] or [-1, 1]. The equation for normalization is x_norm = (x - x_min)/(x_max - x_min) where x_norm is the normalized value, x is the value, x_min is the minimum value within the column or list of data, and x_max is the maximum value within the column or list of data. Normalization is used to speed up the training of data and put all of the data on a similar scale. This is useful because variance in the range of values of a dataset can heavily impact optimization (particularly Gradient Descent). Standardization Wikipedia: https://en.wikipedia.org/wiki/Standardization Standardization is the process of converting numerical data to a normally distributed range of values. This range will have a mean of 0 and standard deviation of 1. This is also known as z-score normalization. The equation for standardization is x_std = (x - mu)/(sigma) where mu is the mean of the column or list of values and sigma is the standard deviation of the column or list of values. Choosing between Normalization & Standardization is more of an art of a science, but it is often recommended to run experiments with both to see which performs better. Additionally, a few rules of thumb are: 1. gaussian (normal) distributions work better with standardization 2. non-gaussian (non-normal) distributions work better with normalization 3. If a column or list of values has extreme values / outliers, use standardization """ from statistics import mean, stdev def normalization(data: list, ndigits: int = 3) -> list: """ Returns a normalized list of values @params: data, a list of values to normalize @returns: a list of normalized values (rounded to ndigits decimal places) @examples: >>> normalization([2, 7, 10, 20, 30, 50]) [0.0, 0.104, 0.167, 0.375, 0.583, 1.0] >>> normalization([5, 10, 15, 20, 25]) [0.0, 0.25, 0.5, 0.75, 1.0] """ # variables for calculation x_min = min(data) x_max = max(data) # normalize data return [round((x - x_min) / (x_max - x_min), ndigits) for x in data] def standardization(data: list, ndigits: int = 3) -> list: """ Returns a standardized list of values @params: data, a list of values to standardize @returns: a list of standardized values (rounded to ndigits decimal places) @examples: >>> standardization([2, 7, 10, 20, 30, 50]) [-0.999, -0.719, -0.551, 0.009, 0.57, 1.69] >>> standardization([5, 10, 15, 20, 25]) [-1.265, -0.632, 0.0, 0.632, 1.265] """ # variables for calculation mu = mean(data) sigma = stdev(data) # standardize data return [round((x - mu) / (sigma), ndigits) for x in data]
""" Normalization Wikipedia: https://en.wikipedia.org/wiki/Normalization Normalization is the process of converting numerical data to a standard range of values. This range is typically between [0, 1] or [-1, 1]. The equation for normalization is x_norm = (x - x_min)/(x_max - x_min) where x_norm is the normalized value, x is the value, x_min is the minimum value within the column or list of data, and x_max is the maximum value within the column or list of data. Normalization is used to speed up the training of data and put all of the data on a similar scale. This is useful because variance in the range of values of a dataset can heavily impact optimization (particularly Gradient Descent). Standardization Wikipedia: https://en.wikipedia.org/wiki/Standardization Standardization is the process of converting numerical data to a normally distributed range of values. This range will have a mean of 0 and standard deviation of 1. This is also known as z-score normalization. The equation for standardization is x_std = (x - mu)/(sigma) where mu is the mean of the column or list of values and sigma is the standard deviation of the column or list of values. Choosing between Normalization & Standardization is more of an art of a science, but it is often recommended to run experiments with both to see which performs better. Additionally, a few rules of thumb are: 1. gaussian (normal) distributions work better with standardization 2. non-gaussian (non-normal) distributions work better with normalization 3. If a column or list of values has extreme values / outliers, use standardization """ from statistics import mean, stdev def normalization(data: list, ndigits: int = 3) -> list: """ Returns a normalized list of values @params: data, a list of values to normalize @returns: a list of normalized values (rounded to ndigits decimal places) @examples: >>> normalization([2, 7, 10, 20, 30, 50]) [0.0, 0.104, 0.167, 0.375, 0.583, 1.0] >>> normalization([5, 10, 15, 20, 25]) [0.0, 0.25, 0.5, 0.75, 1.0] """ # variables for calculation x_min = min(data) x_max = max(data) # normalize data return [round((x - x_min) / (x_max - x_min), ndigits) for x in data] def standardization(data: list, ndigits: int = 3) -> list: """ Returns a standardized list of values @params: data, a list of values to standardize @returns: a list of standardized values (rounded to ndigits decimal places) @examples: >>> standardization([2, 7, 10, 20, 30, 50]) [-0.999, -0.719, -0.551, 0.009, 0.57, 1.69] >>> standardization([5, 10, 15, 20, 25]) [-1.265, -0.632, 0.0, 0.632, 1.265] """ # variables for calculation mu = mean(data) sigma = stdev(data) # standardize data return [round((x - mu) / (sigma), ndigits) for x in data]
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Implementation of Basic Math in Python.""" import math def prime_factors(n: int) -> list: """Find Prime Factors. >>> prime_factors(100) [2, 2, 5, 5] >>> prime_factors(0) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors >>> prime_factors(-10) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors """ if n <= 0: raise ValueError("Only positive integers have prime factors") pf = [] while n % 2 == 0: pf.append(2) n = int(n / 2) for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: pf.append(i) n = int(n / i) if n > 2: pf.append(n) return pf def number_of_divisors(n: int) -> int: """Calculate Number of Divisors of an Integer. >>> number_of_divisors(100) 9 >>> number_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> number_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") div = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) div *= temp for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) div *= temp return div def sum_of_divisors(n: int) -> int: """Calculate Sum of Divisors. >>> sum_of_divisors(100) 217 >>> sum_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> sum_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") s = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) if temp > 1: s *= (2 ** temp - 1) / (2 - 1) for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) if temp > 1: s *= (i ** temp - 1) / (i - 1) return int(s) def euler_phi(n: int) -> int: """Calculate Euler's Phi Function. >>> euler_phi(100) 40 """ s = n for x in set(prime_factors(n)): s *= (x - 1) / x return int(s) if __name__ == "__main__": import doctest doctest.testmod()
"""Implementation of Basic Math in Python.""" import math def prime_factors(n: int) -> list: """Find Prime Factors. >>> prime_factors(100) [2, 2, 5, 5] >>> prime_factors(0) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors >>> prime_factors(-10) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors """ if n <= 0: raise ValueError("Only positive integers have prime factors") pf = [] while n % 2 == 0: pf.append(2) n = int(n / 2) for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: pf.append(i) n = int(n / i) if n > 2: pf.append(n) return pf def number_of_divisors(n: int) -> int: """Calculate Number of Divisors of an Integer. >>> number_of_divisors(100) 9 >>> number_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> number_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") div = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) div *= temp for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) div *= temp return div def sum_of_divisors(n: int) -> int: """Calculate Sum of Divisors. >>> sum_of_divisors(100) 217 >>> sum_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> sum_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") s = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) if temp > 1: s *= (2 ** temp - 1) / (2 - 1) for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) if temp > 1: s *= (i ** temp - 1) / (i - 1) return int(s) def euler_phi(n: int) -> int: """Calculate Euler's Phi Function. >>> euler_phi(100) 40 """ s = n for x in set(prime_factors(n)): s *= (x - 1) / x return int(s) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Given a partially filled 9×9 2D array, the objective is to fill a 9×9 square grid with digits numbered 1 to 9, so that every row, column, and and each of the nine 3×3 sub-grids contains all of the digits. This can be solved using Backtracking and is similar to n-queens. We check to see if a cell is safe or not and recursively call the function on the next column to see if it returns True. if yes, we have solved the puzzle. else, we backtrack and place another number in that cell and repeat this process. """ from __future__ import annotations Matrix = list[list[int]] # assigning initial values to the grid initial_grid: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution no_solution: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def is_safe(grid: Matrix, row: int, column: int, n: int) -> bool: """ This function checks the grid to see if each row, column, and the 3x3 subgrids contain the digit 'n'. It returns False if it is not 'safe' (a duplicate digit is found) else returns True if it is 'safe' """ for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3): for j in range(3): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def find_empty_location(grid: Matrix) -> tuple[int, int] | None: """ This function finds an empty location so that we can assign a number for that particular row and column. """ for i in range(9): for j in range(9): if grid[i][j] == 0: return i, j return None def sudoku(grid: Matrix) -> Matrix | None: """ Takes a partially filled-in grid and attempts to assign values to all unassigned locations in such a way to meet the requirements for Sudoku solution (non-duplication across rows, columns, and boxes) >>> sudoku(initial_grid) # doctest: +NORMALIZE_WHITESPACE [[3, 1, 6, 5, 7, 8, 4, 9, 2], [5, 2, 9, 1, 3, 4, 7, 6, 8], [4, 8, 7, 6, 2, 9, 5, 3, 1], [2, 6, 3, 4, 1, 5, 9, 8, 7], [9, 7, 4, 8, 6, 3, 1, 2, 5], [8, 5, 1, 7, 9, 2, 6, 4, 3], [1, 3, 8, 9, 4, 7, 2, 5, 6], [6, 9, 2, 3, 5, 1, 8, 7, 4], [7, 4, 5, 2, 8, 6, 3, 1, 9]] >>> sudoku(no_solution) is None True """ if location := find_empty_location(grid): row, column = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10): if is_safe(grid, row, column, digit): grid[row][column] = digit if sudoku(grid) is not None: return grid grid[row][column] = 0 return None def print_solution(grid: Matrix) -> None: """ A function to print the solution in the form of a 9x9 grid """ for row in grid: for cell in row: print(cell, end=" ") print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") solution = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
""" Given a partially filled 9×9 2D array, the objective is to fill a 9×9 square grid with digits numbered 1 to 9, so that every row, column, and and each of the nine 3×3 sub-grids contains all of the digits. This can be solved using Backtracking and is similar to n-queens. We check to see if a cell is safe or not and recursively call the function on the next column to see if it returns True. if yes, we have solved the puzzle. else, we backtrack and place another number in that cell and repeat this process. """ from __future__ import annotations Matrix = list[list[int]] # assigning initial values to the grid initial_grid: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution no_solution: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def is_safe(grid: Matrix, row: int, column: int, n: int) -> bool: """ This function checks the grid to see if each row, column, and the 3x3 subgrids contain the digit 'n'. It returns False if it is not 'safe' (a duplicate digit is found) else returns True if it is 'safe' """ for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3): for j in range(3): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def find_empty_location(grid: Matrix) -> tuple[int, int] | None: """ This function finds an empty location so that we can assign a number for that particular row and column. """ for i in range(9): for j in range(9): if grid[i][j] == 0: return i, j return None def sudoku(grid: Matrix) -> Matrix | None: """ Takes a partially filled-in grid and attempts to assign values to all unassigned locations in such a way to meet the requirements for Sudoku solution (non-duplication across rows, columns, and boxes) >>> sudoku(initial_grid) # doctest: +NORMALIZE_WHITESPACE [[3, 1, 6, 5, 7, 8, 4, 9, 2], [5, 2, 9, 1, 3, 4, 7, 6, 8], [4, 8, 7, 6, 2, 9, 5, 3, 1], [2, 6, 3, 4, 1, 5, 9, 8, 7], [9, 7, 4, 8, 6, 3, 1, 2, 5], [8, 5, 1, 7, 9, 2, 6, 4, 3], [1, 3, 8, 9, 4, 7, 2, 5, 6], [6, 9, 2, 3, 5, 1, 8, 7, 4], [7, 4, 5, 2, 8, 6, 3, 1, 9]] >>> sudoku(no_solution) is None True """ if location := find_empty_location(grid): row, column = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10): if is_safe(grid, row, column, digit): grid[row][column] = digit if sudoku(grid) is not None: return grid grid[row][column] = 0 return None def print_solution(grid: Matrix) -> None: """ A function to print the solution in the form of a 9x9 grid """ for row in grid: for cell in row: print(cell, end=" ") print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") solution = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python # # Sort large text files in a minimum amount of memory # import argparse import os class FileSplitter: BLOCK_FILENAME_FORMAT = "block_{0}.dat" def __init__(self, filename): self.filename = filename self.block_filenames = [] def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) with open(filename, "w") as file: file.write(data) self.block_filenames.append(filename) def get_block_filenames(self): return self.block_filenames def split(self, block_size, sort_key=None): i = 0 with open(self.filename) as file: while True: lines = file.readlines(block_size) if lines == []: break if sort_key is None: lines.sort() else: lines.sort(key=sort_key) self.write_block("".join(lines), i) i += 1 def cleanup(self): map(lambda f: os.remove(f), self.block_filenames) class NWayMerge: def select(self, choices): min_index = -1 min_str = None for i in range(len(choices)): if min_str is None or choices[i] < min_str: min_index = i return min_index class FilesArray: def __init__(self, files): self.files = files self.empty = set() self.num_buffers = len(files) self.buffers = {i: None for i in range(self.num_buffers)} def get_dict(self): return { i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty } def refresh(self): for i in range(self.num_buffers): if self.buffers[i] is None and i not in self.empty: self.buffers[i] = self.files[i].readline() if self.buffers[i] == "": self.empty.add(i) self.files[i].close() if len(self.empty) == self.num_buffers: return False return True def unshift(self, index): value = self.buffers[index] self.buffers[index] = None return value class FileMerger: def __init__(self, merge_strategy): self.merge_strategy = merge_strategy def merge(self, filenames, outfilename, buffer_size): buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) with open(outfilename, "w", buffer_size) as outfile: while buffers.refresh(): min_index = self.merge_strategy.select(buffers.get_dict()) outfile.write(buffers.unshift(min_index)) def get_file_handles(self, filenames, buffer_size): files = {} for i in range(len(filenames)): files[i] = open(filenames[i], "r", buffer_size) return files class ExternalSort: def __init__(self, block_size): self.block_size = block_size def sort(self, filename, sort_key=None): num_blocks = self.get_number_blocks(filename, self.block_size) splitter = FileSplitter(filename) splitter.split(self.block_size, sort_key) merger = FileMerger(NWayMerge()) buffer_size = self.block_size / (num_blocks + 1) merger.merge(splitter.get_block_filenames(), filename + ".out", buffer_size) splitter.cleanup() def get_number_blocks(self, filename, block_size): return (os.stat(filename).st_size / block_size) + 1 def parse_memory(string): if string[-1].lower() == "k": return int(string[:-1]) * 1024 elif string[-1].lower() == "m": return int(string[:-1]) * 1024 * 1024 elif string[-1].lower() == "g": return int(string[:-1]) * 1024 * 1024 * 1024 else: return int(string) def main(): parser = argparse.ArgumentParser() parser.add_argument( "-m", "--mem", help="amount of memory to use for sorting", default="100M" ) parser.add_argument( "filename", metavar="<filename>", nargs=1, help="name of file to sort" ) args = parser.parse_args() sorter = ExternalSort(parse_memory(args.mem)) sorter.sort(args.filename[0]) if __name__ == "__main__": main()
