text
stringlengths
2
806k
meta
dict
Enterprise customers are increasingly adopting virtual private network (VPN) services to implement a communication network among their respective customer sites via a service provider's network. Such VPNs can provide direct any-to-any reachability among an enterprise's customer sites. In some examples, an enterprise customer may implement more than one VPN via the service provider's network.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a heat exchanger for use in air-conditioners such as automotive air-conditioners, package air-conditioners and room air-conditioners. 2. Description of the Prior Art In general, a heat exchanger for an air-conditioner is composed, in combination, of a number of fins and a plurality of heat transfer tubes held in contact with the fins. A severed, raised louver structure is formed on a surface of each fin in order to effectively carry out heat exchange between coolant that flows within the heat transfer tubes and air that flows between the fins in contact with the fin surfaces. U.S. Pat. No. 3,438,433 shows a heat exchanger of this type. However, if the louvers are arranged as proposed in that U.S. patent, a temperature boundary layer formed on the louvers would grow without any separation, so that a heat transfer performance of the louvers on the downstream side is degraded. In particular, in the case where the width of the louvers is small, the performance of the heat exchanger will be considerably degraded degrade. Thus, the heat exchanger involves a problem such that it is difficult to enhance the heat transfer efficiency by decreasing the width of the louvers. A heat exchanger that improves the above-noted problem is disclosed in U.S. Pat. No 2,789,797 which shows a structure wherein louvers are severed and raised in an alternate manner in a direction of air flow to form louver units, and heights of the louvers are changed between the adjacent louvers spaced in the direction of the air flow by a distance corresponding to a length of each louver. However, in the heat exchanger disclosed in U.S. Pat. No. 2,789,797, some adjacent louvers are spaced only by approximately one fourth of the fin pitch, and hence, it would be difficult to separate the temperature boundary layers along such louvers. At the same time, water droplets or dust would be adhere to such louvers, to prevent the air from flowing smoothly and to reduce the heat transfer performance. Also, because of the prevention of the air flow, the flow resistance would be increased. Thus, the prior art heat exchangers suffer from such problems.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to combustion devices and, more particularly, to emission control systems for combustion devices. During a typical combustion process within a furnace, boiler, or combustion turbine, for example, combustion gases are produced. Known combustion gases may contain combustion products including, without limitation, carbon monoxide, water, hydrogen, nitrogen and/or mercury generated as a direct result of combusting gas, solid and/or liquid fuels. Before the combustion gases are exhausted into the atmosphere, combustion byproducts, such as particulates, mercury and oxides of nitrogen (NOx), may be removed according to governmental and/or environmental requirements, standards and procedures. At least one conventional system for removing combustion byproducts from combustion gases includes a selective catalytic reduction (SCR) system that utilizes ammonia reducing agents. However, the use of such systems may involve safety and environmental issues associated with ammonia storage, transport and delivery, formation of ammonia slip and associated secondary particulate matter, and problems associated with the formation of corrosive ammonia salts downstream of the SCR system.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to valves with improved sealing properties, particularly to valves for high-pressure of high-vacuum applications for which improved sealing is an important property. 2. FIG. 1--Description of Prior Art Valves for high-vacuum or high-pressure applications are widely used in various fields of industry. For example, valves used in the manufacture of semiconductors must withstand a vacuum as low as 10.sup.-14 torr (torr=0.01216 atmosphere), while valves employed in pneumatic or hydraulic systems may work under pressures exceeding 100 kg/cm.sup.2. One existing valve, which is intended for high-vacuum applications and is produced by Huntington Laboratories, Inc., Mountain View, Calif., is shown in FIG. 1. It consists of a valve housing 10 which has an inlet pipe 12 with an inlet mounting flange 14 and an outlet pipe 16 with an outlet mounting flange 18. On the side opposite to outlet pipe 16, the housing is closed by a cover 20 which rests on a cover flange 22. A copper, annular seal 24 is placed between the mating surfaces of cover 20 and its flange 22. Cover 20 and its flange 22 are tightened together by bolts 26 which pass through holes 28 in cover 20 and are screwed into threaded holes 30 in cover flange 22. Bolts 26 are tightened so that the interface between cover 20 and flange 22 is reliably sealed. Cover 20 has a central threaded opening 32. A threaded portion 34 of a valve stem 36 is screwed into opening 32. The lower end of stem 36 is located inside valve body 10 and carries a valve head 38 which bears a copper gasket 40. The latter is replaceable and attached, for example, by a screw 42. The upper part of valve stem 36 protrudes outside the valve and carries a handle or an actuator 44 which can be attached to stem 36, e.g, by a screw 46. Above outlet pipe 16, valve housing 10 has a valve seat 48 which cooperates with copper gasket 38. For sealing the threaed connection between the stem's threads 34 and opening 32, a cylindrical bellows 50 is placed inside valve housing 10 around valve stem 36 between cover 20 and valve head 38. Bellows 50 is welded at its upper end to cover 20, forming a sealed weld seam 51, and at its lower end to valve head 38, forming a sealed welded seam 53. In order to allow rotation of valve stem 36 with respect to valve head 38 and at the same time to fix both parts in the axial direction, valve stem 36 has, at its lower end, a collar 37 which is fitted rotatably in a recess 39 of valve head 38. Axial fixation is provided by means of a flanged edge 41 formed on the lower end of bellows 50. This flanged edge overlaps a portion of collar 37 to form a sliding-type thrust bearing. The bearing can be replaced by a thrust-type ball bearing. For vacuum application, all parts of the valve (except for copper seal and gasket) are usually made of stainless steel.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a card game finding particular but not exclusive suitability for use in a casino. More specifically, the present invention relates to a card game in which the outcome is dependent upon the numerical summation of plural card values, and is further dependent on The frequency of occurrence of card combinations. 2. Description of the Prior Art Casinos and other gaming establishments are in the business of providing wagering games to their clientele. Such games are designed to enable each player to place a bet against the house or another player. In certain jurisdictions and games, most wagering is against the casino or house, and the casino acts as the banker. In other jurisdictions and games, the casino can have no interest in the outcome of the wager and wagering is among the players. In the latter case, the casino may charge a fee to the players, such as in the form of a unit or percentage charge per hand or a time charge, that is a fixed charge per hour at the table. Chips or counters may be sold by the casino to the players to facilitate the placing of wagers. In games in which the casino or house is the banker, if a player loses the casino collects the money, or if a player wins the casino pays the money. In games in which a player may be the banker, each player in turn has the option of acting as the banker, provided that the player opting to be the banker has sufficient chips on the playing table to cover all losses for the hand in which the player is the banker. Again, if a player loses the player-banker collects the money, and if a player wins the player-banker pays the money, including xe2x80x9cbonusxe2x80x9d payoffs. Ante bets are bets made before a player is dealt a hand. In a Hi-Lo game, that is a game involving both high and low hands, a player has the option of placing a Hi ante bet, a Lo ante bet, or both, to be eligible to participate in the game. Play bets are bets made after viewing the hand dealt. In a Hi-Lo game, a player has the further option of either placing a Hi play bet, a Lo play bet, or both betting that the player""s hand will beat the banker""s hand, or surrendering the Hi and/or Lo ante bet. If a jackpot option is used in the game for the holder or holders of a pre-defined combination, the jackpot is paid to players holding such a combination from the jackpot of money accumulated according to the game rules, usually from portions of surrendered bets. A high-low card game in which players are dealt three cards and a dealer is dealt four cards, and hand rankings are determined according to poker values, is disclosed in U.S. Pat. No. 5,810,663, issued Sep. 22, 1998, to J. Bochichio. The players"" hands are compared with the dealer""s hand and bets are paid or lost accordingly. A 3-card, multiple deck, poker rank type card game is described in U.S. Pat. No. 5,685,774, issued Nov. 11, 1997, to D. J. Webb for xe2x80x9cMethod of Playing a Card Game.xe2x80x9d This game includes a bonus payment according to a predetermined schedule provided that the player elects to play for the bonus. A blackjack type card game is described in U.S. Pat. No. 5,413,353, issued May 9, 1995, to P. W. Demarest for xe2x80x9cMethod of Playing a Blackjack Type Card Game.xe2x80x9d The players play against each other and a predetermined schedule sets the payoffs. The present invention is a new card game embodied in a new method of playing a card game that includes a dealer, a banker and one or more players, and involves the steps of establishing a numerical hierarchy of possible hands based on counting and summing the numerical value of two dealt cards to a player to determine winning hands, providing a player with a number of wagering options including the placing of Hi and Lo ante and play bets, and resolving wagers of the player as compared to the numerical value of the best two of three cards dealt to the banker. The game embodying the present invention involves the following actions: (a) HI or LO ANTE bets: A player makes an ANTE bet or bets and is dealt a hand. After viewing the hand, the player either surrenders the ANTE bet or bets, or places a PLAY bet or bets that the hand will beat the banker""s hand. (b) HI or LO PLAY bets: The player""s hand and the dealer""s hand are compared. A player will win or lose the ANTE and PLAY bet or bets, depending on the numerical value of the player""s hand as compared to the value of the banker""s hand. (c) BONUS payoff: A player will be paid a BONUS payoff according to a predetermined schedule if the player""s hand is one of certain pre-established values. (d) JACKPOT payoff: If the JACKPOT option is employed, the amount accumulated from surrendered ANTE bets are placed in a JACKPOT and paid to any player having a hand containing the pre-defined JACKPOT hand. To establish a JACKPOT, the amount of each surrendered ANTE bet is divided between the banker and the JACKPOT as determined by the rules of the game and casino. For example, the split may be 50% to the JACKPOT and 50% to the banker. The present invention is further embodied in an apparatus for use in playing the card game. The apparatus comprises a gaming table or table cover presenting a display of playing areas. The apparatus comprises a rigid playing surface of board, plastic or other suitable material or alternatively comprise a cloth or other flexible material defining a playing surface. The surface is of generally semi-circular form, with the dealer""s playing area being located proximate the straight edge of the playing surface or centrally thereof and the players"" playing areas being disposed side by side in an array adjacent the curved edge of the playing surface. The areas include: (a) a dealer""s area; (b) a number of player playing areas, each comprising a zone in which a player may place wagers as described above, and another zone adapted to receive the cards dealt the player; (c) a chip tray for holding playing chips in a position convenient to the dealer or banker; (d) an area or receptacle for cards not in play; and (e) if the JACKPOT option is employed, a box to hold chips placed in the JACKPOT.
{ "pile_set_name": "USPTO Backgrounds" }
Co-browsing enables two or more individuals, usually remotely located, to use a web browser to interact with web pages together, while seeing the same view in a synchronized manner. Co-browsing of websites can be very effective in various scenarios, for example in support and sale interactions between company representatives and website visitors. Users can make use of co-browsing to provide better customer support—assisting customers with their visit on the site, or to increase sales—e.g. to discuss product displayed on the site pages. In particular, there is a growing interest for a co-browsing solution that does not require software installation or special plug-ins and only makes use of modern web browsers. Early co-browsing was achieved by local execution of software that had to be installed on the computer of each participant. More advanced tools didn't have to be installed, but still required local execution of software or at least web-browser plug-ins, extensions, or applets. Most tools were limited to a single user that was able to navigate or led a session, while the other users could only watch. Some tools provide very limited co-browsing by only synchronizing the page location (URL) of the page that should be shared. Proxy server based co-browsing solutions have certain important limitations. In general, the proxy server fetches the page and passes a modified version to each user; references (paths, hyperlinks) to the original website are replaced with references to the proxy. When a user navigates the site, the proxy in turn performs the actions on the website and returns the modified pages to each user etc. Proxy serve based solutions generally include the following disadvantages: Another known solution is Server user-agent access. However, there are websites that do not allow a server (“robot”) user-agent to access their site, therefore excluding these sites for the proxy-based co-browsing solution. Further, in cases where browsing is performed by the proxy's user-agent, cookies are saved on the proxy and not on the user's machine. This means that important cookie-saved information (such as content of shopping basket or preferred language) may be lost when co-browsing users use the page. On sites where cookies are relied on for login, a login done using the proxy server will not be available for the user the next time s/he visits the site using his/her own browser. Security and pages requiring login often include sensitive data such as user names and login details that need to be transferred through the proxy server and not inputted directly by the user on a browsed website. This is less secure and may be unacceptable in scenarios where higher-security standards required by users. JavaScript usage often “relies” on pages coming from a certain URL. As references to the original site are replaced with ones to the proxy, these instances will likely result in errors, causing the co-browsing not to be executed correctly. A solution for co-browsing that answers the limitations of the current methods described above would be advantageous. Such enhanced co-browsing should aim to support automatic synchronization of the browsers' state and content, including frames, portlets, or even content of the form fields and controls.
{ "pile_set_name": "USPTO Backgrounds" }
Software testing is an integral part of software development. Ideally, the data used when testing software will resemble live data that is expected when the software is deployed. However, for security reasons, live data is not always available. For example, some software deals with personal or confidential information. A banking application may access a database that has names, addresses, social security numbers, and bank balances of customers. Besides possibly being in violation of the law, providing such information to testers may not be desirable because the testing environment might not otherwise need to have the security safeguards in place to adequately protect the data. Accordingly, testing may be done with data that does not resemble live data. However, such an approach can easily lead to inadequate testing. As a result, certain problems with the software are later found after the application is put into production, leading to dissatisfied users. Although there are certain data masking software packages available, they are not sufficiently flexible and do not lend themselves well to use in a variety of settings. Therefore, there still remains need for technologies to address shortcomings of current data masking techniques.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to rotary fluid pressure devices, and more particularly, to such devices which include gerotor displacement mechanisms. Although the present invention may be used advantageously with gerotor devices which are to be used as fluid pumps, the invention is especially advantageous when utilized as part of a gerotor motor, and particularly those of the low speed, high torque type, and will be described in connection therewith. In addition, the invention is especially advantageous when utilized as part of a gerotor device intended to operate at relatively higher pressures and torques. Furthermore, although the present invention may be used advantageously with gerotor motors having various types of valving, it is especially advantageous when utilized in a high pressure motor of the "valve-in-star" (VIS) type, and will be described in connection therewith. An example of a VIS motor is illustrated and described in U.S. Pat. No. 4,741,681, assigned to the assignee of the present invention and incorporated herein by reference. In a VIS motor, commutating valving action is accomplished at an interface between an orbiting and rotating gerotor star, and an adjacent, stationary valve plate, which is typically either part of the motor housing (or end cap), or comprises a separate member, but is held rotationally stationary relative to the motor housing. An example of a VIS motor in which the stationary valve member is a member separate from the motor housing is illustrated and described in U.S. Pat. No. 4,976,594, also assigned to the assignee of the present invention and incorporated herein by reference. Increasingly, low speed, high torque gerotor motors of the kind to which the invention relates, are expected to be able to perform well even in the presence of relatively high back pressures, i.e., a pressure substantially above reservoir pressure at the return (outlet) port of the motor. As is well known to those skilled in the art, high back pressures are common in the case of closed circuit vehicle propel systems in which the system charge pressure is being increased to improve the performance of the servo system which controls the displacement of the hydrostatic, propel pump. As is also well known, the system charge pressure inherently determines the back pressure at the motor, because charge pressure ("make-up" fluid) is communicated to the low pressure side of the system, which is the outlet side of the propel motor. An inherent characteristic of VIS type motors is that the back pressure exerts a separating force on the gerotor star, tending to separate the star (which is the orbiting and rotating valve member) from the adjacent valving surface on the stationary valve member. As is well known to those skilled in the gerotor motor art, such separation of adjacent valving surfaces will substantially reduce the volumetric efficiency of the motor, the volumetric efficiency being the ratio of the actual output of the motor to the theoretical motor output which would have been, if there had been no leakage within the motor. It has been determined that for certain VIS motor configurations, the star separation issue is not as much of a problem at elevated system pressures, because system pressure is used to bias the gerotor star toward the adjacent surface of the stationary valve member. Instead, the problem may be most noticeable at relatively lower system pressures, when there is less resulting biasing force on the star. It is believed that the problem may be exacerbated by the relatively high bolt torque which is used in view of the fact that the motor is intended for relatively higher pressure applications. The high bolt torque can have the effect of distorting the prior art balancing plate, thus opening up leakage clearances between the gerotor and the balancing plate, and reducing volumetric efficiency. Of greater concern is the fact that the bolt torque results in an unpredictable preload on the balancing plate, in view of variations in factors such as thread finish, etc., whereas what is really desired is a known, predictable preload. Accordingly, it is an object of the present invention to provide an improved low speed, high torque gerotor motor, and especially a motor of the VIS type, which is able to perform satisfactorily, even in the presence of a relatively higher back pressure, with less of a decrease in volumetric efficiency. It is another object of the present invention to provide a VIS type gerotor motor having an improved balancing plate and seal arrangement which makes it possible to reduce the gerotor side clearance, for further increased volumetric efficiency, while at the same time, effectively increasing the side clearance tolerance band, thus reducing the manufacturing cost of the gerotor. Is has been observed that the effort to reduce gerotor side clearance, and increase volumetric efficiency can have one undesirable effect. Increasing the loading on a balancing plate disposed adjacent the forward surface (i.e., the end opposite the stationary valve plate) of the star can result in galling between the end surface of the star tooth and the adjacent surface of the balancing plate, especially at a location of high relative velocity between the adjacent surfaces. As is well known to those skilled in the gerotor motor art, any galling between relatively moving parts is likely to lead fairly quickly to total inoperability of the motor. Accordingly, it is another object of the present invention to provide an improved gerotor motor which has an increased ability to prevent galling between the end surfaces of the gerotor star and the adjacent surface of the balancing plate. It is a more specific object of the present invention to provide an improved gerotor motor which achieves the above-stated object by directing pressurized fluid to the area subject to galling, thus cooling and lubricating the area of potential galling.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates primarily to microwave communication systems wherein data is communicated from point to point over a plurality of channels at microwave frequencies. Such communications systems are frequently used to send computer data from one computer terminal or center to another as well as for other digitized data and video and audio signals. Many channels are customarily provided within the same microwave link. Both digital and analog modulation techniques have been used in prior art systems, digital being the more reliable of the two and presently being almost exclusively used for communications between computer terminals. QPSK (quaternary phase shift keying) has been used in some installations to both increase the number of bits of data per second which may be transmitted over a fixed bandwidth as well as for improving the maximum signal-to-noise ratio for a given channel and bandwidth and spacing between microwave transmitter and receiver positions. Diversity transmission and reception is commonly employed where signals are subject to multipath distortion. Such distortion occurs when the transmitted signal arrives at the receiving antenna by a plurality of paths and instead of directly from transmitting antenna to receiving antenna. Fading occurs when the signals arriving at the receiving antenna add out of phase with one another effectively cancelling one another. The amount of multipath distortion varies from time to time as atmospheric conditions change. Diversity transmission and reception alleviate these problems to a large degree as signals of horizontal and vertical polarization are affected differently by different atmospheric conditions as well as by the different features on the terrain between two stations. In such diversity systems, at the receiving station two antennas apart from one another are used although both may be mounted upon the same tower. Signals with horizontal polarization are received with one of the antennas while signals of vertical polarization are received with the other one of the antennas. At the transmitting station, the signals are transmitted with both polarizations. A clock signal may be transmitted along with the data in each channel. At the receiving end, a decision is made as to which of the horizontal or vertical received signals is the better and that signal selected as the output of the system. In prior art systems, the switch from one data stream to the other was made without regard to the relative phase between data in the two data streams. The result was that frequently data was lost when switching from one data stream to the other. This made the overall system reliability much lower than it would be if switching could have been accomplished without the loss of the data. To compensate for the reduced reliability of the system, it was frequently the practice to either increase the transmitter power or decrease spacing between stations.
{ "pile_set_name": "USPTO Backgrounds" }
Some air conditioners of the related art equip with a wireless remote controller capable of operating (operation, such as driving or stopping) an indoor unit through the wired remote controller instead of a wired remote controller connected through a communication line to an indoor unit. In a case where an indoor unit is operated using one of the two types of remote controllers and thereafter is operated from the other remote controller, the most recent operation is selected with a higher priority (see, for example, Patent Document 1). [Patent Document 1] Japanese Unexamined Patent Application Publication No. 10-115449
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to an intake regulating system of engine, and more particularly, to an intake regulating system of engine that makes the engine's discharged gas pass through an air regulating valve and mix with the outside air, then reintroduce the mixed air back into the engine for re-combustion. 2. Description of the Prior Art A crankcase forced ventilating system generally called PCV (Positive Crankcase Ventilation) is normally provided on the top of the cap of the rocker arm of an automobile engine. The PCV device is generally provided between the “ventilation hole” of the crankcase and the intake manifold. When the engine is working, there are toxic gases that contain hydrocarbon (HC) and carbon monoxide (CO) etc. leaking from the combustion chamber to the crankcase, and discharging to the atmosphere causing air pollution. The purpose of providing the PCV device is to reintroduce the discharged and leaked gases back to the combustion chamber for re-combustion instead of discharging all of them into the atmosphere. The automobiles manufactured by all the countries are stipulated to equip with PCV device for compelling the toxic gases that is harmful to the health to be recycled, thereby, preventing hydrocarbon (HC) and carbon monoxide (CO) etc. from discharging into the atmosphere directly causing air pollution. In general, the common limit for the ON/OFF action time of the intake valve, regardless of single or multiple intake valves of engine, of the conventional carburetor is only around 1/100 second when the engine velocity reaches 3,000 rpm (revolution per minute) wherein the valve's ON time contains 30% while the valve's OFF time contains 60%. Therefore, it becomes an important issue for people skilled in the art to pursue how to supply effective and sufficient air in the instant of air intake of the intake valve. FIG. 1 is a schematic diagram of an intake regulating system of engine of the prior art while FIG. 2 is a cross-sectional view of an air regulating valve of the intake regulating system of engine of the prior art. In the light of the above-mentioned problems and as shown in FIG. 1 and FIG. 2, there is an intake regulating-device of engine (1) on the market. The intake regulating-device of engine of the prior art is connected to the air tube of the engine to form an intake regulating system of the engine. The intake regulating-device of engine includes a housing (11), a pair of springs (12) and (13), a valve piston (14), and a valve regulating knob (15). An inlet hole (110), an outlet hole (111), and a slender hole (112) connecting to the negative pressure are also furnished in the housing (11). The valve piston (14) is contained within the housing (11) and is capable of reciprocally sliding therein and forming a valve. An end of the valve piston (14) is an air-tight slider (141) having a couple of compression rings (142) and (143) that make the air-tight slider (141) maintain air-tight while perform sliding with the interior surface of the housing (11). The other end of the valve piston (14) provides a conic surface (144) capable of air-tight contacting to the housing (11). For the sake of maintaining air-tight contact between the conic surface (144) of the valve piston (14) and the housing (11) to intercept the air flow between the inlet hole (110) and the outlet hole (111), the resilient force of the spring (13) has to be greater than that of the spring (12). As shown again in FIG. 1, when the engine (2) starts working, the intake valve has opened during the intake stroke, and the piston is moving downward, drawing air from an air cleaner (21) through an air pipe (210), a throttle (22), an intake manifold (23), and the air inlet (20). A mixture of air and gasoline vapor is then drawn into the cylinder. Conventional carburetor makes use of a Venturi tube to take in the combustion fuel automatically. However, the new fuel injection engine employs ECU (Electronic Control Unit) (220) to control the fuel nozzle making the fuel-air mixture maintain a constant fuel-air ratio in accordance with the detecting result of the AFM (Air Flow Meter) to draw the air-fuel mixture into the combustion chamber via the air inlet (20) for generating power. For keeping the pressure balance between the crankcase (28) and the outside atmosphere, a hole connected to a breather hose (24) and the air pipe (210) for communicating with the outside air is provided above the liquid surface of oil in the crankcase 28 of the engine (2). What is more, part of the gas in the crankcase 28 can discharge through the breather hose (24) via the air pipe (210) and enter the intake manifold (23) together with the air drawing from the atmosphere. The other part of the gas passes through the PCV (Positive Crankcase Ventilation) device (25), intake manifold (23) and enters the air inlet (20) of the engine (2). As shown in FIG. 1, the intake regulating-device of engine (1) of the prior art is communicating with the intake manifold (23) of the engine (2). As the car driver steps' on the accelerator for accelerating, the cylinder of the engine (2) will draw more air from the atmosphere causing the pressure drop at the outlet hole (111). Consequently, both ends of the air-tight slider (141) positioned on top of the valve piston (14) create pressure difference. When the pressure difference is created and becomes larger than the unbalanced resilient force between the springs 12 and 13, the conic surface (144) of the valve piston (14) moves downward. The air path between the inlet hole (110) and the outlet hole (111) is varied according to the moving of the conic surface (144) of the valve piston (14). As the conic surface (144) moves downward, the outside air can be drawn into the inlet hole (110), and therefore passing through the outlet hole (111), intake manifold (23) and air inlet (20) of engine, to provide sufficient and effective air for combustion. Preferably, the inlet hole (110) is connected with an air cleaner (1101) to prevent dirty air from getting in and for protecting the intake regulating-device of engine (1) and the engine (2). In actual operation, it is found that the engine (2) of the prior art shown in FIG. 1 has the following demerits: 1. The oil vapor leaking from the combustion chamber of the engine to the crankcase 28 and entering directly from the breather hose (24) to the air pipe (210) and the intake manifold (23) may condense on the wall of the pipe if it comes across cold air causing greasy dirt deposit that is hard to clean up. 2. The intake regulating-device of engine (1) of the prior art is unable to effectively regulate the limiting position that is capable to open the valve piston (14) to adapt to the requirements of different specification for the engines.
{ "pile_set_name": "USPTO Backgrounds" }
The preparation of artificial receptors that bind ligands like proteins, peptides, carbohydrates, microbes, pollutants, pharmaceuticals, and the like with high sensitivity and specificity is an active area of research. None of the conventional approaches has been particularly successful; achieving only modest sensitivity and specificity mainly due to low binding affinity. Antibodies, enzymes, and natural receptors generally have binding constants in the 108-1012 range, which results in both nanomolar sensitivity and targeted specificity. By contrast, conventional artificial receptors typically have binding constants of about 103 to 105, with the predictable result of millimolar sensitivity and limited specificity. Several conventional approaches are being pursued in attempts to achieve highly sensitive and specific artificial receptors. These approaches include, for example, affinity isolation, molecular imprinting, and rational and/or combinatorial design and synthesis of synthetic or semi-synthetic receptors. Such rational or combinatorial approaches have been limited by the relatively small number of receptors which are evaluated and/or by their reliance on a design strategy which focuses on only one building block, the homogeneous design strategy. Common combinatorial approaches form microarrays that include 10,000 or 100,000 distinct spots on a standard microscope slide. However, such conventional methods for combinatorial synthesis provide a single molecule per spot. Employing a single building block in each spot provides only a single possible receptor per spot. Synthesis of thousands of building blocks would be required to make thousands of possible receptors. Further, these conventional approaches are hampered by the currently limited understanding of the principles which lead to efficient binding and the large number of possible structures for receptors, which makes such an approach problematic. There remains a need for methods for detecting test ligands in unknown samples and for detecting compounds that disrupt one or more binding interactions.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a light-emitting element, a display device, a light-emitting device, an electronic device, and a lighting device each of which includes an organic compound as a light-emitting substance. 2. Description of the Related Art In recent years, research and development have been extensively conducted on light-emitting elements using electroluminescence (EL). In a basic structure of such a light-emitting element, a layer containing a light-emitting substance (an EL layer) is interposed between a pair of electrodes. By applying voltage to this element, light emission from the light-emitting substance can be obtained. Since such a light-emitting element is of self-light-emitting type, the light-emitting element has advantages over a liquid crystal display in that visibility of pixels is high, backlight is not required, and so on and is therefore suitable as flat panel display elements. In addition, it is also a great advantage that a display including such a light-emitting element can be manufactured as a thin and lightweight display. Furthermore, very high speed response is also one of the features of such an element. Since a light-emitting layer of such a light-emitting element can be formed in the form of a film, planar light emission can be achieved. Therefore, large-area light sources can be easily formed. This feature is difficult to obtain with point light sources typified by incandescent lamps and LEDs or linear light sources typified by fluorescent lamps. Thus, light-emitting elements also have great potential as planar light sources which can be applied to lighting devices and the like. In the case of an organic EL element in which an EL layer containing an organic compound as the light-emitting substance is provided between a pair of electrodes, application of a voltage between the pair of electrodes causes injection of electrons from the cathode and holes from the anode into the EL layer having a light-emitting property, and thus a current flows. By recombination of the injected electrons and holes, the organic compound having a light-emitting property is put in an excited state to provide light emission. The excited state of an organic compound can be a singlet excited state or a triplet excited state, and light emission from the singlet excited state (S*) is referred to as fluorescence, and light emission from the triplet excited state (T*) is referred to as phosphorescence. The statistical generation ratio of the excited states in the light-emitting element is considered to be S*:T*=1:3. Therefore, a light-emitting element including a phosphorescent compound capable of converting the triplet excited state into light emission has been actively developed in recent years. However, most phosphorescent compounds currently available are complexes containing a rare metal such as iridium as a central metal, which raises concern about the cost and the stability of supply. Therefore, as materials which do not contain a rare metal and can convert a triplet excited state into light emission, materials exhibiting delayed fluorescence have been studied. Patent Documents 1 and 2 disclose a material exhibiting thermally activated delayed fluorescence (TADF) (hereinafter also referred to as a TADF material) with relatively high efficiency even at low temperature.
{ "pile_set_name": "USPTO Backgrounds" }
The need to maintain "cache coherence" in multiprocessor systems is well known. Maintaining "cache coherence" means, at a minimum, that whenever data is written into a specified location in a shared address space by one processor, the caches for any other processors which store data for the same address location are either invalidated, or updated with the new data. There are two primary system architectures used for maintaining cache coherence. One, herein called the cache snoop architecture, requires that each data processor's cache include logic for monitoring a shared address bus and various control lines so as to detect when data in shared memory is being overwritten with new data, determining whether its data processor's cache contains an entry for the same memory location, and updating its cache contents and/or the corresponding cache tag when data stored in the cache is invalidated by another processor. Thus, in the cache snoop architecture, every data processor is responsible for maintaining its own cache in a state that is consistent with the state of the other caches. In a second cache coherence architecture, herein called the memory directory architecture, main memory includes a set of status bits for every block of data that indicate which data processors, if any, have the data block stored in cache. The main memory's status bits may store additional information, such as which processor is considered to be the "owner" of the data block if the cache coherence architecture requires storage of such information. In these cache coherence architectures, read-writeback transaction pairs arise when a read miss requires victimizing a cache line which has modified data, thereby necessitating a writeback to main memory. In the prior art, these transactions normally are strictly ordered, with the victimizing read transaction executing prior to the writeback transaction in order to allow the requesting processor to receive the data right away. In addition to the strict ordering, cache coherence architectures of the prior art required these read and writeback transactions be sequentially executed, not allowing for any other coherent transactions to be executed from the same processor between the read and the writeback transactions, even when transactions are directed to a different cache index. Accordingly, an architecture which supported parallelized transactions would provide reduced latency in processing the individual read-writeback transaction pairs along with an improvement in the overall transaction throughput.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure relates to a system for controlling the operation of an electrical appliance, such as a VCR or a TiVo, from a remote location. More particularly, the present disclosure relates to a system for controlling the operation of an electrical appliance from a remote location using a cellular device, such a cellular telephone or a cellular-enabled PDA. Typically, a home has many electrical appliances—such as, VCR, DVD or any type of video or audio recording devices, TV receiver, air conditioner, furnace, thermostat, indoor and outdoor lights, and the like. It is desirable to control the operation of such appliances from a remote location. For example, it may be desirable to program a VCR to record a specified program, or to program an air conditioner or a furnace to keep the temperature in a home within a certain range.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method of steering an aircraft comprising a supporting structure, at least one utility space, at least two propellers whose axles are arranged substantially horizontally, and a driving mechanism to rotate each propeller, the blade angles of at least one propeller of the aircraft being adjustable such that the blow power of the propellers provides the aircraft with a lifting force, and after take-off of the aircraft the blade angles of the propeller are adjusted such that the blow power of the propellers provides the aircraft with horizontal flight. The invention further relates to an aircraft comprising a supporting structure, at least one utility space, at least two propellers whose axles are arranged substantially horizontally, and a driving mechanism to rotate each propeller, the blade angles of at least one propeller of the aircraft being adjustable such that the blow power of the propellers provides the aircraft with a lifting force, and after take-off of the aircraft the blade angles of the propeller are adjusted such that the blow power of the propellers provides the aircraft with horizontal flight. U.S. Pat. No. 3,901,463 discloses a vertical take-off aerodyne comprising at least two propellers mounted on the same drive shaft, a driving mechanism to rotate the propellers, and an arch-shaped airfoil placed above the propellers. In order to move the aircraft according to the publication in the vertical direction, the blade angles of at least one of the propellers can be regulated so as to enable the propellers to draw the ambient air in the opposite directions into the space between the propellers, where the flow of air is guided downwards by the arc-shaped airfoil, thus producing a vertical lifting force to lift the apparatus. In order to move the apparatus horizontally, the blade angles of the propeller can be reversed to produce a parallel flow of air from the propellers for a forward movement of the aerodyne, whereby the apparatus can be steered by a rudder and an aileron during flight. Since the apparatus disclosed in the publication can be steered by the rudder and aileron during the actual flight only, in practice the apparatus is non-steerable during vertical take-off and landing. An object of the present invention is to provide a simple and reliable method for steering an aircraft. A method of the invention is characterized in that the blade angles of a propeller are adjusted as a function of a rotation angle of the propeller. An aircraft of the invention is characterized in that the blade angles of the propeller are adjustable as a function of a rotation angle of the propeller. The idea underlying the invention is that on an aircraft comprising a supporting structure, at least one utility space, at least two propellers arranged in the aircraft such that their axles are substantially in the horizontal direction, and a driving mechanism to rotate each propeller, the blade angles of at least one propeller can be adjusted as a function of a rotation angle of the propeller such that the blow power of the propellers provides the aircraft with a lifting force, and after take-off of the aircraft the blade angles of the propeller can be adjusted such that the blow power of the propellers provides the aircraft with horizontal flight. According to the basic idea of the invention, the aircraft is able to take-off and land vertically, but also take-off and landing runs can be used, whereby by adjusting the blade angles, the blow power of the propellers can be regulated to produce a lifting or a lowering force in order to shorten the take-off and landing runs. According to a preferred embodiment of the invention, the supporting structure of the aircraft is comprised of an upper wing, a front wing located below the upper wing and a rear wing located below the upper wing and behind the front wing, an air discharge opening being provided between the front wing and the rear wing. According to a second preferred embodiment of the invention, the supporting structure of the aircraft is comprised of a wing forming an open-topped tunnel duct with propellers mounted at the ends thereof above the wing. According to a third preferred embodiment of the invention, the supporting structure of the aircraft is comprised of a wing with respect to whose front edge and rear edge propellers are arranged such that the axles of the propellers are substantially at the level of the wing. An advantage of the invention is that the aircraft is steerable both during vertical take-off and landing and while using short take-off and landing runs. Furthermore, the aircraft requires no rudder nor aileron but the apparatus is steerable by the solution of the invention also during the actual flight.
