repo_name
stringclasses
1 value
pr_number
int64
4.12k
11.2k
pr_title
stringlengths
9
107
pr_description
stringlengths
107
5.48k
author
stringlengths
4
18
date_created
unknown
date_merged
unknown
previous_commit
stringlengths
40
40
pr_commit
stringlengths
40
40
query
stringlengths
118
5.52k
before_content
stringlengths
0
7.93M
after_content
stringlengths
0
7.93M
label
int64
-1
1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations DIRECTIONS = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] # function to search the path def search( grid: list[list[int]], init: list[int], goal: list[int], cost: int, heuristic: list[list[int]], ) -> tuple[list[list[int]], list[list[int]]]: closed = [ [0 for col in range(len(grid[0]))] for row in range(len(grid)) ] # the reference grid closed[init[0]][init[1]] = 1 action = [ [0 for col in range(len(grid[0]))] for row in range(len(grid)) ] # the action grid x = init[0] y = init[1] g = 0 f = g + heuristic[x][y] # cost from starting cell to destination cell cell = [[f, g, x, y]] found = False # flag that is set when search is complete resign = False # flag set if we can't find expand while not found and not resign: if len(cell) == 0: raise ValueError("Algorithm is unable to find solution") else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() next = cell.pop() x = next[2] y = next[3] g = next[1] if x == goal[0] and y == goal[1]: found = True else: for i in range(len(DIRECTIONS)): # to try out different valid actions x2 = x + DIRECTIONS[i][0] y2 = y + DIRECTIONS[i][1] if x2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 < len(grid[0]): if closed[x2][y2] == 0 and grid[x2][y2] == 0: g2 = g + cost f2 = g2 + heuristic[x2][y2] cell.append([f2, g2, x2, y2]) closed[x2][y2] = 1 action[x2][y2] = i invpath = [] x = goal[0] y = goal[1] invpath.append([x, y]) # we get the reverse path from here while x != init[0] or y != init[1]: x2 = x - DIRECTIONS[action[x][y]][0] y2 = y - DIRECTIONS[action[x][y]][1] x = x2 y = y2 invpath.append([x, y]) path = [] for i in range(len(invpath)): path.append(invpath[len(invpath) - 1 - i]) return path, action if __name__ == "__main__": grid = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] init = [0, 0] # all coordinates are given in format [y,x] goal = [len(grid) - 1, len(grid[0]) - 1] cost = 1 # the cost map which pushes the path closer to the goal heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map heuristic[i][j] = 99 path, action = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
from __future__ import annotations DIRECTIONS = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] # function to search the path def search( grid: list[list[int]], init: list[int], goal: list[int], cost: int, heuristic: list[list[int]], ) -> tuple[list[list[int]], list[list[int]]]: closed = [ [0 for col in range(len(grid[0]))] for row in range(len(grid)) ] # the reference grid closed[init[0]][init[1]] = 1 action = [ [0 for col in range(len(grid[0]))] for row in range(len(grid)) ] # the action grid x = init[0] y = init[1] g = 0 f = g + heuristic[x][y] # cost from starting cell to destination cell cell = [[f, g, x, y]] found = False # flag that is set when search is complete resign = False # flag set if we can't find expand while not found and not resign: if len(cell) == 0: raise ValueError("Algorithm is unable to find solution") else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() next = cell.pop() x = next[2] y = next[3] g = next[1] if x == goal[0] and y == goal[1]: found = True else: for i in range(len(DIRECTIONS)): # to try out different valid actions x2 = x + DIRECTIONS[i][0] y2 = y + DIRECTIONS[i][1] if x2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 < len(grid[0]): if closed[x2][y2] == 0 and grid[x2][y2] == 0: g2 = g + cost f2 = g2 + heuristic[x2][y2] cell.append([f2, g2, x2, y2]) closed[x2][y2] = 1 action[x2][y2] = i invpath = [] x = goal[0] y = goal[1] invpath.append([x, y]) # we get the reverse path from here while x != init[0] or y != init[1]: x2 = x - DIRECTIONS[action[x][y]][0] y2 = y - DIRECTIONS[action[x][y]][1] x = x2 y = y2 invpath.append([x, y]) path = [] for i in range(len(invpath)): path.append(invpath[len(invpath) - 1 - i]) return path, action if __name__ == "__main__": grid = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] init = [0, 0] # all coordinates are given in format [y,x] goal = [len(grid) - 1, len(grid[0]) - 1] cost = 1 # the cost map which pushes the path closer to the goal heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map heuristic[i][j] = 99 path, action = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" A naive recursive implementation of 0-1 Knapsack Problem https://en.wikipedia.org/wiki/Knapsack_problem """ from __future__ import annotations def knapsack(capacity: int, weights: list[int], values: list[int], counter: int) -> int: """ Returns the maximum value that can be put in a knapsack of a capacity cap, whereby each weight w has a specific value val. >>> cap = 50 >>> val = [60, 100, 120] >>> w = [10, 20, 30] >>> c = len(val) >>> knapsack(cap, w, val, c) 220 The result is 220 cause the values of 100 and 120 got the weight of 50 which is the limit of the capacity. """ # Base Case if counter == 0 or capacity == 0: return 0 # If weight of the nth item is more than Knapsack of capacity, # then this item cannot be included in the optimal solution, # else return the maximum of two cases: # (1) nth item included # (2) not included if weights[counter - 1] > capacity: return knapsack(capacity, weights, values, counter - 1) else: left_capacity = capacity - weights[counter - 1] new_value_included = values[counter - 1] + knapsack( left_capacity, weights, values, counter - 1 ) without_new_value = knapsack(capacity, weights, values, counter - 1) return max(new_value_included, without_new_value) if __name__ == "__main__": import doctest doctest.testmod()
""" A naive recursive implementation of 0-1 Knapsack Problem https://en.wikipedia.org/wiki/Knapsack_problem """ from __future__ import annotations def knapsack(capacity: int, weights: list[int], values: list[int], counter: int) -> int: """ Returns the maximum value that can be put in a knapsack of a capacity cap, whereby each weight w has a specific value val. >>> cap = 50 >>> val = [60, 100, 120] >>> w = [10, 20, 30] >>> c = len(val) >>> knapsack(cap, w, val, c) 220 The result is 220 cause the values of 100 and 120 got the weight of 50 which is the limit of the capacity. """ # Base Case if counter == 0 or capacity == 0: return 0 # If weight of the nth item is more than Knapsack of capacity, # then this item cannot be included in the optimal solution, # else return the maximum of two cases: # (1) nth item included # (2) not included if weights[counter - 1] > capacity: return knapsack(capacity, weights, values, counter - 1) else: left_capacity = capacity - weights[counter - 1] new_value_included = values[counter - 1] + knapsack( left_capacity, weights, values, counter - 1 ) without_new_value = knapsack(capacity, weights, values, counter - 1) return max(new_value_included, without_new_value) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" In the game of darts a player throws three darts at a target board which is split into twenty equal sized sections numbered one to twenty.  The score of a dart is determined by the number of the region that the dart lands in. A dart landing outside the red/green outer ring scores zero. The black and cream regions inside this ring represent single scores. However, the red/green outer ring and middle ring score double and treble scores respectively. At the centre of the board are two concentric circles called the bull region, or bulls-eye. The outer bull is worth 25 points and the inner bull is a double, worth 50 points. There are many variations of rules but in the most popular game the players will begin with a score 301 or 501 and the first player to reduce their running total to zero is a winner. However, it is normal to play a "doubles out" system, which means that the player must land a double (including the double bulls-eye at the centre of the board) on their final dart to win; any other dart that would reduce their running total to one or lower means the score for that set of three darts is "bust". When a player is able to finish on their current score it is called a "checkout" and the highest checkout is 170: T20 T20 D25 (two treble 20s and double bull). There are exactly eleven distinct ways to checkout on a score of 6: D3 D1 D2 S2 D2 D2 D1 S4 D1 S1 S1 D2 S1 T1 D1 S1 S3 D1 D1 D1 D1 D1 S2 D1 S2 S2 D1 Note that D1 D2 is considered different to D2 D1 as they finish on different doubles. However, the combination S1 T1 D1 is considered the same as T1 S1 D1. In addition we shall not include misses in considering combinations; for example, D3 is the same as 0 D3 and 0 0 D3. Incredibly there are 42336 distinct ways of checking out in total. How many distinct ways can a player checkout with a score less than 100? Solution: We first construct a list of the possible dart values, separated by type. We then iterate through the doubles, followed by the possible 2 following throws. If the total of these three darts is less than the given limit, we increment the counter. """ from itertools import combinations_with_replacement def solution(limit: int = 100) -> int: """ Count the number of distinct ways a player can checkout with a score less than limit. >>> solution(171) 42336 >>> solution(50) 12577 """ singles: list[int] = [x for x in range(1, 21)] + [25] doubles: list[int] = [2 * x for x in range(1, 21)] + [50] triples: list[int] = [3 * x for x in range(1, 21)] all_values: list[int] = singles + doubles + triples + [0] num_checkouts: int = 0 double: int throw1: int throw2: int checkout_total: int for double in doubles: for throw1, throw2 in combinations_with_replacement(all_values, 2): checkout_total = double + throw1 + throw2 if checkout_total < limit: num_checkouts += 1 return num_checkouts if __name__ == "__main__": print(f"{solution() = }")
""" In the game of darts a player throws three darts at a target board which is split into twenty equal sized sections numbered one to twenty.  The score of a dart is determined by the number of the region that the dart lands in. A dart landing outside the red/green outer ring scores zero. The black and cream regions inside this ring represent single scores. However, the red/green outer ring and middle ring score double and treble scores respectively. At the centre of the board are two concentric circles called the bull region, or bulls-eye. The outer bull is worth 25 points and the inner bull is a double, worth 50 points. There are many variations of rules but in the most popular game the players will begin with a score 301 or 501 and the first player to reduce their running total to zero is a winner. However, it is normal to play a "doubles out" system, which means that the player must land a double (including the double bulls-eye at the centre of the board) on their final dart to win; any other dart that would reduce their running total to one or lower means the score for that set of three darts is "bust". When a player is able to finish on their current score it is called a "checkout" and the highest checkout is 170: T20 T20 D25 (two treble 20s and double bull). There are exactly eleven distinct ways to checkout on a score of 6: D3 D1 D2 S2 D2 D2 D1 S4 D1 S1 S1 D2 S1 T1 D1 S1 S3 D1 D1 D1 D1 D1 S2 D1 S2 S2 D1 Note that D1 D2 is considered different to D2 D1 as they finish on different doubles. However, the combination S1 T1 D1 is considered the same as T1 S1 D1. In addition we shall not include misses in considering combinations; for example, D3 is the same as 0 D3 and 0 0 D3. Incredibly there are 42336 distinct ways of checking out in total. How many distinct ways can a player checkout with a score less than 100? Solution: We first construct a list of the possible dart values, separated by type. We then iterate through the doubles, followed by the possible 2 following throws. If the total of these three darts is less than the given limit, we increment the counter. """ from itertools import combinations_with_replacement def solution(limit: int = 100) -> int: """ Count the number of distinct ways a player can checkout with a score less than limit. >>> solution(171) 42336 >>> solution(50) 12577 """ singles: list[int] = [x for x in range(1, 21)] + [25] doubles: list[int] = [2 * x for x in range(1, 21)] + [50] triples: list[int] = [3 * x for x in range(1, 21)] all_values: list[int] = singles + doubles + triples + [0] num_checkouts: int = 0 double: int throw1: int throw2: int checkout_total: int for double in doubles: for throw1, throw2 in combinations_with_replacement(all_values, 2): checkout_total = double + throw1 + throw2 if checkout_total < limit: num_checkouts += 1 return num_checkouts if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# flake8: noqa """ This is pure Python implementation of tree traversal algorithms """ from __future__ import annotations import queue class TreeNode: def __init__(self, data): self.data = data self.right = None self.left = None def build_tree(): print("\n********Press N to stop entering at any point of time********\n") check = input("Enter the value of the root node: ").strip().lower() or "n" if check == "n": return None q: queue.Queue = queue.Queue() tree_node = TreeNode(int(check)) q.put(tree_node) while not q.empty(): node_found = q.get() msg = "Enter the left node of %s: " % node_found.data check = input(msg).strip().lower() or "n" if check == "n": return tree_node left_node = TreeNode(int(check)) node_found.left = left_node q.put(left_node) msg = "Enter the right node of %s: " % node_found.data check = input(msg).strip().lower() or "n" if check == "n": return tree_node right_node = TreeNode(int(check)) node_found.right = right_node q.put(right_node) def pre_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> pre_order(root) 1,2,4,5,3,6,7, """ if not isinstance(node, TreeNode) or not node: return print(node.data, end=",") pre_order(node.left) pre_order(node.right) def in_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> in_order(root) 4,2,5,1,6,3,7, """ if not isinstance(node, TreeNode) or not node: return in_order(node.left) print(node.data, end=",") in_order(node.right) def post_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> post_order(root) 4,5,2,6,7,3,1, """ if not isinstance(node, TreeNode) or not node: return post_order(node.left) post_order(node.right) print(node.data, end=",") def level_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> level_order(root) 1,2,3,4,5,6,7, """ if not isinstance(node, TreeNode) or not node: return q: queue.Queue = queue.Queue() q.put(node) while not q.empty(): node_dequeued = q.get() print(node_dequeued.data, end=",") if node_dequeued.left: q.put(node_dequeued.left) if node_dequeued.right: q.put(node_dequeued.right) def level_order_actual(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> level_order_actual(root) 1, 2,3, 4,5,6,7, """ if not isinstance(node, TreeNode) or not node: return q: queue.Queue = queue.Queue() q.put(node) while not q.empty(): list = [] while not q.empty(): node_dequeued = q.get() print(node_dequeued.data, end=",") if node_dequeued.left: list.append(node_dequeued.left) if node_dequeued.right: list.append(node_dequeued.right) print() for node in list: q.put(node) # iteration version def pre_order_iter(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> pre_order_iter(root) 1,2,4,5,3,6,7, """ if not isinstance(node, TreeNode) or not node: return stack: list[TreeNode] = [] n = node while n or stack: while n: # start from root node, find its left child print(n.data, end=",") stack.append(n) n = n.left # end of while means current node doesn't have left child n = stack.pop() # start to traverse its right child n = n.right def in_order_iter(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> in_order_iter(root) 4,2,5,1,6,3,7, """ if not isinstance(node, TreeNode) or not node: return stack: list[TreeNode] = [] n = node while n or stack: while n: stack.append(n) n = n.left n = stack.pop() print(n.data, end=",") n = n.right def post_order_iter(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> post_order_iter(root) 4,5,2,6,7,3,1, """ if not isinstance(node, TreeNode) or not node: return stack1, stack2 = [], [] n = node stack1.append(n) while stack1: # to find the reversed order of post order, store it in stack2 n = stack1.pop() if n.left: stack1.append(n.left) if n.right: stack1.append(n.right) stack2.append(n) while stack2: # pop up from stack2 will be the post order print(stack2.pop().data, end=",") def prompt(s: str = "", width=50, char="*") -> str: if not s: return "\n" + width * char left, extra = divmod(width - len(s) - 2, 2) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) node = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
# flake8: noqa """ This is pure Python implementation of tree traversal algorithms """ from __future__ import annotations import queue class TreeNode: def __init__(self, data): self.data = data self.right = None self.left = None def build_tree(): print("\n********Press N to stop entering at any point of time********\n") check = input("Enter the value of the root node: ").strip().lower() or "n" if check == "n": return None q: queue.Queue = queue.Queue() tree_node = TreeNode(int(check)) q.put(tree_node) while not q.empty(): node_found = q.get() msg = "Enter the left node of %s: " % node_found.data check = input(msg).strip().lower() or "n" if check == "n": return tree_node left_node = TreeNode(int(check)) node_found.left = left_node q.put(left_node) msg = "Enter the right node of %s: " % node_found.data check = input(msg).strip().lower() or "n" if check == "n": return tree_node right_node = TreeNode(int(check)) node_found.right = right_node q.put(right_node) def pre_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> pre_order(root) 1,2,4,5,3,6,7, """ if not isinstance(node, TreeNode) or not node: return print(node.data, end=",") pre_order(node.left) pre_order(node.right) def in_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> in_order(root) 4,2,5,1,6,3,7, """ if not isinstance(node, TreeNode) or not node: return in_order(node.left) print(node.data, end=",") in_order(node.right) def post_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> post_order(root) 4,5,2,6,7,3,1, """ if not isinstance(node, TreeNode) or not node: return post_order(node.left) post_order(node.right) print(node.data, end=",") def level_order(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> level_order(root) 1,2,3,4,5,6,7, """ if not isinstance(node, TreeNode) or not node: return q: queue.Queue = queue.Queue() q.put(node) while not q.empty(): node_dequeued = q.get() print(node_dequeued.data, end=",") if node_dequeued.left: q.put(node_dequeued.left) if node_dequeued.right: q.put(node_dequeued.right) def level_order_actual(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> level_order_actual(root) 1, 2,3, 4,5,6,7, """ if not isinstance(node, TreeNode) or not node: return q: queue.Queue = queue.Queue() q.put(node) while not q.empty(): list = [] while not q.empty(): node_dequeued = q.get() print(node_dequeued.data, end=",") if node_dequeued.left: list.append(node_dequeued.left) if node_dequeued.right: list.append(node_dequeued.right) print() for node in list: q.put(node) # iteration version def pre_order_iter(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> pre_order_iter(root) 1,2,4,5,3,6,7, """ if not isinstance(node, TreeNode) or not node: return stack: list[TreeNode] = [] n = node while n or stack: while n: # start from root node, find its left child print(n.data, end=",") stack.append(n) n = n.left # end of while means current node doesn't have left child n = stack.pop() # start to traverse its right child n = n.right def in_order_iter(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> in_order_iter(root) 4,2,5,1,6,3,7, """ if not isinstance(node, TreeNode) or not node: return stack: list[TreeNode] = [] n = node while n or stack: while n: stack.append(n) n = n.left n = stack.pop() print(n.data, end=",") n = n.right def post_order_iter(node: TreeNode) -> None: """ >>> root = TreeNode(1) >>> tree_node2 = TreeNode(2) >>> tree_node3 = TreeNode(3) >>> tree_node4 = TreeNode(4) >>> tree_node5 = TreeNode(5) >>> tree_node6 = TreeNode(6) >>> tree_node7 = TreeNode(7) >>> root.left, root.right = tree_node2, tree_node3 >>> tree_node2.left, tree_node2.right = tree_node4 , tree_node5 >>> tree_node3.left, tree_node3.right = tree_node6 , tree_node7 >>> post_order_iter(root) 4,5,2,6,7,3,1, """ if not isinstance(node, TreeNode) or not node: return stack1, stack2 = [], [] n = node stack1.append(n) while stack1: # to find the reversed order of post order, store it in stack2 n = stack1.pop() if n.left: stack1.append(n.left) if n.right: stack1.append(n.right) stack2.append(n) while stack2: # pop up from stack2 will be the post order print(stack2.pop().data, end=",") def prompt(s: str = "", width=50, char="*") -> str: if not s: return "\n" + width * char left, extra = divmod(width - len(s) - 2, 2) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) node = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# This theorem states that the number of prime factors of n # will be approximately log(log(n)) for most natural numbers n import math def exactPrimeFactorCount(n): """ >>> exactPrimeFactorCount(51242183) 3 """ count = 0 if n % 2 == 0: count += 1 while n % 2 == 0: n = int(n / 2) # the n input value must be odd so that # we can skip one element (ie i += 2) i = 3 while i <= int(math.sqrt(n)): if n % i == 0: count += 1 while n % i == 0: n = int(n / i) i = i + 2 # this condition checks the prime # number n is greater than 2 if n > 2: count += 1 return count if __name__ == "__main__": n = 51242183 print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}") print(f"The value of log(log(n)) is {math.log(math.log(n)):.4f}") """ The number of distinct prime factors is/are 3 The value of log(log(n)) is 2.8765 """
# This theorem states that the number of prime factors of n # will be approximately log(log(n)) for most natural numbers n import math def exactPrimeFactorCount(n): """ >>> exactPrimeFactorCount(51242183) 3 """ count = 0 if n % 2 == 0: count += 1 while n % 2 == 0: n = int(n / 2) # the n input value must be odd so that # we can skip one element (ie i += 2) i = 3 while i <= int(math.sqrt(n)): if n % i == 0: count += 1 while n % i == 0: n = int(n / i) i = i + 2 # this condition checks the prime # number n is greater than 2 if n > 2: count += 1 return count if __name__ == "__main__": n = 51242183 print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}") print(f"The value of log(log(n)) is {math.log(math.log(n)):.4f}") """ The number of distinct prime factors is/are 3 The value of log(log(n)) is 2.8765 """
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 10: https://projecteuler.net/problem=10 Summation of primes The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. References: - https://en.wikipedia.org/wiki/Prime_number """ import math from itertools import takewhile from typing import Iterator def is_prime(number: int) -> bool: """ Returns boolean representing primality of given number num. >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True """ if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) def prime_generator() -> Iterator[int]: """ Generate a list sequence of prime numbers """ num = 2 while True: if is_prime(num): yield num num += 1 def solution(n: int = 2000000) -> int: """ Returns the sum of all the primes below n. >>> solution(1000) 76127 >>> solution(5000) 1548136 >>> solution(10000) 5736396 >>> solution(7) 10 """ return sum(takewhile(lambda x: x < n, prime_generator())) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 10: https://projecteuler.net/problem=10 Summation of primes The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. References: - https://en.wikipedia.org/wiki/Prime_number """ import math from itertools import takewhile from typing import Iterator def is_prime(number: int) -> bool: """ Returns boolean representing primality of given number num. >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True """ if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) def prime_generator() -> Iterator[int]: """ Generate a list sequence of prime numbers """ num = 2 while True: if is_prime(num): yield num num += 1 def solution(n: int = 2000000) -> int: """ Returns the sum of all the primes below n. >>> solution(1000) 76127 >>> solution(5000) 1548136 >>> solution(10000) 5736396 >>> solution(7) 10 """ return sum(takewhile(lambda x: x < n, prime_generator())) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected]) Requirements: - numpy - random - time - matplotlib Python: - 3.5 Usage: - $python3 game_o_life <canvas_size:int> Game-Of-Life Rules: 1. Any live cell with fewer than two live neighbours dies, as if caused by under-population. 2. Any live cell with two or three live neighbours lives on to the next generation. 3. Any live cell with more than three live neighbours dies, as if by over-population. 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. """ import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap usage_doc = "Usage of script: script_nama <size_of_canvas:int>" choice = [0] * 100 + [1] * 10 random.shuffle(choice) def create_canvas(size: int) -> list[list[bool]]: canvas = [[False for i in range(size)] for j in range(size)] return canvas def seed(canvas: list[list[bool]]) -> None: for i, row in enumerate(canvas): for j, _ in enumerate(row): canvas[i][j] = bool(random.getrandbits(1)) def run(canvas: list[list[bool]]) -> list[list[bool]]: """This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ current_canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(current_canvas.shape[0])) for r, row in enumerate(current_canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) current_canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return_canvas: list[list[bool]] = current_canvas.tolist() return return_canvas def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool: dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. state = pt if pt: if alive < 2: state = False elif alive == 2 or alive == 3: state = True elif alive > 3: state = False else: if alive == 3: state = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) canvas_size = int(sys.argv[1]) # main working structure of this module. c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() fig.show() cmap = ListedColormap(["w", "k"]) try: while True: c = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected]) Requirements: - numpy - random - time - matplotlib Python: - 3.5 Usage: - $python3 game_o_life <canvas_size:int> Game-Of-Life Rules: 1. Any live cell with fewer than two live neighbours dies, as if caused by under-population. 2. Any live cell with two or three live neighbours lives on to the next generation. 3. Any live cell with more than three live neighbours dies, as if by over-population. 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. """ import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap usage_doc = "Usage of script: script_nama <size_of_canvas:int>" choice = [0] * 100 + [1] * 10 random.shuffle(choice) def create_canvas(size: int) -> list[list[bool]]: canvas = [[False for i in range(size)] for j in range(size)] return canvas def seed(canvas: list[list[bool]]) -> None: for i, row in enumerate(canvas): for j, _ in enumerate(row): canvas[i][j] = bool(random.getrandbits(1)) def run(canvas: list[list[bool]]) -> list[list[bool]]: """This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ current_canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(current_canvas.shape[0])) for r, row in enumerate(current_canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) current_canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return_canvas: list[list[bool]] = current_canvas.tolist() return return_canvas def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool: dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. state = pt if pt: if alive < 2: state = False elif alive == 2 or alive == 3: state = True elif alive > 3: state = False else: if alive == 3: state = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) canvas_size = int(sys.argv[1]) # main working structure of this module. c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() fig.show() cmap = ListedColormap(["w", "k"]) try: while True: c = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://en.wikipedia.org/wiki/Lowest_common_ancestor # https://en.wikipedia.org/wiki/Breadth-first_search from __future__ import annotations import queue def swap(a: int, b: int) -> tuple[int, int]: """ Return a tuple (b, a) when given two integers a and b >>> swap(2,3) (3, 2) >>> swap(3,4) (4, 3) >>> swap(67, 12) (12, 67) """ a ^= b b ^= a a ^= b return a, b def create_sparse(max_node: int, parent: list[list[int]]) -> list[list[int]]: """ creating sparse table which saves each nodes 2^i-th parent """ j = 1 while (1 << j) < max_node: for i in range(1, max_node + 1): parent[j][i] = parent[j - 1][parent[j - 1][i]] j += 1 return parent # returns lca of node u,v def lowest_common_ancestor( u: int, v: int, level: list[int], parent: list[list[int]] ) -> list[list[int]]: # u must be deeper in the tree than v if level[u] < level[v]: u, v = swap(u, v) # making depth of u same as depth of v for i in range(18, -1, -1): if level[u] - (1 << i) >= level[v]: u = parent[i][u] # at the same depth if u==v that mean lca is found if u == v: return u # moving both nodes upwards till lca in found for i in range(18, -1, -1): if parent[i][u] != 0 and parent[i][u] != parent[i][v]: u, v = parent[i][u], parent[i][v] # returning longest common ancestor of u,v return parent[0][u] # runs a breadth first search from root node of the tree def breadth_first_search( level: list[int], parent: list[list[int]], max_node: int, graph: dict[int, int], root=1, ) -> tuple[list[int], list[list[int]]]: """ sets every nodes direct parent parent of root node is set to 0 calculates depth of each node from root node """ level[root] = 0 q = queue.Queue(maxsize=max_node) q.put(root) while q.qsize() != 0: u = q.get() for v in graph[u]: if level[v] == -1: level[v] = level[u] + 1 q.put(v) parent[0][v] = u return level, parent def main() -> None: max_node = 13 # initializing with 0 parent = [[0 for _ in range(max_node + 10)] for _ in range(20)] # initializing with -1 which means every node is unvisited level = [-1 for _ in range(max_node + 10)] graph = { 1: [2, 3, 4], 2: [5], 3: [6, 7], 4: [8], 5: [9, 10], 6: [11], 7: [], 8: [12, 13], 9: [], 10: [], 11: [], 12: [], 13: [], } level, parent = breadth_first_search(level, parent, max_node, graph, 1) parent = create_sparse(max_node, parent) print("LCA of node 1 and 3 is: ", lowest_common_ancestor(1, 3, level, parent)) print("LCA of node 5 and 6 is: ", lowest_common_ancestor(5, 6, level, parent)) print("LCA of node 7 and 11 is: ", lowest_common_ancestor(7, 11, level, parent)) print("LCA of node 6 and 7 is: ", lowest_common_ancestor(6, 7, level, parent)) print("LCA of node 4 and 12 is: ", lowest_common_ancestor(4, 12, level, parent)) print("LCA of node 8 and 8 is: ", lowest_common_ancestor(8, 8, level, parent)) if __name__ == "__main__": main()
# https://en.wikipedia.org/wiki/Lowest_common_ancestor # https://en.wikipedia.org/wiki/Breadth-first_search from __future__ import annotations import queue def swap(a: int, b: int) -> tuple[int, int]: """ Return a tuple (b, a) when given two integers a and b >>> swap(2,3) (3, 2) >>> swap(3,4) (4, 3) >>> swap(67, 12) (12, 67) """ a ^= b b ^= a a ^= b return a, b def create_sparse(max_node: int, parent: list[list[int]]) -> list[list[int]]: """ creating sparse table which saves each nodes 2^i-th parent """ j = 1 while (1 << j) < max_node: for i in range(1, max_node + 1): parent[j][i] = parent[j - 1][parent[j - 1][i]] j += 1 return parent # returns lca of node u,v def lowest_common_ancestor( u: int, v: int, level: list[int], parent: list[list[int]] ) -> list[list[int]]: # u must be deeper in the tree than v if level[u] < level[v]: u, v = swap(u, v) # making depth of u same as depth of v for i in range(18, -1, -1): if level[u] - (1 << i) >= level[v]: u = parent[i][u] # at the same depth if u==v that mean lca is found if u == v: return u # moving both nodes upwards till lca in found for i in range(18, -1, -1): if parent[i][u] != 0 and parent[i][u] != parent[i][v]: u, v = parent[i][u], parent[i][v] # returning longest common ancestor of u,v return parent[0][u] # runs a breadth first search from root node of the tree def breadth_first_search( level: list[int], parent: list[list[int]], max_node: int, graph: dict[int, int], root=1, ) -> tuple[list[int], list[list[int]]]: """ sets every nodes direct parent parent of root node is set to 0 calculates depth of each node from root node """ level[root] = 0 q = queue.Queue(maxsize=max_node) q.put(root) while q.qsize() != 0: u = q.get() for v in graph[u]: if level[v] == -1: level[v] = level[u] + 1 q.put(v) parent[0][v] = u return level, parent def main() -> None: max_node = 13 # initializing with 0 parent = [[0 for _ in range(max_node + 10)] for _ in range(20)] # initializing with -1 which means every node is unvisited level = [-1 for _ in range(max_node + 10)] graph = { 1: [2, 3, 4], 2: [5], 3: [6, 7], 4: [8], 5: [9, 10], 6: [11], 7: [], 8: [12, 13], 9: [], 10: [], 11: [], 12: [], 13: [], } level, parent = breadth_first_search(level, parent, max_node, graph, 1) parent = create_sparse(max_node, parent) print("LCA of node 1 and 3 is: ", lowest_common_ancestor(1, 3, level, parent)) print("LCA of node 5 and 6 is: ", lowest_common_ancestor(5, 6, level, parent)) print("LCA of node 7 and 11 is: ", lowest_common_ancestor(7, 11, level, parent)) print("LCA of node 6 and 7 is: ", lowest_common_ancestor(6, 7, level, parent)) print("LCA of node 4 and 12 is: ", lowest_common_ancestor(4, 12, level, parent)) print("LCA of node 8 and 8 is: ", lowest_common_ancestor(8, 8, level, parent)) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 16: https://projecteuler.net/problem=16 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? """ def solution(power: int = 1000) -> int: """Returns the sum of the digits of the number 2^power. >>> solution(1000) 1366 >>> solution(50) 76 >>> solution(20) 31 >>> solution(15) 26 """ num = 2 ** power string_num = str(num) list_num = list(string_num) sum_of_num = 0 for i in list_num: sum_of_num += int(i) return sum_of_num if __name__ == "__main__": power = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2 ** power) result = solution(power) print("Sum of the digits is: ", result)
""" Problem 16: https://projecteuler.net/problem=16 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 2^1000? """ def solution(power: int = 1000) -> int: """Returns the sum of the digits of the number 2^power. >>> solution(1000) 1366 >>> solution(50) 76 >>> solution(20) 31 >>> solution(15) 26 """ num = 2 ** power string_num = str(num) list_num = list(string_num) sum_of_num = 0 for i in list_num: sum_of_num += int(i) return sum_of_num if __name__ == "__main__": power = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2 ** power) result = solution(power) print("Sum of the digits is: ", result)
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations def find_primitive(n: int) -> int | None: for r in range(1, n): li = [] for x in range(n - 1): val = pow(r, x, n) if val in li: break li.append(val) else: return r return None if __name__ == "__main__": q = int(input("Enter a prime number q: ")) a = find_primitive(q) if a is None: print(f"Cannot find the primitive for the value: {a!r}") else: a_private = int(input("Enter private key of A: ")) a_public = pow(a, a_private, q) b_private = int(input("Enter private key of B: ")) b_public = pow(a, b_private, q) a_secret = pow(b_public, a_private, q) b_secret = pow(a_public, b_private, q) print("The key value generated by A is: ", a_secret) print("The key value generated by B is: ", b_secret)
from __future__ import annotations def find_primitive(n: int) -> int | None: for r in range(1, n): li = [] for x in range(n - 1): val = pow(r, x, n) if val in li: break li.append(val) else: return r return None if __name__ == "__main__": q = int(input("Enter a prime number q: ")) a = find_primitive(q) if a is None: print(f"Cannot find the primitive for the value: {a!r}") else: a_private = int(input("Enter private key of A: ")) a_public = pow(a, a_private, q) b_private = int(input("Enter private key of B: ")) b_public = pow(a, b_private, q) a_secret = pow(b_public, a_private, q) b_secret = pow(a_public, b_private, q) print("The key value generated by A is: ", a_secret) print("The key value generated by B is: ", b_secret)
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import sys """ Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) """ def MatrixChainOrder(array): N = len(array) Matrix = [[0 for x in range(N)] for x in range(N)] Sol = [[0 for x in range(N)] for x in range(N)] for ChainLength in range(2, N): for a in range(1, N - ChainLength + 1): b = a + ChainLength - 1 Matrix[a][b] = sys.maxsize for c in range(a, b): cost = ( Matrix[a][c] + Matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < Matrix[a][b]: Matrix[a][b] = cost Sol[a][b] = c return Matrix, Sol # Print order of matrix with Ai as Matrix def PrintOptimalSolution(OptimalSolution, i, j): if i == j: print("A" + str(i), end=" ") else: print("(", end=" ") PrintOptimalSolution(OptimalSolution, i, OptimalSolution[i][j]) PrintOptimalSolution(OptimalSolution, OptimalSolution[i][j] + 1, j) print(")", end=" ") def main(): array = [30, 35, 15, 5, 10, 20, 25] n = len(array) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 Matrix, OptimalSolution = MatrixChainOrder(array) print("No. of Operation required: " + str(Matrix[1][n - 1])) PrintOptimalSolution(OptimalSolution, 1, n - 1) if __name__ == "__main__": main()
import sys """ Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) """ def MatrixChainOrder(array): N = len(array) Matrix = [[0 for x in range(N)] for x in range(N)] Sol = [[0 for x in range(N)] for x in range(N)] for ChainLength in range(2, N): for a in range(1, N - ChainLength + 1): b = a + ChainLength - 1 Matrix[a][b] = sys.maxsize for c in range(a, b): cost = ( Matrix[a][c] + Matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < Matrix[a][b]: Matrix[a][b] = cost Sol[a][b] = c return Matrix, Sol # Print order of matrix with Ai as Matrix def PrintOptimalSolution(OptimalSolution, i, j): if i == j: print("A" + str(i), end=" ") else: print("(", end=" ") PrintOptimalSolution(OptimalSolution, i, OptimalSolution[i][j]) PrintOptimalSolution(OptimalSolution, OptimalSolution[i][j] + 1, j) print(")", end=" ") def main(): array = [30, 35, 15, 5, 10, 20, 25] n = len(array) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 Matrix, OptimalSolution = MatrixChainOrder(array) print("No. of Operation required: " + str(Matrix[1][n - 1])) PrintOptimalSolution(OptimalSolution, 1, n - 1) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 import os from typing import Iterator URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master" def good_file_paths(top_dir: str = ".") -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(top_dir): dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): yield os.path.join(dir_path, filename).lstrip("./") def md_prefix(i): return f"{i * ' '}*" if i else "\n##" def print_path(old_path: str, new_path: str) -> str: old_parts = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if i + 1 > len(old_parts) or old_parts[i] != new_part: if new_part: print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") return new_path def print_directory_md(top_dir: str = ".") -> None: old_path = "" for filepath in sorted(good_file_paths(top_dir)): filepath, filename = os.path.split(filepath) if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") filename = os.path.splitext(filename.replace("_", " ").title())[0] print(f"{md_prefix(indent)} [{filename}]({url})") if __name__ == "__main__": print_directory_md(".")