#!/usr/bin/env python # # Sort large text files in a minimum amount of memory # import argparse import os class FileSplitter: BLOCK_FILENAME_FORMAT = "block_{0}.dat" def __init__(self, filename): self.filename = filename self.block_filenames = [] def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) with open(filename, "w") as file: file.write(data) self.block_filenames.append(filename) def get_block_filenames(self): return self.block_filenames def split(self, block_size, sort_key=None): i = 0 with open(self.filename) as file: while True: lines = file.readlines(block_size) if lines == []: break if sort_key is None: lines.sort() else: lines.sort(key=sort_key) self.write_block("".join(lines), i) i += 1 def cleanup(self): map(lambda f: os.remove(f), self.block_filenames) class NWayMerge: def select(self, choices): min_index = -1 min_str = None for i in range(len(choices)): if min_str is None or choices[i] < min_str: min_index = i return min_index class FilesArray: def __init__(self, files): self.files = files self.empty = set() self.num_buffers = len(files) self.buffers = {i: None for i in range(self.num_buffers)} def get_dict(self): return { i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty } def refresh(self): for i in range(self.num_buffers): if self.buffers[i] is None and i not in self.empty: self.buffers[i] = self.files[i].readline() if self.buffers[i] == "": self.empty.add(i) self.files[i].close() if len(self.empty) == self.num_buffers: return False return True def unshift(self, index): value = self.buffers[index] self.buffers[index] = None return value class FileMerger: def __init__(self, merge_strategy): self.merge_strategy = merge_strategy def merge(self, filenames, outfilename, buffer_size): buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) with open(outfilename, "w", buffer_size) as outfile: while buffers.refresh(): min_index = self.merge_strategy.select(buffers.get_dict()) outfile.write(buffers.unshift(min_index)) def get_file_handles(self, filenames, buffer_size): files = {} for i in range(len(filenames)): files[i] = open(filenames[i], "r", buffer_size) return files class ExternalSort: def __init__(self, block_size): self.block_size = block_size def sort(self, filename, sort_key=None): num_blocks = self.get_number_blocks(filename, self.block_size) splitter = FileSplitter(filename) splitter.split(self.block_size, sort_key) merger = FileMerger(NWayMerge()) buffer_size = self.block_size / (num_blocks + 1) merger.merge(splitter.get_block_filenames(), filename + ".out", buffer_size) splitter.cleanup() def get_number_blocks(self, filename, block_size): return (os.stat(filename).st_size / block_size) + 1 def parse_memory(string): if string[-1].lower() == "k": return int(string[:-1]) * 1024 elif string[-1].lower() == "m": return int(string[:-1]) * 1024 * 1024 elif string[-1].lower() == "g": return int(string[:-1]) * 1024 * 1024 * 1024 else: return int(string) def main(): parser = argparse.ArgumentParser() parser.add_argument( "-m", "--mem", help="amount of memory to use for sorting", default="100M" ) parser.add_argument( "filename", metavar="<filename>", nargs=1, help="name of file to sort" ) args = parser.parse_args() sorter = ExternalSort(parse_memory(args.mem)) sorter.sort(args.filename[0]) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 """ Deutsch-Josza Algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm Premise: We are given a hidden Boolean function f, which takes as input a string of bits, and returns either 0 or 1: f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1 The property of the given Boolean function is that it is guaranteed to either be balanced or constant. A constant function returns all 0's or all 1's for any input, while a balanced function returns 0's for exactly half of all inputs and 1's for the other half. Our task is to determine whether the given function is balanced or constant. References: - https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm - https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html """ import numpy as np import qiskit as q def dj_oracle(case: str, num_qubits: int) -> q.QuantumCircuit: """ Returns a Quantum Circuit for the Oracle function. The circuit returned can represent balanced or constant function, according to the arguments passed """ # This circuit has num_qubits+1 qubits: the size of the input, # plus one output qubit oracle_qc = q.QuantumCircuit(num_qubits + 1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1, 2 ** num_qubits) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, f"0{num_qubits}b") # Next, we place the first X-gates. Each digit in our binary string # correspopnds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for index in range(num_qubits): oracle_qc.cx(index, num_qubits) # Next, place the final X-gates for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(num_qubits) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle: q.QuantumCircuit, num_qubits: int) -> q.QuantumCircuit: """ Returns the complete Deustch-Jozsa Quantum Circuit, adding Input & Output registers and Hadamard & Measurement Gates, to the Oracle Circuit passed in arguments """ dj_circuit = q.QuantumCircuit(num_qubits + 1, num_qubits) # Set up the output qubit: dj_circuit.x(num_qubits) dj_circuit.h(num_qubits) # And set up the input register: for qubit in range(num_qubits): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(num_qubits + 1)) # Finally, perform the H-gates again and measure: for qubit in range(num_qubits): dj_circuit.h(qubit) for i in range(num_qubits): dj_circuit.measure(i, i) return dj_circuit def deutsch_jozsa(case: str, num_qubits: int) -> q.result.counts.Counts: """ Main function that builds the circuit using other helper functions, runs the experiment 1000 times & returns the resultant qubit counts >>> deutsch_jozsa("constant", 3) {'000': 1000} >>> deutsch_jozsa("balanced", 3) {'111': 1000} """ # Use Aer's qasm_simulator simulator = q.Aer.get_backend("qasm_simulator") oracle_gate = dj_oracle(case, num_qubits) dj_circuit = dj_algorithm(oracle_gate, num_qubits) # Execute the circuit on the qasm simulator job = q.execute(dj_circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(dj_circuit) if __name__ == "__main__": print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}") print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}")
#!/usr/bin/env python3 """ Deutsch-Josza Algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm Premise: We are given a hidden Boolean function f, which takes as input a string of bits, and returns either 0 or 1: f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1 The property of the given Boolean function is that it is guaranteed to either be balanced or constant. A constant function returns all 0's or all 1's for any input, while a balanced function returns 0's for exactly half of all inputs and 1's for the other half. Our task is to determine whether the given function is balanced or constant. References: - https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm - https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html """ import numpy as np import qiskit as q def dj_oracle(case: str, num_qubits: int) -> q.QuantumCircuit: """ Returns a Quantum Circuit for the Oracle function. The circuit returned can represent balanced or constant function, according to the arguments passed """ # This circuit has num_qubits+1 qubits: the size of the input, # plus one output qubit oracle_qc = q.QuantumCircuit(num_qubits + 1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1, 2 ** num_qubits) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, f"0{num_qubits}b") # Next, we place the first X-gates. Each digit in our binary string # correspopnds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for index in range(num_qubits): oracle_qc.cx(index, num_qubits) # Next, place the final X-gates for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(num_qubits) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle: q.QuantumCircuit, num_qubits: int) -> q.QuantumCircuit: """ Returns the complete Deustch-Jozsa Quantum Circuit, adding Input & Output registers and Hadamard & Measurement Gates, to the Oracle Circuit passed in arguments """ dj_circuit = q.QuantumCircuit(num_qubits + 1, num_qubits) # Set up the output qubit: dj_circuit.x(num_qubits) dj_circuit.h(num_qubits) # And set up the input register: for qubit in range(num_qubits): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(num_qubits + 1)) # Finally, perform the H-gates again and measure: for qubit in range(num_qubits): dj_circuit.h(qubit) for i in range(num_qubits): dj_circuit.measure(i, i) return dj_circuit def deutsch_jozsa(case: str, num_qubits: int) -> q.result.counts.Counts: """ Main function that builds the circuit using other helper functions, runs the experiment 1000 times & returns the resultant qubit counts >>> deutsch_jozsa("constant", 3) {'000': 1000} >>> deutsch_jozsa("balanced", 3) {'111': 1000} """ # Use Aer's qasm_simulator simulator = q.Aer.get_backend("qasm_simulator") oracle_gate = dj_oracle(case, num_qubits) dj_circuit = dj_algorithm(oracle_gate, num_qubits) # Execute the circuit on the qasm simulator job = q.execute(dj_circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(dj_circuit) if __name__ == "__main__": print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}") print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Heap's algorithm returns the list of all permutations possible from a list. It minimizes movement by generating each permutation from the previous one by swapping only two elements. More information: https://en.wikipedia.org/wiki/Heap%27s_algorithm. """ def heaps(arr: list) -> list: """ Pure python implementation of the Heap's algorithm (recursive version), returning all permutations of a list. >>> heaps([]) [()] >>> heaps([0]) [(0,)] >>> heaps([-1, 1]) [(-1, 1), (1, -1)] >>> heaps([1, 2, 3]) [(1, 2, 3), (2, 1, 3), (3, 1, 2), (1, 3, 2), (2, 3, 1), (3, 2, 1)] >>> from itertools import permutations >>> sorted(heaps([1,2,3])) == sorted(permutations([1,2,3])) True >>> all(sorted(heaps(x)) == sorted(permutations(x)) ... for x in ([], [0], [-1, 1], [1, 2, 3])) True """ if len(arr) <= 1: return [tuple(arr)] res = [] def generate(k: int, arr: list): if k == 1: res.append(tuple(arr[:])) return generate(k - 1, arr) for i in range(k - 1): if k % 2 == 0: # k is even arr[i], arr[k - 1] = arr[k - 1], arr[i] else: # k is odd arr[0], arr[k - 1] = arr[k - 1], arr[0] generate(k - 1, arr) generate(len(arr), arr) return res if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() arr = [int(item) for item in user_input.split(",")] print(heaps(arr))
""" Heap's algorithm returns the list of all permutations possible from a list. It minimizes movement by generating each permutation from the previous one by swapping only two elements. More information: https://en.wikipedia.org/wiki/Heap%27s_algorithm. """ def heaps(arr: list) -> list: """ Pure python implementation of the Heap's algorithm (recursive version), returning all permutations of a list. >>> heaps([]) [()] >>> heaps([0]) [(0,)] >>> heaps([-1, 1]) [(-1, 1), (1, -1)] >>> heaps([1, 2, 3]) [(1, 2, 3), (2, 1, 3), (3, 1, 2), (1, 3, 2), (2, 3, 1), (3, 2, 1)] >>> from itertools import permutations >>> sorted(heaps([1,2,3])) == sorted(permutations([1,2,3])) True >>> all(sorted(heaps(x)) == sorted(permutations(x)) ... for x in ([], [0], [-1, 1], [1, 2, 3])) True """ if len(arr) <= 1: return [tuple(arr)] res = [] def generate(k: int, arr: list): if k == 1: res.append(tuple(arr[:])) return generate(k - 1, arr) for i in range(k - 1): if k % 2 == 0: # k is even arr[i], arr[k - 1] = arr[k - 1], arr[i] else: # k is odd arr[0], arr[k - 1] = arr[k - 1], arr[0] generate(k - 1, arr) generate(len(arr), arr) return res if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() arr = [int(item) for item in user_input.split(",")] print(heaps(arr))
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Implementation of median filter algorithm """ from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import divide, int8, multiply, ravel, sort, zeros_like def median_filter(gray_img, mask=3): """ :param gray_img: gray image :param mask: mask size :return: image with median filter """ # set image borders bd = int(mask / 2) # copy image size median_img = zeros_like(gray_img) for i in range(bd, gray_img.shape[0] - bd): for j in range(bd, gray_img.shape[1] - bd): # get mask according with mask kernel = ravel(gray_img[i - bd : i + bd + 1, j - bd : j + bd + 1]) # calculate mask median median = sort(kernel)[int8(divide((multiply(mask, mask)), 2) + 1)] median_img[i, j] = median return median_img if __name__ == "__main__": # read original image img = imread("../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size median3x3 = median_filter(gray, 3) median5x5 = median_filter(gray, 5) # show result images imshow("median filter with 3x3 mask", median3x3) imshow("median filter with 5x5 mask", median5x5) waitKey(0)
""" Implementation of median filter algorithm """ from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import divide, int8, multiply, ravel, sort, zeros_like def median_filter(gray_img, mask=3): """ :param gray_img: gray image :param mask: mask size :return: image with median filter """ # set image borders bd = int(mask / 2) # copy image size median_img = zeros_like(gray_img) for i in range(bd, gray_img.shape[0] - bd): for j in range(bd, gray_img.shape[1] - bd): # get mask according with mask kernel = ravel(gray_img[i - bd : i + bd + 1, j - bd : j + bd + 1]) # calculate mask median median = sort(kernel)[int8(divide((multiply(mask, mask)), 2) + 1)] median_img[i, j] = median return median_img if __name__ == "__main__": # read original image img = imread("../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size median3x3 = median_filter(gray, 3) median5x5 = median_filter(gray, 5) # show result images imshow("median filter with 3x3 mask", median3x3) imshow("median filter with 5x5 mask", median5x5) waitKey(0)
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# flake8: noqa """ Binomial Heap Reference: Advanced Data Structures, Peter Brass """ class Node: """ Node in a doubly-linked binomial tree, containing: - value - size of left subtree - link to left, right and parent nodes """ def __init__(self, val): self.val = val # Number of nodes in left subtree self.left_tree_size = 0 self.left = None self.right = None self.parent = None def mergeTrees(self, other): """ In-place merge of two binomial trees of equal size. Returns the root of the resulting tree """ assert self.left_tree_size == other.left_tree_size, "Unequal Sizes of Blocks" if self.val < other.val: other.left = self.right other.parent = None if self.right: self.right.parent = other self.right = other self.left_tree_size = self.left_tree_size * 2 + 1 return self else: self.left = other.right self.parent = None if other.right: other.right.parent = self other.right = self other.left_tree_size = other.left_tree_size * 2 + 1 return other class BinomialHeap: r""" Min-oriented priority queue implemented with the Binomial Heap data structure implemented with the BinomialHeap class. It supports: - Insert element in a heap with n elements: Guaranteed logn, amoratized 1 - Merge (meld) heaps of size m and n: O(logn + logm) - Delete Min: O(logn) - Peek (return min without deleting it): O(1) Example: Create a random permutation of 30 integers to be inserted and 19 of them deleted >>> import numpy as np >>> permutation = np.random.permutation(list(range(30))) Create a Heap and insert the 30 integers __init__() test >>> first_heap = BinomialHeap() 30 inserts - insert() test >>> for number in permutation: ... first_heap.insert(number) Size test >>> print(first_heap.size) 30 Deleting - delete() test >>> for i in range(25): ... print(first_heap.deleteMin(), end=" ") 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Create a new Heap >>> second_heap = BinomialHeap() >>> vals = [17, 20, 31, 34] >>> for value in vals: ... second_heap.insert(value) The heap should have the following structure: 17 / \ # 31 / \ 20 34 / \ / \ # # # # preOrder() test >>> print(second_heap.preOrder()) [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] printing Heap - __str__() test >>> print(second_heap) 17 -# -31 --20 ---# ---# --34 ---# ---# mergeHeaps() test >>> merged = second_heap.mergeHeaps(first_heap) >>> merged.peek() 17 values in merged heap; (merge is inplace) >>> while not first_heap.isEmpty(): ... print(first_heap.deleteMin(), end=" ") 17 20 25 26 27 28 29 31 34 """ def __init__(self, bottom_root=None, min_node=None, heap_size=0): self.size = heap_size self.bottom_root = bottom_root self.min_node = min_node def mergeHeaps(self, other): """ In-place merge of two binomial heaps. Both of them become the resulting merged heap """ # Empty heaps corner cases if other.size == 0: return if self.size == 0: self.size = other.size self.bottom_root = other.bottom_root self.min_node = other.min_node return # Update size self.size = self.size + other.size # Update min.node if self.min_node.val > other.min_node.val: self.min_node = other.min_node # Merge # Order roots by left_subtree_size combined_roots_list = [] i, j = self.bottom_root, other.bottom_root while i or j: if i and ((not j) or i.left_tree_size < j.left_tree_size): combined_roots_list.append((i, True)) i = i.parent else: combined_roots_list.append((j, False)) j = j.parent # Insert links between them for i in range(len(combined_roots_list) - 1): if combined_roots_list[i][1] != combined_roots_list[i + 1][1]: combined_roots_list[i][0].parent = combined_roots_list[i + 1][0] combined_roots_list[i + 1][0].left = combined_roots_list[i][0] # Consecutively merge roots with same left_tree_size i = combined_roots_list[0][0] while i.parent: if ( (i.left_tree_size == i.parent.left_tree_size) and (not i.parent.parent) ) or ( i.left_tree_size == i.parent.left_tree_size and i.left_tree_size != i.parent.parent.left_tree_size ): # Neighbouring Nodes previous_node = i.left next_node = i.parent.parent # Merging trees i = i.mergeTrees(i.parent) # Updating links i.left = previous_node i.parent = next_node if previous_node: previous_node.parent = i if next_node: next_node.left = i else: i = i.parent # Updating self.bottom_root while i.left: i = i.left self.bottom_root = i # Update other other.size = self.size other.bottom_root = self.bottom_root other.min_node = self.min_node # Return the merged heap return self def insert(self, val): """ insert a value in the heap """ if self.size == 0: self.bottom_root = Node(val) self.size = 1 self.min_node = self.bottom_root else: # Create new node new_node = Node(val) # Update size self.size += 1 # update min_node if val < self.min_node.val: self.min_node = new_node # Put new_node as a bottom_root in heap self.bottom_root.left = new_node new_node.parent = self.bottom_root self.bottom_root = new_node # Consecutively merge roots with same left_tree_size while ( self.bottom_root.parent and