{ "pile_set_name": "USPTO Backgrounds" }
Light emitting diodes (LEDs) can be incorporated into pagers, cellular telephones, personal digital assistants, laptop or notebook computers and other electronic equipment (mostly portable) for display and other visual purposes. If multiple LEDs are used in the visual display of an electronic device, it is important that the brightness of all LEDs is consistent. Otherwise, the visual display will not be as aesthetically pleasing to a user. Furthermore, because most portable electronic devices operate on battery power, it is desirable to optimize or maximize efficiency when driving any LEDs contained therein in order to extend battery life between recharging or replacement. In many cases, as a battery is depleted, any LEDs powered by such battery will begin to fade or become less bright. This can be annoying or distracting for users. Thus, it is desirable to maintain the brightness of LEDs in portable devices even as the battery for the device is depleted.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a method and apparatus for cleaning a wellbore with specially configured drill string mounted tools. More particularly, the present invention relates to a tool apparatus that enables debris removal tools (e.g., scraper blades, brushes or magnetic members/magnets) to be mounted to the outer cylindrically shaped surface of a section or joint of a drill string/drill pipe with a specially configured locking clamp or clamps. 2. General Background of the Invention The Drilling of an oil well typically requires the installation into the wellbore of steel walled casing. This casing is cemented into place to provide a gas tight seal between the overlapping casing strings and also between the casing and the formation or rock through which the well is drilled. Typical cementing practice requires the cement to be pumped from the surface area or wellhead down a string of internal tubing or down the inner most casing string and displaced through the bottom of the casing string into the casing annulus. This procedure may contaminate the inside of the casing wall or wellbore with the cement. After cementation is completed, it is often required to drill out cement and the associated cementation equipment (commonly referred to as shoe track, floats shoe, landing collar, and darts). Chemicals, solids, greases and other fluids used in the drilling process can and do adhere to the casing wall. These chemicals often mix to become a sticky and viscous substance which is largely resilient to chemical treatments and difficult to remove. As the wellbore casing is steel walled, it can and is prone to rusting and scaling. During the drilling and other downhole activities, pieces of the drilling or wellbore equipment may need to be milled. Through various other processes (purposeful or accidental), pieces or parts can be left inside the wellbore. The aforementioned situations result in contaminants being left in the wellbore, which will for the purposes of this document be referred to as debris. During the completion phase in a well lifecycle, several pieces of hardware are semi-permanently installed into the wellbore. These vary greatly in complexity and cost. Their primary function is the transportation of produced hydrocarbons (or injection from surface of other fluids) between the reservoir and the Christmas tree/wellhead (or vice versa) as well as maintaining hydrostatic control of the wellbore at all times. Completions typically include steel tubular piping to transport the fluids, at least one hydrostatic sealing device (packer) and one safety valve. More complex completions may include gauges to measure pressure and temperature at multiple points in the wellbore. Other items may include chokes, screens, valves and pumps. Advancements in downhole electronics make the placement of measuring and controlling equipment more accessible and more commonplace. Typically these components are sensitive to debris. It has been well documented that debris is a leading root cause of failure during completion operations. In response, a niche industry has developed since the late 1990s, which is focused on the removal of debris and the cleaning of the wellbore. This niche of the oil industry is known as wellbore cleanup. The wellbore cleanup operations will typically take place between the drilling and completion of the well. Generally speaking, the practice of wellbore cleanup is not new. Examples of prior art go back many years when basic embodiments of wellbore cleanup tools were developed, including scrapers, brushes, magnets, junk catchers and variations thereof. These were basic tools designed to fit a basic need, examples of which are still in use today. As advancements in drilling and completion technologies were made (particularly starting in the 1990's with the inclusion of downhole electronics, sand control, intelligent completions and extended reach drilling) improvements to the design and functionality of wellbore cleanup tools were marketed, and the practice of improving the cleanliness of oil wells prior to installation of the completion components became almost standard practice. During the wellbore cleanup operations, an assembly of tools (referred to as a bottom hole assembly or BHA) will be run into the wellbore to clean each casing section. These tools are fastened together using threaded connections located at either end of the tool. The tools or BHA are then fastened together with the drill string or work string consisting of multiple lengths of drill pipe, collars, heavy weight drill pipe, wash pipe or tubing also featuring threaded connections. These threaded connections are typically industry standard connections as defined in ANSI/API Specification 7-2 (for example 4/½″ IF/NC50 or 3/½″ IF/NC38) and commonly referred to as API connections. Also available are proprietary connections which are licensed from manufacturers of high strength drill pipe. Popular proprietary connections are supplied by NOV—Grant Prideco (eXtreme Torque, HI Torque, Turbo Torque), Hydrill (Wedge Thread) and others. The proprietary connections are often referred to as premium drill pipe connections and are typically used when higher mechanical strengths are required (e.g., torque, tensile strength, fatigue resistance, etc.) or when larger diameter drill pipe is preferred relating to the improvement of drilling hydraulics. For example, it is common now to use 5⅞″ OD drill pipe inside 9⅝″ casing to improve hydraulics whereas in the past it would have been more common to use 5″ drill pipe). The table below shows some examples of drill pipe and connection combinations used for a typical casing size; however, due to the many manufacturers and standards available, there may be thousands of combinations. Note: The Drill Pipe OD refers to the Pipe Body OD and not the maximum external of the component. The Tool Joints are always of larger diameter. Also the Casing Size is defined by the Nominal OD and the linear weight per foot. API 5-CT allows for a tolerance in the diameter and ovality. Therefore the Casing ID may vary significantly. TypicalDrill PipeCasingNominalDrill PipeDrill PipeTool JointSize ODCasing IDConnectionsODOD9.625″8.374″-8.921″API NC505.0″6.375″-6.750″(4½″ IF)9.625″8.374″-8.921″TT/HT/XT505.0″6.375″-6.750″9.625″8.374″-8.921″TT/HT/XT555.5″ 7.0″-7.375″9.625″8.374″-8.921″TT/HT/XT575.875″ 7.0″-7.375″9.625″8.374″-8.921″WT505.0″6.5/8″-7.0″9.625″8.374″-8.921″WT545.5″7″9.625″8.374″-8.921″WT565.875″7″-7¼″ Wellbore cleanup tools come in a variety of types and brand names. However, they can be categorized generally as one of the following: a scraper, brush, magnet, junk basket, debris filter, circulation sub, drift or a combination of two or more of these. These tools shall typically consist of a tool body onto which the various components can be attached. The tool body may consist of one or more pieces, but shall in all cases include threaded drill pipe connections, either API or Premium type. The tool body is typically an integral drill string component when made up into the drill string and shall bear all the tensile, torque, fatigue and pressure loading of the drill string. The tool body is typically made of steel and customized to allow attachment of the various components in order for it to function in the manner described. Due to the many variations of drill pipe connections, the variety of casing sizes, and the many types of wellbore cleanup tools required, it would be commercially impractical for a company providing wellbore cleanup tools to stock every combination required from every customer. Therefore the practice of designing wellbore cleanup tools to cover a range of casing sizes as well as a variety of functions has become common practice, whereby the tool body can be used with interchangeable external components to cover both the size range and in some cases also to alter the function of the tool (for example from a scraper to a brush). This allows standardization of the tool body, however as the drill pipe connections are hard cut onto the tool body, a degree of standardization of the tool body connections are required. Typically this is the API drill pipe connection common to that casing size (NC50 for 9⅝″ casing or NC38 for 7″ casing). In some cases the wellbore cleanup tool manufacturer may supply the tools with premium drill pipe connections, however for commercial reasons this is usually limited to specific projects or markets where the use of the corresponding drill pipe justifies this. It is common for suppliers of wellbore cleanup tools to supply either individual tools or assemblies of tools where the individual tools have a type of drill pipe connection which is not the same as that used in the drill string. In this case it is common for the tools to be supplied with crossovers. Crossovers are typically short “subs” (joints of tubing) with differing connections at each end. For example, a XT-57 box thread can be at the top with an API NC50 pin at the bottom. This allows components of the drill string with non-interchangeable threaded end connections to be made up together into a singular integral drill string. Further to this, it is often practice to supply pup joints which are typically ten feet (10′) or less in length and have a profiled external diameter which matches the drill pipe and which fits into the drilling elevators and drill pipe slips to facilitate the installation and removal of the drill string into/from the wellbore in a timely fashion. There also exists pup-overs which are a combination of pup joint and crossover and which combines the functionality of both. Wellbore cleanup tools and drill string often have mismatching threaded connections, and the wellbore cleanup tools are usually rated to lower strengths. The lower strength of the cleanup tools in effect reduces the overall strength of the drill string, which is typically rated by the strength of its weakest link. This has become an acceptable practice provided the drilling parameters do not exceed the limitations of the weakest point. The situation can arise during the cleanup operations that high torque can be observed during rotation of the drill string which results in rotation of the string being suspended. Drill string rotation is a key function of wellbore cleanup in the removal of debris from the wellbore, the lack of which significantly impacts the efficiency and effectiveness of the wellbore cleanup. The requirement to include crossovers and pup joint into the drill string increases the number of threaded connections into the drill string which in turn increases the time and cost to deploy the drill string, increases the inspection costs and increases the likelihood of failure. The inventory of crossovers and pup joints needs to be managed, which includes storage, handling, inspections and maintenance. Due to the many types of drill pipe connections and the varying sizes, and the need to maintain sufficient inventory for multiple overlapping operations, the stocking and management of these inventories is a cost prohibitive endeavor.
{ "pile_set_name": "USPTO Backgrounds" }
For instance, U.S. Pat. No. 6,138,960 A describes conduit hangers for hanging a pipe from a ceiling. Such conduit hangers have bracket elements in which the pipe is held. In order for the load-bearing force of conduit hangers to be introduced over a large surface area into the pipe or into the insulation that surrounds the pipe, U.S. Pat. No. 3,653,618, for example, discloses placing a load-distribution plate into the bracket element of the conduit hanger, and the pipe, in turn, is laid onto said load-distribution plate. A load-distribution plate of the generic type enlarges the contact surface area and thus reduces the pressure that is exerted upon the pipe. U.S. Pat. No. 3,653,618 teaches that such a load-distribution plate can be centered by means of a tab that can be adjusted in the bracket element. U.S. patent application 2010/140420A discloses affixing a load-distribution plate by a press fit between two reinforcement ribs. U.S. Pat. No. 6,224,025B discloses a system in which the load-distribution plate can be snapped in place. U.S. patent application 2004/0200936A1 describes a conduit hanger in which an insulating element is arranged in the bracket element that supports the pipe. This insulating element is secured by means of two tabs on the bracket element that engage with corresponding recesses in the bracket element. U.S. Pat. No. 4,017,046 relates to a support saddle for pipes that has flange elements surrounding a shoe. Another arrangement of a load-distribution plate is described in the subsequently published German document DE 10 2009 045484.
{ "pile_set_name": "USPTO Backgrounds" }
1. Statement of the Technical Field The present invention relates to a policy based classification of network requests and more particularly to the minimization of string operations when performing a policy based classification. 2. Description of the Related Art The vast majority of computing devices process computer processing requests indiscriminately. That is, regardless of the requester, each request can be processed with equal priority. Given the exponential increase in network traffic across the Internet, however, more recent network-oriented computing devices have begun to provide varying levels of computing services based upon what has been referred to as a “policy based service differentiation model”. In this model, the computing devices can offer many levels of service where different requests originating from different requestors receive different levels of treatment depending upon administratively defined policies. The policy based service differentiation model is the logical result of several factors. Firstly, the number and variety of computing applications which generate requests across networks both private and public has increased dramatically in the last decade. Each of these applications, however, has different service requirements. Secondly, technologies and protocols that enable the provision of different services having different levels of security and quality of service (QoS) have become widely available. Yet, access to these different specific services must be regulated because these specific services can consume important computing resources such as network bandwidth, memory and processing cycles. Finally, business objectives or organizational goals can be best served when discriminating between different requests rather than treating all requests for computer processing in a like manner. A central requirement in enabling policy based service differentiation in the network context is that network requests must be classified into categories based upon applicable policy rules. Policy rules are well-known in the art inasmuch as policy rules specify service differentiation policies. Typically, policy rules take the form: if (policy condition) then (policy action)In the context of an Internet protocol (IP) based network, the policy condition can be specified according to packet attributes including header fields which identify not only the source and the destination of a network request, but also the value of the protocol field, the type of service requested, etc. Additionally, conventional policy conditions can include other criteria, for instance the identification of the requestor and the location and identity of the requested resource, commonly referred to as a Uniform Resource Indicator (URI). Generally speaking, these attributes and criteria can be referred to as “selector attributes”. In that regard, it has become common for policy conditions to be specified in terms of ranges of selector attribute values, e.g. a range of IP addresses or ports, or a range of times. Policy actions, by comparison, specify an operation or operations which are to be performed if and only if the policy condition associated with the policy action in the policy rule evaluates to true. The classification process to determine the applicability of a set of policy rules can be in of itself a time and resource consuming process. Specifically, in conventional policy based classifications, a computing module can sequentially scan a list of policy rules to determine whether a given policy rule ought to apply to a particular request. The process can continue until a first match can be found, or until the list of policy rules has been completely exhausted. Also, when evaluating the policy condition based upon string-based selector attributes such as a URI, user identification, or user group, string comparison operations are performed liberally during the matching process. As is well-known in the art, however, string operations can be resource intensive when compared to integer operations. Furthermore, sequential searches are order n/2 searches and are considered highly inefficient, especially when searching a large list of data. Given the increasing importance of policy based service differentiation, however, it is important not only to scan the list of policy rules in the most efficient manner possible, but also, where string operations are required to perform policy rule matching, the number of string operations performed ought to be minimized.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to novel vanilloid receptor ligands, to processes for the production thereof, to medicinal drugs containing said compounds and to the use of said compounds for the production of medicinal drugs. The treatment of pain, particularly neuropathic pain, is of great significance in the medical field. There is a global need for effective pain therapies. The urgent need for action to provide a patient-friendly und targeted treatment of chronic and non-chronic states of pain, this being taken to mean the successful und satisfactory treatment of pain for patients, is documented by the large number of scientific papers which have recently appeared in the field of applied analgesics or in basic research concerning nociception. A suitable starting point for the treatment of pain; particularly of pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, and visceral pain and more preferably neuropathic pain; is the vanilloid receptor of subtype 1 (VR1/TRPV1), frequently also designated as the capsaicin receptor. This receptor is stimulated, inter alia, by vanilloids such as capsaicin, heat, and protons and plays a central part in the generation of pain. Furthermore, it is significant for a large number of other physiological and pathophysiological processes such as migraine; states of depression; neurodegenerative disorders; cognitive disorders; anxiety; epilepsy; coughing; diarrhea; pruritus; inflammations; disorders of the cardiovascular system; food intake disorders; medicine addiction; medicine abuse and, in particular, urinary incontinence. It is thus an object of the invention to provide novel compounds which are particularly suitable for use as pharmacologically active substances in medicinal drugs, preferably in medicinal drugs for treatment of disorders or diseases that are at least partially mediated by vanilloid receptors 1 (VR1/TRPV1 receptors). It has now been found, surprisingly, that the substituted compounds of the general formula I stated below show excellent affinity to the vanilloid receptor of subtype 1 (VR1/TRPV1 receptor) and are therefore particularly suitable for the prophylaxis and/or treatment of disorders or diseases which are at least partially mediated by vanilloid receptors 1 (VR1/TRPV1). The substituted compounds corresponding to the following formula I also show anti-inflammatory activity. It is thus at object of the present invention to provide substituted compounds of the general formula I, in which n stands for 0, 1, 2, 3, or 4; R1 stands for H; F; Cl; Br; I; —SF5; —NO2; —CN; —NH2; —OH; —SH; —C(═O)—NH2; —S(═O)2—NH2; —C(═O)—NH—OH; —C(═O)—OH; —C(═O)—H; —S(═O)2—OH; —C(═NH)—NH2; —C(═NH)—NH—R9; —N═C(NH2)2; —N═C(NHR10)—(NHR11); —O—P(═O)2—O—R12; —NHR13; —NR14R15; —NH—C(═O)—R13; —OR16; —SR17; —C(═O)—NHR18; —C(═O)—NR19R20; —S(═O)2—NHR21; —S(═O)2—NR22R23; —C(═O)—OR24; —C(═O)—R25; —S(═O)—R26; or —S(═O)2—R27 or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R2 stands for H; F; Cl; Br; I; —SF5; —NO2; —CN; —NH2; —OH; —SH; —C(═O)—NH2; —S(═O)2—NH2; —C(═O)—NH—OH; —C(═O)—OH; —C(═O)—H; —S(═O)2—OH; —C(═NH)—NH2; —C(═NH)—NH—R9; —N═C(NH2)2; —N═C(NHR10)—(NHR11); —O—P(═O)2—O—R12; —NHR13; —NR14R15; —NH—C(═O)—R13; —OR16; —SR17; —C(═O)—NHR18; —C(═O)—NR19R20; —S(═O)2—NHR21; —S(═O)2—NR22R23; —C(═O)—OR24; —C(═O)—R25; —S(═O)—R26; or —S(═O)2—R27 or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R3 stands for H; F; Cl; Br; I; —SF5; —NO2; —CN; —NH2; —OH; —SH; —C(═O)—NH2; —S(═O)2—NH2; —C(═O)—NH—OH; —C(═O)—OH; —C(═O)—H; —S(═O)2—OH; —C(═NH)—NH2; —C(═NH)—NH—R9; —N═C(NH2)2; —N═C(NHR10)—(NHR11); —O—P(═O)2—O—R12; —NHR13; —NR14R15; —NH—C(═O)—R13; —OR16; —SR17; —C(═O)—NHR18; —C(═O)—NR19R20; —S(═O)2—NHR21; —S(═O)2—NR22R23; —C(═O)—OR24; —C(═O)—R25; —S(═O)—R26; or —S(═O)2—R27 or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R4 stands for H; F; Cl; Br; I; —SF5; —NO2; —CN; —NH2; —OH; —SH; —C(═O)—NH2; —S(═O)2—NH2; —C(═O)—NH—OH; —C(═O)—OH; —C(═O)—H; —S(═O)2—OH; —C(═NH)—NH2; —C(═NH)—NH—R9; —N═C(NH2)2; —N═C(NHR10)—(NHR11); —O—P(═O)2—O—R12; —NHR13; —NR14R15; —NH—C(═O)—R13; —OR16; —SR17; —C(═O)—NHR18; —C(═O)—NR19R20; —S(═O)2—NHR21; —S(═O)2—NR22R23; —C(═O)—OR24; —C(═O)—R25; —S(═O)—R26; or —S(═O)2—R27 or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R5 stands for H; F; Cl; Br; I; —SF5; —NO2; —CN; —NH2; —OH; —SH; —C(═O)—NH2; —S(═O)2—NH2; —C(═O)—NH—OH; —C(═O)—OH; —C(═O)—H; —S(═O)2—OH; —C(═NH)—NH2; —C(═NH)—NH—R9; —N═C(NH2)2; —N═C(NHR10)—(NHR11); —O—P(═O)2—O—R12; —NHR13; —NR14R15; —NH—C(═O)—R13; —OR16; —SR17; —C(═O)—NHR18; —C(═O)—NR19R20; —S(═O)2—NHR21; —S(═O)2—NR22R23; —C(═O)—OR24; —C(═O)—R25; —S(═O)—R26; or —S(═O)2—R27 or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R6 stands in each case for hydrogen or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R7 stands for hydrogen or —OH;or R6 and R7 form, together with the interconnecting carbon atom as ring member, a saturated or unsaturated, unsubstituted or at least monosubstituted three-membered, four-membered, five-membered, or six-membered cycloaliphatic radical; R8 stands for —SF5; —O—CF3; —CF3; —O—CFH2; —O—CF2 H; —CFH2; —CF2 H; or for an unsubstituted or at least monosubstituted tert-butyl radical; T stands for C—R35 and U stands for C—R36 and V stands for N and W stands for C—R38; or T stands for C—R35 and U stands for N and V stands for C—R37 and W stands for C—R38; or T stands for N and U stands for C—R36 and V stands for C—R37 and W stands for C—R38; or T stands for N and U stands for N and V stands for C—R37 and W stands for C—R38; or T stands for N and U stands for C—R36 and V stands for N and W stands for C—R38; or T stands for C—R35 and U stands for N and V stands for N and W stands for C—R38; or T stands for C—R35 and U stands for C—R36 and V stands for C—R37 and W stands for C—R38; R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26 and R27 each independently stand for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; for an unsaturated or saturated, unsubstituted or at least monosubstituted, three-membered, four-membered, five-membered, six-membered, seven-membered, eight-membered, or nine-membered cycloaliphatic radical optionally containing at least one heteroatom as ring member, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or two to six-membered heteroalkylene group; or for an unsubstituted or at least monosubstituted five-membered to fourteen-membered aryl radical or heteroaryl radical, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or two to six-membered heteroalkylene group; R35, R36, and R37 each independently stand for H; F; Cl; Br; I; —SFS; —NO2; —CF3; and —CN; —NH2; —OH; —SH; —C(═O)—NH2; —S(═O)2—NH2; —C(═O)—NH—OH; —C(═O)—OH; —C(═O)—H; and —S(═O)2—OH; —NHR13; —NR14R15; —NH—C(═O)—R13; —OR16, —SR17; —C(═O)—NHR18; —C(═O)—NR19R20; —S(═O)2—NHR21; and —S(═O)2—NR22R23; —C(═O)—OR24; —C(═O)—R25; —S(═O)—R26; —S(═O)2R27 for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; or for an unsubstituted or at least monosubstituted five-membered to fourteen-membered aryl radical or heteroaryl radical, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or C2-6 alkenylene group or C2-6-alkynylene group; R38 stands for F; Cl; Br; I; —SF5; —NO2; —CF3; —CF2Cl; —CN; —NH2; —OH; —SH; —C(═NH2; —S(═O)2—NH2; —C(═O)—NH—OH; and —C(═O)—OH; —C(═O)—H; —S(═O)2—OH; —NHR39; —NR40R41; —OR42; —SR43; —C(═O)—NHR44; —C(═O)—NR45R46; and —S(═O)2—NHR47; —S(═O)2—NR48R49; —C(═O)—OR50; —C(═O)—R51; —S(═O)—R52; —S(═O)2—R53; —C(═NH)—NH2; —C(═NH)—NH—R54; —N═C(NH2)2; and —N═C(NHR55)—(NHR56); for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; for an unsaturated or saturated, unsubstituted or at least monosubstituted three-membered, four-membered, five-membered, six-membered, seven-membered, eight-membered, or nine-membered cycloaliphatic radical optionally exhibiting at least one heteroatom as ring member, each of which is bonded to the parent structure over a carbon atom in the ring of the cycloaliphatic radical and is condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or C2-6 alkenylene group or C2-6 alkynylene group; or for an unsubstituted or at least monosubstituted five-membered to fourteen-membered aryl radical or heteroaryl radical, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or C2-6 alkenylene group or C2-6-alkynylene group; R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, and R56 each independently stand for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; for an unsaturated or saturated, unsubstituted or at least monosubstituted, three-membered, four-membered, five-membered, six-membered, seven-membered, eight-membered, or nine-membered cycloaliphatic radical optionally containing at least one heteroatom as ring member, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or two to six-membered heteroalkylene group; or for an unsubstituted or at least monosubstituted five-membered to fourteen-membered aryl radical or heteroaryl radical, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or two to six-membered heteroalkylene group;or R40 and R41 form, together with the interconnecting nitrogen atom as ring member, a saturated or unsaturated four-membered, five-membered, six-membered, seven-membered, eight-membered, or nine-membered heterocycloaliphatic radical, which is unsubstituted or substituted by 1, 2, 3, 4, or 5 radicals R57 and optionally exhibits at least one further heteroatom as ring member, and which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system; R57 stands for —NHR58, —NR59R60, or for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; R58, R59, and R60 each independently stand for —C(═O)—R61; for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical or for an unsubstituted or at least monosubstituted five-membered to fourteen-membered aryl radical or heteroaryl radical, which can be condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system and/or can be bonded via a linear or branched, unsubstituted or at least monosubstituted C1-6 alkylene group or C2-6 alkenylene group or C2-6 alkynylene group;and R61 stands for a linear or branched, saturated or unsaturated, unsubstituted or at least monosubstituted aliphatic C1-10 radical; each optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers thereof, the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or each in the form of corresponding salts, or each in the form of corresponding solvates;wherein the aforementioned aliphatic C1-10 radicals and tert-butyl radicals can each be optionally substituted by 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —NO2, —OH, —NH2, —SH, —O(C1-5 alkyl), —S(C1-5 alkyl), —NH(C1-5 alkyl), —N(C1-5 alkyl)-(C1-5 alkyl), —C(═O)—O—(C1-5 alkyl), —O—C(═O)—(C1-5 alkyl), —O-phenyl, phenyl, —OCF3, and —SCF3; the aforementioned two to six-membered heteroalkylene groups, C1-6 alkylene groups, and C2-6 alkenylene groups and C2-6 alkynylene groups can each be optionally substituted by 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —NO2, —OH, —NH2, —SH, —O(C1-5 alkyl), —S(C1-5 alkyl), —NH(C1-5 alkyl), —N(C1-5 alkyl)-(C1-5 alkyl), —OCF3, and —SCF3; the aforementioned heteroalkylene groups each optionally exhibit 1, 2, or 3 heteroatom(s) independently selected from the group consisting of oxygen, sulfur, and nitrogen (NH) as link(s); the aforementioned (hetero)cycloaliphatic radicals are optionally each substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of —(C1-6 alkylene)-OH, ═CH2, —O—(C1-5 alkylene)oxetanyl, —(C1-5 alkylene)-O—(C1-5 alkylene)oxetanyl, —CH2—NH—(C1-5 alkyl), —CH2—N(C1-5 alkyl)2, —N[C(═O)—(C1-5 alkyl)]phenyl, —CH2—O—(C1-5 alkyl), oxo (═O), thioxo (═S), F, Cl, Br, I, —CN, —CF3, —SF5, —OH, —O—(C1-5 alkyl), —O—C(═O)—(C1-5 alkyl), —NH2, —NO2, —O—CF3, —S—CF3, —SH, —S—(C1-5 alkyl), —(C1-5 alkyl), —C(═O)—(C1-5 alkyl), —C(═O)—OH, —C(═O)—O—(C1-5 alkyl), —NH—(C1-5 alkyl), —N(C1-5 alkyl)2, —NH-phenyl, —N(C1-5 alkyl)phenyl, cyclohexyl, cyclopentyl, (4,5)-dihydroisoxazolyl, thiazolyl, (1,2,5)-thiadiazolyl, thiophenyl, phenethyl, piperidinyl, pyrrolidinyl, —(CH2)pyridinyl, pyridinyl, —O-phenyl, —O-benzyl, phenyl, and benzyl, and the cyclic moiety of the radicals oxetanyl, (4,5)-dihydroisoxazolyl, thiazolyl, (1,2,5)-thiadiazolyl, thiophenyl, phenethyl, —N[C(═O)—(C1-5 alkyl)]phenyl, —NH-phenyl, —N(C1-5 alkyl)phenyl, —(CH2)pyridinyl, pyridinyl, —O-phenyl, —O-benzyl, phenyl, and benzyl can each be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, —OH, —CF3, —SF5, —CN, —NO2, —(C1-5 alkyl, —O—(C1-5 alkyl), —O—CF3, —S—CF3, phenyl, and —O-benzyl,and, unless otherwise stated, the aforementioned (hetero)cycloaliphatic radicals can each optionally exhibit 1, 2, or 3 (further) heteroatom(s) independently selected from the group consisting of oxygen, nitrogen, and sulfur; the rings of the aforementioned monocyclic or polycyclic ring systems can each be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of oxo (═O), thioxo (═S), F, Cl, Br, I, —CN, —CF3, —SF5, —OH, —O—(C1-5 alkyl), —NH2, —NO2, —O—CF3, —S—CF3, —SH, —S—(C1-5 alkyl), —(C1-5 alkyl), —C(═O)—(C1-5 alkyl), —C(═O)—OH, —C(═O)—O—(C1-5 alkyl), —NH—(C1-5 alkyl), —N(C1-5 alkyl)2, —O-phenyl, —O-benzyl, phenyl, and benzyl, and the cyclic moiety of the radicals —O-phenyl, —O-benzyl, phenyl, and benzyl can each be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, —OH, —CF3, —SF5, —CN, —NO2, —(C1-5 alkyl), —O—(C1-5 alkyl), —O—CF3, —S—CF3, phenyl, and —O-benzyl, and the rings of the aforementioned monocyclic or polycyclic ring systems are each five-membered, six-membered, or seven-membered and can each optionally exhibit 1, 2, 3, 4, or 5 heteroatom(s) as ring member(s), which are independently selected from the group consisting of oxygen, nitrogen, and sulfur; and the aforementioned aryl radicals or heteroaryl radicals can each be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —CF3, —SF5, —OH, —O—(C1-5 alkyl), —NH2, —NO2, —O—CF3, —S—CF3, —SH, —S—(C1-5 alkyl), —(C1-5 alkyl), —C(═O)—OH, —C(═O)—O—(C1-5 alkyl), —NH—(C1-5 alkyl), —N(C1-5 alkyl)2, —NH—S(═O)2—(C1-5 alkyl), —NH—C(═O)—O—(C1-5 alkyl), —C(═O)—H, —C(═O)—(C1-5 alkyl), —C(═O)—NH2, —C(═O)—NH—(C1-5 alkyl), —C(═O)—N—(C1-5 alkyl)2, —O-phenyl, —O-benzyl, phenyl, and benzyl, and the cyclic moiety of the radicals —O-phenyl, —O-benzyl, phenyl, and benzyl can each be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, —OH, —CF3, —SF5, —CN, —NO2, —(C1-5 alkyl), —O—(C1-5 alkyl), —O—CF3, —S—CF3, phenyl, and —O-benzyl, and the aforementioned heteroaryl radicals can each optionally exhibit 1, 2, 3, 4, or 5 heteroatom(s) independently selected from the group consisting of oxygen, nitrogen, and sulfur as ring member(s). The term “heteroalkylene” designates an alkylene chain in which one or more carbons have each been replaced by a heteroatom independently selected from the group consisting of oxygen, sulfur and nitrogen (NH). Heteroalkylene groups can preferably contain 1, 2, or 3 heteroatom(s) and more preferably one heteroatom, independently selected from the group consisting of oxygen, sulfur and nitrogen (NH), as link(s). Heteroalkylene groups can preferably be two to six-membered and more preferably two or three-membered. Examples of heteroalkylene groups include —CH2—CH2—O—CH2—, —CH2—CH(CH3)—O—CH2—, —(CH2)—O—, —(CH2)2—O—, —(CH2)3—O—, —(CH2)4—O—, —O—(CH2)—, —O—(CH2)2—, —O—CH2)3—, —O—(CH2)4—, —C(C2H5)—(H)—O—, —O—C(C2H5)—(H)—, —CH2—O—CH2—, —CH2—S—CH2—, —CH2—NH—CH2—, —CH2—NH—, and —CH2—CH2—NH—CH2—CH2. If one or more of the aforementioned substituents exhibit a linear or branched C1-6 alkylene group, these can be preferably selected from the group consisting of —(CH2)—, —(CH2)2—, —C(H)—(CH3)—, —(CH2)3—, —(CH2)4—, —(CH2)5—, —C(H)—(C(H)—(CH3)2)—, and —C(C2H5)—(H)—. Saturated or unsaturated C1-10 aliphatic radicals can stand for a C1-10 alkyl, C2-10 alkenyl, or C2-10 alkynyl radical. C2-10 alkenyl radicals have at least one and preferably 1, 2, 3, or 4 C—C double bonds and C2-10 alkynyl radicals at least one and preferably 1, 2, 3, or 4 C—C triple bonds. Preference is given to C1-10 alkyl radicals selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-methylbut-1-yl, 2-pentyl, 3-pentyl, sec-pentyl, neopentyl, 4-methylpent-1-yl, (3,3)-dimethylbut-1-yl, n-hexyl, n-heptyl, 2-heptyl, 3-heptyl, 4-heptyl, n-octyl, n-nonyl, 2-nonyl, 3-nonyl, 4-nonyl, 5-nonyl, and (2,6)-dimethylhept-4-yl, which can be optionally substituted by 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from the group consisting of —O-phenyl, —O—C(═O)—CH3, —O—C(═O)—C2H5, —O—C(═O)—CH(CH3)2, —O—C(═O)—C(CH3)3, —C(═O)—O—CH3, —C(═O)—O—C2H5, —C(═O)—O—CH(CH3)2, —C(═O)—O—C(CH3)3, F, Cl, Br, I, —CN, —NO2, —OH, —NH2, —SH, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —S—CH3, —S—C2H5, —S—CH(CH3)2, —S—C(CH3)3, —NH—CH3, —NH—C2H5, —NH—C(CH3)3, —N(CH3)2, —N(C2H5)2, —N(CH3)—(C2H5), —OCF3, and —SCF3. In another preferred embodiment, C2-10 alkenyl radicals are selected from the group consisting of vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylpropen-1-yl, 3-methylbut-2-en-1-yl, (3,3)-dimethylbut-1-enyl, 2-methylbuten-2-yl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 1-heptenyl, and 1-octenyl, which can be optionally substituted by 1, 2, or 3 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —NO2, —OH, —NH2, —SH, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —S—CH3, —S—C2H5, —S—CH(CH3)2, —S—C(CH3)3, —NH—CH3, —NH—C2H5, —NH—C(CH3)3, —N(CH3)2, —N(C2H5)2, —N(CH3)—(C2H5), —OCF3, and —SCF3. Preference is also given to C2-10 alkynyl radicals selected from the group consisting of (3,3)-dimethylbut-1-ynyl, 4-methylpent-1-ynyl, 1-hexynyl, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, and 4-pentynyl, which can be optionally substituted by 1, 2, or 3 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —NO2, —OH, —NH2, —SH, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —S—CH3, —S—C2H5, —S—CH(CH3)2, —S—C(CH3)3, —NH—CH3, —NH—C2H5, —NH—C(CH3)3, —N(CH3)2, —N(C2H5)2, —N(CH3)—(C2H5), —OCF3, and —SCF3. Particularly preferred optionally substituted C1-10 aliphatic radicals are selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, —CCl2F, —CBr3, —CH2—CN, —CH2—O—CH3, —CH2—O—CF3, —CH2—SF3, —CH2—NH2, —CH2—OH, —CH2—SH, —CH2—NH—CH3, —CH2—N(CH3)2, —CH2—N(C2H5)2, —CH2—N(CH3)—(C2H5), ethyl, —CF2—CH3, —CHF—CF2Cl, —CF2—CFCl2, —CH2—CH2—NH2, —CH2—CH2—OH, —CH2—CH2—SH, —CH2—CH2—NH—CH3, —CH2—CH2—N(CH3)2, —CH2—CH2—N(C2H5)2, —CH2—CH2—N(CH3)—(C2H5), —CH2—CF3, —C2F5, —CH2—CCl3, —CH2—CBr3, —CH2—CH2—CN, n-propyl, —CH2—CH2—CH2—OH, —CH2—CH2—CH2—SH, —CH2—CH2—CH2—NH2, —CH2—CH2—CH2—NH—CH3, —CH2—CH2—CH2—N(CH3)2, —CH2—CH2—CH2—N(C2H5)2, —CH2—CH2—CH2—N(CH3)—(C2H5), —CH2—CH2—O—CH3, —CF2—CF2—CF3, —CF(CF3)2, isopropyl, —CH2—CH2—CH2—CN, —CH2—O—CH2—CH3, —CH2—CH2—SF3, —CH2—CH2—OCF3, —CH(CH3)—(O—CH3), —CH(CH3)—(S—CH3), n-butyl, —CF2—CF2—CF2—CF3, —CH2—CH2—CH2—CH2—CN, —CH2—CH2—CH2—CF3, —CH2—CH2—CH2—CH2—CF3, —CH2—O—C(═O)—CH3, —CH2—O—C(═O)—C2H5, —CH2—O—C(═O)—CH(CH3)2, —CH2—O—C(═O)—C(CH3)3, —CH2—C(═O)—O—CH3, —CH2—C(═O)—O—C2H5, —CH2—C(═O)—O—C(CH3)3, —CH2—CH2—O—CH3, —CH2—CH2—O—C2H5, —CH2—CH2—O-phenyl, —CH2—CH2—CH2—O—CH3, sec-butyl, isobutyl, tert-butyl, n-pentyl, sec-pentyl, neopentyl, n-hexyl, vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbutene-2-yl, (1,1,2)-trifluoro-1-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, —CF═CF2, —CCl═CCl2, —CH2—CF═CF2, —CH2—CCl═CCl2, —C≡C—I, —C≡C—, and —C≡C—Cl. If one or more of the aforementioned substituents stand for a (hetero)cycloaliphatic radical, which can be optionally condensed with a saturated or unsaturated, unsubstituted or at least monosubstituted monocyclic or polycyclic ring system, this can preferably be selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, imidazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, thiomorpholinyl, tetrahydropyranyl, oxetanyl, (1,2,3,6)-tetrahydropyridinyl, azepanyl, azocanyl, diazepanyl, dithiolanyl, (1,3,4,5)-tetrahydropyrido[4.3-b]indolyl, (3,4)-dihydro-1H-isoquinolinyl, (1,3,4,9)-tetrahydro[b]carbolinyl, and (1,3)-thiazolidinyl. As examples of suitable (hetero)cycloaliphatic radicals, which can be unsubstituted or monosubstituted or polysubstituted and are condensed with a monocyclic or bicyclic ring system, there may be mentioned (4,5,6,7)-tetrahydroisoxazolo[5.4-c]pyridinyl, (2,3)-dihydro-1H-indenyl, 3-azabicyclo[3.1.1]heptyl, 3-acabicyclo[3.2.1]octyl, 6-azabicyclo[3.3.1]heptyl, 8-acabicyclo[3.2.1]octyl, isoindolyl, indolyl, (1,2,3,4)-tetrahydroquinolinyl, (1,2,3,4)-tetrahydroisoquinolinyl, (2,3)-dihydro-1H-isoindolyl, (1,2,3,4)-tetrahydronaphthyl, (2,3)-dihydrobenzo[1.4]dioxinyl, benzo[1.3]dioxolyl, (1,4)-benzodioxanyl, (2,3)-dihydrothieno[3.4-b][1.4]dioxinyl, (3,4)-dihydro-2H-benzo[1.4]oxazinyl, octahydro-1H-isoindolyl, and octahydropyrrolo[3.4-c]pyrrolyl. (Hetero)cycloaliphatic radicals can form, within the scope of the present invention, a spirocyclic radical with another (hetero)cycloaliphatic radical via a carbon atom common to both rings. Examples of suitable spirocyclic radicals include a 6-azaspiro[2.5]octyl radical, an 8-azaspiro[4.5]decyl radical and a 1-oxa-2,8-diazaspiro[4.5]dec-2-enyl radical. More preferably the (hetero)cycloaliphatic radicals can each be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of oxo (═O), thioxo (═S), F, Cl, Br, I, —CN, —CF3, —SF5, —OH, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —NH2, —NO2, —O—CF3, —S—CF3, —SH, —S—CH3, —S—C2H5, —S—CH(CH3)2, —S—C(CH3)3, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, —C(═O)—CH3, —C(═O)—C2H5, —C(═O)—CH(CH3)2, —C(═O)—C(CH3)3, —C(═O)—OH, —C(═O)—O—CH3, —C(═O)—O—C2H5, —C(═O)—O—CH(CH3)2, —C(═O)—O—C(CH3)3, —NH—CH3, —NH—C2H5, —NH—C(CH3)3, —N(CH3)2, —N(C2H5)2, —N(CH3)—(C2H5), —CH2—OH, —CH2—CH2—OH, ═CH2, —CH2—O—CH2-oxetanyl, —O—CH2-oxetanyl, —CH2—N(CH3)2, —CH2—N(C2H5)2, —CH2—NH—CH3, —CH2—NH—C2H5, —N—[C(═O)—C2H5]-phenyl, —N—[C(═O)—CH3]-phenyl, —CH2—O—CH3, —CH2—O—CH2—CH3, —NH-phenyl, —N(CH3)phenyl, —N(C2H5)phenyl, —N(C2H5)phenyl, —O—CH2—CH2—CH2—CH3, (4,5)-dihydroisoxazolyl, thiazolyl, (1,2,5)-thiadiazolyl, thiophenyl, phenethyl, cyclohexyl, cyclopentyl, piperidinyl, pyrrolidinyl, —O—C(═O)—CH3, —O—C(═O)—C2H5, —O—C(═O)—C(CH3)3, —(CH2)pyridinyl, pyridinyl, —O-phenyl, —O-benzyl, phenyl, and