#!/usr/bin/env python3 import os from typing import Iterator URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master" def good_file_paths(top_dir: str = ".") -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(top_dir): dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(filename)[1] in (".py", ".ipynb"): yield os.path.join(dir_path, filename).lstrip("./") def md_prefix(i): return f"{i * ' '}*" if i else "\n##" def print_path(old_path: str, new_path: str) -> str: old_parts = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if i + 1 > len(old_parts) or old_parts[i] != new_part: if new_part: print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}") return new_path def print_directory_md(top_dir: str = ".") -> None: old_path = "" for filepath in sorted(good_file_paths(top_dir)): filepath, filename = os.path.split(filepath) if filepath != old_path: old_path = print_path(old_path, filepath) indent = (filepath.count(os.sep) + 1) if filepath else 0 url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20") filename = os.path.splitext(filename.replace("_", " ").title())[0] print(f"{md_prefix(indent)} [{filename}]({url})") if __name__ == "__main__": print_directory_md(".")
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Python program for Bitonic Sort. Note that this program works only when size of input is a power of 2. """ from __future__ import annotations def comp_and_swap(array: list[int], index1: int, index2: int, direction: int) -> None: """Compare the value at given index1 and index2 of the array and swap them as per the given direction. The parameter direction indicates the sorting direction, ASCENDING(1) or DESCENDING(0); if (a[i] > a[j]) agrees with the direction, then a[i] and a[j] are interchanged. >>> arr = [12, 42, -21, 1] >>> comp_and_swap(arr, 1, 2, 1) >>> print(arr) [12, -21, 42, 1] >>> comp_and_swap(arr, 1, 2, 0) >>> print(arr) [12, 42, -21, 1] >>> comp_and_swap(arr, 0, 3, 1) >>> print(arr) [1, 42, -21, 12] >>> comp_and_swap(arr, 0, 3, 0) >>> print(arr) [12, 42, -21, 1] """ if (direction == 1 and array[index1] > array[index2]) or ( direction == 0 and array[index1] < array[index2] ): array[index1], array[index2] = array[index2], array[index1] def bitonic_merge(array: list[int], low: int, length: int, direction: int) -> None: """ It recursively sorts a bitonic sequence in ascending order, if direction = 1, and in descending if direction = 0. The sequence to be sorted starts at index position low, the parameter length is the number of elements to be sorted. >>> arr = [12, 42, -21, 1] >>> bitonic_merge(arr, 0, 4, 1) >>> print(arr) [-21, 1, 12, 42] >>> bitonic_merge(arr, 0, 4, 0) >>> print(arr) [42, 12, 1, -21] """ if length > 1: middle = int(length / 2) for i in range(low, low + middle): comp_and_swap(array, i, i + middle, direction) bitonic_merge(array, low, middle, direction) bitonic_merge(array, low + middle, middle, direction) def bitonic_sort(array: list[int], low: int, length: int, direction: int) -> None: """ This function first produces a bitonic sequence by recursively sorting its two halves in opposite sorting orders, and then calls bitonic_merge to make them in the same order. >>> arr = [12, 34, 92, -23, 0, -121, -167, 145] >>> bitonic_sort(arr, 0, 8, 1) >>> arr [-167, -121, -23, 0, 12, 34, 92, 145] >>> bitonic_sort(arr, 0, 8, 0) >>> arr [145, 92, 34, 12, 0, -23, -121, -167] """ if length > 1: middle = int(length / 2) bitonic_sort(array, low, middle, 1) bitonic_sort(array, low + middle, middle, 0) bitonic_merge(array, low, length, direction) if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
""" Python program for Bitonic Sort. Note that this program works only when size of input is a power of 2. """ from __future__ import annotations def comp_and_swap(array: list[int], index1: int, index2: int, direction: int) -> None: """Compare the value at given index1 and index2 of the array and swap them as per the given direction. The parameter direction indicates the sorting direction, ASCENDING(1) or DESCENDING(0); if (a[i] > a[j]) agrees with the direction, then a[i] and a[j] are interchanged. >>> arr = [12, 42, -21, 1] >>> comp_and_swap(arr, 1, 2, 1) >>> print(arr) [12, -21, 42, 1] >>> comp_and_swap(arr, 1, 2, 0) >>> print(arr) [12, 42, -21, 1] >>> comp_and_swap(arr, 0, 3, 1) >>> print(arr) [1, 42, -21, 12] >>> comp_and_swap(arr, 0, 3, 0) >>> print(arr) [12, 42, -21, 1] """ if (direction == 1 and array[index1] > array[index2]) or ( direction == 0 and array[index1] < array[index2] ): array[index1], array[index2] = array[index2], array[index1] def bitonic_merge(array: list[int], low: int, length: int, direction: int) -> None: """ It recursively sorts a bitonic sequence in ascending order, if direction = 1, and in descending if direction = 0. The sequence to be sorted starts at index position low, the parameter length is the number of elements to be sorted. >>> arr = [12, 42, -21, 1] >>> bitonic_merge(arr, 0, 4, 1) >>> print(arr) [-21, 1, 12, 42] >>> bitonic_merge(arr, 0, 4, 0) >>> print(arr) [42, 12, 1, -21] """ if length > 1: middle = int(length / 2) for i in range(low, low + middle): comp_and_swap(array, i, i + middle, direction) bitonic_merge(array, low, middle, direction) bitonic_merge(array, low + middle, middle, direction) def bitonic_sort(array: list[int], low: int, length: int, direction: int) -> None: """ This function first produces a bitonic sequence by recursively sorting its two halves in opposite sorting orders, and then calls bitonic_merge to make them in the same order. >>> arr = [12, 34, 92, -23, 0, -121, -167, 145] >>> bitonic_sort(arr, 0, 8, 1) >>> arr [-167, -121, -23, 0, 12, 34, 92, 145] >>> bitonic_sort(arr, 0, 8, 0) >>> arr [145, 92, 34, 12, 0, -23, -121, -167] """ if length > 1: middle = int(length / 2) bitonic_sort(array, low, middle, 1) bitonic_sort(array, low + middle, middle, 0) bitonic_merge(array, low, length, direction) if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import bs4 import requests def get_movie_data_from_soup(soup: bs4.element.ResultSet) -> dict[str, str]: return { "name": soup.h3.a.text, "genre": soup.find("span", class_="genre").text.strip(), "rating": soup.strong.text, "page_link": f"https://www.imdb.com{soup.a.get('href')}", } def get_imdb_top_movies(num_movies: int = 5) -> tuple: """Get the top num_movies most highly rated movies from IMDB and return a tuple of dicts describing each movie's name, genre, rating, and URL. Args: num_movies: The number of movies to get. Defaults to 5. Returns: A list of tuples containing information about the top n movies. >>> len(get_imdb_top_movies(5)) 5 >>> len(get_imdb_top_movies(-3)) 0 >>> len(get_imdb_top_movies(4.99999)) 4 """ num_movies = int(float(num_movies)) if num_movies < 1: return () base_url = ( "https://www.imdb.com/search/title?title_type=" f"feature&sort=num_votes,desc&count={num_movies}" ) source = bs4.BeautifulSoup(requests.get(base_url).content, "html.parser") return tuple( get_movie_data_from_soup(movie) for movie in source.find_all("div", class_="lister-item mode-advanced") ) if __name__ == "__main__": import json num_movies = int(input("How many movies would you like to see? ")) print( ", ".join( json.dumps(movie, indent=4) for movie in get_imdb_top_movies(num_movies) ) )
import bs4 import requests def get_movie_data_from_soup(soup: bs4.element.ResultSet) -> dict[str, str]: return { "name": soup.h3.a.text, "genre": soup.find("span", class_="genre").text.strip(), "rating": soup.strong.text, "page_link": f"https://www.imdb.com{soup.a.get('href')}", } def get_imdb_top_movies(num_movies: int = 5) -> tuple: """Get the top num_movies most highly rated movies from IMDB and return a tuple of dicts describing each movie's name, genre, rating, and URL. Args: num_movies: The number of movies to get. Defaults to 5. Returns: A list of tuples containing information about the top n movies. >>> len(get_imdb_top_movies(5)) 5 >>> len(get_imdb_top_movies(-3)) 0 >>> len(get_imdb_top_movies(4.99999)) 4 """ num_movies = int(float(num_movies)) if num_movies < 1: return () base_url = ( "https://www.imdb.com/search/title?title_type=" f"feature&sort=num_votes,desc&count={num_movies}" ) source = bs4.BeautifulSoup(requests.get(base_url).content, "html.parser") return tuple( get_movie_data_from_soup(movie) for movie in source.find_all("div", class_="lister-item mode-advanced") ) if __name__ == "__main__": import json num_movies = int(input("How many movies would you like to see? ")) print( ", ".join( json.dumps(movie, indent=4) for movie in get_imdb_top_movies(num_movies) ) )
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a pure Python implementation of the bogosort algorithm, also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort. Bogosort generates random permutations until it guesses the correct one. More info on: https://en.wikipedia.org/wiki/Bogosort For doctests run following command: python -m doctest -v bogo_sort.py or python3 -m doctest -v bogo_sort.py For manual testing run: python bogo_sort.py """ import random def bogo_sort(collection): """Pure implementation of the bogosort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> bogo_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> bogo_sort([]) [] >>> bogo_sort([-2, -5, -45]) [-45, -5, -2] """ def is_sorted(collection): if len(collection) < 2: return True for i in range(len(collection) - 1): if collection[i] > collection[i + 1]: return False return True while not is_sorted(collection): random.shuffle(collection) return collection if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(bogo_sort(unsorted))
""" This is a pure Python implementation of the bogosort algorithm, also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort. Bogosort generates random permutations until it guesses the correct one. More info on: https://en.wikipedia.org/wiki/Bogosort For doctests run following command: python -m doctest -v bogo_sort.py or python3 -m doctest -v bogo_sort.py For manual testing run: python bogo_sort.py """ import random def bogo_sort(collection): """Pure implementation of the bogosort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> bogo_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> bogo_sort([]) [] >>> bogo_sort([-2, -5, -45]) [-45, -5, -2] """ def is_sorted(collection): if len(collection) < 2: return True for i in range(len(collection) - 1): if collection[i] > collection[i + 1]: return False return True while not is_sorted(collection): random.shuffle(collection) return collection if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(bogo_sort(unsorted))
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#
#
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Python program to implement Pigeonhole Sorting in python # Algorithm for the pigeonhole sorting def pigeonhole_sort(a): """ >>> a = [8, 3, 2, 7, 4, 6, 8] >>> b = sorted(a) # a nondestructive sort >>> pigeonhole_sort(a) # a destructive sort >>> a == b True """ # size of range of values in the list (ie, number of pigeonholes we need) min_val = min(a) # min() finds the minimum value max_val = max(a) # max() finds the maximum value size = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size holes = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(x, int), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. i = 0 for count in range(size): while holes[count] > 0: holes[count] -= 1 a[i] = count + min_val i += 1 def main(): a = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a) print("Sorted order is:", " ".join(a)) if __name__ == "__main__": main()
# Python program to implement Pigeonhole Sorting in python # Algorithm for the pigeonhole sorting def pigeonhole_sort(a): """ >>> a = [8, 3, 2, 7, 4, 6, 8] >>> b = sorted(a) # a nondestructive sort >>> pigeonhole_sort(a) # a destructive sort >>> a == b True """ # size of range of values in the list (ie, number of pigeonholes we need) min_val = min(a) # min() finds the minimum value max_val = max(a) # max() finds the maximum value size = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size holes = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(x, int), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. i = 0 for count in range(size): while holes[count] > 0: holes[count] -= 1 a[i] = count + min_val i += 1 def main(): a = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a) print("Sorted order is:", " ".join(a)) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def points_to_polynomial(coordinates: list[list[int]]) -> str: """ coordinates is a two dimensional matrix: [[x, y], [x, y], ...] number of points you want to use >>> print(points_to_polynomial([])) The program cannot work out a fitting polynomial. >>> print(points_to_polynomial([[]])) The program cannot work out a fitting polynomial. >>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) f(x)=x^2*0.0+x^1*-0.0+x^0*0.0 >>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) f(x)=x^2*0.0+x^1*-0.0+x^0*1.0 >>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) f(x)=x^2*0.0+x^1*-0.0+x^0*3.0 >>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) f(x)=x^2*0.0+x^1*1.0+x^0*0.0 >>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) f(x)=x^2*1.0+x^1*-0.0+x^0*0.0 >>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) f(x)=x^2*1.0+x^1*-0.0+x^0*2.0 >>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0 >>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]])) f(x)=x^2*5.0+x^1*-18.0+x^0*18.0 """ try: check = 1 more_check = 0 d = coordinates[0][0] for j in range(len(coordinates)): if j == 0: continue if d == coordinates[j][0]: more_check += 1 solved = "x=" + str(coordinates[j][0]) if more_check == len(coordinates) - 1: check = 2 break elif more_check > 0 and more_check != len(coordinates) - 1: check = 3 else: check = 1 if len(coordinates) == 1 and coordinates[0][0] == 0: check = 2 solved = "x=0" except Exception: check = 3 x = len(coordinates) if check == 1: count_of_line = 0 matrix: list[list[float]] = [] # put the x and x to the power values in a matrix while count_of_line < x: count_in_line = 0 a = coordinates[count_of_line][0] count_line: list[float] = [] while count_in_line < x: count_line.append(a ** (x - (count_in_line + 1))) count_in_line += 1 matrix.append(count_line) count_of_line += 1 count_of_line = 0 # put the y values into a vector vector: list[float] = [] while count_of_line < x: vector.append(coordinates[count_of_line][1]) count_of_line += 1 count = 0 while count < x: zahlen = 0 while zahlen < x: if count == zahlen: zahlen += 1 if zahlen == x: break bruch = matrix[zahlen][count] / matrix[count][count] for counting_columns, item in enumerate(matrix[count]): # manipulating all the values in the matrix matrix[zahlen][counting_columns] -= item * bruch # manipulating the values in the vector vector[zahlen] -= vector[count] * bruch zahlen += 1 count += 1 count = 0 # make solutions solution: list[str] = [] while count < x: solution.append(str(vector[count] / matrix[count][count])) count += 1 count = 0 solved = "f(x)=" while count < x: remove_e: list[str] = solution[count].split("E") if len(remove_e) > 1: solution[count] = remove_e[0] + "*10^" + remove_e[1] solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count]) if count + 1 != x: solved += "+" count += 1 return solved elif check == 2: return solved else: return "The program cannot work out a fitting polynomial." if __name__ == "__main__": print(points_to_polynomial([])) print(points_to_polynomial([[]])) print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
def points_to_polynomial(coordinates: list[list[int]]) -> str: """ coordinates is a two dimensional matrix: [[x, y], [x, y], ...] number of points you want to use >>> print(points_to_polynomial([])) The program cannot work out a fitting polynomial. >>> print(points_to_polynomial([[]])) The program cannot work out a fitting polynomial. >>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) f(x)=x^2*0.0+x^1*-0.0+x^0*0.0 >>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) f(x)=x^2*0.0+x^1*-0.0+x^0*1.0 >>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) f(x)=x^2*0.0+x^1*-0.0+x^0*3.0 >>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) f(x)=x^2*0.0+x^1*1.0+x^0*0.0 >>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) f(x)=x^2*1.0+x^1*-0.0+x^0*0.0 >>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) f(x)=x^2*1.0+x^1*-0.0+x^0*2.0 >>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0 >>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]])) f(x)=x^2*5.0+x^1*-18.0+x^0*18.0 """ try: check = 1 more_check = 0 d = coordinates[0][0] for j in range(len(coordinates)): if j == 0: continue if d == coordinates[j][0]: more_check += 1 solved = "x=" + str(coordinates[j][0]) if more_check == len(coordinates) - 1: check = 2 break elif more_check > 0 and more_check != len(coordinates) - 1: check = 3 else: check = 1 if len(coordinates) == 1 and coordinates[0][0] == 0: check = 2 solved = "x=0" except Exception: check = 3 x = len(coordinates) if check == 1: count_of_line = 0 matrix: list[list[float]] = [] # put the x and x to the power values in a matrix while count_of_line < x: count_in_line = 0 a = coordinates[count_of_line][0] count_line: list[float] = [] while count_in_line < x: count_line.append(a ** (x - (count_in_line + 1))) count_in_line += 1 matrix.append(count_line) count_of_line += 1 count_of_line = 0 # put the y values into a vector vector: list[float] = [] while count_of_line < x: vector.append(coordinates[count_of_line][1]) count_of_line += 1 count = 0 while count < x: zahlen = 0 while zahlen < x: if count == zahlen: zahlen += 1 if zahlen == x: break bruch = matrix[zahlen][count] / matrix[count][count] for counting_columns, item in enumerate(matrix[count]): # manipulating all the values in the matrix matrix[zahlen][counting_columns] -= item * bruch # manipulating the values in the vector vector[zahlen] -= vector[count] * bruch zahlen += 1 count += 1 count = 0 # make solutions solution: list[str] = [] while count < x: solution.append(str(vector[count] / matrix[count][count])) count += 1 count = 0 solved = "f(x)=" while count < x: remove_e: list[str] = solution[count].split("E") if len(remove_e) > 1: solution[count] = remove_e[0] + "*10^" + remove_e[1] solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count]) if count + 1 != x: solved += "+" count += 1 return solved elif check == 2: return solved else: return "The program cannot work out a fitting polynomial." if __name__ == "__main__": print(points_to_polynomial([])) print(points_to_polynomial([[]])) print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Program to join a list of strings with a given separator """ def join(separator: str, separated: list[str]) -> str: """ >>> join("", ["a", "b", "c", "d"]) 'abcd' >>> join("#", ["a", "b", "c", "d"]) 'a#b#c#d' >>> join("#", "a") 'a' >>> join(" ", ["You", "are", "amazing!"]) 'You are amazing!' >>> join("#", ["a", "b", "c", 1]) Traceback (most recent call last): ... Exception: join() accepts only strings to be joined """ joined = "" for word_or_phrase in separated: if not isinstance(word_or_phrase, str): raise Exception("join() accepts only strings to be joined") joined += word_or_phrase + separator return joined.strip(separator) if __name__ == "__main__": from doctest import testmod testmod()
""" Program to join a list of strings with a given separator """ def join(separator: str, separated: list[str]) -> str: """ >>> join("", ["a", "b", "c", "d"]) 'abcd' >>> join("#", ["a", "b", "c", "d"]) 'a#b#c#d' >>> join("#", "a") 'a' >>> join(" ", ["You", "are", "amazing!"]) 'You are amazing!' >>> join("#", ["a", "b", "c", 1]) Traceback (most recent call last): ... Exception: join() accepts only strings to be joined """ joined = "" for word_or_phrase in separated: if not isinstance(word_or_phrase, str): raise Exception("join() accepts only strings to be joined") joined += word_or_phrase + separator return joined.strip(separator) if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations import sys class Letter: def __init__(self, letter: str, freq: int): self.letter: str = letter self.freq: int = freq self.bitstring: dict[str, str] = {} def __repr__(self) -> str: return f"{self.letter}:{self.freq}" class TreeNode: def __init__(self, freq: int, left: Letter | TreeNode, right: Letter | TreeNode): self.freq: int = freq self.left: Letter | TreeNode = left self.right: Letter | TreeNode = right def parse_file(file_path: str) -> list[Letter]: """ Read the file and build a dict of all letters and their frequencies, then convert the dict into a list of Letters. """ chars: dict[str, int] = {} with open(file_path) as f: while True: c = f.read(1) if not c: break chars[c] = chars[c] + 1 if c in chars.keys() else 1 return sorted((Letter(c, f) for c, f in chars.items()), key=lambda l: l.freq) def build_tree(letters: list[Letter]) -> Letter | TreeNode: """ Run through the list of Letters and build the min heap for the Huffman Tree. """ response: list[Letter | TreeNode] = letters # type: ignore while len(response) > 1: left = response.pop(0) right = response.pop(0) total_freq = left.freq + right.freq node = TreeNode(total_freq, left, right) response.append(node) response.sort(key=lambda l: l.freq) return response[0] def traverse_tree(root: Letter | TreeNode, bitstring: str) -> list[Letter]: """ Recursively traverse the Huffman Tree to set each Letter's bitstring dictionary, and return the list of Letters """ if type(root) is Letter: root.bitstring[root.letter] = bitstring return [root] treenode: TreeNode = root # type: ignore letters = [] letters += traverse_tree(treenode.left, bitstring + "0") letters += traverse_tree(treenode.right, bitstring + "1") return letters def huffman(file_path: str) -> None: """ Parse the file, build the tree, then run through the file again, using the letters dictionary to find and print out the bitstring for each letter. """ letters_list = parse_file(file_path) root = build_tree(letters_list) letters = { k: v for letter in traverse_tree(root, "") for k, v in letter.bitstring.items() } print(f"Huffman Coding of {file_path}: ") with open(file_path) as f: while True: c = f.read(1) if not c: break print(letters[c], end=" ") print() if __name__ == "__main__": # pass the file path to the huffman function huffman(sys.argv[1])
from __future__ import annotations import sys class Letter: def __init__(self, letter: str, freq: int): self.letter: str = letter self.freq: int = freq self.bitstring: dict[str, str] = {} def __repr__(self) -> str: return f"{self.letter}:{self.freq}" class TreeNode: def __init__(self, freq: int, left: Letter | TreeNode, right: Letter | TreeNode): self.freq: int = freq self.left: Letter | TreeNode = left self.right: Letter | TreeNode = right def parse_file(file_path: str) -> list[Letter]: """ Read the file and build a dict of all letters and their frequencies, then convert the dict into a list of Letters. """ chars: dict[str, int] = {} with open(file_path) as f: while True: c = f.read(1) if not c: break chars[c] = chars[c] + 1 if c in chars.keys() else 1 return sorted((Letter(c, f) for c, f in chars.items()), key=lambda l: l.freq) def build_tree(letters: list[Letter]) -> Letter | TreeNode: """ Run through the list of Letters and build the min heap for the Huffman Tree. """ response: list[Letter | TreeNode] = letters # type: ignore while len(response) > 1: left = response.pop(0) right = response.pop(0) total_freq = left.freq + right.freq node = TreeNode(total_freq, left, right) response.append(node) response.sort(key=lambda l: l.freq) return response[0] def traverse_tree(root: Letter | TreeNode, bitstring: str) -> list[Letter]: """ Recursively traverse the Huffman Tree to set each Letter's bitstring dictionary, and return the list of Letters """ if type(root) is Letter: root.bitstring[root.letter] = bitstring return [root] treenode: TreeNode = root # type: ignore letters = [] letters += traverse_tree(treenode.left, bitstring + "0") letters += traverse_tree(treenode.right, bitstring + "1") return letters def huffman(file_path: str) -> None: """ Parse the file, build the tree, then run through the file again, using the letters dictionary to find and print out the bitstring for each letter. """ letters_list = parse_file(file_path) root = build_tree(letters_list) letters = { k: v for letter in traverse_tree(root, "") for k, v in letter.bitstring.items() } print(f"Huffman Coding of {file_path}: ") with open(file_path) as f: while True: c = f.read(1) if not c: break print(letters[c], end=" ") print() if __name__ == "__main__": # pass the file path to the huffman function huffman(sys.argv[1])
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a pure Python implementation of the selection sort algorithm For doctests run following command: python -m doctest -v selection_sort.py or python3 -m doctest -v selection_sort.py For manual testing run: python selection_sort.py """ def selection_sort(collection): """Pure implementation of the selection sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> selection_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> selection_sort([]) [] >>> selection_sort([-2, -5, -45]) [-45, -5, -2] """ length = len(collection) for i in range(length - 1): least = i for k in range(i + 1, length): if collection[k] < collection[least]: least = k if least != i: collection[least], collection[i] = (collection[i], collection[least]) return collection if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
""" This is a pure Python implementation of the selection sort algorithm For doctests run following command: python -m doctest -v selection_sort.py or python3 -m doctest -v selection_sort.py For manual testing run: python selection_sort.py """ def selection_sort(collection): """Pure implementation of the selection sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> selection_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> selection_sort([]) [] >>> selection_sort([-2, -5, -45]) [-45, -5, -2] """ length = len(collection) for i in range(length - 1): least = i for k in range(i + 1, length): if collection[k] < collection[least]: least = k if least != i: collection[least], collection[i] = (collection[i], collection[least]) return collection if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Uses Pythagoras theorem to calculate the distance between two points in space.""" import math class Point: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self) -> str: return f"Point({self.x}, {self.y}, {self.z})" def distance(a: Point, b: Point) -> float: return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2)) def test_distance() -> None: """ >>> point1 = Point(2, -1, 7) >>> point2 = Point(1, -3, 5) >>> print(f"Distance from {point1} to {point2} is {distance(point1, point2)}") Distance from Point(2, -1, 7) to Point(1, -3, 5) is 3.0 """ pass if __name__ == "__main__": import doctest doctest.testmod()
"""Uses Pythagoras theorem to calculate the distance between two points in space.""" import math class Point: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self) -> str: return f"Point({self.x}, {self.y}, {self.z})" def distance(a: Point, b: Point) -> float: return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2)) def test_distance() -> None: """ >>> point1 = Point(2, -1, 7) >>> point2 = Point(1, -3, 5) >>> print(f"Distance from {point1} to {point2} is {distance(point1, point2)}") Distance from Point(2, -1, 7) to Point(1, -3, 5) is 3.0 """ pass if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations from cmath import sqrt def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]: """ Given the numerical coefficients a, b and c, calculates the roots for any quadratic equation of the form ax^2 + bx + c >>> quadratic_roots(a=1, b=3, c=-4) (1.0, -4.0) >>> quadratic_roots(5, 6, 1) (-0.2, -1.0) >>> quadratic_roots(1, -6, 25) ((3+4j), (3-4j)) """ if a == 0: raise ValueError("Coefficient 'a' must not be zero.") delta = b * b - 4 * a * c root_1 = (-b + sqrt(delta)) / (2 * a) root_2 = (-b - sqrt(delta)) / (2 * a) return ( root_1.real if not root_1.imag else root_1, root_2.real if not root_2.imag else root_2, ) def main(): solution1, solution2 = quadratic_roots(a=5, b=6, c=1) print(f"The solutions are: {solution1} and {solution2}") if __name__ == "__main__": main()
from __future__ import annotations from cmath import sqrt def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]: """ Given the numerical coefficients a, b and c, calculates the roots for any quadratic equation of the form ax^2 + bx + c >>> quadratic_roots(a=1, b=3, c=-4) (1.0, -4.0) >>> quadratic_roots(5, 6, 1) (-0.2, -1.0) >>> quadratic_roots(1, -6, 25) ((3+4j), (3-4j)) """ if a == 0: raise ValueError("Coefficient 'a' must not be zero.") delta = b * b - 4 * a * c root_1 = (-b + sqrt(delta)) / (2 * a) root_2 = (-b - sqrt(delta)) / (2 * a) return ( root_1.real if not root_1.imag else root_1, root_2.real if not root_2.imag else root_2, ) def main(): solution1, solution2 = quadratic_roots(a=5, b=6, c=1) print(f"The solutions are: {solution1} and {solution2}") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Program to check if a cycle is present in a given graph """ def check_cycle(graph: dict) -> bool: """ Returns True if graph is cyclic else False >>> check_cycle(graph={0:[], 1:[0, 3], 2:[0, 4], 3:[5], 4:[5], 5:[]}) False >>> check_cycle(graph={0:[1, 2], 1:[2], 2:[0, 3], 3:[3]}) True """ # Keep track of visited nodes visited = set() # To detect a back edge, keep track of vertices currently in the recursion stack rec_stk = set() for node in graph: if node not in visited: if depth_first_search(graph, node, visited, rec_stk): return True return False def depth_first_search(graph: dict, vertex: int, visited: set, rec_stk: set) -> bool: """ Recur for all neighbours. If any neighbour is visited and in rec_stk then graph is cyclic. >>> graph = {0:[], 1:[0, 3], 2:[0, 4], 3:[5], 4:[5], 5:[]} >>> vertex, visited, rec_stk = 0, set(), set() >>> depth_first_search(graph, vertex, visited, rec_stk) False """ # Mark current node as visited and add to recursion stack visited.add(vertex) rec_stk.add(vertex) for node in graph[vertex]: if node not in visited: if depth_first_search(graph, node, visited, rec_stk): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(vertex) return False if __name__ == "__main__": from doctest import testmod testmod()
""" Program to check if a cycle is present in a given graph """ def check_cycle(graph: dict) -> bool: """ Returns True if graph is cyclic else False >>> check_cycle(graph={0:[], 1:[0, 3], 2:[0, 4], 3:[5], 4:[5], 5:[]}) False >>> check_cycle(graph={0:[1, 2], 1:[2], 2:[0, 3], 3:[3]}) True """ # Keep track of visited nodes visited = set() # To detect a back edge, keep track of vertices currently in the recursion stack rec_stk = set() for node in graph: if node not in visited: if depth_first_search(graph, node, visited, rec_stk): return True return False def depth_first_search(graph: dict, vertex: int, visited: set, rec_stk: set) -> bool: """ Recur for all neighbours. If any neighbour is visited and in rec_stk then graph is cyclic. >>> graph = {0:[], 1:[0, 3], 2:[0, 4], 3:[5], 4:[5], 5:[]} >>> vertex, visited, rec_stk = 0, set(), set() >>> depth_first_search(graph, vertex, visited, rec_stk) False """ # Mark current node as visited and add to recursion stack visited.add(vertex) rec_stk.add(vertex) for node in graph[vertex]: if node not in visited: if depth_first_search(graph, node, visited, rec_stk): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(vertex) return False if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Print all subset combinations of n element in given set of r element. def combination_util(arr, n, r, index, data, i): """ Current combination is ready to be printed, print it arr[] ---> Input Array data[] ---> Temporary array to store current combination start & end ---> Staring and Ending indexes in arr[] index ---> Current index in data[] r ---> Size of a combination to be printed """ if index == r: for j in range(r): print(data[j], end=" ") print(" ") return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location data[index] = arr[i] combination_util(arr, n, r, index + 1, data, i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(arr, n, r, index, data, i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def print_combination(arr, n, r): # A temporary array to store all combination one by one data = [0] * r # Print all combination using temporary array 'data[]' combination_util(arr, n, r, 0, data, 0) # Driver function to check for above function arr = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
# Print all subset combinations of n element in given set of r element. def combination_util(arr, n, r, index, data, i): """ Current combination is ready to be printed, print it arr[] ---> Input Array data[] ---> Temporary array to store current combination start & end ---> Staring and Ending indexes in arr[] index ---> Current index in data[] r ---> Size of a combination to be printed """ if index == r: for j in range(r): print(data[j], end=" ") print(" ") return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location data[index] = arr[i] combination_util(arr, n, r, index + 1, data, i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(arr, n, r, index, data, i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def print_combination(arr, n, r): # A temporary array to store all combination one by one data = [0] * r # Print all combination using temporary array 'data[]' combination_util(arr, n, r, 0, data, 0) # Driver function to check for above function arr = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" In a multi-threaded download, this algorithm could be used to provide each worker thread with a block of non-overlapping bytes to download. For example: for i in allocation_list: requests.get(url,headers={'Range':f'bytes={i}'}) """ from __future__ import annotations def allocation_num(number_of_bytes: int, partitions: int) -> list[str]: """ Divide a number of bytes into x partitions. :param number_of_bytes: the total of bytes. :param partitions: the number of partition need to be allocated. :return: list of bytes to be assigned to each worker thread >>> allocation_num(16647, 4) ['1-4161', '4162-8322', '8323-12483', '12484-16647'] >>> allocation_num(50000, 5) ['1-10000', '10001-20000', '20001-30000', '30001-40000', '40001-50000'] >>> allocation_num(888, 999) Traceback (most recent call last): ... ValueError: partitions can not > number_of_bytes! >>> allocation_num(888, -4) Traceback (most recent call last): ... ValueError: partitions must be a positive number! """ if partitions <= 0: raise ValueError("partitions must be a positive number!") if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!") bytes_per_partition = number_of_bytes // partitions allocation_list = [] for i in range(partitions): start_bytes = i * bytes_per_partition + 1 end_bytes = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}") return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
""" In a multi-threaded download, this algorithm could be used to provide each worker thread with a block of non-overlapping bytes to download. For example: for i in allocation_list: requests.get(url,headers={'Range':f'bytes={i}'}) """ from __future__ import annotations def allocation_num(number_of_bytes: int, partitions: int) -> list[str]: """ Divide a number of bytes into x partitions. :param number_of_bytes: the total of bytes. :param partitions: the number of partition need to be allocated. :return: list of bytes to be assigned to each worker thread >>> allocation_num(16647, 4) ['1-4161', '4162-8322', '8323-12483', '12484-16647'] >>> allocation_num(50000, 5) ['1-10000', '10001-20000', '20001-30000', '30001-40000', '40001-50000'] >>> allocation_num(888, 999) Traceback (most recent call last): ... ValueError: partitions can not > number_of_bytes! >>> allocation_num(888, -4) Traceback (most recent call last): ... ValueError: partitions must be a positive number! """ if partitions <= 0: raise ValueError("partitions must be a positive number!") if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!") bytes_per_partition = number_of_bytes // partitions allocation_list = [] for i in range(partitions): start_bytes = i * bytes_per_partition + 1 end_bytes = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}") return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/bin/sh # # An example hook script to verify what is about to be committed. # Called by "git merge" with no arguments. The hook should # exit with non-zero status after issuing an appropriate message to # stderr if it wants to stop the merge commit. # # To enable this hook, rename this file to "pre-merge-commit". . git-sh-setup test -x "$GIT_DIR/hooks/pre-commit" && exec "$GIT_DIR/hooks/pre-commit" :
#!/bin/sh # # An example hook script to verify what is about to be committed. # Called by "git merge" with no arguments. The hook should # exit with non-zero status after issuing an appropriate message to # stderr if it wants to stop the merge commit. # # To enable this hook, rename this file to "pre-merge-commit". . git-sh-setup test -x "$GIT_DIR/hooks/pre-commit" && exec "$GIT_DIR/hooks/pre-commit" :
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#
#
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def reverse_words(input_str: str) -> str: """ Reverses words in a given string >>> reverse_words("I love Python") 'Python love I' >>> reverse_words("I Love Python") 'Python Love I' """ return " ".join(input_str.split()[::-1]) if __name__ == "__main__": import doctest doctest.testmod()
def reverse_words(input_str: str) -> str: """ Reverses words in a given string >>> reverse_words("I love Python") 'Python love I' >>> reverse_words("I Love Python") 'Python Love I' """ return " ".join(input_str.split()[::-1]) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Chinese Remainder Theorem: GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab) Algorithm : 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 2. Take n = ra*by + rb*ax """ from __future__ import annotations # Extended Euclid def extended_euclid(a: int, b: int) -> tuple[int, int]: """ >>> extended_euclid(10, 6) (-1, 2) >>> extended_euclid(7, 5) (-2, 3) """ if b == 0: return (1, 0) (x, y) = extended_euclid(b, a % b) k = a // b return (y, x - k * y) # Uses ExtendedEuclid to find inverses def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem(5,1,7,3) 31 Explanation : 31 is the smallest number such that (i) When we divide it by 5, we get remainder 1 (ii) When we divide it by 7, we get remainder 3 >>> chinese_remainder_theorem(6,1,4,3) 14 """ (x, y) = extended_euclid(n1, n2) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m # ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- # This function find the inverses of a i.e., a^(-1) def invert_modulo(a: int, n: int) -> int: """ >>> invert_modulo(2, 5) 3 >>> invert_modulo(8,7) 1 """ (b, x) = extended_euclid(a, n) if b < 0: b = (b % n + n) % n return b # Same a above using InvertingModulo def chinese_remainder_theorem2(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem2(5,1,7,3) 31 >>> chinese_remainder_theorem2(6,1,4,3) 14 """ x, y = invert_modulo(n1, n2), invert_modulo(n2, n1) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