self.bottom_root.left_tree_size == self.bottom_root.parent.left_tree_size ): # Next node next_node = self.bottom_root.parent.parent # Merge self.bottom_root = self.bottom_root.mergeTrees(self.bottom_root.parent) # Update Links self.bottom_root.parent = next_node self.bottom_root.left = None if next_node: next_node.left = self.bottom_root def peek(self): """ return min element without deleting it """ return self.min_node.val def isEmpty(self): return self.size == 0 def deleteMin(self): """ delete min element and return it """ # assert not self.isEmpty(), "Empty Heap" # Save minimal value min_value = self.min_node.val # Last element in heap corner case if self.size == 1: # Update size self.size = 0 # Update bottom root self.bottom_root = None # Update min_node self.min_node = None return min_value # No right subtree corner case # The structure of the tree implies that this should be the bottom root # and there is at least one other root if self.min_node.right is None: # Update size self.size -= 1 # Update bottom root self.bottom_root = self.bottom_root.parent self.bottom_root.left = None # Update min_node self.min_node = self.bottom_root i = self.bottom_root.parent while i: if i.val < self.min_node.val: self.min_node = i i = i.parent return min_value # General case # Find the BinomialHeap of the right subtree of min_node bottom_of_new = self.min_node.right bottom_of_new.parent = None min_of_new = bottom_of_new size_of_new = 1 # Size, min_node and bottom_root while bottom_of_new.left: size_of_new = size_of_new * 2 + 1 bottom_of_new = bottom_of_new.left if bottom_of_new.val < min_of_new.val: min_of_new = bottom_of_new # Corner case of single root on top left path if (not self.min_node.left) and (not self.min_node.parent): self.size = size_of_new self.bottom_root = bottom_of_new self.min_node = min_of_new # print("Single root, multiple nodes case") return min_value # Remaining cases # Construct heap of right subtree newHeap = BinomialHeap( bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new ) # Update size self.size = self.size - 1 - size_of_new # Neighbour nodes previous_node = self.min_node.left next_node = self.min_node.parent # Initialize new bottom_root and min_node self.min_node = previous_node or next_node self.bottom_root = next_node # Update links of previous_node and search below for new min_node and # bottom_root if previous_node: previous_node.parent = next_node # Update bottom_root and search for min_node below self.bottom_root = previous_node self.min_node = previous_node while self.bottom_root.left: self.bottom_root = self.bottom_root.left if self.bottom_root.val < self.min_node.val: self.min_node = self.bottom_root if next_node: next_node.left = previous_node # Search for new min_node above min_node i = next_node while i: if i.val < self.min_node.val: self.min_node = i i = i.parent # Merge heaps self.mergeHeaps(newHeap) return min_value def preOrder(self): """ Returns the Pre-order representation of the heap including values of nodes plus their level distance from the root; Empty nodes appear as # """ # Find top root top_root = self.bottom_root while top_root.parent: top_root = top_root.parent # preorder heap_preOrder = [] self.__traversal(top_root, heap_preOrder) return heap_preOrder def __traversal(self, curr_node, preorder, level=0): """ Pre-order traversal of nodes """ if curr_node: preorder.append((curr_node.val, level)) self.__traversal(curr_node.left, preorder, level + 1) self.__traversal(curr_node.right, preorder, level + 1) else: preorder.append(("#", level)) def __str__(self): """ Overwriting str for a pre-order print of nodes in heap; Performance is poor, so use only for small examples """ if self.isEmpty(): return "" preorder_heap = self.preOrder() return "\n".join(("-" * level + str(value)) for value, level in preorder_heap) # Unit Tests if __name__ == "__main__": import doctest doctest.testmod()
# flake8: noqa """ Binomial Heap Reference: Advanced Data Structures, Peter Brass """ class Node: """ Node in a doubly-linked binomial tree, containing: - value - size of left subtree - link to left, right and parent nodes """ def __init__(self, val): self.val = val # Number of nodes in left subtree self.left_tree_size = 0 self.left = None self.right = None self.parent = None def mergeTrees(self, other): """ In-place merge of two binomial trees of equal size. Returns the root of the resulting tree """ assert self.left_tree_size == other.left_tree_size, "Unequal Sizes of Blocks" if self.val < other.val: other.left = self.right other.parent = None if self.right: self.right.parent = other self.right = other self.left_tree_size = self.left_tree_size * 2 + 1 return self else: self.left = other.right self.parent = None if other.right: other.right.parent = self other.right = self other.left_tree_size = other.left_tree_size * 2 + 1 return other class BinomialHeap: r""" Min-oriented priority queue implemented with the Binomial Heap data structure implemented with the BinomialHeap class. It supports: - Insert element in a heap with n elements: Guaranteed logn, amoratized 1 - Merge (meld) heaps of size m and n: O(logn + logm) - Delete Min: O(logn) - Peek (return min without deleting it): O(1) Example: Create a random permutation of 30 integers to be inserted and 19 of them deleted >>> import numpy as np >>> permutation = np.random.permutation(list(range(30))) Create a Heap and insert the 30 integers __init__() test >>> first_heap = BinomialHeap() 30 inserts - insert() test >>> for number in permutation: ... first_heap.insert(number) Size test >>> print(first_heap.size) 30 Deleting - delete() test >>> for i in range(25): ... print(first_heap.deleteMin(), end=" ") 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Create a new Heap >>> second_heap = BinomialHeap() >>> vals = [17, 20, 31, 34] >>> for value in vals: ... second_heap.insert(value) The heap should have the following structure: 17 / \ # 31 / \ 20 34 / \ / \ # # # # preOrder() test >>> print(second_heap.preOrder()) [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] printing Heap - __str__() test >>> print(second_heap) 17 -# -31 --20 ---# ---# --34 ---# ---# mergeHeaps() test >>> merged = second_heap.mergeHeaps(first_heap) >>> merged.peek() 17 values in merged heap; (merge is inplace) >>> while not first_heap.isEmpty(): ... print(first_heap.deleteMin(), end=" ") 17 20 25 26 27 28 29 31 34 """ def __init__(self, bottom_root=None, min_node=None, heap_size=0): self.size = heap_size self.bottom_root = bottom_root self.min_node = min_node def mergeHeaps(self, other): """ In-place merge of two binomial heaps. Both of them become the resulting merged heap """ # Empty heaps corner cases if other.size == 0: return if self.size == 0: self.size = other.size self.bottom_root = other.bottom_root self.min_node = other.min_node return # Update size self.size = self.size + other.size # Update min.node if self.min_node.val > other.min_node.val: self.min_node = other.min_node # Merge # Order roots by left_subtree_size combined_roots_list = [] i, j = self.bottom_root, other.bottom_root while i or j: if i and ((not j) or i.left_tree_size < j.left_tree_size): combined_roots_list.append((i, True)) i = i.parent else: combined_roots_list.append((j, False)) j = j.parent # Insert links between them for i in range(len(combined_roots_list) - 1): if combined_roots_list[i][1] != combined_roots_list[i + 1][1]: combined_roots_list[i][0].parent = combined_roots_list[i + 1][0] combined_roots_list[i + 1][0].left = combined_roots_list[i][0] # Consecutively merge roots with same left_tree_size i = combined_roots_list[0][0] while i.parent: if ( (i.left_tree_size == i.parent.left_tree_size) and (not i.parent.parent) ) or ( i.left_tree_size == i.parent.left_tree_size and i.left_tree_size != i.parent.parent.left_tree_size ): # Neighbouring Nodes previous_node = i.left next_node = i.parent.parent # Merging trees i = i.mergeTrees(i.parent) # Updating links i.left = previous_node i.parent = next_node if previous_node: previous_node.parent = i if next_node: next_node.left = i else: i = i.parent # Updating self.bottom_root while i.left: i = i.left self.bottom_root = i # Update other other.size = self.size other.bottom_root = self.bottom_root other.min_node = self.min_node # Return the merged heap return self def insert(self, val): """ insert a value in the heap """ if self.size == 0: self.bottom_root = Node(val) self.size = 1 self.min_node = self.bottom_root else: # Create new node new_node = Node(val) # Update size self.size += 1 # update min_node if val < self.min_node.val: self.min_node = new_node # Put new_node as a bottom_root in heap self.bottom_root.left = new_node new_node.parent = self.bottom_root self.bottom_root = new_node # Consecutively merge roots with same left_tree_size while ( self.bottom_root.parent and self.bottom_root.left_tree_size == self.bottom_root.parent.left_tree_size ): # Next node next_node = self.bottom_root.parent.parent # Merge self.bottom_root = self.bottom_root.mergeTrees(self.bottom_root.parent) # Update Links self.bottom_root.parent = next_node self.bottom_root.left = None if next_node: next_node.left = self.bottom_root def peek(self): """ return min element without deleting it """ return self.min_node.val def isEmpty(self): return self.size == 0 def deleteMin(self): """ delete min element and return it """ # assert not self.isEmpty(), "Empty Heap" # Save minimal value min_value = self.min_node.val # Last element in heap corner case if self.size == 1: # Update size self.size = 0 # Update bottom root self.bottom_root = None # Update min_node self.min_node = None return min_value # No right subtree corner case # The structure of the tree implies that this should be the bottom root # and there is at least one other root if self.min_node.right is None: # Update size self.size -= 1 # Update bottom root self.bottom_root = self.bottom_root.parent self.bottom_root.left = None # Update min_node self.min_node = self.bottom_root i = self.bottom_root.parent while i: if i.val < self.min_node.val: self.min_node = i i = i.parent return min_value # General case # Find the BinomialHeap of the right subtree of min_node bottom_of_new = self.min_node.right bottom_of_new.parent = None min_of_new = bottom_of_new size_of_new = 1 # Size, min_node and bottom_root while bottom_of_new.left: size_of_new = size_of_new * 2 + 1 bottom_of_new = bottom_of_new.left if bottom_of_new.val < min_of_new.val: min_of_new = bottom_of_new # Corner case of single root on top left path if (not self.min_node.left) and (not self.min_node.parent): self.size = size_of_new self.bottom_root = bottom_of_new self.min_node = min_of_new # print("Single root, multiple nodes case") return min_value # Remaining cases # Construct heap of right subtree newHeap = BinomialHeap( bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new ) # Update size self.size = self.size - 1 - size_of_new # Neighbour nodes previous_node = self.min_node.left next_node = self.min_node.parent # Initialize new bottom_root and min_node self.min_node = previous_node or next_node self.bottom_root = next_node # Update links of previous_node and search below for new min_node and # bottom_root if previous_node: previous_node.parent = next_node # Update bottom_root and search for min_node below self.bottom_root = previous_node self.min_node = previous_node while self.bottom_root.left: self.bottom_root = self.bottom_root.left if self.bottom_root.val < self.min_node.val: self.min_node = self.bottom_root if next_node: next_node.left = previous_node # Search for new min_node above min_node i = next_node while i: if i.val < self.min_node.val: self.min_node = i i = i.parent # Merge heaps self.mergeHeaps(newHeap) return min_value def preOrder(self): """ Returns the Pre-order representation of the heap including values of nodes plus their level distance from the root; Empty nodes appear as # """ # Find top root top_root = self.bottom_root while top_root.parent: top_root = top_root.parent # preorder heap_preOrder = [] self.__traversal(top_root, heap_preOrder) return heap_preOrder def __traversal(self, curr_node, preorder, level=0): """ Pre-order traversal of nodes """ if curr_node: preorder.append((curr_node.val, level)) self.__traversal(curr_node.left, preorder, level + 1) self.__traversal(curr_node.right, preorder, level + 1) else: preorder.append(("#", level)) def __str__(self): """ Overwriting str for a pre-order print of nodes in heap; Performance is poor, so use only for small examples """ if self.isEmpty(): return "" preorder_heap = self.preOrder() return "\n".join(("-" * level + str(value)) for value, level in preorder_heap) # Unit Tests if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import math def perfect_square(num: int) -> bool: """ Check if a number is perfect square number or not :param num: the number to be checked :return: True if number is square number, otherwise False >>> perfect_square(9) True >>> perfect_square(16) True >>> perfect_square(1) True >>> perfect_square(0) True >>> perfect_square(10) False """ return math.sqrt(num) * math.sqrt(num) == num def perfect_square_binary_search(n: int) -> bool: """ Check if a number is perfect square using binary search. Time complexity : O(Log(n)) Space complexity: O(1) >>> perfect_square_binary_search(9) True >>> perfect_square_binary_search(16) True >>> perfect_square_binary_search(1) True >>> perfect_square_binary_search(0) True >>> perfect_square_binary_search(10) False >>> perfect_square_binary_search(-1) False >>> perfect_square_binary_search(1.1) False >>> perfect_square_binary_search("a") Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'str' >>> perfect_square_binary_search(None) Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'NoneType' >>> perfect_square_binary_search([]) Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'list' """ left = 0 right = n while left <= right: mid = (left + right) // 2 if mid ** 2 == n: return True elif mid ** 2 > n: right = mid - 1 else: left = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
import math def perfect_square(num: int) -> bool: """ Check if a number is perfect square number or not :param num: the number to be checked :return: True if number is square number, otherwise False >>> perfect_square(9) True >>> perfect_square(16) True >>> perfect_square(1) True >>> perfect_square(0) True >>> perfect_square(10) False """ return math.sqrt(num) * math.sqrt(num) == num def perfect_square_binary_search(n: int) -> bool: """ Check if a number is perfect square using binary search. Time complexity : O(Log(n)) Space complexity: O(1) >>> perfect_square_binary_search(9) True >>> perfect_square_binary_search(16) True >>> perfect_square_binary_search(1) True >>> perfect_square_binary_search(0) True >>> perfect_square_binary_search(10) False >>> perfect_square_binary_search(-1) False >>> perfect_square_binary_search(1.1) False >>> perfect_square_binary_search("a") Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'str' >>> perfect_square_binary_search(None) Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'NoneType' >>> perfect_square_binary_search([]) Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'list' """ left = 0 right = n while left <= right: mid = (left + right) // 2 if mid ** 2 == n: return True elif mid ** 2 > n: right = mid - 1 else: left = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Convert International System of Units (SI) and Binary prefixes """ from __future__ import annotations from enum import Enum class SI_Unit(Enum): yotta = 24 zetta = 21 exa = 18 peta = 15 tera = 12 giga = 9 mega = 6 kilo = 3 hecto = 2 deca = 1 deci = -1 centi = -2 milli = -3 micro = -6 nano = -9 pico = -12 femto = -15 atto = -18 zepto = -21 yocto = -24 class Binary_Unit(Enum): yotta = 8 zetta = 7 exa = 6 peta = 5 tera = 4 giga = 3 mega = 2 kilo = 1 def convert_si_prefix( known_amount: float, known_prefix: str | SI_Unit, unknown_prefix: str | SI_Unit, ) -> float: """ Wikipedia reference: https://en.wikipedia.org/wiki/Binary_prefix Wikipedia reference: https://en.wikipedia.org/wiki/International_System_of_Units >>> convert_si_prefix(1, SI_Unit.giga, SI_Unit.mega) 1000 >>> convert_si_prefix(1, SI_Unit.mega, SI_Unit.giga) 0.001 >>> convert_si_prefix(1, SI_Unit.kilo, SI_Unit.kilo) 1 >>> convert_si_prefix(1, 'giga', 'mega') 1000 >>> convert_si_prefix(1, 'gIGa', 'mEGa') 1000 """ if isinstance(known_prefix, str): known_prefix = SI_Unit[known_prefix.lower()] if isinstance(unknown_prefix, str): unknown_prefix = SI_Unit[unknown_prefix.lower()] unknown_amount: float = known_amount * ( 10 ** (known_prefix.value - unknown_prefix.value) ) return unknown_amount def convert_binary_prefix( known_amount: float, known_prefix: str | Binary_Unit, unknown_prefix: str | Binary_Unit, ) -> float: """ Wikipedia reference: https://en.wikipedia.org/wiki/Metric_prefix >>> convert_binary_prefix(1, Binary_Unit.giga, Binary_Unit.mega) 1024 >>> convert_binary_prefix(1, Binary_Unit.mega, Binary_Unit.giga) 0.0009765625 >>> convert_binary_prefix(1, Binary_Unit.kilo, Binary_Unit.kilo) 1 >>> convert_binary_prefix(1, 'giga', 'mega') 1024 >>> convert_binary_prefix(1, 'gIGa', 'mEGa') 1024 """ if isinstance(known_prefix, str): known_prefix = Binary_Unit[known_prefix.lower()] if isinstance(unknown_prefix, str): unknown_prefix = Binary_Unit[unknown_prefix.lower()] unknown_amount: float = known_amount * ( 2 ** ((known_prefix.value - unknown_prefix.value) * 10) ) return unknown_amount if __name__ == "__main__": import doctest doctest.testmod()