benzyl, and the cyclic moiety of the radicals oxetanyl, (4,5)-dihydroisoxazolyl, thiazolyl, (1,2,5)-thiadiazolyl, thiophenyl, phenethyl, —N—[C(═O)—C2H5]phenyl, —N—[C(═O)—CH3]phenyl, —NH-phenyl, —N(CH3)phenyl, —N(C2H5)phenyl, —(CH2)pyridinyl, pyridinyl, —O-phenyl, —O-benzyl, phenyl, and benzyl can each be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, —OH, —CF3, —SF5, —CN, —NO2, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —O—CF3, —S—CF3, phenyl, and —O-benzyl. If one or more of the aforementioned substituents stand for an aryl radical, this can preferably be selected from the group consisting of phenyl and naphthyl (1-naphthyl and 2-naphthyl). If one or more of the aforementioned substituents stand for a heteroaryl radical, this can preferably be selected from the group consisting of tetraazolyl, thiophenyl, furanyl, pyrrolyl, pyrazolyl, pyrazinyl, pyranyl, triazolyl, pyridinyl, imidazolyl, indolyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, benzoxazolyl, benzisoxazolyl, thiazolyl, oxazolyl, isoxazolyl, pyridazinyl, pyrazinyl, pyrimidinyl, indazolyl, quinoxalinyl, quinolinyl, and isoquinolinyl. Examples of suitable aryl and heteroaryl radicals, which may be unsubstituted or monosubstituted or polysubstituted and are condensed with a monocyclic or bicyclic ring system, include isoindolyl, indolyl, (1,2,3,4)-tetrahydroquinolinyl, (1,2,3,4)-tetrahydroisoquinolinyl, (2,3)-dihydro-1H-isoindolyl, (1,2,3,4)-tetrahydronaphthyl, (2,3)-dihydrobenzo[1.4]dioxinyl, (2,3)-dihydrothieno[3.4-b][1.4]dioxinyl, benzo[1.3]dioxolyl, and (1,4)-benzodioxanyl. More preferably, the aryl radicals or heteroaryl radicals can each be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —CF3, —SF5, —OH, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —NH2, —NO2, —O—CF3, —S—CF3, —SH, —S—CH3, —S—C2H5, —S—CH(CH3)2, —S—C(CH3)3, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, —C(═O)—OH, —C(═O)—O—CH3, —C(═O)—O—C2H5, —C(═O)—O—CH(CH3)2, —C(═O)—O—C(CH3)3, —NH—CH3, —NH—C2H5, —NH—C(CH3)3, —N(CH3)2, —N(C2H5)2, —N(CH3)—(C2H5), —NH—S(═O)2—CH3, —NH—S(═O2)—C2H5, —NH—S(═O)2—CH(CH3)2, —NH—C(═O)—O—CH3, —NH—C(═O)—O—C2H5, —NH—C(═O)—O—C(CH3)3, —C(═O)—H, —C(═O)—CH3, —C(═O)—C2H5, —C(═O)—CH(CH3)2, —C(═O)—C(CH3)3, —C(═O)—NH2, —C(═O)—NH—CH3, —C(═O)—NH—C2H5, —C(═O)—N(CH3)2, —C(═O)—N(C2H5)2, —O-phenyl, —O-benzyl, phenyl, and benzyl, and the cyclic moiety of the radicals —O-phenyl, —O-benzyl, phenyl, and benzyl can each be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, —OH, —CF3, —SF5, —CN, —NO2, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —O—CF3, —S—CF3, phenyl, and —O-benzyl. If a polycyclic ring system such as a bicyclic ring system is present, the different rings can independently exhibit a different degree of saturation, i.e. be saturated or unsaturated. A polycyclic ring system is preferably a bicyclic ring system. Examples of aryl radicals condensed with a monocyclic or polycyclic ring system include (1,3)-benzodioxolyl and (1,4)-benzodioxanyl. If one or more of the aforementioned substituents have a monocyclic or polycyclic ring system, this can preferably be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of oxo (═O), thioxo (═S), F, Cl, Br, I, —CN, —CF3, —SF5, —OH, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —NH2, —NO2, —O—CF3, —S—CF3, —SH, —S—CH3, —S—C2H5, —S—CH(CH3)2, —S—C(CH3)3, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, —C(═O)—OH, —C(═O)—O—CH3, —C(═O)—O—C2H5, —C(═O)—O—CH(CH3)2, —C(═O)—O—C(CH3)3, —NH—CH3, —NH—C2H5, —NH—C(CH3)3, —N(CH3)2, —N(C2H5)2, —N(CH3)—(C2H5), —NH—C(═O)—O—CH3, —NH—C(═O)—O—C2H5, —NH—C(═O)—O—C(CH3)3, —C(═O)—H, —C(═O)—CH3, —C(═O)—C2H5, —C(═O)—CH(CH3)2, —C(═O)—C(CH3)3, —C(═O)—NH2, —C(═O)—NH—CH3, —C(═O)-nH-C2H5, —C(═O)—N(CH3)2, —C(═O)—N(C2H5)2, —O-phenyl, —O-benzyl, phenyl, and benzyl, and the cyclic moiety of the radicals —O-phenyl, —O-benzyl, phenyl, and benzyl can each be substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, —OH, —CF3, —SF5, —CN, —NO2, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, —O—CF3, —S—CF3, phenyl, and —O-benzyl. If R41 and R42 together with the interconnecting nitrogen atom as ring member form a heterocycloaliphatic radical, which is substituted by 1, 2, 3, 4, or 5 radicals R57, said radicals R57 may each be independently from one another selected from the above given meanings. in which D stands for N or CH; R1 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R2 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R3 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R4 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R5 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27, each independently stand for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, —CF2—CH3, —CH2—CF3, —C2F5, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-heptyl, 4-heptyl, n-octyl, n-nonyl, 5-nonyl, (2,6)-dimethylhept-4-yl, 3-methylbutyl, n-hexyl, (3,3)-dimethylbutyl and ethenyl; R42 stands for a radical selected from the group consisting of methyl, —CH2—O—CH3, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, (3,3)-dimethylbutyl, —CH2—CH2—O—CH3, —CH2—CH2—O—C2H5, and —CH2—CH2—CH2—O—CH3, or for a radical selected from the group consisting of 2,3-dihydro-1H-indenyl, cyclopropyl, oxetanyl, cyclobutyl, cyclopentyl, cyclohexyl, imidazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, azepanyl, diazepanyl, azocanyl, and thiomorpholinyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Special preference is given to compounds of the general formula Ia, in which D stands for N or CH; R1 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27, R2 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R3 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R4 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R5 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl and ethenyl; R42 stands for a radical selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, and (3,3)-dimethylbutyl; or for a radical selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Very special preference is given to compounds of the general formula Ia, in which D stands for N or CH; R1 stands for H; F; Cl; Br or I; R2 stands for H; F; Cl; Br; I; methyl; —OH; —NH2 or —OR16; R3 stands for H; F; Cl; Br; I; —NO2; —OH; —NH2; —NH—C(═O)—R13, —OR16; SR17; —S(═O)—NR22R23 or —S(═O)—R27; R4 stands for H; F; Cl; Br; I; methyl, —OH; —NH2 or —OR16; R5 stands for H; F; Cl; Br; or I; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl and ethenyl; R42 stands for a radical selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, and (3,3)-dimethylbutyl; or for a radical selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Preference is given to compounds of the general formula Ib, in which D stands for N or CH; R1 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R2 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R3 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R4 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R5 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, —CF2—CH3, —CH2—CF3, —C2F5, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-heptyl, 4-heptyl, n-octyl, n-nonyl, 5-nonyl, (2,6)-dimethylhept-4-yl, 3-methylbutyl, n-hexyl, (3,3)-dimethylbutyl and ethenyl; R43 stands for a radical selected from the group consisting of methyl, —CH2—O—CH3, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, (3,3)-dimethylbutyl, —CH2—CH2—O—CH3, —CH2—CH2—O—C2H5, and —CH2—CH2—CH2—O—CH3; or for a radical selected from the group consisting of 2,3-dihydro-1H-indenyl, cyclopropyl, oxetanyl, cyclobutyl, cyclopentyl, cyclohexyl, imidazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, azepanyl, diazepanyl, azocanyl, and thiomorpholinyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Special preference is given to compounds of the general formula Ib, in which D stands for N or CH; R1 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27, R2 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R3 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R4 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R5 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, and ethenyl; R43 stands for a radical selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, and (3,3)-dimethylbutyl; or for a radical selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Very special preference is given to compounds of the general formula Ib, in which D stands for N or CH; R1 stands for H; F; Cl; Br or I; R2 stands for H; F; Cl; Br; I; methyl; —OH; —NH2 or —OR16; R3 stands for H; F; Cl; Br; I; —NO2; —OH; —NH2; —NH—C(═O)—R13, —OR16; SR17; —S(═O)—NR22R23 or —S(═O)—R27; R4 stands for H; F; Cl; Br; I; methyl, —OH; —NH2 or —OR16; R5 stands for H; F; Cl; Br; or I; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, and ethenyl; R43 stands for a radical selected from the group consisting of methyl, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, and (3,3)-dimethylbutyl; or for a radical selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Preference is given to compounds of the general formula Ic, in which D stands for N or CH; R1 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R2 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R3 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R4 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R5 stands for H; F; Cl; Br; I; —NO2; —CF3; —CN; —NH2; —OH; —NH—C(═O)—R13; —OR16; —SR17; —S(═O)2—NR22R23; —S(═O)2—R27, or for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, and tert-butyl; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, —CF3, —CHF2, —CH2F, ethyl, —CF2—CH3, —CH2—CF3, —C2F5, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-heptyl, 4-heptyl, n-octyl, n-nonyl, 5-nonyl, (2,6)-dimethylhept-4-yl, 3-methylbutyl, n-hexyl, (3,3)-dimethylbutyl, and ethenyl; R40 and R41 each independently stand for a radical selected from the group consisting of methyl, —CH2—O—CH3, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 3-pentyl, n-hexyl, (3,3)-dimethylbutyl, —CH2—CH2—O—CH3, —CH2—CH2—O—C2H5, and —CH2—CH2—CH2—O—CH3; or for a radical selected from the group consisting of 2,3-dihydro-1H-indenyl, cyclopropyl, oxetanyl, cyclobutyl, cyclopentyl, cyclohexyl, imidazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, azepanyl, diazepanyl, azocanyl, and thiomorpholinyl, each of which can be optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;or R40 and R41 form, together with the interconnecting nitrogen atom as ring member, a radical selected from the group consisting of 3-azabicyclo[3.1.1]heptyl, 6-azaspiro[2.5]octyl, 3-acabicyclo[3.2.1]octyl, 6-azabicyclo[3.3.1]heptyl, 8-acabicyclo[3.2.1]octyl, 1-oxa-2,8-diazaspiro[4.5]dec-2-enyl, azocanyl, isoindolyl, indolyl, (1,2,3,6)-tetrahydropyridinyl, (4,5,6,7)-tetrahydroisoxazolo[5.4-c]pyridinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, azepanyl, diazepanyl, and thiomorpholinyl, of which the heterocycloaliphatic moiety can in each case be unsubstituted or substituted by 1, 2, 3, 4, or 5 radicals R57; R57 stands for —NHR58, —NR69R60, or for an alkyl radical selected from the group consisting of —CF3, —CH2—CF3, methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-butyl, sec-butyl, and isobutyl; R58, R59, and R69 each independently stand for —C(═O)—R61; for an alkyl radical selected from the group consisting of —CF3, —CH2—CF3, methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-butyl, sec-butyl, and isobutyl; or for a radical selected from the group consisting of phenyl and naphthyl, and each radical can be bonded via a —(CH2)—, —(CH2)2— or —(CH2)3 group and/or can each be unsubstituted or optionally substituted by 1, 2, 3, 4, or 5 substituents independently selected from the group consisting of F, Cl, Br, I, —CN, —CF3, —O—CH3, —O—C2H5, —O—CH(CH3)2, —O—C(CH3)3, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and n-pentyl;and R61 stands for an alkyl radical selected from the group consisting of —CF3, —CH2—CF3, methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-butyl, sec-butyl, and isobutyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Special preference is given to compounds of the general formula Ic, in which D stands for N or CH; R1 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27, R2 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R3 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R4 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —SR17, —S(═O)2—NR22R23 or —(S═O)—R27; R5 stands for H; F; Cl; Br; I; methyl, ethyl, —NO2; —OH; —NH2; —NH—C(═O)—R13; —OR16; —S(═O)2—NR22R23 or —(S═O)—R27; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, and ethenyl; R40 and R41 form, together with the interconnecting nitrogen atom as ring member, a radical selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, and azepanyl, of which the heterocycloaliphatic moiety can in each case be unsubstituted or substituted by 1, 2, 3, 4, or 5 radicals R57;and R57 stands for an alkyl radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-butyl, sec-butyl, and isobutyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Very special preference is given to compounds of the general formula Ic, in which D stands for N or CH; R1 stands for H; F; Cl; Br; or I; R1 stands for H; F; Cl; Br or I; R2 stands for H; F; Cl; Br; I; methyl; —OH; —NH2 or —OR16; R3 stands for H; F; Cl; Br; I; —NO2; —OH; —NH2; —NH—C(═O)—R13, —OR16; SR17; —S(═O)—NR22R23 or —S(═O)—R27; R4 stands for H; F; Cl; Br; I; methyl, —OH; —NH2 or —OR16; R5 stands for H; F; Cl; Br; or I; R8 stands for —SF5; —O—CF3; —CF3; tert-butyl; or —C(CH3)2(CH2OH); R13, R16, R17, R22, R23 and R27 each independently stand for a radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl and ethenyl; R40 and R41 form, together with the interconnecting nitrogen atom as ring member, a radical selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, and azepanyl, of which the heterocycloaliphatic moiety can in each case be unsubstituted or substituted by 1, 2, 3, 4, or 5 radicals R57;and R57 stands for an alkyl radical selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-butyl, sec-butyl, and isobutyl;in each case optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers, or the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or in each case in the form of corresponding salts, or in each case in the form of corresponding solvates. Even more preference is given to compounds of the general formulas I, Ia, Ib, and Ic selected from the group consisting of [1] 2-(4-Amino-3-fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [2] 2-(3,5-Dibromophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [3] 2-(4-Amino-3-bromo-5-methoxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [4] 2-(3-Fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [5] 2-(2,4-Difluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [6] 2-(2,6-Difluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-)methyl)acetamide; [7] 2-(2,5-Difluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [8] 2-(4-Fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [9] 2-(4-Hydroxy-3-methoxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [10] 2-(3,5-Difluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [11] 2-(3,4-Difluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [12] 2-(4-Fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [13] 2-(3-Fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [14] 2-(3,4-Diaminophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [15] N-(2-Butoxy-6-tert-butylpyridin-3-ylmethyl)-2-(3,4-diamino-phenyl)-propionamide; [16] N-((6-tert-Butyl-2-(4-methylpiperidin-1-yl)pyridin-3-yl)methyl)-2-(3,4-diaminophenyl)propanamide; [17] N-((6-tert-Butyl-2-(cyclohexylthio)pyridin-3-yl)methyl)-2-(3,4-diaminophenyl)propanamide; [18] 2-(4-Acetamido-3-fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [19] 2-(3,5-Dibromo-4-hydroxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [20] 2-(4-Amino-3,5-dibromophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; [21] 2-(3-Brom-4-hydroxy-5-methoxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [22] 2-(4-Amino-3,5-dibromophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [23] 2-(3,5-Dibromo-4-hydroxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)acetamide; [24] 2-(3-Amino-4-hydroxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide; and [25] 2-(3,5-Dibromophenyl)-N-(4-methyl-6′-trifluoromethyl-3,4,5,6-tetrahydro-2H-[1,2′]bipyridinyl-3′-ylmethyl)acetamide; [26] 2-(4-Amino-3,5-difluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [27] 2-(3-Fluoro-5-hydroxy-4-nitrophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [28] 2-(3-Chloro-4-(methylthio)phenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [29] 2-(3-Chloro-4-(methylsulfonyl)phenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [30] 2-(3-Fluoro-4-(methylthio)phenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [31] 2-(3-Fluoro-4-(methylsulfonyl)phenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [32] 2-(4-(N,N-Dimethylsulfamoyl)-3-fluorophenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [33] N-(2-Fluoro-4-(1-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methylamino)-1-oxopropan-2-yl)phenyl)acrylamide, [34] N-(2-Fluoro-6-iodo-4-(1-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methylamino)-1-oxopropan-2-yl)phenyl)acrylamide, [35] 2-(4-Methoxy-3,5-dimethylphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [36] 2-(3,5-Difluoro-4-methoxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [37] 2-(4-Hydroxy-3,5-dimethylphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide, [38] 2-(3,5-Difluoro-4-hydroxyphenyl)-N-((2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)methyl)propanamide,each optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers thereof, the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or each in the form of corresponding salts, or each in the form of corresponding solvates; Furthermore, preference may be given to compounds of the invention of the general formulas I, Ia, Ib and Ic, which in the FLIPR assay using CHO—K1 cells, which have been transfected with the human VR1 gene in a concentration below 2000 nM, preferably below 1000 nM, more preferably below 300 nM, even more preferably below 100 nM, still more preferably below 75 nM, very preferably below 50 nM and most preferably below 10 nM, cause a 50 percent displacement of capsaicin present in a concentration of 100 nM. In the FLIPR assay, the Ca2+ influx is quantified with the aid of a Ca2+-sensitive dye (type Fluo-4, Molecular Probes Europe BV, Leiden, Netherlands) in a fluorescent imaging plate reader (FLIPR, Molecular Devices, Sunnyvale, USA), as described below. The invention further relates to a process for the production of compounds of the above general formula I, according to which at least one compound of the general formula II, in which R8, U, T, V, and W have the aforementioned meanings, m stands for 0, 1, 2, or 3, and R stands for hydrogen or for a linear or branched C1-6 alkyl radical, in a reaction medium, in the presence of at least one reducing agent, preferably in the presence of at least one reducing agent selected from the group consisting of sodium hydride, sodium, potassium hydride, lithium aluminum hydride, sodium tetrahydridoborate, and di(isobutyl)aluminum hydrideis converted to at least one compound of the general formula III, in which R8, U, T, V, and W have the meanings stated above and m stands for 0, 1, 2, or 3, and this is optionally purified and/or isolated, and at least one compound of the general formula III is converted, in a reaction medium in the presence of diphenylphosphorylazide or in the presence of HN3, to at least one compound of the general formula IV, in which R8, U, T, V, and W have the meanings stated above and m stands for 0, 1, 2, or 3, and this is optionally purified and/or isolated, and at least one compound of the general formula IV is converted, in a reaction medium in the presence of at least one reducing agent, preferably in the presence of at least one reducing agent selected from the group consisting of sodium hydride, potassium hydride, lithium aluminum hydride, sodium tetrahydridoborate, and di(isobutyl)aluminum hydride, or in a reaction medium in the presence of a catalyst, preferably in the presence of a catalyst based on platinum or palladium, more preferably in the presence of palladium-on-charcoal, and in the presence of hydrogen or in the presence of hydrazine, or in a reaction medium in the presence of triphenylphosphine to at least one compound of the general formula V, in which R8, U, T, V, and W have the meanings stated above and m stands for 0, 1, 2, or 3, and this is optionally purified and/or isolated, or at least one compound of the general formula VI in which R8, U, T, V, and W have the meanings stated above and m stands for 0, 1, 2, or 3, in a reaction medium is converted, in the presence of at least one catalyst, preferably in the presence of at least one catalyst based on palladium or platinum, more preferably in the presence of palladium-on-charcoal, under a blanket of hydrogen, optionally in the presence of at least one acid, preferably in the presence of hydrochloric acid, or in the presence of at least one reducing agent selected from the group consisting of BH3 bullet S(CH3)2, lithium aluminum hydride, and sodium tetrahydridoborate, optionally in the presence of NiCl2, to form at least one compound of the general formula V, optionally in the form of a corresponding salt, preferably in the form of a corresponding hydrochloride, and this is optionally purified and/or isolated, and at least one compound of the general formula V is caused to react with at least one compound of the general formula VII, in which R1, R2, R3, R4, R5, R6, and R7 have the meanings stated above, in a reaction medium, optionally in the presence of at least one suitable coupling agent, optionally in the presence of at least one base, or with at least one compound of the general formula VIII, in which R1, R2, R3, R4, R5, R6, and R7 have the meanings stated above and LG stands for a leaving group, preferably for a chlorine radical or bromine atom, in a reaction medium, optionally in the presence of at least one base, to form at least one compound of the general formula I, in which T, U, V, W, R1, R2, R3, R4, R5, R6, R7, and R8, have the meanings stated above and n stands for 1, 2, 3, or 4, and this is optionally purified and/or isolated. The invention further relates to a process for the production of compounds of the above general formula I, according to which at least one compound of the general formula X, in which R8, U, T, V, and W have the meanings stated above, is caused to react with at least one compound of the general formula VII, in which R1, R2, R3, R4, R5, R6, and R7, have the meanings stated above, in a reaction medium, optionally in the presence of at least one suitable coupling agent, optionally in the presence of at least one base, or with at least one compound of the general formula VIII, in which R1, R2, R3, R4, R5, R6, and R7 have the meanings stated above and LG stands for a leaving group, preferably for a chlorine radical or bromine atom, in a reaction medium, optionally in the presence of at least one base, to form at least one compound of the general formula Im, in whichT, U, V, W, R1, R2, R3, R4, R5, R6, R7, and R8 have the meanings stated above, and this is optionally purified and/or isolated. The reaction of compounds of the above general formulas V or X with carboxylic acids of the above general formula VII to form compounds of the above general formulas I or Im is carried out preferably in a reaction medium selected from the group consisting of diethyl ether, tetrahydrofuran, acetonitrile, methanol, ethanol, (1,2)-dichloroethane, dimethylformamide, dichloromethane and appropriate mixtures thereof, optionally in the presence of at least one coupling agent, preferably selected from the group consisting of 1-benzotriazolyloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP), dicyclohexylcarbodiimide (DCC), N′-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDCI), diisoproylcarbodiimide, 1,1′-carbonyldiimidazole (CDI), N-[(dimethylamino)-1H-1,2,3-triazolo[4.5-b]pyridino-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide (HATU), O-(benzotriazol-1-yl)-N,N,N′N-tetramethyluronium hexafluorophosphate (HBTU), O(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU), N-hydroxybenzotriazole (HOBT), and 1-hydroxy-7-azabenzotriazole (HOAt), optionally in the presence of at least one organic base, preferably selected from the group consisting of triethylamine, pyridine, dimethylaminopyridine, N-methylmorpholine, and diisopropylethylamine, preferably at temperatures ranging from −70° C. to 100° C. Alternatively, the reaction of compounds of the above general formulas V or X with carboxylic derivatives of the above general formula VIII, in which LG stands for a leaving group, preferably for a chlorine radical or bromine atom, to form compounds of the above general formulas Im is carried out in a reaction medium preferably selected from the group consisting of diethyl ether, tetrahydrofuran, acetonitrile, methanol, ethanol, dimethylformamide, dichloromethane and appropriate mixtures thereof, optionally in the presence of an organic or inorganic base, preferably selected from the group consisting of triethylamine, dimethylaminopyridine, pyridine, and diisopropylamine, at temperatures ranging from −70° C. to 100° C. The compounds of the above formulas II, III, IV, V, VI, VII, X and VIII are all commercially available and can be obtained by methods known to the person skilled in the art. The synthesis of compounds of the general formula VII is described in the paper “4-(Methylsulfonylamino)phenyl analogues as vanilloid antagonist showing excellent analgesic activity and the pharmaceutical compositions comprising the same” by J. W. Lee et al. [WO 2005/003084-A1]. The appropriate sections of this reference are included herein by reference and are to be regarded as part of the disclosure. The conversions described above can each be carried out under usual conditions well-known to the person skilled in the art, for example, in respect of pressure or order of addition of the components. Optionally, the optimal procedure under the respective conditions can be determined by the person skilled in the art using simple preliminary tests. The intermediates and end products obtained by the aforementioned reactions can in each case be isolated and/or purified by conventional methods known to the person skilled in the art, if desired and/or necessary. Suitable clean-up techniques are, for example, extraction processes and chromatographic processes such as column chromatography or preparative chromatography. All of the process steps described above and the purification and/or isolation of intermediate or end products can be carried out partially or completely under a blanket of inert gas, preferably under a blanket of nitrogen. The substituted compounds of the invention of the aforementioned general formulas I, Ia, Ib and Ic, designated below simply as compounds of the general formula I, and corresponding stereoisomers can be isolated either in the form of the free bases thereof, the free acids thereof or in the form of corresponding salts, particularly physiologically acceptable salts. The free bases of the respective substituted compounds of the invention of the aforementioned general formula I and corresponding stereoisomers can, for example by reaction with an inorganic or organic acid, preferably with hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, carbonic acid, formic acid, acetic acid, oxalic acid, succinic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid, citric acid, glutamic acid, or aspartic acid, be converted to the corresponding salts, preferably physiologically acceptable salts. The free bases of the respective substituted compounds of the aforementioned general formula I and corresponding stereoisomers can be likewise caused to react with the free acid or a salt of a sugar substitute, such as saccharin, cyclamate, or acesulfam, to form the corresponding physiologically acceptable salts. Similarly, the free acids of the substituted compounds of the aforementioned general formula I and corresponding stereoisomers can be caused to react with of a suitable base to form the corresponding physiologically acceptable salts. Mention may be made, for example, of the alkali-metal salts, alkaline earth metal salts, or ammonium salts [NHxR4-x]+ in which x is equal to 0, 1, 2, 3, or 4, and R stands for a linear or branched C1-4 alkyl radical. The substituted compounds of the invention designated by the aforementioned general formula I and corresponding stereoisomers can optionally, like the corresponding acids, the corresponding bases or salts of these compounds, be obtained in the form of the solvates thereof, preferably in the form of the hydrates thereof, by conventional methods known to the person skilled in the art. If the substituted compounds of the invention designated by the aforementioned general formula I are obtained, following production thereof, in the form of a mixture of the stereoisomers thereof, preferably in the form of the racemates thereof or other mixtures of the various enantiomers and/or diastereoisomers thereof, these compounds can be separated and, if desired, isolated by methods known to the person skilled in the art. Examples of suitable isolation methods include chromatographic separation methods, particularly liquid-chromatographic methods carried out under standard pressure or at elevated pressure, preferably MPLC and HPLC methods, and also methods of fractional crystallization. In particular, individual enantiomers can be separated from each other, e.g., diastereoisomeric salts formed by means of HPLC on chiral stationary phase or by means of crystallization with chiral acids, say, (+)-tartaric acid, (−)-tartaric acid, or (+)-10-camphorsulfonic acid. The substituted compounds of the invention designated by the aforementioned general formula I and corresponding stereoisomers and in each case the corresponding acids, bases, salts, and solvates are toxicologically safe and are therefore suitable for use as pharmaceutically active substances in medicinal drugs. The invention therefore further relates to a medicinal drug containing at least one compound of the invention of the above general formula I, each optionally in the form of one of the pure stereoisomers thereof, particularly enantiomers or diastereoisomers thereof, the racemates thereof or in the form of a mixture of stereoisomers, particularly the enantiomers and/or diastereoisomers, in an arbitrary mixing ratio, or each in the form of a corresponding salt, or each in the form of a corresponding solvate, and optionally one or more pharmaceutically compatible adjuvants. These medicinal drugs of the inventions are particularly suitable for vanilloid receptor 1-(VR1/TRPV1) regulation, preferably vanilloid receptor 1-(VR1/TRPV1) inhibition and/or vanilloid receptor 1-(VR1/TRPV1) stimulation. In another preferred embodiment, the medicinal drugs of the invention are suitable for prophylaxis and/or treatment of disorders or diseases that are at least partially mediated by vanilloid receptors 1. Preferably, the medicinal drug of the invention is suitable for treatment and/or prophylaxis of one or more disorders selected from the group consisting of pain selected from the group consisting of acute pain, chronic pain, neuropathic pain and visceral pain; arthralgia; hyperalgesia; allodynia; causalgia; migraine; states of depression; nervous disorders; neurotraumas; neurodegenerative disorders, preferably selected from the group consisting of multiple sclerosis, Morbus Alzheimer, Morbus Parkinson, and Morbus Huntington; cognitive dysfunctions, preferably cognitive deficiency states, more preferably memory defects; epilepsy; respiratory tract diseases, preferably selected from the group consisting of asthma, bronchitis, and pneumonia; coughing; urinary incontinence; an overactive bladder (OAB); disorders and/or injuries of the gastrointestinal tract; duodenal ulcers; gastric ulcers; colitis syndrome; apoplectic strokes; eye irritations; cutaneous irritations; neurotic skin conditions; allergic skin diseases; psiorasis; vitiligo; Herpes simplex; inflammations, preferably inflammation of the intestine, the eyes, the bladder, the skin, or the nasal mucosa; diarrhea; pruritus; osteoporosis; arthritis; osteo-arthritis; rheumatic disorders; food intake disorders, preferably selected from the group consisting of bulimia, cachexia, anorexia, and obesity; medicine addiction; medicine abuse; withdrawal phenomena following medicine addiction; tolerance development to pharmaceuticals, particularly to natural or synthetic opioids; drug addiction; drug abuse; withdrawal phenomena following drug addiction; alcohol addiction; alcohol abuse and withdrawal phenomena following alcohol addiction; for diuresis; for antinatriuresis; for affection of the cardiovascular system; for vigilance enhancement; for treatment of wounds and/or burning; for treatment of severed nerves; for libido enhancement; for modulation of movement activity; for anxiolysis; for local anesthesia and/or for inhibition of undesirable side effects, preferably selected from the group consisting of hyperthermia, hypertension, and bronchial constriction, as is caused by administration of vanilloid receptor 1 (VR1/TRPV1 receptor) agonists, preferably selected from the group consisting of capsaicin, resiniferatoxin, olvanil, arvanil, SDZ-249665, SDZ-249482, nuvanil, and capsavanil. The medicinal drug of the invention is more preferably suitable for treatment and/or prophylaxis of one or more disorders selected from the group consisting of pain, preferably pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, and visceral pain; arthralgia; migraine; states of depression; neurodegenerative disorders, preferably selected from the group consisting of multiple sclerosis, Morbus Alzheimer, Morbus Parkinson, and Morbus Huntington; cognitive dysfunctions, preferably cognitive deficiency states, more preferably memory defects; inflammation, preferably inflammation of the intestine, the eyes, the bladder, the skin or the nasal mucosa; urinary incontinence; an overactive bladder (OAB); medicine addiction; medicine abuse; withdrawal phenomena following medicine addiction; tolerance development to pharmaceuticals, preferably tolerance development to natural or synthetic opioids; drug addiction; drug abuse; withdrawal phenomena following drug addiction; alcohol addiction; alcohol abuse and withdrawal phenomena following alcohol addiction. The medicinal drug of the invention is most preferably suitable for treatment and/or prophylaxis of pain, preferably pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, and visceral pain, and/or urinary incontinence. The invention further relates to the use of at least one compound of the invention and optionally one or more pharmaceutically compatible adjuvants for the production of a medicinal drug for vanilloid receptor 1-(VR1/TRPV1) regulation, preferably vanilloid receptor 1-(VR1/TRPV1) inhibition and/or vanilloid receptor 1-(VR1/TRPV1) stimulation. Preference is given to the use of at least one substituted compound of the invention and optionally one or more pharmaceutically compatible adjuvants for the production of a medicinal drug for the prophylaxis and/or treatment of disorders or diseases which are at least partially mediated by vanilloid receptors 1. Particular preference is given to the use of at least one compound of the invention and optionally one or more pharmaceutically compatible adjuvants for the production of a medicinal drug for treatment and/or prophylaxis of one or more disorders selected from the group consisting of pain, preferably of pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, visceral pain, and arthralgia. Particular preference is given to the use at least one compound of the invention and optionally one or more pharmaceutically compatible adjuvants for the production of a medicinal drug for treatment and/or prophylaxis of one or more disorders selected from the group consisting of hyperalgesia; allodynia; causalgia; migraine; states of depression; nervous disorders; neurotraumas; neurodegenerative disorders, preferably selected from the group consisting of multiple sclerosis, Morbus Alzheimer, Morbus Parkinson, and Morbus Huntington; cognitive dysfunctions, preferably cognitive deficiency states, more preferably memory defects; epilepsy; respiratory tract diseases, preferably selected from the group consisting of asthma, bronchitis, and pneumonia; coughing; urinary incontinence; an overactive bladder (OAB); disorders and/or injuries of the gastrointestinal tract; duodenal ulcers; gastric ulcers; colitis syndrome; apoplectic strokes; eye irritations; cutaneous irritations; neurotic skin conditions; allergic skin diseases; psiorasis; vitiligo; Herpes simplex; inflammation, preferably inflammation of the intestine, the eyes, the bladder, the skin, or the nasal mucosa; diarrhea; pruritus; osteoporosis; arthritis; osteo-arthritis; rheumatic disorders; food intake disorders, preferably selected from the group consisting of bulimia, cachexia, anorexia, and obesity; medicine addiction; medicine abuse; withdrawal phenomena following medicine addiction; tolerance development to pharmaceuticals, preferably to natural or synthetic opioids; drug addiction; drug abuse; withdrawal phenomena following drug addiction; alcohol addiction; alcohol abuse and withdrawal phenomena following alcohol addiction; for diuresis; for antinatriuresis; for affection of the cardiovascular system; for vigilance enhancement; for treatment of wounds and/or burning; for treatment of severed nerves; for libido enhancement; for modulation of movement activity; for anxiolysis; for local anesthesia and/or for inhibition of undesirable side effects, preferably selected from the group consisting of hyperthermia, hypertension, and bronchial constriction, as caused by administration of vanilloid receptor 1 (VR1/TRPV1 receptor) agonists, preferably selected from the group consisting of capsaicin, resiniferatoxin, olvanil, arvanil, SDZ-249665, SDZ-249482, nuvanil, and capsavanil. Very high preference is given to the use of at least one substituted compound of the invention and optionally one or more pharmaceutically compatible adjuvants for the production of a medicinal drug for treatment and/or prophylaxis of one or more disorders selected from the group consisting of pain, preferably pain selected from the group consisting of acute pain, chronic pain, neuropathic pain, and visceral pain; is arthralgia; migraine; states of depression; neurodegenerative disorders, preferably selected from the group consisting of multiple sclerosis, Morbus Alzheimer, Morbus Parkinson, and Morbus Huntington; cognitive dysfunctions, preferably cognitive deficiency states, more preferably memory defects; inflammation, preferably inflammation of the intestine, the eyes, the bladder, the skin, or the nasal mucosa; urinary incontinence; an overactive bladder (OAB); medicine addiction; medicine abuse; withdrawal phenomena following medicine addiction; tolerance development to pharmaceuticals, preferably tolerance development to natural or synthetic opioids; drug addiction; drug abuse; withdrawal phenomena following drug addiction; alcohol