""" Chinese Remainder Theorem: GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab) Algorithm : 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 2. Take n = ra*by + rb*ax """ from __future__ import annotations # Extended Euclid def extended_euclid(a: int, b: int) -> tuple[int, int]: """ >>> extended_euclid(10, 6) (-1, 2) >>> extended_euclid(7, 5) (-2, 3) """ if b == 0: return (1, 0) (x, y) = extended_euclid(b, a % b) k = a // b return (y, x - k * y) # Uses ExtendedEuclid to find inverses def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem(5,1,7,3) 31 Explanation : 31 is the smallest number such that (i) When we divide it by 5, we get remainder 1 (ii) When we divide it by 7, we get remainder 3 >>> chinese_remainder_theorem(6,1,4,3) 14 """ (x, y) = extended_euclid(n1, n2) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m # ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- # This function find the inverses of a i.e., a^(-1) def invert_modulo(a: int, n: int) -> int: """ >>> invert_modulo(2, 5) 3 >>> invert_modulo(8,7) 1 """ (b, x) = extended_euclid(a, n) if b < 0: b = (b % n + n) % n return b # Same a above using InvertingModulo def chinese_remainder_theorem2(n1: int, r1: int, n2: int, r2: int) -> int: """ >>> chinese_remainder_theorem2(5,1,7,3) 31 >>> chinese_remainder_theorem2(6,1,4,3) 14 """ x, y = invert_modulo(n1, n2), invert_modulo(n2, n1) m = n1 * n2 n = r2 * x * n1 + r1 * y * n2 return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo from __future__ import annotations def maximum_non_adjacent_sum(nums: list[int]) -> int: """ Find the maximum non-adjacent sum of the integers in the nums input list >>> print(maximum_non_adjacent_sum([1, 2, 3])) 4 >>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6]) 18 >>> maximum_non_adjacent_sum([-1, -5, -3, -7, -2, -2, -6]) 0 >>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6]) 500 """ if not nums: return 0 max_including = nums[0] max_excluding = 0 for num in nums[1:]: max_including, max_excluding = ( max_excluding + num, max(max_including, max_excluding), ) return max(max_excluding, max_including) if __name__ == "__main__": import doctest doctest.testmod()
# Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo from __future__ import annotations def maximum_non_adjacent_sum(nums: list[int]) -> int: """ Find the maximum non-adjacent sum of the integers in the nums input list >>> print(maximum_non_adjacent_sum([1, 2, 3])) 4 >>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6]) 18 >>> maximum_non_adjacent_sum([-1, -5, -3, -7, -2, -2, -6]) 0 >>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6]) 500 """ if not nums: return 0 max_including = nums[0] max_excluding = 0 for num in nums[1:]: max_including, max_excluding = ( max_excluding + num, max(max_including, max_excluding), ) return max(max_excluding, max_including) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Functions for 2D matrix operations """ from __future__ import annotations def add(*matrix_s: list[list]) -> list[list]: """ >>> add([[1,2],[3,4]],[[2,3],[4,5]]) [[3, 5], [7, 9]] >>> add([[1.2,2.4],[3,4]],[[2,3],[4,5]]) [[3.2, 5.4], [7, 9]] >>> add([[1, 2], [4, 5]], [[3, 7], [3, 4]], [[3, 5], [5, 7]]) [[7, 14], [12, 16]] """ if all(_check_not_integer(m) for m in matrix_s): for i in matrix_s[1:]: _verify_matrix_sizes(matrix_s[0], i) return [[sum(t) for t in zip(*m)] for m in zip(*matrix_s)] def subtract(matrix_a: list[list], matrix_b: list[list]) -> list[list]: """ >>> subtract([[1,2],[3,4]],[[2,3],[4,5]]) [[-1, -1], [-1, -1]] >>> subtract([[1,2.5],[3,4]],[[2,3],[4,5.5]]) [[-1, -0.5], [-1, -1.5]] """ if ( _check_not_integer(matrix_a) and _check_not_integer(matrix_b) and _verify_matrix_sizes(matrix_a, matrix_b) ): return [[i - j for i, j in zip(*m)] for m in zip(matrix_a, matrix_b)] def scalar_multiply(matrix: list[list], n: int) -> list[list]: """ >>> scalar_multiply([[1,2],[3,4]],5) [[5, 10], [15, 20]] >>> scalar_multiply([[1.4,2.3],[3,4]],5) [[7.0, 11.5], [15, 20]] """ return [[x * n for x in row] for row in matrix] def multiply(matrix_a: list[list], matrix_b: list[list]) -> list[list]: """ >>> multiply([[1,2],[3,4]],[[5,5],[7,5]]) [[19, 15], [43, 35]] >>> multiply([[1,2.5],[3,4.5]],[[5,5],[7,5]]) [[22.5, 17.5], [46.5, 37.5]] >>> multiply([[1, 2, 3]], [[2], [3], [4]]) [[20]] """ if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) if cols[0] != rows[1]: raise ValueError( f"Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) " f"and ({rows[1]},{cols[1]})" ) return [ [sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for i in matrix_a ] def identity(n: int) -> list[list]: """ :param n: dimension for nxn matrix :type n: int :return: Identity matrix of shape [n, n] >>> identity(3) [[1, 0, 0], [0, 1, 0], [0, 0, 1]] """ n = int(n) return [[int(row == column) for column in range(n)] for row in range(n)] def transpose(matrix: list[list], return_map: bool = True) -> list[list]: """ >>> transpose([[1,2],[3,4]]) # doctest: +ELLIPSIS <map object at ... >>> transpose([[1,2],[3,4]], return_map=False) [[1, 3], [2, 4]] """ if _check_not_integer(matrix): if return_map: return map(list, zip(*matrix)) else: return list(map(list, zip(*matrix))) def minor(matrix: list[list], row: int, column: int) -> list[list]: """ >>> minor([[1, 2], [3, 4]], 1, 1) [[1]] """ minor = matrix[:row] + matrix[row + 1 :] return [row[:column] + row[column + 1 :] for row in minor] def determinant(matrix: list[list]) -> int: """ >>> determinant([[1, 2], [3, 4]]) -2 >>> determinant([[1.5, 2.5], [3, 4]]) -1.5 """ if len(matrix) == 1: return matrix[0][0] return sum( x * determinant(minor(matrix, 0, i)) * (-1) ** i for i, x in enumerate(matrix[0]) ) def inverse(matrix: list[list]) -> list[list]: """ >>> inverse([[1, 2], [3, 4]]) [[-2.0, 1.0], [1.5, -0.5]] >>> inverse([[1, 1], [1, 1]]) """ # https://stackoverflow.com/questions/20047519/python-doctests-test-for-none det = determinant(matrix) if det == 0: return None matrix_minor = [ [determinant(minor(matrix, i, j)) for j in range(len(matrix))] for i in range(len(matrix)) ] cofactors = [ [x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] for row in range(len(matrix)) ] adjugate = transpose(cofactors) return scalar_multiply(adjugate, 1 / det) def _check_not_integer(matrix: list[list]) -> bool: if not isinstance(matrix, int) and not isinstance(matrix[0], int): return True raise TypeError("Expected a matrix, got int/list instead") def _shape(matrix: list[list]) -> list: return len(matrix), len(matrix[0]) def _verify_matrix_sizes(matrix_a: list[list], matrix_b: list[list]) -> tuple[list]: shape = _shape(matrix_a) + _shape(matrix_b) if shape[0] != shape[3] or shape[1] != shape[2]: raise ValueError( f"operands could not be broadcast together with shape " f"({shape[0], shape[1]}), ({shape[2], shape[3]})" ) return (shape[0], shape[2]), (shape[1], shape[3]) def main(): matrix_a = [[12, 10], [3, 9]] matrix_b = [[3, 4], [7, 4]] matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] print(f"Add Operation, {add(matrix_a, matrix_b) = } \n") print( f"Multiply Operation, {multiply(matrix_a, matrix_b) = } \n", ) print(f"Identity: {identity(5)}\n") print(f"Minor of {matrix_c} = {minor(matrix_c, 1, 2)} \n") print(f"Determinant of {matrix_b} = {determinant(matrix_b)} \n") print(f"Inverse of {matrix_d} = {inverse(matrix_d)}\n") if __name__ == "__main__": import doctest doctest.testmod() main()
""" Functions for 2D matrix operations """ from __future__ import annotations def add(*matrix_s: list[list]) -> list[list]: """ >>> add([[1,2],[3,4]],[[2,3],[4,5]]) [[3, 5], [7, 9]] >>> add([[1.2,2.4],[3,4]],[[2,3],[4,5]]) [[3.2, 5.4], [7, 9]] >>> add([[1, 2], [4, 5]], [[3, 7], [3, 4]], [[3, 5], [5, 7]]) [[7, 14], [12, 16]] """ if all(_check_not_integer(m) for m in matrix_s): for i in matrix_s[1:]: _verify_matrix_sizes(matrix_s[0], i) return [[sum(t) for t in zip(*m)] for m in zip(*matrix_s)] def subtract(matrix_a: list[list], matrix_b: list[list]) -> list[list]: """ >>> subtract([[1,2],[3,4]],[[2,3],[4,5]]) [[-1, -1], [-1, -1]] >>> subtract([[1,2.5],[3,4]],[[2,3],[4,5.5]]) [[-1, -0.5], [-1, -1.5]] """ if ( _check_not_integer(matrix_a) and _check_not_integer(matrix_b) and _verify_matrix_sizes(matrix_a, matrix_b) ): return [[i - j for i, j in zip(*m)] for m in zip(matrix_a, matrix_b)] def scalar_multiply(matrix: list[list], n: int) -> list[list]: """ >>> scalar_multiply([[1,2],[3,4]],5) [[5, 10], [15, 20]] >>> scalar_multiply([[1.4,2.3],[3,4]],5) [[7.0, 11.5], [15, 20]] """ return [[x * n for x in row] for row in matrix] def multiply(matrix_a: list[list], matrix_b: list[list]) -> list[list]: """ >>> multiply([[1,2],[3,4]],[[5,5],[7,5]]) [[19, 15], [43, 35]] >>> multiply([[1,2.5],[3,4.5]],[[5,5],[7,5]]) [[22.5, 17.5], [46.5, 37.5]] >>> multiply([[1, 2, 3]], [[2], [3], [4]]) [[20]] """ if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) if cols[0] != rows[1]: raise ValueError( f"Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) " f"and ({rows[1]},{cols[1]})" ) return [ [sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for i in matrix_a ] def identity(n: int) -> list[list]: """ :param n: dimension for nxn matrix :type n: int :return: Identity matrix of shape [n, n] >>> identity(3) [[1, 0, 0], [0, 1, 0], [0, 0, 1]] """ n = int(n) return [[int(row == column) for column in range(n)] for row in range(n)] def transpose(matrix: list[list], return_map: bool = True) -> list[list]: """ >>> transpose([[1,2],[3,4]]) # doctest: +ELLIPSIS <map object at ... >>> transpose([[1,2],[3,4]], return_map=False) [[1, 3], [2, 4]] """ if _check_not_integer(matrix): if return_map: return map(list, zip(*matrix)) else: return list(map(list, zip(*matrix))) def minor(matrix: list[list], row: int, column: int) -> list[list]: """ >>> minor([[1, 2], [3, 4]], 1, 1) [[1]] """ minor = matrix[:row] + matrix[row + 1 :] return [row[:column] + row[column + 1 :] for row in minor] def determinant(matrix: list[list]) -> int: """ >>> determinant([[1, 2], [3, 4]]) -2 >>> determinant([[1.5, 2.5], [3, 4]]) -1.5 """ if len(matrix) == 1: return matrix[0][0] return sum( x * determinant(minor(matrix, 0, i)) * (-1) ** i for i, x in enumerate(matrix[0]) ) def inverse(matrix: list[list]) -> list[list]: """ >>> inverse([[1, 2], [3, 4]]) [[-2.0, 1.0], [1.5, -0.5]] >>> inverse([[1, 1], [1, 1]]) """ # https://stackoverflow.com/questions/20047519/python-doctests-test-for-none det = determinant(matrix) if det == 0: return None matrix_minor = [ [determinant(minor(matrix, i, j)) for j in range(len(matrix))] for i in range(len(matrix)) ] cofactors = [ [x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] for row in range(len(matrix)) ] adjugate = transpose(cofactors) return scalar_multiply(adjugate, 1 / det) def _check_not_integer(matrix: list[list]) -> bool: if not isinstance(matrix, int) and not isinstance(matrix[0], int): return True raise TypeError("Expected a matrix, got int/list instead") def _shape(matrix: list[list]) -> list: return len(matrix), len(matrix[0]) def _verify_matrix_sizes(matrix_a: list[list], matrix_b: list[list]) -> tuple[list]: shape = _shape(matrix_a) + _shape(matrix_b) if shape[0] != shape[3] or shape[1] != shape[2]: raise ValueError( f"operands could not be broadcast together with shape " f"({shape[0], shape[1]}), ({shape[2], shape[3]})" ) return (shape[0], shape[2]), (shape[1], shape[3]) def main(): matrix_a = [[12, 10], [3, 9]] matrix_b = [[3, 4], [7, 4]] matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] print(f"Add Operation, {add(matrix_a, matrix_b) = } \n") print( f"Multiply Operation, {multiply(matrix_a, matrix_b) = } \n", ) print(f"Identity: {identity(5)}\n") print(f"Minor of {matrix_c} = {minor(matrix_c, 1, 2)} \n") print(f"Determinant of {matrix_b} = {determinant(matrix_b)} \n") print(f"Inverse of {matrix_d} = {inverse(matrix_d)}\n") if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
5,566
[mypy] Fix type annotations for stack.py
``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
archaengel
"2021-10-23T18:21:43Z"
"2021-10-26T18:33:08Z"
582f57f41fb9d36ae8fe4d49c98775877b9013b7
c0ed031b3fcf47736f98dfd89e2588dbffceadde
[mypy] Fix type annotations for stack.py. ``` $ git checkout mypy-fix-stacks-stack Switched to branch 'mypy-fix-stacks-stack' $ mypy --ignore-missing-imports data_structures/stacks/stack.py --strict Success: no issues found in 1 source file $ mypy --ignore-missing-imports data_structures/stacks --strict > after.txt $ git checkout master Switched to branch 'master' $ mypy --ignore-missing-imports data_structures/stacks --strict > before.txt $ diff before.txt after.txt 39,49d38 < data_structures/stacks/stack.py:31: error: Function is missing a type annotation < data_structures/stacks/stack.py:37: error: Function is missing a return type annotation < data_structures/stacks/stack.py:50: error: Function is missing a return type annotation < data_structures/stacks/stack.py:74: error: Function is missing a type annotation for one or more arguments < data_structures/stacks/stack.py:90: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:96: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:103: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:109: error: Call to untyped function "pop" in typed context < data_structures/stacks/stack.py:110: error: Call to untyped function "peek" in typed context < data_structures/stacks/stack.py:112: error: Call to untyped function "push" in typed context < data_structures/stacks/stack.py:116: error: Call to untyped function "push" in typed context 52,62d40 < data_structures/stacks/dijkstras_two_stack_algorithm.py:60: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:63: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:66: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:67: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:68: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:69: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:70: error: Call to untyped function "peek" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:71: error: Call to untyped function "pop" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:74: error: Call to untyped function "push" in typed context < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Returning Any from function declared to return "int" < data_structures/stacks/dijkstras_two_stack_algorithm.py:77: error: Call to untyped function "peek" in typed context 75,85c53 < data_structures/stacks/balanced_parentheses.py:21: error: Call to untyped function "push" in typed context < data_structures/stacks/balanced_parentheses.py:23: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:47: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:49: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:50: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:51: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:53: error: Call to untyped function "peek" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:54: error: Call to untyped function "pop" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:55: error: Call to untyped function "push" in typed context < data_structures/stacks/infix_to_postfix_conversion.py:57: error: Call to untyped function "pop" in typed context < Found 82 errors in 12 files (checked 13 source files) --- > Found 50 errors in 8 files (checked 13 source files) ``` Related to #4052 ### **Describe your change:** Add generic type annotations to functions in `stack.py`. Add type annotations to variables of `Stack` class. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 9: https://projecteuler.net/problem=9 Special Pythagorean triplet A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a^2 + b^2 = c^2 For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product a*b*c. References: - https://en.wikipedia.org/wiki/Pythagorean_triple """ def solution(n: int = 1000) -> int: """ Return the product of a,b,c which are Pythagorean Triplet that satisfies the following: 1. a < b < c 2. a**2 + b**2 = c**2 3. a + b + c = n >>> solution(36) 1620 >>> solution(126) 66780 """ product = -1 candidate = 0 for a in range(1, n // 3): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c b = (n * n - 2 * a * n) // (2 * n - 2 * a) c = n - a - b if c * c == (a * a + b * b): candidate = a * b * c if candidate >= product: product = candidate return product if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 9: https://projecteuler.net/problem=9 Special Pythagorean triplet A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a^2 + b^2 = c^2 For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product a*b*c. References: - https://en.wikipedia.org/wiki/Pythagorean_triple """ def solution(n: int = 1000) -> int: """ Return the product of a,b,c which are Pythagorean Triplet that satisfies the following: 1. a < b < c 2. a**2 + b**2 = c**2 3. a + b + c = n >>> solution(36) 1620 >>> solution(126) 66780 """ product = -1 candidate = 0 for a in range(1, n // 3): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c b = (n * n - 2 * a * n) // (2 * n - 2 * a) c = n - a - b if c * c == (a * a + b * b): candidate = a * b * c if candidate >= product: product = candidate return product if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count 1S Brian Kernighan Method](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_1s_brian_kernighan_method.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Baconian Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/baconian_cipher.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Polybius](https://github.com/TheAlgorithms/Python/blob/master/ciphers/polybius.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Cnn Classification](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/cnn_classification.py) * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Length Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/length_conversion.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Morphological Operations * [Dilation Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/dilation_operation.py) * [Erosion Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/erosion_operation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Carrier Concentration](https://github.com/TheAlgorithms/Python/blob/master/electronics/carrier_concentration.py) * [Coulombs Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/coulombs_law.py) * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Julia Sets](https://github.com/TheAlgorithms/Python/blob/master/fractals/julia_sets.py) * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/boruvka.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Greedy Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_min_vertex_cover.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Matching Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/matching_min_vertex_cover.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Greedy Methods * [Optimal Merge Pattern](https://github.com/TheAlgorithms/Python/blob/master/greedy_methods/optimal_merge_pattern.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Luhn](https://github.com/TheAlgorithms/Python/blob/master/hashes/luhn.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Schur Complement](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/schur_complement.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Check Polygon](https://github.com/TheAlgorithms/Python/blob/master/maths/check_polygon.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Double Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_iterative.py) * [Double Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_recursive.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Euler Modified](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_modified.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gamma Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma_recursive.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](https://github.com/TheAlgorithms/Python/blob/master/maths/is_ip_v4_address_valid.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Proth Number](https://github.com/TheAlgorithms/Python/blob/master/maths/proth_number.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic.py) * [Geometric](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Sylvester Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/sylvester_sequence.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Check Strong Password](https://github.com/TheAlgorithms/Python/blob/master/other/check_strong_password.py) * [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py) * [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 092 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_092/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py) * [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Alternative String Arrange](https://github.com/TheAlgorithms/Python/blob/master/strings/alternative_string_arrange.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Indian Phone Validator](https://github.com/TheAlgorithms/Python/blob/master/strings/indian_phone_validator.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Join](https://github.com/TheAlgorithms/Python/blob/master/strings/join.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Wildcard Pattern Matching](https://github.com/TheAlgorithms/Python/blob/master/strings/wildcard_pattern_matching.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Download Images From Google Query](https://github.com/TheAlgorithms/Python/blob/master/web_programming/download_images_from_google_query.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Giphy](https://github.com/TheAlgorithms/Python/blob/master/web_programming/giphy.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Random Anime Character](https://github.com/TheAlgorithms/Python/blob/master/web_programming/random_anime_character.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count 1S Brian Kernighan Method](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_1s_brian_kernighan_method.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Baconian Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/baconian_cipher.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Polybius](https://github.com/TheAlgorithms/Python/blob/master/ciphers/polybius.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Cnn Classification](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/cnn_classification.py) * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Length Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/length_conversion.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Morphological Operations * [Dilation Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/dilation_operation.py) * [Erosion Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/erosion_operation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Carrier Concentration](https://github.com/TheAlgorithms/Python/blob/master/electronics/carrier_concentration.py) * [Coulombs Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/coulombs_law.py) * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Julia Sets](https://github.com/TheAlgorithms/Python/blob/master/fractals/julia_sets.py) * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/boruvka.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Check Cycle](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_cycle.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Greedy Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_min_vertex_cover.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Matching Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/matching_min_vertex_cover.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Greedy Methods * [Optimal Merge Pattern](https://github.com/TheAlgorithms/Python/blob/master/greedy_methods/optimal_merge_pattern.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Luhn](https://github.com/TheAlgorithms/Python/blob/master/hashes/luhn.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) * [Sha256](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha256.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Schur Complement](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/schur_complement.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Check Polygon](https://github.com/TheAlgorithms/Python/blob/master/maths/check_polygon.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Double Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_iterative.py) * [Double Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_recursive.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Euler Modified](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_modified.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gamma Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma_recursive.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](https://github.com/TheAlgorithms/Python/blob/master/maths/is_ip_v4_address_valid.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Proth Number](https://github.com/TheAlgorithms/Python/blob/master/maths/proth_number.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic.py) * [Geometric](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Sylvester Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/sylvester_sequence.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Check Strong Password](https://github.com/TheAlgorithms/Python/blob/master/other/check_strong_password.py) * [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py) * [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 092 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_092/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py) * [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Alternative String Arrange](https://github.com/TheAlgorithms/Python/blob/master/strings/alternative_string_arrange.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Indian Phone Validator](https://github.com/TheAlgorithms/Python/blob/master/strings/indian_phone_validator.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Join](https://github.com/TheAlgorithms/Python/blob/master/strings/join.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Wildcard Pattern Matching](https://github.com/TheAlgorithms/Python/blob/master/strings/wildcard_pattern_matching.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Download Images From Google Query](https://github.com/TheAlgorithms/Python/blob/master/web_programming/download_images_from_google_query.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Giphy](https://github.com/TheAlgorithms/Python/blob/master/web_programming/giphy.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Nasa Data](https://github.com/TheAlgorithms/Python/blob/master/web_programming/nasa_data.py) * [Random Anime Character](https://github.com/TheAlgorithms/Python/blob/master/web_programming/random_anime_character.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n + c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a color-coding to indicate after how many steps in the series the numbers outside the set diverge. Images of the Mandelbrot set exhibit an elaborate and infinitely complicated boundary that reveals progressively ever-finer recursive detail at increasing magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set ) """ import colorsys from PIL import Image # type: ignore def get_distance(x: float, y: float, max_step: int) -> float: """ Return the relative distance (= step/max_step) after which the complex number constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their distance is 1. >>> get_distance(0, 0, 50) 1.0 >>> get_distance(0.5, 0.5, 50) 0.061224489795918366 >>> get_distance(2, 0, 50) 0.0 """ a = x b = y for step in range(max_step): a_new = a * a - b * b + x b = 2 * a * b + y a = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def get_black_and_white_rgb(distance: float) -> tuple: """ Black&white color-coding that ignores the relative distance. The Mandelbrot set is black, everything else is white. >>> get_black_and_white_rgb(0) (255, 255, 255) >>> get_black_and_white_rgb(0.5) (255, 255, 255) >>> get_black_and_white_rgb(1) (0, 0, 0) """ if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def get_color_coded_rgb(distance: float) -> tuple: """ Color-coding taking the relative distance into account. The Mandelbrot set is black. >>> get_color_coded_rgb(0) (255, 0, 0) >>> get_color_coded_rgb(0.5) (0, 255, 255) >>> get_color_coded_rgb(1) (0, 0, 0) """ if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(distance, 1, 1)) def get_image( image_width: int = 800, image_height: int = 600, figure_center_x: float = -0.6, figure_center_y: float = 0, figure_width: float = 3.2, max_step: int = 50, use_distance_color_coding: bool = True, ) -> Image.Image: """ Function to generate the image of the Mandelbrot set. Two types of coordinates are used: image-coordinates that refer to the pixels and figure-coordinates that refer to the complex numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this function determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates. >>> get_image().load()[0,0] (255, 0, 0) >>> get_image(use_distance_color_coding = False).load()[0,0] (255, 255, 255) """ img = Image.new("RGB", (image_width, image_height)) pixels = img.load() # loop through the image-coordinates for image_x in range(image_width): for image_y in range(image_height): # determine the figure-coordinates based on the image-coordinates figure_height = figure_width / image_width * image_height figure_x = figure_center_x + (image_x / image_width - 0.5) * figure_width figure_y = figure_center_y + (image_y / image_height - 0.5) * figure_height distance = get_distance(figure_x, figure_y, max_step) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: pixels[image_x, image_y] = get_color_coded_rgb(distance) else: pixels[image_x, image_y] = get_black_and_white_rgb(distance) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure img = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
""" The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n + c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a color-coding to indicate after how many steps in the series the numbers outside the set diverge. Images of the Mandelbrot set exhibit an elaborate and infinitely complicated boundary that reveals progressively ever-finer recursive detail at increasing magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set ) """ import colorsys from PIL import Image # type: ignore def get_distance(x: float, y: float, max_step: int) -> float: """ Return the relative distance (= step/max_step) after which the complex number constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their distance is 1. >>> get_distance(0, 0, 50) 1.0 >>> get_distance(0.5, 0.5, 50) 0.061224489795918366 >>> get_distance(2, 0, 50) 0.0 """ a = x b = y for step in range(max_step): a_new = a * a - b * b + x b = 2 * a * b + y a = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def get_black_and_white_rgb(distance: float) -> tuple: """ Black&white color-coding that ignores the relative distance. The Mandelbrot set is black, everything else is white. >>> get_black_and_white_rgb(0) (255, 255, 255) >>> get_black_and_white_rgb(0.5) (255, 255, 255) >>> get_black_and_white_rgb(1) (0, 0, 0) """ if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def get_color_coded_rgb(distance: float) -> tuple: """ Color-coding taking the relative distance into account. The Mandelbrot set is black. >>> get_color_coded_rgb(0) (255, 0, 0) >>> get_color_coded_rgb(0.5) (0, 255, 255) >>> get_color_coded_rgb(1) (0, 0, 0) """ if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(distance, 1, 1)) def get_image( image_width: int = 800, image_height: int = 600, figure_center_x: float = -0.6, figure_center_y: float = 0, figure_width: float = 3.2, max_step: int = 50, use_distance_color_coding: bool = True, ) -> Image.Image: """ Function to generate the image of the Mandelbrot set. Two types of coordinates are used: image-coordinates that refer to the pixels and figure-coordinates that refer to the complex numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this function determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates. Commenting out tests that slow down pytest... # 13.35s call fractals/mandelbrot.py::mandelbrot.get_image # >>> get_image().load()[0,0] (255, 0, 0) # >>> get_image(use_distance_color_coding = False).load()[0,0] (255, 255, 255) """ img = Image.new("RGB", (image_width, image_height)) pixels = img.load() # loop through the image-coordinates for image_x in range(image_width): for image_y in range(image_height): # determine the figure-coordinates based on the image-coordinates figure_height = figure_width / image_width * image_height figure_x = figure_center_x + (image_x / image_width - 0.5) * figure_width figure_y = figure_center_y + (image_y / image_height - 0.5) * figure_height distance = get_distance(figure_x, figure_y, max_step) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: pixels[image_x, image_y] = get_color_coded_rgb(distance) else: pixels[image_x, image_y] = get_black_and_white_rgb(distance) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure img = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://en.wikipedia.org/wiki/Bidirectional_search """ from __future__ import annotations import time Path = list[tuple[int, int]] grid = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class Node: def __init__( self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, parent: Node | None ): self.pos_x = pos_x self.pos_y = pos_y self.pos = (pos_y, pos_x) self.goal_x = goal_x self.goal_y = goal_y self.parent = parent class BreadthFirstSearch: """ >>> bfs = BreadthFirstSearch((0, 0), (len(grid) - 1, len(grid[0]) - 1)) >>> (bfs.start.pos_y + delta[3][0], bfs.start.pos_x + delta[3][1]) (0, 1) >>> [x.pos for x in bfs.get_successors(bfs.start)] [(1, 0), (0, 1)] >>> (bfs.start.pos_y + delta[2][0], bfs.start.pos_x + delta[2][1]) (1, 0) >>> bfs.retrace_path(bfs.start) [(0, 0)] >>> bfs.search() # doctest: +NORMALIZE_WHITESPACE [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)] """ def __init__(self, start: tuple[int, int], goal: tuple[int, int]): self.start = Node(start[1], start[0], goal[1], goal[0], None) self.target = Node(goal[1], goal[0], goal[1], goal[0], None) self.node_queue = [self.start] self.reached = False def search(self) -> Path | None: while self.node_queue: current_node = self.node_queue.pop(0) if current_node.pos == self.target.pos: self.reached = True return self.retrace_path(current_node) successors = self.get_successors(current_node) for node in successors: self.node_queue.append(node) if not self.reached: return [self.start.pos] return None def get_successors(self, parent: Node) -> list[Node]: """ Returns a list of successors (both in the grid and free spaces) """ successors = [] for action in delta: pos_x = parent.pos_x + action[1] pos_y = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent) ) return successors def retrace_path(self, node: Node | None) -> Path: """ Retrace the path from parents to parents until start node """ current_node = node path = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) current_node = current_node.parent path.reverse() return path class BidirectionalBreadthFirstSearch: """ >>> bd_bfs = BidirectionalBreadthFirstSearch((0, 0), (len(grid) - 1, ... len(grid[0]) - 1)) >>> bd_bfs.fwd_bfs.start.pos == bd_bfs.bwd_bfs.target.pos True >>> bd_bfs.retrace_bidirectional_path(bd_bfs.fwd_bfs.start, ... bd_bfs.bwd_bfs.start) [(0, 0)] >>> bd_bfs.search() # doctest: +NORMALIZE_WHITESPACE [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6), (6, 6)] """ def __init__(self, start, goal): self.fwd_bfs = BreadthFirstSearch(start, goal) self.bwd_bfs = BreadthFirstSearch(goal, start) self.reached = False def search(self) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: current_fwd_node = self.fwd_bfs.node_queue.pop(0) current_bwd_node = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: self.reached = True return self.retrace_bidirectional_path( current_fwd_node, current_bwd_node ) self.fwd_bfs.target = current_bwd_node self.bwd_bfs.target = current_fwd_node successors = { self.fwd_bfs: self.fwd_bfs.get_successors(current_fwd_node), self.bwd_bfs: self.bwd_bfs.get_successors(current_bwd_node), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(node) if not self.reached: return [self.fwd_bfs.start.pos] return None def retrace_bidirectional_path(self, fwd_node: Node, bwd_node: Node) -> Path: fwd_path = self.fwd_bfs.retrace_path(fwd_node) bwd_path = self.bwd_bfs.retrace_path(bwd_node) bwd_path.pop() bwd_path.reverse() path = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() init = (0, 0) goal = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) start_bfs_time = time.time() bfs = BreadthFirstSearch(init, goal) path = bfs.search() bfs_time = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) start_bd_bfs_time = time.time() bd_bfs = BidirectionalBreadthFirstSearch(init, goal) bd_path = bd_bfs.search() bd_bfs_time = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