""" Convert International System of Units (SI) and Binary prefixes """ from __future__ import annotations from enum import Enum class SI_Unit(Enum): yotta = 24 zetta = 21 exa = 18 peta = 15 tera = 12 giga = 9 mega = 6 kilo = 3 hecto = 2 deca = 1 deci = -1 centi = -2 milli = -3 micro = -6 nano = -9 pico = -12 femto = -15 atto = -18 zepto = -21 yocto = -24 class Binary_Unit(Enum): yotta = 8 zetta = 7 exa = 6 peta = 5 tera = 4 giga = 3 mega = 2 kilo = 1 def convert_si_prefix( known_amount: float, known_prefix: str | SI_Unit, unknown_prefix: str | SI_Unit, ) -> float: """ Wikipedia reference: https://en.wikipedia.org/wiki/Binary_prefix Wikipedia reference: https://en.wikipedia.org/wiki/International_System_of_Units >>> convert_si_prefix(1, SI_Unit.giga, SI_Unit.mega) 1000 >>> convert_si_prefix(1, SI_Unit.mega, SI_Unit.giga) 0.001 >>> convert_si_prefix(1, SI_Unit.kilo, SI_Unit.kilo) 1 >>> convert_si_prefix(1, 'giga', 'mega') 1000 >>> convert_si_prefix(1, 'gIGa', 'mEGa') 1000 """ if isinstance(known_prefix, str): known_prefix = SI_Unit[known_prefix.lower()] if isinstance(unknown_prefix, str): unknown_prefix = SI_Unit[unknown_prefix.lower()] unknown_amount: float = known_amount * ( 10 ** (known_prefix.value - unknown_prefix.value) ) return unknown_amount def convert_binary_prefix( known_amount: float, known_prefix: str | Binary_Unit, unknown_prefix: str | Binary_Unit, ) -> float: """ Wikipedia reference: https://en.wikipedia.org/wiki/Metric_prefix >>> convert_binary_prefix(1, Binary_Unit.giga, Binary_Unit.mega) 1024 >>> convert_binary_prefix(1, Binary_Unit.mega, Binary_Unit.giga) 0.0009765625 >>> convert_binary_prefix(1, Binary_Unit.kilo, Binary_Unit.kilo) 1 >>> convert_binary_prefix(1, 'giga', 'mega') 1024 >>> convert_binary_prefix(1, 'gIGa', 'mEGa') 1024 """ if isinstance(known_prefix, str): known_prefix = Binary_Unit[known_prefix.lower()] if isinstance(unknown_prefix, str): unknown_prefix = Binary_Unit[unknown_prefix.lower()] unknown_amount: float = known_amount * ( 2 ** ((known_prefix.value - unknown_prefix.value) * 10) ) return unknown_amount if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" The following undirected network consists of seven vertices and twelve edges with a total weight of 243.  The same network can be represented by the matrix below. A B C D E F G A - 16 12 21 - - - B 16 - - 17 20 - - C 12 - - 28 - 31 - D 21 17 28 - 18 19 23 E - 20 - 18 - - 11 F - - 31 19 - - 27 G - - - 23 11 27 - However, it is possible to optimise the network by removing some edges and still ensure that all points on the network remain connected. The network which achieves the maximum saving is shown below. It has a weight of 93, representing a saving of 243 - 93 = 150 from the original network. Using network.txt (right click and 'Save Link/Target As...'), a 6K text file containing a network with forty vertices, and given in matrix form, find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected. Solution: We use Prim's algorithm to find a Minimum Spanning Tree. Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm """ from __future__ import annotations import os from typing import Mapping EdgeT = tuple[int, int] class Graph: """ A class representing an undirected weighted graph. """ def __init__(self, vertices: set[int], edges: Mapping[EdgeT, int]) -> None: self.vertices: set[int] = vertices self.edges: dict[EdgeT, int] = { (min(edge), max(edge)): weight for edge, weight in edges.items() } def add_edge(self, edge: EdgeT, weight: int) -> None: """ Add a new edge to the graph. >>> graph = Graph({1, 2}, {(2, 1): 4}) >>> graph.add_edge((3, 1), 5) >>> sorted(graph.vertices) [1, 2, 3] >>> sorted([(v,k) for k,v in graph.edges.items()]) [(4, (1, 2)), (5, (1, 3))] """ self.vertices.add(edge[0]) self.vertices.add(edge[1]) self.edges[(min(edge), max(edge))] = weight def prims_algorithm(self) -> Graph: """ Run Prim's algorithm to find the minimum spanning tree. Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm >>> graph = Graph({1,2,3,4},{(1,2):5, (1,3):10, (1,4):20, (2,4):30, (3,4):1}) >>> mst = graph.prims_algorithm() >>> sorted(mst.vertices) [1, 2, 3, 4] >>> sorted(mst.edges) [(1, 2), (1, 3), (3, 4)] """ subgraph: Graph = Graph({min(self.vertices)}, {}) min_edge: EdgeT min_weight: int edge: EdgeT weight: int while len(subgraph.vertices) < len(self.vertices): min_weight = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: min_edge = edge min_weight = weight subgraph.add_edge(min_edge, min_weight) return subgraph def solution(filename: str = "p107_network.txt") -> int: """ Find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected. >>> solution("test_network.txt") 150 """ script_dir: str = os.path.abspath(os.path.dirname(__file__)) network_file: str = os.path.join(script_dir, filename) adjacency_matrix: list[list[str]] edges: dict[EdgeT, int] = dict() data: list[str] edge1: int edge2: int with open(network_file) as f: data = f.read().strip().split("\n") adjaceny_matrix = [line.split(",") for line in data] for edge1 in range(1, len(adjaceny_matrix)): for edge2 in range(edge1): if adjaceny_matrix[edge1][edge2] != "-": edges[(edge2, edge1)] = int(adjaceny_matrix[edge1][edge2]) graph: Graph = Graph(set(range(len(adjaceny_matrix))), edges) subgraph: Graph = graph.prims_algorithm() initial_total: int = sum(graph.edges.values()) optimal_total: int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
""" The following undirected network consists of seven vertices and twelve edges with a total weight of 243.  The same network can be represented by the matrix below. A B C D E F G A - 16 12 21 - - - B 16 - - 17 20 - - C 12 - - 28 - 31 - D 21 17 28 - 18 19 23 E - 20 - 18 - - 11 F - - 31 19 - - 27 G - - - 23 11 27 - However, it is possible to optimise the network by removing some edges and still ensure that all points on the network remain connected. The network which achieves the maximum saving is shown below. It has a weight of 93, representing a saving of 243 - 93 = 150 from the original network. Using network.txt (right click and 'Save Link/Target As...'), a 6K text file containing a network with forty vertices, and given in matrix form, find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected. Solution: We use Prim's algorithm to find a Minimum Spanning Tree. Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm """ from __future__ import annotations import os from typing import Mapping EdgeT = tuple[int, int] class Graph: """ A class representing an undirected weighted graph. """ def __init__(self, vertices: set[int], edges: Mapping[EdgeT, int]) -> None: self.vertices: set[int] = vertices self.edges: dict[EdgeT, int] = { (min(edge), max(edge)): weight for edge, weight in edges.items() } def add_edge(self, edge: EdgeT, weight: int) -> None: """ Add a new edge to the graph. >>> graph = Graph({1, 2}, {(2, 1): 4}) >>> graph.add_edge((3, 1), 5) >>> sorted(graph.vertices) [1, 2, 3] >>> sorted([(v,k) for k,v in graph.edges.items()]) [(4, (1, 2)), (5, (1, 3))] """ self.vertices.add(edge[0]) self.vertices.add(edge[1]) self.edges[(min(edge), max(edge))] = weight def prims_algorithm(self) -> Graph: """ Run Prim's algorithm to find the minimum spanning tree. Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm >>> graph = Graph({1,2,3,4},{(1,2):5, (1,3):10, (1,4):20, (2,4):30, (3,4):1}) >>> mst = graph.prims_algorithm() >>> sorted(mst.vertices) [1, 2, 3, 4] >>> sorted(mst.edges) [(1, 2), (1, 3), (3, 4)] """ subgraph: Graph = Graph({min(self.vertices)}, {}) min_edge: EdgeT min_weight: int edge: EdgeT weight: int while len(subgraph.vertices) < len(self.vertices): min_weight = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: min_edge = edge min_weight = weight subgraph.add_edge(min_edge, min_weight) return subgraph def solution(filename: str = "p107_network.txt") -> int: """ Find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected. >>> solution("test_network.txt") 150 """ script_dir: str = os.path.abspath(os.path.dirname(__file__)) network_file: str = os.path.join(script_dir, filename) adjacency_matrix: list[list[str]] edges: dict[EdgeT, int] = dict() data: list[str] edge1: int edge2: int with open(network_file) as f: data = f.read().strip().split("\n") adjaceny_matrix = [line.split(",") for line in data] for edge1 in range(1, len(adjaceny_matrix)): for edge2 in range(edge1): if adjaceny_matrix[edge1][edge2] != "-": edges[(edge2, edge1)] = int(adjaceny_matrix[edge1][edge2]) graph: Graph = Graph(set(range(len(adjaceny_matrix))), edges) subgraph: Graph = graph.prims_algorithm() initial_total: int = sum(graph.edges.values()) optimal_total: int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Minimax helps to achieve maximum score in a game by checking all possible moves depth is current depth in game tree. nodeIndex is index of current node in scores[]. if move is of maximizer return true else false leaves of game tree is stored in scores[] height is maximum height of Game tree """ from __future__ import annotations import math def minimax( depth: int, node_index: int, is_max: bool, scores: list[int], height: float ) -> int: """ >>> import math >>> scores = [90, 23, 6, 33, 21, 65, 123, 34423] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 65 >>> minimax(-1, 0, True, scores, height) Traceback (most recent call last): ... ValueError: Depth cannot be less than 0 >>> minimax(0, 0, True, [], 2) Traceback (most recent call last): ... ValueError: Scores cannot be empty >>> scores = [3, 5, 2, 9, 12, 5, 23, 23] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 12 """ if depth < 0: raise ValueError("Depth cannot be less than 0") if len(scores) == 0: raise ValueError("Scores cannot be empty") if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, False, scores, height), minimax(depth + 1, node_index * 2 + 1, False, scores, height), ) return min( minimax(depth + 1, node_index * 2, True, scores, height), minimax(depth + 1, node_index * 2 + 1, True, scores, height), ) def main() -> None: scores = [90, 23, 6, 33, 21, 65, 123, 34423] height = math.log(len(scores), 2) print("Optimal value : ", end="") print(minimax(0, 0, True, scores, height)) if __name__ == "__main__": import doctest doctest.testmod() main()
""" Minimax helps to achieve maximum score in a game by checking all possible moves depth is current depth in game tree. nodeIndex is index of current node in scores[]. if move is of maximizer return true else false leaves of game tree is stored in scores[] height is maximum height of Game tree """ from __future__ import annotations import math def minimax( depth: int, node_index: int, is_max: bool, scores: list[int], height: float ) -> int: """ >>> import math >>> scores = [90, 23, 6, 33, 21, 65, 123, 34423] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 65 >>> minimax(-1, 0, True, scores, height) Traceback (most recent call last): ... ValueError: Depth cannot be less than 0 >>> minimax(0, 0, True, [], 2) Traceback (most recent call last): ... ValueError: Scores cannot be empty >>> scores = [3, 5, 2, 9, 12, 5, 23, 23] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 12 """ if depth < 0: raise ValueError("Depth cannot be less than 0") if len(scores) == 0: raise ValueError("Scores cannot be empty") if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, False, scores, height), minimax(depth + 1, node_index * 2 + 1, False, scores, height), ) return min( minimax(depth + 1, node_index * 2, True, scores, height), minimax(depth + 1, node_index * 2 + 1, True, scores, height), ) def main() -> None: scores = [90, 23, 6, 33, 21, 65, 123, 34423] height = math.log(len(scores), 2) print("Optimal value : ", end="") print(minimax(0, 0, True, scores, height)) if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Chinese Remainder Theorem: GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab) Algorithm : 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 2. Take n = ra*by + rb*ax """ from __future__ import annotations # Extended Euclid def extended_euclid(a: int, b: int) -> tuple[int, int]: """ >>> extended_euclid(10, 6) (-1, 2) >>> extended_euclid(7, 5) (-2, 3) """ if b == 0: return (1, 0) (x, y) = extended_euclid(b, a % b) k = a // b return (y, x - k * y) # Uses ExtendedEuclid to find inverses def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem(5,1,7,3) 31 Explanation : 31 is the smallest number such that (i) When we divide it by 5, we get remainder 1 (ii) When we divide it by 7, we get remainder 3 >>> chinese_remainder_theorem(6,1,4,3) 14 """ (x, y) = extended_euclid(n1, n2) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m # ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- # This function find the inverses of a i.e., a^(-1) def invert_modulo(a: int, n: int) -> int: """ >>> invert_modulo(2, 5) 3 >>> invert_modulo(8,7) 1 """ (b, x) = extended_euclid(a, n) if b < 0: b = (b % n + n) % n return b # Same a above using InvertingModulo def chinese_remainder_theorem2(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem2(5,1,7,3) 31 >>> chinese_remainder_theorem2(6,1,4,3) 14 """ x, y = invert_modulo(n1, n2), invert_modulo(n2, n1) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
""" Chinese Remainder Theorem: GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab) Algorithm : 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 2. Take n = ra*by + rb*ax """ from __future__ import annotations # Extended Euclid def extended_euclid(a: int, b: int) -> tuple[int, int]: """ >>> extended_euclid(10, 6) (-1, 2) >>> extended_euclid(7, 5) (-2, 3) """ if b == 0: return (1, 0) (x, y) = extended_euclid(b, a % b) k = a // b return (y, x - k * y) # Uses ExtendedEuclid to find inverses def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem(5,1,7,3) 31 Explanation : 31 is the smallest number such that (i) When we divide it by 5, we get remainder 1 (ii) When we divide it by 7, we get remainder 3 >>> chinese_remainder_theorem(6,1,4,3) 14 """ (x, y) = extended_euclid(n1, n2) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m # ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- # This function find the inverses of a i.e., a^(-1) def invert_modulo(a: int, n: int) -> int: """ >>> invert_modulo(2, 5) 3 >>> invert_modulo(8,7) 1 """ (b, x) = extended_euclid(a, n) if b < 0: b = (b % n + n) % n return b # Same a above using InvertingModulo def chinese_remainder_theorem2(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem2(5,1,7,3) 31 >>> chinese_remainder_theorem2(6,1,4,3) 14 """ x, y = invert_modulo(n1, n2), invert_modulo(n2, n1) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 """ Build a simple bare-minimum quantum circuit that starts with a single qubit (by default, in state 0) and inverts it. Run the experiment 1000 times and print the total count of the states finally observed. Qiskit Docs: https://qiskit.org/documentation/getting_started.html """ import qiskit as q def single_qubit_measure(qubits: int, classical_bits: int) -> q.result.counts.Counts: """ >>> single_qubit_measure(2, 2) {'11': 1000} >>> single_qubit_measure(4, 4) {'0011': 1000} """ # Use Aer's qasm_simulator simulator = q.Aer.get_backend("qasm_simulator") # Create a Quantum Circuit acting on the q register circuit = q.QuantumCircuit(qubits, classical_bits) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1]) # Execute the circuit on the qasm simulator job = q.execute(circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(circuit) if __name__ == "__main__": counts = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
#!/usr/bin/env python3 """ Build a simple bare-minimum quantum circuit that starts with a single qubit (by default, in state 0) and inverts it. Run the experiment 1000 times and print the total count of the states finally observed. Qiskit Docs: https://qiskit.org/documentation/getting_started.html """ import qiskit as q def single_qubit_measure(qubits: int, classical_bits: int) -> q.result.counts.Counts: """ >>> single_qubit_measure(2, 2) {'11': 1000} >>> single_qubit_measure(4, 4) {'0011': 1000} """ # Use Aer's qasm_simulator simulator = q.Aer.get_backend("qasm_simulator") # Create a Quantum Circuit acting on the q register circuit = q.QuantumCircuit(qubits, classical_bits) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1]) # Execute the circuit on the qasm simulator job = q.execute(circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(circuit) if __name__ == "__main__": counts = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def binary_recursive(decimal: int) -> str: """ Take a positive integer value and return its binary equivalent. >>> binary_recursive(1000) '1111101000' >>> binary_recursive("72") '1001000' >>> binary_recursive("number") Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'number' """ decimal = int(decimal) if decimal in (0, 1): # Exit cases for the recursion return str(decimal) div, mod = divmod(decimal, 2) return binary_recursive(div) + str(mod) def main(number: str) -> str: """ Take an integer value and raise ValueError for wrong inputs, call the function above and return the output with prefix "0b" & "-0b" for positive and negative integers respectively. >>> main(0) '0b0' >>> main(40) '0b101000' >>> main(-40) '-0b101000' >>> main(40.8) Traceback (most recent call last): ... ValueError: Input value is not an integer >>> main("forty") Traceback (most recent call last): ... ValueError: Input value is not an integer """ number = str(number).strip() if not number: raise ValueError("No input value was provided") negative = "-" if number.startswith("-") else "" number = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(number))}" if __name__ == "__main__": from doctest import testmod testmod()