addiction; alcohol abuse and withdrawal phenomena following alcohol addiction. Even more preference is given to the use of at least one substituted compound of the invention and optionally one or more pharmaceutically compatible adjuvants for the production of a medicinal drug for treatment and/or prophylaxis of pain, preferably selected from the group consisting of acute pain, chronic pain, neuropathic pain, and visceral pain, and/or urinary incontinence. The medicinal drug of the invention is suitable for administration to adults and children including infants and babies. The medicinal drug of the invention can exist as a liquid, semisolid, or solid pharmaceutical dosage form, for example, in the form of injection fluids, drops, juices, syrups, sprays, suspensions, tablets, patches, capsules, plasters, suppositories, ointments, creams, lotions, gels, emulsions, or aerosols, or in a multiparticular form, for example, in the form of pellets or granules, optionally compressed to tablets, filled into in capsules, or suspended in a liquid, and can be administered as such. In addition to at least one substituted compound of the above general formula I, optionally in the form of a pure stereoisomer thereof, particularly an enantiomer or diastereoisomer, the racemate thereof or in the form of mixtures of the stereoisomers, particularly the enantiomers or diastereoisomers, in an arbitrary mixing ratio, or optionally in the form of a corresponding salt or each in the form of a corresponding solvate, the medicinal drug of the invention usually contains further physiologically acceptable pharmaceutical adjuvants, which, for example, can be selected from the group consisting of vehicles, fillers, solvents, diluents, surfactants, dyes, preservatives, blasting agents, slip agents, lubricants, flavors, and binding agents. The selection of the physiologically acceptable adjuvants and the amount thereof to be used depends on whether the medicinal drug is to be applied orally, subcutaneously, parenterally, intravenously, intraperitoneally, intradermally, intramuscularly, intranasally, buccally, rectally or locally, e.g., to infected parts of the skin, the mucous membrane, or the eyes. Preparations suitable for oral administration are preferably in the form of tablets, dragees, capsules, granules, pellets, drops, juices, and syrups, and preparations suitable for parenteral, topical and inhalative administration are solutions, suspensions, readily reconstitutable dry preparations, and sprays. The substituted compounds of the invention used in the medicinal drug of the invention in a depot in dissolved form or in a plaster, optionally with the addition of skin penetration enhancing agents, are suitable percutane administration forms. Formulations for oral or percutane application may be such as to effect delayed release of the respective substituted compound of the invention. The production of the medicinal drug of the invention is effected by conventional means, devices, methods, and processes, as are known in the prior art, such as are described, for example, in “Remington's Pharmaceutical Sciences”, Editor A. R. Gennaro, 17th Edition, Mack Publishing Company, Easton, Pa., 1985, particularly in Section 8, Chapters 76 to 93. The corresponding description is incorporated herein by reference and is to be regarded as part of the disclosure. The amount of the respective substituted compounds of the invention of the above general formula I to be administered to the patients can vary and is dependent, for example, on the weight or age of the patient and also on the method of administration, the indication, and the severity of the disorder. Usually from 0.001 to 100 mg/kg, preferably from 0.05 to 75 mg/kg and more preferably from 0.05 to 50 mg/kg, of body weight of the patient of at least one such compound of the invention are administered. Pharmacological Methods: I. Functional Investigation on the Vanilloid Receptor 1 (VR1/TRPV1 Receptor) The agonistic or antagonistic action of the substances to be investigated on the vanilloid receptor 1 (VR1/TRPV1) of the species rat can be determined using the following assay. According to this assay, the Ca2+ influx through the receptor channel is quantified with the aid of a Ca2+-sensitive dye (Type Fluo-4, Molecular Probes Europe BV, Leiden Netherlands) in a fluorescent imaging plate reader (FLIPR, Molecular Devices, Sunnyvale, USA). Method: Complete medium: 50 mL of HAMS F12 Nutrient Mixture (Gibco Invitrogen GmbH, Karlsruhe, Germany) with 10% by volume of FCS (fetal calf serum, Gibco Invitrogen GmbH, Karlsruhe, Germany, heat-inactivated); 2 mM of L-glutamine (Sigma, Munich, Germany); 1% by weight of AA solution (antibiotics/antimycotics solution, PAA, Pasching, Austria) and 25 ng/mL of Medium NGF (2.5 S, Gibco Invitrogen GmbH, Karlsruhe, Germany) Cell culture plate: Poly-D-lysine-coated, black 96-well plates with a clear bottom (96-well black/clear plate, BD Biosciences, Heidelberg, Germany) are additionally coated with laminin (Gibco Invitrogen GmbH, Karlsruhe, Germany) by diluting laminin to a concentration of 100 μg/mL with PBS (Ca—Mg-free PBS, Gibco Invitrogen GmbH, Karlsruhe, Germany). Aliquots having a concentration of 100 μg/mL of laminin are taken and stored at −20° C. The aliquots are diluted with PBS in the ratio 1:10 to 10 μg/mL of laminin and in each case 50 μL of the solution is pipeted into a well of the cell culture plate. The cell culture plates are incubated at 37° C. for at least two hours, the supernatant solution is aspirated and the wells are in each case washed twice with PBS. The coated cell culture plates are stored with supernatant PBS and this is removed only directly before the addition of the cells. Preparation of the Cells: The vertebral column is removed from decapitated rats and this is laid directly in a cold, i.e. ice bath-surrounded, HBSS buffer (Hank's buffered saline solution, Gibco Invitrogen GmbH, Karlsruhe, Germany) and 1% by volume of an AA solution (antibiotics/antimycotics solution, PAA, Pasching, Austria) is added. The vertebral column is cut in two, longitudinally, and the vertebral canal is removed together with fascias. Subsequently, the dorsal root ganglia (DRGs) are removed and in turn stored in cold HBSS buffer to which 1% by volume of an AA solution has been added. The DRGs completely freed from blood residues and spinal nerves are in each case transferred to 500 μL of cold collagenase Type 2 (PAA, Pasching, Austria) and incubated at 37° C. for 35 minutes. After the addition of 2.5% by volume of trypsin (PAA, Pasching, Austria), the preparation is incubated at 37° C. for a further 10 minutes. On completion of incubation, the enzyme solution is carefully pipeted off and 500 μL of complete medium are added to the DRGs in each case. The DRGs are in each case repeatedly suspended, drawn through No. 1, No. 12, and No. 16 needles by means of a syringe and transferred to 50 mL Falcon tubes and these are filled to 15 mL with complete medium. The contents of each Falcon tube are in each case filtered through a 70 μm Falcon filter insert and centrifuged at 1200 rpm and RT for 10 minutes. The resulting pellet is in each case taken up in 250 μL of complete medium and the cell count is determined. The number of cells in the suspension is adjusted to 3×105 per mL and in each case 150 μL of this suspension are added to a well of the cell culture plates coated as described above. The plates are allowed to stand at 37° C., 5% by volume of CO2 and 95% relative humidity for two to three days in an incubator. Subsequently, the cells are loaded with 2 μM of Fluo-4 and 0.01% by volume of Pluronic F127 (Molecular Probes Europe BV, Leiden Netherlands) in HBSS buffer (Hank's buffered saline solution, Gibco Invitrogen GmbH, Karlsruhe, Germany) at 37° C. for 30 min, washed 3 times with HBSS buffer and, after a further incubation of 15 minutes at RT, employed in the FLIPR assay for Ca2+ measurement. The Ca2+-dependent fluorescence is measured before and after addition of substances (λex=488 nm, λem=540 nm). Quantification is carried out by measuring the highest fluorescence intensity (FC, fluorescence counts) over time. FLIPR assay: The FLIPR protocol consists of two substance additions. Initially, the compounds to be tested (10 μM) are pipeted onto the cells and the Ca2+ influx is compared with the control (capsaicin 10 μM). Information is gained therefrom in percentage activation relative to the Ca2+ signal after addition of 10 μM of capsaicin (CP). After incubation for 5 minutes, 100 nM of capsaicin are applied and the influx of Ca2+ is likewise determined. Desensitizing agonists and antagonists lead to suppression of the Ca2+ influx. The percentage inhibition is calculated in comparison with the maximum inhibition achieved with 10 μM of capsaicin. Conversion using the Cheng Prusoff equation gave Ki values for the test substances (Cheng, Prusoff; Bioch. Pharmacol. 22, 3099-3108, 1973). II. Functional Investigations on the Vanilloid Receptor (VR1) The agonistic or antagonistic action of the substances to be examined on the vanilloid receptor (VR1) can alternatively be determined by the following assay. According to this assay the Ca2+ influx through the canal is quantified with the aid of a Ca2+-sensitive dye (type Fluo-4, Molecular Probes, Europe BV, Leiden, Netherlands) in a fluorescent imaging plate reader (FLIPR, Molecular Devices, Sunnyvale, USA). Method: Chinese hamster ovary cells (CHO—K1 cells, European Collection of Cell Cultures (ECACC) UK) are stably transfected with the VR1 gene. For carrying out functional investigations, these cells are plated on poly-D-lysine-coated, black 96-well plates with a clear bottom (BD Biosciences, Heidelberg, Germany) in a density of 25,000 cells/well. The cells are incubated overnight at 37° C. and 5% CO2 in a culture medium (Nutrient Mixture ‘am’s F12, 10% by volume of FCS (fetal calf serum), 18 μg/mL of L-proline). On the following day the cells are incubated with Fluo-4 (Fluo-4 2 μM, Pluronic F127 0.01 by volume, Molecular Probes in HBSS (Hank's buffered saline solution), Gibco Invitrogen GmbH, Karlsruhe, Germany) for 30 minutes at 37° C. The plates are then washed 3 times with HBSS buffer and, after another incubation over a period of 15 minutes at RT, are used in the FLIPR for Ca2+ measurement. The Ca2+-dependent fluorescence is measured prior to and following the addition of the substances being examined (wavelength λex=488 nm, λem=540 nm). Quantification is carried out by measuring the highest fluorescence intensity (PC, fluorescence counts) over time. FLIPR Assay: The FLIPR protocol consists of two substance additions. First of all, the substances to be tested (10 μM) are pipeted onto the cells and the Ca2+ influx is compared with the control (capsaicin 10 μM) (percentage activation based on the Ca2+ signal following addition of 10 μM of capsaicin). Following incubation over a period of 5 minutes 100 nM of capsaicin are applied and the influx of Ca2+ is likewise determined. Desensitizing agonists and antagonists lead to a suppression of the Ca2+ influx. The percentage inhibition compared with the maximum inhibition achieved with 10 μM of capsaicin is calculated. Based on the percentage displacement effected by different concentrations of the compounds of the general formula Ito be tested, IC50 inhibition concentrations that cause 50 percent displacement of capsaicin are calculated. Conversion using the Cheng Prusoff equation gave Ki values for the test substances (Cheng, Prusoff; Bioch. Pharmacol. 22, 3099-3108, 1973). III. Formalin Test on Mice The investigation for the determination of the antinociceptive action of the compounds of the invention is carried out in the formalin test on male mice (NMRI, of 20 to 30 g body weight, Iffa, Credo, Belgium). In the formalin test, the first (early) phase (0 to 15 minutes after the formalin injection) and the second (late) phase (15 to 60 minutes after the formalin injection) are distinguished according to D. Dubuisson et al., Pain 1977, 4, 161-174. The early phase, as a direct reaction to the formalin injection, is a model of acute pain, whereas the late phase is regarded as a model of persistent (chronic) pain (T. J. Coderre et al., Pain 1993, 52, 259-285). The appropriate literature references are incorporated herein by reference and are to be regarded as part of the disclosure. The compounds of the invention are examined in the second phase of the formalin test, in order to obtain information concerning a substance's action on chronic/inflammatory pain. The point in time of administration of the compounds of the invention before the formalin injection is selected according to the method of administration of the compounds of the invention. Intravenous administration of 10 mg/kg of body weight of the test substance is carried out 5 minutes before the formalin injection. This is carried out by a single subcutaneous formalin injection (20 μL, 1% strength aqueous solution) into the dorsal side of the right hind paw so that in the case of free-moving experimental animals a nociceptive reaction is induced which is manifested by marked licking and biting of the relevant paw. The nociceptive behavior is then continuously registered during an investigation period of three minutes in the second (late) phase of the formalin test (21 to 24 minutes after the formalin injection) by observation of the animals. Quantification of the pain behavior is carried out by summating the seconds during which the animals show licking and biting of the relevant paw during the investigation period. In each case, comparison is carried out with control animals, which receive, instead of the compounds of the invention, a vehicle (0.9% strength aqueous sodium chloride solution) prior to formalin administration. Based on the quantification of the pain behavior, the substance's action in the formalin test is determined as the degree of change compared with the corresponding control. Following injection of the substances having an antinociceptive action in the formalin test, the aforementioned behavioral patterns of the animals, i.e. licking and biting, decrease or cease. IV. Test for Analgesic Effectiveness in the Writhing Test Investigation of the compounds of the general formula I of the invention for analgetic effectiveness was carried out based on phenylquinone-induced writhing in mice, modified after I. C. Hendershot and J. Forsaith (1959) J. Pharmacol. Exp. Ther. 125, 237-240. The corresponding literature reference is incorporated herein by reference and is to be regarded as part of the disclosure. For this purpose, male NMRI mice having a weight of from 25 to 30 g were used. Groups of 10 animals per dose of the test compound received by intraperitoneal administration, 10 minutes after intravenous administration of the compound under test, 0.3 mL/mouse of a 0.02% strength aqueous solution of phenylquinone (phenylbenzoquinone, marketed by Sigma, Deisenhofen, Germany and produced by adding to the solution 5% by weight of ethanol and storing it in a water bath at 45° C.). The animals were placed individually in observation cages. With the aid of a pushbutton counter, the number of pain-induced stretching movements (so-called writhing reactions—straightening of the body with stretching of the rear extremities) was counted over a period of from 5 to 20 minutes following the administration of the phenylquinone. The control was provided by animals receiving only physiological saline. All of the compounds were tested using the standard dosage of 10 mg/kg. V. Hypothermia Assay in Mice Description of the Method: The hypothermia assay was carried out on male NMRI mice (weight 25-35 gram, Zuechter IFFA CREDO, Brussels, Belgium). The animals were kept under standardized conditions: light/dark rhythm (from 6:00 to 18:00 hours light phase; from 18:00 to 6:00 hours dark phase), RT 19-22° C., relative air humidity 35-70%, 15 air changes per hour, air movement <0.2 m/sec. The animals received standard feed (ssniff R/M−Haltung, ssniff Spezialdiaeten GmbH, Soest, Germany) and tap water. Water and feed were withdrawn during the experiment. All animals were used only once during the experiment. The animals had an acclimatization period of at least 5 days. Acute administration of capsaicin (VR-1 agonist) leads to a drop in the core temperature of the body in rats and mice due to stimulation of heat sensors. Only specifically effective VR-1 receptor antagonists can antagonize the capsaicin-induced hypothermia. By contrast, hypothermia induced by morphine is not antagonized by VR-1 antagonists. This model is therefore suitable for identifying substances with VR-1 antagonistic properties via their effect on body temperature. Measurement of the core temperature is carried out using a digital thermometer (Thermalert TH-5, physitemp, Clifton N.J., USA). The sensing element is inserted into the rectum of the animals. To give an individual basic value for each animal, the body temperature is measured twice at an interval of approximately half an hour. One group of animals (n=6 to 10) then receives an intraperitoneal (i.p.) application of capsaicin 3 mg/kg and vehicle (control group). Another group of animals receives the substance to be tested (i.v. or p.o.) and additionally capsaicin (3 mg/kg) i.p. The administration of the test substance is carried out i.v. 10 min, or p.o 15 minutes, prior to capsaicin. The body temperature is then measured 7.5/15 and 30 min following capsaicin (i.v.+.p.) or 15/30/60/90/120 min (p.o.+i.p.) following capsaicin. In addition, one group of animals is treated with the test substance only and one group with vehicle only. The evaluation or representation of the measured values as mean+/−SEM of the absolute values is presented as a graphical representation. The antagonistic action is calculated as the percentage reduction of the capsaicin-induced hypothermia. VI. Neuropathic Pain in Mice The investigation on effectiveness on neuropathic pain was examined using the Bennett Model (chronic constriction injury; Bennett and Xie, 1988, Pain 33:87-107). Three loose ligatures are tied around the right ischiadic nerve of Ketavet/Rompun-anesthetized NMRI mice weighing 16-18 g. The animals develop hypersensitivity of the nervate paw caused by the damaged nerve, which hypersensitivity is quantified, following a recovery phase of one week, over a period of approximately three weeks by means of a cold metal plate (temperature 4° C.) (cold allodynia). The animals are observed on this plate over a period of 2 min, and the withdrawal reactions of the damaged paw are counted. Based on the pre-value prior to administration of substance, the substance's action over a certain period of time is determined at various points in time (e.g., 15, 30, 45, or 60 min following administration) and the resultant area under the curve (AUC) and/or the inhibition of cold allodynia at the individual measuring points was/were expressed as percentage action relative to the vehicle control (AUC) or to the starting value (individual measuring points). The group size is n=10, the significance of an anti-allodynic action (*=p<0.05) is determined with the aid of an analysis of variance with repeated measures and Bonferroni post hoc analysis. The invention is described below with reference to some examples. These explanations are by way of example only and do not restrict the general inventive concept.
{ "pile_set_name": "USPTO Backgrounds" }
As technological advances plunge deeper into submicron geometries, shallow trench isolation (STI) is replacing local oxidation of silicon (LOCOS) processes for the formation of isolation structures. STI processes advantageously allow for planarization of the entire substrate and isolation structure, thereby providing better control of a critical dimension (CD), e.g., when defining the gate stack of a transistor. Conventional STI processing includes forming a pad oxide layer on a substrate, forming a pad nitride layer over the pad oxide layer, and forming a trench through the pad oxide and nitride layers in the substrate, as by reactive ion etching (RIE). A liner oxide is then thermally grown to anneal out any damage to and to passivate the substrate. The trench is then filled with an insulating material, typically an oxide, followed by chemical-mechanical polishing (CMP) such that the upper surface of the filled trench is substantially coplanar with the upper surface of the pad nitride layer. The pad nitride and oxide layers are then stripped resulting in the STI structure. Subsequent conventional processing includes forming transistors spaced apart by the STI. In implementing STI, sharp corners are typically formed where the trench sidewall intersects the top surface of the substrate, adversely impacting device performance, yield, and liability. Typically, a parasitic transistor having a relatively low threshold voltage is formed at the trench corner. Such parasitic transistors result in a high leakage issues and degrade Ion-Ioff performance, in addition to increasing linear threshold voltage (Vtlin) mismatch. Conventional approaches to the parasitic transistor issue involve rounding the transistor corner in attempting to reduce the electric field, and additional field implants to increase the threshold voltage of the parasitic transistor. Such approaches have not met with complete success, become increasingly more difficult as geometries plunge, and adversely impact STI efficacy. A need therefore exists for methodology enabling the fabrication of semiconductor devices having STI structures with reduced leakage current, reduced degradation of Ion-Ioff performance, and reduced Vtlin mismatch. A particular need exists for methodology enabling the fabrication of semiconductor devices with CDs in the deep submicron range, wherein parasitic transistors formed at trench corners exhibit an increased threshold voltage and reduced mobility.
{ "pile_set_name": "USPTO Backgrounds" }
For the production of thermoplastic plastics materials, it is often necessary to remove residual monomers from the starting plastics material. If, for example, a packaging film for foodstuffs is to be extruded from polystyrene, the proportion of residual monomers, which are harmful to health, may not exceed a predetermined limit value for reasons stipulated in regulations governing foodstuffs and, in consequence, for medical reasons. Since the polystyrene, which is usually to be fed into an extruder, has a proportion of up to 100,000 ppm monomeric styrene, a highly effective degassing arrangement is necessary in order to be able to achieve, in the product, the limit value for residual monomers, which is lower by approximately two powers of ten. For the degassing of such plastics materials, U.S. Pat. No. 4,094,942 discloses a single-screw extruder for degassing thermoplastic plastics material. In this extruder, in a portion disposed downstream of the feed section, the extruder screw has two pressure restrictors, which are spaced from a screw section producing a mixing effect. Downstream of the first pressure restrictor, the extruder has an injection opening for a stripping agent, which is injectable into the extruded material and is miscible with the molten mass of plastics material in the extruder. In a degassing section disposed downstream of the mixing section, this stripping agent (generally water) then ensures that the molten mass foams-up in the event of a pressure reduction. The increase in size of the free surface of the molten mass, caused by the foam bubbles, effects a degassing of the molten mass which is sufficient for wide ranges of application. It is additionally known from U.S. Pat. No. 3,613,160 to provide extruders with throttle components, whereby the conveyance of extruded material in the extruder may be variably controlled externally. For this purpose, according to this publication, a substantially cylindrical component is disposed on the screw shaft of the extruder screw, said component rotating jointly with the screw and completely blocking the processing chamber downstream. In the region of this cylindrical component, two throttle pins each extend from externally through the extruder housing radially into an axially oriented overflow conduit, which is incorporated into the internal wall of the extruder housing. When the throttle pins are retracted, a portion of the extruded material situated upstream of the cylindrical component may pass through these conduits to the downstream section of the extruder. This flow of extruded material can be controlled by the insertion of the throttle pins into these overflow conduits to different depths. The proportions of residual monomers in the product, which are achievable with such single-screw extruders, however, are not sufficient for many fields of application, and more especially they are not sufficient when the plastics material products come into direct contact, for example, with foodstuffs. In addition, European Patent Specification No. 0 102 400 belonging to the assignee of the present application discloses that, when degassing rubber mixtures, there are problems in maintaining as pressureless a conveyance as possible of the extruded material in the degassing section, when the mixing section of the extruder operates at a high rate of conveyance and, in addition, the extrusion tool disposed downstream of the extruder produces a high tool counterpressure. To solve this problem, this publication proposes to increase the diameter of the extruder in the degassing and discharge sections by 10 to 30% compared with the diameter in the mixing section. This arrangement makes available considerably more volume in the processing chamber of the extruder for the extruded material, with the result that, even at a high rate of conveyance and with considerable tool counterpressure, degassing may be effected in an optimum manner. Nevertheless, however, this extruder is disadvantageous, in that it is only utilizable for a comparatively narrow range of rubber mixtures and tool counterpressures. In the event of the occurrence of greater deviations from the starting value of the extruder, it is necessary to tolerate a poorer degassing performance and/or less output. This is remedied only by adapting the extruder screw to the other above-mentioned extrusion conditions, which may differ considerably.
{ "pile_set_name": "USPTO Backgrounds" }
U.S. Pat. No. 3,800,677 granted Apr. 2, 1974 to Charles W. Jones and Dwight L. Stetler discloses apparatus for forming, and U.S. Pat. No. 3,775,943 granted Dec. 4, 1973 to Charles W. Jones discloses apparatus for filling with liquid and sealing, a carton of the type that the apparatus to be described hereinafter is intended to seal after having been filled. The carton itself is generally of the type shown in U.S. Pat. No. 3,749,300 granted July 31, 1973 to Charles W. Jones. It is a carton of rectangular cross section, preferably formed from a T-shaped blank of polyethylene coated paperboard. The T-shaped blank provides four side wall panels. An end one of the side walls has integral therewith two end covers or caps which, after the blank has been formed into a tube of rectangular cross section, are folded down upon and sealed to the open ends of the tube. As shown in U.S. Pat. No. 3,800,677 the carton blank is provided on one of its sides with an access flap to which is attached on the inside of the carton a straw or sipper, and the liquid contents of the carton may be consumed by lifting the access flap thereby exposing an end of the sipper from which the contents of the carton may be drawn into the mouth. In the formation of the carton by the apparatus shown in U.S. Pat. No. 3,800,677 both ends of the carton are closed and sealed prior to the filling of the carton, and in accordance with the disclosure of U.S. Pat. No. 3,775,943 the access flap is lifted and the cartons are filled through the access aperture, after which the aperture is sealed by the application of a length of tape covering the access flap which has been pressed back down into the access aperture. It is a more conventional practice to fill containers for liquids, whether of paperboard, metal or glass, from the top, and container filling machines of this type are known in the art. Heretofore cartons for marketing beverage types of liquids have been for the most part one or the other of two types. One of these, which has a generally flat bottom and top, which enables them to be stacked, consists of four separate component parts. These parts are an open ended tubular body, two end closure members which are crimped upon and adhesively interengaged with the ends of the tubular body and a closure cap that is liftably attached to one of the end members and that squeezes down into and closes an access orifice in that member. The production of such a carton is rendered complex by the necessity for handling and sealing together the several component parts. The other type of carton is derived from a one-piece blank of sheet stock comprised of four side wall panels that may be folded around to form an open ended tube. Each side wall panel has at each end a closure flap component, each such component being generally rectangular and having an area at least equal to and in some instances exceeding one-half the area of the cross section of the tubular portion. Those that form the bottom of the carton fold in on one another with considerable superposition of flaps so that the bottom of the carton is comprised of several thicknesses of paperboard but is flat. At the top of the carton two opposite ones of the top closure flaps have scorings which delineate a multiplicity of triangles. After the filling of the carton two of the flaps are folded in and bent upon the scoring lines delineating the triangles and the other two are brought together not in flat overlapping relation but in an upward slope of both sides with marginal portions at their edges brought together upstanding and in abutting relation. These may be sealed together by melting the polyethylene coatings and without the use of a mandrel, but the heat for melting the polyethylene must penetrate superimposed layers of paper stock in order to reach the innermost polyethylene coatings and considerably more heat must be applied than is required when it can be applied directly to the surfaces to be sealed together. Also, the upper end of the carton slopes from the center toward two sides of the carton resembling a roof with a central ridge, and the filled cartons are not adapted to being stacked for packing and shipping.
{ "pile_set_name": "USPTO Backgrounds" }
The approaches described in this section could be pursued, but are not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section. Furthermore, all embodiments are not necessarily intended to solve all or even any of the problems brought forward in this section. A System-on-Chip (SoC) platform typically comprises at least one embedded Central Processing Unit (CPU), at least one embedded functional unit (also called an IP in the jargon of the one with ordinary skills in the art) which may be a memory (for instance of the eSRAM type), a Memory Management Unit (MMU), and/or at least one register. The components of the SoC are typically interconnected through an internal bus matrix. In operation, the SoC platform may be led to manipulate sensitive data, for instance, cryptographic secret keys or unencoded secret data like passwords. To prevent unauthorized access to and/or corruption of these sensitive data, the architecture of the SoC platform may be split into two physically and functionally separated environments: a secure environment for manipulating sensitive data and a public environment for processing non-sensitive data. The secure environment comprises notably one or more dedicated secure memories and/or one or more secure hardware registers to store sensitive data, whereas the public environment may include its own dedicated memories and/or hardware registers to store public data. This separation is for example implemented by Advanced RISC Machine (ARM) SoC platforms with security extensions, for example the TrustZone technology. A clear frontier between these two environments may be implemented with hardware (HW) and/or software (SW) mechanisms embedded in the processor, in the bus matrix, and in the IPs themselves. This frontier ensures that secure data within the secure environment cannot be accessed by any public component belonging to the public environment. This may typically be the case for active modes of operation of the platform, wherein memories, IPs and processors are kept powered-on or in retention. However, some modes of operation are available wherein one or more of the secure components can be powered off, meaning that at least some of their contents have to be saved during the particular mode and be restored thereafter. Such modes may be available for the purpose of optimizing the power strategy of the chip and decrease energy leakages. A dedicated persistent secure memory, included in the secure environment, may be used to store securely sensitive data present in the secure environment before switching from an active mode to an energy saving mode (low-power mode). However, there might be cases where not enough secure memory space is available to save all secure contents. Consequently, in such cases, it may be necessary to store sensitive data outside the secure environment, in a non secure storage for example. It may be desirable that such storage can be made efficiently and securely. Storing such data can have impacts on the delay to switch from one mode to another. One issue of switching from an active mode to a low-power mode is linked to performances and integration inside the operating system (OS). Indeed, this switching could require a non-negligible amount of time due to saving/storing/restoring sensitive information from or to the memory. As the power driver, usually enabled in the public environment, is isolated from the secure environment, the decision to go or not in low-power mode is made independently from the knowledge of the estimated time to save/restore sensitive data. Thus, this insufficient knowledge could be quite significant for the global power policy and could affect directly the efficiency of this policy. Thus, embodiments of the present invention aim at solving at least some of the following problems: Ensuring that the power driver is able to decide to go or not in a low-power mode with an efficient strategy; Avoiding that this efficiency is costly regarding code footprint or performances.
{ "pile_set_name": "USPTO Backgrounds" }
FIELD OF THE INVENTION The instant invention relates to an information reproducing system and, more specifically, to a process for the preparation of an image-forming element and related printing device.
{ "pile_set_name": "USPTO Backgrounds" }
As is disclosed in, for example, U.S. Pat. No. 4,103,566 and JP,A(U)(Japanese Utility Model Publication under Art. 13bis of the Japanese Utility Model Law) No. 61-135047, a transmission of the type set forth above is, in general, fashioned such that a key-shift transmission mechanism is disposed in a power transmission path relatively at an upstream portion where a relatively low torque is transmitted. For heightening vehicle-driving force, the speed-change shaft of key-shift transmission mechanism is connected to wheel axles through a reduction gearing. On an outer surface of transmission casing is disposed a brake for braking the vehicle which brake is associated to the speed-change shaft or to a speed-reduction shaft for the reduction gearing. For example, the transmission disclosed in U.S. Pat. No. 4,103,566 is fashioned such that, while a drive shaft is located between a speed-change shaft and co-axially disposed wheel axles, two sets of speed-reduction gear trains are interposed between the speed-change shaft and wheel axles by utilizing larger and smaller two gears rotatably mounted on the drive shaft. One end of the speed-change shaft extends outwardly from the transmission casing and has thereon a co-rotatable rotor which is braked for a vehicle-braking purpose. In the transmission disclosed in JP, A(U) No. 61-135047 referred to above, speed-reduction shaft is additionally interposed between a speed-change shaft and wheel axles and one and another speed-reduction gear trains are disposed between the speed-change shaft and speed-reduction shaft and between the speed-reduction shaft and wheel axles. One end of the speed-reduction shaft extends outwardly from the transmission casing and carries thereon a brake drum which is adapted to be braked by means of internal brake shoes. U.S. Pat. No. 4,662,241 discloses a transmission including a key-shift transmission mechanism which has a very compact structure adapted for use in a small-sized working vehicle. As shown in FIGS. 1 and 2 of this U.S. patent, a set of drive gears are mounted rotatably on one of the left and right wheel axles and are driven to rotate by an input bevel gear, having an integral spur gear, which is mounted rotatably on a speed-change shaft. A set of speed-change gears meshing respectively with the drive gears are mounted rotatably on the speed-change shaft and are coupled to the change shaft one at a time using a shift key for a speed-change purpose. The speed-change shaft is connected to the wheel axles through a speed-reduction gear train. No brake is provided. In each of the transmissions referred to above, a differential gearing is disposed between left and right wheel axles for a smooth turn of vehicle. A final gear of the speed-reduction gearing is used as an input gear of such differential gearing. Speed-change shaft is formed of a solid shaft and is journalled at both ends thereof in a transmission casing. Although a set of speed-change gears for a key-shift transmission mechanism are disposed on a speed-change shaft such that they are almost in contact with one another, a relatively lengthy shaft is employed as the speed-change shaft. This is because such speed-change shaft further mounts a slidable shifter sleeve which is displaced axially of the change shaft for shifting a gear-coupling shift key by a distance corresponding to an axial width occupied by the speed-change gears. A solid speed-change shaft according to the prior art is disadvantageous with respect to material cost of a transmission. Machining for forming an elongated key-receiving axial groove in the outer surface of a lengthy change shaft will highten the cost. Such lengthy, solid shaft is also disadvantageous with respect to weight of the transmission. The prior art transmission including a brake which is disposed on an outer surface of transmission casing so as to brake a transmission shaft projected outwardly of the casing requires a brake case on the transmission casing and also a prolonged shaft. Accordingly, such transmission is disadvantageous with respect to manufacturing cost, compactness and weight of the transmission. As compared to the structure disclosed in U.S. Pat. No. 4,662,241, referred to above, which includes only one reduction gear train between a speed-change shaft and wheel axles, the structure known from U.S. Pat. No. 4,103,566 and JP, A (U) No. 61-135047, referred to above, which includes two sets of reduction gear trains is advantageous in that speed change is attained at a lower torque portion and then vehicle-driving torque may be enlarged without any trouble. However, the former structure reduces the size of a transmission casing in a direction across plural transmission shafts disposed in parallel within the transmission casing, whereas the last-mentioned structure increases number of transmission shafts disposed in parallel within a transmission casing and, therefore, increases the size of transmission casing in a direction across such transmission shafts.