""" https://en.wikipedia.org/wiki/Bidirectional_search """ from __future__ import annotations import time Path = list[tuple[int, int]] grid = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class Node: def __init__( self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, parent: Node | None ): self.pos_x = pos_x self.pos_y = pos_y self.pos = (pos_y, pos_x) self.goal_x = goal_x self.goal_y = goal_y self.parent = parent class BreadthFirstSearch: """ # Comment out slow pytests... # 9.15s call graphs/bidirectional_breadth_first_search.py:: \ # graphs.bidirectional_breadth_first_search.BreadthFirstSearch # >>> bfs = BreadthFirstSearch((0, 0), (len(grid) - 1, len(grid[0]) - 1)) # >>> (bfs.start.pos_y + delta[3][0], bfs.start.pos_x + delta[3][1]) (0, 1) # >>> [x.pos for x in bfs.get_successors(bfs.start)] [(1, 0), (0, 1)] # >>> (bfs.start.pos_y + delta[2][0], bfs.start.pos_x + delta[2][1]) (1, 0) # >>> bfs.retrace_path(bfs.start) [(0, 0)] # >>> bfs.search() # doctest: +NORMALIZE_WHITESPACE [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)] """ def __init__(self, start: tuple[int, int], goal: tuple[int, int]): self.start = Node(start[1], start[0], goal[1], goal[0], None) self.target = Node(goal[1], goal[0], goal[1], goal[0], None) self.node_queue = [self.start] self.reached = False def search(self) -> Path | None: while self.node_queue: current_node = self.node_queue.pop(0) if current_node.pos == self.target.pos: self.reached = True return self.retrace_path(current_node) successors = self.get_successors(current_node) for node in successors: self.node_queue.append(node) if not self.reached: return [self.start.pos] return None def get_successors(self, parent: Node) -> list[Node]: """ Returns a list of successors (both in the grid and free spaces) """ successors = [] for action in delta: pos_x = parent.pos_x + action[1] pos_y = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent) ) return successors def retrace_path(self, node: Node | None) -> Path: """ Retrace the path from parents to parents until start node """ current_node = node path = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) current_node = current_node.parent path.reverse() return path class BidirectionalBreadthFirstSearch: """ >>> bd_bfs = BidirectionalBreadthFirstSearch((0, 0), (len(grid) - 1, ... len(grid[0]) - 1)) >>> bd_bfs.fwd_bfs.start.pos == bd_bfs.bwd_bfs.target.pos True >>> bd_bfs.retrace_bidirectional_path(bd_bfs.fwd_bfs.start, ... bd_bfs.bwd_bfs.start) [(0, 0)] >>> bd_bfs.search() # doctest: +NORMALIZE_WHITESPACE [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6), (6, 6)] """ def __init__(self, start, goal): self.fwd_bfs = BreadthFirstSearch(start, goal) self.bwd_bfs = BreadthFirstSearch(goal, start) self.reached = False def search(self) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: current_fwd_node = self.fwd_bfs.node_queue.pop(0) current_bwd_node = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: self.reached = True return self.retrace_bidirectional_path( current_fwd_node, current_bwd_node ) self.fwd_bfs.target = current_bwd_node self.bwd_bfs.target = current_fwd_node successors = { self.fwd_bfs: self.fwd_bfs.get_successors(current_fwd_node), self.bwd_bfs: self.bwd_bfs.get_successors(current_bwd_node), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(node) if not self.reached: return [self.fwd_bfs.start.pos] return None def retrace_bidirectional_path(self, fwd_node: Node, bwd_node: Node) -> Path: fwd_path = self.fwd_bfs.retrace_path(fwd_node) bwd_path = self.bwd_bfs.retrace_path(bwd_node) bwd_path.pop() bwd_path.reverse() path = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() init = (0, 0) goal = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) start_bfs_time = time.time() bfs = BreadthFirstSearch(init, goal) path = bfs.search() bfs_time = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) start_bd_bfs_time = time.time() bd_bfs = BidirectionalBreadthFirstSearch(init, goal) bd_path = bd_bfs.search() bd_bfs_time = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import random from .binary_exp_mod import bin_exp_mod # This is a probabilistic check to test primality, useful for big numbers! # if it's a prime, it will return true # if it's not a prime, the chance of it returning true is at most 1/4**prec def is_prime(n, prec=1000): """ >>> from .prime_check import prime_check >>> all(is_prime(i) == prime_check(i) for i in range(1000)) True """ if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd d = n - 1 exp = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) count = 0 while count < prec: a = random.randint(2, n - 1) b = bin_exp_mod(a, d, n) if b != 1: flag = True for i in range(exp): if b == n - 1: flag = False break b = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": n = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime(i)))
import random from .binary_exp_mod import bin_exp_mod # This is a probabilistic check to test primality, useful for big numbers! # if it's a prime, it will return true # if it's not a prime, the chance of it returning true is at most 1/4**prec def is_prime(n, prec=1000): """ >>> from .prime_check import prime_check >>> # all(is_prime(i) == prime_check(i) for i in range(1000)) # 3.45s >>> all(is_prime(i) == prime_check(i) for i in range(256)) True """ if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd d = n - 1 exp = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) count = 0 while count < prec: a = random.randint(2, n - 1) b = bin_exp_mod(a, d, n) if b != 1: flag = True for i in range(exp): if b == n - 1: flag = False break b = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": n = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime(i)))
1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import json import os import re import sys import urllib.request import requests from bs4 import BeautifulSoup headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def download_images_from_google_query(query: str = "dhaka", max_images: int = 5) -> int: """Searches google using the provided query term and downloads the images in a folder. Args: query : The image search term to be provided by the user. Defaults to "dhaka". image_numbers : [description]. Defaults to 5. Returns: The number of images successfully downloaded. >>> download_images_from_google_query() 5 >>> download_images_from_google_query("potato") 5 """ max_images = min(max_images, 50) # Prevent abuse! params = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } html = requests.get("https://www.google.com/search", params=params, headers=headers) soup = BeautifulSoup(html.text, "html.parser") matched_images_data = "".join( re.findall(r"AF_initDataCallback\(([^<]+)\);", str(soup.select("script"))) ) matched_images_data_fix = json.dumps(matched_images_data) matched_images_data_json = json.loads(matched_images_data_fix) matched_google_image_data = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",", matched_images_data_json, ) if not matched_google_image_data: return 0 removed_matched_google_images_thumbnails = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]", "", str(matched_google_image_data), ) matched_google_full_resolution_images = re.findall( r"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]", removed_matched_google_images_thumbnails, ) for index, fixed_full_res_image in enumerate(matched_google_full_resolution_images): if index >= max_images: return index original_size_img_not_fixed = bytes(fixed_full_res_image, "ascii").decode( "unicode-escape" ) original_size_img = bytes(original_size_img_not_fixed, "ascii").decode( "unicode-escape" ) opener = urllib.request.build_opener() opener.addheaders = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(opener) path_name = f"query_{query.replace(' ', '_')}" if not os.path.exists(path_name): os.makedirs(path_name) urllib.request.urlretrieve( original_size_img, f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: image_count = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print("Please provide a search term.") raise
import json import os import re import sys import urllib.request import requests from bs4 import BeautifulSoup headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def download_images_from_google_query(query: str = "dhaka", max_images: int = 5) -> int: """Searches google using the provided query term and downloads the images in a folder. Args: query : The image search term to be provided by the user. Defaults to "dhaka". image_numbers : [description]. Defaults to 5. Returns: The number of images successfully downloaded. # Comment out slow (4.20s call) doctests # >>> download_images_from_google_query() 5 # >>> download_images_from_google_query("potato") 5 """ max_images = min(max_images, 50) # Prevent abuse! params = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } html = requests.get("https://www.google.com/search", params=params, headers=headers) soup = BeautifulSoup(html.text, "html.parser") matched_images_data = "".join( re.findall(r"AF_initDataCallback\(([^<]+)\);", str(soup.select("script"))) ) matched_images_data_fix = json.dumps(matched_images_data) matched_images_data_json = json.loads(matched_images_data_fix) matched_google_image_data = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",", matched_images_data_json, ) if not matched_google_image_data: return 0 removed_matched_google_images_thumbnails = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]", "", str(matched_google_image_data), ) matched_google_full_resolution_images = re.findall( r"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]", removed_matched_google_images_thumbnails, ) for index, fixed_full_res_image in enumerate(matched_google_full_resolution_images): if index >= max_images: return index original_size_img_not_fixed = bytes(fixed_full_res_image, "ascii").decode( "unicode-escape" ) original_size_img = bytes(original_size_img_not_fixed, "ascii").decode( "unicode-escape" ) opener = urllib.request.build_opener() opener.addheaders = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(opener) path_name = f"query_{query.replace(' ', '_')}" if not os.path.exists(path_name): os.makedirs(path_name) urllib.request.urlretrieve( original_size_img, f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: image_count = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print("Please provide a search term.") raise
1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 from __future__ import annotations import random from typing import Generic, Iterable, TypeVar T = TypeVar("T") class RandomizedHeapNode(Generic[T]): """ One node of the randomized heap. Contains the value and references to two children. """ def __init__(self, value: T) -> None: self._value: T = value self.left: RandomizedHeapNode[T] | None = None self.right: RandomizedHeapNode[T] | None = None @property def value(self) -> T: """Return the value of the node.""" return self._value @staticmethod def merge( root1: RandomizedHeapNode[T] | None, root2: RandomizedHeapNode[T] | None ) -> RandomizedHeapNode[T] | None: """Merge 2 nodes together.""" if not root1: return root2 if not root2: return root1 if root1.value > root2.value: root1, root2 = root2, root1 if random.choice([True, False]): root1.left, root1.right = root1.right, root1.left root1.left = RandomizedHeapNode.merge(root1.left, root2) return root1 class RandomizedHeap(Generic[T]): """ A data structure that allows inserting a new value and to pop the smallest values. Both operations take O(logN) time where N is the size of the structure. Wiki: https://en.wikipedia.org/wiki/Randomized_meldable_heap >>> RandomizedHeap([2, 3, 1, 5, 1, 7]).to_sorted_list() [1, 1, 2, 3, 5, 7] >>> rh = RandomizedHeap() >>> rh.pop() Traceback (most recent call last): ... IndexError: Can't get top element for the empty heap. >>> rh.insert(1) >>> rh.insert(-1) >>> rh.insert(0) >>> rh.to_sorted_list() [-1, 0, 1] """ def __init__(self, data: Iterable[T] | None = ()) -> None: """ >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.to_sorted_list() [1, 3, 3, 7] """ self._root: RandomizedHeapNode[T] | None = None for item in data: self.insert(item) def insert(self, value: T) -> None: """ Insert the value into the heap. >>> rh = RandomizedHeap() >>> rh.insert(3) >>> rh.insert(1) >>> rh.insert(3) >>> rh.insert(7) >>> rh.to_sorted_list() [1, 3, 3, 7] """ self._root = RandomizedHeapNode.merge(self._root, RandomizedHeapNode(value)) def pop(self) -> T: """ Pop the smallest value from the heap and return it. >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.pop() 1 >>> rh.pop() 3 >>> rh.pop() 3 >>> rh.pop() 7 >>> rh.pop() Traceback (most recent call last): ... IndexError: Can't get top element for the empty heap. """ result = self.top() self._root = RandomizedHeapNode.merge(self._root.left, self._root.right) return result def top(self) -> T: """ Return the smallest value from the heap. >>> rh = RandomizedHeap() >>> rh.insert(3) >>> rh.top() 3 >>> rh.insert(1) >>> rh.top() 1 >>> rh.insert(3) >>> rh.top() 1 >>> rh.insert(7) >>> rh.top() 1 """ if not self._root: raise IndexError("Can't get top element for the empty heap.") return self._root.value def clear(self): """ Clear the heap. >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.clear() >>> rh.pop() Traceback (most recent call last): ... IndexError: Can't get top element for the empty heap. """ self._root = None def to_sorted_list(self) -> list[T]: """ Returns sorted list containing all the values in the heap. >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.to_sorted_list() [1, 3, 3, 7] """ result = [] while self: result.append(self.pop()) return result def __bool__(self) -> bool: """ Check if the heap is not empty. >>> rh = RandomizedHeap() >>> bool(rh) False >>> rh.insert(1) >>> bool(rh) True >>> rh.clear() >>> bool(rh) False """ return self._root is not None if __name__ == "__main__": import doctest doctest.testmod()
#!/usr/bin/env python3 from __future__ import annotations import random from typing import Generic, Iterable, TypeVar T = TypeVar("T") class RandomizedHeapNode(Generic[T]): """ One node of the randomized heap. Contains the value and references to two children. """ def __init__(self, value: T) -> None: self._value: T = value self.left: RandomizedHeapNode[T] | None = None self.right: RandomizedHeapNode[T] | None = None @property def value(self) -> T: """Return the value of the node.""" return self._value @staticmethod def merge( root1: RandomizedHeapNode[T] | None, root2: RandomizedHeapNode[T] | None ) -> RandomizedHeapNode[T] | None: """Merge 2 nodes together.""" if not root1: return root2 if not root2: return root1 if root1.value > root2.value: root1, root2 = root2, root1 if random.choice([True, False]): root1.left, root1.right = root1.right, root1.left root1.left = RandomizedHeapNode.merge(root1.left, root2) return root1 class RandomizedHeap(Generic[T]): """ A data structure that allows inserting a new value and to pop the smallest values. Both operations take O(logN) time where N is the size of the structure. Wiki: https://en.wikipedia.org/wiki/Randomized_meldable_heap >>> RandomizedHeap([2, 3, 1, 5, 1, 7]).to_sorted_list() [1, 1, 2, 3, 5, 7] >>> rh = RandomizedHeap() >>> rh.pop() Traceback (most recent call last): ... IndexError: Can't get top element for the empty heap. >>> rh.insert(1) >>> rh.insert(-1) >>> rh.insert(0) >>> rh.to_sorted_list() [-1, 0, 1] """ def __init__(self, data: Iterable[T] | None = ()) -> None: """ >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.to_sorted_list() [1, 3, 3, 7] """ self._root: RandomizedHeapNode[T] | None = None for item in data: self.insert(item) def insert(self, value: T) -> None: """ Insert the value into the heap. >>> rh = RandomizedHeap() >>> rh.insert(3) >>> rh.insert(1) >>> rh.insert(3) >>> rh.insert(7) >>> rh.to_sorted_list() [1, 3, 3, 7] """ self._root = RandomizedHeapNode.merge(self._root, RandomizedHeapNode(value)) def pop(self) -> T: """ Pop the smallest value from the heap and return it. >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.pop() 1 >>> rh.pop() 3 >>> rh.pop() 3 >>> rh.pop() 7 >>> rh.pop() Traceback (most recent call last): ... IndexError: Can't get top element for the empty heap. """ result = self.top() self._root = RandomizedHeapNode.merge(self._root.left, self._root.right) return result def top(self) -> T: """ Return the smallest value from the heap. >>> rh = RandomizedHeap() >>> rh.insert(3) >>> rh.top() 3 >>> rh.insert(1) >>> rh.top() 1 >>> rh.insert(3) >>> rh.top() 1 >>> rh.insert(7) >>> rh.top() 1 """ if not self._root: raise IndexError("Can't get top element for the empty heap.") return self._root.value def clear(self): """ Clear the heap. >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.clear() >>> rh.pop() Traceback (most recent call last): ... IndexError: Can't get top element for the empty heap. """ self._root = None def to_sorted_list(self) -> list[T]: """ Returns sorted list containing all the values in the heap. >>> rh = RandomizedHeap([3, 1, 3, 7]) >>> rh.to_sorted_list() [1, 3, 3, 7] """ result = [] while self: result.append(self.pop()) return result def __bool__(self) -> bool: """ Check if the heap is not empty. >>> rh = RandomizedHeap() >>> bool(rh) False >>> rh.insert(1) >>> bool(rh) True >>> rh.clear() >>> bool(rh) False """ return self._root is not None if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Convert a Decimal Number to an Octal Number.""" import math # Modified from: # https://github.com/TheAlgorithms/Javascript/blob/master/Conversions/DecimalToOctal.js def decimal_to_octal(num: int) -> str: """Convert a Decimal Number to an Octal Number. >>> all(decimal_to_octal(i) == oct(i) for i ... in (0, 2, 8, 64, 65, 216, 255, 256, 512)) True """ octal = 0 counter = 0 while num > 0: remainder = num % 8 octal = octal + (remainder * math.floor(math.pow(10, counter))) counter += 1 num = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(octal)}" def main() -> None: """Print octal equivalents of decimal numbers.""" print("\n2 in octal is:") print(decimal_to_octal(2)) # = 2 print("\n8 in octal is:") print(decimal_to_octal(8)) # = 10 print("\n65 in octal is:") print(decimal_to_octal(65)) # = 101 print("\n216 in octal is:") print(decimal_to_octal(216)) # = 330 print("\n512 in octal is:") print(decimal_to_octal(512)) # = 1000 print("\n") if __name__ == "__main__": main()
"""Convert a Decimal Number to an Octal Number.""" import math # Modified from: # https://github.com/TheAlgorithms/Javascript/blob/master/Conversions/DecimalToOctal.js def decimal_to_octal(num: int) -> str: """Convert a Decimal Number to an Octal Number. >>> all(decimal_to_octal(i) == oct(i) for i ... in (0, 2, 8, 64, 65, 216, 255, 256, 512)) True """ octal = 0 counter = 0 while num > 0: remainder = num % 8 octal = octal + (remainder * math.floor(math.pow(10, counter))) counter += 1 num = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(octal)}" def main() -> None: """Print octal equivalents of decimal numbers.""" print("\n2 in octal is:") print(decimal_to_octal(2)) # = 2 print("\n8 in octal is:") print(decimal_to_octal(8)) # = 10 print("\n65 in octal is:") print(decimal_to_octal(65)) # = 101 print("\n216 in octal is:") print(decimal_to_octal(216)) # = 330 print("\n512 in octal is:") print(decimal_to_octal(512)) # = 1000 print("\n") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" A Hamiltonian cycle (Hamiltonian circuit) is a graph cycle through a graph that visits each node exactly once. Determining whether such paths and cycles exist in graphs is the 'Hamiltonian path problem', which is NP-complete. Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path """ def valid_connection( graph: list[list[int]], next_ver: int, curr_ind: int, path: list[int] ) -> bool: """ Checks whether it is possible to add next into path by validating 2 statements 1. There should be path between current and next vertex 2. Next vertex should not be in path If both validations succeed we return True, saying that it is possible to connect this vertices, otherwise we return False Case 1:Use exact graph as in main function, with initialized values >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> path = [0, -1, -1, -1, -1, 0] >>> curr_ind = 1 >>> next_ver = 1 >>> valid_connection(graph, next_ver, curr_ind, path) True Case 2: Same graph, but trying to connect to node that is already in path >>> path = [0, 1, 2, 4, -1, 0] >>> curr_ind = 4 >>> next_ver = 1 >>> valid_connection(graph, next_ver, curr_ind, path) False """ # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int) -> bool: """ Pseudo-Code Base Case: 1. Check if we visited all of vertices 1.1 If last visited vertex has path to starting vertex return True either return False Recursive Step: 2. Iterate over each vertex Check if next vertex is valid for transiting from current vertex 2.1 Remember next vertex as next transition 2.2 Do recursive call and check if going to this vertex solves problem 2.3 If next vertex leads to solution return True 2.4 Else backtrack, delete remembered vertex Case 1: Use exact graph as in main function, with initialized values >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> path = [0, -1, -1, -1, -1, 0] >>> curr_ind = 1 >>> util_hamilton_cycle(graph, path, curr_ind) True >>> print(path) [0, 1, 2, 4, 3, 0] Case 2: Use exact graph as in previous case, but in the properties taken from middle of calculation >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> path = [0, 1, 2, -1, -1, 0] >>> curr_ind = 3 >>> util_hamilton_cycle(graph, path, curr_ind) True >>> print(path) [0, 1, 2, 4, 3, 0] """ # Base Case if curr_ind == len(graph): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next in range(0, len(graph)): if valid_connection(graph, next, curr_ind, path): # Insert current vertex into path as next transition path[curr_ind] = next # Validate created path if util_hamilton_cycle(graph, path, curr_ind + 1): return True # Backtrack path[curr_ind] = -1 return False def hamilton_cycle(graph: list[list[int]], start_index: int = 0) -> list[int]: r""" Wrapper function to call subroutine called util_hamilton_cycle, which will either return array of vertices indicating hamiltonian cycle or an empty list indicating that hamiltonian cycle was not found. Case 1: Following graph consists of 5 edges. If we look closely, we can see that there are multiple Hamiltonian cycles. For example one result is when we iterate like: (0)->(1)->(2)->(4)->(3)->(0) (0)---(1)---(2) | / \ | | / \ | | / \ | |/ \| (3)---------(4) >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> hamilton_cycle(graph) [0, 1, 2, 4, 3, 0] Case 2: Same Graph as it was in Case 1, changed starting index from default to 3 (0)---(1)---(2) | / \ | | / \ | | / \ | |/ \| (3)---------(4) >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> hamilton_cycle(graph, 3) [3, 0, 1, 2, 4, 3] Case 3: Following Graph is exactly what it was before, but edge 3-4 is removed. Result is that there is no Hamiltonian Cycle anymore. (0)---(1)---(2) | / \ | | / \ | | / \ | |/ \| (3) (4) >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 0], ... [0, 1, 1, 0, 0]] >>> hamilton_cycle(graph,4) [] """ # Initialize path with -1, indicating that we have not visited them yet path = [-1] * (len(graph) + 1) # initialize start and end of path with starting index path[0] = path[-1] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(graph, path, 1) else []
""" A Hamiltonian cycle (Hamiltonian circuit) is a graph cycle through a graph that visits each node exactly once. Determining whether such paths and cycles exist in graphs is the 'Hamiltonian path problem', which is NP-complete. Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path """ def valid_connection( graph: list[list[int]], next_ver: int, curr_ind: int, path: list[int] ) -> bool: """ Checks whether it is possible to add next into path by validating 2 statements 1. There should be path between current and next vertex 2. Next vertex should not be in path If both validations succeed we return True, saying that it is possible to connect this vertices, otherwise we return False Case 1:Use exact graph as in main function, with initialized values >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> path = [0, -1, -1, -1, -1, 0] >>> curr_ind = 1 >>> next_ver = 1 >>> valid_connection(graph, next_ver, curr_ind, path) True Case 2: Same graph, but trying to connect to node that is already in path >>> path = [0, 1, 2, 4, -1, 0] >>> curr_ind = 4 >>> next_ver = 1 >>> valid_connection(graph, next_ver, curr_ind, path) False """ # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int) -> bool: """ Pseudo-Code Base Case: 1. Check if we visited all of vertices 1.1 If last visited vertex has path to starting vertex return True either return False Recursive Step: 2. Iterate over each vertex Check if next vertex is valid for transiting from current vertex 2.1 Remember next vertex as next transition 2.2 Do recursive call and check if going to this vertex solves problem 2.3 If next vertex leads to solution return True 2.4 Else backtrack, delete remembered vertex Case 1: Use exact graph as in main function, with initialized values >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> path = [0, -1, -1, -1, -1, 0] >>> curr_ind = 1 >>> util_hamilton_cycle(graph, path, curr_ind) True >>> print(path) [0, 1, 2, 4, 3, 0] Case 2: Use exact graph as in previous case, but in the properties taken from middle of calculation >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> path = [0, 1, 2, -1, -1, 0] >>> curr_ind = 3 >>> util_hamilton_cycle(graph, path, curr_ind) True >>> print(path) [0, 1, 2, 4, 3, 0] """ # Base Case if curr_ind == len(graph): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next in range(0, len(graph)): if valid_connection(graph, next, curr_ind, path): # Insert current vertex into path as next transition path[curr_ind] = next # Validate created path if util_hamilton_cycle(graph, path, curr_ind + 1): return True # Backtrack path[curr_ind] = -1 return False def hamilton_cycle(graph: list[list[int]], start_index: int = 0) -> list[int]: r""" Wrapper function to call subroutine called util_hamilton_cycle, which will either return array of vertices indicating hamiltonian cycle or an empty list indicating that hamiltonian cycle was not found. Case 1: Following graph consists of 5 edges. If we look closely, we can see that there are multiple Hamiltonian cycles. For example one result is when we iterate like: (0)->(1)->(2)->(4)->(3)->(0) (0)---(1)---(2) | / \ | | / \ | | / \ | |/ \| (3)---------(4) >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> hamilton_cycle(graph) [0, 1, 2, 4, 3, 0] Case 2: Same Graph as it was in Case 1, changed starting index from default to 3 (0)---(1)---(2) | / \ | | / \ | | / \ | |/ \| (3)---------(4) >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 1], ... [0, 1, 1, 1, 0]] >>> hamilton_cycle(graph, 3) [3, 0, 1, 2, 4, 3] Case 3: Following Graph is exactly what it was before, but edge 3-4 is removed. Result is that there is no Hamiltonian Cycle anymore. (0)---(1)---(2) | / \ | | / \ | | / \ | |/ \| (3) (4) >>> graph = [[0, 1, 0, 1, 0], ... [1, 0, 1, 1, 1], ... [0, 1, 0, 0, 1], ... [1, 1, 0, 0, 0], ... [0, 1, 1, 0, 0]] >>> hamilton_cycle(graph,4) [] """ # Initialize path with -1, indicating that we have not visited them yet path = [-1] * (len(graph) + 1) # initialize start and end of path with starting index path[0] = path[-1] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(graph, path, 1) else []
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations def n31(a: int) -> tuple[list[int], int]: """ Returns the Collatz sequence and its length of any positive integer. >>> n31(4) ([4, 2, 1], 3) """ if not isinstance(a, int): raise TypeError(f"Must be int, not {type(a).__name__}") if a < 1: raise ValueError(f"Given integer must be greater than 1, not {a}") path = [a] while a != 1: if a % 2 == 0: a = a // 2 else: a = 3 * a + 1 path += [a] return path, len(path) def test_n31(): """ >>> test_n31() """ assert n31(4) == ([4, 2, 1], 3) assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15) assert n31(31) == ( [ 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, ], 107, ) if __name__ == "__main__": num = 4 path, length = n31(num) print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}")
from __future__ import annotations def n31(a: int) -> tuple[list[int], int]: """ Returns the Collatz sequence and its length of any positive integer. >>> n31(4) ([4, 2, 1], 3) """ if not isinstance(a, int): raise TypeError(f"Must be int, not {type(a).__name__}") if a < 1: raise ValueError(f"Given integer must be greater than 1, not {a}") path = [a] while a != 1: if a % 2 == 0: a = a // 2 else: a = 3 * a + 1 path += [a] return path, len(path) def test_n31(): """ >>> test_n31() """ assert n31(4) == ([4, 2, 1], 3) assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15) assert n31(31) == ( [ 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, ], 107, ) if __name__ == "__main__": num = 4 path, length = n31(num) print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 """ Illustrate how to implement bucket sort algorithm. Author: OMKAR PATHAK This program will illustrate how to implement bucket sort algorithm Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a distribution sort, and is a cousin of radix sort in the most to least significant digit flavour. Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons and therefore can also be considered a comparison sort algorithm. The computational complexity estimates involve the number of buckets. Time Complexity of Solution: Worst case scenario occurs when all the elements are placed in a single bucket. The overall performance would then be dominated by the algorithm used to sort each bucket. In this case, O(n log n), because of TimSort Average Case O(n + (n^2)/k + k), where k is the number of buckets If k = O(n), time complexity is O(n) Source: https://en.wikipedia.org/wiki/Bucket_sort """ from __future__ import annotations def bucket_sort(my_list: list) -> list: """ >>> data = [-1, 2, -5, 0] >>> bucket_sort(data) == sorted(data) True >>> data = [9, 8, 7, 6, -12] >>> bucket_sort(data) == sorted(data) True >>> data = [.4, 1.2, .1, .2, -.9] >>> bucket_sort(data) == sorted(data) True >>> bucket_sort([]) == sorted([]) True >>> import random >>> collection = random.sample(range(-50, 50), 50) >>> bucket_sort(collection) == sorted(collection) True """ if len(my_list) == 0: return [] min_value, max_value = min(my_list), max(my_list) bucket_count = int(max_value - min_value) + 1 buckets: list[list] = [[] for _ in range(bucket_count)] for i in range(len(my_list)): buckets[(int(my_list[i] - min_value) // bucket_count)].append(my_list[i]) return [v for bucket in buckets for v in sorted(bucket)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
#!/usr/bin/env python3 """ Illustrate how to implement bucket sort algorithm. Author: OMKAR PATHAK This program will illustrate how to implement bucket sort algorithm Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a distribution sort, and is a cousin of radix sort in the most to least significant digit flavour. Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons and therefore can also be considered a comparison sort algorithm. The computational complexity estimates involve the number of buckets. Time Complexity of Solution: Worst case scenario occurs when all the elements are placed in a single bucket. The overall performance would then be dominated by the algorithm used to sort each bucket. In this case, O(n log n), because of TimSort Average Case O(n + (n^2)/k + k), where k is the number of buckets If k = O(n), time complexity is O(n) Source: https://en.wikipedia.org/wiki/Bucket_sort """ from __future__ import annotations def bucket_sort(my_list: list) -> list: """ >>> data = [-1, 2, -5, 0] >>> bucket_sort(data) == sorted(data) True >>> data = [9, 8, 7, 6, -12] >>> bucket_sort(data) == sorted(data) True >>> data = [.4, 1.2, .1, .2, -.9] >>> bucket_sort(data) == sorted(data) True >>> bucket_sort([]) == sorted([]) True >>> import random >>> collection = random.sample(range(-50, 50), 50) >>> bucket_sort(collection) == sorted(collection) True """ if len(my_list) == 0: return [] min_value, max_value = min(my_list), max(my_list) bucket_count = int(max_value - min_value) + 1 buckets: list[list] = [[] for _ in range(bucket_count)] for i in range(len(my_list)): buckets[(int(my_list[i] - min_value) // bucket_count)].append(my_list[i]) return [v for bucket in buckets for v in sorted(bucket)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Eulerian Path is a path in graph that visits every edge exactly once. # Eulerian Circuit is an Eulerian Path which starts and ends on the same # vertex. # time complexity is O(V+E) # space complexity is O(VE) # using dfs for finding eulerian path traversal def dfs(u, graph, visited_edge, path=None): path = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: visited_edge[u][v], visited_edge[v][u] = True, True path = dfs(v, graph, visited_edge, path) return path # for checking in graph has euler path or circuit def check_circuit_or_path(graph, max_node): odd_degree_nodes = 0 odd_node = -1 for i in range(max_node): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 odd_node = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def check_euler(graph, max_node): visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] check, odd_node = check_circuit_or_path(graph, max_node) if check == 3: print("graph is not Eulerian") print("no path") return start_node = 1 if check == 2: start_node = odd_node print("graph has a Euler path") if check == 1: print("graph has a Euler cycle") path = dfs(start_node, graph, visited_edge) print(path) def main(): G1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} G2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} G3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} G4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]} G5 = { 1: [], 2: [] # all degree is zero } max_node = 10 check_euler(G1, max_node) check_euler(G2, max_node) check_euler(G3, max_node) check_euler(G4, max_node) check_euler(G5, max_node) if __name__ == "__main__": main()
# Eulerian Path is a path in graph that visits every edge exactly once. # Eulerian Circuit is an Eulerian Path which starts and ends on the same # vertex. # time complexity is O(V+E) # space complexity is O(VE) # using dfs for finding eulerian path traversal def dfs(u, graph, visited_edge, path=None): path = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: visited_edge[u][v], visited_edge[v][u] = True, True path = dfs(v, graph, visited_edge, path) return path # for checking in graph has euler path or circuit def check_circuit_or_path(graph, max_node): odd_degree_nodes = 0 odd_node = -1 for i in range(max_node): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 odd_node = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def check_euler(graph, max_node): visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] check, odd_node = check_circuit_or_path(graph, max_node) if check == 3: print("graph is not Eulerian") print("no path") return start_node = 1 if check == 2: start_node = odd_node print("graph has a Euler path") if check == 1: print("graph has a Euler cycle") path = dfs(start_node, graph, visited_edge) print(path) def main(): G1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} G2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} G3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} G4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]} G5 = { 1: [], 2: [] # all degree is zero } max_node = 10 check_euler(G1, max_node) check_euler(G2, max_node) check_euler(G3, max_node) check_euler(G4, max_node) check_euler(G5, max_node) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
class things: def __init__(self, name, value, weight): self.name = name self.value = value self.weight = weight def __repr__(self): return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def get_value(self): return self.value def get_name(self): return self.name def get_weight(self): return self.weight def value_Weight(self): return self.value / self.weight def build_menu(name, value, weight): menu = [] for i in range(len(value)): menu.append(things(name[i], value[i], weight[i])) return menu def greedy(item, maxCost, keyFunc): itemsCopy = sorted(item, key=keyFunc, reverse=True) result = [] totalValue, total_cost = 0.0, 0.0 for i in range(len(itemsCopy)): if (total_cost + itemsCopy[i].get_weight()) <= maxCost: result.append(itemsCopy[i]) total_cost += itemsCopy[i].get_weight() totalValue += itemsCopy[i].get_value() return (result, totalValue) def test_greedy(): """ >>> food = ["Burger", "Pizza", "Coca Cola", "Rice", ... "Sambhar", "Chicken", "Fries", "Milk"] >>> value = [80, 100, 60, 70, 50, 110, 90, 60] >>> weight = [40, 60, 40, 70, 100, 85, 55, 70] >>> foods = build_menu(food, value, weight) >>> foods # doctest: +NORMALIZE_WHITESPACE [things(Burger, 80, 40), things(Pizza, 100, 60), things(Coca Cola, 60, 40), things(Rice, 70, 70), things(Sambhar, 50, 100), things(Chicken, 110, 85), things(Fries, 90, 55), things(Milk, 60, 70)] >>> greedy(foods, 500, things.get_value) # doctest: +NORMALIZE_WHITESPACE ([things(Chicken, 110, 85), things(Pizza, 100, 60), things(Fries, 90, 55), things(Burger, 80, 40), things(Rice, 70, 70), things(Coca Cola, 60, 40), things(Milk, 60, 70)], 570.0) """ if __name__ == "__main__": import doctest doctest.testmod()