def binary_recursive(decimal: int) -> str: """ Take a positive integer value and return its binary equivalent. >>> binary_recursive(1000) '1111101000' >>> binary_recursive("72") '1001000' >>> binary_recursive("number") Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'number' """ decimal = int(decimal) if decimal in (0, 1): # Exit cases for the recursion return str(decimal) div, mod = divmod(decimal, 2) return binary_recursive(div) + str(mod) def main(number: str) -> str: """ Take an integer value and raise ValueError for wrong inputs, call the function above and return the output with prefix "0b" & "-0b" for positive and negative integers respectively. >>> main(0) '0b0' >>> main(40) '0b101000' >>> main(-40) '-0b101000' >>> main(40.8) Traceback (most recent call last): ... ValueError: Input value is not an integer >>> main("forty") Traceback (most recent call last): ... ValueError: Input value is not an integer """ number = str(number).strip() if not number: raise ValueError("No input value was provided") negative = "-" if number.startswith("-") else "" number = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(number))}" if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is pure Python implementation of counting sort algorithm For doctests run following command: python -m doctest -v counting_sort.py or python3 -m doctest -v counting_sort.py For manual testing run: python counting_sort.py """ def counting_sort(collection): """Pure implementation of counting sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> counting_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> counting_sort([]) [] >>> counting_sort([-2, -5, -45]) [-45, -5, -2] """ # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection coll_len = len(collection) coll_max = max(collection) coll_min = min(collection) # create the counting array counting_arr_length = coll_max + 1 - coll_min counting_arr = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1, counting_arr_length): counting_arr[i] = counting_arr[i] + counting_arr[i - 1] # create the output collection ordered = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0, coll_len)): ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def counting_sort_string(string): """ >>> counting_sort_string("thisisthestring") 'eghhiiinrsssttt' """ return "".join([chr(i) for i in counting_sort([ord(c) for c in string])]) if __name__ == "__main__": # Test string sort assert "eghhiiinrsssttt" == counting_sort_string("thisisthestring") user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
""" This is pure Python implementation of counting sort algorithm For doctests run following command: python -m doctest -v counting_sort.py or python3 -m doctest -v counting_sort.py For manual testing run: python counting_sort.py """ def counting_sort(collection): """Pure implementation of counting sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> counting_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> counting_sort([]) [] >>> counting_sort([-2, -5, -45]) [-45, -5, -2] """ # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection coll_len = len(collection) coll_max = max(collection) coll_min = min(collection) # create the counting array counting_arr_length = coll_max + 1 - coll_min counting_arr = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1, counting_arr_length): counting_arr[i] = counting_arr[i] + counting_arr[i - 1] # create the output collection ordered = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0, coll_len)): ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def counting_sort_string(string): """ >>> counting_sort_string("thisisthestring") 'eghhiiinrsssttt' """ return "".join([chr(i) for i in counting_sort([ord(c) for c in string])]) if __name__ == "__main__": # Test string sort assert "eghhiiinrsssttt" == counting_sort_string("thisisthestring") user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Implementation of gaussian filter algorithm """ from itertools import product from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uint8, zeros def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = mgrid[0 - center : k_size - center, 0 - center : k_size - center] g = 1 / (2 * pi * sigma) * exp(-(square(x) + square(y)) / (2 * square(sigma))) return g def gaussian_filter(image, k_size, sigma): height, width = image.shape[0], image.shape[1] # dst image height and width dst_height = height - k_size + 1 dst_width = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 for i, j in product(range(dst_height), range(dst_width)): window = ravel(image[i : i + k_size, j : j + k_size]) image_array[row, :] = window row += 1 # turn the kernel into shape(k*k, 1) gaussian_kernel = gen_gaussian_kernel(k_size, sigma) filter_array = ravel(gaussian_kernel) # reshape and get the dst image dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8) return dst if __name__ == "__main__": # read original image img = imread(r"../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size gaussian3x3 = gaussian_filter(gray, 3, sigma=1) gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussian3x3) imshow("gaussian filter with 5x5 mask", gaussian5x5) waitKey()
""" Implementation of gaussian filter algorithm """ from itertools import product from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uint8, zeros def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = mgrid[0 - center : k_size - center, 0 - center : k_size - center] g = 1 / (2 * pi * sigma) * exp(-(square(x) + square(y)) / (2 * square(sigma))) return g def gaussian_filter(image, k_size, sigma): height, width = image.shape[0], image.shape[1] # dst image height and width dst_height = height - k_size + 1 dst_width = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 for i, j in product(range(dst_height), range(dst_width)): window = ravel(image[i : i + k_size, j : j + k_size]) image_array[row, :] = window row += 1 # turn the kernel into shape(k*k, 1) gaussian_kernel = gen_gaussian_kernel(k_size, sigma) filter_array = ravel(gaussian_kernel) # reshape and get the dst image dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8) return dst if __name__ == "__main__": # read original image img = imread(r"../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size gaussian3x3 = gaussian_filter(gray, 3, sigma=1) gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussian3x3) imshow("gaussian filter with 5x5 mask", gaussian5x5) waitKey()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Password generator allows you to generate a random password of length N.""" from random import choice, shuffle from string import ascii_letters, digits, punctuation def password_generator(length=8): """ >>> len(password_generator()) 8 >>> len(password_generator(length=16)) 16 >>> len(password_generator(257)) 257 >>> len(password_generator(length=0)) 0 >>> len(password_generator(-1)) 0 """ chars = ascii_letters + digits + punctuation return "".join(choice(chars) for x in range(length)) # ALTERNATIVE METHODS # ctbi= characters that must be in password # i= how many letters or characters the password length will be def alternative_password_generator(ctbi, i): # Password generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i = i - len(ctbi) quotient = int(i / 3) remainder = i % 3 # chars = ctbi + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) chars = ( ctbi + random(ascii_letters, quotient + remainder) + random(digits, quotient) + random(punctuation, quotient) ) chars = list(chars) shuffle(chars) return "".join(chars) # random is a generalised function for letters, characters and numbers def random(ctbi, i): return "".join(choice(ctbi) for x in range(i)) def random_number(ctbi, i): pass # Put your code here... def random_letters(ctbi, i): pass # Put your code here... def random_characters(ctbi, i): pass # Put your code here... def main(): length = int(input("Please indicate the max length of your password: ").strip()) ctbi = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:", password_generator(length)) print( "Alternative Password generated:", alternative_password_generator(ctbi, length) ) print("[If you are thinking of using this passsword, You better save it.]") if __name__ == "__main__": main()
"""Password generator allows you to generate a random password of length N.""" from random import choice, shuffle from string import ascii_letters, digits, punctuation def password_generator(length=8): """ >>> len(password_generator()) 8 >>> len(password_generator(length=16)) 16 >>> len(password_generator(257)) 257 >>> len(password_generator(length=0)) 0 >>> len(password_generator(-1)) 0 """ chars = ascii_letters + digits + punctuation return "".join(choice(chars) for x in range(length)) # ALTERNATIVE METHODS # ctbi= characters that must be in password # i= how many letters or characters the password length will be def alternative_password_generator(ctbi, i): # Password generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i = i - len(ctbi) quotient = int(i / 3) remainder = i % 3 # chars = ctbi + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) chars = ( ctbi + random(ascii_letters, quotient + remainder) + random(digits, quotient) + random(punctuation, quotient) ) chars = list(chars) shuffle(chars) return "".join(chars) # random is a generalised function for letters, characters and numbers def random(ctbi, i): return "".join(choice(ctbi) for x in range(i)) def random_number(ctbi, i): pass # Put your code here... def random_letters(ctbi, i): pass # Put your code here... def random_characters(ctbi, i): pass # Put your code here... def main(): length = int(input("Please indicate the max length of your password: ").strip()) ctbi = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:", password_generator(length)) print( "Alternative Password generated:", alternative_password_generator(ctbi, length) ) print("[If you are thinking of using this passsword, You better save it.]") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is pure Python implementation of sentinel linear search algorithm For doctests run following command: python -m doctest -v sentinel_linear_search.py or python3 -m doctest -v sentinel_linear_search.py For manual testing run: python sentinel_linear_search.py """ def sentinel_linear_search(sequence, target): """Pure implementation of sentinel linear search algorithm in Python :param sequence: some sequence with comparable items :param target: item value to search :return: index of found item or None if item is not found Examples: >>> sentinel_linear_search([0, 5, 7, 10, 15], 0) 0 >>> sentinel_linear_search([0, 5, 7, 10, 15], 15) 4 >>> sentinel_linear_search([0, 5, 7, 10, 15], 5) 1 >>> sentinel_linear_search([0, 5, 7, 10, 15], 6) """ sequence.append(target) index = 0 while sequence[index] != target: index += 1 sequence.pop() if index == len(sequence): return None return index if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() sequence = [int(item) for item in user_input.split(",")] target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")
""" This is pure Python implementation of sentinel linear search algorithm For doctests run following command: python -m doctest -v sentinel_linear_search.py or python3 -m doctest -v sentinel_linear_search.py For manual testing run: python sentinel_linear_search.py """ def sentinel_linear_search(sequence, target): """Pure implementation of sentinel linear search algorithm in Python :param sequence: some sequence with comparable items :param target: item value to search :return: index of found item or None if item is not found Examples: >>> sentinel_linear_search([0, 5, 7, 10, 15], 0) 0 >>> sentinel_linear_search([0, 5, 7, 10, 15], 15) 4 >>> sentinel_linear_search([0, 5, 7, 10, 15], 5) 1 >>> sentinel_linear_search([0, 5, 7, 10, 15], 6) """ sequence.append(target) index = 0 while sequence[index] != target: index += 1 sequence.pop() if index == len(sequence): return None return index if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() sequence = [int(item) for item in user_input.split(",")] target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import math """ In cryptography, the TRANSPOSITION cipher is a method of encryption where the positions of plaintext are shifted a certain number(determined by the key) that follows a regular system that results in the permuted text, known as the encrypted text. The type of transposition cipher demonstrated under is the ROUTE cipher. """ def main() -> None: message = input("Enter message: ") key = int(input("Enter key [2-%s]: " % (len(message) - 1))) mode = input("Encryption/Decryption [e/d]: ") if mode.lower().startswith("e"): text = encryptMessage(key, message) elif mode.lower().startswith("d"): text = decryptMessage(key, message) # Append pipe symbol (vertical bar) to identify spaces at the end. print("Output:\n%s" % (text + "|")) def encryptMessage(key: int, message: str) -> str: """ >>> encryptMessage(6, 'Harshil Darji') 'Hlia rDsahrij' """ cipherText = [""] * key for col in range(key): pointer = col while pointer < len(message): cipherText[col] += message[pointer] pointer += key return "".join(cipherText) def decryptMessage(key: int, message: str) -> str: """ >>> decryptMessage(6, 'Hlia rDsahrij') 'Harshil Darji' """ numCols = math.ceil(len(message) / key) numRows = key numShadedBoxes = (numCols * numRows) - len(message) plainText = [""] * numCols col = 0 row = 0 for symbol in message: plainText[col] += symbol col += 1 if ( (col == numCols) or (col == numCols - 1) and (row >= numRows - numShadedBoxes) ): col = 0 row += 1 return "".join(plainText) if __name__ == "__main__": import doctest doctest.testmod() main()
import math """ In cryptography, the TRANSPOSITION cipher is a method of encryption where the positions of plaintext are shifted a certain number(determined by the key) that follows a regular system that results in the permuted text, known as the encrypted text. The type of transposition cipher demonstrated under is the ROUTE cipher. """ def main() -> None: message = input("Enter message: ") key = int(input("Enter key [2-%s]: " % (len(message) - 1))) mode = input("Encryption/Decryption [e/d]: ") if mode.lower().startswith("e"): text = encryptMessage(key, message) elif mode.lower().startswith("d"): text = decryptMessage(key, message) # Append pipe symbol (vertical bar) to identify spaces at the end. print("Output:\n%s" % (text + "|")) def encryptMessage(key: int, message: str) -> str: """ >>> encryptMessage(6, 'Harshil Darji') 'Hlia rDsahrij' """ cipherText = [""] * key for col in range(key): pointer = col while pointer < len(message): cipherText[col] += message[pointer] pointer += key return "".join(cipherText) def decryptMessage(key: int, message: str) -> str: """ >>> decryptMessage(6, 'Hlia rDsahrij') 'Harshil Darji' """ numCols = math.ceil(len(message) / key) numRows = key numShadedBoxes = (numCols * numRows) - len(message) plainText = [""] * numCols col = 0 row = 0 for symbol in message: plainText[col] += symbol col += 1 if ( (col == numCols) or (col == numCols - 1) and (row >= numRows - numShadedBoxes) ): col = 0 row += 1 return "".join(plainText) if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def exchange_sort(numbers: list[int]) -> list[int]: """ Uses exchange sort to sort a list of numbers. Source: https://en.wikipedia.org/wiki/Sorting_algorithm#Exchange_sort >>> exchange_sort([5, 4, 3, 2, 1]) [1, 2, 3, 4, 5] >>> exchange_sort([-1, -2, -3]) [-3, -2, -1] >>> exchange_sort([1, 2, 3, 4, 5]) [1, 2, 3, 4, 5] >>> exchange_sort([0, 10, -2, 5, 3]) [-2, 0, 3, 5, 10] >>> exchange_sort([]) [] """ numbers_length = len(numbers) for i in range(numbers_length): for j in range(i + 1, numbers_length): if numbers[j] < numbers[i]: numbers[i], numbers[j] = numbers[j], numbers[i] return numbers if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
def exchange_sort(numbers: list[int]) -> list[int]: """ Uses exchange sort to sort a list of numbers. Source: https://en.wikipedia.org/wiki/Sorting_algorithm#Exchange_sort >>> exchange_sort([5, 4, 3, 2, 1]) [1, 2, 3, 4, 5] >>> exchange_sort([-1, -2, -3]) [-3, -2, -1] >>> exchange_sort([1, 2, 3, 4, 5]) [1, 2, 3, 4, 5] >>> exchange_sort([0, 10, -2, 5, 3]) [-2, 0, 3, 5, 10] >>> exchange_sort([]) [] """ numbers_length = len(numbers) for i in range(numbers_length): for j in range(i + 1, numbers_length): if numbers[j] < numbers[i]: numbers[i], numbers[j] = numbers[j], numbers[i] return numbers if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" The A* algorithm combines features of uniform-cost search and pure heuristic search to efficiently compute optimal solutions. A* algorithm is a best-first search algorithm in which the cost associated with a node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to node n and h(n) is the heuristic estimate or the cost or a path from node n to a goal.A* algorithm introduces a heuristic into a regular graph-searching algorithm, essentially planning ahead at each step so a more optimal decision is made.A* also known as the algorithm with brains """ import numpy as np class Cell: """ Class cell represents a cell in the world which have the property position : The position of the represented by tupleof x and y coordinates initially set to (0,0) parent : This contains the parent cell object which we visited before arrinving this cell g,h,f : The parameters for constructing the heuristic function which can be any function. for simplicity used line distance """ def __init__(self): self.position = (0, 0) self.parent = None self.g = 0 self.h = 0 self.f = 0 """ overrides equals method because otherwise cell assign will give wrong results """ def __eq__(self, cell): return self.position == cell.position def showcell(self): print(self.position) class Gridworld: """ Gridworld class represents the external world here a grid M*M matrix world_size: create a numpy array with the given world_size default is 5 """ def __init__(self, world_size=(5, 5)): self.w = np.zeros(world_size) self.world_x_limit = world_size[0] self.world_y_limit = world_size[1] def show(self): print(self.w) def get_neigbours(self, cell): """ Return the neighbours of cell """ neughbour_cord = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] current_x = cell.position[0] current_y = cell.position[1] neighbours = [] for n in neughbour_cord: x = current_x + n[0] y = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: c = Cell() c.position = (x, y) c.parent = cell neighbours.append(c) return neighbours def astar(world, start, goal): """ Implementation of a start algorithm world : Object of the world object start : Object of the cell as start position stop : Object of the cell as goal position >>> p = Gridworld() >>> start = Cell() >>> start.position = (0,0) >>> goal = Cell() >>> goal.position = (4,4) >>> astar(p, start, goal) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] """ _open = [] _closed = [] _open.append(start) while _open: min_f = np.argmin([n.f for n in _open]) current = _open[min_f] _closed.append(_open.pop(min_f)) if current == goal: break for n in world.get_neigbours(current): for c in _closed: if c == n: continue n.g = current.g + 1 x1, y1 = n.position x2, y2 = goal.position n.h = (y2 - y1) ** 2 + (x2 - x1) ** 2 n.f = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(n) path = [] while current.parent is not None: path.append(current.position) current = current.parent path.append(current.position) return path[::-1] if __name__ == "__main__": world = Gridworld() # stat position and Goal start = Cell() start.position = (0, 0) goal = Cell() goal.position = (4, 4) print(f"path from {start.position} to {goal.position}") s = astar(world, start, goal) # Just for visual reasons for i in s: world.w[i] = 1 print(world.w)