{ "pile_set_name": "USPTO Backgrounds" }
JP 2008-141329 A (see paragraphs 0008-0010 and FIG. 8) discloses a switch device that has a plurality of switch electrodes and a surrounding switch electrode for surrounding the periphery of the switch electrodes. The surrounding switch electrode is equipped with openings that are similar to and slightly larger than each of the switch electrodes, each of the switch electrodes being disposed in each of the openings. The switch device thus configured is set to be turned “on” if a value detected when a finger touches each switch electrode satisfies a predetermined threshold. The surrounding switch electrode is turned on if a dielectric such as water gets in touch therewith. The switch device is configured such that the switch device determines that the switch electrode is operated by the finger if a change in the capacitance of the switch electrode satisfies the threshold and a change in the capacitance of the surrounding switch electrode is not observed, and such that the switch device determines that water or the like is attached to the surrounding switch electrode if changes in the capacitance of both of the switch electrode and the surrounding switch electrode are observed. A switch device disclosed in JP 2009-111996 A (see paragraphs 0021-0023 and FIG. 1) has a dummy switch as well as a first and second contact switch adjacent to each other. The dummy switch, which is formed in a rectangular and annular shape with missing parts, is provided so as to separately surround the first and second contact switches. Here, assuming both of the contact switches are operated simultaneously if the dummy switch also provides an output simultaneously when the first contact switch provides an output, it is configured to disable the output of the first contact switch. The second contact switch is also operated in the same manner as described above. The above-described switch device is configured of a transparent electrode material, for example such as ITO (Indium Tin Oxide), and conductive paste such as silver paste is often used to form a wiring pattern thereof. The switch thus configured, which is applied to, for example, an in-vehicle touch panel to be operated, is generally disposed in a place easily viewed. There remains a continuous need for improved switch devices.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to snap buckles as well as to systems and methods employing such snap buckles, and more specifically it relates to configuration of specially adapted snap buckles for implementation into anti-theft and theft-deterrent systems and methods. FIG. 1 is a representative plan view of one style of a generic conventional snap buckle 100. Buckle 100 includes a first body member 105 that mates to a second body member 110 using a pair of latching tabs 115 of member 105 to engage mating complementary mating slots 120 of member 110. Member 105 and member 110 each include strap mounting slots 125 for attaching straps (not shown) in any number of conventional arrangements. A central guiding post 130 is usually included in some fashion as an aid in insertion of latching tabs 115 into member 110. Latching tabs 115 are springingly biased into the latching position so that latching tabs 115 may “squeeze” together during insertion yet positively latch into mating slots 120 to maintain member 105 in engagement with member 110 as long as latching tabs 115 engage mating slots 120. To disengage member 105 from member 110, latching tabs 115 are depressed towards each other (e.g., “squeezed”) to disengage from mating slots 120 and to permit a user to retract member 105 from member 110. There are many different configurations and arrangements for snap buckle 100 including use in backpacks, bags, pet collars and with other objects including solutions wherein it is desirable to mate two strap ends together. There are some configurations including a single latching tab engaging a single mating slot but otherwise the latching principle is the same. Conventional systems are configured for simple engagement and disengagement and are not generally contemplated to be part of a security system for enhancing anti-theft or theft-deterrence of the objects or of the “contents” of the object (such as the contents of the backpack or bag or of the pet). Most current snaps are not configured to resist tampering or destruction as they predominately address ease of engagement/disengagement and latching persistence until a user positively desires to disengage. Similarly the straps themselves and any other objects to which these straps are affixed are not generally configured with anti-theft/security systems in mind. The buckles, straps, bags may be torqued, pulled, compressed, and otherwise manipulated to disengage or defeat the latching function or in the case of a backpack or bag having an opening with content ingress/egress control influenced by the strap/buckle (e.g., a fabric fold over the opening secured with the buckle affixed to straps on the bag and flap) access to the contents may be possible even with the buckle components engaged. What is needed is a buckle system configured for implementation into anti-theft and theft-deterrent systems and methods.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to applying a coating on a workpiece, and more particularly to an electroplating apparatus and to a method for making an electroplating anode assembly. It is known to coat turbine airfoils, such as turbine airfoils of an aircraft engine, with platinum aluminide diffusion coatings for protection against high temperature oxidation and corrosion. To develop the platinum aluminide coating, the parts are first platinum electroplated. It is known to use the electrolyte Pt(NH3)4HPO4 for platinum electroplating turbine airfoils. In a known electroplating method, a cathode rack supports several turbine airfoils and an anode rack supports several electroplating anode assemblies. The turbine airfoils and the electroplating anode assemblies are in contact with the Pt(NH3)4HPO4 electrolyte, and a rectifier is employed to apply a voltage between the cathode and anode racks for platinum electroplating of the turbine airfoils. Each electroplating anode assembly has TIG (Tungsten-Inert-Gas) butt welded together first, second and third structural anode titanium (or titanium alloy) sheet-metal plate members. A conforming platinum-clad niobium anode mesh (i.e., an anode mesh having a shape which substantially conforms to the shape of a surface portion of a turbine airfoil) is supported by two of the first, second, and third structural anode plate members. The anode mesh is electrochemically active during electroplating while the sheet-metal plate members build up an anodic film and passivate during the electroplating process. Difficulties in precisely positioning the plate members for welding often result in plate positioning errors which lead to undesirable coating thickness variations, blistered platinum deposits, no platinum deposits due to short circuits, and damage to anode assemblies and turbine airfoils when the cathode and anode racks are brought into position for electroplating. Still, scientists and engineers continue to seek improved electroplating apparatus and improved methods for making an electroplating anode assembly.
{ "pile_set_name": "USPTO Backgrounds" }
Because of its attendant size, weight and cost, it has been occasionally found preferable to circumvent the use of an input line-isolation transformer in the design of television receivers. In such receivers, commonly referred to as "hot-chassis" receivers, the necessary voltage supplies are then directly derived from the AC line and returned to an AC or "Hot" ground. Typically, the AC line voltage is rectified and filtered to produce an unregulated output voltage of an amplitude necessarily dependent on the peak AC line voltage. In the receiver to be described below, this unregulated voltage is approximately 165 volts. The unregulated voltage may then be regulated or otherwise tailored to provide the necessary voltages for various portions of the receiver's circuitry. For example, as described below, the unregulated 165 volts is regulated to provide the 112-volt Horizontal B+ required by the horizontal output stage. Other parts of the receiver, for example, the tuner, video, sound and horizontal and vertical oscillator circuitry may require voltages in the range of 10 to 30 volts. In a conventional design the Horizontal B+ may be dropped simply through a dropping resistor or a series-pass transistor in order to develop the desired voltages. However, it is obvious to those skilled in the art that the voltage dropped, and hence power dissipated, across the resistor or series-pass transistor represents wasted energy to the extent that it serves no useful purpose in the operation of the receiver. In addition to wasting energy, this power dissipation results in the generation of sufficient heat in the receiver cabinet to cause thermal stress to other components as well as possible premature failure. The subject invention represents a novel concept for supplying the lower voltages required by the receiver's circuitry while conserving energy to substantially the maximum extent possible. The essence of the concept is to provide additional secondary windings on the flyback transformer so as to develop these voltages. The alternating current developed by the horizontal output transistor in the flyback primary induces voltages in these secondary windings that can be rectified and filtered to effect the desired voltages. Obviously, in order for the circuitry that is powered from the flyback secondary windings to be operational, there must be a signal developed in the flyback primary; that is, the horizontal oscillator must be operating. Consequently, the power supply for the oscillator cannot be solely dependent on the voltage induced in a flyback secondary winding. As before, the Horizontal B+ can be conveniently used to power the oscillator. However, since the Horizontal B+ is typically on the order of 100 V. and the voltage required by the oscillator may be approximately 20 V., the Horizontal B+must be dropped through, for example, a dropping resistor or series-pass transistor. In so doing a significant amount of power will necessarily be dissipated across the resistor or transistor. A considerably more desirable configuration would allow the oscillator also to be powered from a flyback secondary winding of an appropriate voltage.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a catalytic system which can be used for copolymerization of ethylene and a conjugated diene monomer, a method for preparation of this catalytic system, and a method for preparation of a copolymer of ethylene and a conjugated diene monomer, using the catalytic system. It is known that ethylene may be polymerized using certain complex compounds based on lanthanides. These catalysts can be used over a wide range of pressures and temperatures, advantageously at a reduced pressure and a temperature which is close to ambient temperature, for the polymerization of ethylene. The first complex compounds based on lanthanides described in the literature were alkylated complex compounds. In particular, in J. Chem. Soc., Chem. Comm. pp 994-995 (1978), Ballard et al. described the polymerization of ethylene by means of a complex compound corresponding to the formula [(C5H5)2ErMe]2 (in which Me is a methyl group). These alkylated complex compounds can achieve instantaneous levels of activity which are very high, as described in U.S. Pat. No. 4,716,257, with reference to a similar complex compound corresponding to the formula [(C5Me5)2LnH]2 (in which Ln represents a lanthanide). However, a major disadvantage of these alkylated complex compounds is that they are deactivated very quickly. Another disadvantage consists in the relative complexity of their synthesis. In order to eliminate these disadvantages, there have been attempts to develop non-alkylated complex compounds which are based on lanthanides. These complex compounds have a metal-halogen bond and are alkylated in the polymerization medium. U.S. Pat. No. 5,109,085 describes the polymerization of ethylene with complex compounds having the formula CpnLnX4-nMxe2x80x2Lx (in which L is a complexing molecule, and x is a whole number equivalent to, or higher than 1), which have one or more co-catalysts added to them. The patent also refers to the possible use of the complex for copolymerizing ethylene and butadiene. This type of non-alkylated complex compound has in its environment one or more complexing molecules L, which for example can consist of tetrahydrofurane or diethylic ether, and are added for reasons of organometallic synthesis. However, it is found that these complexing molecules can compete with the ethylenic monomer during complexing on the lanthanide, with the undesirable consequence of limiting catalytic activity and, thus, the polymerization output. In addition, Cui, Li Qiang et al: xe2x80x9cPreliminary investigations on polymerization catalysts composed of lanthanocene and methyl aluminoxanexe2x80x9d, Polymer Bulletin (Berlin), 1998, 40(6), pp 729-734, describe a catalytic system which is designed for homopolymerization of isoprene, butadiene, or styrene. This catalytic system comprises: a rare earth organometallic complex compound in accordance with one or another of the following formula: (C5H9Cp)2NdClxe2x80x83xe2x80x83(I); (C5H9Cp)2SmClxe2x80x83xe2x80x83(II); (MeCp)2SmOArxe2x80x2xe2x80x83xe2x80x83(III); (Ind)2NdClxe2x80x83xe2x80x83(IV); Me2Si(Ind)2NdClxe2x80x83xe2x80x83(V); (Flu)2NdClxe2x80x83xe2x80x83(VI); xe2x80x83in which Cp, Ind and Flu are respectively cyclopentadienyl, indenyl and fluorenyl groups, and OArxe2x80x2 is a phenoxy group; and a co-catalyst consisting of methylaluminoxane, tested in comparison with a co-catalyst consisting of an aluminium alkyl. The present invention provides an improved catalytic system for preparing copolymers of ethylene and a conjugated diene which do not have the aforementioned disadvantages of the art. The present invention provides a catalytic system for copolymerizing ethylene and a conjugated diene comprising an organometallic complex compound represented by one of the following generic formula Axe2x80x2 or Bxe2x80x2: in which Ln represents a metal of a lanthanide, the atomic number of which is between 57 and 71; X represents a halogen, selected from among chlorine, fluorine, bromine and iodine; wherein in formula Axe2x80x2, two ligand molecules Cp1 and Cp2, which may be identical or different, selected from a substituted or unsubstituted cyclopentadienyl and fluorenyl group are bonded to metal Ln; and in formula Bxe2x80x2, a ligand comprising Cp1 and Cp2 bonded to each other by a bridge P is bonded to metal Ln, wherein Cp1 and Cp2 comprise a substituted or unsubstituted cyclopentadienyl or fluorenyl group, bridge P corresponds to the formula MR2, in which M is silicon or another element of column IVA of Mendeleev""s periodic classification and R is an alkyl group having 1 to 20 atoms of carbon; and a co-catalyst selected from the group consisting of a magnesium alkyl, a lithium alkyl, an aluminum alkyl, a Grignard""s reagent and mixtures thereof. In a preferred embodiment metal, Ln is neodymium. Cp1 and Cp2 are preferably identical, each being a cyclopentadienyl group. More preferably, Cp1 and Cp2 are each a cyclopentadienyl group, substituted by an alkyl radical or a silyl alkyl radical. The invention also provides for methods for preparing the catalytic system and its use thereof in preparing copolymers of ethylene and a conjugated diene. The present invention provides an improved catalytic system for preparing copolymers of ethylene and a conjugated diene which do not have the aforementioned disadvantages of the art. The present invention provides a catalytic system for copolymerizing ethylene and a conjugated diene comprising an organometallic complex compound represented by one of the following generic formula Axe2x80x2 or Bxe2x80x2: in which Ln represents a metal of a lanthanide, the atomic number of which can be between 57 and 71; X represents a halogen, selected from among chlorine, fluorine, bromine and iodine; wherein in formula Axe2x80x2, two ligand molecules Cp1 and Cp2, which may be identical or different, selected from a substituted or unsubstituted cyclopentadienyl and fluorenyl group are bonded to metal Ln; and in formula Bxe2x80x2, a ligand comprising Cp1 and Cp2 bonded to each other by a bridge P, is bonded to metal Ln, wherein Cp1 and Cp2 comprise a substituted or unsubstituted cyclopentadienyl or fluorenyl group, bridge P corresponds to the formula MR2, in which M is silicon or another element of column IVA of Mendeleev""s periodic classification and R is an alkyl group having 1 to 20 atoms of carbon; and a co-catalyst selected from the group consisting of a magnesium alkyl, a lithium alkyl, an aluminum alkyl, a Grignard""s reagent and mixtures thereof. In a preferred embodiment, Ln is neodymium Cp1 and Cp2 are preferably identical, each being a cyclopentadienyl group. More preferably, Cp1 and Cp2 are each a cyclopentadienyl group, substituted by an alkyl radical or a silyl alkyl radical. Thus, in one aspect, the catalytic system of the invention comprises an organometallic complex compound, which is represented by one of formula Axe2x80x2 or Bxe2x80x2: in which Ln represents a metal of a lanthanide, the atomic number of which is between 57 and 71; X represents a halogen selected from among chlorine, fluorine, bromine and iodine; wherein in formula A, two ligand molecules CPA, each a substituted cyclopentadienyl group, are bonded to metal Ln; and in formula B, a ligand, comprising two CpB, bonded to one another by a bridge P are bonded to metal Ln, wherein CpB is a substituted or unsubstituted cyclopentadienyl or fluorenyl group and P corresponds to formula MR2, in which M is an element in column IVA of Mendeleev""s periodic classification, and R is an alkyl group having 1 to 20 carbon atoms; and a co-catalyst selected from the group consisting of a magnesium alkyl, a lithium alkyl, an aluminium alkyl, a Grignard""s reagent, and mixtures thereof. In the case of substitution by a silyl alkyl radical, Cp1 and Cp2 each correspond to formula CpA=(C5H4)(SiMe3) in generic formula Axe2x80x2, or to formula CpB=(C5H3)(SiMe3) in generic formula Bxe2x80x2, where Me represents a methyl group. The organometallic complex compound then corresponds to particular formula A or B hereinafter, as applicable. In particular formula A, two molecules of CpA, each of which corresponds to formula (C5H4)(SiMe3) are bonded to metal Ln, and in particular formula B, a ligand molecule, comprising two molecules of CpB, each a substituted cyclopentadienyl group corresponding to the formula (C5H3)(SiMe3), bonded to each other by bridge P, is bonded to metal Ln. In a further embodiment, Cp1 and Cp2 are identical, each comprising a non-substituted fluorenyl group which corresponds to formula C13H9, in generic formula Axe2x80x2, or which corresponds to the formula C13H8, for the said generic formula Bxe2x80x2. In the latter case, there corresponds to the formula Bxe2x80x2 the aforementioned particular formula B, in which CpB=C13H8. If Cp1=Cp2=Cp, said organometallic complex compound is prepared as follows: (a) preparing a hydrogenated molecule of ligand, represented by the formula HCp, which is reacted with a lithium alkyl to obtain a lithium salt; (b) reacting the lithium salt in a complexing solvent with an anhydrous lanthanide trihalide, represented by formula LnX3, where X represents a halogen selected from among chlorine, fluorine, bromine and iodine to produce a reaction product; (c) evaporating the complexing solvent, and extracting in a non-complexing solvent the reaction product of (b) to produce an extracted reaction product; and, optionally: (d) crystallizing the extracted reaction product of (c), in order to obtain the organometallic complex compound which corresponds to formula A or B, which are completely free from the complexing solvent. In step (a), lithium butyl is the preferred lithium alkyl. In step (b), tetrahydrofurane (THF) is the preferred complexing solvent. In addition, two moles of the lithium salt are advantageously reacted with one or two moles of the lanthanide trihalide. Toluene or heptane are preferred non-complexing solvents in step (c). When the co-catalyst is a mixture of an aluminium alkyl and a lithium alkyl, these two components are advantageously present in quantities which are stoichiometric, or close to the stoichiometry in the mixture, in order to obtain satisfactory catalytic activity. Preferred co-catalysts include magnesium butyloctyl, lithium butyl, aluminium diisobutyl hydride, magnesium butyl chloride and mixtures thereof. In accordance with the invention, copolymers of ethylene and a conjugated diene are prepared by reacting the catalytic system comprising the organometallic complex compound and the co-catalyst with ethylene and a conjugated diene monomer in an inert hydrocarbon solvent. Suitable conjugated dienes include 1,3-butadiene, 2-methyl 1,3-butadiene (hereinafter referred to as butadiene and isoprene, respectively), 2,3-di (C1 to C5 alkyl) 1,3-butadienes, such as 2,3 dimethyl-1,3 butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl 3-ethyl 1,3-butadiene, 2-methyl 3-isopropyl 1,3-butadiene, phenyl 1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene, and any other conjugated diene having has between 4 and 8 carbon atoms. The polymerization reaction can be carried out in suspension or in solution, at a variable pressure, and at a temperature of between xe2x88x9220xc2x0 C. and 220xc2x0 C., preferably between 20xc2x0 C. 90xc2x0 C. The molar ratio of co-catalyst to organometallic complex compound is 1 or more, preferably 2 to 100. The concentration of lanthanide in the reaction medium is advantageously lower than 0.3 mmole/l. The molar fraction of butadiene in the reaction medium is advantageously between 1% and 80%. With reference to Appendix I below, the copolymer of ethylene and a conjugated diene produced by the method of the invention can have the following microstructure characteristics, according to the organometallic complex compound used for the catalytic system. If butadiene is the conjugated diene, the copolymer obtained can have the following chain formations for the butadiene units inserted in the copolymer: 1,4 cis; 1,4 trans; 1,2, or it can be in the form of trans 1,2 cyclohexane. (See Appendix I). More particularly, when the organometallic complex compound corresponds to one of formulae [(C5H4)SiMe3]2NdCl, {[(C5H3)SiMe3]SiMe2}NdCl or (C13H9)2NdCl, most of the butadiene in the copolymer will comprise 1,4 trans chain formations. When the complex compound corresponds to the formula [(C13H8)2SiMe2]NdCl, most of the butadiene in the copolymer chain will have a 1,2 trans cyclohexane configuration. If isoprene is the conjugated diene, the copolymer obtained can have the following chain formations for the isoprene units inserted in the copolymer: 1,4; 1,2 or 3,4. More particularly, when the organometallic complex compound corresponds to formula [(C5H4)SiMe3]2NdCl, most of the isoprene is inserted in the copolymer chain by 1,4 bonds chain formations. When the complex compound corresponds to formula [(C13H8)2SiMe2]NdCl, most of the isoprene inserted in the copolymer by 3,4 chain formations. A further characteristic of the ethylene and butadiene copolymers obtained by the method of the invention, is that they have an xe2x80x9cethylene-butadienexe2x80x9d chain formation statistic which is substantially of the alternating type, when the organometallic complex compound corresponds to Lima formula [(C5H4)SiMe3]2NdCl or formula {[C5H3)SiMe3]2SiMe2}NdCl, and a chain formation statistic that is substantially of the block type, when the complex compound corresponds to formula (C13H9)2NdCl. (See Appendix II below). The aforementioned characteristics of the present invention, as well as others, will be better understood in view of the above description and the following non-limiting Examples 1-4 of embodiments of the invention compared to Example 5, which illustrates the prior state of the art. For all of the following examples, the work was carried out using argon, and the solvents used were previously dried by distillation or on a 3 xc3x85 molecular sieve swept with argon. The microstructure of the copolymers obtained in the examples was determined first by of RMN1H techniques, and second by the RMN13C technique. For this purpose, a spectrometer sold under the name xe2x80x9cBRUKERxe2x80x9d was used, at frequencies of 400 MHz for the RMN1H technique, and 100.6 MHz for the RMN13C technique. Appendix I describes the method for determining of this microstructure. Appendix II describes the method for determining xe2x80x9cethylene-butadienexe2x80x9d chain formation statistic.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The subject matter of the present invention is a solution of diisopropoxy-bis (2,4-pentanedionato)-titanium (IV) in isopropanol, which is stable even at temperatures down to -20.degree. C. and a process for preparing the same.
{ "pile_set_name": "USPTO Backgrounds" }
A level shifter is commonly used in an integrated circuit. For example, in some applications, the level shifter is arranged between an input/output (I/O) circuit and a core circuit of an electronic device (e.g., memory device). With the development of the process technology, the operating voltage of the core circuit becomes lower, and the operating voltage of the core circuit is thus lower than the operating voltage of the I/O circuit. Accordingly, before a signal is transmitted from the core circuit to the I/O circuit, a voltage level of the signal is able to be increased by the level shifter. Alternatively, before a signal is transmitted from the I/O circuit to the core circuit, a voltage level of the signal is able to be decreased by the level shifter.
{ "pile_set_name": "USPTO Backgrounds" }
The field of the present disclosure relates generally to ceramic matrix composites and, more specifically, to methods of assembling ceramic matrix composite components. Ceramic matrix composites (CMC) are materials formed from a continuous reinforcing phase (i.e., ceramic and/or carbon fibers) embedded in a ceramic phase (i.e., a matrix material). CMC materials generally have more desirable physical properties over other known materials typically used in military and/or industrial technical applications, for example. Exemplary physical properties include, but are not limited to, high-temperature stability, high thermal-shock resistance, high hardness, high corrosion resistance, and nonmagnetic and nonconductive properties, as well as having a lighter weight than other known materials. CMC materials are often used, for example, in industrial electric equipment, aircraft, spacecraft, automobiles, electronic devices and equipment, and in components designed for use in high-temperature applications. At least some known CMC components used in high-temperature applications include a plurality of cooling passages formed therein. More specifically, fluid such as pressurized air is channeled through the cooling passages to facilitate cooling the component during operation. One known method of forming cooling passages in CMC components includes forming a ceramic foam core and removing material therefrom to form the cooling passages. However, orienting the cooling passages may be undesirably limited by the mechanical means used to form the cooling passages. Another known method includes forming ceramic foam core panels and then machining channels into at least one of the panels prior to the panels being coupled together with an adhesive such that the formed passages extend between the coupled panels. However, applying adhesive to the channeled side of the panel may be a time-consuming and laborious task. Moreover, the amount of adhesive applied to the panels must be controlled to prevent blockage of the cooling passages by excess adhesive.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method for operating a transmission device for a vehicle, wherein the transmission device is provided with an automatic clutch and with a manual shift transmission. The invention further relates also to a transmission device. The transmission device preferably serves as a torque transmission within a powertrain of a vehicle. In this respect, the transmission device is arranged for example between a drive device of the vehicle and at least one drives axle of the vehicle. The drive device is provided with at least one drive unit, for example an internal combustion engine, or an electric machine. However, the drive device, can also be configured as a hybrid drive device as long as it has at least two drive units, which are preferably different from one another. For example, an internal combustion engine can be provided, as well as an electric machine, as drive units in a hybrid device. The transmission device is equipped with an automatic clutch and with the manual transmission. The clutch is in this case in particular arranged in an operative connection between the drive device and the shift transmission, and it is in particular attached to at least one input shaft of the manual transmission or connected to it with an operative connection, in particular in a rigid and/or permanent manner. An output shaft of the shift transmission is preferably in an operative connection with at least one driven axle of the vehicle, in particular also in a rigid and/or permanent manner. This means that the rotational speed of the output shaft is directly dependent on the driving speed of the vehicle and vice versa. The clutch serves in particular to select, create or interrupt the operative connection between the drive device and the shift transmission. As long as the clutch is closed, at least partially, or in particular fully, a torque created by the drive device is transmitted to the manual transmission. If the clutch is opened, in particular when it is fully opened, the operative connection is interrupted. Accordingly, no torque is transmitted from the drive device to the transmission device, or vice versa. The clutch is designed as an automatic clutch and it is therefore actuated by means of an automatic positioning device. This means that the clutch is assigned an actuator, in particular an electric actuator that actuates the clutch. Triggering of the actuator and thus also of the clutch occurs, for example, depending on the position of the clutch pedal and/or on a value preset in a control device. The clutch can be controlled in this respect both by a driver of the vehicle—by means of the clutch pedal—as well as by a control device of the vehicle, or the drive device can be controlled in this manner. The clutch is coupled only electrically, but not mechanically, with the clutch pedal. It goes without saying that any clutch operating element can be provided instead of the clutch pedal. The manual transmission is designed as a manual transmission, and an operating element, for example a shift lever, is assigned to it by means of which the driver of the vehicle can actuate the manual transmission, for example to set a desired driving gear. From prior art is known for example document DE 102 21 701 A1. This document relates to a control method for motor vehicles provided with an automatic clutch device having a motor that can be controlled with a motor controlling device, preferably a controllable automatic transmission, and at least one electronic controlling device for controlling the transmission and the clutch device. In this case, the clutch is closed when the brakes are actuated and/or during an actuation of the fuel metering element, wherein prior to the closing of the clutch in order to end the coasting mode, the rotational speed of the drive shaft of the transmission or a corresponding variable representing this rotational speed is detected and the number of rotations is controlled in such a way that both rotational speeds coincide or are matched. Furthermore, document DE 10 2012 208 996 A1 indicates a method and a device for controlling how the clutch of a motor vehicle is controlled in such a way so that when for example a gear ratio of a manual transmission is selected to be engaged that is currently not suitable, the engagement of the clutch is blocked.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a single lens reflex camera, and more precisely it relates to electrical contact mechanism in a single lens reflex camera for transmitting and receiving an electrical power and/ or electrical signals between a camera body and an interchangeable lens. 2. Description of Related Art In a known single lens reflex cameras, an electrical power and /or electrical signals are transmitted to and camera body, respectively and interchangeable lens to an interchangeable lens or a camera body. To transmit and receive the electrical power and the electrical signals in the form of electric current, it is necessary to provide electrical contacts which are connected on the camera body and the interchangeable lens, respectively, when the interchangeable lens is mounted to the camera body. Usually, the electrical signals which are transmitted from the interchangeable lens to the camera body include information, such as open F-number, focal length data, etc., peculiar to the associated interchangeable lens, which are stored in a ROM or CPU incorporated in the interchangeable lens. However, in a recent interchangeable lens with a powered zoom or a powered diaphragm, there is more information to be transmitted between the camera body and the interchangeable lens. It is also necessary to supply the electrical power to the interchangeable lens from the camera body. The electrical contacts are usually provided on a lens mount and a body mount, or the vicinity thereof. However, in the vicinity of the lens mount and body mount, there are usually locking and unlocking mechanisms of the interchangeable lens and driving and driven shafts for auto-focusing and power-zooming operations, etc., Hence, there is insufficient space for providing a number of electrical contacts. Consequently, there is required a complicated arrangement of the electrical contacts. Also, it is almost impossible to accommodate an increased number of electrical contacts.
{ "pile_set_name": "USPTO Backgrounds" }
The Ras proteins (Ha-Ras, Ki4a-Ras, Ki4b-Ras and N-Ras) are part of a signalling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation. Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein. In the inactive state, Ras is bound to GDP. Upon growth factor receptor activation Ras is induced to exchange GDP for GTP and undergoes a conformational change. The GTP-bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form (D. R. Lowy and D. M. Willumsen, Ann. Rev. Biochem. 62:851-891 (1993)). Mutated ras genes (Ha-ras, Ki4a-ras, Ki4b-ras and N-ras) are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias. The protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal. Ras must be localized to the plasma membrane for both normal and oncogenic functions. At least 3 post-translational modifications are involved with Ras membrane localization, and all 3 modifications occur at the C-terminus of Ras. The Ras C-terminus contains a sequence motif termed a "CAAX" or "Cys-Aaa.sup.1 -Aaa.sup.2 -Xaa" box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al., Nature 310:583-586 (1984)). Depending on the specific sequence, this motif serves as a signal sequence for the enzymes farnesyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C.sub.15 or C.sub.20 isoprenoid, respectively. (S. Clarke., Ann. Rev. Biochem. 61:355-386 (1992); W.R. Schafer and J. Rine, Ann. Rev. Genetics 30:209-237 (1992)). The Ras protein is one of several proteins that are known to undergo post-translational farnesylation. Other farnesylated proteins include the Ras-related GTP-binding proteins such as Rho, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol. Chem. 269, 14182 (1994) have identified a peroxisome associated protein Pxf which is also farnesylated. James, et al., have also suggested that there are farnesylated proteins of unknown structure and function in addition to those listed above. Inhibition of farnesyl-protein transferase has been shown to block the growth of Ras-transformed cells in soft agar and to modify other aspects of their transformed phenotype. It has also been demonstrated that certain inhibitors of farnesyl-protein transferase selectively block the processing of the Ras oncoprotein intracellularly (N. E. Kohl et al., Science, 260:1934-1937 (1993) and G.L. James et al., Science, 260:1937-1942 (1993). Recently, it has been shown that an inhibitor of farnesyl-protein transferase blocks the growth of ras-dependent tumors in nude mice (N. E. Kohl et al., Proc. Natl. Acad. Sci U.S.A., 91:9141-9145 (1994) and induces regression of mammary and salivary carcinomas in ras transgenic mice (N. E. Kohl et al., Nature Medicine, 1:792-797 (1995). Indirect inhibition of farnesyl-protein transferase in vivo has been demonstrated with lovastatin (Merck & Co., Rahway, N.J.) and compactin (Hancock et al., ibid; Casey et al., ibid; Schafer et al., Science 245:379 (1989)). These drugs inhibit HMG-CoA reductase, the rate limiting enzyme for the production of polyisoprenoids including farnesyl pyrophosphate. Farnesyl-protein transferase utilizes farnesyl pyrophosphate to covalently modify the Cys thiol group of the Ras CAAX box with a farnesyl group (Reiss et al., Cell, 62:81-088 (1990); Schaber et al., J. Biol. Chem., 265:14701-14704 (1990); Schafer et al., Science, 249:1133-1139 (1990); Manne et al., Proc. Natl. Acad. Sci U.S.A., 87:7541-7545 (1990)). Inhibition of farnesyl pyrophosphate biosynthesis by inhibiting HMG-CoA reductase blocks Ras membrane localization in cultured cells. However, direct inhibition of farnesylprotein transferase would be more specific and attended by fewer side effects than would occur with the required dose of a general inhibitor of isoprene biosynthesis. Inhibitors of farnesyl-protein transferase (FPTase) have been described in two general classes. The first are analogs of farnesyl diphosphate (FPP), while the second class of inhibitors is related to the protein substrates (e.g., Ras) for the enzyme. The peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation. (Schaber et al., ibid; Reiss et. al., ibid; Reiss et al., PNAS, 88:732-736 (1991)). Such inhibitors may inhibit protein prenylation while serving as alternate substrates for the farnesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S. Pat. No. 5,141,851, University of Texas; N.E. Kohl et al., Science, 260:1934-1937 (1993); Graham, et al., J. Med. Chem., 37, 725 (1994)). In general, deletion of the thiol from a CAAX derivative has been shown to dramatically reduce the inhibitory potency of the compound. However, the thiol group potentially places limitations on the therapeutic application of FPTase inhibitors with respect to pharmacokinetics, pharmacodynamics and toxicity. Therefore, a functional replacement for the thiol is desirable. It has recently been reported that farnesyl-protein transferase inhibitors are inhibitors of proliferation of vascular smooth muscle cells and are therefore useful in the prevention and therapy of arteriosclerosis and diabetic disturbance of blood vessels (JP H7-112930). It has recently been disclosed that certain tricyclic compounds which optionally incorporate a piperidine moiety are inhibitors of FPTase (WO 95/10514, WO 95/10515 and WO 95/10516). Imidazole-containing inhibitors of farnesyl protein transferase have also been disclosed (WO 95/09001 and EP 0 675 112 A1). It is, therefore, an object of this invention to develop peptidomimetic compounds that do not have a thiol moiety, and that will inhibit farnesyl-protein transferase and thus, the post-translational farnesylation of proteins. It is a further object of this invention to develop chemotherapeutic compositions containing the compounds of this invention and methods for producing the compounds of this invention.