class things: def __init__(self, name, value, weight): self.name = name self.value = value self.weight = weight def __repr__(self): return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def get_value(self): return self.value def get_name(self): return self.name def get_weight(self): return self.weight def value_Weight(self): return self.value / self.weight def build_menu(name, value, weight): menu = [] for i in range(len(value)): menu.append(things(name[i], value[i], weight[i])) return menu def greedy(item, maxCost, keyFunc): itemsCopy = sorted(item, key=keyFunc, reverse=True) result = [] totalValue, total_cost = 0.0, 0.0 for i in range(len(itemsCopy)): if (total_cost + itemsCopy[i].get_weight()) <= maxCost: result.append(itemsCopy[i]) total_cost += itemsCopy[i].get_weight() totalValue += itemsCopy[i].get_value() return (result, totalValue) def test_greedy(): """ >>> food = ["Burger", "Pizza", "Coca Cola", "Rice", ... "Sambhar", "Chicken", "Fries", "Milk"] >>> value = [80, 100, 60, 70, 50, 110, 90, 60] >>> weight = [40, 60, 40, 70, 100, 85, 55, 70] >>> foods = build_menu(food, value, weight) >>> foods # doctest: +NORMALIZE_WHITESPACE [things(Burger, 80, 40), things(Pizza, 100, 60), things(Coca Cola, 60, 40), things(Rice, 70, 70), things(Sambhar, 50, 100), things(Chicken, 110, 85), things(Fries, 90, 55), things(Milk, 60, 70)] >>> greedy(foods, 500, things.get_value) # doctest: +NORMALIZE_WHITESPACE ([things(Chicken, 110, 85), things(Pizza, 100, 60), things(Fries, 90, 55), things(Burger, 80, 40), things(Rice, 70, 70), things(Coca Cola, 60, 40), things(Milk, 60, 70)], 570.0) """ if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Created on Mon Feb 26 14:29:11 2018 @author: Christian Bender @license: MIT-license This module contains some useful classes and functions for dealing with linear algebra in python. Overview: - class Vector - function zeroVector(dimension) - function unitBasisVector(dimension,pos) - function axpy(scalar,vector1,vector2) - function randomVector(N,a,b) - class Matrix - function squareZeroMatrix(N) - function randomMatrix(W,H,a,b) """ from __future__ import annotations import math import random from typing import Collection, overload class Vector: """ This class represents a vector of arbitrary size. You need to give the vector components. Overview about the methods: constructor(components : list) : init the vector set(components : list) : changes the vector components. __str__() : toString method component(i : int): gets the i-th component (start by 0) __len__() : gets the size of the vector (number of components) euclidLength() : returns the euclidean length of the vector. operator + : vector addition operator - : vector subtraction operator * : scalar multiplication and dot product copy() : copies this vector and returns it. changeComponent(pos,value) : changes the specified component. TODO: compare-operator """ def __init__(self, components: Collection[float] | None = None) -> None: """ input: components or nothing simple constructor for init the vector """ if components is None: components = [] self.__components = list(components) def set(self, components: Collection[float]) -> None: """ input: new components changes the components of the vector. replace the components with newer one. """ if len(components) > 0: self.__components = list(components) else: raise Exception("please give any vector") def __str__(self) -> str: """ returns a string representation of the vector """ return "(" + ",".join(map(str, self.__components)) + ")" def component(self, i: int) -> float: """ input: index (start at 0) output: the i-th component of the vector. """ if type(i) is int and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("index out of range") def __len__(self) -> int: """ returns the size of the vector """ return len(self.__components) def euclidLength(self) -> float: """ returns the euclidean length of the vector """ summe: float = 0 for c in self.__components: summe += c ** 2 return math.sqrt(summe) def __add__(self, other: Vector) -> Vector: """ input: other vector assumes: other vector has the same size returns a new vector that represents the sum. """ size = len(self) if size == len(other): result = [self.__components[i] + other.component(i) for i in range(size)] return Vector(result) else: raise Exception("must have the same size") def __sub__(self, other: Vector) -> Vector: """ input: other vector assumes: other vector has the same size returns a new vector that represents the difference. """ size = len(self) if size == len(other): result = [self.__components[i] - other.component(i) for i in range(size)] return Vector(result) else: # error case raise Exception("must have the same size") @overload def __mul__(self, other: float) -> Vector: ... @overload def __mul__(self, other: Vector) -> float: ... def __mul__(self, other: float | Vector) -> float | Vector: """ mul implements the scalar multiplication and the dot-product """ if isinstance(other, float) or isinstance(other, int): ans = [c * other for c in self.__components] return Vector(ans) elif isinstance(other, Vector) and (len(self) == len(other)): size = len(self) summe: float = 0 for i in range(size): summe += self.__components[i] * other.component(i) return summe else: # error case raise Exception("invalid operand!") def magnitude(self) -> float: """ Magnitude of a Vector >>> Vector([2, 3, 4]).magnitude() 5.385164807134504 """ return sum([i ** 2 for i in self.__components]) ** (1 / 2) def angle(self, other: Vector, deg: bool = False) -> float: """ find angle between two Vector (self, Vector) >>> Vector([3, 4, -1]).angle(Vector([2, -1, 1])) 1.4906464636572374 >>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]), deg = True) 85.40775111366095 >>> Vector([3, 4, -1]).angle(Vector([2, -1])) Traceback (most recent call last): ... Exception: invalid operand! """ num = self * other den = self.magnitude() * other.magnitude() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def copy(self) -> Vector: """ copies this vector and returns it. """ return Vector(self.__components) def changeComponent(self, pos: int, value: float) -> None: """ input: an index (pos) and a value changes the specified component (pos) with the 'value' """ # precondition assert -len(self.__components) <= pos < len(self.__components) self.__components[pos] = value def zeroVector(dimension: int) -> Vector: """ returns a zero-vector of size 'dimension' """ # precondition assert isinstance(dimension, int) return Vector([0] * dimension) def unitBasisVector(dimension: int, pos: int) -> Vector: """ returns a unit basis vector with a One at index 'pos' (indexing at 0) """ # precondition assert isinstance(dimension, int) and (isinstance(pos, int)) ans = [0] * dimension ans[pos] = 1 return Vector(ans) def axpy(scalar: float, x: Vector, y: Vector) -> Vector: """ input: a 'scalar' and two vectors 'x' and 'y' output: a vector computes the axpy operation """ # precondition assert ( isinstance(x, Vector) and (isinstance(y, Vector)) and (isinstance(scalar, int) or isinstance(scalar, float)) ) return x * scalar + y def randomVector(N: int, a: int, b: int) -> Vector: """ input: size (N) of the vector. random range (a,b) output: returns a random vector of size N, with random integer components between 'a' and 'b'. """ random.seed(None) ans = [random.randint(a, b) for _ in range(N)] return Vector(ans) class Matrix: """ class: Matrix This class represents a arbitrary matrix. Overview about the methods: __str__() : returns a string representation operator * : implements the matrix vector multiplication implements the matrix-scalar multiplication. changeComponent(x,y,value) : changes the specified component. component(x,y) : returns the specified component. width() : returns the width of the matrix height() : returns the height of the matrix operator + : implements the matrix-addition. operator - _ implements the matrix-subtraction """ def __init__(self, matrix: list[list[float]], w: int, h: int) -> None: """ simple constructor for initializing the matrix with components. """ self.__matrix = matrix self.__width = w self.__height = h def __str__(self) -> str: """ returns a string representation of this matrix. """ ans = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def changeComponent(self, x: int, y: int, value: float) -> None: """ changes the x-y component of this matrix """ if 0 <= x < self.__height and 0 <= y < self.__width: self.__matrix[x][y] = value else: raise Exception("changeComponent: indices out of bounds") def component(self, x: int, y: int) -> float: """ returns the specified (x,y) component """ if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("changeComponent: indices out of bounds") def width(self) -> int: """ getter for the width """ return self.__width def height(self) -> int: """ getter for the height """ return self.__height def determinate(self) -> float: """ returns the determinate of an nxn matrix using Laplace expansion """ if self.__height == self.__width and self.__width >= 2: total = 0 if self.__width > 2: for x in range(0, self.__width): for y in range(0, self.__height): total += ( self.__matrix[x][y] * (-1) ** (x + y) * Matrix( self.__matrix[0:x] + self.__matrix[x + 1 :], self.__width - 1, self.__height - 1, ).determinate() ) else: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) return total else: raise Exception("matrix is not square") @overload def __mul__(self, other: float) -> Matrix: ... @overload def __mul__(self, other: Vector) -> Vector: ... def __mul__(self, other: float | Vector) -> Vector | Matrix: """ implements the matrix-vector multiplication. implements the matrix-scalar multiplication """ if isinstance(other, Vector): # vector-matrix if len(other) == self.__width: ans = zeroVector(self.__height) for i in range(self.__height): summe: float = 0 for j in range(self.__width): summe += other.component(j) * self.__matrix[i][j] ans.changeComponent(i, summe) summe = 0 return ans else: raise Exception( "vector must have the same size as the " + "number of columns of the matrix!" ) elif isinstance(other, int) or isinstance(other, float): # matrix-scalar matrix = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(matrix, self.__width, self.__height) def __add__(self, other: Matrix) -> Matrix: """ implements the matrix-addition. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] + other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def __sub__(self, other: Matrix) -> Matrix: """ implements the matrix-subtraction. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] - other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def squareZeroMatrix(N: int) -> Matrix: """ returns a square zero-matrix of dimension NxN """ ans: list[list[float]] = [[0] * N for _ in range(N)] return Matrix(ans, N, N) def randomMatrix(W: int, H: int, a: int, b: int) -> Matrix: """ returns a random matrix WxH with integer components between 'a' and 'b' """ random.seed(None) matrix: list[list[float]] = [ [random.randint(a, b) for _ in range(W)] for _ in range(H) ] return Matrix(matrix, W, H)
""" Created on Mon Feb 26 14:29:11 2018 @author: Christian Bender @license: MIT-license This module contains some useful classes and functions for dealing with linear algebra in python. Overview: - class Vector - function zeroVector(dimension) - function unitBasisVector(dimension,pos) - function axpy(scalar,vector1,vector2) - function randomVector(N,a,b) - class Matrix - function squareZeroMatrix(N) - function randomMatrix(W,H,a,b) """ from __future__ import annotations import math import random from typing import Collection, overload class Vector: """ This class represents a vector of arbitrary size. You need to give the vector components. Overview about the methods: constructor(components : list) : init the vector set(components : list) : changes the vector components. __str__() : toString method component(i : int): gets the i-th component (start by 0) __len__() : gets the size of the vector (number of components) euclidLength() : returns the euclidean length of the vector. operator + : vector addition operator - : vector subtraction operator * : scalar multiplication and dot product copy() : copies this vector and returns it. changeComponent(pos,value) : changes the specified component. TODO: compare-operator """ def __init__(self, components: Collection[float] | None = None) -> None: """ input: components or nothing simple constructor for init the vector """ if components is None: components = [] self.__components = list(components) def set(self, components: Collection[float]) -> None: """ input: new components changes the components of the vector. replace the components with newer one. """ if len(components) > 0: self.__components = list(components) else: raise Exception("please give any vector") def __str__(self) -> str: """ returns a string representation of the vector """ return "(" + ",".join(map(str, self.__components)) + ")" def component(self, i: int) -> float: """ input: index (start at 0) output: the i-th component of the vector. """ if type(i) is int and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("index out of range") def __len__(self) -> int: """ returns the size of the vector """ return len(self.__components) def euclidLength(self) -> float: """ returns the euclidean length of the vector """ summe: float = 0 for c in self.__components: summe += c ** 2 return math.sqrt(summe) def __add__(self, other: Vector) -> Vector: """ input: other vector assumes: other vector has the same size returns a new vector that represents the sum. """ size = len(self) if size == len(other): result = [self.__components[i] + other.component(i) for i in range(size)] return Vector(result) else: raise Exception("must have the same size") def __sub__(self, other: Vector) -> Vector: """ input: other vector assumes: other vector has the same size returns a new vector that represents the difference. """ size = len(self) if size == len(other): result = [self.__components[i] - other.component(i) for i in range(size)] return Vector(result) else: # error case raise Exception("must have the same size") @overload def __mul__(self, other: float) -> Vector: ... @overload def __mul__(self, other: Vector) -> float: ... def __mul__(self, other: float | Vector) -> float | Vector: """ mul implements the scalar multiplication and the dot-product """ if isinstance(other, float) or isinstance(other, int): ans = [c * other for c in self.__components] return Vector(ans) elif isinstance(other, Vector) and (len(self) == len(other)): size = len(self) summe: float = 0 for i in range(size): summe += self.__components[i] * other.component(i) return summe else: # error case raise Exception("invalid operand!") def magnitude(self) -> float: """ Magnitude of a Vector >>> Vector([2, 3, 4]).magnitude() 5.385164807134504 """ return sum([i ** 2 for i in self.__components]) ** (1 / 2) def angle(self, other: Vector, deg: bool = False) -> float: """ find angle between two Vector (self, Vector) >>> Vector([3, 4, -1]).angle(Vector([2, -1, 1])) 1.4906464636572374 >>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]), deg = True) 85.40775111366095 >>> Vector([3, 4, -1]).angle(Vector([2, -1])) Traceback (most recent call last): ... Exception: invalid operand! """ num = self * other den = self.magnitude() * other.magnitude() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def copy(self) -> Vector: """ copies this vector and returns it. """ return Vector(self.__components) def changeComponent(self, pos: int, value: float) -> None: """ input: an index (pos) and a value changes the specified component (pos) with the 'value' """ # precondition assert -len(self.__components) <= pos < len(self.__components) self.__components[pos] = value def zeroVector(dimension: int) -> Vector: """ returns a zero-vector of size 'dimension' """ # precondition assert isinstance(dimension, int) return Vector([0] * dimension) def unitBasisVector(dimension: int, pos: int) -> Vector: """ returns a unit basis vector with a One at index 'pos' (indexing at 0) """ # precondition assert isinstance(dimension, int) and (isinstance(pos, int)) ans = [0] * dimension ans[pos] = 1 return Vector(ans) def axpy(scalar: float, x: Vector, y: Vector) -> Vector: """ input: a 'scalar' and two vectors 'x' and 'y' output: a vector computes the axpy operation """ # precondition assert ( isinstance(x, Vector) and (isinstance(y, Vector)) and (isinstance(scalar, int) or isinstance(scalar, float)) ) return x * scalar + y def randomVector(N: int, a: int, b: int) -> Vector: """ input: size (N) of the vector. random range (a,b) output: returns a random vector of size N, with random integer components between 'a' and 'b'. """ random.seed(None) ans = [random.randint(a, b) for _ in range(N)] return Vector(ans) class Matrix: """ class: Matrix This class represents a arbitrary matrix. Overview about the methods: __str__() : returns a string representation operator * : implements the matrix vector multiplication implements the matrix-scalar multiplication. changeComponent(x,y,value) : changes the specified component. component(x,y) : returns the specified component. width() : returns the width of the matrix height() : returns the height of the matrix operator + : implements the matrix-addition. operator - _ implements the matrix-subtraction """ def __init__(self, matrix: list[list[float]], w: int, h: int) -> None: """ simple constructor for initializing the matrix with components. """ self.__matrix = matrix self.__width = w self.__height = h def __str__(self) -> str: """ returns a string representation of this matrix. """ ans = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def changeComponent(self, x: int, y: int, value: float) -> None: """ changes the x-y component of this matrix """ if 0 <= x < self.__height and 0 <= y < self.__width: self.__matrix[x][y] = value else: raise Exception("changeComponent: indices out of bounds") def component(self, x: int, y: int) -> float: """ returns the specified (x,y) component """ if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("changeComponent: indices out of bounds") def width(self) -> int: """ getter for the width """ return self.__width def height(self) -> int: """ getter for the height """ return self.__height def determinate(self) -> float: """ returns the determinate of an nxn matrix using Laplace expansion """ if self.__height == self.__width and self.__width >= 2: total = 0 if self.__width > 2: for x in range(0, self.__width): for y in range(0, self.__height): total += ( self.__matrix[x][y] * (-1) ** (x + y) * Matrix( self.__matrix[0:x] + self.__matrix[x + 1 :], self.__width - 1, self.__height - 1, ).determinate() ) else: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) return total else: raise Exception("matrix is not square") @overload def __mul__(self, other: float) -> Matrix: ... @overload def __mul__(self, other: Vector) -> Vector: ... def __mul__(self, other: float | Vector) -> Vector | Matrix: """ implements the matrix-vector multiplication. implements the matrix-scalar multiplication """ if isinstance(other, Vector): # vector-matrix if len(other) == self.__width: ans = zeroVector(self.__height) for i in range(self.__height): summe: float = 0 for j in range(self.__width): summe += other.component(j) * self.__matrix[i][j] ans.changeComponent(i, summe) summe = 0 return ans else: raise Exception( "vector must have the same size as the " + "number of columns of the matrix!" ) elif isinstance(other, int) or isinstance(other, float): # matrix-scalar matrix = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(matrix, self.__width, self.__height) def __add__(self, other: Matrix) -> Matrix: """ implements the matrix-addition. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] + other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def __sub__(self, other: Matrix) -> Matrix: """ implements the matrix-subtraction. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] - other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def squareZeroMatrix(N: int) -> Matrix: """ returns a square zero-matrix of dimension NxN """ ans: list[list[float]] = [[0] * N for _ in range(N)] return Matrix(ans, N, N) def randomMatrix(W: int, H: int, a: int, b: int) -> Matrix: """ returns a random matrix WxH with integer components between 'a' and 'b' """ random.seed(None) matrix: list[list[float]] = [ [random.randint(a, b) for _ in range(W)] for _ in range(H) ] return Matrix(matrix, W, H)
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 20: https://projecteuler.net/problem=20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! """ from math import factorial def solution(num: int = 100) -> int: """Returns the sum of the digits in the factorial of num >>> solution(1000) 10539 >>> solution(200) 1404 >>> solution(100) 648 >>> solution(50) 216 >>> solution(10) 27 >>> solution(5) 3 >>> solution(3) 6 >>> solution(2) 2 >>> solution(1) 1 >>> solution(0) 1 """ return sum(map(int, str(factorial(num)))) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
""" Problem 20: https://projecteuler.net/problem=20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! """ from math import factorial def solution(num: int = 100) -> int: """Returns the sum of the digits in the factorial of num >>> solution(1000) 10539 >>> solution(200) 1404 >>> solution(100) 648 >>> solution(50) 216 >>> solution(10) 27 >>> solution(5) 3 >>> solution(3) 6 >>> solution(2) 2 >>> solution(1) 1 >>> solution(0) 1 """ return sum(map(int, str(factorial(num)))) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def apply_table(inp, table): """ >>> apply_table("0123456789", list(range(10))) '9012345678' >>> apply_table("0123456789", list(range(9, -1, -1))) '8765432109' """ res = "" for i in table: res += inp[i - 1] return res def left_shift(data): """ >>> left_shift("0123456789") '1234567890' """ return data[1:] + data[0] def XOR(a, b): """ >>> XOR("01010101", "00001111") '01011010' """ res = "" for i in range(len(a)): if a[i] == b[i]: res += "0" else: res += "1" return res def apply_sbox(s, data): row = int("0b" + data[0] + data[-1], 2) col = int("0b" + data[1:3], 2) return bin(s[row][col])[2:] def function(expansion, s0, s1, key, message): left = message[:4] right = message[4:] temp = apply_table(right, expansion) temp = XOR(temp, key) l = apply_sbox(s0, temp[:4]) # noqa: E741 r = apply_sbox(s1, temp[4:]) l = "0" * (2 - len(l)) + l # noqa: E741 r = "0" * (2 - len(r)) + r temp = apply_table(l + r, p4_table) temp = XOR(left, temp) return temp + right if __name__ == "__main__": key = input("Enter 10 bit key: ") message = input("Enter 8 bit message: ") p8_table = [6, 3, 7, 4, 8, 5, 10, 9] p10_table = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] p4_table = [2, 4, 3, 1] IP = [2, 6, 3, 1, 4, 8, 5, 7] IP_inv = [4, 1, 3, 5, 7, 2, 8, 6] expansion = [4, 1, 2, 3, 2, 3, 4, 1] s0 = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] s1 = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation temp = apply_table(key, p10_table) left = temp[:5] right = temp[5:] left = left_shift(left) right = left_shift(right) key1 = apply_table(left + right, p8_table) left = left_shift(left) right = left_shift(right) left = left_shift(left) right = left_shift(right) key2 = apply_table(left + right, p8_table) # encryption temp = apply_table(message, IP) temp = function(expansion, s0, s1, key1, temp) temp = temp[4:] + temp[:4] temp = function(expansion, s0, s1, key2, temp) CT = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption temp = apply_table(CT, IP) temp = function(expansion, s0, s1, key2, temp) temp = temp[4:] + temp[:4] temp = function(expansion, s0, s1, key1, temp) PT = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
def apply_table(inp, table): """ >>> apply_table("0123456789", list(range(10))) '9012345678' >>> apply_table("0123456789", list(range(9, -1, -1))) '8765432109' """ res = "" for i in table: res += inp[i - 1] return res def left_shift(data): """ >>> left_shift("0123456789") '1234567890' """ return data[1:] + data[0] def XOR(a, b): """ >>> XOR("01010101", "00001111") '01011010' """ res = "" for i in range(len(a)): if a[i] == b[i]: res += "0" else: res += "1" return res def apply_sbox(s, data): row = int("0b" + data[0] + data[-1], 2) col = int("0b" + data[1:3], 2) return bin(s[row][col])[2:] def function(expansion, s0, s1, key, message): left = message[:4] right = message[4:] temp = apply_table(right, expansion) temp = XOR(temp, key) l = apply_sbox(s0, temp[:4]) # noqa: E741 r = apply_sbox(s1, temp[4:]) l = "0" * (2 - len(l)) + l # noqa: E741 r = "0" * (2 - len(r)) + r temp = apply_table(l + r, p4_table) temp = XOR(left, temp) return temp + right if __name__ == "__main__": key = input("Enter 10 bit key: ") message = input("Enter 8 bit message: ") p8_table = [6, 3, 7, 4, 8, 5, 10, 9] p10_table = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] p4_table = [2, 4, 3, 1] IP = [2, 6, 3, 1, 4, 8, 5, 7] IP_inv = [4, 1, 3, 5, 7, 2, 8, 6] expansion = [4, 1, 2, 3, 2, 3, 4, 1] s0 = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] s1 = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation temp = apply_table(key, p10_table) left = temp[:5] right = temp[5:] left = left_shift(left) right = left_shift(right) key1 = apply_table(left + right, p8_table) left = left_shift(left) right = left_shift(right) left = left_shift(left) right = left_shift(right) key2 = apply_table(left + right, p8_table) # encryption temp = apply_table(message, IP) temp = function(expansion, s0, s1, key1, temp) temp = temp[4:] + temp[:4] temp = function(expansion, s0, s1, key2, temp) CT = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption temp = apply_table(CT, IP) temp = function(expansion, s0, s1, key2, temp) temp = temp[4:] + temp[:4] temp = function(expansion, s0, s1, key1, temp) PT = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Random Forest Classifier Example from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import train_test_split def main(): """ Random Forest Classifier Example using sklearn function. Iris type dataset is used to demonstrate algorithm. """ # Load Iris dataset iris = load_iris() # Split dataset into train and test data X = iris["data"] # features Y = iris["target"] x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.3, random_state=1 ) # Random Forest Classifier rand_for = RandomForestClassifier(random_state=42, n_estimators=100) rand_for.fit(x_train, y_train) # Display Confusion Matrix of Classifier plot_confusion_matrix( rand_for, x_test, y_test, display_labels=iris["target_names"], cmap="Blues", normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset") plt.show() if __name__ == "__main__": main()
# Random Forest Classifier Example from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import train_test_split def main(): """ Random Forest Classifier Example using sklearn function. Iris type dataset is used to demonstrate algorithm. """ # Load Iris dataset iris = load_iris() # Split dataset into train and test data X = iris["data"] # features Y = iris["target"] x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.3, random_state=1 ) # Random Forest Classifier rand_for = RandomForestClassifier(random_state=42, n_estimators=100) rand_for.fit(x_train, y_train) # Display Confusion Matrix of Classifier plot_confusion_matrix( rand_for, x_test, y_test, display_labels=iris["target_names"], cmap="Blues", normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset") plt.show() if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" A pure Python implementation of the insertion sort algorithm This algorithm sorts a collection by comparing adjacent elements. When it finds that order is not respected, it moves the element compared backward until the order is correct. It then goes back directly to the element's initial position resuming forward comparison. For doctests run following command: python3 -m doctest -v insertion_sort.py For manual testing run: python3 insertion_sort.py """ def insertion_sort(collection: list) -> list: """A pure Python implementation of the insertion sort algorithm :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> insertion_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> insertion_sort([]) == sorted([]) True >>> insertion_sort([-2, -5, -45]) == sorted([-2, -5, -45]) True >>> insertion_sort(['d', 'a', 'b', 'e', 'c']) == sorted(['d', 'a', 'b', 'e', 'c']) True >>> import random >>> collection = random.sample(range(-50, 50), 100) >>> insertion_sort(collection) == sorted(collection) True >>> import string >>> collection = random.choices(string.ascii_letters + string.digits, k=100) >>> insertion_sort(collection) == sorted(collection) True """ for insert_index, insert_value in enumerate(collection[1:]): temp_index = insert_index while insert_index >= 0 and insert_value < collection[insert_index]: collection[insert_index + 1] = collection[insert_index] insert_index -= 1 if insert_index != temp_index: collection[insert_index + 1] = insert_value return collection if __name__ == "__main__": from doctest import testmod testmod() user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(f"{insertion_sort(unsorted) = }")
""" A pure Python implementation of the insertion sort algorithm This algorithm sorts a collection by comparing adjacent elements. When it finds that order is not respected, it moves the element compared backward until the order is correct. It then goes back directly to the element's initial position resuming forward comparison. For doctests run following command: python3 -m doctest -v insertion_sort.py For manual testing run: python3 insertion_sort.py """ def insertion_sort(collection: list) -> list: """A pure Python implementation of the insertion sort algorithm :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> insertion_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> insertion_sort([]) == sorted([]) True >>> insertion_sort([-2, -5, -45]) == sorted([-2, -5, -45]) True >>> insertion_sort(['d', 'a', 'b', 'e', 'c']) == sorted(['d', 'a', 'b', 'e', 'c']) True >>> import random >>> collection = random.sample(range(-50, 50), 100) >>> insertion_sort(collection) == sorted(collection) True >>> import string >>> collection = random.choices(string.ascii_letters + string.digits, k=100) >>> insertion_sort(collection) == sorted(collection) True """ for insert_index, insert_value in enumerate(collection[1:]): temp_index = insert_index while insert_index >= 0 and insert_value < collection[insert_index]: collection[insert_index + 1] = collection[insert_index] insert_index -= 1 if insert_index != temp_index: collection[insert_index + 1] = insert_value return collection if __name__ == "__main__": from doctest import testmod testmod() user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(f"{insertion_sort(unsorted) = }")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" In laser physics, a "white cell" is a mirror system that acts as a delay line for the laser beam. The beam enters the cell, bounces around on the mirrors, and eventually works its way back out. The specific white cell we will be considering is an ellipse with the equation 4x^2 + y^2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole.  The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the normal line at the point of incidence. In the figure on the left, the red line shows the first two points of contact between the laser beam and the wall of the white cell; the blue line shows the line tangent to the ellipse at the point of incidence of the first bounce. The slope m of the tangent line at any point (x,y) of the given ellipse is: m = −4x/y The normal line is perpendicular to this tangent line at the point of incidence. The animation on the right shows the first 10 reflections of the beam. How many times does the beam hit the internal surface of the white cell before exiting? """ from math import isclose, sqrt def next_point( point_x: float, point_y: float, incoming_gradient: float ) -> tuple[float, float, float]: """ Given that a laser beam hits the interior of the white cell at point (point_x, point_y) with gradient incoming_gradient, return a tuple (x,y,m1) where the next point of contact with the interior is (x,y) with gradient m1. >>> next_point(5.0, 0.0, 0.0) (-5.0, 0.0, 0.0) >>> next_point(5.0, 0.0, -2.0) (0.0, -10.0, 2.0) """ # normal_gradient = gradient of line through which the beam is reflected # outgoing_gradient = gradient of reflected line normal_gradient = point_y / 4 / point_x s2 = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) c2 = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) outgoing_gradient = (s2 - c2 * incoming_gradient) / (c2 + s2 * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 quadratic_term = outgoing_gradient ** 2 + 4 linear_term = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) constant_term = (point_y - outgoing_gradient * point_x) ** 2 - 100 x_minus = ( -linear_term - sqrt(linear_term ** 2 - 4 * quadratic_term * constant_term) ) / (2 * quadratic_term) x_plus = ( -linear_term + sqrt(linear_term ** 2 - 4 * quadratic_term * constant_term) ) / (2 * quadratic_term) # two solutions, one of which is our input point next_x = x_minus if isclose(x_plus, point_x) else x_plus next_y = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def solution(first_x_coord: float = 1.4, first_y_coord: float = -9.6) -> int: """ Return the number of times that the beam hits the interior wall of the cell before exiting. >>> solution(0.00001,-10) 1 >>> solution(5, 0) 287 """ num_reflections: int = 0 point_x: float = first_x_coord point_y: float = first_y_coord gradient: float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): point_x, point_y, gradient = next_point(point_x, point_y, gradient) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"{solution() = }")
""" In laser physics, a "white cell" is a mirror system that acts as a delay line for the laser beam. The beam enters the cell, bounces around on the mirrors, and eventually works its way back out. The specific white cell we will be considering is an ellipse with the equation 4x^2 + y^2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole.  The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the normal line at the point of incidence. In the figure on the left, the red line shows the first two points of contact between the laser beam and the wall of the white cell; the blue line shows the line tangent to the ellipse at the point of incidence of the first bounce. The slope m of the tangent line at any point (x,y) of the given ellipse is: m = −4x/y The normal line is perpendicular to this tangent line at the point of incidence. The animation on the right shows the first 10 reflections of the beam. How many times does the beam hit the internal surface of the white cell before exiting? """ from math import isclose, sqrt def next_point( point_x: float, point_y: float, incoming_gradient: float ) -> tuple[float, float, float]: """ Given that a laser beam hits the interior of the white cell at point (point_x, point_y) with gradient incoming_gradient, return a tuple (x,y,m1) where the next point of contact with the interior is (x,y) with gradient m1. >>> next_point(5.0, 0.0, 0.0) (-5.0, 0.0, 0.0) >>> next_point(5.0, 0.0, -2.0) (0.0, -10.0, 2.0) """ # normal_gradient = gradient of line through which the beam is reflected # outgoing_gradient = gradient of reflected line normal_gradient = point_y / 4 / point_x s2 = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) c2 = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) outgoing_gradient = (s2 - c2 * incoming_gradient) / (c2 + s2 * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 quadratic_term = outgoing_gradient ** 2 + 4 linear_term = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) constant_term = (point_y - outgoing_gradient * point_x) ** 2 - 100 x_minus = ( -linear_term - sqrt(linear_term ** 2 - 4 * quadratic_term * constant_term) ) / (2 * quadratic_term) x_plus = ( -linear_term + sqrt(linear_term ** 2 - 4 * quadratic_term * constant_term) ) / (2 * quadratic_term) # two solutions, one of which is our input point next_x = x_minus if isclose(x_plus, point_x) else x_plus next_y = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def solution(first_x_coord: float = 1.4, first_y_coord: float = -9.6) -> int: """ Return the number of times that the beam hits the interior wall of the cell before exiting. >>> solution(0.00001,-10) 1 >>> solution(5, 0) 287 """ num_reflections: int = 0 point_x: float = first_x_coord point_y: float = first_y_coord gradient: float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): point_x, point_y, gradient = next_point(point_x, point_y, gradient) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Segmented Sieve.""" import math def sieve(n): """Segmented Sieve.""" in_prime = [] start = 2 end = int(math.sqrt(n)) # Size of every segment temp = [True] * (end + 1) prime = [] while start <= end: if temp[start] is True: in_prime.append(start) for i in range(start * start, end + 1, start): if temp[i] is True: temp[i] = False start += 1 prime += in_prime low = end + 1 high = low + end - 1 if high > n: high = n while low <= n: temp = [True] * (high - low + 1) for each in in_prime: t = math.floor(low / each) * each if t < low: t += each for j in range(t, high + 1, each): temp[j - low] = False for j in range(len(temp)): if temp[j] is True: prime.append(j + low) low = high + 1 high = low + end - 1 if high > n: high = n return prime print(sieve(10 ** 6))
"""Segmented Sieve.""" import math def sieve(n): """Segmented Sieve.""" in_prime = [] start = 2 end = int(math.sqrt(n)) # Size of every segment temp = [True] * (end + 1) prime = [] while start <= end: if temp[start] is True: in_prime.append(start) for i in range(start * start, end + 1, start): if temp[i] is True: temp[i] = False start += 1 prime += in_prime low = end + 1 high = low + end - 1 if high > n: high = n while low <= n: temp = [True] * (high - low + 1) for each in in_prime: t = math.floor(low / each) * each if t < low: t += each for j in range(t, high + 1, each): temp[j - low] = False for j in range(len(temp)): if temp[j] is True: prime.append(j + low) low = high + 1 high = low + end - 1 if high > n: high = n return prime print(sieve(10 ** 6))
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations import random class Dice: NUM_SIDES = 6 def __init__(self): """Initialize a six sided dice""" self.sides = list(range(1, Dice.NUM_SIDES + 1)) def roll(self): return random.choice(self.sides) def _str_(self): return "Fair Dice" def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]: """ Return probability list of all possible sums when throwing dice. >>> random.seed(0) >>> throw_dice(10, 1) [10.0, 0.0, 30.0, 50.0, 10.0, 0.0] >>> throw_dice(100, 1) [19.0, 17.0, 17.0, 11.0, 23.0, 13.0] >>> throw_dice(1000, 1) [18.8, 15.5, 16.3, 17.6, 14.2, 17.6] >>> throw_dice(10000, 1) [16.35, 16.89, 16.93, 16.6, 16.52, 16.71] >>> throw_dice(10000, 2) [2.74, 5.6, 7.99, 11.26, 13.92, 16.7, 14.44, 10.63, 8.05, 5.92, 2.75] """ dices = [Dice() for i in range(num_dice)] count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1) for i in range(num_throws): count_of_sum[sum(dice.roll() for dice in dices)] += 1 probability = [round((count * 100) / num_throws, 2) for count in count_of_sum] return probability[num_dice:] # remove probability of sums that never appear if __name__ == "__main__": import doctest doctest.testmod()
from __future__ import annotations import random class Dice: NUM_SIDES = 6 def __init__(self): """Initialize a six sided dice""" self.sides = list(range(1, Dice.NUM_SIDES + 1)) def roll(self): return random.choice(self.sides) def _str_(self): return "Fair Dice" def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]: """ Return probability list of all possible sums when throwing dice. >>> random.seed(0) >>> throw_dice(10, 1) [10.0, 0.0, 30.0, 50.0, 10.0, 0.0] >>> throw_dice(100, 1) [19.0, 17.0, 17.0, 11.0, 23.0, 13.0] >>> throw_dice(1000, 1) [18.8, 15.5, 16.3, 17.6, 14.2, 17.6] >>> throw_dice(10000, 1) [16.35, 16.89, 16.93, 16.6, 16.52, 16.71] >>> throw_dice(10000, 2) [2.74, 5.6, 7.99, 11.26, 13.92, 16.7, 14.44, 10.63, 8.05, 5.92, 2.75] """ dices = [Dice() for i in range(num_dice)] count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1) for i in range(num_throws): count_of_sum[sum(dice.roll() for dice in dices)] += 1 probability = [round((count * 100) / num_throws, 2) for count in count_of_sum] return probability[num_dice:] # remove probability of sums that never appear if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 """ Created by sarathkaul on 14/11/19 Updated by lawric1 on 24/11/20 Authentication will be made via access token. To generate your personal access token visit https://github.com/settings/tokens. NOTE: Never hardcode any credential information in the code. Always use an environment file to store the private information and use the `os` module to get the information during runtime. Create a ".env" file in the root directory and write these two lines in that file with your token:: #!/usr/bin/env bash export USER_TOKEN="" """ from __future__ import annotations import os from typing import Any import requests BASE_URL = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user AUTHENTICATED_USER_ENDPOINT = BASE_URL + "/user" # https://github.com/settings/tokens USER_TOKEN = os.environ.get("USER_TOKEN", "") def fetch_github_info(auth_token: str) -> dict[Any, Any]: """ Fetch GitHub info of a user using the requests module """ headers = { "Authorization": f"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(AUTHENTICATED_USER_ENDPOINT, headers=headers).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