""" The A* algorithm combines features of uniform-cost search and pure heuristic search to efficiently compute optimal solutions. A* algorithm is a best-first search algorithm in which the cost associated with a node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to node n and h(n) is the heuristic estimate or the cost or a path from node n to a goal.A* algorithm introduces a heuristic into a regular graph-searching algorithm, essentially planning ahead at each step so a more optimal decision is made.A* also known as the algorithm with brains """ import numpy as np class Cell: """ Class cell represents a cell in the world which have the property position : The position of the represented by tupleof x and y coordinates initially set to (0,0) parent : This contains the parent cell object which we visited before arrinving this cell g,h,f : The parameters for constructing the heuristic function which can be any function. for simplicity used line distance """ def __init__(self): self.position = (0, 0) self.parent = None self.g = 0 self.h = 0 self.f = 0 """ overrides equals method because otherwise cell assign will give wrong results """ def __eq__(self, cell): return self.position == cell.position def showcell(self): print(self.position) class Gridworld: """ Gridworld class represents the external world here a grid M*M matrix world_size: create a numpy array with the given world_size default is 5 """ def __init__(self, world_size=(5, 5)): self.w = np.zeros(world_size) self.world_x_limit = world_size[0] self.world_y_limit = world_size[1] def show(self): print(self.w) def get_neigbours(self, cell): """ Return the neighbours of cell """ neughbour_cord = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] current_x = cell.position[0] current_y = cell.position[1] neighbours = [] for n in neughbour_cord: x = current_x + n[0] y = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: c = Cell() c.position = (x, y) c.parent = cell neighbours.append(c) return neighbours def astar(world, start, goal): """ Implementation of a start algorithm world : Object of the world object start : Object of the cell as start position stop : Object of the cell as goal position >>> p = Gridworld() >>> start = Cell() >>> start.position = (0,0) >>> goal = Cell() >>> goal.position = (4,4) >>> astar(p, start, goal) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] """ _open = [] _closed = [] _open.append(start) while _open: min_f = np.argmin([n.f for n in _open]) current = _open[min_f] _closed.append(_open.pop(min_f)) if current == goal: break for n in world.get_neigbours(current): for c in _closed: if c == n: continue n.g = current.g + 1 x1, y1 = n.position x2, y2 = goal.position n.h = (y2 - y1) ** 2 + (x2 - x1) ** 2 n.f = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(n) path = [] while current.parent is not None: path.append(current.position) current = current.parent path.append(current.position) return path[::-1] if __name__ == "__main__": world = Gridworld() # stat position and Goal start = Cell() start.position = (0, 0) goal = Cell() goal.position = (4, 4) print(f"path from {start.position} to {goal.position}") s = astar(world, start, goal) # Just for visual reasons for i in s: world.w[i] = 1 print(world.w)
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 6: https://projecteuler.net/problem=6 Sum square difference The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ import math def solution(n: int = 100) -> int: """ Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. >>> solution(10) 2640 >>> solution(15) 13160 >>> solution(20) 41230 >>> solution(50) 1582700 """ sum_of_squares = sum(i * i for i in range(1, n + 1)) square_of_sum = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 6: https://projecteuler.net/problem=6 Sum square difference The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ import math def solution(n: int = 100) -> int: """ Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. >>> solution(10) 2640 >>> solution(15) 13160 >>> solution(20) 41230 >>> solution(50) 1582700 """ sum_of_squares = sum(i * i for i in range(1, n + 1)) square_of_sum = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations from collections import deque class Automaton: def __init__(self, keywords: list[str]): self.adlist: list[dict] = list() self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(keyword) self.set_fail_transitions() def find_next_state(self, current_state: int, char: str) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def add_keyword(self, keyword: str) -> None: current_state = 0 for character in keyword: next_state = self.find_next_state(current_state, character) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) current_state = len(self.adlist) - 1 else: current_state = next_state self.adlist[current_state]["output"].append(keyword) def set_fail_transitions(self) -> None: q: deque = deque() for node in self.adlist[0]["next_states"]: q.append(node) self.adlist[node]["fail_state"] = 0 while q: r = q.popleft() for child in self.adlist[r]["next_states"]: q.append(child) state = self.adlist[r]["fail_state"] while ( self.find_next_state(state, self.adlist[child]["value"]) is None and state != 0 ): state = self.adlist[state]["fail_state"] self.adlist[child]["fail_state"] = self.find_next_state( state, self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: self.adlist[child]["fail_state"] = 0 self.adlist[child]["output"] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def search_in(self, string: str) -> dict[str, list[int]]: """ >>> A = Automaton(["what", "hat", "ver", "er"]) >>> A.search_in("whatever, err ... , wherever") {'what': [0], 'hat': [1], 'ver': [5, 25], 'er': [6, 10, 22, 26]} """ result: dict = ( dict() ) # returns a dict with keywords and list of its occurrences current_state = 0 for i in range(len(string)): while ( self.find_next_state(current_state, string[i]) is None and current_state != 0 ): current_state = self.adlist[current_state]["fail_state"] next_state = self.find_next_state(current_state, string[i]) if next_state is None: current_state = 0 else: current_state = next_state for key in self.adlist[current_state]["output"]: if not (key in result): result[key] = [] result[key].append(i - len(key) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
from __future__ import annotations from collections import deque class Automaton: def __init__(self, keywords: list[str]): self.adlist: list[dict] = list() self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(keyword) self.set_fail_transitions() def find_next_state(self, current_state: int, char: str) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def add_keyword(self, keyword: str) -> None: current_state = 0 for character in keyword: next_state = self.find_next_state(current_state, character) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) current_state = len(self.adlist) - 1 else: current_state = next_state self.adlist[current_state]["output"].append(keyword) def set_fail_transitions(self) -> None: q: deque = deque() for node in self.adlist[0]["next_states"]: q.append(node) self.adlist[node]["fail_state"] = 0 while q: r = q.popleft() for child in self.adlist[r]["next_states"]: q.append(child) state = self.adlist[r]["fail_state"] while ( self.find_next_state(state, self.adlist[child]["value"]) is None and state != 0 ): state = self.adlist[state]["fail_state"] self.adlist[child]["fail_state"] = self.find_next_state( state, self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: self.adlist[child]["fail_state"] = 0 self.adlist[child]["output"] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def search_in(self, string: str) -> dict[str, list[int]]: """ >>> A = Automaton(["what", "hat", "ver", "er"]) >>> A.search_in("whatever, err ... , wherever") {'what': [0], 'hat': [1], 'ver': [5, 25], 'er': [6, 10, 22, 26]} """ result: dict = ( dict() ) # returns a dict with keywords and list of its occurrences current_state = 0 for i in range(len(string)): while ( self.find_next_state(current_state, string[i]) is None and current_state != 0 ): current_state = self.adlist[current_state]["fail_state"] next_state = self.find_next_state(current_state, string[i]) if next_state is None: current_state = 0 else: current_state = next_state for key in self.adlist[current_state]["output"]: if not (key in result): result[key] = [] result[key].append(i - len(key) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import math def rearrange(bitString32): """[summary] Regroups the given binary string. Arguments: bitString32 {[string]} -- [32 bit binary] Raises: ValueError -- [if the given string not are 32 bit binary string] Returns: [string] -- [32 bit binary string] >>> rearrange('1234567890abcdfghijklmnopqrstuvw') 'pqrstuvwhijklmno90abcdfg12345678' """ if len(bitString32) != 32: raise ValueError("Need length 32") newString = "" for i in [3, 2, 1, 0]: newString += bitString32[8 * i : 8 * i + 8] return newString def reformatHex(i): """[summary] Converts the given integer into 8-digit hex number. Arguments: i {[int]} -- [integer] >>> reformatHex(666) '9a020000' """ hexrep = format(i, "08x") thing = "" for i in [3, 2, 1, 0]: thing += hexrep[2 * i : 2 * i + 2] return thing def pad(bitString): """[summary] Fills up the binary string to a 512 bit binary string Arguments: bitString {[string]} -- [binary string] Returns: [string] -- [binary string] """ startLength = len(bitString) bitString += "1" while len(bitString) % 512 != 448: bitString += "0" lastPart = format(startLength, "064b") bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32]) return bitString def getBlock(bitString): """[summary] Iterator: Returns by each call a list of length 16 with the 32 bit integer blocks. Arguments: bitString {[string]} -- [binary string >= 512] """ currPos = 0 while currPos < len(bitString): currPart = bitString[currPos : currPos + 512] mySplits = [] for i in range(16): mySplits.append(int(rearrange(currPart[32 * i : 32 * i + 32]), 2)) yield mySplits currPos += 512 def not32(i): """ >>> not32(34) 4294967261 """ i_str = format(i, "032b") new_str = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(new_str, 2) def sum32(a, b): return (a + b) % 2 ** 32 def leftrot32(i, s): return (i << s) ^ (i >> (32 - s)) def md5me(testString): """[summary] Returns a 32-bit hash code of the string 'testString' Arguments: testString {[string]} -- [message] """ bs = "" for i in testString: bs += format(ord(i), "08b") bs = pad(bs) tvals = [int(2 ** 32 * abs(math.sin(i + 1))) for i in range(64)] a0 = 0x67452301 b0 = 0xEFCDAB89 c0 = 0x98BADCFE d0 = 0x10325476 s = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] for m in getBlock(bs): A = a0 B = b0 C = c0 D = d0 for i in range(64): if i <= 15: # f = (B & C) | (not32(B) & D) f = D ^ (B & (C ^ D)) g = i elif i <= 31: # f = (D & B) | (not32(D) & C) f = C ^ (D & (B ^ C)) g = (5 * i + 1) % 16 elif i <= 47: f = B ^ C ^ D g = (3 * i + 5) % 16 else: f = C ^ (B | not32(D)) g = (7 * i) % 16 dtemp = D D = C C = B B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2 ** 32, s[i])) A = dtemp a0 = sum32(a0, A) b0 = sum32(b0, B) c0 = sum32(c0, C) d0 = sum32(d0, D) digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0) return digest def test(): assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e" assert ( md5me("The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6" ) print("Success.") if __name__ == "__main__": test() import doctest doctest.testmod()
import math def rearrange(bitString32): """[summary] Regroups the given binary string. Arguments: bitString32 {[string]} -- [32 bit binary] Raises: ValueError -- [if the given string not are 32 bit binary string] Returns: [string] -- [32 bit binary string] >>> rearrange('1234567890abcdfghijklmnopqrstuvw') 'pqrstuvwhijklmno90abcdfg12345678' """ if len(bitString32) != 32: raise ValueError("Need length 32") newString = "" for i in [3, 2, 1, 0]: newString += bitString32[8 * i : 8 * i + 8] return newString def reformatHex(i): """[summary] Converts the given integer into 8-digit hex number. Arguments: i {[int]} -- [integer] >>> reformatHex(666) '9a020000' """ hexrep = format(i, "08x") thing = "" for i in [3, 2, 1, 0]: thing += hexrep[2 * i : 2 * i + 2] return thing def pad(bitString): """[summary] Fills up the binary string to a 512 bit binary string Arguments: bitString {[string]} -- [binary string] Returns: [string] -- [binary string] """ startLength = len(bitString) bitString += "1" while len(bitString) % 512 != 448: bitString += "0" lastPart = format(startLength, "064b") bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32]) return bitString def getBlock(bitString): """[summary] Iterator: Returns by each call a list of length 16 with the 32 bit integer blocks. Arguments: bitString {[string]} -- [binary string >= 512] """ currPos = 0 while currPos < len(bitString): currPart = bitString[currPos : currPos + 512] mySplits = [] for i in range(16): mySplits.append(int(rearrange(currPart[32 * i : 32 * i + 32]), 2)) yield mySplits currPos += 512 def not32(i): """ >>> not32(34) 4294967261 """ i_str = format(i, "032b") new_str = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(new_str, 2) def sum32(a, b): return (a + b) % 2 ** 32 def leftrot32(i, s): return (i << s) ^ (i >> (32 - s)) def md5me(testString): """[summary] Returns a 32-bit hash code of the string 'testString' Arguments: testString {[string]} -- [message] """ bs = "" for i in testString: bs += format(ord(i), "08b") bs = pad(bs) tvals = [int(2 ** 32 * abs(math.sin(i + 1))) for i in range(64)] a0 = 0x67452301 b0 = 0xEFCDAB89 c0 = 0x98BADCFE d0 = 0x10325476 s = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] for m in getBlock(bs): A = a0 B = b0 C = c0 D = d0 for i in range(64): if i <= 15: # f = (B & C) | (not32(B) & D) f = D ^ (B & (C ^ D)) g = i elif i <= 31: # f = (D & B) | (not32(D) & C) f = C ^ (D & (B ^ C)) g = (5 * i + 1) % 16 elif i <= 47: f = B ^ C ^ D g = (3 * i + 5) % 16 else: f = C ^ (B | not32(D)) g = (7 * i) % 16 dtemp = D D = C C = B B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2 ** 32, s[i])) A = dtemp a0 = sum32(a0, A) b0 = sum32(b0, B) c0 = sum32(c0, C) d0 = sum32(d0, D) digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0) return digest def test(): assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e" assert ( md5me("The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6" ) print("Success.") if __name__ == "__main__": test() import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Create a Long Short Term Memory (LSTM) network model An LSTM is a type of Recurrent Neural Network (RNN) as discussed at: * http://colah.github.io/posts/2015-08-Understanding-LSTMs * https://en.wikipedia.org/wiki/Long_short-term_memory """ import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": """ First part of building a model is to get the data and prepare it for our model. You can use any dataset for stock prediction make sure you set the price column on line number 21. Here we use a dataset which have the price on 3rd column. """ df = pd.read_csv("sample_data.csv", header=None) len_data = df.shape[:1][0] # If you're using some other dataset input the target column actual_data = df.iloc[:, 1:2] actual_data = actual_data.values.reshape(len_data, 1) actual_data = MinMaxScaler().fit_transform(actual_data) look_back = 10 forward_days = 5 periods = 20 division = len_data - periods * look_back train_data = actual_data[:division] test_data = actual_data[division - look_back :] train_x, train_y = [], [] test_x, test_y = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) x_train = np.array(train_x) x_test = np.array(test_x) y_train = np.array([list(i.ravel()) for i in train_y]) y_test = np.array([list(i.ravel()) for i in test_y]) model = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") history = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) pred = model.predict(x_test)
""" Create a Long Short Term Memory (LSTM) network model An LSTM is a type of Recurrent Neural Network (RNN) as discussed at: * http://colah.github.io/posts/2015-08-Understanding-LSTMs * https://en.wikipedia.org/wiki/Long_short-term_memory """ import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": """ First part of building a model is to get the data and prepare it for our model. You can use any dataset for stock prediction make sure you set the price column on line number 21. Here we use a dataset which have the price on 3rd column. """ df = pd.read_csv("sample_data.csv", header=None) len_data = df.shape[:1][0] # If you're using some other dataset input the target column actual_data = df.iloc[:, 1:2] actual_data = actual_data.values.reshape(len_data, 1) actual_data = MinMaxScaler().fit_transform(actual_data) look_back = 10 forward_days = 5 periods = 20 division = len_data - periods * look_back train_data = actual_data[:division] test_data = actual_data[division - look_back :] train_x, train_y = [], [] test_x, test_y = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) x_train = np.array(train_x) x_test = np.array(test_x) y_train = np.array([list(i.ravel()) for i in train_y]) y_test = np.array([list(i.ravel()) for i in test_y]) model = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") history = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) pred = model.predict(x_test)