{ "pile_set_name": "USPTO Backgrounds" }
Patent Document 1 discloses a piezoelectric element as a conventional electric machine converting element, for example. This piezoelectric element is formed by laminating piezoelectric films sandwiched by electrodes, and bonding the piezoelectric films by adhesive layers. This piezoelectric element can be bent upward or downward by distributing electricity to the electrodes and applying a voltage to the piezoelectric films. Patent Document 1: Japanese Patent Application Laid-Open No. 59-115580
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method to use microwave energy to anneal a thin semiconductor lamina for use in a photovoltaic cell. Crystalline damage in semiconductor material such as silicon can be repaired by various means. One of the simplest ways is to subject the silicon body to a high-temperature anneal. In some circumstances, however, a thermal anneal may present difficulties, as when other materials are present that cannot tolerate the anneal temperature.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to an optical detection system, for example for use in a surveillance system. 2. Discussion of Prior Art Conventional surveillance systems use closed circuit television (CCTV) cameras, monitors and video recorders, which use the same standards (PAL, SECAM, NTSC, etc.) as are used in broadcast television applications. Because of the use of this well-developed technology, CCTV surveillance systems can be highly cost-effective. Acceptable frame refresh rates and image resolution can be achieved, without excessive signal bandwidth demands, at a reasonable cost. It is desirable, however, in surveillance applications, to achieve the greatest possible image resolution, as this may be necessary, for example to be able to identify an individual under surveillance. Conventionally, this can only be achieved using a single fixed camera by providing a zoom image, which necessarily means that the field of view of the camera is restricted, with obvious disadvantages. Therefore, alternative prior art systems include multiple fixed cameras, which obviously increase the cost and weight of the system, and mechanically driven single cameras. However, these latter systems are also considerably more expensive than using a fixed camera, while still having the disadvantage that, since they need to be relatively slow moving, parts of the required field of view are actually not under surveillance for relatively long periods of time, for example many seconds. UK Patent Application No. GB 2 090 100 A describes an optical imaging system in which a liquid crystal spatial light modulator is used to image sub-areas of a total image with the sub-areas being transmitted one by one to a detector, thereby apparently increasing the spatial resolution. The system described therein requires a respective optical channel for each sub-area, with each channel having individual optical components to generate an image of each sub-area on the detector. The system would therefore be costly to manufacture. In addition, in order to accommodate the required optical components a periscope arrangement is required for each optical channel. Whilst such an arrangement might be achievable for a relatively low number of optical channels, for example four, it would become overly complex if the number of channels were to be increased. European Patent Application No. EP 0 029 568 A describes an imaging system where a liquid crystal spatial light modulator is used to select a sub-area to be imaged on a detector. The system described therein incorporates a simple lens having the spatial light modulator at its image plane and a compound lens which focuses images formed at each of four spatial light modulator elements onto the detector. The spatial light modulator is positioned at the image plane of the simple lens and at the focal plane of the compound lens. In order for the described system to work, it would appear that the spatial light modulator has to include some form of light scatterer. Such an arrangement is not optically efficient since light would be scattered in directions other than those towards the compound lens. The present invention derives from the realisation that the relatively high frame refresh rate, provided by a conventional CCTV camera so that realistic moving images of broadcast quality can be achieved, is unnecessary for most surveillance applications. In such applications, it may be acceptable to sacrifice the high frame refresh rate to achieve higher image resolution and/or a wider field of view. In accordance with preferred embodiments of the invention, this is achieved by the use of an optical device which provides multiple images sequentially to the camera. The present invention provides an optical detection system comprising: (i) an image detector having an image detector area; (ii) a lens arrangement for focusing light from a scene onto said detector, and (iii) an optical device for acting upon light passing to said detector, characterized in that: (a) said lens arrangement comprises a lens having a single optical axis; and (b) said optical device comprises an array of optical elements each for acting upon light passing through a respective portion of said lens wherein said optical elements form a plurality of optical channels for the transmission of respective images to said detector through said lens; and wherein each image substantially fills the whole of the image detector area. The system of the invention may further comprise a selective shutter device for controlling the transmission of light to said detector, said shutter device comprising an array of shutter elements and a controller for controlling said array of shutter elements, each of said shutter elements being selectively openable and closable in response to a respective control signal from said controller; and wherein said optical elements and said respective shutter elements in combination form a plurality of optical channels for the transmission of light to said detector through said lens; and wherein said shutter device provides means for selecting at least one of said optical channels for the transmission therethrough of an image to said detector. The selective shutter device may be a spatial light modulator which in a preferred embodiment is a liquid crystal spatial light modulator. A possible alternative to a liquid crystal spatial light modulator might be a mechanical shutter. It is likely that mechanical devices would have fewer shutter elements than a liquid crystal array. Preferably, the selective shutter device is positioned adjacent the lens. The system of the invention may be arranged to selectively detect images from a plurality of directions, with control of the selective shutter controlling the look direction. To achieve this multi-directional capability, the optical device may be an array of reflecting elements, each arranged to receive light from a particular look direction. Such devices would be particularly suitable for use in surveillance applications where it is desirable to obtain images from a variety of directions. Alternatively, the system may be configured to have a single look direction but to detect images over a range of focal distances. Such systems have applications in situations where the direction in which an object will appear is known but the separation between the system and the object is uncertain. Conventionally, such a situation would require the use of an automatically focusing camera or a camera with a sufficient depth of focus to accommodate such uncertainties at the expense of image resolution. To achieve the variable focal range capability, the optical device of the invention may comprise an array of lenslets, each having a respective focal length. The system of the invention may be configured to provide spectral sensitivity. This capability may be achieved by a system in which the optical device is an array of filters, each filter having a respective transmission bandwidth.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to data transmission and, more particularly, to a method and apparatus of alternate interfacing for read/write of data of one data sector according to a microprocessor and two memories. 2. Description of the Related Art A digital video disk, a digital moving picture disk medium, is a next-generation high-quality multimedia memory device storing a digital picture of moving picture experts group 2 (MPEG2) over two hours. In order to demodulate the data to an original signal in a decoder for reproducing the data stored in the digital video disk, the data is read and temporarily stored in a memory. Here, a microprocessor for controlling the decoder reads data required for access of the memory. When the microprocessor reads all data stored in the memory, its read timing should be adjusted according to various circumstances. Furthermore, the memory must alternately read and write data without loss.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to signal detection in the presence of noise characterized by non-Gaussian noise models. More specifically, but without limitation thereto, the present invention relates to a signal processor for detecting targets in coherent radar return signals in the presence of non-Gaussian radar clutter. Conventional detection algorithms derived from the assumption of Gaussian noise typically suppress heavily tailed non-Gaussian clutter by requiring higher thresholds than are required for Gaussian noise, degrading the ability of these algorithms to detect weak signals. Non-Gaussian noise may be observed if the noise is dominated by a few non-Gaussian sources, or if the noise is produced by a changing number of Gaussian or non-Gaussian sources, even if the expected number of sources is large. A variety of univariate and multivariate probability distributions have been proposed to model various types of non-Gaussian data including D. Middleton's class A and B models, K, Weibull, log-normal and discrete Guassian mixture distributions. The compound random variable, Z=AX where A&gt;0 and X has a normal distribution, has a class A, K, or discrete Gaussian mixture distribution if A has a Poisson, Gamma, or discrete distribution, respectively. Likelihood ratio and locally optimum detection algorithms based on non-Gaussian noise models have been developed for various signal types. Theoretical and empirical studies demonstrate that these algorithms have a significant performance improvement over corresponding detection algorithms derived from the assumption that the noise data have normal distributions. In applications such as radar, A may be correlated. A continued need exists for a coherent radar detector having an improved capability for detecting weak radar return signals in the presence of non-Gaussian noise clutter.
{ "pile_set_name": "USPTO Backgrounds" }
Magnetic Random Access Memory (MRAM) is a non-volatile data memory technology that stores data using magnetoresistive cells such as Magnetoresistive Tunnel Junction (MTJ) cells. At their most basic level, such MTJ elements include first and second magnetic layers that are separated by a thin, non-magnetic layer such as a tunnel barrier layer, which can be constructed of a material such as Mg—O. The first magnetic layer, which can be referred to as a reference layer, has a magnetization that is fixed in a direction that is perpendicular to that plane of the layer. The second magnetic layer, which can be referred to as a magnetic free layer, has a magnetization that is free to move so that it can be oriented in either of two directions that are both generally perpendicular to the plane of the magnetic free layer. Therefore, the magnetization of the free layer can be either parallel with the magnetization of the reference layer or anti-parallel with the direction of the reference layer (i.e. opposite to the direction of the reference layer). The electrical resistance through the MTJ element in a direction perpendicular to the planes of the layers changes with the relative orientations of the magnetizations of the magnetic reference layer and magnetic free layer. When the magnetization of the magnetic free layer is oriented in the same direction as the magnetization of the magnetic reference layer, the electrical resistance through the MTJ element is at its lowest electrical resistance state. Conversely, when the magnetization of the magnetic free layer is in a direction that is opposite to that of the magnetic reference layer, the electrical resistance across the MTJ element is at its highest electrical resistance state. The switching of the MTJ element between high and low resistance states results from electron spin transfer. An electron has a spin orientation. Generally, electrons flowing through a conductive material have random spin orientations with no net spin orientation. However, when electrons flow through a magnetized layer, the spin orientations of the electrons become aligned so that there is a net aligned orientation of electrons flowing through the magnetic layer, and the orientation of this alignment is dependent on the orientation of the magnetization of the magnetic layer through which they travel. When, the orientations of the magnetizations of the free and reference layer are oriented in the same direction, the spin of the electrons in the free layer are in generally the same direction as the orientation of the spin of the electrons in the reference layer. Because these electron spins are in generally the same direction, the electrons can pass relatively easily through the tunnel barrier layer. However, if the orientations of the magnetizations of the free and reference layers are opposite to one another, the spin of electrons in the free layer will be generally opposite to the spin of electrons in the reference layer. In this case, electrons cannot easily pass through the barrier layer, resulting in a higher electrical resistance through the MTJ stack. Because the MTJ element can be switched between low and high electrical resistance states, it can be used as a memory element to store a bit of data. For example, the low resistance state can be read as an on or “1”, whereas the high resistance state can be read as a “0”. In addition, because the magnetic orientation of the magnetic free layer remains in its switched orientation without any electrical power to the element, it provides a robust, non-volatile data memory bit. To write a bit of data to the MTJ cell, the magnetic orientation of the magnetic free layer can be switched from a first direction to a second direction that is 180 degrees from the first direction. This can be accomplished, for example, by applying a current through the MTJ element in a direction that is perpendicular to the planes of the layers of the MTJ element. An electrical current applied in one direction will switch the magnetization of the free layer to a first orientation, whereas an electrical current applied in a second direction will switch the magnetic of the free layer to a second, opposite orientation. Once the magnetization of the free layer has been switched by the current, the state of the MTJ element can be read by reading a voltage across the MTJ element, thereby determining whether the MTJ element is in a “1” or “0” bit state. Advantageously, once the switching electrical current has been removed, the magnetic state of the free layer will remain in the switched orientation until such time as another electrical current is applied to again switch the MTJ element. Therefore, the recorded date bit is non-volatile in that it remains intact in the absence of any electrical power.
{ "pile_set_name": "USPTO Backgrounds" }
In some technical fields, such as telecommunications, it can be desirable to spectrally filter one light signal to match a wavelength of another light signal.
{ "pile_set_name": "USPTO Backgrounds" }
Such holders have been used for a long time in many different forms. In this connection, the clamps are, for example, welded or soldered together at the ends. Thermal connecting methods are, however, not particularly suitable as connecting methods for different materials or materials having a surface coating. United States patent publication 2005/0224677 discloses a holder which, by means of a folding mechanism, engages around one cable or a plurality of cables, and can be closed with a snap connection. However, due to the design for a plurality of cables, this holder is not suitable for securing pipelines against torsion or axial displacement in the event of greater forces. In U.S. Pat. No. 6,443,403, a holder is shown wherein the two ends thereof are connected to one another by a rivet-like latching pin. The connection is based on the resilience of the elastic detents of the latching pin. After the latching pin is forced into a hole, the elastic detents snap open behind corresponding detent notches and thus an unreleasable connection of the ends of the clamp is formed. A drawback with this arrangement is that an additional component is required and that such a connection is associated with play. A fixed clamping of the clamp to the pipe is, therefore, only possible for low displacement forces or torques.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a chlorine-containing polymer vulcanizing composition such as represented by chlorinated polyethylene or epichlorohydrin polymer, and to a vulcanized product thereof. 2. Description of the Prior Art Generally, a chlorine-containing polymer is widely used as a material for a rubber product or a resin product, or as a material for an adhesive or a paint because of its excellent heat resistance, oil resistance, weather resistance, ozone resistance, and abrasion resistance. In particular, chlorinated polyethylene is attracting people""s attention as a rubber material utilizing its excellent heat resistance, oil resistance, weather resistance, and ozone resistance. Various proposals have already been made for vulcanization of chlorinated polyethylene. For example, organic peroxides and various sulphur-containing compounds such as mercaptotriazines are proposed as a vulcanizing agent for chlorinated polyethylene. It is also known to use various organic vulcanization accelerators such as an amine compound in combination with the vulcanizing agent for accelerating vulcanization of chlorinated polyethylene. It is a common knowledge of those skilled in the art that an acid receiving agent must be blended with a vulcanizing composition for absorbing an acid component generated in a small amount in vulcanizing chlorinated polyethylene. For example, Japanese Laid-open Patent Publication No. 55-39250/1980 proposes a metal compound selected from the group consisting of oxide, hydroxide, carboxylate, silicate, carbonate, phosphite, borate, basic sulfite and tribasic sulfate of a group IVA metal in the periodic table, as the acid receiving agent. A vulcanizing composition disclosed in Japanese Laid-open Patent Publication 63-28047/1988 provides stability of a vulcanized product and a suitable vulcanization speed, and the patent publication gives oxide, hydroxide, carboxylate, silicate, carbonate, phosphite and borate of a group II metal in the periodic table, and oxide, basic phosphite, basic carbonate, basic carboxylate, basic sulfite, and tribasic sulfate of a group IVA metal in the periodic table as example of the metal compounds. Specific examples thereof include magnesia, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, slaked lime, quick lime, calcium carbonate, calcium silicate, calcium stearate, zinc stearate, calcium phthalate, magnesium phosphite, calcium phosphite, zinc white, tin oxide, litharge, red lead, white lead, dibasic lead phthalate, dibasic lead carbonate, tin stearate, basic lead phosphite, basic tin phosphite, basic lead sulfite and tribasic lead sulfate. Japanese Laid-open Patent Publication 53-3439/1978, 54-58750/1979, 09-176433/1997, and others disclose a vulcanizing composition containing a thiadiazole compound as a vulcanizing agent for a chlorine-containing polymer, in which a basic metal oxide, a basic metal salt, a basic metal hydroxide, or the like is used as a compounding agent. However, none of these vulcanizing compositions is a composition obtained by blending a zeolite compound as an acid receiving agent with a chlorine-containing polymer. Although these vulcanizing compositions provide vulcanized products having good vulcanization properties and are put into industrial use, they have a poor preservation stability and involves various restrictions in industrial rubber processing. For example, if the preservation stability of the vulcanizing composition is poor, vulcanization proceeds during preservation to make vulcanization molding impossible, whereby the vulcanizing composition must be discarded, desired vulcanization properties can not be obtained, or a dimension precision is greatly reduced, even though the vulcanization molding can be carried out. Japanese Laid-open Patent Publication 58-18939/1983 discloses blending a specific aluminosilicate as a heat stabilizer with a chlorine-containing polymer. However, this does not contain a vulcanizing agent, i.e. is not one obtained by blending an aluminosilicate with a vulcanizing composition, much less gives a teaching of preservation stability of the vulcanizing composition. Japanese Laid-open Patent Publications 07-157566/1995 and 07-286098/1995 disclose a polymer vulcanizing composition containing an epichlorohydrin polymer, a mercapto vulcanizing agent, and a hydrotalcite. However, this vulcanizing composition is not one obtained by blending a zeolite compound as an acid receiving agent. Japanese Laid-open Patent Application 60-233138/1985 discloses a composition containing a chlorosulfonated polyolefin, an epoxy compound, and an A-type zeolite. However, this is a disclosure that the A-type zeolite preserves a white color of the chlorosulfonated polyolefin at the time of heating and increases the strength of the vulcanized product, and it also fails to give a teaching on the preservation stability of the vulcanizing composition. In view of the above-mentioned circumstances, the object of the present invention is to provide a chlorine-containing polymer vulcanizing composition with improved preservation stability. The inventors of the present invention have made various studies in order to solve the above problems, and found out that blending a zeolite compound as an acid receiving agent is effective in improving the preservation stability of a chlorine-containing polymer vulcanizing composition, thereby completing the present invention. Accordingly, the present invention provides a chlorine-containing polymer vulcanizing composition obtained by blending with a chlorine-containing polymer, (a) a zeolite compound, (b) a vulcanizing agent, and (c) an optional organic vulcanization accelerator. Further, the present invention provides a chlorine-containing polymer vulcanizing composition containing (d) an optional inorganic vulcanization accelerator in addition to the above-mentioned compounding agents (a), (b), and (c). By blending the (d) component, the vulcanization speed and the compression set can be improved.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention refers to a silk-screen printing machine in simplified register. As is known, in silk-screen printing machines equipped with a bearer structure and a printing head mobile on a silk-screen printing frame, the sheet is moved forward mechanically or manually until it reaches a predetermined position in a pincer for its transportation below the silk-screen printing frame. Pincer-carrying rods are moved, each at least at its ends by chains, which make them move forward on the printing plane, pulling the sheet to be printed at the various work stations and/or printing heads. Each pincer consists of a box-shaped body with a rectangular plan and is equipped with openable jaws to grip the sheet and to allow the insertion and removal thereof. The stop position of the sheet before being gripped is determined by elements in register, which from above engage the supply plane of the sheet in the pincer and which prevent the sheet from advancing beyond the desired position. The closing of the pincers to grip the sheet is then commanded by an authorisation signal transmitted by one or more photocells aligned with the elements in register. In silk-screen printing machines thus realised, however, numerous drawbacks have been encountered due to the complex sequence of movements necessary to avoid hindering the members in movement. Moreover, known silk-screen printing machines are not very flexible compared to the size of the sheets which can be supplied to the machine. The purpose of the present invention is that of realising a silk-screen printing machine in simplified register which allows high precision supply of the sheets in the pincers to be obtained. Another purpose of the present invention is that of realising a silk-screen printing machine in simplified register which is adaptable to different sizes of sheets to be printed in a quick and simple manner. Another purpose of the present invention is that of realising a silk-screen printing machine in simplified register which is particularly simple and functional, with contained costs. These purposes according to the present invention are accomplished by realising a silk-screen printing machine in simplified register as outlined in claim 1. Further characteristics are foreseen in the dependent claims.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates in general to communication systems and more particularly to a method and system for improving the integrity of a distributed power communication system for controlling the functionality of one or more mobile assets remote from a lead mobile asset. Communication among locomotives and other cars in a train consist, for example, is important to ensure the coordination of various functions of the locomotives such as throttle control, braking and direction during the train""s operation. Radio frequency schemes may be used for such intra-train communication with various combinations of transmitters, receivers and/or transceivers being distributed among the lead or controlling locomotive and the remote locomotives under the control of the lead. During a locomotive distributed power communication operation the lead or command locomotive may transmit control information in a command message to one or more remote or controlled locomotives that are located further back in the train consist. On receipt of the command message, each remote locomotive may transmit a reply message back to the lead locomotive including operational status information of that remote. The operational status message verifies to the lead locomotive that the remote is operating in response to the command message instructions. If the lead locomotive is satisfied that it has received a reply message from all of the remote locomotives then the lead locomotive may declare that all remote locomotives are following the command message instructions. Alternatively, if the lead locomotive does not receive a reply message from each remote unit within a certain period of time then the lead locomotive may assume that communication has been lost and that one or more of the remote locomotives is not following the command message instructions. However, the lead locomotive not receiving a reply message from one or more remote locomotives does not necessarily mean that those locomotives are not following the command message instruction. For example, locomotive train consists traverse a wide range of topographies including mountainous terrain and other geographical areas having physical features, such as tunnels, that may cause a loss of communication among locomotives in the train consist. When traveling through such areas the likelihood of RF communication loss among the lead and remote locomotives increases. Appropriately configured wayside RF repeaters may be placed near geographical areas that are known to cause communication difficulties in order to improve intra-train communication when a train consist passes through those areas. This increases the likelihood that a lead locomotive will receive reply messages from remote locomotives. Such wayside RF repeaters are relatively expensive to install and maintain and may be cost prohibitive to use in geographical areas that are difficult to access or that otherwise lack the necessary infrastructure to support their operation. Such wayside RF repeaters are also limited to operating only in their permanent physical geographic location. Train consists operating in areas lacking wayside RF repeaters are typically limited in their length to better ensure RF communication among the locomotives in the consist. Limiting the length of a train consist is disadvantageous to railroads that may otherwise maximize the length of a consist to meet customer demands, improve operating efficiency and maximize revenues. In view of the above, it would advantageous to provide a reliable, cost effective method and system for improving the integrity of a distributed power communication system for verifying to the operator of a lead locomotive that all remote locomotives are following a set of command instructions. Exemplary embodiments of the present invention fulfill the foregoing needs by providing in one aspect thereof a railroad distributed power communication method for wireless transceiver units at spaced locations along a train, with the train having a lead transceiver unit transmitting commands, remote transceiver units spaced from the lead and for which direct communication with the lead unit may be uncertain. The at least one intermediate transceiver unit may be located between the lead unit and at least one remote unit where the intermediate unit constitutes a repeater for repeating messages between the lead unit and at least one of the remote units. The method allows for verifying that a remote unit under the control of the lead unit is following a set of command functions broadcast by the lead unit in a command message by determining whether the lead unit has received a status reply message from the remote unit where the status reply message is transmitted in response to the remote unit""s receipt of the command message. The status reply message may include data indicative of at least one operational state of the remote unit. A help command message may be transmitted from the lead unit to the repeater in the event the lead unit has not received the status reply message from the remote unit. The help command message may be repeated from the repeater to the remote unit. A help reply message may be transmitted from the remote unit to the repeater in response to the remote unit""s receipt of the repeated help command message. The help reply message may be repeated from the repeater to the lead unit, the help reply message including data indicative of at least one operational state of the remote unit and the help reply message may be received at the lead unit thereby verifying that the remote unit is following the set of command functions. In one aspect a method for communicating and verifying commands among a plurality of locomotives within a train consist is provided that comprises broadcasting a command message from a lead locomotive to at least one remote locomotive then determining whether the lead locomotive receives a status reply message including data indicative of at least one operational state of the remote locomotive. If the lead locomotive does not receive the reply message within a predetermined period of time after transmitting the command message then the lead may transmit a help command message. A help reply message may be transmitted from the remote locomotive in response to receipt of the help command message. The help reply message may be repeated from a remote locomotive consist and received by the lead locomotive. The help reply message may include data indicative of the at least one operational state of the first remote locomotive consist. In another aspect a method for communicating among a plurality of mobile assets and verifying receipt of a message by at least one of the mobile assets is provided which comprises broadcasting a command message to the plurality of mobile assets then determining whether a lead mobile asset receives a status reply message from each of a predetermined group of the plurality of mobile assets. A help command message may be broadcast if the lead mobile asset did not receive a reply message from at least one of the predetermined group. The help command message may be repeated by at least one of the plurality of mobile assets and include data indicative of the identity of the mobile asset for which the lead mobile asset did not receive the reply message. A help reply message may be transmitted from the mobile asset for which the lead mobile asset did not receive the reply message, the help reply message being transmitted in response to receipt of the help command message. The help reply message may be repeated by at least one of the plurality of mobile assets and received by the lead mobile asset. In another aspect a system for a lead locomotive to verify that a remote locomotive under the control of the lead locomotive is following a set of command functions broadcast by the lead locomotive in a command message, the lead and remote locomotives being part of a train consist equipped with a distributed power communication system is provided, which comprises a control module for determining whether the lead locomotive has received a status reply message from the remote locomotive where the status reply message is transmitted in response to the remote locomotive""s receipt of the command message and includes data indicative of at least one operational state of the remote locomotive. A transmitter for transmitting a help command message from the lead locomotive to a locomotive consist within the train consist in the event the lead locomotive has not received the status reply message from the remote locomotive. A radio unit for repeating the help command message from the locomotive consist to the remote locomotive and a transmitter for transmitting a help reply message from the remote locomotive to the locomotive consist in response to the remote locomotive""s receipt of the repeated help command message. A radio unit for repeating the help reply message from the locomotive consist to the lead locomotive, the help reply message including data indicative of at least one operational state of the remote locomotive and a receiver for receiving the help reply message at the lead locomotive thereby verifying that the remote locomotive is following the set of command functions. The exemplary embodiments allow for cost effective and reliable communication among a plurality of mobile assets, such as locomotives within a train consist, for example. Train consists employing exemplary embodiments may increase their length, for example, and retain the ability to verify that all locomotives under the control of the lead locomotive are following instructions included in a command message. A repeating function of the exemplary embodiments is available one hundred percent of the time that is reliable, conserves communication resources and optimizes use of available on-board equipment.
{ "pile_set_name": "USPTO Backgrounds" }
Cells normally maintain a balance between protein synthesis, folding, trafficking, aggregation, and degradation, referred to as protein homeostasis, utilizing sensors and networks of pathways [Sitia et al., Nature 426: 891-894, 2003; Ron et al., Nat Rev Mol Cell Biol 8: 519-529, 2007]. The cellular maintenance of protein homeostasis, or proteostasis, refers to controlling the conformation, binding interactions, location and concentration of individual proteins making up the proteome. Protein folding in vivo is accomplished through interactions between the folding polypeptide chain and macromolecular cellular components, including multiple classes of chaperones and folding enzymes, which minimize aggregation [Wiseman et al., Cell 131: 809-821, 2007]. Whether a given protein folds in a certain cell type depends on the distribution, concentration, and subcellular localization of chaperones, folding enzymes, metabolites and the like [Wiseman et al.]. Human loss of function diseases are often the result of a disruption of normal protein homeostasis, typically caused by a mutation in a given protein that compromises its cellular folding, leading to efficient degradation [Cohen et al., Nature 426: 905-909, 2003]. Human gain of function diseases are similarly frequently the result of a disruption in protein homeostasis leading to protein aggregation [Balch et al. (2008), Science 319: 916-919]. Dysfunction in proteostasis has been implicated in a diverse range of diseases including for example, neurodegenerative disease, metabolic diseases, inflammatory diseases and cancer. There remains a need in the art for compounds and pharmaceutical compositions to treat conditions associated with proteostasis dysfunction.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a communication control system for an image recording apparatus. Conventionally, a recording apparatus which receives externally input image data, and obtains a reproduced image is known. In a recording apparatus of this type, e.g., an ink-jet printer which comprises multi-nozzles for discharging an ink, and can record a color image by discharging corresponding color inks from the nozzles onto a recording medium on the basis of externally input print data, multi-nozzle heads corresponding to the number of color inks are mounted, and a color image can be recorded by sequentially discharging inks from the nozzles on the basis of external image data (print data). The multi-nozzle printer can record a binary image by executing binarization processing based on color print data. In this case, the following data communications (1) and (2) are often performed. (1) A binary image obtained by converting multi-value image data into a binary image by an external apparatus, e.g., a host computer is transmitted to a printer, and is recorded on a recording medium. (2) An external apparatus, e.g., a host computer transmits multi-value image data to a printer, and the printer records a binary image on a recording medium while executing binarization processing of the multi-value image data. In particular, when binary image recording processing is performed based on multi-value image data by the method (2), the printer comprises an overlap memory having a binarization processing function, multi-value image data of a peripheral portion exceeding a print width are written in the overlap memory to overlap the data of the print width, and binary image data corresponding to the print width are generated on the basis of stored pixel data. However, the external apparatus as a communication source side must check the overlap memory capacity on the basis of the type (registered) of a printer to be connected, and cannot detect the overlap memory capacity if the printer is a nonregistered printer. Thus, the external apparatus must execute transfer sequential processing for, e.g., designating the type of printer, and a considerable time is required until a desired binary image is obtained. Furthermore, when some of the multi-nozzles suffer from ink discharging errors, print processing is interrupted, or is continued with errors. Thus, a desired color image cannot often be obtained. Some ink-Jet printers can record data on a plurality of types of sheets such as roll paper, cut sheets, OHP sheets, and the like. However, such printers must change a print sequence depending on the types of sheets to be subjected to recording, and must comprise, e.g., large capacity image memories to cope with this problem.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an ion measuring system, and in particular relates to a multi-electrode measuring system which is able apply for biomedicine, chemistry related fields, etc. 2. Description of the Related Art The ion sensitive field effect transistor (ISFET) was first invented by P. Bergveld in 1970, and the ISFET is based on a metal-oxide-semiconductor field effect transistor (MOSFET). Moreover, the gate of the MOSFET was replaced by a sensing membrane and electrolyte. A sensing membrane and H+ and OH− in a sample solution results in an adsorption-binding effect to make the potential on the surface of an electrode change, thus obtaining the ion concentration of a sample solution. In 1983, J. Van der Spiegel et al developed an extended gate chemical sensitive field effect transistor, which used a plane array structure, including four sensing parts deposited of different materials such as IrOx, LaF3, AgCl and Ag2S to from the sensing thin films for detecting four kinds of ions, H+, F−, Cl− and Ag+, (J. Van der Spiegel, I. Lauks, P. Chan D. Babic, 1983, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators B, Vol. 4, pp. 291-298). Taiwan Patent No. I236533, disclose a biochemical sensing method and the sensing device thereof. A current/voltage converting circuit is able to convert current signals into analog voltage signals; and the analog voltage signals may be converted into digital voltage signals by an analog/digital converter; finally an electronic device is used to receive and analyze the digital voltage signals and an amount of a specific compound is determined by the analyzing step. U.S. Pat. No. 7,348,783 disclose a multi-functional pH meter and the fabrication thereof. The pH meter provides an immediate display of the measurement result and a saving function which is beneficial for development of a portable detecting device. In addition, the multi-functional pH meter has data communication functionality with a computer, drift and hysteresis software calibration is also provided.
{ "pile_set_name": "USPTO Backgrounds" }
Decorative capped wheel nuts and bolts are well-known in the automotive art. A decorative capped wheel nut, for example, conventionally comprises a nut insert and a decorative cap which is fastened to the insert by welding, crimping or with an adhesive. Examples of these constructions are illustrated in various prior art patents, including the Toth U.S. Pat. No. 4,955,773, the Bydalek U.S. Pat. No. 5,772,377, the Chaivre U.S. Pat. Nos. 4,018,133, and 4,056,862, the Baltzell U.S. Pat. No. 4,764,070 and the Somers et al. U.S. Pat. No. 6,036,420, for example. It is also known to form threads in a cap and in a lug nut and thread the cap onto the nut. See the Nolan et al. U.S. Pat. No. 5,180,266 in this regard. All methods described in the prior art require relatively complex structures, assembly procedures and/or additional components. Assemblies produced by welding require expensive and sophisticated equipment for practical implementation of production. Practical options for plating the inserts are limited where welding is employed, placing welded designs at a disadvantage for achieving high corrosion resistance. Crimped designs require the addition of components, i.e., a sealant or o-ring, which complicates automated assembly. The use of adhesives causes similar problems. Because of the nature of the welding processes, or the introduction of extra components, production rates for these assembly processes are low.
{ "pile_set_name": "USPTO Backgrounds" }
Unit dose detergent products are convenient for consumers, since there is no need for them to measure out the required volume of detergent each time. Various unit dose formats, including tablets, and containers made of water-soluble material, are already known. Water-soluble containers are attractive since they avoid direct consumer contact with the detergent contents which are potentially irritant, and can have a faster dissolution profile than tablets (because the detergent contents do not need to be compacted particles). Fast dissolution in the wash is often required to release active ingredients from dosage units to be consumed in a single dishwasher run, so that they can become effective as soon as possible, for instance before they are deactivated by the high temperatures of the wash. Containers are preferred for this reason, and also since they are capable of incorporating many more types of composition including liquid, gel and paste compositions, not just solid ones. With multi-compartment containers, more than one type of composition can be incorporated (e.g. one solid and one liquid composition), incompatible ingredients can be kept separate until use, compartments can be designed to release their respective contents at different times in the wash, and/or greater opportunities for improved aesthetics are provided. In practice in the automatic dishwashing (“ADW”) field, the choice of available sizes and shapes of unit dose products is limited by the size and shape of machine dispensers into which they are to be placed. There is also a general demand in the art for more concentrated products which use less packaging and/or confer better performance by including higher amounts of active ingredients. It would therefore be useful to have a compact ADW unit dose detergent composition containing a high level of ingredients contributing to the performance. When dealing with containers made from water-soluble material, it is also important to ensure this material does not dissolve or deteriorate prior to the intended usage point of the container. Adverse interactions between the container material and the container contents during storage can potentially lead to container deformation, loss of mechanical strength of the product and rendering it unattractive. For these reasons it is helpful for the detergent formulation inside the container to have a low water content. When space is an issue, it is also important to minimise the levels of carriers not contributing to performance in the wash, such as water. Nevertheless, whilst aqueous compositions are to be avoided, the composition must still be capable of dissolution in the wash, and ideally not leave residues on the dishware. One particularly important type of ingredient in the context of detergent performance is a builder. Builders soften water by removing free cations from the water, thereby increasing the performance of other detergent ingredients which are adversely affected by those cations. Mostly, they react with calcium and/or magnesium ions to form complexes or precipitates. Historically, phosphates like STPP and KTPP have been the mainstay detergent builders, but there are increasing regulatory restrictions on the use of these ingredients worldwide. Gel formats are visually very attractive to consumers, especially transparent gels. However, there is a conflict between the requirements for low water content, high builder content, and the gel not being opaque. Many available builders are solid at room temperature and do not dissolve in sufficient quantities in the non-water solvents typically used to produce anhydrous gels. For example, phosphates like STPP and KTPP and non-phosphate builders like MGDA and GLDA may be in dissolved form in an aqueous formulation, but may be in the form of dispersed particles in a non-aqueous formulation; dispersed particles can scatter light and render the formulation opaque. Previously, if a unit dose detergent product was to contain a builder and a transparent fluid, this was usually achieved in the form of a multi-compartment container, carrying builder comprised in a solid composition and/or opaque fluid in one compartment, and a transparent fluid containing no builder in a separate compartment. However, the drive for higher performance and greater concentration of active ingredients has forced the present inventors to look for ways to incorporate builder in the transparent fluid too. In addition, liquids and low viscosity gels are liable to leak out of a container if the container material becomes damaged, so it would be desirable in this context for the transparent fluid to be a self-standing gel. Certain types of polyacrylic acid (and salts thereof) can act as a builder (c.f. U.S. Pat. No. 3,904,685) and have been included as part of builder systems in commercial tablet and opaque gel ADW formulations. Their carboxylic acid/carboxylate groups allow them to chelate or form salts with the metal ions. As polyelectrolytes, they can also act as dispersants for soils, helping to prevent their redeposition on glass and dishware. For instance, compounds in the Sokalan™ PA range are advertised as dispersants. On the other hand, other types of polyacrylic acid may not have builder capacity, depending on the polymer structure. For example, cross-linked, high molecular weight polyacrylic acid (e.g. in the Carbopol™ range) has been used in low concentrations as a thickener for aqueous liquid ADW systems, together with a non-cross-linked, lower molecular weight polyacrylic acid salt as a builder (cf. U.S. Pat. No. 5,368,766). Typically, a polyacrylic acid builder is synthesised in aqueous solution, and optionally then dried. Thus, the common forms that are commercially available to the detergent formulator are an aqueous liquid or a spray-dried powder. The formulator may use the powder directly in a tablet formulation, use the aqueous liquid directly in an aqueous liquid detergent formulation, or redissolve the powder in an aqueous liquid detergent formulation. However, there is great difficulty in dissolving high levels of polyacrylic acid builder in non-aqueous systems comprising high levels of non-ionic surfactants. Copolymers of acrylic acid and other monomers that have been tried may have a greater solubility in the surfactant composition, but show lower solubility in the wash liquor and lower performance as a builder. WO 2004/099274 discloses the formation of a graft polymer in which a polyalkylene glycol forms the backbone, and poly(meth)acrylic acid is grafted as branches onto the backbone. Use of the graft polymer in automatic dishwashing is mentioned. The free radical polymerisation is carried out at 90° C. in the presence of the polyalkylene glycol and water which is charged into the system at a controlled time. The graft polymer is therefore formed in an aqueous system, which may optionally additionally contain an organic solvent. Accordingly, this could not be used directly to form a non-aqueous gel. EP 0,639,592 discloses the formation of a builder which is a related graft polymer to the one of WO 2004/099274. The polymerisation reaction is carried out at 100° C. or higher in the presence of substantially no solvent of any type; the polyether is melted by heating, to allow the reaction to take place. The ratio of monomers to polyether is at least 0.25:1. Although the polymerisation reaction itself does not utilise a solvent, the polymer is subsequently neutralised using an aqueous base or dissolved in a water/alcohol mixture, such that the end result of the synthesis is an aqueous solution of the graft polymer. Accordingly, it could not be used directly in non-aqueous gels. Furthermore, the examples of detergents in this document are aqueous liquid detergents. There is still a need in the art for a transparent/translucent, non-aqueous ADW gel containing significant quantities of a builder, preferably a self-standing gel of this type. Such a gel would be advantageous even when not incorporated in a water soluble container, for example if the gel is rigid and stable enough not to require encapsulation in a container. The present inventors have discovered that polyacrylic acid and related acrylates can be synthesised directly in non-ionic surfactant, in the absence of water, to form an aesthetically appealing gel that is suitable for ADW use and affords good builder and surfactant performance.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, public concern regarding diet, in particular, fat intake, has dramatically increased. The focus on fat intake is particularly important as it has been found to relate to heart disease and other ailments, which are believed to afflict a large percentage of individuals throughout the world. Blood cholesterol levels have been recognized as a major factor in determining whether an individual will suffer from heart disease. A major factor contributing to a relatively high blood cholesterol level is a high dietary intake of saturated fats. The American Heart Association ("AHA") has recommended that, to reduce the risk of heart disease and cancer, individuals should reduce their daily dietary intake of fats and cholesterol. Specifically, the AHA has recommended (1) that individuals receive only 30% of their daily caloric intake from fat with only 10% of that amount being derived from saturated fat, and (2) that dietary cholesterol intake be kept below 300 milligrams per day. To aid individuals in achieving these AHA recommendations, many consumer products, such as low fat cookbooks and low fat foods, are currently on the market. Nonetheless, many individuals avail themselves of the conveniences gained by eating in restaurants or ordering food from take-out restaurants. Unfortunately, many foods served in some of these establishments are relatively high in fat, due to the use of high fat meats. The restaurant and food processing industry is aware of the growing public dietary conscience. Indeed, many restaurants have begun to offer low fat products on their menus. However, there is a concern that the removal of fat will adversely affect the taste of the food product and/or will add costly steps to food processing system. Several approaches have been utilized in attempts to produce low fat meat products. One approach is to simply use low fat meat as a starting material. However, low fat meat can be relatively expensive. Further, low fat meats tend to be less "juicy" and less tasty because of the lack of fat present when cooking the meat. Another approach is to reduce the fat in meat of relatively high fat content by cooking the meat and separating the fat rendered in the cooking process. This approach, unfortunately, also suffers from various problems. In particular, separating the fat from the meat is extremely difficult and expensive on a large industrial scale because cooked meat forms an interwoven matrix that holds the rendered fat, making draining difficult as well as time consuming. Further, even if separation of the fat can be achieved, this approach results in a low yield weight of low fat meat, since much of the initial raw meat weight is lost in the fat removal step. This increases the cost of the processed meat. Various attempts at removing fat content from meats have been explored. For instance, in an industrial scale operation, U.S. Pat. No. 3,949,659 to Hunt describes a cooking vessel (or kettle) 13 provided with a number of relatively complex mechanisms for separating liquified fat from cooked meat. The kettle 13 described by Hunt operates with a "separation device" 48 (FIG. 3 of the Hunt patent) composed of a perforated pan 50 having a downward extending sidewall portion 52 and bottom portion 53. A support structure composed of rods 54, a threaded shaft 56, a cross support 60 and clamps 61 allow the pan 50 to be positioned within the kettle and rotated so as to draw the pan further into or outward of the kettle interior. Hunt's separation device 48 is placed in the kettle and pressed downward onto the meat, after the meat is cooked, so as to draw the liquified fat through the pan, while maintaining the cooked meat below the pan (see FIG. 6 of the Hunt patent). This requires additional post cooking processing steps of removing the cooking agitator mechanism 29 and installing the separation device 48 onto the kettle. Furthermore, the kettle 13 is provided with either a tilting support for pouring out the separated liquified fat (FIG. 8 of the Hunt patent) or a pump mechanism for pumping out the separated liquified fat (FIG. 7 of the Hunt patent), requiring yet further processing steps and equipment. U.S. Pat. No. 4,847,099 to Elinsky is directed to another apparatus and method for defatting and cooking meats, wherein the meat is suspended above boiling water and exposed to steam. During cooking the fat from the meat drips off into the boiling water. However, this process and apparatus may not be suitable for many industrial scale operations. The inventor of the present invention has proposed other fat removing techniques. For example, U.S. Pat. No. 4,948,607 to Margolis describes a method and apparatus for removing fat from a preformed meat patty by applying pressure to a cooked patty sufficient to exude a substantial portion of liquified fat from the product. U.S. Pat. Nos. 4,980,185 and 5,116,633 to Small are directed to a further method for making meat products having a reduced saturated fat and cholesterol content. Heated unsaturated oil is added to raw meat. The heated unsaturated oil acts as an extracting agent for cholesterol. Further, due to the heated oil, fats in the meat melt and become soluble. The heated oil containing the cholesterol and fat is separated from the meat with a heated aqueous fluid. According to these patents, fat content is reduced from 20.8% to 18.5% and cholesterol is reduced from 115 mg to 80 mg of cholesterol per 100 g of beef. Thus, several different processes and apparatuses have been proposed for reducing the fat content in a cooked meat product. However, typical known processes can be relatively expensive and time consuming and/or require relatively complex equipment and process steps. Further, various prior art processes can adversely affect the texture and taste of the product. Moreover, the amount of fat removal provided by these processes either tends to be insufficient or tends to cause a significant reduction in the overall product yield. Thus, there is a need in the industry for an improved system of removing fat from a food product that minimizes adverse affects on the texture and taste of the product, that is relatively simple and cost effective and that does not significantly reduce (or reduce at all) the overall product yield.