#!/usr/bin/env python3 """ Created by sarathkaul on 14/11/19 Updated by lawric1 on 24/11/20 Authentication will be made via access token. To generate your personal access token visit https://github.com/settings/tokens. NOTE: Never hardcode any credential information in the code. Always use an environment file to store the private information and use the `os` module to get the information during runtime. Create a ".env" file in the root directory and write these two lines in that file with your token:: #!/usr/bin/env bash export USER_TOKEN="" """ from __future__ import annotations import os from typing import Any import requests BASE_URL = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user AUTHENTICATED_USER_ENDPOINT = BASE_URL + "/user" # https://github.com/settings/tokens USER_TOKEN = os.environ.get("USER_TOKEN", "") def fetch_github_info(auth_token: str) -> dict[Any, Any]: """ Fetch GitHub info of a user using the requests module """ headers = { "Authorization": f"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(AUTHENTICATED_USER_ENDPOINT, headers=headers).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Algorithm for calculating the most cost-efficient sequence for converting one string into another. The only allowed operations are --- Cost to copy a character is copy_cost --- Cost to replace a character is replace_cost --- Cost to delete a character is delete_cost --- Cost to insert a character is insert_cost """ def compute_transform_tables( source_string: str, destination_string: str, copy_cost: int, replace_cost: int, delete_cost: int, insert_cost: int, ) -> tuple[list[list[int]], list[list[str]]]: source_seq = list(source_string) destination_seq = list(destination_string) len_source_seq = len(source_seq) len_destination_seq = len(destination_seq) costs = [ [0 for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1) ] ops = [ ["0" for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1) ] for i in range(1, len_source_seq + 1): costs[i][0] = i * delete_cost ops[i][0] = "D%c" % source_seq[i - 1] for i in range(1, len_destination_seq + 1): costs[0][i] = i * insert_cost ops[0][i] = "I%c" % destination_seq[i - 1] for i in range(1, len_source_seq + 1): for j in range(1, len_destination_seq + 1): if source_seq[i - 1] == destination_seq[j - 1]: costs[i][j] = costs[i - 1][j - 1] + copy_cost ops[i][j] = "C%c" % source_seq[i - 1] else: costs[i][j] = costs[i - 1][j - 1] + replace_cost ops[i][j] = "R%c" % source_seq[i - 1] + str(destination_seq[j - 1]) if costs[i - 1][j] + delete_cost < costs[i][j]: costs[i][j] = costs[i - 1][j] + delete_cost ops[i][j] = "D%c" % source_seq[i - 1] if costs[i][j - 1] + insert_cost < costs[i][j]: costs[i][j] = costs[i][j - 1] + insert_cost ops[i][j] = "I%c" % destination_seq[j - 1] return costs, ops def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]: if i == 0 and j == 0: return [] else: if ops[i][j][0] == "C" or ops[i][j][0] == "R": seq = assemble_transformation(ops, i - 1, j - 1) seq.append(ops[i][j]) return seq elif ops[i][j][0] == "D": seq = assemble_transformation(ops, i - 1, j) seq.append(ops[i][j]) return seq else: seq = assemble_transformation(ops, i, j - 1) seq.append(ops[i][j]) return seq if __name__ == "__main__": _, operations = compute_transform_tables("Python", "Algorithms", -1, 1, 2, 2) m = len(operations) n = len(operations[0]) sequence = assemble_transformation(operations, m - 1, n - 1) string = list("Python") i = 0 cost = 0 with open("min_cost.txt", "w") as file: for op in sequence: print("".join(string)) if op[0] == "C": file.write("%-16s" % "Copy %c" % op[1]) file.write("\t\t\t" + "".join(string)) file.write("\r\n") cost -= 1 elif op[0] == "R": string[i] = op[2] file.write("%-16s" % ("Replace %c" % op[1] + " with " + str(op[2]))) file.write("\t\t" + "".join(string)) file.write("\r\n") cost += 1 elif op[0] == "D": string.pop(i) file.write("%-16s" % "Delete %c" % op[1]) file.write("\t\t\t" + "".join(string)) file.write("\r\n") cost += 2 else: string.insert(i, op[1]) file.write("%-16s" % "Insert %c" % op[1]) file.write("\t\t\t" + "".join(string)) file.write("\r\n") cost += 2 i += 1 print("".join(string)) print("Cost: ", cost) file.write("\r\nMinimum cost: " + str(cost))
""" Algorithm for calculating the most cost-efficient sequence for converting one string into another. The only allowed operations are --- Cost to copy a character is copy_cost --- Cost to replace a character is replace_cost --- Cost to delete a character is delete_cost --- Cost to insert a character is insert_cost """ def compute_transform_tables( source_string: str, destination_string: str, copy_cost: int, replace_cost: int, delete_cost: int, insert_cost: int, ) -> tuple[list[list[int]], list[list[str]]]: source_seq = list(source_string) destination_seq = list(destination_string) len_source_seq = len(source_seq) len_destination_seq = len(destination_seq) costs = [ [0 for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1) ] ops = [ ["0" for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1) ] for i in range(1, len_source_seq + 1): costs[i][0] = i * delete_cost ops[i][0] = "D%c" % source_seq[i - 1] for i in range(1, len_destination_seq + 1): costs[0][i] = i * insert_cost ops[0][i] = "I%c" % destination_seq[i - 1] for i in range(1, len_source_seq + 1): for j in range(1, len_destination_seq + 1): if source_seq[i - 1] == destination_seq[j - 1]: costs[i][j] = costs[i - 1][j - 1] + copy_cost ops[i][j] = "C%c" % source_seq[i - 1] else: costs[i][j] = costs[i - 1][j - 1] + replace_cost ops[i][j] = "R%c" % source_seq[i - 1] + str(destination_seq[j - 1]) if costs[i - 1][j] + delete_cost < costs[i][j]: costs[i][j] = costs[i - 1][j] + delete_cost ops[i][j] = "D%c" % source_seq[i - 1] if costs[i][j - 1] + insert_cost < costs[i][j]: costs[i][j] = costs[i][j - 1] + insert_cost ops[i][j] = "I%c" % destination_seq[j - 1] return costs, ops def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]: if i == 0 and j == 0: return [] else: if ops[i][j][0] == "C" or ops[i][j][0] == "R": seq = assemble_transformation(ops, i - 1, j - 1) seq.append(ops[i][j]) return seq elif ops[i][j][0] == "D": seq = assemble_transformation(ops, i - 1, j) seq.append(ops[i][j]) return seq else: seq = assemble_transformation(ops, i, j - 1) seq.append(ops[i][j]) return seq if __name__ == "__main__": _, operations = compute_transform_tables("Python", "Algorithms", -1, 1, 2, 2) m = len(operations) n = len(operations[0]) sequence = assemble_transformation(operations, m - 1, n - 1) string = list("Python") i = 0 cost = 0 with open("min_cost.txt", "w") as file: for op in sequence: print("".join(string)) if op[0] == "C": file.write("%-16s" % "Copy %c" % op[1]) file.write("\t\t\t" + "".join(string)) file.write("\r\n") cost -= 1 elif op[0] == "R": string[i] = op[2] file.write("%-16s" % ("Replace %c" % op[1] + " with " + str(op[2]))) file.write("\t\t" + "".join(string)) file.write("\r\n") cost += 1 elif op[0] == "D": string.pop(i) file.write("%-16s" % "Delete %c" % op[1]) file.write("\t\t\t" + "".join(string)) file.write("\r\n") cost += 2 else: string.insert(i, op[1]) file.write("%-16s" % "Insert %c" % op[1]) file.write("\t\t\t" + "".join(string)) file.write("\r\n") cost += 2 i += 1 print("".join(string)) print("Cost: ", cost) file.write("\r\nMinimum cost: " + str(cost))
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a Python implementation for questions involving task assignments between people. Here Bitmasking and DP are used for solving this. Question :- We have N tasks and M people. Each person in M can do only certain of these tasks. Also a person can do only one task and a task is performed only by one person. Find the total no of ways in which the tasks can be distributed. """ from collections import defaultdict class AssignmentUsingBitmask: def __init__(self, task_performed, total): self.total_tasks = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 self.dp = [ [-1 for i in range(total + 1)] for j in range(2 ** len(task_performed)) ] self.task = defaultdict(list) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 self.final_mask = (1 << len(task_performed)) - 1 def CountWaysUtil(self, mask, task_no): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement total_ways_util = self.CountWaysUtil(mask, task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.CountWaysUtil(mask | (1 << p), task_no + 1) # save the value. self.dp[mask][task_no] = total_ways_util return self.dp[mask][task_no] def countNoOfWays(self, task_performed): # Store the list of persons for each task for i in range(len(task_performed)): for j in task_performed[i]: self.task[j].append(i) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.CountWaysUtil(0, 1) if __name__ == "__main__": total_tasks = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. task_performed = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).countNoOfWays( task_performed ) ) """ For the particular example the tasks can be distributed as (1,2,3), (1,2,4), (1,5,3), (1,5,4), (3,1,4), (3,2,4), (3,5,4), (4,1,3), (4,2,3), (4,5,3) total 10 """
""" This is a Python implementation for questions involving task assignments between people. Here Bitmasking and DP are used for solving this. Question :- We have N tasks and M people. Each person in M can do only certain of these tasks. Also a person can do only one task and a task is performed only by one person. Find the total no of ways in which the tasks can be distributed. """ from collections import defaultdict class AssignmentUsingBitmask: def __init__(self, task_performed, total): self.total_tasks = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 self.dp = [ [-1 for i in range(total + 1)] for j in range(2 ** len(task_performed)) ] self.task = defaultdict(list) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 self.final_mask = (1 << len(task_performed)) - 1 def CountWaysUtil(self, mask, task_no): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement total_ways_util = self.CountWaysUtil(mask, task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.CountWaysUtil(mask | (1 << p), task_no + 1) # save the value. self.dp[mask][task_no] = total_ways_util return self.dp[mask][task_no] def countNoOfWays(self, task_performed): # Store the list of persons for each task for i in range(len(task_performed)): for j in task_performed[i]: self.task[j].append(i) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.CountWaysUtil(0, 1) if __name__ == "__main__": total_tasks = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. task_performed = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).countNoOfWays( task_performed ) ) """ For the particular example the tasks can be distributed as (1,2,3), (1,2,4), (1,5,3), (1,5,4), (3,1,4), (3,2,4), (3,5,4), (4,1,3), (4,2,3), (4,5,3) total 10 """
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Implementation of regular expression matching with support for '.' and '*'. '.' Matches any single character. '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). """ def match_pattern(input_string: str, pattern: str) -> bool: """ uses bottom-up dynamic programming solution for matching the input string with a given pattern. Runtime: O(len(input_string)*len(pattern)) Arguments -------- input_string: str, any string which should be compared with the pattern pattern: str, the string that represents a pattern and may contain '.' for single character matches and '*' for zero or more of preceding character matches Note ---- the pattern cannot start with a '*', because there should be at least one character before * Returns ------- A Boolean denoting whether the given string follows the pattern Examples ------- >>> match_pattern("aab", "c*a*b") True >>> match_pattern("dabc", "*abc") False >>> match_pattern("aaa", "aa") False >>> match_pattern("aaa", "a.a") True >>> match_pattern("aaab", "aa*") False >>> match_pattern("aaab", ".*") True >>> match_pattern("a", "bbbb") False >>> match_pattern("", "bbbb") False >>> match_pattern("a", "") False >>> match_pattern("", "") True """ len_string = len(input_string) + 1 len_pattern = len(pattern) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. dp = [[0 for i in range(len_pattern)] for j in range(len_string)] # since string of zero length match pattern of zero length dp[0][0] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1, len_string): dp[i][0] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, len_pattern): dp[0][j] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, len_string): for j in range(1, len_pattern): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": dp[i][j] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: dp[i][j] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): dp[i][j] = dp[i - 1][j] else: dp[i][j] = 0 else: dp[i][j] = 0 return bool(dp[-1][-1]) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") input_string = "aab" pattern = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"{input_string} matches the given pattern {pattern}") else: print(f"{input_string} does not match with the given pattern {pattern}")
""" Implementation of regular expression matching with support for '.' and '*'. '.' Matches any single character. '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). """ def match_pattern(input_string: str, pattern: str) -> bool: """ uses bottom-up dynamic programming solution for matching the input string with a given pattern. Runtime: O(len(input_string)*len(pattern)) Arguments -------- input_string: str, any string which should be compared with the pattern pattern: str, the string that represents a pattern and may contain '.' for single character matches and '*' for zero or more of preceding character matches Note ---- the pattern cannot start with a '*', because there should be at least one character before * Returns ------- A Boolean denoting whether the given string follows the pattern Examples ------- >>> match_pattern("aab", "c*a*b") True >>> match_pattern("dabc", "*abc") False >>> match_pattern("aaa", "aa") False >>> match_pattern("aaa", "a.a") True >>> match_pattern("aaab", "aa*") False >>> match_pattern("aaab", ".*") True >>> match_pattern("a", "bbbb") False >>> match_pattern("", "bbbb") False >>> match_pattern("a", "") False >>> match_pattern("", "") True """ len_string = len(input_string) + 1 len_pattern = len(pattern) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. dp = [[0 for i in range(len_pattern)] for j in range(len_string)] # since string of zero length match pattern of zero length dp[0][0] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1, len_string): dp[i][0] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, len_pattern): dp[0][j] = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, len_string): for j in range(1, len_pattern): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": dp[i][j] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: dp[i][j] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): dp[i][j] = dp[i - 1][j] else: dp[i][j] = 0 else: dp[i][j] = 0 return bool(dp[-1][-1]) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") input_string = "aab" pattern = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"{input_string} matches the given pattern {pattern}") else: print(f"{input_string} does not match with the given pattern {pattern}")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Picks the random index as the pivot """ import random def partition(A, left_index, right_index): pivot = A[left_index] i = left_index + 1 for j in range(left_index + 1, right_index): if A[j] < pivot: A[j], A[i] = A[i], A[j] i += 1 A[left_index], A[i - 1] = A[i - 1], A[left_index] return i - 1 def quick_sort_random(A, left, right): if left < right: pivot = random.randint(left, right - 1) A[pivot], A[left] = ( A[left], A[pivot], ) # switches the pivot with the left most bound pivot_index = partition(A, left, right) quick_sort_random( A, left, pivot_index ) # recursive quicksort to the left of the pivot point quick_sort_random( A, pivot_index + 1, right ) # recursive quicksort to the right of the pivot point def main(): user_input = input("Enter numbers separated by a comma:\n").strip() arr = [int(item) for item in user_input.split(",")] quick_sort_random(arr, 0, len(arr)) print(arr) if __name__ == "__main__": main()
""" Picks the random index as the pivot """ import random def partition(A, left_index, right_index): pivot = A[left_index] i = left_index + 1 for j in range(left_index + 1, right_index): if A[j] < pivot: A[j], A[i] = A[i], A[j] i += 1 A[left_index], A[i - 1] = A[i - 1], A[left_index] return i - 1 def quick_sort_random(A, left, right): if left < right: pivot = random.randint(left, right - 1) A[pivot], A[left] = ( A[left], A[pivot], ) # switches the pivot with the left most bound pivot_index = partition(A, left, right) quick_sort_random( A, left, pivot_index ) # recursive quicksort to the left of the pivot point quick_sort_random( A, pivot_index + 1, right ) # recursive quicksort to the right of the pivot point def main(): user_input = input("Enter numbers separated by a comma:\n").strip() arr = [int(item) for item in user_input.split(",")] quick_sort_random(arr, 0, len(arr)) print(arr) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://projecteuler.net/problem=51 Prime digit replacements Problem 51 By replacing the 1st digit of the 2-digit number *3, it turns out that six of the nine possible values: 13, 23, 43, 53, 73, and 83, are all prime. By replacing the 3rd and 4th digits of 56**3 with the same digit, this 5-digit number is the first example having seven primes among the ten generated numbers, yielding the family: 56003, 56113, 56333, 56443, 56663, 56773, and 56993. Consequently 56003, being the first member of this family, is the smallest prime with this property. Find the smallest prime which, by replacing part of the number (not necessarily adjacent digits) with the same digit, is part of an eight prime value family. """ from __future__ import annotations from collections import Counter def prime_sieve(n: int) -> list[int]: """ Sieve of Erotosthenes Function to return all the prime numbers up to a certain number https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes >>> prime_sieve(3) [2] >>> prime_sieve(50) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] """ is_prime = [True] * n is_prime[0] = False is_prime[1] = False is_prime[2] = True for i in range(3, int(n ** 0.5 + 1), 2): index = i * 2 while index < n: is_prime[index] = False index = index + i primes = [2] for i in range(3, n, 2): if is_prime[i]: primes.append(i) return primes def digit_replacements(number: int) -> list[list[int]]: """ Returns all the possible families of digit replacements in a number which contains at least one repeating digit >>> digit_replacements(544) [[500, 511, 522, 533, 544, 555, 566, 577, 588, 599]] >>> digit_replacements(3112) [[3002, 3112, 3222, 3332, 3442, 3552, 3662, 3772, 3882, 3992]] """ number_str = str(number) replacements = [] digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] for duplicate in Counter(number_str) - Counter(set(number_str)): family = [int(number_str.replace(duplicate, digit)) for digit in digits] replacements.append(family) return replacements def solution(family_length: int = 8) -> int: """ Returns the solution of the problem >>> solution(2) 229399 >>> solution(3) 221311 """ numbers_checked = set() # Filter primes with less than 3 replaceable digits primes = { x for x in set(prime_sieve(1_000_000)) if len(str(x)) - len(set(str(x))) >= 3 } for prime in primes: if prime in numbers_checked: continue replacements = digit_replacements(prime) for family in replacements: numbers_checked.update(family) primes_in_family = primes.intersection(family) if len(primes_in_family) != family_length: continue return min(primes_in_family) return -1 if __name__ == "__main__": print(solution())
""" https://projecteuler.net/problem=51 Prime digit replacements Problem 51 By replacing the 1st digit of the 2-digit number *3, it turns out that six of the nine possible values: 13, 23, 43, 53, 73, and 83, are all prime. By replacing the 3rd and 4th digits of 56**3 with the same digit, this 5-digit number is the first example having seven primes among the ten generated numbers, yielding the family: 56003, 56113, 56333, 56443, 56663, 56773, and 56993. Consequently 56003, being the first member of this family, is the smallest prime with this property. Find the smallest prime which, by replacing part of the number (not necessarily adjacent digits) with the same digit, is part of an eight prime value family. """ from __future__ import annotations from collections import Counter def prime_sieve(n: int) -> list[int]: """ Sieve of Erotosthenes Function to return all the prime numbers up to a certain number https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes >>> prime_sieve(3) [2] >>> prime_sieve(50) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] """ is_prime = [True] * n is_prime[0] = False is_prime[1] = False is_prime[2] = True for i in range(3, int(n ** 0.5 + 1), 2): index = i * 2 while index < n: is_prime[index] = False index = index + i primes = [2] for i in range(3, n, 2): if is_prime[i]: primes.append(i) return primes def digit_replacements(number: int) -> list[list[int]]: """ Returns all the possible families of digit replacements in a number which contains at least one repeating digit >>> digit_replacements(544) [[500, 511, 522, 533, 544, 555, 566, 577, 588, 599]] >>> digit_replacements(3112) [[3002, 3112, 3222, 3332, 3442, 3552, 3662, 3772, 3882, 3992]] """ number_str = str(number) replacements = [] digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] for duplicate in Counter(number_str) - Counter(set(number_str)): family = [int(number_str.replace(duplicate, digit)) for digit in digits] replacements.append(family) return replacements def solution(family_length: int = 8) -> int: """ Returns the solution of the problem >>> solution(2) 229399 >>> solution(3) 221311 """ numbers_checked = set() # Filter primes with less than 3 replaceable digits primes = { x for x in set(prime_sieve(1_000_000)) if len(str(x)) - len(set(str(x))) >= 3 } for prime in primes: if prime in numbers_checked: continue replacements = digit_replacements(prime) for family in replacements: numbers_checked.update(family) primes_in_family = primes.intersection(family) if len(primes_in_family) != family_length: continue return min(primes_in_family) return -1 if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/python """ The Fisher–Yates shuffle is an algorithm for generating a random permutation of a finite sequence. For more details visit wikipedia/Fischer-Yates-Shuffle. """ import random def fisher_yates_shuffle(data: list) -> list: for _ in range(len(list)): a = random.randint(0, len(list) - 1) b = random.randint(0, len(list) - 1) list[a], list[b] = list[b], list[a] return list if __name__ == "__main__": integers = [0, 1, 2, 3, 4, 5, 6, 7] strings = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
#!/usr/bin/python """ The Fisher–Yates shuffle is an algorithm for generating a random permutation of a finite sequence. For more details visit wikipedia/Fischer-Yates-Shuffle. """ import random def fisher_yates_shuffle(data: list) -> list: for _ in range(len(list)): a = random.randint(0, len(list) - 1) b = random.randint(0, len(list) - 1) list[a], list[b] = list[b], list[a] return list if __name__ == "__main__": integers = [0, 1, 2, 3, 4, 5, 6, 7] strings = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 6: https://projecteuler.net/problem=6 Sum square difference The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ import math def solution(n: int = 100) -> int: """ Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. >>> solution(10) 2640 >>> solution(15) 13160 >>> solution(20) 41230 >>> solution(50) 1582700 """ sum_of_squares = sum(i * i for i in range(1, n + 1)) square_of_sum = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 6: https://projecteuler.net/problem=6 Sum square difference The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ import math def solution(n: int = 100) -> int: """ Returns the difference between the sum of the squares of the first n natural numbers and the square of the sum. >>> solution(10) 2640 >>> solution(15) 13160 >>> solution(20) 41230 >>> solution(50) 1582700 """ sum_of_squares = sum(i * i for i in range(1, n + 1)) square_of_sum = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Numerical integration or quadrature for a smooth function f with known values at x_i This method is the classical approach of suming 'Equally Spaced Abscissas' method 2: "Simpson Rule" """ def method_2(boundary, steps): # "Simpson Rule" # int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] x_i = make_points(a, b, h) y = 0.0 y += (h / 3.0) * f(a) cnt = 2 for i in x_i: y += (h / 3) * (4 - 2 * (cnt % 2)) * f(i) cnt += 1 y += (h / 3.0) * f(b) return y def make_points(a, b, h): x = a + h while x < (b - h): yield x x = x + h def f(x): # enter your function here y = (x - 0) * (x - 0) return y def main(): a = 0.0 # Lower bound of integration b = 1.0 # Upper bound of integration steps = 10.0 # define number of steps or resolution boundary = [a, b] # define boundary of integration y = method_2(boundary, steps) print(f"y = {y}") if __name__ == "__main__": main()
""" Numerical integration or quadrature for a smooth function f with known values at x_i This method is the classical approach of suming 'Equally Spaced Abscissas' method 2: "Simpson Rule" """ def method_2(boundary, steps): # "Simpson Rule" # int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn) h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] x_i = make_points(a, b, h) y = 0.0 y += (h / 3.0) * f(a) cnt = 2 for i in x_i: y += (h / 3) * (4 - 2 * (cnt % 2)) * f(i) cnt += 1 y += (h / 3.0) * f(b) return y def make_points(a, b, h): x = a + h while x < (b - h): yield x x = x + h def f(x): # enter your function here y = (x - 0) * (x - 0) return y def main(): a = 0.0 # Lower bound of integration b = 1.0 # Upper bound of integration steps = 10.0 # define number of steps or resolution boundary = [a, b] # define boundary of integration y = method_2(boundary, steps) print(f"y = {y}") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
hex_table = {hex(i)[2:]: i for i in range(16)} # Use [:2] to strip off the leading '0x' def hex_to_decimal(hex_string: str) -> int: """ Convert a hexadecimal value to its decimal equivalent #https://www.programiz.com/python-programming/methods/built-in/hex >>> hex_to_decimal("a") 10 >>> hex_to_decimal("12f") 303 >>> hex_to_decimal(" 12f ") 303 >>> hex_to_decimal("FfFf") 65535 >>> hex_to_decimal("-Ff") -255 >>> hex_to_decimal("F-f") Traceback (most recent call last): ... ValueError: Non-hexadecimal value was passed to the function >>> hex_to_decimal("") Traceback (most recent call last): ... ValueError: Empty string was passed to the function >>> hex_to_decimal("12m") Traceback (most recent call last): ... ValueError: Non-hexadecimal value was passed to the function """ hex_string = hex_string.strip().lower() if not hex_string: raise ValueError("Empty string was passed to the function") is_negative = hex_string[0] == "-" if is_negative: hex_string = hex_string[1:] if not all(char in hex_table for char in hex_string): raise ValueError("Non-hexadecimal value was passed to the function") decimal_number = 0 for char in hex_string: decimal_number = 16 * decimal_number + hex_table[char] return -decimal_number if is_negative else decimal_number if __name__ == "__main__": from doctest import testmod testmod()
hex_table = {hex(i)[2:]: i for i in range(16)} # Use [:2] to strip off the leading '0x' def hex_to_decimal(hex_string: str) -> int: """ Convert a hexadecimal value to its decimal equivalent #https://www.programiz.com/python-programming/methods/built-in/hex >>> hex_to_decimal("a") 10 >>> hex_to_decimal("12f") 303 >>> hex_to_decimal(" 12f ") 303 >>> hex_to_decimal("FfFf") 65535 >>> hex_to_decimal("-Ff") -255 >>> hex_to_decimal("F-f") Traceback (most recent call last): ... ValueError: Non-hexadecimal value was passed to the function >>> hex_to_decimal("") Traceback (most recent call last): ... ValueError: Empty string was passed to the function >>> hex_to_decimal("12m") Traceback (most recent call last): ... ValueError: Non-hexadecimal value was passed to the function """ hex_string = hex_string.strip().lower() if not hex_string: raise ValueError("Empty string was passed to the function") is_negative = hex_string[0] == "-" if is_negative: hex_string = hex_string[1:] if not all(char in hex_table for char in hex_string): raise ValueError("Non-hexadecimal value was passed to the function") decimal_number = 0 for char in hex_string: decimal_number = 16 * decimal_number + hex_table[char] return -decimal_number if is_negative else decimal_number if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Implementation of Basic Math in Python.""" import math def prime_factors(n: int) -> list: """Find Prime Factors. >>> prime_factors(100) [2, 2, 5, 5] >>> prime_factors(0) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors >>> prime_factors(-10) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors """ if n <= 0: raise ValueError("Only positive integers have prime factors") pf = [] while n % 2 == 0: pf.append(2) n = int(n / 2) for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: pf.append(i) n = int(n / i) if n > 2: pf.append(n) return pf def number_of_divisors(n: int) -> int: """Calculate Number of Divisors of an Integer. >>> number_of_divisors(100) 9 >>> number_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> number_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") div = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) div *= temp for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) div *= temp return div def sum_of_divisors(n: int) -> int: """Calculate Sum of Divisors. >>> sum_of_divisors(100) 217 >>> sum_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> sum_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") s = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) if temp > 1: s *= (2 ** temp - 1) / (2 - 1) for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) if temp > 1: s *= (i ** temp - 1) / (i - 1) return int(s) def euler_phi(n: int) -> int: """Calculate Euler's Phi Function. >>> euler_phi(100) 40 """ s = n for x in set(prime_factors(n)): s *= (x - 1) / x return int(s) if __name__ == "__main__": import doctest doctest.testmod()
"""Implementation of Basic Math in Python.""" import math def prime_factors(n: int) -> list: """Find Prime Factors. >>> prime_factors(100) [2, 2, 5, 5] >>> prime_factors(0) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors >>> prime_factors(-10) Traceback (most recent call last): ... ValueError: Only positive integers have prime factors """ if n <= 0: raise ValueError("Only positive integers have prime factors") pf = [] while n % 2 == 0: pf.append(2) n = int(n / 2) for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: pf.append(i) n = int(n / i) if n > 2: pf.append(n) return pf def number_of_divisors(n: int) -> int: """Calculate Number of Divisors of an Integer. >>> number_of_divisors(100) 9 >>> number_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> number_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") div = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) div *= temp for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) div *= temp return div def sum_of_divisors(n: int) -> int: """Calculate Sum of Divisors. >>> sum_of_divisors(100) 217 >>> sum_of_divisors(0) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted >>> sum_of_divisors(-10) Traceback (most recent call last): ... ValueError: Only positive numbers are accepted """ if n <= 0: raise ValueError("Only positive numbers are accepted") s = 1 temp = 1 while n % 2 == 0: temp += 1 n = int(n / 2) if temp > 1: s *= (2 ** temp - 1) / (2 - 1) for i in range(3, int(math.sqrt(n)) + 1, 2): temp = 1 while n % i == 0: temp += 1 n = int(n / i) if temp > 1: s *= (i ** temp - 1) / (i - 1) return int(s) def euler_phi(n: int) -> int: """Calculate Euler's Phi Function. >>> euler_phi(100) 40 """ s = n for x in set(prime_factors(n)): s *= (x - 1) / x return int(s) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 75: https://projecteuler.net/problem=75 It turns out that 12 cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples. 12 cm: (3,4,5) 24 cm: (6,8,10) 30 cm: (5,12,13) 36 cm: (9,12,15) 40 cm: (8,15,17) 48 cm: (12,16,20) In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using 120 cm it is possible to form exactly three different integer sided right angle triangles. 120 cm: (30,40,50), (20,48,52), (24,45,51) Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed? Solution: we generate all pythagorean triples using Euclid's formula and keep track of the frequencies of the perimeters. Reference: https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple """ from collections import defaultdict from math import gcd from typing import DefaultDict def solution(limit: int = 1500000) -> int: """ Return the number of values of L <= limit such that a wire of length L can be formmed into an integer sided right angle triangle in exactly one way. >>> solution(50) 6 >>> solution(1000) 112 >>> solution(50000) 5502 """ frequencies: DefaultDict = defaultdict(int) euclid_m = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, euclid_m, 2): if gcd(euclid_m, euclid_n) > 1: continue primitive_perimeter = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(primitive_perimeter, limit + 1, primitive_perimeter): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 75: https://projecteuler.net/problem=75 It turns out that 12 cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples. 12 cm: (3,4,5) 24 cm: (6,8,10) 30 cm: (5,12,13) 36 cm: (9,12,15) 40 cm: (8,15,17) 48 cm: (12,16,20) In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using 120 cm it is possible to form exactly three different integer sided right angle triangles. 120 cm: (30,40,50), (20,48,52), (24,45,51) Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed? Solution: we generate all pythagorean triples using Euclid's formula and keep track of the frequencies of the perimeters. Reference: https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple """ from collections import defaultdict from math import gcd from typing import DefaultDict def solution(limit: int = 1500000) -> int: """ Return the number of values of L <= limit such that a wire of length L can be formmed into an integer sided right angle triangle in exactly one way. >>> solution(50) 6 >>> solution(1000) 112 >>> solution(50000) 5502 """ frequencies: DefaultDict = defaultdict(int) euclid_m = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, euclid_m, 2): if gcd(euclid_m, euclid_n) > 1: continue primitive_perimeter = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(primitive_perimeter, limit + 1, primitive_perimeter): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/python """ A Framework of Back Propagation Neural Network(BP) model Easy to use: * add many layers as you want !!! * clearly see how the loss decreasing Easy to expand: * more activation functions * more loss functions * more optimization method Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23 """ import numpy as np from matplotlib import pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-1 * x)) class DenseLayer: """ Layers of BP neural network """ def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): """ common connected layer of bp network :param units: numbers of neural units :param activation: activation function :param learning_rate: learning rate for paras :param is_input_layer: whether it is input layer or not """ self.units = units self.weight = None self.bias = None self.activation = activation if learning_rate is None: learning_rate = 0.3 self.learn_rate = learning_rate self.is_input_layer = is_input_layer def initializer(self, back_units): self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units))) self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T if self.activation is None: self.activation = sigmoid def cal_gradient(self): # activation function may be sigmoid or linear if self.activation == sigmoid: gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation def forward_propagation(self, xdata): self.xdata = xdata if self.is_input_layer: # input layer self.wx_plus_b = xdata self.output = xdata return xdata else: self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output def back_propagation(self, gradient): gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient, self._gradient_x).T # upgrade: the Negative gradient direction self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T # updates the weights and bias according to learning rate (0.3 if undefined) return self.gradient class BPNN: """ Back Propagation Neural Network model """ def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() self.ax_loss = self.fig_loss.add_subplot(1, 1, 1) def add_layer(self, layer): self.layers.append(layer) def build(self): for i, layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: layer.initializer(self.layers[i - 1].units) def summary(self): for i, layer in enumerate(self.layers[:]): print("------- layer %d -------" % i) print("weight.shape ", np.shape(layer.weight)) print("bias.shape ", np.shape(layer.bias)) def train(self, xdata, ydata, train_round, accuracy): self.train_round = train_round self.accuracy = accuracy self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1) x_shape = np.shape(xdata) for round_i in range(train_round): all_loss = 0 for row in range(x_shape[0]): _xdata = np.asmatrix(xdata[row, :]).T _ydata = np.asmatrix(ydata[row, :]).T # forward propagation for layer in self.layers: _xdata = layer.forward_propagation(_xdata) loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss # back propagation: the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) mse = all_loss / x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: print("----达到精度----") return mse def cal_loss(self, ydata, ydata_): self.loss = np.sum(np.power((ydata - ydata_), 2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) return self.loss, self.loss_gradient def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) self.ax_loss.plot(self.train_mse, "r-") plt.ion() plt.xlabel("step") plt.ylabel("loss") plt.show() plt.pause(0.1) def example(): x = np.random.randn(10, 10) y = np.asarray( [ [0.8, 0.4], [0.4, 0.3], [0.34, 0.45], [0.67, 0.32], [0.88, 0.67], [0.78, 0.77], [0.55, 0.66], [0.55, 0.43], [0.54, 0.1], [0.1, 0.5], ] ) model = BPNN() for i in (10, 20, 30, 2): model.add_layer(DenseLayer(i)) model.build() model.summary() model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01) if __name__ == "__main__": example()