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#
#
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://en.wikipedia.org/wiki/Hill_climbing import math class SearchProblem: """ An interface to define search problems. The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. x: the x coordinate of the current search state. y: the y coordinate of the current search state. step_size: size of the step to take when looking for neighbors. function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y self.step_size = step_size self.function = function_to_optimize def score(self) -> int: """ Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 0 >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 12 """ return self.function(self.x, self.y) def get_neighbors(self): """ Returns a list of coordinates of neighbors adjacent to the current coordinates. Neighbors: | 0 | 1 | 2 | | 3 | _ | 4 | | 5 | 6 | 7 | """ step_size = self.step_size return [ SearchProblem(x, y, step_size, self.function) for x, y in ( (self.x - step_size, self.y - step_size), (self.x - step_size, self.y), (self.x - step_size, self.y + step_size), (self.x, self.y - step_size), (self.x, self.y + step_size), (self.x + step_size, self.y - step_size), (self.x + step_size, self.y), (self.x + step_size, self.y + step_size), ) ] def __hash__(self): """ hash the string representation of the current search state. """ return hash(str(self)) def __eq__(self, obj): """ Check if the 2 objects are equal. """ if isinstance(obj, SearchProblem): return hash(str(self)) == hash(str(obj)) return False def __str__(self): """ string representation of the current search state. >>> str(SearchProblem(0, 0, 1, None)) 'x: 0 y: 0' >>> str(SearchProblem(2, 5, 1, None)) 'x: 2 y: 5' """ return f"x: {self.x} y: {self.y}" def hill_climbing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, max_iter: int = 10000, ) -> SearchProblem: """ Implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. Returns a search state having the maximum (or minimum) score. """ current_state = search_prob scores = [] # list to store the current score at each iteration iterations = 0 solution_found = False visited = set() while not solution_found and iterations < max_iter: visited.add(current_state) iterations += 1 current_score = current_state.score() scores.append(current_score) neighbors = current_state.get_neighbors() max_change = -math.inf min_change = math.inf next_state = None # to hold the next best neighbor for neighbor in neighbors: if neighbor in visited: continue # do not want to visit the same state again if ( neighbor.x > max_x or neighbor.x < min_x or neighbor.y > max_y or neighbor.y < min_y ): continue # neighbor outside our bounds change = neighbor.score() - current_score if find_max: # finding max # going to direction with greatest ascent if change > max_change and change > 0: max_change = change next_state = neighbor else: # finding min # to direction with greatest descent if change < min_change and change < 0: min_change = change next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state else: # since we have no neighbor that improves the solution we stop the search solution_found = True if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return current_state if __name__ == "__main__": import doctest doctest.testmod() def test_f1(x, y): return (x ** 2) + (y ** 2) # starting the problem with initial coordinates (3, 4) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=False) print( "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x ** 2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=True) print( "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" )
# https://en.wikipedia.org/wiki/Hill_climbing import math class SearchProblem: """ An interface to define search problems. The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. x: the x coordinate of the current search state. y: the y coordinate of the current search state. step_size: size of the step to take when looking for neighbors. function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y self.step_size = step_size self.function = function_to_optimize def score(self) -> int: """ Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 0 >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 12 """ return self.function(self.x, self.y) def get_neighbors(self): """ Returns a list of coordinates of neighbors adjacent to the current coordinates. Neighbors: | 0 | 1 | 2 | | 3 | _ | 4 | | 5 | 6 | 7 | """ step_size = self.step_size return [ SearchProblem(x, y, step_size, self.function) for x, y in ( (self.x - step_size, self.y - step_size), (self.x - step_size, self.y), (self.x - step_size, self.y + step_size), (self.x, self.y - step_size), (self.x, self.y + step_size), (self.x + step_size, self.y - step_size), (self.x + step_size, self.y), (self.x + step_size, self.y + step_size), ) ] def __hash__(self): """ hash the string representation of the current search state. """ return hash(str(self)) def __eq__(self, obj): """ Check if the 2 objects are equal. """ if isinstance(obj, SearchProblem): return hash(str(self)) == hash(str(obj)) return False def __str__(self): """ string representation of the current search state. >>> str(SearchProblem(0, 0, 1, None)) 'x: 0 y: 0' >>> str(SearchProblem(2, 5, 1, None)) 'x: 2 y: 5' """ return f"x: {self.x} y: {self.y}" def hill_climbing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, max_iter: int = 10000, ) -> SearchProblem: """ Implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. Returns a search state having the maximum (or minimum) score. """ current_state = search_prob scores = [] # list to store the current score at each iteration iterations = 0 solution_found = False visited = set() while not solution_found and iterations < max_iter: visited.add(current_state) iterations += 1 current_score = current_state.score() scores.append(current_score) neighbors = current_state.get_neighbors() max_change = -math.inf min_change = math.inf next_state = None # to hold the next best neighbor for neighbor in neighbors: if neighbor in visited: continue # do not want to visit the same state again if ( neighbor.x > max_x or neighbor.x < min_x or neighbor.y > max_y or neighbor.y < min_y ): continue # neighbor outside our bounds change = neighbor.score() - current_score if find_max: # finding max # going to direction with greatest ascent if change > max_change and change > 0: max_change = change next_state = neighbor else: # finding min # to direction with greatest descent if change < min_change and change < 0: min_change = change next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state else: # since we have no neighbor that improves the solution we stop the search solution_found = True if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return current_state if __name__ == "__main__": import doctest doctest.testmod() def test_f1(x, y): return (x ** 2) + (y ** 2) # starting the problem with initial coordinates (3, 4) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=False) print( "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x ** 2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=True) print( "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" )
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 16: https://projecteuler.net/problem=16 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? """ def solution(power: int = 1000) -> int: """Returns the sum of the digits of the number 2^power. >>> solution(1000) 1366 >>> solution(50) 76 >>> solution(20) 31 >>> solution(15) 26 """ num = 2 ** power string_num = str(num) list_num = list(string_num) sum_of_num = 0 for i in list_num: sum_of_num += int(i) return sum_of_num if __name__ == "__main__": power = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2 ** power) result = solution(power) print("Sum of the digits is: ", result)
""" Problem 16: https://projecteuler.net/problem=16 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? """ def solution(power: int = 1000) -> int: """Returns the sum of the digits of the number 2^power. >>> solution(1000) 1366 >>> solution(50) 76 >>> solution(20) 31 >>> solution(15) 26 """ num = 2 ** power string_num = str(num) list_num = list(string_num) sum_of_num = 0 for i in list_num: sum_of_num += int(i) return sum_of_num if __name__ == "__main__": power = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2 ** power) result = solution(power) print("Sum of the digits is: ", result)
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Borůvka's algorithm. Determines the minimum spanning tree (MST) of a graph using the Borůvka's algorithm. Borůvka's algorithm is a greedy algorithm for finding a minimum spanning tree in a connected graph, or a minimum spanning forest if a graph that is not connected. The time complexity of this algorithm is O(ELogV), where E represents the number of edges, while V represents the number of nodes. O(number_of_edges Log number_of_nodes) The space complexity of this algorithm is O(V + E), since we have to keep a couple of lists whose sizes are equal to the number of nodes, as well as keep all the edges of a graph inside of the data structure itself. Borůvka's algorithm gives us pretty much the same result as other MST Algorithms - they all find the minimum spanning tree, and the time complexity is approximately the same. One advantage that Borůvka's algorithm has compared to the alternatives is that it doesn't need to presort the edges or maintain a priority queue in order to find the minimum spanning tree. Even though that doesn't help its complexity, since it still passes the edges logE times, it is a bit simpler to code. Details: https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm """ class Graph: def __init__(self, num_of_nodes: int) -> None: """ Arguments: num_of_nodes - the number of nodes in the graph Attributes: m_num_of_nodes - the number of nodes in the graph. m_edges - the list of edges. m_component - the dictionary which stores the index of the component which a node belongs to. """ self.m_num_of_nodes = num_of_nodes self.m_edges = [] self.m_component = {} def add_edge(self, u_node: int, v_node: int, weight: int) -> None: """Adds an edge in the format [first, second, edge weight] to graph.""" self.m_edges.append([u_node, v_node, weight]) def find_component(self, u_node: int) -> int: """Propagates a new component throughout a given component.""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def set_component(self, u_node: int) -> None: """Finds the component index of a given node""" if self.m_component[u_node] != u_node: for k in self.m_component: self.m_component[k] = self.find_component(k) def union(self, component_size: list, u_node: int, v_node: int) -> None: """Union finds the roots of components for two nodes, compares the components in terms of size, and attaches the smaller one to the larger one to form single component""" if component_size[u_node] <= component_size[v_node]: self.m_component[u_node] = v_node component_size[v_node] += component_size[u_node] self.set_component(u_node) elif component_size[u_node] >= component_size[v_node]: self.m_component[v_node] = self.find_component(u_node) component_size[u_node] += component_size[v_node] self.set_component(v_node) def boruvka(self) -> None: """Performs Borůvka's algorithm to find MST.""" # Initialize additional lists required to algorithm. component_size = [] mst_weight = 0 minimum_weight_edge = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) num_of_components = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: u, v, w = edge u_component = self.m_component[u] v_component = self.m_component[v] if u_component != v_component: """If the current minimum weight edge of component u doesn't exist (is -1), or if it's greater than the edge we're observing right now, we will assign the value of the edge we're observing to it. If the current minimum weight edge of component v doesn't exist (is -1), or if it's greater than the edge we're observing right now, we will assign the value of the edge we're observing to it""" for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): minimum_weight_edge[component] = [u, v, w] for edge in minimum_weight_edge: if edge != -1: u, v, w = edge u_component = self.m_component[u] v_component = self.m_component[v] if u_component != v_component: mst_weight += w self.union(component_size, u_component, v_component) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n") num_of_components -= 1 minimum_weight_edge = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}") def test_vector() -> None: """ >>> g = Graph(8) >>> for u_v_w in ((0, 1, 10), (0, 2, 6), (0, 3, 5), (1, 3, 15), (2, 3, 4), ... (3, 4, 8), (4, 5, 10), (4, 6, 6), (4, 7, 5), (5, 7, 15), (6, 7, 4)): ... g.add_edge(*u_v_w) >>> g.boruvka() Added edge [0 - 3] Added weight: 5 <BLANKLINE> Added edge [0 - 1] Added weight: 10 <BLANKLINE> Added edge [2 - 3] Added weight: 4 <BLANKLINE> Added edge [4 - 7] Added weight: 5 <BLANKLINE> Added edge [4 - 5] Added weight: 10 <BLANKLINE> Added edge [6 - 7] Added weight: 4 <BLANKLINE> Added edge [3 - 4] Added weight: 8 <BLANKLINE> The total weight of the minimal spanning tree is: 46 """ if __name__ == "__main__": import doctest doctest.testmod()
"""Borůvka's algorithm. Determines the minimum spanning tree (MST) of a graph using the Borůvka's algorithm. Borůvka's algorithm is a greedy algorithm for finding a minimum spanning tree in a connected graph, or a minimum spanning forest if a graph that is not connected. The time complexity of this algorithm is O(ELogV), where E represents the number of edges, while V represents the number of nodes. O(number_of_edges Log number_of_nodes) The space complexity of this algorithm is O(V + E), since we have to keep a couple of lists whose sizes are equal to the number of nodes, as well as keep all the edges of a graph inside of the data structure itself. Borůvka's algorithm gives us pretty much the same result as other MST Algorithms - they all find the minimum spanning tree, and the time complexity is approximately the same. One advantage that Borůvka's algorithm has compared to the alternatives is that it doesn't need to presort the edges or maintain a priority queue in order to find the minimum spanning tree. Even though that doesn't help its complexity, since it still passes the edges logE times, it is a bit simpler to code. Details: https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm """ class Graph: def __init__(self, num_of_nodes: int) -> None: """ Arguments: num_of_nodes - the number of nodes in the graph Attributes: m_num_of_nodes - the number of nodes in the graph. m_edges - the list of edges. m_component - the dictionary which stores the index of the component which a node belongs to. """ self.m_num_of_nodes = num_of_nodes self.m_edges = [] self.m_component = {} def add_edge(self, u_node: int, v_node: int, weight: int) -> None: """Adds an edge in the format [first, second, edge weight] to graph.""" self.m_edges.append([u_node, v_node, weight]) def find_component(self, u_node: int) -> int: """Propagates a new component throughout a given component.""