{ "pile_set_name": "USPTO Backgrounds" }
Cultivators to work the soil have been known for many years. From earliest times, farmers have cultivated the soil in an effort to improve crop growth. Animal drawn single row cultivators have been in use for thousands of years. Multi-row cultivators came into more widespread use with the advent of the mechanized age. Today, tractors are used to pull multi-row cultivators through fields. To date, the cultivators in use have all had one or more disadvantages which prevent optimum cultivation and plant growth. In today's mechanized farming environment, seed beds are prepared and seeds planted in the beds by tractor drawn implements. Generally, one or more rows of bed preparers/planters are drawn through a field. In a single operation, they open a bed, plant the seed, and cover the planted seed. One such apparatus is described in detail in U.S. Pat. No. 4,187,916, issued Feb. 12, 1980, to J. Harden et al. Another such "single pass" planter is shown in U.S. Pat. No. 4,601,248, issued Jul. 22, 1986, to E. Beasley. Planters of the type shown in the Harden '916 and Beasley '248 patents should not be confused with cultivators, however, which are used to cultivate the soil in an already planted field. As tractors and equipment travel over the field, they pack down the earth between the seed bed rows. This results in the creation of densely compacted soil at and several inches below the earth surface. The compacted soil inhibits plant growth: plant roots are restricted from penetrating the condensed, packed earth between the plant rows. The plant roots are therefore unable to gain full access to and the benefit of the surface and sub-surface areas that could otherwise provide water and other nutrients to the plant roots. Known cultivators have been used almost exclusively to try to control the growth of weeds and grasses, which are the "enemy" of crops. Conventional cultivators are designed to plow between crop rows (in the "row middles") at very shallow depths to kill weeds and grass. They do this by uprooting or cutting the weed and grass plants loose from their roots just below the earth's surface. Existing cultivators only loosen up the top 1"-2" of soil. With sun beating down on the field, this top part of the soil becomes the hottest part of the soil. Surface temperatures can rise to 130.degree.-140.degree. F. This causes the surface soil to dry out quickly and bake any plant roots growing near the surface. In conventional farming, using known cultivators, the row middles, even after cultivation, are so tightly packed that rain water cannot penetrate the soil to a depth at which roots could be expected to grow. Rainwater therefore merely runs off the field into the drains and rivers, carrying with it valuable nutrients, such as fertilizers and pesticides. This not only robs the crops of needed nutrients, but it also adds to environmental problems and creates additional pollution of the creek and river waters. Known cultivators generally have "sweeps" or wing-like members which are dragged by a tractor or the like through the ground just below the surface of the row middle. Sweep assemblies are well known in the agricultural industry. KMC, of Tifton, Ga., manufactures a line of cultivators with sweep assemblies. Known cultivators used in "conventional farming" environments (in which the remains of a winter cover crop or a previous year's crop residue have been cleared from the field before the current planting season, such remains being generally known in the agricultural industry as "trash") may have three to five or more sweeps for each row middle. Conventional farming cultivators win also usually have one or two coulters for the entire assembly for stability. Known cultivators used in "no-tin" farming (in which trash is left in the field) consist of two elements for each row: a coulter and a single large sweep. Each sweep win generally have a span of 28"-32". It has been found in practice that it is very difficult to get such a large sweep to go into the ground in the first place and then keep it in the ground at the desired depth for cultivating the soil. The deeper the sweeps are run, the more soil that win be loosened and aerated, thus providing a larger area into which the crop roots can extend. However, if the sweeps are run deeper, they will often be running below the weed and grass plants, resulting in a less effective kill of the weeds and grasses. This is particularly true for younger weeds and grasses as their roots will not yet extend down to where the sweep is being run. Known cultivators rely on the weight of the cultivator unit (alone or with the weight of the tool bar added) to provide the force necessary to drive the sweeps into the ground. This is a problem when the ground consists of hard earth or the density of the soil is uneven (having randomly located hard and soft spots). The sweeps win often pop out of the ground when they hit a hard spot. Or they will drive deeply into the softer ground, going under the weed and grass plants, thereby missing them entirely. When cultivating fields planted with crops like corn, soybeans, or cotton, the cultivator is set to throw dirt onto the crop row itself at the base of the crop. This is done to cover tip the weeds and grasses that are growing in the crop row and which therefore cannot be cut without also cutting the crop plants. However, when working in fields planted with peanuts, for example, the cultivator must be set to keep from throwing dirt onto the crop row. When a known cultivator is run in a field treated with herbicide in a broadcast pattern, the operation of the cultivator punctures the herbicide blanket, resulting in a strip of untreated dirt. Tears in the herbicide blanket are not repaired by known cultivators, particularly where the lumps or clods of soil are not reduced to smaller size. As will be described in detail below, the present invention overcomes the deficiencies of and problems associated with the conventional technology noted above.
{ "pile_set_name": "USPTO Backgrounds" }
Over recent years, organic electroluminescent elements (thereinafter, also referred to simply as organic EL elements) employing organic materials have been regarded as promising in use as thin, inexpensive large-area full-color display elements of a solid light-emitting type and light source arrays, and therefore active research and development are being conducted. An organic EL element is a thin film-type element having a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer or multilayer), i.e., a light-emitting layer containing an organic luminescent material layered thereon, and a second electrode (cathode or anode) layered on this light-emitting layer. When a voltage is applied to such an organic EL element, electrons are injected into the organic compound layer from the cathode and at the same time, positive holes are injected from the anode. It is known that these electrons and positive holes are recombined in the light-emitting layer and then energy is emitted as light when the energy level returns from the conduction band to the valence band for luminescence from the light-emitting layer. However, an organic material such as an organic luminescent material used for an organic EL element is vulnerable to moisture and oxygen and tends to degrade in performance due to the moisture and oxygen. Further, since characteristics of an electrode are also degraded drastically in air due to oxygen, generally, a method, in which a sealing layer is provided for the uppermost layer to shield moisture and oxygen in air for prevention of such degradation, is employed. A number of sealing methods of an organic EL element have been investigated so far, being roughly categorized into a casing-type sealing method and a contact-type sealing method. The casing-type sealing method is a sealing method, in which an organic EL element is placed in a case to be shielded from the outside and then a certain sealing gas or fluid is filled in the case together with the organic EL element. On the other hand, the contact-type sealing method is a sealing method using a substrate and a sealing base material, in which the element surface of an organic EL element formed on a substrate is subjected to surface adhesion to a sealing base material such as a glass plate using an adhesive. In the case of the casing-type sealing method, since a sealing gas or fluid is filled in a case, there have been noted problems such as no possibility of forming a thin type, complicated steps, and unsuitability for mass production. On the other hand, the contact-type sealing method has advantages such as possibility of responding to a thin type and relative ease of mass production, and therefore, investigations thereon have been conducted in recent years In the contact-type sealing method, for example, an organic EL element sealed by a sealing film containing a barrier layer and a sealant layer incorporating a thermoplastic adhesive resin is known (for example, refer to Patent Document 1). Further, in a method using a curable adhesive instead of a thermoplastic adhesive resin, heat-curable and UV-curable adhesives are known. In such a UV-curable adhesive, UV radiation is irradiated to cure an adhesive, and therefore, it is necessary that the substrate irradiation surface be transparent and an irradiated material be one being hardly damaged via UV irradiation. Therefore, the application range has been limited. In view of these problems, a number of methods employing a heat-curable adhesive have been used because of their advantages in handling and convenience as a manufacturing apparatus. However, as a problem of a heat-curable adhesive, the following has been found: such an adhesive itself has hygroscopic properties and its moisture content increases with a poor control and storage method; and a sealing member thermally cured using the adhesive becomes problematic in sealing characteristics thereafter. Therefore, to solve such problems, there are proposed methods in which all members used for sealing are stored in a sealed container of low humidity and low dew point under reduced pressure for dehydration treatment (for example, refer to Patent Documents 1 and 2). However, such methods require huge storage facilities and thereby cost increase has resulted. Dehydration of a heat-curable adhesive using a simple method results in a large advantage. As a method of dehydration using a simple method, heating is cited. However, in this method, curing of an adhesive itself is allowed to advance and then its adhesion function is lost. Therefore, it is recognized that any heating method is a method which should be avoided, and then various other methods have been investigated. However, currently, no good method has been found out yet. In view of such current situations, in a manufacturing method for an organic EL panel in which an organic electroluminescent element is sealed using a sealing method by use of bonding via an adhesive, it has been strongly desired that a manufacturing method for an organic EL panel, in which a simple method is employed and no degradation of the sealing performance occurs even when a sealing substrate is fixed using a heat-curable adhesive and an organic EL panel are developed. Herein, in the present invention, a state where a first electrode, an organic layer, and a second electrode have been formed on a substrate is referred to as an organic EL element and a state where contact sealing has been carried out using a sealing substrate is referred to as an organic EL panel.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a novel molecular separation column, e.g. chromatography column, and more particularly to a novel column using a solid stationary phase. 2. Description of the Background Art Chromatography is a general term applied to a wide variety of separation techniques based upon the sample interchange between a moving phase, which can be a gas or liquid, and a solid stationary phase. When gas is the moving phase (or "mobile phase" as referred to in chromatographic terminology), the technique is termed gas chromatography and when liquid is the mobile phase, the technique is termed liquid chromatography. Separations can be classified into either analytical or preparative depending on the objective. In analytical separations, the objective is high resolution separation, identification and quantification of the various components of a sample mixture. In preparative chromatography, on the other hand, the objective is the isolation of large pure quantities of the desired constituents in the sample. The collection of liquid chromatographic column techniques can be classified in several ways. The most fundamental is based on naming the types of phases used. Liquid absorption chromatography is used extensively for organic and biochemical analysis. Ion exchange chromatography is a special field of liquid-solid chromatography and is specifically applicable to ionic species. Affinity chromatography is based on the attraction (affinity) of a ligand bonded to the solid stationary phase for a given component of the sample. Liquid-liquid or partition chromatography involves the use of a thin layer of liquid held in place on the surface of a porous inert solid as the stationary phase. In the chromatographic process, it is customary to pass a mixture of the components to be resolved in a carrier fluid through a chromatographic apparatus or a separative zone. The separative or resolving zone, i.e. the stationary phase, generally consists of a material referred to as a chromatographic media, which has an active chromatographic sorptive function for separating or isolating the components in the carrier fluid. The separative zone usually takes the form of a column through which the carrier fluid passes. A major problem in the art of column chromatography is to obtain uniform fluid flow across the column. It has been recognized that the solution to this problem resides in an ability to obtain uniform packing, distribution and density of the chromatographic media within a column. To a large degree, the packing problem is surmounted in the laboratory chromatography columns by using columns having a small internal diameter, generally on the order of 1/8 inch to 11/2 inches. In such columns, an uneven chromatographic fluid flow resulting from nonuniform packing of the chromatographic media is quickly relaxed across the column diameter and does not significantly affect analytical results. To provide an economically feasible preparative chromatography column, the column diameter must be larger than one inch and preferably on the order of one foot or more. Attempts to scale analytical chromatography columns to a size feasible for preparative and/or production chromatography have met with substantial losses in column efficiency. It has been found that as the column diameter or cross-sectional area is increased, the separation or resolving power of the chromatography column decreases. The resolution losses can be attributed primarily to a lack of effective fluid flow distribution in the column. Various internal column devices have been proposed to overcome the difficulties of producing large diameter preparative and production chromatography columns. Other approaches have been to provide homogenous distribution of chromatographic media and maintenance of uniform media density across the column or to develop novel type media and/or packing. Of recent date, the assignee herein has developed unique chromatographic media, comprising in its physical form a homogeneous fibrous matrix, preferably in sheet form. Such chromatographic media are described in the following U.S. patents and patent applications: U.S. Pat. No. 4,384,957 to Crowder, III, et al.; PA1 U.S. Pat. No. 4,512,897 to Crowder, III, et al.; PA1 U.S. Pat. No. 4,404,285, entitled "Process For Preparing Zero Standard Serum" to Hou; PA1 U.S. Pat. No. 4,488,969, entitled "Fibrous Media Containing Millimicron Sized Particles" to Hou; PA1 U.S. Ser. No. 388,989, filed June 16, 1982, now U.S. Pat. No. 4,559,145, entitled "Process for Preparing a Zero Standard Serum" to Hou et al.; PA1 U.S. Ser. No. 401,361, filed July 23, 1982, now U.S. Pat. No. 4,578,150, entitled "Fibrous Media Containing Millimicron Sized Particles" to Hou; PA1 U.S. Ser. No. 576,448, filed Feb. 2, 1984, now U.S. Pat. No. 4,663,163, entitled "Modified Polysaccharide Supports" to Hou et al.; PA1 U.S. Ser. No. 643,212, filed Aug. 22, 1984, now U.S. Pat. No. 4,687,820, entitled "Modified Polypeptide Supports" to Hou et al.; PA1 U.S. Ser. No. 643,613, filed Aug. 22, 1984, entitled "Modified Siliceous Supports" to Hou et al.; PA1 U.S. Ser. No. 656,922, filed Oct. 2, 1984, now U.S. Pat. No. 4,639,513, entitled "Intravenous Injectable Immunoglobulin (IgG) and Method for Producing Same" to Hou et al.; and U.S. Ser. No. 665,402, filed Oct. 26, 1984, now U.S. Pat. No. 4,606,824, entitled "Modified Cellulose Separation Matrix" to Chu et al. The entire disclosures of the foregoing commonly assigned patents and applications are incorporated herein by reference. Crowder, III et al., in each patent, describes a chromatography column having a substantially homogeneous stationary phase which comprises a porous matrix of fiber having particulate immobilized therein. At least one of the fiber or particulate is effective for chromatographic separations. Preferably, the stationary phase comprises a plurality of sheets in disc form stacked inside a column. The edges of the discs cooperate with the interior wall of the column to form a substantially fluid tight seal therewith, thus preventing any appreciable skewing or by-pass of fluid around the edges of the elements. In its preferred form, the fluid tight seal is produced by the hydrophilic swelling of the stationary phase. Hou (U.S. Pat. No. 4,404,285 and U.S. Ser. No. 388,989) describes a method for removing thyroid or steroid hormones from a serum by using a composite sheet, comprising a matrix of self-bonding fibers having dispersed therein carbon particles. The sheets are used preferably in the chromatographic column described in Crowder, III et al. and are also hydrophilic swellable discs or pads. Hou (U.S. Pat. No. 4,488,969 and U.S. Ser. No. 401,361) describes a self-supporting fibrous matrix having immobilized therein at least about 5% by weight of micro particular (average diameter less than 1 micron), preferably fumed silica or alumina. The media is also preferably used in the chromatographic columns disclosed in Crowder, III et al. and the solid stationary phase is also hydrophilic swellable. Hou et al. (576,448) describe a polysaccharide material which comprises a polysaccharide covalently bonded to a synthetic polymer. The synthetic polymer is made from a polymerizable compound which is capable of being covalently coupled directly or indirectly to the polysaccharide and one or more polymerizable compounds. The polymerizable compound contains an ionizable chemical group, a chemical group capable of transformation to an ionizable chemical group or a chemical group capable of causing the covalent coupling of the compound to an affinity ligand or biologically active molecule. The media is capable of acting as a chromatographic support for ion exchange chromatography, for affinity chromatography or as reagents for biochemical reactors. Preferably sheets of this material are loaded into an appropriately sized cylindrical column to form the desired stationary phase in a manner similar to Crowder, III et al. The preferred solid stationary phase is also hydrophilic swellable. All of these media in their preferred embodiment are fibrous matrices which are hydrophilic swellable, i.e. they tend to swell upon contact with aqueous systems. In a stacked disc type chromatographic column such swelling is useful in assisting producing a fluid tight seal with the interior wall of the column to form a water swellable fit therewith. Such a seal prevents skewing or bypass of the fluid around the edges of the elements. In Hou et al. (576,448), it is indicated that the media could be used in a "jelly roll" type column, i.e. a sheet of media spirally wound around a foraminous core to form a cylinder having a plurality of layers around the axis thereof. It was subsequently found that the radial flow of a sample through such a "jelly roll" type solid phase was not evenly distributed, and there was substantial bypass of the fluid around certain areas of the media. It is believed that this is due to the swelling and resulting compression of the chromatographic media upon contact with the fluid flowing therethrough thus producing an irregular homogeneity in the solid stationary phase leading to an irregular hydrodynamic profile through the column and consequently to the establishment of preferential hydrodynamic routes which rapidly diminish the efficacy and selectivity of the chromatographic column. Hou et al. (643,212) describes a modified polypeptide material which comprises a polypeptide covalently bounded to a synthetic polymer, which synthetic polymer is made from a polymerizable compound as described in Hou et al. (576,448). The material is capable of acting as chromatographic support for ion exchange chromatography, affinity chromatography and reverse phase chromatography or as reagents for biochemical reactors. The materials are disclosed as suitable, in sheet form, as the stationary phase for loading into chromatographic columns. Hou et al. (643,613) described a modified siliceous material which comprises a siliceous material covalently bound to a synthetic polymer, the synthetic polymer similar to that described in Hou et al. (576,448) and Hou et al. (643,212). The material is described as suitable for chromatographic separation media, the separation media comprising the stationary phase for chromatographic columns. Hou et al. (656,922) describes a host of additional chromatographic media, many of which include the media disclosed in Hou et al. (576,448; 643,212; and 643,613). Additionally, this application describes further embodiments directed to specific affinity media, ion exchange media, and reverse phase media, all suitable for use in chromatographic separations in general and in the preparation of intravenous injectable IgG specifically. Chu et al. (665,402) describes modified cellulosic materials which are essentially free of LAL reactive extractables. Of additional relevance to this invention are the following references: Wang et al., Biotechnology and Bioengineering XV, page 93 (1973), describes the preparation of a "Bio-Catalytic Module" wherein collagen-enzyme membranes are layered on a supporting material, such as cellulose acetate membrane, and coiled around a central rod. Glass rods are used as spacers, which are so arranged that the distance between them is small enough to prevent the adjacent layers from contacting each other. After coiling the complex membrane upon the spacers, the cartridge is then fitted into a plastic shell to form a flow-through reactor configuration. The flow through the column is axial, i.e. the sample flowing through the column contacts the membrane in a cross-flow manner. Wang et al. (page 583) also recognizes that the flow of sample through such a device is mainly parallel to the membrane surface and that some of the enzyme molecules located within the matrix may not be readily accessible. In order to improve the contact efficiency, Wang et al. suggests that the sample flow through the permeable membrane under hydraulic pressure. In this configuration of the reactor, a filter fabric serves as a backing material which separates successive layers of invertase-collagen membrane, thus preventing overlapping of the membrane layers. A perforated stainless steel tube is used as a central core element which is also used for feeding the sample. A uniform radial distribution of the substrate is achieved by metering flow through a number of holes drilled ninety degrees (90.degree.) apart radially along the stainless tube. A spiral reactor configuration is formed by coiling alternate layers of the membrane and backing around the steel tube. The spiral cartridge is fitted into a plexiglass outer shell. The plastic housing is affixed to two threaded aluminum end plates. The sample is fed from the central tube while the reaction product is collected through a central port located on the periphery of the reactor shell. U.S. Pat. No. 3,664,095 to Asker describes a packing material which may be spirally wound around a central axis for fluid treatment such as drying, heat exchange, ion exchange, molecular sieve separations and the like. Flow is axial through the apparatus, i.e. parallel to the surface of the packing material. U.S. Pat. No. 3,855,681 to Huber describes a preparative and production chromatography column which includes a relatively inert inner core onto which is wound in a spiral pattern a relatively inert sheet of material, such as synthetic polymeric film. Prior to winding, the film is coated with a chromatographic media. A thickness dimension of the chromatographic media is arranged substantially perpendicular to the primary direction of fluid flow through the column, i.e. flow is axial thereof and thus parallel to the surfaces of the chromatographic media. U.S. Pat. No. 4,242,461 to Bartoli et al. describes a reactor for effecting enzymic reactions in which the flow of the solution to be treated through the catalytic bed takes place radially. It is preferred to have the catalytic bed in the form of coils of enzyme-occluding fibers. The catalytic bed is formed by winding fibers on which the enzymes are supported, so as to form coils with filaments or groups of filaments arranged helically. The fibers inserted in the reactor can also support, instead of enzymes, chelation agents, antibodies, or similar products which are immobilized, like the enzymes, by physical bonds, ion exchange, absorption or occlusion in the filamentary polymeric structures. U.S. Pat. No. 4,259,186 to Boeing et al. (1981) describes an elongated gel filtration column having an outer wall and at least one gel chamber defined therein and adapted to be filled with a filter gel. The gel chamber is sub-divided by a plurality of interior partition walls arranged in parallel to the column wall. The partition walls are of a length shorter than the length of the gel chamber. U.S. Pat. No. 4,299,702 to Bairingi et al. (1981) describes a liquid separation apparatus of the spiral type employing semi-permeable membrane sheets, between which a spacing layer is located, and utilizing the principal of reverse osmosis or ultrafiltering for separating a desired liquid component, i.e. a solvent or a solute, from a pressurized feed solution. In this type of apparatus, the feed flows substantially spirally through the apparatus, i.e. parallel to the membrane. See also U.S. Pat. No. 4,301,103 to Setti et al. (1981). None of these references describe the problems associated with the use of a swellable fibrous matrix chromatographic media in sheet form, particularly utilized in a "jelly roll" type column nor the solution to such problems. Further, none of the references address the problems of multiple layers of swellable chromatographic media.
{ "pile_set_name": "USPTO Backgrounds" }
A double wishbone suspension is a well-known independent suspension design using upper and lower wishbone-shaped arms to operably couple a front wheel of a vehicle. Typically, the upper and lower wishbones or suspension arms each has two mounting points to a chassis of the vehicle and one mounting joint at a spindle assembly or knuckle. A shock absorber and a coil spring may be mounted onto the wishbone to control vertical movement of the front wheel. The double wishbone suspension facilitates control of wheel motion throughout suspension travel, including controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scrub, and the like. Double wishbone suspensions may be used in a wide variety of vehicles, including heavy-duty vehicles, as well as many off-road vehicles, as shown in FIG. 1. FIG. 1 shows an off-road vehicle 100 that is of a Side by Side variety. The Side by Side is a four-wheel drive off-road vehicle that typically seats between two and six occupants, and is sometimes referred to as a Utility Task Vehicle (UTV), a Recreational Off-Highway Vehicle (ROV), or a Multipurpose Off-Highway Utility Vehicle (MOHUV). In addition to the side-by-side seating arrangement, many UTVs have seat belts and roll-over protection, and some may have a cargo box at the rear of the vehicle. A majority of UTVs come factory equipped with hard tops, windshields, and cab enclosures. The double-wishbone suspension often is referred to as “double A-arms”, although the arms may be A-shaped, L-shaped, J-shaped, or even a single bar linkage. In some embodiments, the upper arm may be shorter than the lower arm so as to induce negative camber as the suspension jounces (rises). Preferably, during turning of the vehicle, body roll imparts positive camber gain to the lightly loaded inside wheel, while the heavily loaded outer wheel gains negative camber. The spindle assembly, or knuckle, is coupled between the outboard ends of the upper and lower suspension arms. In some designs, the knuckle contains a kingpin that facilitates horizontal radial movement of the wheel, and rubber or trunnion bushings for vertical hinged movement of the wheel. In some relatively newer designs, a ball joint may be disposed at each outboard end to allow for vertical and radial movement of the wheel. A bearing hub, or a spindle to which wheel bearings may be mounted, may be coupled with the center of the knuckle. Constant velocity (CV) joints allow pivoting of the suspension arms and the spindle assembly, while a drive shaft coupled to the CV joint delivers power to the wheels. Although CV joints are typically used in front wheel drive vehicles, off-road vehicles such as four-wheeled buggies comprise CV joints at all wheels. Constant velocity joints typically are protected by a rubber boot and filled with molybdenum disulfide grease. Given that off-road vehicles routinely travel over very rough terrain, such as mountainous regions, there is a desire to improve the mechanical strength and performance of off-road drivetrain and suspension systems, while at the same reducing the mechanical complexity of such systems.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a power system for a telescoping bleacher seating system and more particularly, to an improvement in the method for extending and retracting bleacher seats. Telescoping seating systems are well-known in the art, and generally include a plurality of benches, each bench having a seating frame or understructure including columns or posts extending vertically from a base on wheels, to the height of a given bench. Telescoping seating systems can be bench seating systems or seating systems which have individual seat supported on benches, such as for stadium or convention center seating. Non friction drive systems do not frictionally engage the floor, but instead include an extendable chain that extends from a power drive mechanism positioned at the rear of the telescopic seating structure. Further the extendable chains if not properly adjusted can cause the telescopic seating to extend non-linearly. This condition can cause the extendable chair and/or the telescopic seating to skew, resulting in alignment difficulties. Under extreme conditions, non-linear extension may cause the chain to deform, particularly at the outermost end of the chain where the chains are the weakest and experience the greatest stress. Known extendable chains and the mechanisms for driving them also tend to be quite complex and sensitive to wear, such that they require constant maintenance and adjustment to keep them in proper working condition. A need has long existed for a system, which requires less maintenance in the field, and less sensitivity to stress. Power systems are used to move the telescoping benches between the use and storage positions. One such power system is disclosed in U.S. Pat. No. 4,285,172. Despite the convenience and labor savings provided by such power systems, a need has existed for safer power systems, which do not require the use of chains, or sprockets, which can engage fingers and break or rip human flesh. A principal object of the present invention is to provide a non friction power system for bleacher type seating which is expandable and collapsible for storage, which utilizes a direct drive system without the need for chains or sprockets. Another object of the present invention is to provide a non friction stadium seating system which installers can simply and easily place in the field without the need for additional and expensive welding of the units. Still a further object of the present invention is to provide a motor which is of a lower horse power but of a higher torque and is capable of moving at least 20 or even more rows of bleachers but using less energy than in the past. Other features and advantages of the present invention will be apparent from the following drawings wherein identical reference numerals will be used to refer to like parts of the various views. The present invention relates to a telescopic seating system, comprising seats disposed on a frame, which is operably connected to a motor system,. Further, it includes a plurality of interconnected drive carriages adapted for connection to a telescopic seating system to extend and retract the telescopic seating system, drive carriages being configured to selectively mateably wind onto and off from the drum as the drum is rotated. The motor system comprises a drum, a drum frame, at least two drum shafts rotatably engaged to said drum. The power mechanism is attached to the drum frame further having a motor attached to a motor frame, at least two motor shafts extending from each side of said motor, and a drive shaft connected to the motor shafts. The drip means enables the motor to rotate the drum and thereby extend and retract drive carriages which move the seats, and wherein the motor and drum engage the drive carriages so that the drive carriage move in substantially continuously tangentially alignment as the drive carriages are selectively retracted and extended by the drum.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to bench vises and more particularly to bench vises which include a clamping action fixed jaw. 2. Prior Art In the prior art various bench vises have been advanced through the years which are provided with a fixed jaw that is mounted onto a support to permit swiveling of the vise relative to its support. Also vises which utilize a movable jaw having a clamping feature to provide for very rigid holding ability, and which permits the jaw to self align during operation are known. Examples of patents which show the type of device which have the self aligning, clamping jaw include U.S. Pat. Nos. 2,880,638 and 3,397,880.
{ "pile_set_name": "USPTO Backgrounds" }
Ceramic materials are brittle and are difficult and costly to form in arbitrary shapes. In particular, it would be desirable to form electroactive ceramics in more complicated shapes than those currently available. Some methods of machining ceramics for a variety of reasons have been disclosed. For example, U.S. Pat. No. 4,131,484 to Caruso et al., U.S. Pat. No. 4,642,505 to Arvanitis, and U.S. Pat. No. 5,369,862 to Kotani et al. disclose using a laser to adjust the resonant frequency of a piezoelectric ceramic. U.S. Pat. Nos. 4,422,003, 5,615,466, 5,796,207, and 5,818,149, all to Safari et al., describe methods of producing polymer-ceramic piezoelectric composites. U.S. Pat. No. 4,650,619 to Watanabe describes a method of laser machining apertures in a ceramic member to create gas supply passages. It is an object of the present invention to provide a method of machining electroactive ceramics which is relatively inexpensive, capable of producing complex shapes, and does not unduly compromise the electroactive properties of the electroactive ceramic. It is a further object of the present invention to provide sensors and actuators having flexibilities and anisotropic behaviors superior to those known in the art, as well as improved mechanical robustness and handling properties. It is still a further object of the present invention to provide sensors and actuators having shapes which allow superior electromechanical performance compared to those known in the art. It is yet a further object of the present invention to provide sensors and actuators which can be attached to electrodes in improved configurations.
{ "pile_set_name": "USPTO Backgrounds" }
Field The present invention relates generally to determining whether data stored in an external nonvolatile memory is valid in order to prevent an attack such as a rollback attack. Background Current mobile devices use a System-on-Chip (SoC) architecture which is subject to data loss if a device experiences a loss of power due to, for example, a drained or removed battery. To retain the critical data in the event of a power loss, an SoC device may store critical data in external nonvolatile memory (NVM), such as flash memory. The critical data may be a backup of secure data stored in a page or segment of the SoC's internal memory. The critical data may support an added value service such as electronic money, coupon, ticket, Digital Right Object, etc. The external NVM memory is accessible to a Higher Level Operating System (HLOS) and, after a power loss event, the device may be subject to rollback attack (the replacement of current content in the NVM with older content), even in the presence of data encryption/authentication, when the critical data is restored from the NVM. Embedding the NVM into secure areas of the SoC is not a practical solution to the rollback problem because incompatible semiconductor processes are used for the NVM and the SoC. Securing an external NVM with a key requires that the key be protected which may add significant cost to each mobile device. There is therefore a need for a technique for countering attacks such as a rollback attack in mobile devices using an SoC architecture.
{ "pile_set_name": "USPTO Backgrounds" }
In the discussion of the background that follows, reference is made to certain structures and/or methods. However, the following references should not be construed as an admission that these structures and/or methods constitute prior art. Applicants expressly reserve the right to demonstrate that such structures and/or methods do not qualify as prior art. It is frequently desired to analyze a liquid to determine the presence and concentration of analytes such as minor constituents and/or contaminants. For instance, swimming pool water is tested frequently for various parameters, including alkalinity, pH, chlorine content, bromine content, water hardness and cyanuric acid, in order to maintain safe water for swimmers. Chlorine is a disinfectant and an oxidizer. As a disinfectant, chlorine can kill bacteria and other microorganisms and helps control algae growth. Chlorine also oxidizes organic matter that might otherwise provide nutrients for microorganism growth. Oxidation of inorganic materials, pyrogens and metals by chlorine helps minimize staining and corrosion. Chlorine is the most widely used chemical for sanitizing and oxidizing pool water and spa water. Chlorine in pool and spa water can be present in two forms. Free chlorine functions to kill microorganisms such as bacteria, and oxide contaminants. When free chlorine reacts with contaminants, it becomes combined chlorine. Combined chlorine has very little sanitizing ability and no oxidizing ability in pool or spa water. In addition, combined chlorine such as chloramines may cause eye irritation and may produce a chlorine odor that is unpleasant. Therefore, it is important to maintain a sufficient level of free chlorine for sanitization and oxidation in pool or spa water. It is also important to monitor the amount of combined chlorine to manage its presence appropriately. Maintaining the appropriate level of free chlorine requires testing for free chlorine and total chlorine in pool water. Combined chlorine is calculated as the difference between total chlorine and free chlorine. Current test kits for testing swimming pool water conventionally require the user to perform one test at a time, which can be time-consuming. Some currently available test kits use reagent solutions that are not stable or utilize a two-part reagent method. Other kits utilize tablets however the rate and complete dissolution of the tablets is problematic. An alternative type of kit utilizes test strips and test strip readers. Strip readers are fast and allow analysis of multiple analytes. However, they are far less accurate than conventional photometric analysis. One of the most efficient kits currently available is WATERLINK™ 3 EXPRESS, manufactured by LaMotte Company (Chestertown, Md.). This is an in-store pool test system that comprises unit dose vials (UDV). Each vial contains a powdered reagent for a single parameter assessment. Activation of the UDV vials by addition of a sample of pool water is a manual process and is therefore vulnerable to potential operator error. Since multiple UDVs (containing different reagents) are necessary to assess various pool parameters, the testing process can be time consuming. In addition, manufacture of the UDV vials requires dry powdered reagents to be dispensed in each vial in the milligram range. Maintaining the uniformity of a dry powered reagent mixture can be difficult. There is a need in the art for improved compositions to test an aqueous sample for total chlorine content.