#!/usr/bin/python """ A Framework of Back Propagation Neural Network(BP) model Easy to use: * add many layers as you want !!! * clearly see how the loss decreasing Easy to expand: * more activation functions * more loss functions * more optimization method Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23 """ import numpy as np from matplotlib import pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-1 * x)) class DenseLayer: """ Layers of BP neural network """ def __init__( self, units, activation=None, learning_rate=None, is_input_layer=False ): """ common connected layer of bp network :param units: numbers of neural units :param activation: activation function :param learning_rate: learning rate for paras :param is_input_layer: whether it is input layer or not """ self.units = units self.weight = None self.bias = None self.activation = activation if learning_rate is None: learning_rate = 0.3 self.learn_rate = learning_rate self.is_input_layer = is_input_layer def initializer(self, back_units): self.weight = np.asmatrix(np.random.normal(0, 0.5, (self.units, back_units))) self.bias = np.asmatrix(np.random.normal(0, 0.5, self.units)).T if self.activation is None: self.activation = sigmoid def cal_gradient(self): # activation function may be sigmoid or linear if self.activation == sigmoid: gradient_mat = np.dot(self.output, (1 - self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation def forward_propagation(self, xdata): self.xdata = xdata if self.is_input_layer: # input layer self.wx_plus_b = xdata self.output = xdata return xdata else: self.wx_plus_b = np.dot(self.weight, self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output def back_propagation(self, gradient): gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T, gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight self.gradient_weight = np.dot(gradient.T, self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient, self._gradient_x).T # upgrade: the Negative gradient direction self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T # updates the weights and bias according to learning rate (0.3 if undefined) return self.gradient class BPNN: """ Back Propagation Neural Network model """ def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() self.ax_loss = self.fig_loss.add_subplot(1, 1, 1) def add_layer(self, layer): self.layers.append(layer) def build(self): for i, layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: layer.initializer(self.layers[i - 1].units) def summary(self): for i, layer in enumerate(self.layers[:]): print("------- layer %d -------" % i) print("weight.shape ", np.shape(layer.weight)) print("bias.shape ", np.shape(layer.bias)) def train(self, xdata, ydata, train_round, accuracy): self.train_round = train_round self.accuracy = accuracy self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1) x_shape = np.shape(xdata) for round_i in range(train_round): all_loss = 0 for row in range(x_shape[0]): _xdata = np.asmatrix(xdata[row, :]).T _ydata = np.asmatrix(ydata[row, :]).T # forward propagation for layer in self.layers: _xdata = layer.forward_propagation(_xdata) loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss # back propagation: the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) mse = all_loss / x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: print("----达到精度----") return mse def cal_loss(self, ydata, ydata_): self.loss = np.sum(np.power((ydata - ydata_), 2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) return self.loss, self.loss_gradient def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) self.ax_loss.plot(self.train_mse, "r-") plt.ion() plt.xlabel("step") plt.ylabel("loss") plt.show() plt.pause(0.1) def example(): x = np.random.randn(10, 10) y = np.asarray( [ [0.8, 0.4], [0.4, 0.3], [0.34, 0.45], [0.67, 0.32], [0.88, 0.67], [0.78, 0.77], [0.55, 0.66], [0.55, 0.43], [0.54, 0.1], [0.1, 0.5], ] ) model = BPNN() for i in (10, 20, 30, 2): model.add_layer(DenseLayer(i)) model.build() model.summary() model.train(xdata=x, ydata=y, train_round=100, accuracy=0.01) if __name__ == "__main__": example()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 119: https://projecteuler.net/problem=119 Name: Digit power sum The number 512 is interesting because it is equal to the sum of its digits raised to some power: 5 + 1 + 2 = 8, and 8^3 = 512. Another example of a number with this property is 614656 = 28^4. We shall define an to be the nth term of this sequence and insist that a number must contain at least two digits to have a sum. You are given that a2 = 512 and a10 = 614656. Find a30 """ import math def digit_sum(n: int) -> int: """ Returns the sum of the digits of the number. >>> digit_sum(123) 6 >>> digit_sum(456) 15 >>> digit_sum(78910) 25 """ return sum(int(digit) for digit in str(n)) def solution(n: int = 30) -> int: """ Returns the value of 30th digit power sum. >>> solution(2) 512 >>> solution(5) 5832 >>> solution(10) 614656 """ digit_to_powers = [] for digit in range(2, 100): for power in range(2, 100): number = int(math.pow(digit, power)) if digit == digit_sum(number): digit_to_powers.append(number) digit_to_powers.sort() return digit_to_powers[n - 1] if __name__ == "__main__": print(solution())
""" Problem 119: https://projecteuler.net/problem=119 Name: Digit power sum The number 512 is interesting because it is equal to the sum of its digits raised to some power: 5 + 1 + 2 = 8, and 8^3 = 512. Another example of a number with this property is 614656 = 28^4. We shall define an to be the nth term of this sequence and insist that a number must contain at least two digits to have a sum. You are given that a2 = 512 and a10 = 614656. Find a30 """ import math def digit_sum(n: int) -> int: """ Returns the sum of the digits of the number. >>> digit_sum(123) 6 >>> digit_sum(456) 15 >>> digit_sum(78910) 25 """ return sum(int(digit) for digit in str(n)) def solution(n: int = 30) -> int: """ Returns the value of 30th digit power sum. >>> solution(2) 512 >>> solution(5) 5832 >>> solution(10) 614656 """ digit_to_powers = [] for digit in range(2, 100): for power in range(2, 100): number = int(math.pow(digit, power)) if digit == digit_sum(number): digit_to_powers.append(number) digit_to_powers.sort() return digit_to_powers[n - 1] if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This program print the matrix in spiral form. This problem has been solved through recursive way. Matrix must satisfy below conditions i) matrix should be only one or two dimensional ii) number of column of all rows should be equal """ from collections.abc import Iterable def check_matrix(matrix): # must be if matrix and isinstance(matrix, Iterable): if isinstance(matrix[0], Iterable): prev_len = 0 for row in matrix: if prev_len == 0: prev_len = len(row) result = True else: result = prev_len == len(row) else: result = True else: result = False return result def spiralPrint(a): if check_matrix(a) and len(a) > 0: matRow = len(a) if isinstance(a[0], Iterable): matCol = len(a[0]) else: for dat in a: print(dat), return # horizotal printing increasing for i in range(0, matCol): print(a[0][i]), # vertical printing down for i in range(1, matRow): print(a[i][matCol - 1]), # horizotal printing decreasing if matRow > 1: for i in range(matCol - 2, -1, -1): print(a[matRow - 1][i]), # vertical printing up for i in range(matRow - 2, 0, -1): print(a[i][0]), remainMat = [row[1 : matCol - 1] for row in a[1 : matRow - 1]] if len(remainMat) > 0: spiralPrint(remainMat) else: return else: print("Not a valid matrix") return # driver code if __name__ == "__main__": a = ([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]) spiralPrint(a)
""" This program print the matrix in spiral form. This problem has been solved through recursive way. Matrix must satisfy below conditions i) matrix should be only one or two dimensional ii) number of column of all rows should be equal """ from collections.abc import Iterable def check_matrix(matrix): # must be if matrix and isinstance(matrix, Iterable): if isinstance(matrix[0], Iterable): prev_len = 0 for row in matrix: if prev_len == 0: prev_len = len(row) result = True else: result = prev_len == len(row) else: result = True else: result = False return result def spiralPrint(a): if check_matrix(a) and len(a) > 0: matRow = len(a) if isinstance(a[0], Iterable): matCol = len(a[0]) else: for dat in a: print(dat), return # horizotal printing increasing for i in range(0, matCol): print(a[0][i]), # vertical printing down for i in range(1, matRow): print(a[i][matCol - 1]), # horizotal printing decreasing if matRow > 1: for i in range(matCol - 2, -1, -1): print(a[matRow - 1][i]), # vertical printing up for i in range(matRow - 2, 0, -1): print(a[i][0]), remainMat = [row[1 : matCol - 1] for row in a[1 : matRow - 1]] if len(remainMat) > 0: spiralPrint(remainMat) else: return else: print("Not a valid matrix") return # driver code if __name__ == "__main__": a = ([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]) spiralPrint(a)
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" this is code for forecasting but i modified it and used it for safety checker of data for ex: you have a online shop and for some reason some data are missing (the amount of data that u expected are not supposed to be) then we can use it *ps : 1. ofc we can use normal statistic method but in this case the data is quite absurd and only a little^^ 2. ofc u can use this and modified it for forecasting purpose for the next 3 months sales or something, u can just adjust it for ur own purpose """ import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def linear_regression_prediction( train_dt: list, train_usr: list, train_mtch: list, test_dt: list, test_mtch: list ) -> float: """ First method: linear regression input : training data (date, total_user, total_event) in list of float output : list of total user prediction in float >>> n = linear_regression_prediction([2,3,4,5], [5,3,4,6], [3,1,2,4], [2,1], [2,2]) >>> abs(n - 5.0) < 1e-6 # Checking precision because of floating point errors True """ x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)]) y = np.array(train_usr) beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def sarimax_predictor(train_user: list, train_match: list, test_match: list) -> float: """ second method: Sarimax sarimax is a statistic method which using previous input and learn its pattern to predict future data input : training data (total_user, with exog data = total_event) in list of float output : list of total user prediction in float >>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2]) 6.6666671111109626 """ order = (1, 2, 1) seasonal_order = (1, 1, 0, 7) model = SARIMAX( train_user, exog=train_match, order=order, seasonal_order=seasonal_order ) model_fit = model.fit(disp=False, maxiter=600, method="nm") result = model_fit.predict(1, len(test_match), exog=[test_match]) return result[0] def support_vector_regressor(x_train: list, x_test: list, train_user: list) -> float: """ Third method: Support vector regressor svr is quite the same with svm(support vector machine) it uses the same principles as the SVM for classification, with only a few minor differences and the only different is that it suits better for regression purpose input : training data (date, total_user, total_event) in list of float where x = list of set (date and total event) output : list of total user prediction in float >>> support_vector_regressor([[5,2],[1,5],[6,2]], [[3,2]], [2,1,4]) 1.634932078116079 """ regressor = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1) regressor.fit(x_train, train_user) y_pred = regressor.predict(x_test) return y_pred[0] def interquartile_range_checker(train_user: list) -> float: """ Optional method: interquatile range input : list of total user in float output : low limit of input in float this method can be used to check whether some data is outlier or not >>> interquartile_range_checker([1,2,3,4,5,6,7,8,9,10]) 2.8 """ train_user.sort() q1 = np.percentile(train_user, 25) q3 = np.percentile(train_user, 75) iqr = q3 - q1 low_lim = q1 - (iqr * 0.1) return low_lim def data_safety_checker(list_vote: list, actual_result: float) -> None: """ Used to review all the votes (list result prediction) and compare it to the actual result. input : list of predictions output : print whether it's safe or not >>> data_safety_checker([2,3,4],5.0) Today's data is not safe. """ safe = 0 not_safe = 0 for i in list_vote: if i > actual_result: safe = not_safe + 1 else: if abs(abs(i) - abs(actual_result)) <= 0.1: safe = safe + 1 else: not_safe = not_safe + 1 print(f"Today's data is {'not ' if safe <= not_safe else ''}safe.") # data_input_df = pd.read_csv("ex_data.csv", header=None) data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] data_input_df = pd.DataFrame(data_input, columns=["total_user", "total_even", "days"]) """ data column = total user in a day, how much online event held in one day, what day is that(sunday-saturday) """ # start normalization normalize_df = Normalizer().fit_transform(data_input_df.values) # split data total_date = normalize_df[:, 2].tolist() total_user = normalize_df[:, 0].tolist() total_match = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) x = normalize_df[:, [1, 2]].tolist() x_train = x[: len(x) - 1] x_test = x[len(x) - 1 :] # for linear reression & sarimax trn_date = total_date[: len(total_date) - 1] trn_user = total_user[: len(total_user) - 1] trn_match = total_match[: len(total_match) - 1] tst_date = total_date[len(total_date) - 1 :] tst_user = total_user[len(total_user) - 1 :] tst_match = total_match[len(total_match) - 1 :] # voting system with forecasting res_vote = [] res_vote.append( linear_regression_prediction(trn_date, trn_user, trn_match, tst_date, tst_match) ) res_vote.append(sarimax_predictor(trn_user, trn_match, tst_match)) res_vote.append(support_vector_regressor(x_train, x_test, trn_user)) # check the safety of todays'data^^ data_safety_checker(res_vote, tst_user)
""" this is code for forecasting but i modified it and used it for safety checker of data for ex: you have a online shop and for some reason some data are missing (the amount of data that u expected are not supposed to be) then we can use it *ps : 1. ofc we can use normal statistic method but in this case the data is quite absurd and only a little^^ 2. ofc u can use this and modified it for forecasting purpose for the next 3 months sales or something, u can just adjust it for ur own purpose """ import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def linear_regression_prediction( train_dt: list, train_usr: list, train_mtch: list, test_dt: list, test_mtch: list ) -> float: """ First method: linear regression input : training data (date, total_user, total_event) in list of float output : list of total user prediction in float >>> n = linear_regression_prediction([2,3,4,5], [5,3,4,6], [3,1,2,4], [2,1], [2,2]) >>> abs(n - 5.0) < 1e-6 # Checking precision because of floating point errors True """ x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)]) y = np.array(train_usr) beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def sarimax_predictor(train_user: list, train_match: list, test_match: list) -> float: """ second method: Sarimax sarimax is a statistic method which using previous input and learn its pattern to predict future data input : training data (total_user, with exog data = total_event) in list of float output : list of total user prediction in float >>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2]) 6.6666671111109626 """ order = (1, 2, 1) seasonal_order = (1, 1, 0, 7) model = SARIMAX( train_user, exog=train_match, order=order, seasonal_order=seasonal_order ) model_fit = model.fit(disp=False, maxiter=600, method="nm") result = model_fit.predict(1, len(test_match), exog=[test_match]) return result[0] def support_vector_regressor(x_train: list, x_test: list, train_user: list) -> float: """ Third method: Support vector regressor svr is quite the same with svm(support vector machine) it uses the same principles as the SVM for classification, with only a few minor differences and the only different is that it suits better for regression purpose input : training data (date, total_user, total_event) in list of float where x = list of set (date and total event) output : list of total user prediction in float >>> support_vector_regressor([[5,2],[1,5],[6,2]], [[3,2]], [2,1,4]) 1.634932078116079 """ regressor = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1) regressor.fit(x_train, train_user) y_pred = regressor.predict(x_test) return y_pred[0] def interquartile_range_checker(train_user: list) -> float: """ Optional method: interquatile range input : list of total user in float output : low limit of input in float this method can be used to check whether some data is outlier or not >>> interquartile_range_checker([1,2,3,4,5,6,7,8,9,10]) 2.8 """ train_user.sort() q1 = np.percentile(train_user, 25) q3 = np.percentile(train_user, 75) iqr = q3 - q1 low_lim = q1 - (iqr * 0.1) return low_lim def data_safety_checker(list_vote: list, actual_result: float) -> None: """ Used to review all the votes (list result prediction) and compare it to the actual result. input : list of predictions output : print whether it's safe or not >>> data_safety_checker([2,3,4],5.0) Today's data is not safe. """ safe = 0 not_safe = 0 for i in list_vote: if i > actual_result: safe = not_safe + 1 else: if abs(abs(i) - abs(actual_result)) <= 0.1: safe = safe + 1 else: not_safe = not_safe + 1 print(f"Today's data is {'not ' if safe <= not_safe else ''}safe.") # data_input_df = pd.read_csv("ex_data.csv", header=None) data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] data_input_df = pd.DataFrame(data_input, columns=["total_user", "total_even", "days"]) """ data column = total user in a day, how much online event held in one day, what day is that(sunday-saturday) """ # start normalization normalize_df = Normalizer().fit_transform(data_input_df.values) # split data total_date = normalize_df[:, 2].tolist() total_user = normalize_df[:, 0].tolist() total_match = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) x = normalize_df[:, [1, 2]].tolist() x_train = x[: len(x) - 1] x_test = x[len(x) - 1 :] # for linear reression & sarimax trn_date = total_date[: len(total_date) - 1] trn_user = total_user[: len(total_user) - 1] trn_match = total_match[: len(total_match) - 1] tst_date = total_date[len(total_date) - 1 :] tst_user = total_user[len(total_user) - 1 :] tst_match = total_match[len(total_match) - 1 :] # voting system with forecasting res_vote = [] res_vote.append( linear_regression_prediction(trn_date, trn_user, trn_match, tst_date, tst_match) ) res_vote.append(sarimax_predictor(trn_user, trn_match, tst_match)) res_vote.append(support_vector_regressor(x_train, x_test, trn_user)) # check the safety of todays'data^^ data_safety_checker(res_vote, tst_user)
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
a b 20 a c 18 a d 22 a e 26 b c 10 b d 11 b e 12 c d 23 c e 24 d e 40
a b 20 a c 18 a d 22 a e 26 b c 10 b d 11 b e 12 c d 23 c e 24 d e 40
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Breath First Search (BFS) can be used when finding the shortest path from a given source node to a target node in an unweighted graph. """ from __future__ import annotations graph = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class Graph: def __init__(self, graph: dict[str, list[str]], source_vertex: str) -> None: """ Graph is implemented as dictionary of adjacency lists. Also, Source vertex have to be defined upon initialization. """ self.graph = graph # mapping node to its parent in resulting breadth first tree self.parent: dict[str, str | None] = {} self.source_vertex = source_vertex def breath_first_search(self) -> None: """ This function is a helper for running breath first search on this graph. >>> g = Graph(graph, "G") >>> g.breath_first_search() >>> g.parent {'G': None, 'C': 'G', 'A': 'C', 'F': 'C', 'B': 'A', 'E': 'A', 'D': 'B'} """ visited = {self.source_vertex} self.parent[self.source_vertex] = None queue = [self.source_vertex] # first in first out queue while queue: vertex = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(adjacent_vertex) self.parent[adjacent_vertex] = vertex queue.append(adjacent_vertex) def shortest_path(self, target_vertex: str) -> str: """ This shortest path function returns a string, describing the result: 1.) No path is found. The string is a human readable message to indicate this. 2.) The shortest path is found. The string is in the form `v1(->v2->v3->...->vn)`, where v1 is the source vertex and vn is the target vertex, if it exists separately. >>> g = Graph(graph, "G") >>> g.breath_first_search() Case 1 - No path is found. >>> g.shortest_path("Foo") 'No path from vertex:G to vertex:Foo' Case 2 - The path is found. >>> g.shortest_path("D") 'G->C->A->B->D' >>> g.shortest_path("G") 'G' """ if target_vertex == self.source_vertex: return self.source_vertex target_vertex_parent = self.parent.get(target_vertex) if target_vertex_parent is None: return f"No path from vertex:{self.source_vertex} to vertex:{target_vertex}" return self.shortest_path(target_vertex_parent) + f"->{target_vertex}" if __name__ == "__main__": g = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
"""Breath First Search (BFS) can be used when finding the shortest path from a given source node to a target node in an unweighted graph. """ from __future__ import annotations graph = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class Graph: def __init__(self, graph: dict[str, list[str]], source_vertex: str) -> None: """ Graph is implemented as dictionary of adjacency lists. Also, Source vertex have to be defined upon initialization. """ self.graph = graph # mapping node to its parent in resulting breadth first tree self.parent: dict[str, str | None] = {} self.source_vertex = source_vertex def breath_first_search(self) -> None: """ This function is a helper for running breath first search on this graph. >>> g = Graph(graph, "G") >>> g.breath_first_search() >>> g.parent {'G': None, 'C': 'G', 'A': 'C', 'F': 'C', 'B': 'A', 'E': 'A', 'D': 'B'} """ visited = {self.source_vertex} self.parent[self.source_vertex] = None queue = [self.source_vertex] # first in first out queue while queue: vertex = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(adjacent_vertex) self.parent[adjacent_vertex] = vertex queue.append(adjacent_vertex) def shortest_path(self, target_vertex: str) -> str: """ This shortest path function returns a string, describing the result: 1.) No path is found. The string is a human readable message to indicate this. 2.) The shortest path is found. The string is in the form `v1(->v2->v3->...->vn)`, where v1 is the source vertex and vn is the target vertex, if it exists separately. >>> g = Graph(graph, "G") >>> g.breath_first_search() Case 1 - No path is found. >>> g.shortest_path("Foo") 'No path from vertex:G to vertex:Foo' Case 2 - The path is found. >>> g.shortest_path("D") 'G->C->A->B->D' >>> g.shortest_path("G") 'G' """ if target_vertex == self.source_vertex: return self.source_vertex target_vertex_parent = self.parent.get(target_vertex) if target_vertex_parent is None: return f"No path from vertex:{self.source_vertex} to vertex:{target_vertex}" return self.shortest_path(target_vertex_parent) + f"->{target_vertex}" if __name__ == "__main__": g = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Pandigital prime Problem 41: https://projecteuler.net/problem=41 We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3. So we will check only 7 digit pandigital numbers to obtain the largest possible pandigital prime. """ from __future__ import annotations from itertools import permutations from math import sqrt def is_prime(n: int) -> bool: """ Returns True if n is prime, False otherwise. >>> is_prime(67483) False >>> is_prime(563) True >>> is_prime(87) False """ if n % 2 == 0: return False for i in range(3, int(sqrt(n) + 1), 2): if n % i == 0: return False return True def solution(n: int = 7) -> int: """ Returns the maximum pandigital prime number of length n. If there are none, then it will return 0. >>> solution(2) 0 >>> solution(4) 4231 >>> solution(7) 7652413 """ pandigital_str = "".join(str(i) for i in range(1, n + 1)) perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)] pandigitals = [num for num in perm_list if is_prime(num)] return max(pandigitals) if pandigitals else 0 if __name__ == "__main__": print(f"{solution() = }")
""" Pandigital prime Problem 41: https://projecteuler.net/problem=41 We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3. So we will check only 7 digit pandigital numbers to obtain the largest possible pandigital prime. """ from __future__ import annotations from itertools import permutations from math import sqrt def is_prime(n: int) -> bool: """ Returns True if n is prime, False otherwise. >>> is_prime(67483) False >>> is_prime(563) True >>> is_prime(87) False """ if n % 2 == 0: return False for i in range(3, int(sqrt(n) + 1), 2): if n % i == 0: return False return True def solution(n: int = 7) -> int: """ Returns the maximum pandigital prime number of length n. If there are none, then it will return 0. >>> solution(2) 0 >>> solution(4) 4231 >>> solution(7) 7652413 """ pandigital_str = "".join(str(i) for i in range(1, n + 1)) perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)] pandigitals = [num for num in perm_list if is_prime(num)] return max(pandigitals) if pandigitals else 0 if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Minimalist file that allows pytest to find and run the Test unittest. For details, see: http://doc.pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery """ from .prime_check import Test Test()
""" Minimalist file that allows pytest to find and run the Test unittest. For details, see: http://doc.pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery """ from .prime_check import Test Test()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Queue represented by a pseudo stack (represented by a list with pop and append)""" class Queue: def __init__(self): self.stack = [] self.length = 0 def __str__(self): printed = "<" + str(self.stack)[1:-1] + ">" return printed """Enqueues {@code item} @param item item to enqueue""" def put(self, item): self.stack.append(item) self.length = self.length + 1 """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" def get(self): self.rotate(1) dequeued = self.stack[self.length - 1] self.stack = self.stack[:-1] self.rotate(self.length - 1) self.length = self.length - 1 return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" def rotate(self, rotation): for i in range(rotation): temp = self.stack[0] self.stack = self.stack[1:] self.put(temp) self.length = self.length - 1 """Reports item at the front of self @return item at front of self.stack""" def front(self): front = self.get() self.put(front) self.rotate(self.length - 1) return front """Returns the length of this.stack""" def size(self): return self.length
"""Queue represented by a pseudo stack (represented by a list with pop and append)""" class Queue: def __init__(self): self.stack = [] self.length = 0 def __str__(self): printed = "<" + str(self.stack)[1:-1] + ">" return printed """Enqueues {@code item} @param item item to enqueue""" def put(self, item): self.stack.append(item) self.length = self.length + 1 """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" def get(self): self.rotate(1) dequeued = self.stack[self.length - 1] self.stack = self.stack[:-1] self.rotate(self.length - 1) self.length = self.length - 1 return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" def rotate(self, rotation): for i in range(rotation): temp = self.stack[0] self.stack = self.stack[1:] self.put(temp) self.length = self.length - 1 """Reports item at the front of self @return item at front of self.stack""" def front(self): front = self.get() self.put(front) self.rotate(self.length - 1) return front """Returns the length of this.stack""" def size(self): return self.length
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Python3 program to evaluate a prefix expression. """ calc = { "+": lambda x, y: x + y, "-": lambda x, y: x - y, "*": lambda x, y: x * y, "/": lambda x, y: x / y, } def is_operand(c): """ Return True if the given char c is an operand, e.g. it is a number >>> is_operand("1") True >>> is_operand("+") False """ return c.isdigit() def evaluate(expression): """ Evaluate a given expression in prefix notation. Asserts that the given expression is valid. >>> evaluate("+ 9 * 2 6") 21 >>> evaluate("/ * 10 2 + 4 1 ") 4.0 """ stack = [] # iterate over the string in reverse order for c in expression.split()[::-1]: # push operand to stack if is_operand(c): stack.append(int(c)) else: # pop values from stack can calculate the result # push the result onto the stack again o1 = stack.pop() o2 = stack.pop() stack.append(calc[c](o1, o2)) return stack.pop() # Driver code if __name__ == "__main__": test_expression = "+ 9 * 2 6" print(evaluate(test_expression)) test_expression = "/ * 10 2 + 4 1 " print(evaluate(test_expression))
""" Python3 program to evaluate a prefix expression. """ calc = { "+": lambda x, y: x + y, "-": lambda x, y: x - y, "*": lambda x, y: x * y, "/": lambda x, y: x / y, } def is_operand(c): """ Return True if the given char c is an operand, e.g. it is a number >>> is_operand("1") True >>> is_operand("+") False """ return c.isdigit() def evaluate(expression): """ Evaluate a given expression in prefix notation. Asserts that the given expression is valid. >>> evaluate("+ 9 * 2 6") 21 >>> evaluate("/ * 10 2 + 4 1 ") 4.0 """ stack = [] # iterate over the string in reverse order for c in expression.split()[::-1]: # push operand to stack if is_operand(c): stack.append(int(c)) else: # pop values from stack can calculate the result # push the result onto the stack again o1 = stack.pop() o2 = stack.pop() stack.append(calc[c](o1, o2)) return stack.pop() # Driver code if __name__ == "__main__": test_expression = "+ 9 * 2 6" print(evaluate(test_expression)) test_expression = "/ * 10 2 + 4 1 " print(evaluate(test_expression))
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Wavelet tree is a data-structure designed to efficiently answer various range queries for arrays. Wavelets trees are different from other binary trees in the sense that the nodes are split based on the actual values of the elements and not on indices, such as the with segment trees or fenwick trees. You can read more about them here: 1. https://users.dcc.uchile.cl/~jperez/papers/ioiconf16.pdf 2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s 3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s """ from __future__ import annotations test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7] class Node: def __init__(self, length: int) -> None: self.minn: int = -1 self.maxx: int = -1 self.map_left: list[int] = [-1] * length self.left: Node | None = None self.right: Node | None = None def __repr__(self) -> str: """ >>> node = Node(length=27) >>> repr(node) 'min_value: -1, max_value: -1' >>> repr(node) == str(node) True """ return f"min_value: {self.minn}, max_value: {self.maxx}" def build_tree(arr: list[int]) -> Node: """ Builds the tree for arr and returns the root of the constructed tree >>> build_tree(test_array) min_value: 0, max_value: 9 """ root = Node(len(arr)) root.minn, root.maxx = min(arr), max(arr) # Leaf node case where the node contains only one unique value if root.minn == root.maxx: return root """ Take the mean of min and max element of arr as the pivot and partition arr into left_arr and right_arr with all elements <= pivot in the left_arr and the rest in right_arr, maintaining the order of the elements, then recursively build trees for left_arr and right_arr """ pivot = (root.minn + root.maxx) // 2 left_arr, right_arr = [], [] for index, num in enumerate(arr): if num <= pivot: left_arr.append(num) else: right_arr.append(num) root.map_left[index] = len(left_arr) root.left = build_tree(left_arr) root.right = build_tree(right_arr) return root def rank_till_index(node: Node, num: int, index: int) -> int: """ Returns the number of occurrences of num in interval [0, index] in the list >>> root = build_tree(test_array) >>> rank_till_index(root, 6, 6) 1 >>> rank_till_index(root, 2, 0) 1 >>> rank_till_index(root, 1, 10) 2 >>> rank_till_index(root, 17, 7) 0 >>> rank_till_index(root, 0, 9) 1 """ if index < 0: return 0 # Leaf node cases if node.minn == node.maxx: return index + 1 if node.minn == num else 0 pivot = (node.minn + node.maxx) // 2 if num <= pivot: # go the left subtree and map index to the left subtree return rank_till_index(node.left, num, node.map_left[index] - 1) else: # go to the right subtree and map index to the right subtree return rank_till_index(node.right, num, index - node.map_left[index]) def rank(node: Node, num: int, start: int, end: int) -> int: """ Returns the number of occurrences of num in interval [start, end] in the list >>> root = build_tree(test_array) >>> rank(root, 6, 3, 13) 2 >>> rank(root, 2, 0, 19) 4 >>> rank(root, 9, 2 ,2) 0 >>> rank(root, 0, 5, 10) 2 """ if start > end: return 0 rank_till_end = rank_till_index(node, num, end) rank_before_start = rank_till_index(node, num, start - 1) return rank_till_end - rank_before_start def quantile(node: Node, index: int, start: int, end: int) -> int: """ Returns the index'th smallest element in interval [start, end] in the list index is 0-indexed >>> root = build_tree(test_array) >>> quantile(root, 2, 2, 5) 5 >>> quantile(root, 5, 2, 13) 4 >>> quantile(root, 0, 6, 6) 8 >>> quantile(root, 4, 2, 5) -1 """ if index > (end - start) or start > end: return -1 # Leaf node case if node.minn == node.maxx: return node.minn # Number of elements in the left subtree in interval [start, end] num_elements_in_left_tree = node.map_left[end] - ( node.map_left[start - 1] if start else 0 ) if num_elements_in_left_tree > index: return quantile( node.left, index, (node.map_left[start - 1] if start else 0), node.map_left[end] - 1, ) else: return quantile( node.right, index - num_elements_in_left_tree, start - (node.map_left[start - 1] if start else 0), end - node.map_left[end], ) def range_counting( node: Node, start: int, end: int, start_num: int, end_num: int ) -> int: """ Returns the number of elememts in range [start_num, end_num] in interval [start, end] in the list >>> root = build_tree(test_array) >>> range_counting(root, 1, 10, 3, 7) 3 >>> range_counting(root, 2, 2, 1, 4) 1 >>> range_counting(root, 0, 19, 0, 100) 20 >>> range_counting(root, 1, 0, 1, 100) 0 >>> range_counting(root, 0, 17, 100, 1) 0 """ if ( start > end or start_num > end_num or node.minn > end_num or node.maxx < start_num ): return 0 if start_num <= node.minn and node.maxx <= end_num: return end - start + 1 left = range_counting( node.left, (node.map_left[start - 1] if start else 0), node.map_left[end] - 1, start_num, end_num, ) right = range_counting( node.right, start - (node.map_left[start - 1] if start else 0), end - node.map_left[end], start_num, end_num, ) return left + right if __name__ == "__main__": import doctest doctest.testmod()
""" Wavelet tree is a data-structure designed to efficiently answer various range queries for arrays. Wavelets trees are different from other binary trees in the sense that the nodes are split based on the actual values of the elements and not on indices, such as the with segment trees or fenwick trees. You can read more about them here: 1. https://users.dcc.uchile.cl/~jperez/papers/ioiconf16.pdf 2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s 3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s """ from __future__ import annotations test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7] class Node: def __init__(self, length: int) -> None: self.minn: int = -1 self.maxx: int = -1 self.map_left: list[int] = [-1] * length self.left: Node | None = None self.right: Node | None = None def __repr__(self) -> str: """ >>> node = Node(length=27) >>> repr(node) 'min_value: -1, max_value: -1' >>> repr(node) == str(node) True """ return f"min_value: {self.minn}, max_value: {self.maxx}" def build_tree(arr: list[int]) -> Node: """ Builds the tree for arr and returns the root of the constructed tree >>> build_tree(test_array) min_value: 0, max_value: 9 """ root = Node(len(arr)) root.minn, root.maxx = min(arr), max(arr) # Leaf node case where the node contains only one unique value if root.minn == root.maxx: return root """ Take the mean of min and max element of arr as the pivot and partition arr into left_arr and right_arr with all elements <= pivot in the left_arr and the rest in right_arr, maintaining the order of the elements, then recursively build trees for left_arr and right_arr """ pivot = (root.minn + root.maxx) // 2 left_arr, right_arr = [], [] for index, num in enumerate(arr): if num <= pivot: left_arr.append(num) else: right_arr.append(num) root.map_left[index] = len(left_arr) root.left = build_tree(left_arr) root.right = build_tree(right_arr) return root def rank_till_index(node: Node, num: int, index: int) -> int: """ Returns the number of occurrences of num in interval [0, index] in the list >>> root = build_tree(test_array) >>> rank_till_index(root, 6, 6) 1 >>> rank_till_index(root, 2, 0) 1 >>> rank_till_index(root, 1, 10) 2 >>> rank_till_index(root, 17, 7) 0 >>> rank_till_index(root, 0, 9) 1 """ if index < 0: return 0 # Leaf node cases if node.minn == node.maxx: return index + 1 if node.minn == num else 0 pivot = (node.minn + node.maxx) // 2 if num <= pivot: # go the left subtree and map index to the left subtree return rank_till_index(node.left, num, node.map_left[index] - 1) else: # go to the right subtree and map index to the right subtree return rank_till_index(node.right, num, index - node.map_left[index]) def rank(node: Node, num: int, start: int, end: int) -> int: """ Returns the number of occurrences of num in interval [start, end] in the list >>> root = build_tree(test_array) >>> rank(root, 6, 3, 13) 2 >>> rank(root, 2, 0, 19) 4 >>> rank(root, 9, 2 ,2) 0 >>> rank(root, 0, 5, 10) 2 """ if start > end: return 0 rank_till_end = rank_till_index(node, num, end) rank_before_start = rank_till_index(node, num, start - 1) return rank_till_end - rank_before_start def quantile(node: Node, index: int, start: int, end: int) -> int: """ Returns the index'th smallest element in interval [start, end] in the list index is 0-indexed >>> root = build_tree(test_array) >>> quantile(root, 2, 2, 5) 5 >>> quantile(root, 5, 2, 13) 4 >>> quantile(root, 0, 6, 6) 8 >>> quantile(root, 4, 2, 5) -1 """ if index > (end - start) or start > end: return -1 # Leaf node case if node.minn == node.maxx: return node.minn # Number of elements in the left subtree in interval [start, end] num_elements_in_left_tree = node.map_left[end] - ( node.map_left[start - 1] if start else 0 ) if num_elements_in_left_tree > index: return quantile( node.left, index, (node.map_left[start - 1] if start else 0), node.map_left[end] - 1, ) else: return quantile( node.right, index - num_elements_in_left_tree, start - (node.map_left[start - 1] if start else 0), end - node.map_left[end], ) def range_counting( node: Node, start: int, end: int, start_num: int, end_num: int ) -> int: """ Returns the number of elememts in range [start_num, end_num] in interval [start, end] in the list >>> root = build_tree(test_array) >>> range_counting(root, 1, 10, 3, 7) 3 >>> range_counting(root, 2, 2, 1, 4) 1 >>> range_counting(root, 0, 19, 0, 100) 20 >>> range_counting(root, 1, 0, 1, 100) 0 >>> range_counting(root, 0, 17, 100, 1) 0 """ if ( start > end or start_num > end_num or node.minn > end_num or node.maxx < start_num ): return 0 if start_num <= node.minn and node.maxx <= end_num: return end - start + 1 left = range_counting( node.left, (node.map_left[start - 1] if start else 0), node.map_left[end] - 1, start_num, end_num, ) right = range_counting( node.right, start - (node.map_left[start - 1] if start else 0), end - node.map_left[end], start_num, end_num, ) return left + right if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
5,558
mandelbrot.py: Commenting out long running tests
### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
"2021-10-23T13:24:39Z"
"2021-10-23T16:15:31Z"
218d8921dbb264c9636bef5bd10e23acafd032eb
bd9464e4ac6ccccd4699bf52bddefa2bfb1dafea