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def set_component(self, u_node: int) -> None: """Finds the component index of a given node""" if self.m_component[u_node] != u_node: for k in self.m_component: self.m_component[k] = self.find_component(k) def union(self, component_size: list, u_node: int, v_node: int) -> None: """Union finds the roots of components for two nodes, compares the components in terms of size, and attaches the smaller one to the larger one to form single component""" if component_size[u_node] <= component_size[v_node]: self.m_component[u_node] = v_node component_size[v_node] += component_size[u_node] self.set_component(u_node) elif component_size[u_node] >= component_size[v_node]: self.m_component[v_node] = self.find_component(u_node) component_size[u_node] += component_size[v_node] self.set_component(v_node) def boruvka(self) -> None: """Performs Borůvka's algorithm to find MST.""" # Initialize additional lists required to algorithm. component_size = [] mst_weight = 0 minimum_weight_edge = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) num_of_components = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: u, v, w = edge u_component = self.m_component[u] v_component = self.m_component[v] if u_component != v_component: """If the current minimum weight edge of component u doesn't exist (is -1), or if it's greater than the edge we're observing right now, we will assign the value of the edge we're observing to it. If the current minimum weight edge of component v doesn't exist (is -1), or if it's greater than the edge we're observing right now, we will assign the value of the edge we're observing to it""" for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): minimum_weight_edge[component] = [u, v, w] for edge in minimum_weight_edge: if edge != -1: u, v, w = edge u_component = self.m_component[u] v_component = self.m_component[v] if u_component != v_component: mst_weight += w self.union(component_size, u_component, v_component) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n") num_of_components -= 1 minimum_weight_edge = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}") def test_vector() -> None: """ >>> g = Graph(8) >>> for u_v_w in ((0, 1, 10), (0, 2, 6), (0, 3, 5), (1, 3, 15), (2, 3, 4), ... (3, 4, 8), (4, 5, 10), (4, 6, 6), (4, 7, 5), (5, 7, 15), (6, 7, 4)): ... g.add_edge(*u_v_w) >>> g.boruvka() Added edge [0 - 3] Added weight: 5 <BLANKLINE> Added edge [0 - 1] Added weight: 10 <BLANKLINE> Added edge [2 - 3] Added weight: 4 <BLANKLINE> Added edge [4 - 7] Added weight: 5 <BLANKLINE> Added edge [4 - 5] Added weight: 10 <BLANKLINE> Added edge [6 - 7] Added weight: 4 <BLANKLINE> Added edge [3 - 4] Added weight: 8 <BLANKLINE> The total weight of the minimal spanning tree is: 46 """ if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" One of the several implementations of Lempel–Ziv–Welch decompression algorithm https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch """ import math import sys def read_file_binary(file_path: str) -> str: """ Reads given file as bytes and returns them as a long string """ result = "" try: with open(file_path, "rb") as binary_file: data = binary_file.read() for dat in data: curr_byte = f"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible") sys.exit() def decompress_data(data_bits: str) -> str: """ Decompresses given data_bits using Lempel–Ziv–Welch compression algorithm and returns the result as a string """ lexicon = {"0": "0", "1": "1"} result, curr_string = "", "" index = len(lexicon) for i in range(len(data_bits)): curr_string += data_bits[i] if curr_string not in lexicon: continue last_match_id = lexicon[curr_string] result += last_match_id lexicon[curr_string] = last_match_id + "0" if math.log2(index).is_integer(): newLex = {} for curr_key in list(lexicon): newLex["0" + curr_key] = lexicon.pop(curr_key) lexicon = newLex lexicon[bin(index)[2:]] = last_match_id + "1" index += 1 curr_string = "" return result def write_file_binary(file_path: str, to_write: str) -> None: """ Writes given to_write string (should only consist of 0's and 1's) as bytes in the file """ byte_length = 8 try: with open(file_path, "wb") as opened_file: result_byte_array = [ to_write[i : i + byte_length] for i in range(0, len(to_write), byte_length) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("10000000") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(elem, 2).to_bytes(1, byteorder="big")) except OSError: print("File not accessible") sys.exit() def remove_prefix(data_bits: str) -> str: """ Removes size prefix, that compressed file should have Returns the result """ counter = 0 for letter in data_bits: if letter == "1": break counter += 1 data_bits = data_bits[counter:] data_bits = data_bits[counter + 1 :] return data_bits def compress(source_path: str, destination_path: str) -> None: """ Reads source file, decompresses it and writes the result in destination file """ data_bits = read_file_binary(source_path) data_bits = remove_prefix(data_bits) decompressed = decompress_data(data_bits) write_file_binary(destination_path, decompressed) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
""" One of the several implementations of Lempel–Ziv–Welch decompression algorithm https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch """ import math import sys def read_file_binary(file_path: str) -> str: """ Reads given file as bytes and returns them as a long string """ result = "" try: with open(file_path, "rb") as binary_file: data = binary_file.read() for dat in data: curr_byte = f"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible") sys.exit() def decompress_data(data_bits: str) -> str: """ Decompresses given data_bits using Lempel–Ziv–Welch compression algorithm and returns the result as a string """ lexicon = {"0": "0", "1": "1"} result, curr_string = "", "" index = len(lexicon) for i in range(len(data_bits)): curr_string += data_bits[i] if curr_string not in lexicon: continue last_match_id = lexicon[curr_string] result += last_match_id lexicon[curr_string] = last_match_id + "0" if math.log2(index).is_integer(): newLex = {} for curr_key in list(lexicon): newLex["0" + curr_key] = lexicon.pop(curr_key) lexicon = newLex lexicon[bin(index)[2:]] = last_match_id + "1" index += 1 curr_string = "" return result def write_file_binary(file_path: str, to_write: str) -> None: """ Writes given to_write string (should only consist of 0's and 1's) as bytes in the file """ byte_length = 8 try: with open(file_path, "wb") as opened_file: result_byte_array = [ to_write[i : i + byte_length] for i in range(0, len(to_write), byte_length) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("10000000") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(elem, 2).to_bytes(1, byteorder="big")) except OSError: print("File not accessible") sys.exit() def remove_prefix(data_bits: str) -> str: """ Removes size prefix, that compressed file should have Returns the result """ counter = 0 for letter in data_bits: if letter == "1": break counter += 1 data_bits = data_bits[counter:] data_bits = data_bits[counter + 1 :] return data_bits def compress(source_path: str, destination_path: str) -> None: """ Reads source file, decompresses it and writes the result in destination file """ data_bits = read_file_binary(source_path) data_bits = remove_prefix(data_bits) decompressed = decompress_data(data_bits) write_file_binary(destination_path, decompressed) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 135: https://projecteuler.net/problem=135 Given the positive integers, x, y, and z, are consecutive terms of an arithmetic progression, the least value of the positive integer, n, for which the equation, x2 − y2 − z2 = n, has exactly two solutions is n = 27: 342 − 272 − 202 = 122 − 92 − 62 = 27 It turns out that n = 1155 is the least value which has exactly ten solutions. How many values of n less than one million have exactly ten distinct solutions? Taking x,y,z of the form a+d,a,a-d respectively, the given equation reduces to a*(4d-a)=n. Calculating no of solutions for every n till 1 million by fixing a ,and n must be multiple of a. Total no of steps=n*(1/1+1/2+1/3+1/4..+1/n) ,so roughly O(nlogn) time complexity. """ def solution(limit: int = 1000000) -> int: """ returns the values of n less than or equal to the limit have exactly ten distinct solutions. >>> solution(100) 0 >>> solution(10000) 45 >>> solution(50050) 292 """ limit = limit + 1 frequency = [0] * limit for first_term in range(1, limit): for n in range(first_term, limit, first_term): common_difference = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a count = sum(1 for x in frequency[1:limit] if x == 10) return count if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 135: https://projecteuler.net/problem=135 Given the positive integers, x, y, and z, are consecutive terms of an arithmetic progression, the least value of the positive integer, n, for which the equation, x2 − y2 − z2 = n, has exactly two solutions is n = 27: 342 − 272 − 202 = 122 − 92 − 62 = 27 It turns out that n = 1155 is the least value which has exactly ten solutions. How many values of n less than one million have exactly ten distinct solutions? Taking x,y,z of the form a+d,a,a-d respectively, the given equation reduces to a*(4d-a)=n. Calculating no of solutions for every n till 1 million by fixing a ,and n must be multiple of a. Total no of steps=n*(1/1+1/2+1/3+1/4..+1/n) ,so roughly O(nlogn) time complexity. """ def solution(limit: int = 1000000) -> int: """ returns the values of n less than or equal to the limit have exactly ten distinct solutions. >>> solution(100) 0 >>> solution(10000) 45 >>> solution(50050) 292 """ limit = limit + 1 frequency = [0] * limit for first_term in range(1, limit): for n in range(first_term, limit, first_term): common_difference = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a count = sum(1 for x in frequency[1:limit] if x == 10) return count if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/python """ A Framework of Back Propagation Neural Network(BP) model Easy to use: * add many layers as you want !!! * clearly see how the loss decreasing Easy to expand: * more activation functions * more loss functions * more optimization method Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23 """ import numpy as np from matplotlib import pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-1 * x)) class DenseLayer: """ Layers of BP neural network """ def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): """ common connected layer of bp network :param units: numbers of neural units :param activation: activation function :param learning_rate: learning rate for paras :param is_input_layer: whether it is input layer or not """ self.units = units self.weight = None self.bias = None self.activation = activation if learning_rate is None: learning_rate = 0.3 self.learn_rate = learning_rate self.is_input_layer = is_input_layer def initializer(self, back_units): self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units))) self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T if self.activation is None: self.activation = sigmoid def cal_gradient(self): # activation function may be sigmoid or linear if self.activation == sigmoid: gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation def forward_propagation(self, xdata): self.xdata = xdata if self.is_input_layer: # input layer self.wx_plus_b = xdata self.output = xdata return xdata else: self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output def back_propagation(self, gradient): gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient, self._gradient_x).T # upgrade: the Negative gradient direction self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T # updates the weights and bias according to learning rate (0.3 if undefined) return self.gradient class BPNN: """ Back Propagation Neural Network model """ def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() self.ax_loss = self.fig_loss.add_subplot(1, 1, 1) def add_layer(self, layer): self.layers.append(layer) def build(self): for i, layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: layer.initializer(self.layers[i - 1].units) def summary(self): for i, layer in enumerate(self.layers[:]): print("------- layer %d -------" % i) print("weight.shape ", np.shape(layer.weight)) print("bias.shape ", np.shape(layer.bias)) def train(self, xdata, ydata, train_round, accuracy): self.train_round = train_round self.accuracy = accuracy self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1) x_shape = np.shape(xdata) for round_i in range(train_round): all_loss = 0 for row in range(x_shape[0]): _xdata = np.asmatrix(xdata[row, :]).T _ydata = np.asmatrix(ydata[row, :]).T # forward propagation for layer in self.layers: _xdata = layer.forward_propagation(_xdata) loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss # back propagation: the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) mse = all_loss / x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: print("----达到精度----") return mse def cal_loss(self, ydata, ydata_): self.loss = np.sum(np.power((ydata - ydata_), 2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) return self.loss, self.loss_gradient def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) self.ax_loss.plot(self.train_mse, "r-") plt.ion() plt.xlabel("step") plt.ylabel("loss") plt.show() plt.pause(0.1) def example(): x = np.random.randn(10, 10) y = np.asarray( [ [0.8, 0.4], [0.4, 0.3], [0.34, 0.45], [0.67, 0.32], [0.88, 0.67], [0.78, 0.77], [0.55, 0.66], [0.55, 0.43], [0.54, 0.1], [0.1, 0.5], ] ) model = BPNN() for i in (10, 20, 30, 2): model.add_layer(DenseLayer(i)) model.build() model.summary() model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01) if __name__ == "__main__": example()
#!/usr/bin/python """ A Framework of Back Propagation Neural Network(BP) model Easy to use: * add many layers as you want !!! * clearly see how the loss decreasing Easy to expand: * more activation functions * more loss functions * more optimization method Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23 """ import numpy as np from matplotlib import pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-1 * x)) class DenseLayer: """ Layers of BP neural network """ def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): """ common connected layer of bp network :param units: numbers of neural units :param activation: activation function :param learning_rate: learning rate for paras :param is_input_layer: whether it is input layer or not """ self.units = units self.weight = None self.bias = None self.activation = activation if learning_rate is None: learning_rate = 0.3 self.learn_rate = learning_rate self.is_input_layer = is_input_layer def initializer(self, back_units): self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units))) self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T if self.activation is None: self.activation = sigmoid def cal_gradient(self): # activation function may be sigmoid or linear if self.activation == sigmoid: gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation def forward_propagation(self, xdata): self.xdata = xdata if self.is_input_layer: # input layer self.wx_plus_b = xdata self.output = xdata return xdata else: self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output def back_propagation(self, gradient): gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient, self._gradient_x).T # upgrade: the Negative gradient direction self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T # updates the weights and bias according to learning rate (0.3 if undefined) return self.gradient class BPNN: """ Back Propagation Neural Network model """ def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() self.ax_loss = self.fig_loss.add_subplot(1, 1, 1) def add_layer(self, layer): self.layers.append(layer) def build(self): for i, layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: layer.initializer(self.layers[i - 1].units) def summary(self): for i, layer in enumerate(self.layers[:]): print("------- layer %d -------" % i) print("weight.shape ", np.shape(layer.weight)) print("bias.shape ", np.shape(layer.bias)) def train(self, xdata, ydata, train_round, accuracy): self.train_round = train_round self.accuracy = accuracy self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1) x_shape = np.shape(xdata) for round_i in range(train_round): all_loss = 0 for row in range(x_shape[0]): _xdata = np.asmatrix(xdata[row, :]).T _ydata = np.asmatrix(ydata[row, :]).T # forward propagation for layer in self.layers: _xdata = layer.forward_propagation(_xdata) loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss # back propagation: the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) mse = all_loss / x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: print("----达到精度----") return mse def cal_loss(self, ydata, ydata_): self.loss = np.sum(np.power((ydata - ydata_), 2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) return self.loss, self.loss_gradient def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) self.ax_loss.plot(self.train_mse, "r-") plt.ion() plt.xlabel("step") plt.ylabel("loss") plt.show() plt.pause(0.1) def example(): x = np.random.randn(10, 10) y = np.asarray( [ [0.8, 0.4], [0.4, 0.3], [0.34, 0.45], [0.67, 0.32], [0.88, 0.67], [0.78, 0.77], [0.55, 0.66], [0.55, 0.43], [0.54, 0.1], [0.1, 0.5], ] ) model = BPNN() for i in (10, 20, 30, 2): model.add_layer(DenseLayer(i)) model.build() model.summary() model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01) if __name__ == "__main__": example()
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations def find_primitive(n: int) -> int | None: for r in range(1, n): li = [] for x in range(n - 1): val = pow(r, x, n) if val in li: break li.append(val) else: return r return None if __name__ == "__main__": q = int(input("Enter a prime number q: ")) a = find_primitive(q) if a is None: print(f"Cannot find the primitive for the value: {a!r}") else: a_private = int(input("Enter private key of A: ")) a_public = pow(a, a_private, q) b_private = int(input("Enter private key of B: ")) b_public = pow(a, b_private, q) a_secret = pow(b_public, a_private, q) b_secret = pow(a_public, b_private, q) print("The key value generated by A is: ", a_secret) print("The key value generated by B is: ", b_secret)
from __future__ import annotations def find_primitive(n: int) -> int | None: for r in range(1, n): li = [] for x in range(n - 1): val = pow(r, x, n) if val in li: break li.append(val) else: return r return None if __name__ == "__main__": q = int(input("Enter a prime number q: ")) a = find_primitive(q) if a is None: print(f"Cannot find the primitive for the value: {a!r}") else: a_private = int(input("Enter private key of A: ")) a_public = pow(a, a_private, q) b_private = int(input("Enter private key of B: ")) b_public = pow(a, b_private, q) a_secret = pow(b_public, a_private, q) b_secret = pow(a_public, b_private, q) print("The key value generated by A is: ", a_secret) print("The key value generated by B is: ", b_secret)
-1
TheAlgorithms/Python
4,763
from __future__ import annotations
### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-09-14T22:54:26Z"
"2021-09-22T21:11:51Z"
dc07a850763d8154e012c9d1be7f8fe78326e8fb
15d1cfabb15903c5e9d4d103e2390876efb3f85f
from __future__ import annotations. ### **Describe your change:** from __future__ import annotations * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from sklearn.neural_network import MLPClassifier X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]] y = [0, 1, 0, 0] clf = MLPClassifier( solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1 ) clf.fit(X, y) test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]] Y = clf.predict(test) def wrapper(Y): """ >>> wrapper(Y) [0, 0, 1] """ return list(Y) if __name__ == "__main__": import doctest doctest.testmod()
from sklearn.neural_network import MLPClassifier X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]] y = [0, 1, 0, 0] clf = MLPClassifier( solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1 ) clf.fit(X, y) test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]] Y = clf.predict(test) def wrapper(Y): """ >>> wrapper(Y) [0, 0, 1] """ return list(Y) if __name__ == "__main__": import doctest doctest.testmod()
-1