mandelbrot.py: Commenting out long running tests. ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is pure Python implementation of sentinel linear search algorithm For doctests run following command: python -m doctest -v sentinel_linear_search.py or python3 -m doctest -v sentinel_linear_search.py For manual testing run: python sentinel_linear_search.py """ def sentinel_linear_search(sequence, target): """Pure implementation of sentinel linear search algorithm in Python :param sequence: some sequence with comparable items :param target: item value to search :return: index of found item or None if item is not found Examples: >>> sentinel_linear_search([0, 5, 7, 10, 15], 0) 0 >>> sentinel_linear_search([0, 5, 7, 10, 15], 15) 4 >>> sentinel_linear_search([0, 5, 7, 10, 15], 5) 1 >>> sentinel_linear_search([0, 5, 7, 10, 15], 6) """ sequence.append(target) index = 0 while sequence[index] != target: index += 1 sequence.pop() if index == len(sequence): return None return index if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() sequence = [int(item) for item in user_input.split(",")] target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")
""" This is pure Python implementation of sentinel linear search algorithm For doctests run following command: python -m doctest -v sentinel_linear_search.py or python3 -m doctest -v sentinel_linear_search.py For manual testing run: python sentinel_linear_search.py """ def sentinel_linear_search(sequence, target): """Pure implementation of sentinel linear search algorithm in Python :param sequence: some sequence with comparable items :param target: item value to search :return: index of found item or None if item is not found Examples: >>> sentinel_linear_search([0, 5, 7, 10, 15], 0) 0 >>> sentinel_linear_search([0, 5, 7, 10, 15], 15) 4 >>> sentinel_linear_search([0, 5, 7, 10, 15], 5) 1 >>> sentinel_linear_search([0, 5, 7, 10, 15], 6) """ sequence.append(target) index = 0 while sequence[index] != target: index += 1 sequence.pop() if index == len(sequence): return None return index if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() sequence = [int(item) for item in user_input.split(",")] target_input = input("Enter a single number to be found in the list:\n") target = int(target_input) result = sentinel_linear_search(sequence, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")
-1
TheAlgorithms/Python
5,518
[mypy] Fix type annotations in `data_structures/binary_tree`
### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
shermanhui
"2021-10-22T04:43:40Z"
"2021-10-22T14:07:05Z"
d82cf5292fbd0ffe1764a1da5c96a39b244618eb
629848e3721d9354d25fad6cb4729e6afdbbf799
[mypy] Fix type annotations in `data_structures/binary_tree`. ### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count 1S Brian Kernighan Method](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_1s_brian_kernighan_method.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Baconian Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/baconian_cipher.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Polybius](https://github.com/TheAlgorithms/Python/blob/master/ciphers/polybius.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Cnn Classification](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/cnn_classification.py) * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Length Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/length_conversion.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Morphological Operations * [Dilation Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/dilation_operation.py) * [Erosion Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/erosion_operation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Carrier Concentration](https://github.com/TheAlgorithms/Python/blob/master/electronics/carrier_concentration.py) * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Julia Sets](https://github.com/TheAlgorithms/Python/blob/master/fractals/julia_sets.py) * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/boruvka.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Greedy Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_min_vertex_cover.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Matching Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/matching_min_vertex_cover.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Greedy Methods * [Optimal Merge Pattern](https://github.com/TheAlgorithms/Python/blob/master/greedy_methods/optimal_merge_pattern.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Luhn](https://github.com/TheAlgorithms/Python/blob/master/hashes/luhn.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Schur Complement](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/schur_complement.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Check Polygon](https://github.com/TheAlgorithms/Python/blob/master/maths/check_polygon.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Double Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_iterative.py) * [Double Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_recursive.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Euler Modified](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_modified.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gamma Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma_recursive.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](https://github.com/TheAlgorithms/Python/blob/master/maths/is_ip_v4_address_valid.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Proth Number](https://github.com/TheAlgorithms/Python/blob/master/maths/proth_number.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic.py) * [Geometric](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Sylvester Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/sylvester_sequence.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Check Strong Password](https://github.com/TheAlgorithms/Python/blob/master/other/check_strong_password.py) * [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py) * [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 092 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_092/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py) * [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Alternative String Arrange](https://github.com/TheAlgorithms/Python/blob/master/strings/alternative_string_arrange.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Indian Phone Validator](https://github.com/TheAlgorithms/Python/blob/master/strings/indian_phone_validator.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Join](https://github.com/TheAlgorithms/Python/blob/master/strings/join.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Wildcard Pattern Matching](https://github.com/TheAlgorithms/Python/blob/master/strings/wildcard_pattern_matching.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Download Images From Google Query](https://github.com/TheAlgorithms/Python/blob/master/web_programming/download_images_from_google_query.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Giphy](https://github.com/TheAlgorithms/Python/blob/master/web_programming/giphy.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Random Anime Character](https://github.com/TheAlgorithms/Python/blob/master/web_programming/random_anime_character.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count 1S Brian Kernighan Method](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_1s_brian_kernighan_method.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Baconian Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/baconian_cipher.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Polybius](https://github.com/TheAlgorithms/Python/blob/master/ciphers/polybius.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Cnn Classification](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/cnn_classification.py) * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Length Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/length_conversion.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Morphological Operations * [Dilation Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/dilation_operation.py) * [Erosion Operation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/morphological_operations/erosion_operation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Carrier Concentration](https://github.com/TheAlgorithms/Python/blob/master/electronics/carrier_concentration.py) * [Coulombs Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/coulombs_law.py) * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Julia Sets](https://github.com/TheAlgorithms/Python/blob/master/fractals/julia_sets.py) * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/boruvka.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Greedy Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_min_vertex_cover.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Matching Min Vertex Cover](https://github.com/TheAlgorithms/Python/blob/master/graphs/matching_min_vertex_cover.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Greedy Methods * [Optimal Merge Pattern](https://github.com/TheAlgorithms/Python/blob/master/greedy_methods/optimal_merge_pattern.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Luhn](https://github.com/TheAlgorithms/Python/blob/master/hashes/luhn.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Schur Complement](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/schur_complement.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Check Polygon](https://github.com/TheAlgorithms/Python/blob/master/maths/check_polygon.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Double Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_iterative.py) * [Double Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/double_factorial_recursive.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Euler Modified](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_modified.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gamma Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma_recursive.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](https://github.com/TheAlgorithms/Python/blob/master/maths/is_ip_v4_address_valid.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Proth Number](https://github.com/TheAlgorithms/Python/blob/master/maths/proth_number.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic.py) * [Geometric](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Sylvester Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/sylvester_sequence.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Check Strong Password](https://github.com/TheAlgorithms/Python/blob/master/other/check_strong_password.py) * [Date To Weekday](https://github.com/TheAlgorithms/Python/blob/master/other/date_to_weekday.py) * [Davisb Putnamb Logemannb Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 092 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_092/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [Dutch National Flag Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py) * [Exchange Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/exchange_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Alternative String Arrange](https://github.com/TheAlgorithms/Python/blob/master/strings/alternative_string_arrange.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Indian Phone Validator](https://github.com/TheAlgorithms/Python/blob/master/strings/indian_phone_validator.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Join](https://github.com/TheAlgorithms/Python/blob/master/strings/join.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Wildcard Pattern Matching](https://github.com/TheAlgorithms/Python/blob/master/strings/wildcard_pattern_matching.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Download Images From Google Query](https://github.com/TheAlgorithms/Python/blob/master/web_programming/download_images_from_google_query.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Giphy](https://github.com/TheAlgorithms/Python/blob/master/web_programming/giphy.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Random Anime Character](https://github.com/TheAlgorithms/Python/blob/master/web_programming/random_anime_character.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
1
TheAlgorithms/Python
5,518
[mypy] Fix type annotations in `data_structures/binary_tree`
### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
shermanhui
"2021-10-22T04:43:40Z"
"2021-10-22T14:07:05Z"
d82cf5292fbd0ffe1764a1da5c96a39b244618eb
629848e3721d9354d25fad6cb4729e6afdbbf799
[mypy] Fix type annotations in `data_structures/binary_tree`. ### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" A binary search Tree """ class Node: def __init__(self, value, parent): self.value = value self.parent = parent # Added in order to delete a node easier self.left = None self.right = None def __repr__(self): from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({"%s" % (self.value): (self.left, self.right)}, indent=1) class BinarySearchTree: def __init__(self, root=None): self.root = root def __str__(self): """ Return a string of all the Nodes using in order traversal """ return str(self.root) def __reassign_nodes(self, node, new_children): if new_children is not None: # reset its kids new_children.parent = node.parent if node.parent is not None: # reset its parent if self.is_right(node): # If it is the right children node.parent.right = new_children else: node.parent.left = new_children else: self.root = new_children def is_right(self, node): return node == node.parent.right def empty(self): return self.root is None def __insert(self, value): """ Insert a new node in Binary Search Tree with value label """ new_node = Node(value, None) # create a new Node if self.empty(): # if Tree is empty self.root = new_node # set its root else: # Tree is not empty parent_node = self.root # from root while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: parent_node.left = new_node # We insert the new node in a leaf break else: parent_node = parent_node.left else: if parent_node.right is None: parent_node.right = new_node break else: parent_node = parent_node.right new_node.parent = parent_node def insert(self, *values): for value in values: self.__insert(value) return self def search(self, value): if self.empty(): raise IndexError("Warning: Tree is empty! please use another.") else: node = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: node = node.left if value < node.value else node.right return node def get_max(self, node=None): """ We go deep on the right branch """ if node is None: node = self.root if not self.empty(): while node.right is not None: node = node.right return node def get_min(self, node=None): """ We go deep on the left branch """ if node is None: node = self.root if not self.empty(): node = self.root while node.left is not None: node = node.left return node def remove(self, value): node = self.search(value) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: tmp_node = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value) node.value = ( tmp_node.value ) # Assigns the value to the node to delete and keep tree structure def preorder_traverse(self, node): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def traversal_tree(self, traversal_function=None): """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def inorder(self, arr: list, node: Node): """Perform an inorder traversal and append values of the nodes to a list named arr""" if node: self.inorder(arr, node.left) arr.append(node.value) self.inorder(arr, node.right) def find_kth_smallest(self, k: int, node: Node) -> int: """Return the kth smallest element in a binary search tree""" arr = [] self.inorder(arr, node) # append all values to list using inorder traversal return arr[k - 1] def postorder(curr_node): """ postOrder (left, right, self) """ node_list = list() if curr_node is not None: node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def binary_search_tree(): r""" Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7) >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) 8 3 1 6 4 7 10 14 13 >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) 1 4 7 6 3 13 14 10 8 >>> BinarySearchTree().search(6) Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. """ testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() for i in testlist: t.insert(i) # Prints all the elements of the list in order traversal print(t) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: ", t.get_max().value) print("Min Value: ", t.get_min().value) for i in testlist: t.remove(i) print(t) if __name__ == "__main__": import doctest doctest.testmod() # binary_search_tree()
""" A binary search Tree """ class Node: def __init__(self, value, parent): self.value = value self.parent = parent # Added in order to delete a node easier self.left = None self.right = None def __repr__(self): from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({"%s" % (self.value): (self.left, self.right)}, indent=1) class BinarySearchTree: def __init__(self, root=None): self.root = root def __str__(self): """ Return a string of all the Nodes using in order traversal """ return str(self.root) def __reassign_nodes(self, node, new_children): if new_children is not None: # reset its kids new_children.parent = node.parent if node.parent is not None: # reset its parent if self.is_right(node): # If it is the right children node.parent.right = new_children else: node.parent.left = new_children else: self.root = new_children def is_right(self, node): return node == node.parent.right def empty(self): return self.root is None def __insert(self, value): """ Insert a new node in Binary Search Tree with value label """ new_node = Node(value, None) # create a new Node if self.empty(): # if Tree is empty self.root = new_node # set its root else: # Tree is not empty parent_node = self.root # from root while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: parent_node.left = new_node # We insert the new node in a leaf break else: parent_node = parent_node.left else: if parent_node.right is None: parent_node.right = new_node break else: parent_node = parent_node.right new_node.parent = parent_node def insert(self, *values): for value in values: self.__insert(value) return self def search(self, value): if self.empty(): raise IndexError("Warning: Tree is empty! please use another.") else: node = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: node = node.left if value < node.value else node.right return node def get_max(self, node=None): """ We go deep on the right branch """ if node is None: node = self.root if not self.empty(): while node.right is not None: node = node.right return node def get_min(self, node=None): """ We go deep on the left branch """ if node is None: node = self.root if not self.empty(): node = self.root while node.left is not None: node = node.left return node def remove(self, value): node = self.search(value) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: tmp_node = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value) node.value = ( tmp_node.value ) # Assigns the value to the node to delete and keep tree structure def preorder_traverse(self, node): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def traversal_tree(self, traversal_function=None): """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def inorder(self, arr: list, node: Node): """Perform an inorder traversal and append values of the nodes to a list named arr""" if node: self.inorder(arr, node.left) arr.append(node.value) self.inorder(arr, node.right) def find_kth_smallest(self, k: int, node: Node) -> int: """Return the kth smallest element in a binary search tree""" arr: list = [] self.inorder(arr, node) # append all values to list using inorder traversal return arr[k - 1] def postorder(curr_node): """ postOrder (left, right, self) """ node_list = list() if curr_node is not None: node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def binary_search_tree(): r""" Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7) >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) 8 3 1 6 4 7 10 14 13 >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) 1 4 7 6 3 13 14 10 8 >>> BinarySearchTree().search(6) Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. """ testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() for i in testlist: t.insert(i) # Prints all the elements of the list in order traversal print(t) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: ", t.get_max().value) print("Min Value: ", t.get_min().value) for i in testlist: t.remove(i) print(t) if __name__ == "__main__": import doctest doctest.testmod() # binary_search_tree()
1
TheAlgorithms/Python
5,518
[mypy] Fix type annotations in `data_structures/binary_tree`
### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
shermanhui
"2021-10-22T04:43:40Z"
"2021-10-22T14:07:05Z"
d82cf5292fbd0ffe1764a1da5c96a39b244618eb
629848e3721d9354d25fad6cb4729e6afdbbf799
[mypy] Fix type annotations in `data_structures/binary_tree`. ### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/local/bin/python3 """ Problem Description: Given two binary tree, return the merged tree. The rule for merging is that if two nodes overlap, then put the value sum of both nodes to the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree. """ from __future__ import annotations class Node: """ A binary node has value variable and pointers to its left and right node. """ def __init__(self, value: int = 0) -> None: self.value = value self.left: Node | None = None self.right: Node | None = None def merge_two_binary_trees(tree1: Node | None, tree2: Node | None) -> Node: """ Returns root node of the merged tree. >>> tree1 = Node(5) >>> tree1.left = Node(6) >>> tree1.right = Node(7) >>> tree1.left.left = Node(2) >>> tree2 = Node(4) >>> tree2.left = Node(5) >>> tree2.right = Node(8) >>> tree2.left.right = Node(1) >>> tree2.right.right = Node(4) >>> merged_tree = merge_two_binary_trees(tree1, tree2) >>> print_preorder(merged_tree) 9 11 2 1 15 4 """ if tree1 is None: return tree2 if tree2 is None: return tree1 tree1.value = tree1.value + tree2.value tree1.left = merge_two_binary_trees(tree1.left, tree2.left) tree1.right = merge_two_binary_trees(tree1.right, tree2.right) return tree1 def print_preorder(root: Node | None) -> None: """ Print pre-order traversal of the tree. >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> print_preorder(root) 1 2 3 >>> print_preorder(root.right) 3 """ if root: print(root.value) print_preorder(root.left) print_preorder(root.right) if __name__ == "__main__": tree1 = Node(1) tree1.left = Node(2) tree1.right = Node(3) tree1.left.left = Node(4) tree2 = Node(2) tree2.left = Node(4) tree2.right = Node(6) tree2.left.right = Node(9) tree2.right.right = Node(5) print("Tree1 is: ") print_preorder(tree1) print("Tree2 is: ") print_preorder(tree2) merged_tree = merge_two_binary_trees(tree1, tree2) print("Merged Tree is: ") print_preorder(merged_tree)
#!/usr/local/bin/python3 """ Problem Description: Given two binary tree, return the merged tree. The rule for merging is that if two nodes overlap, then put the value sum of both nodes to the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree. """ from __future__ import annotations from typing import Optional class Node: """ A binary node has value variable and pointers to its left and right node. """ def __init__(self, value: int = 0) -> None: self.value = value self.left: Node | None = None self.right: Node | None = None def merge_two_binary_trees(tree1: Node | None, tree2: Node | None) -> Optional[Node]: """ Returns root node of the merged tree. >>> tree1 = Node(5) >>> tree1.left = Node(6) >>> tree1.right = Node(7) >>> tree1.left.left = Node(2) >>> tree2 = Node(4) >>> tree2.left = Node(5) >>> tree2.right = Node(8) >>> tree2.left.right = Node(1) >>> tree2.right.right = Node(4) >>> merged_tree = merge_two_binary_trees(tree1, tree2) >>> print_preorder(merged_tree) 9 11 2 1 15 4 """ if tree1 is None: return tree2 if tree2 is None: return tree1 tree1.value = tree1.value + tree2.value tree1.left = merge_two_binary_trees(tree1.left, tree2.left) tree1.right = merge_two_binary_trees(tree1.right, tree2.right) return tree1 def print_preorder(root: Node | None) -> None: """ Print pre-order traversal of the tree. >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> print_preorder(root) 1 2 3 >>> print_preorder(root.right) 3 """ if root: print(root.value) print_preorder(root.left) print_preorder(root.right) if __name__ == "__main__": tree1 = Node(1) tree1.left = Node(2) tree1.right = Node(3) tree1.left.left = Node(4) tree2 = Node(2) tree2.left = Node(4) tree2.right = Node(6) tree2.left.right = Node(9) tree2.right.right = Node(5) print("Tree1 is: ") print_preorder(tree1) print("Tree2 is: ") print_preorder(tree2) merged_tree = merge_two_binary_trees(tree1, tree2) print("Merged Tree is: ") print_preorder(merged_tree)
1
TheAlgorithms/Python
5,518
[mypy] Fix type annotations in `data_structures/binary_tree`
### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
shermanhui
"2021-10-22T04:43:40Z"
"2021-10-22T14:07:05Z"
d82cf5292fbd0ffe1764a1da5c96a39b244618eb
629848e3721d9354d25fad6cb4729e6afdbbf799
[mypy] Fix type annotations in `data_structures/binary_tree`. ### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations from typing import Iterable class Heap: """A Max Heap Implementation >>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5] >>> h = Heap() >>> h.build_max_heap(unsorted) >>> print(h) [209, 201, 25, 103, 107, 15, 1, 9, 7, 11, 5] >>> >>> h.extract_max() 209 >>> print(h) [201, 107, 25, 103, 11, 15, 1, 9, 7, 5] >>> >>> h.insert(100) >>> print(h) [201, 107, 25, 103, 100, 15, 1, 9, 7, 5, 11] >>> >>> h.heap_sort() >>> print(h) [1, 5, 7, 9, 11, 15, 25, 100, 103, 107, 201] """ def __init__(self) -> None: self.h: list[float] = [] self.heap_size: int = 0 def __repr__(self) -> str: return str(self.h) def parent_index(self, child_idx: int) -> int | None: """return the parent index of given child""" if child_idx > 0: return (child_idx - 1) // 2 return None def left_child_idx(self, parent_idx: int) -> int | None: """ return the left child index if the left child exists. if not, return None. """ left_child_index = 2 * parent_idx + 1 if left_child_index < self.heap_size: return left_child_index return None def right_child_idx(self, parent_idx: int) -> int | None: """ return the right child index if the right child exists. if not, return None. """ right_child_index = 2 * parent_idx + 2 if right_child_index < self.heap_size: return right_child_index return None def max_heapify(self, index: int) -> None: """ correct a single violation of the heap property in a subtree's root. """ if index < self.heap_size: violation: int = index left_child = self.left_child_idx(index) right_child = self.right_child_idx(index) # check which child is larger than its parent if left_child is not None and self.h[left_child] > self.h[violation]: violation = left_child if right_child is not None and self.h[right_child] > self.h[violation]: violation = right_child # if violation indeed exists if violation != index: # swap to fix the violation self.h[violation], self.h[index] = self.h[index], self.h[violation] # fix the subsequent violation recursively if any self.max_heapify(violation) def build_max_heap(self, collection: Iterable[float]) -> None: """build max heap from an unsorted array""" self.h = list(collection) self.heap_size = len(self.h) if self.heap_size > 1: # max_heapify from right to left but exclude leaves (last level) for i in range(self.heap_size // 2 - 1, -1, -1): self.max_heapify(i) def max(self) -> float: """return the max in the heap""" if self.heap_size >= 1: return self.h[0] else: raise Exception("Empty heap") def extract_max(self) -> float: """get and remove max from heap""" if self.heap_size >= 2: me = self.h[0] self.h[0] = self.h.pop(-1) self.heap_size -= 1 self.max_heapify(0) return me elif self.heap_size == 1: self.heap_size -= 1 return self.h.pop(-1) else: raise Exception("Empty heap") def insert(self, value: float) -> None: """insert a new value into the max heap""" self.h.append(value) idx = (self.heap_size - 1) // 2 self.heap_size += 1 while idx >= 0: self.max_heapify(idx) idx = (idx - 1) // 2 def heap_sort(self) -> None: size = self.heap_size for j in range(size - 1, 0, -1): self.h[0], self.h[j] = self.h[j], self.h[0] self.heap_size -= 1 self.max_heapify(0) self.heap_size = size if __name__ == "__main__": import doctest # run doc test doctest.testmod() # demo for unsorted in [ [0], [2], [3, 5], [5, 3], [5, 5], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 3, 5], [0, 2, 2, 3, 5], [2, 5, 3, 0, 2, 3, 0, 3], [6, 1, 2, 7, 9, 3, 4, 5, 10, 8], [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5], [-45, -2, -5], ]: print(f"unsorted array: {unsorted}") heap = Heap() heap.build_max_heap(unsorted) print(f"after build heap: {heap}") print(f"max value: {heap.extract_max()}") print(f"after max value removed: {heap}") heap.insert(100) print(f"after new value 100 inserted: {heap}") heap.heap_sort() print(f"heap-sorted array: {heap}\n")
from __future__ import annotations from typing import Iterable class Heap: """A Max Heap Implementation >>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5] >>> h = Heap() >>> h.build_max_heap(unsorted) >>> print(h) [209, 201, 25, 103, 107, 15, 1, 9, 7, 11, 5] >>> >>> h.extract_max() 209 >>> print(h) [201, 107, 25, 103, 11, 15, 1, 9, 7, 5] >>> >>> h.insert(100) >>> print(h) [201, 107, 25, 103, 100, 15, 1, 9, 7, 5, 11] >>> >>> h.heap_sort() >>> print(h) [1, 5, 7, 9, 11, 15, 25, 100, 103, 107, 201] """ def __init__(self) -> None: self.h: list[float] = [] self.heap_size: int = 0 def __repr__(self) -> str: return str(self.h) def parent_index(self, child_idx: int) -> int | None: """return the parent index of given child""" if child_idx > 0: return (child_idx - 1) // 2 return None def left_child_idx(self, parent_idx: int) -> int | None: """ return the left child index if the left child exists. if not, return None. """ left_child_index = 2 * parent_idx + 1 if left_child_index < self.heap_size: return left_child_index return None def right_child_idx(self, parent_idx: int) -> int | None: """ return the right child index if the right child exists. if not, return None. """ right_child_index = 2 * parent_idx + 2 if right_child_index < self.heap_size: return right_child_index return None def max_heapify(self, index: int) -> None: """ correct a single violation of the heap property in a subtree's root. """ if index < self.heap_size: violation: int = index left_child = self.left_child_idx(index) right_child = self.right_child_idx(index) # check which child is larger than its parent if left_child is not None and self.h[left_child] > self.h[violation]: violation = left_child if right_child is not None and self.h[right_child] > self.h[violation]: violation = right_child # if violation indeed exists if violation != index: # swap to fix the violation self.h[violation], self.h[index] = self.h[index], self.h[violation] # fix the subsequent violation recursively if any self.max_heapify(violation) def build_max_heap(self, collection: Iterable[float]) -> None: """build max heap from an unsorted array""" self.h = list(collection) self.heap_size = len(self.h) if self.heap_size > 1: # max_heapify from right to left but exclude leaves (last level) for i in range(self.heap_size // 2 - 1, -1, -1): self.max_heapify(i) def max(self) -> float: """return the max in the heap""" if self.heap_size >= 1: return self.h[0] else: raise Exception("Empty heap") def extract_max(self) -> float: """get and remove max from heap""" if self.heap_size >= 2: me = self.h[0] self.h[0] = self.h.pop(-1) self.heap_size -= 1 self.max_heapify(0) return me elif self.heap_size == 1: self.heap_size -= 1 return self.h.pop(-1) else: raise Exception("Empty heap") def insert(self, value: float) -> None: """insert a new value into the max heap""" self.h.append(value) idx = (self.heap_size - 1) // 2 self.heap_size += 1 while idx >= 0: self.max_heapify(idx) idx = (idx - 1) // 2 def heap_sort(self) -> None: size = self.heap_size for j in range(size - 1, 0, -1): self.h[0], self.h[j] = self.h[j], self.h[0] self.heap_size -= 1 self.max_heapify(0) self.heap_size = size if __name__ == "__main__": import doctest # run doc test doctest.testmod() # demo for unsorted in [ [0], [2], [3, 5], [5, 3], [5, 5], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 3, 5], [0, 2, 2, 3, 5], [2, 5, 3, 0, 2, 3, 0, 3], [6, 1, 2, 7, 9, 3, 4, 5, 10, 8], [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5], [-45, -2, -5], ]: print(f"unsorted array: {unsorted}") heap = Heap() heap.build_max_heap(unsorted) print(f"after build heap: {heap}") print(f"max value: {heap.extract_max()}") print(f"after max value removed: {heap}") heap.insert(100) print(f"after new value 100 inserted: {heap}") heap.heap_sort() print(f"heap-sorted array: {heap}\n")
-1
TheAlgorithms/Python
5,518
[mypy] Fix type annotations in `data_structures/binary_tree`
### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
shermanhui
"2021-10-22T04:43:40Z"
"2021-10-22T14:07:05Z"
d82cf5292fbd0ffe1764a1da5c96a39b244618eb
629848e3721d9354d25fad6cb4729e6afdbbf799
[mypy] Fix type annotations in `data_structures/binary_tree`. ### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 from .number_theory.prime_numbers import next_prime class HashTable: """ Basic Hash Table example with open addressing and linear probing """ def __init__(self, size_table, charge_factor=None, lim_charge=None): self.size_table = size_table self.values = [None] * self.size_table self.lim_charge = 0.75 if lim_charge is None else lim_charge self.charge_factor = 1 if charge_factor is None else charge_factor self.__aux_list = [] self._keys = {} def keys(self): return self._keys def balanced_factor(self): return sum(1 for slot in self.values if slot is not None) / ( self.size_table * self.charge_factor ) def hash_function(self, key): return key % self.size_table def _step_by_step(self, step_ord): print(f"step {step_ord}") print([i for i in range(len(self.values))]) print(self.values) def bulk_insert(self, values): i = 1 self.__aux_list = values for value in values: self.insert_data(value) self._step_by_step(i) i += 1 def _set_value(self, key, data): self.values[key] = data self._keys[key] = data def _collision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) while self.values[new_key] is not None and self.values[new_key] != key: if self.values.count(None) > 0: new_key = self.hash_function(new_key + 1) else: new_key = None break return new_key def rehashing(self): survivor_values = [value for value in self.values if value is not None] self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/ for value in survivor_values: self.insert_data(value) def insert_data(self, data): key = self.hash_function(data) if self.values[key] is None: self._set_value(key, data) elif self.values[key] == data: pass else: collision_resolution = self._collision_resolution(key, data) if collision_resolution is not None: self._set_value(collision_resolution, data) else: self.rehashing() self.insert_data(data)
#!/usr/bin/env python3 from .number_theory.prime_numbers import next_prime class HashTable: """ Basic Hash Table example with open addressing and linear probing """ def __init__(self, size_table, charge_factor=None, lim_charge=None): self.size_table = size_table self.values = [None] * self.size_table self.lim_charge = 0.75 if lim_charge is None else lim_charge self.charge_factor = 1 if charge_factor is None else charge_factor self.__aux_list = [] self._keys = {} def keys(self): return self._keys def balanced_factor(self): return sum(1 for slot in self.values if slot is not None) / ( self.size_table * self.charge_factor ) def hash_function(self, key): return key % self.size_table def _step_by_step(self, step_ord): print(f"step {step_ord}") print([i for i in range(len(self.values))]) print(self.values) def bulk_insert(self, values): i = 1 self.__aux_list = values for value in values: self.insert_data(value) self._step_by_step(i) i += 1 def _set_value(self, key, data): self.values[key] = data self._keys[key] = data def _collision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) while self.values[new_key] is not None and self.values[new_key] != key: if self.values.count(None) > 0: new_key = self.hash_function(new_key + 1) else: new_key = None break return new_key def rehashing(self): survivor_values = [value for value in self.values if value is not None] self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/ for value in survivor_values: self.insert_data(value) def insert_data(self, data): key = self.hash_function(data) if self.values[key] is None: self._set_value(key, data) elif self.values[key] == data: pass else: collision_resolution = self._collision_resolution(key, data) if collision_resolution is not None: self._set_value(collision_resolution, data) else: self.rehashing() self.insert_data(data)
-1
TheAlgorithms/Python
5,518
[mypy] Fix type annotations in `data_structures/binary_tree`
### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
shermanhui
"2021-10-22T04:43:40Z"
"2021-10-22T14:07:05Z"
d82cf5292fbd0ffe1764a1da5c96a39b244618eb
629848e3721d9354d25fad6cb4729e6afdbbf799
[mypy] Fix type annotations in `data_structures/binary_tree`. ### fix type annotations in `data_structures/binary_tree/binary_search_tree.py` and `data_structures/binary_tree/merge_two_binary_trees.py` My contribution to fixing the `mypy` errors identified in #4052 Update binary_search_tree `arr` argument to be typed as a list within `find_kth_smallest` function Update return type of `merge_two_binary_trees` as both inputs can be None which means that a None type value can be returned from this function ![Screen Shot 2021-10-21 at 21 42 03](https://user-images.githubusercontent.com/11592023/138394459-dd0e1d32-9614-4b76-bafe-90f9741a94ab.png) * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Tree_sort algorithm. Build a BST and in order traverse. """ class node: # BST data structure def __init__(self, val): self.val = val self.left = None self.right = None def insert(self, val): if self.val: if val < self.val: if self.left is None: self.left = node(val) else: self.left.insert(val) elif val > self.val: if self.right is None: self.right = node(val) else: self.right.insert(val) else: self.val = val def inorder(root, res): # Recursive traversal if root: inorder(root.left, res) res.append(root.val) inorder(root.right, res) def tree_sort(arr): # Build BST if len(arr) == 0: return arr root = node(arr[0]) for i in range(1, len(arr)): root.insert(arr[i]) # Traverse BST in order. res = [] inorder(root, res) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
""" Tree_sort algorithm. Build a BST and in order traverse. """ class node: # BST data structure def __init__(self, val): self.val = val self.left = None self.right = None def insert(self, val): if self.val: if val < self.val: if self.left is None: self.left = node(val) else: self.left.insert(val) elif val > self.val: if self.right is None: self.right = node(val) else: self.right.insert(val) else: self.val = val def inorder(root, res): # Recursive traversal if root: inorder(root.left, res) res.append(root.val) inorder(root.right, res) def tree_sort(arr): # Build BST if len(arr) == 0: return arr root = node(arr[0]) for i in range(1, len(arr)): root.insert(arr[i]) # Traverse BST in order. res = [] inorder(root, res) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
-1