{ "pile_set_name": "USPTO Backgrounds" }
The subject matter disclosed herein relates to an uninterruptible power supply (UPS), and in particular, a UPS input stage that can receive power from different electrical utility configurations. Uninterruptible Power Supplies are used to provide clean power to critical loads (e.g., protected equipment such as computers, data centers, cash registers) even if the input power source fails. A UPS can provide instantaneous protection from input power source interruptions by supplying energy stored in batteries or other capacitive devices that can power the protected equipment for a sufficient amount of time to start a backup power source or properly shut down the protected equipment. Since critical loads can be found in a variety of residential or commercial locations having different electrical utility configurations (e.g., different alternating current (AC) voltages (120V, 208V, 240V) and/or different number of phases (1 or 2) with different phase angles (120°, 180°, or 240°)). Different UPS's have to be designed for connecting to the different electrical utility configurations. FIG. 1 is a schematic diagram of an illustrative and exemplary electrical utility configuration 2, having a first voltage source 10 with a first voltage source line (LINE 1) 11, a second voltage source 20 with a second voltage source line (LINE 2) 21, a neutral node (or center tap) 40 with a neutral 41 located between and connecting the first voltage source 10 and the second voltage source 20. The exemplary electrical utility configuration 2 can be representative of a conventional single phase three-wire electrical utility configuration also referred to as a split-phase system or a center-tapped neutral system, since it can be formed by, e.g., center-tapping the secondary winding of a transformer (or generator/alternator) to form a first voltage source 10 and a second voltage source 20. The exemplary service can be representative of two phases of a three-phase four-wire wye electrical utility configuration or two phases of a three-phase three-wire delta electrical utility configuration. In one example, a first single phase input voltage (V1) between the first voltage source line (LINE 1) 11 and the neutral node 40 is 120VAC at a phase angle of 0°, while the second single phase input voltage (V2) between the second voltage source line (LINE 2) 21 and the neutral node 40 is 120VAC at a phase angle of 180°. Without connecting the neutral 41, the single phase input voltage (V3) between the first voltage source line (LINE 1) 11 and the second voltage source line (LINE 2) 21 is 240VAC. By connecting the neutral 41, a split phase input voltage can be provided with a phase difference of 180° between the two voltage sources 10, 20. In another example, the first single phase input voltage (V1) between the first voltage source line (LINE 1) 11 and the neutral node 40 is 120VAC at a phase angle of 0°, while the second single phase input voltage (V2) between the second voltage source line (LINE 2) 21 and neutral 40 is 120VAC at a phase angle of 120° or 240°. Without connecting the neutral 41, the single phase input voltage (V3) between the first voltage source line (LINE 1) 11 and the second voltage source line (LINE 2) 21 is 208VAC. By connecting the neutral 41, a split phase input voltage can be provided with a phase difference of 120° or 240° between the two voltage sources 10, 20. The design of a UPS for a single phase input voltage of 120VAC will be different than the design of a UPS for a single phase input voltage of 208VAC or 240VAC. Similarly, the design of a UPS for a single phase input voltage will be different than the design of a UPS for a split phase input voltage. In addition, since some electrical utility configurations do not have a neutral (e.g., 208VAC or 240VAC single phase) while other electrical utility configurations do have a neutral (e.g., 120VAC single phase), different UPS designs must be provided for these different electrical utility configurations. The requirement for different UPS designs for all of the different possible electrical utility configurations limits the flexibility of the use of the UPS's to protect equipment. For example, a company with locations in areas having different electrical utility configurations would need to purchase and stock a number of different types of UPS to protect its equipment in the different locations where it has operations. The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to improvements in slide fastener of the type comprising a pair of carrier tapes having sewn along their inner longitudinal edges the respective rows of continuous interlocking fastener elements--either of the coil type or of the meandering type--made of a synthetic-resinous material, and more particularly to end stops--either top stops or bottom stops whichever the case may be--of the type comprising a strip of synthetic-resinous material molded on either end of the rows of fastener elements of the slide fastener of the type as above described and adapted to block displacement of a slider therebeyond in a fastener-opening and/or fastener-closing direction. 2. Description of the Prior Art There have been heretobefore proposed end stops of the type in which a synthetic-resinous strip is molded on a plurality of fastener elements at either end of the rows of fastener elements by means of ultrasonic processing to form an end stop thereat. As is well known in this art, it is a common practice that the rows of continuous fastener elements are attached to the carrier tapes with lines of sewn stitches binding the arm portion of the former to the latter. This means that the lines of sewn stitches are partly exposed on those arm portions to ultrasonic energy generated by an ultrasonic horn during the end-stop-molding operation. As a result of undergoing the ultrasonic energy, the lines of sewn stitches become rather feeble or are liable to break, which would lead to displacement of the end stop off the fastener elements, or, even if it is not that bad, to positional and postual instability of the fastener elements relative to the carrier tapes, thereby extremely impairing the function of the end stop as such.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, to improve performance of various safety devices such as a seat belt and an air bag, operations of the safety devices have been controlled in accordance with a weight of a passenger sitting on a vehicle seat in some cases. In the conventional passenger's weight measurement device for measuring a weight of a seated passenger, a load sensor is disposed between a vehicle floor and the vehicle seat (For example, refer to Patent Document 1 and Patent Document 2). Patent Document 1:Japanese Patent Document 10-297334 Patent Document 2:Japanese Patent Document 11-304579
{ "pile_set_name": "USPTO Backgrounds" }
A. Field of the Invention This invention relates generally to commercial kitchen utensils. More particularly, the present invention provides a device which is detachably attached to a steam table pan, for removing a pan from its receptacle on a steam table, carrying the pan and its contents to different locations without sloshing the contents onto the carrying individual, and manipulating pan to tilt the pan to strain liquids from the pans by a single individual while retaining solid material in the pan. B. Description of the Related Art This invention is directed to use in the commercial food preparation industry, in which large quantities of food are prepared for large groups of people to be served in an "assembly line" or buffet fashion. Such situations include, but are not limited to, catering services, hotels, schools, conventions, parties, and other large gatherings of similar nature. Typically, the food served commercially in a serving line or in buffet fashion is contained in rectangular, stainless steel pans, commonly known as steam pans or hotel pans. These pans are of a standard size known to the food industry. A steam table is a device for keeping the contents of the pans warm. It consists of a shallow tank for holding a quantity of hot, steaming water and a surface into which several standard rectangular holes are cut. The holes on the surface of the steam table engage the flanges of the steam pans so that the bottoms of the steam pans are immersed in the bath of hot water to warm the pan and its contents. If the pan is of the same size as the rectangular opening, then steam cannot escape from between the flange of the pan and the surface of the steam table. However, when the pan is lifted out of the rectangular opening, the accumulated steam will escape and possibly scald the unwary food handler. The openings in the surface of the steam tables are of a standard size, and the steam pans are thus constructed of standard, modular sizes to fit these openings. The largest size fits exactly into the standard opening of the steam table and the remaining sizes consist of half, third, fourth, and sixth sizes which, when several sizes are appropriately configured, will fill the standard opening. These pans typically contain solid food in a liquid broth which keeps the solid food heated without burning. Several problems arise in the course of manipulating these pans when they are filled almost to the brim with hot food. First, the pans are hot so that a standard pot holder, towel, or other cloth must be used to carry the pan so as to prevent the heat from injuring the carrier. Care must be taken to prevent edge of the towel from contacting the food, thus contaminating it. Second, when the pans are residing in the steam table, the flanges of the pan are flush with the steam table so that it is difficult to get fingers or other implements under the flange to lift the pan out of the table. Knives, spatulas, and other flat objects are employed by food handlers to pry a heavily laden pan from its steam table opening. If a sharp instrument such as a knife is used, then the handler risks injury if the knife should slip. Third, the steam which escapes from around the flange when the pan is lifted from the table may be concentrated at the initial spot where a lifting force is applied, so that the person performing the lifting operation must take precautions to prevent scalding of the hands. Fourth, pans are carried by the flanges and, when manipulated, the pan contents tends to slosh and spill. It is well known in the industry that if the point from which a pan is carried is higher than the rim of the pot or pan, there is less chance for sloshing and for spilling the contents, because both pan and contents move back and forth with roughly the same motion. Fifth, in order to prevent waste of food, the contents of the pan is typically strained and stored for a later occasion. Excess liquid broth must be drained from the pan, while retaining the solid food for future use, e.g. draining water from peas or broth from meat. If the pan is tipped to pour the liquid out from a corner, the food handler risks losing some of the solid food with the drained liquid. A common strainer or colander could be placed in the sink and the contents of a pan poured through such a strainer, but this commonly used process has two disadvantages. The first is that, when one person is performing the straining operation, the strainer must be placed in a sink and the individual must use both hands to pour the contents of the tray through the strainer. However, back splash from the sink may fall on the food which has been dumped into the strainer, resulting in contaminated food. The second is that two people are required for the draining operation if such back splashing is to be avoided, one to hold the strainer at a height above the sink so as to avoid back splash and the other to hold and pour the pan contents into the strainer. At present, there is no device in common use which can be used to assist food preparation personnel to manipulate these steam pans in an efficient manner. The prior art is replete with all manner of straining devices, but all are limited to circular pots and not to rectangular pans. Some of these straining devices allow the user to carry the pot and serve as a lid as well, but, again, none are applicable to the shallow, commercial food trays used in steam tables. Finally, none appear to specifically address the unique problem associated with the initial lifting of the container from a hot water bath, namely, that of the individual being accidently scalded by steam upon initially lifting the container from the steam table.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a tape cassette, and more particularly is directed to a tape having a cassette case with a portion thereof indicating information concerning the type of the tape cassette. 2. Description of the Prior Art In a known tape player capable of accepting two kinds of tape cassettes for recording two different kinds of signals in accordance with respective signal transmitting systems, problems may arise. One problem is that an information reading member provided in the tape player for reading information indicated on one type of the tape cassettes may hinder a loading operation of the other type of tape cassette into the tape player or may malfunction due to the loading of the other type of tape cassette. The above problem will be further explained with reference to a tape player capable of accepting both a tape cassette for recording a signal of the NTSC system and a tape cassette for recording a signal of the high definition television (HD) system (the latter will be hereinafter referred to as "HD tape cassette"). At the present time, a tape cassette for recording a signal of the NTSC system may be a VHS tape cassette, a beta tape cassette, an 8-mm tape cassette, or a VHS C tape cassette. In the following discussion only the VHS tape cassette will be considered. However, the problem is not so limited and may apply to any of the tape cassettes for recording a NTSC signal. As shown in FIGS. 10-12, a VHS tape cassette 1 includes a cassette case 2 which, as a means for indicating predetermined information relating to the tape cassette 1, may have predetermined position at which a hole is, or is not present. The cassette case 2 of the known tape cassette 1 contains various members including tape reels and, as a result, little free room exists within the cassette case. Therefore, the above-mentioned information indicating hole cannot be formed at a position at which the tape reels or other members are located within the cassette case 2. In other words, the position at which the hole may be formed is limited. As shown in FIG. 12, two rear corner portions 4 of a lower surface of the cassette case 2 are regions which do not correspond with the various members contained within the cassette case. Similarly, two rear corner portions of a lower surface of a cassette case of an HD tape cassette, which is similar in external form to the VHS tape cassette 1, are defined as information indicating portions. These indicating portions are shown, for convenience, in FIG. 12 as a plurality of two-dot chain line circles 3 formed at locations on the lower surface of the cassette case 2 of the VHS tape cassette 1 corresponding to the locations that such indicating portions would occupy on the case of an HD tape cassette. In this case, when the VHS tape cassette 1 is loaded into a cassette holder of the tape player, all detection switches for detecting the presence or absence of the holes of the HD tape cassette are undesirably depressed by the lower surface of the cassette case 2. Further, the two corner portions 4 of the VHS tape cassette 1 are not specified as special areas according to the EIAJ Standard, and thus these portions 4 are normally formed with knurls or surface projections 5, as shown in FIG. 11, for preventing slippage. Accordingly, an upper end of a pin 7 of a detection switch 6 provided in the tape player may abut against a slant surface 5a of the projection 5 as shown in FIG. 13 or, instead, may engage between the adjacent projections 5, thereby possibly causing the detection switch 6 not to operate precisely or to break in response to repeated operations over the long-term. In an attempt to solve this problem, a pin 7' having a sufficiently large upper end may be provided, as shown in FIG. 14. However, in this situation, as is to be appreciated, it is necessary to enlarge the intervals between the detection switches 6, which may result in other problems, for example, it may not be possible to indicate a relatively large quantity of information in a limited region. Further, in the case of using a non-contact type information reading member, such as a reflection type photosensor, rather than the contact type detection switch 6 mentioned above, a stable reflected light quantity cannot be obtained due to the surface projections 5 of the VHS tape cassette 1, so that malfunctions or misreading of the indicated information may result.
{ "pile_set_name": "USPTO Backgrounds" }
Adjustable hinges are desirable, as they permit adjustment as needed such as when a house settles. Typically such adjustable hinges have been complicated and have required multiple fastening components.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a multiple-layer microstrip or stripline assembly and, more specifically, to transitioning electrical signals between two or more separate layers. A microstrip is a type of waveguide comprising a conductor, typically in a flat, rectangular shape, separated from a single ground plane by a dielectric substrate material. A buried microstrip is a variation on the basic microstrip wherein the single conductor is embedded in a dielectric substrate material. A stripline is similar to a buried microstrip, except that a stripline has two ground planes--one located along each major surface of the dielectric substrate material. 2. Description of the Related Art Many systems utilize multiple-layer microstrip assemblies in which various circuit elements are sandwiched between separate layers of dielectric material and laminated together to form a single composite structure. The types of various circuit elements to be used may include both passive and active components, as well as transmission lines (equivalently referred to as feedlines). One reason for using multiple-layer construction is to avoid electromagnetic interference between the signals present in the feedlines and circuit elements by isolating them from one another. In one frequently used configuration, the feedlines are arranged on the top surface of the bottom-most layer, separated by a dielectric substrate material from a ground plane located on the bottom surface of the bottom-most layer, while the various other circuit elements are distributed among the upper layers of the assembly. When the feedlines and circuit elements which comprise a system are distributed over a plurality of separate layers, however, it becomes necessary to route signals back and forth between different layers to interconnect the various circuitry. For example, to implement a certain circuit function it may be necessary to connect a feedline on a first layer to a circuit element on a second layer. Additionally, i may be necessary to route several signals, originating on different layers, to appear on a single layer to facilitate connection to an external device. The routing of signals between layers, however, presents problems. First, the process of constructing a microstrip assembly with inter-layer connections is time and labor intensive and burdensome due to the low tolerances for error. A known technique for constructing a multiple-layer microstrip assembly with inter-layer connections requires several steps as described below with reference to FIGS. 1A through 1E. As illustrated in FIG. 1A, a ribbon 101 is connected by means of soldering to first top circuitry 103, for example, a circuit element or feedline, on a first layer 105. Next, as shown in FIG. 1B, a second layer 107 must be brought into precise alignment with the first layer 105 such that the ribbon 101 may be passed through a hole 109 in the second layer 107. The task of aligning layers and feeding-through connecting ribbons requires a great deal of precision and is aggravated by the fact that, typically, several connections between the two layers, with each requiring a ribbon and alignment with a hole, must typically be made between the two layers. As shown in FIG. 1C, the first layer 105 is then joined to the second layer 107 by means of a first laminate layer 111 therebetween. The first laminate layer 111 holds the ribbon 101 in a fixed position relative to the hole 109 in the second layer 107 and prevents disturbing the precise alignment achieved in the step performed as shown in FIG. 1B. Next, as shown in FIG. 1D, the ribbon 101 passing through the hole 109 in the second layer 107 is connected by means of soldering to second top circuitry 113, for example, a circuit element or feedline, on the second layer 107. The ribbon 101 forms an ohmic electrical connection between the first top circuitry 103 on the first layer 105 and the second top circuitry 113 on the second layer 107 and completes the structure necessary to transition signals between analogous surfaces of two separate layers of a multiple-layer microstrip assembly. Finally, as shown in FIG. 1E, an optional second laminate layer 115 may be disposed on top of the second layer 107 to cover the second top circuitry 113. The second laminate layer 115 insulates the second top circuitry 113 from unwanted ohmic short-circuits and holds the ribbon 101 firmly in position. Although the above-described construction method provides a multiple-layer microstrip assembly capable of transitioning signals between separate layers, it has several drawbacks. Among the drawbacks, the prior method is time and labor intensive due to the need for a precise alignment step. Furthermore, the prior method presents a low tolerance for error due to the difficulty in aligning the small-sized hole and ribbon. Additionally, because the above-described structure requires a ribbon to be connected between two separate layers, the ribbon is subject to stress, possibly causing failure or an impedance mismatch, from any relative movement between the two layers during construction. Another problem associated with routing signals between layers is that the interconnections may result in degradation of the signal due to reflections caused by impedance mismatches. It is for this reason that a prior multiple-layer microstrip assembly with inter-layer connections was likely to have diminished radio-frequency (RF) performance as compared to a single-layer microstrip assembly which did not require inter-layer connections. Clearly, an apparatus and construction method for multi-layer microstrip assemblies that addresses these deficiencies is desirable.
{ "pile_set_name": "USPTO Backgrounds" }
Aerobic exercise is a popular form of exercise that improves one's cardiovascular health by reducing blood pressure and providing other benefits to the human body. Aerobic exercise generally involves low intensity physical exertion over a long duration of time. Generally, the human body can adequately supply enough oxygen to meet the body's demands at the intensity levels involved with aerobic exercise. Popular forms of aerobic exercise include running, jogging, swimming, and cycling, among others activities. In contrast, anaerobic exercise often involves high intensity exercises over a short duration of time. Popular forms of anaerobic exercise include strength training and short distance running. Many people choose to perform aerobic exercises indoors, such as in a gym or their home. Often, a user will use an aerobic exercise machine to have an aerobic workout indoors. One such type of aerobic exercise machine is an elliptical exercise machine, which often includes foot supports that move in fixed reciprocating directions when moved by the feet of a user. Often, the foot supports are mechanically linked to arm levers that can be held by the user during the workout. The arm levers and foot supports move together and collectively provide resistance against the user's motion during the user's workout. Other popular exercise machines that allow a user to perform aerobic exercises indoors include treadmills, rowing machines, and stepper machines, to name a few. Another popular form of aerobic exercise is cycling. Cycling is typically done on stationary bikes indoors or on moving bikes outside that travel off road or on streets. With a traditional upright bicycle, the user rests his or her body weight entirely on a small portion of the bike's seat, handles, and pedals. With an upright bike, the user typically leans forward as he or she pedals. Another form of cycling is recumbent cycling. With a recumbent bicycle, the user is often reclined in a seat with a back support which distributes the user's weight over a larger area, including the user's back. One system for cycling is disclosed in U.S. Pat. No. 6,071,215 issued to David M. Raffo, et al. In this reference, a multi-mode exercise machine has a re-configurable arm member operable in alternate upstanding and recumbent configurations that allows the machine to be used, when the re-configurable arm member is configured in its upright configuration, to provide a first mode of exercise where the user is supported in such an upright position as to be able to exercise at least his/her lower body, and that allows the machine to be used, when the re-configurable arm member is configured in its recumbent configuration, to provide a second mode of exercise, where the user is supported in such a recumbent position as to allow the user to exercise at least his/her upper body. According to Raffo, the re-configurable arm member includes a pivotally mounted and self-locking arm member movable between a first, upright position and a second, recumbent position. The first and second exercise modes include cycling and rowing exercise modes. Other types of cycling devices are disclosed in U.S. Pat. No. 6,497,426 issued to James L. Vanpelt; U.S. Pat. No. 6,648,353 to Pedro Pablo Cabal; and U.S. Patent Publication No. 2013/0260964 issued to Benjamin Chia.
{ "pile_set_name": "USPTO Backgrounds" }
In U.S. Pat. No. 4,428,647, Sprague et al. describe an optical system, such as a multi-channel optical disk recorder or a laser printing system, having a laser array with a plurality of laser sources providing a plurality of output light beams. Each of the laser sources in the array has its own current drive which can be modulated, independently of the other sources, dependent on the desired output power of the emitted light beam from that source. The optical system also includes a focusing objective lens which images the plural light beams onto the surface of a photosensitive medium. The objective lens is located a substantial distance from the emitting surface of the laser array relative to its distance to the photosensitive medium to provide enough demagnification of the array of light beams that the spacings of the imaged light spots on the medium are substantially less than the spacings of the light beams at the laser array. A 125-fold reduction in the light spot spacings from 250 .mu.m at the laser array emitting surface to just 2 .mu.m at the medium is typical. Even overlapped or concentric light beams are suggested as a possibility. Due to the point source nature of the light beams emitted from the described array, those beams typically have a large divergence angle. In order to enable a large portion of each of the light beams to be collected by the objective lens so that light spots of significant power are imaged onto the photosensitive surface, the optical system further includes an array of lenses, one for each laser source in the laser array, located in the optical path between the laser array and objective lens. Each lens in the lens array reduces the divergence angle of the light beam received from its associated laser source so that substantially all of the light collected by each lens will enter the objective lens without changing the apparent beam spacing of the laser array seen by the objective lens. Lenses with cylindrical symmetry may be used to shape the individual laser beams and to compensate for laser astigmatism. U.S. Pat. Nos. 4,972,427 to Streifer et al., 5,081,637 and 5,185,758 to Fan et al., and 5,168,401 to Endriz disclose other laser optical system of the prior art which position lens arrays in front of corresponding arrays of laser diodes. In the patents to Fan et al., the collimated light emerging from the lens arrays are focused by a lens in order to converge the beams so that they overlap in a solid-state gain medium for optically pumping that medium. Streifer et al. place a lens array within an external Talbot cavity. A separate cylindrical collection lens is use to reduce the divergence in the transverse direction perpendicular to the plane of the laser diode emitters, while the individual lenses of the lens array collimate the light beams in the lateral direction parallel to the plane of the array. Endriz combines a lens array with a corresponding array of turning mirrors which transform the lateral and transverse dimensions of each source in the laser array. The lens elements in the lens array are preferably positioned such that the light beams are allowed to diverge to completely fill the space between the transformed light from adjacent sources. Each light source in the array may be separately modulated. In U.S. Pat. No. 4,674,095, Heinen et al. describe a laser diode array provided with a plurality if laser diode strips. The laser diode strips are parallel to each other and are divided into groups. Typical strips are 2 to 4 .mu.m wide and are spaced about 10 to 20 .mu.m apart. Neighboring groups of laser diode strips are separated by strip-shaped zones extending essentially parallel to the laser diode strips. The zones substantially attenuate super-radiation or laser radiation propagating in a direction other than the prescribed emission direction parallel to the laser diode strips. Up to a maximum of about 10 to 40 laser diode strips can belong to each group, depending on the gain in the laser, the quality of the resonator and other parameters. The attenuating zones may be constructed by proton implantation, channels etched through the active region, or other means. The partitioning provided by the attenuating zones increases the maximum output power attainable from the array and improves efficiency. Among the commercially available laser diodes, the 2300 series of laser sold by SDL, Inc. provides up to 4 W cw optical output power and high brightness from laser diodes with a broad area emitting aperture. For example, the SDL-2360 has a 100 .mu.m wide by 1 .mu.m high emitting aperture and provides a 1.2W cw output with a 10.degree. by 30.degree., FWHM beam divergence. The available wavelength range is approximately 790 to 860 nm. The laser output is modulatable with rise and fall times of about 500 ps (2 GHz modulation bandwidth). Among the linear array laser diodes sold by SDL, Inc. are the SDL-3400 series of laser bars. For example, the SDL-3460 has 18 laser emitters driven in parallel and providing up to 20W cw optical output power or about 1.1W per emitter. Each emitter has a 200 .mu.m wide emitting aperture with a 30 .mu.m gap centered within the emitting aperture. The emitters in the array have a 540 .mu.m center-to-center spacing. The beam divergence is 10.degree. by 30.degree., FWHM. An important concern of manufacturers of laser diodes is improving the reliability of their products. In the case of broad area lasers, a local failure in any portion of the emitting aperture will tend to grow and propagate across the entire aperture area, resulting in a complete failure of the emitter. In the case of laser arrays, particularly those arrays whose elements are intended to be independently driven, as in laser printing systems, the loss of a single emitting element will normally leave the entire array unusable. That is, in many laser diode applications the loss of just a single laser element cannot be tolerated. For large aperture lasers and multi-element arrays of such lasers, the probability of a single failure point taking out the entire aperture or array increases with increased aperture area. Further, at high power density, stochastic (random) failures are dominant, making life predictions a statistical process and making screening of such failures nearly impossible. The effect of gradual degradation processes on lifetimes at most power levels of interest is not significant compared to stochastic failure processes. Typical broad area lasers with a 100 .mu.m wide emitting aperture operated at a 1.0W optical output power have a medium lifetime on the order of 30,000 hours. Median failure rates for each element in 10-element laser arrays are comparable. However, since stochastic failures are essentially random in time, many of the laser elements will fail much sooner than the 30,000 hour average. Accordingly, median lifetime for a multi-element array of 1 Watt, 100 .mu.m aperture elements will be much less than the element lifetime of 30,000 hours. Thus, improved lifetimes are sought. Because failure rates are correlated with operating power and temperature, due to thermal stresses resulting from temperature gradients across a device, a common technique for improving lifetimes is to rate the device for lower power levels and temperature ranges, so that less thermal stress occurs. However, it would be desirable to improve reliability without having to sacrifice output power and brightness or their use in extreme temperature environments. An object of the present invention is to provide a diode laser source with significantly improved lifetime for a given output power, output brightness (W cm.sup.-2 sr.sup.-1) and operating temperature rating.
{ "pile_set_name": "USPTO Backgrounds" }
The invention claimed and disclosed herein pertains to cartridges for containing imaging media (such as ink and toner) used by imaging apparatus to generate an image. The present invention pertains to what is commonly known as xe2x80x9cprinter cartridgesxe2x80x9d. These cartridges may better be termed xe2x80x9cimaging media cartridgesxe2x80x9d since they are configured to contain an imaging media, such as an ink or a toner. In order to facilitate handling of the imaging media by a user of the imaging apparatus, the imaging media is commonly provided within a container (a xe2x80x9ccartridgexe2x80x9d) that is configured to be installed in, and removed from, the imaging apparatus. The cartridge is typically designed to prevent leakage of the imaging media from the cartridge when the cartridge is handled by a user or installed in the device, but is also designed to allow the imaging apparatus to selectively remove the imaging media from the cartridge during an imaging process. By xe2x80x9cimaging apparatusxe2x80x9d we mean any apparatus configured to use imaging media to generate an image on sheet media, such as on paper or a transparency. Examples of imaging apparatus include (without limitation) printers, photocopies, facsimile machines, plotters, and combinations thereof (i.e., imaging apparatus commonly known as xe2x80x9call-in-onexe2x80x9d imaging apparatus or xe2x80x9cmultifunction peripheralsxe2x80x9d). Example of imaging processes that can be used by imaging apparatus include electrophotographic imaging, including laser printing, and ink printing, including ink jet printing. Two primary types of imaging media are provided to imaging apparatus via a cartridge. These primary types of imaging media include wet ink and dry toner. Dry toner (xe2x80x9ctonerxe2x80x9d) is commonly provided as powdered carbon black or very small particles of plastic (as in the case of non-black toners). When the imaging media within a cartridge becomes depleted, the user typically replaces the spent cartridge with a replacement cartridge that contains additional imaging media. The user may not always have a replacement cartridge on hand, or the replacement cartridge may not be easily accessible. Accordingly, a user may be put in the position of not being able to complete an imaging job due to a lack of imaging media. Some imaging apparatus are provided with imaging media quantity detectors which allow a user to have advance notice of a low imaging media condition, and thus take appropriate steps to secure a replacement cartridge. For example, the imaging media quantity detector can be a level detector to detect a level of toner or ink in an imaging cartridge. However, such quantity detectors are not found in all imaging apparatus, and typically are not included in relatively inexpensive imaging apparatus. Further, such imaging media quantity detectors are not always accurate. Another prior art method for detecting impending depletion of imaging media in a cartridge is using a so-called xe2x80x9cpixel counterxe2x80x9d. The pixel counter essentially comprises an algorithm which is executed by a processor in the imaging apparatus and which calculates (estimates) the usage of imaging media based on the number of pixels imaged by the imaging apparatus since the time the current imaging media cartridge was installed. However, such pixel counters are not always accurate, with obvious undesirable consequences (specifically, the imaging media in the cartridge becomes exhausted before the pixel counter indicates it should be exhausted). With respect to certain dry toner cartridges, a user may notice fading of the image on imaged sheets of media, indicating a pending toner depletion condition. In the absence of an accurate imaging media quantity detector, this fading will most likely be the first indication that the user receives indicating a pending toner exhaustion condition. In certain instances the user may be able to extend the life of the toner cartridge by rocking it back-and-forth a number of times to redistribute the remaining toner within the cartridge. This may allow approximately 30 to 40 additional pages to be imaged using the toner cartridge before the cartridge is depleted of toner. In some cases this will provide the user with sufficient additional imaging capacity to allow the user time obtain a replacement cartridge, and more specifically, to allow the user to complete the current imaging job before replacing the cartridge. However, toner cartridges are now more commonly designed as xe2x80x9cno-shakexe2x80x9d cartridges, which incorporate baffles and/or an agitator within the toner cartridge to more evenly distribute toner within the cartridge, and thus reduce the fading which is manifested before depletion of the toner in earlier cartridge designs. Such xe2x80x9cno-shakexe2x80x9d cartridges only provide a user with approximately 5 to 10 pages of remaining imaging capacity after the first signs of toner depletion appear. In this case it will frequently occur that a user will not be able to complete a printing job without replacing the cartridge. If a replacement cartridge is not readily at-hand, then the user will need to interrupt the imaging job and continue it later once a replacement cartridge has been installed in the imaging apparatus. When the imaging media cartridge contains liquid ink, and in the absence of an accurate imaging media quantity detector, the first indication the user may receive that the cartridge is in need of replacement is when the ink is exhausted from the cartridge. Thus, unlike the situation with toner cartridges, with ink cartridges the user must interrupt an imaging job upon the first indication of cartridge depletion, unless a replacement cartridge is readily at-hand. What is needed then is a way to reduce the effects which result from depletion of prior art imaging media cartridges. An imaging media cartridge for use in an imaging apparatus includes a first imaging media reservoir chamber and a second imaging media reservoir chamber. A removable barrier is disposed between the first chamber and the second chamber. By removing the barrier, a reserve of imaging media can be provided from the second chamber to the first chamber. In one embodiment the imaging media cartridge is a toner cartridge. In another embodiment the imaging media cartridge is a liquid ink cartridge. These and other aspects and embodiments of the present invention will now be described in detail with reference to the accompanying drawings, wherein:
{ "pile_set_name": "USPTO Backgrounds" }
A conventional automobile plate blanking method is die blanking, and a steel plant or an entire car plant generally has an automatic uncoiling-cutting-stacking production line. The apparatus comprises a conveying unit, a press unit and a stacking unit. With the above-mentioned die blanking method, a material sheet of a simple shape (such as a rectangular, trapezoidal or arc shape) can be processed by way of swing-cutting, and a material sheet of a complex curve shape is processed by die blanking. It is required to provide the blanking line with different blanking dies depending on the size of a material sheet of a vehicle model, and to produce different material sheets by exchanging the dies. In the automobile manufacturing field, the metal plate blanking line has a very high operation efficiency, generally of 4,000,000-6,000,000 sheets per year. It is about 25 sheets per minute on average, on the basis of 3,800 hours per year. However, although the above-mentioned die blanking method is suitable for large-scale mass production of ordinary vehicle models, there are still certain limitations, especially the following problems: high costs in manufacturing and storing blanking dies; high space requirements for die stacking and maintenance room; and plant building investments due to large press equipment and equipment foundation. Particularly, for a small-batch production of some personalized vehicle models, the above-mentioned die blanking method is uneconomic. In recent years, with rapid development of the laser technology, the cutting speed (for a steel plate with a thickness less than 1.5 mm, the cutting speed can be kept not less than 20 m/min when using a 4 KW optical fiber laser generator) and photoelectric conversion efficiency (more than 20% at present) of laser rays are continuously increasing, so that the laser cutting cost reaches a critical point so as to make it possible to apply laser cutting to large-scale blanking machining of profiled sheet metals. It is known that some companies and research institutes at home and abroad have begun to study laser blanking of automobile plates. For example, Chinese patent CN 102105256 A to Automatic Feed Company provides a progressive laser cutting device for high-speed cutting. In the device provided in this patent, on each door frame, at least one movable laser head performs a laser cutting operation. However, this method has many technical difficulties; for example, simultaneous operation of multiple cutting heads can hardly ensure alignment of cuts generated by cutting operations of multiple devices, and a deviation in the plate shape will affect the cut shape. Huge configuration and occupied area of multiple sets of laser cutters and cutting units also cause a high equipment investment.
{ "pile_set_name": "USPTO Backgrounds" }
The various organs and tissues of the human body fall prey to a myriad of different afflictions. For example, each year in the United States alone, approximately 180,000 women are diagnosed with breast cancer and 46,000 women die of this disease. In all, 10 to 11 percent of all women can expect to be affected by breast cancer at some time during their lives. The causes of most breast cancers are not yet understood. Screening and early diagnosis are currently the most effective ways to reduce mortality from this disease. Currently mammography is the most effective means of detecting non-palpable breast cancer. However, mammography cannot determine whether a lesion is benign or cancerous, typically one or more biopsies must be performed per lesion. Unfortunately the biopsy operation itself is a very traumatic and costly operation that often results in some degree of disfigurement. Therefore it is important to improve the specificity of mammography thereby reducing errors, patient trauma, and disfiguration from unnecessary biopsies. It is also important to reduce health care costs by decreasing the number of unnecessary biopsies. For example, to detect 100,000 non-palpable cancers, approximately 500,000 biopsies must be performed at a cost of about $5,000 per biopsy, yielding a total cost of approximately 2.5 billion dollars. Therefore a reduction of 50 percent would save about 1.25 billion dollars per year. Palpable mass abnormalities of the breast are often difficult to evaluate mammographically. This is especially true for patients with dense or dysplastic breasts (approximately 35 percent of women over 50 and 70 percent of women under 50) or those patients that exhibit signs of a fibrocystic change, for example due to radiation therapy. For example, invasive lobular carcinoma in dense breasts can attain a size of several centimeters and yet still show no mammographically detectable signs. Furthermore, about 50 percent of all preinvasive cancers do not show mammographically significant calcifications, thus decreasing the chances of detecting the malignant tumors. Lastly, due to the interpretational limitations of mammography, many high risk patients (i.e., patients with a family history of breast cancer, patients with prior histologic evidence of cellular atypia, patients with a prior history of breast cancer who have undergone lumpectomy and radiation therapy) may be forced to rely on random tissue biopsies performed on suspicious areas. Unfortunately this technique typically results in a high nonmalignant-to-malignant biopsy ratio. A relatively new scientific tool that has allowed scientists and physicians to address problems in physiology and biochemistry in the human body with low risk is emission computed tomography (ECT). ECT systems are mainly used for the detection and imaging of the radiation produced by radiotracers and radiopharmaceuticals. For example, by administering biologically active radiopharmaceuticals into a patient it is possible to image organ functions in real time. The two major instruments presently used for ECT are Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). These instruments have been used to study a variety of different organs and conditions including cerebral glucose consumption, protein synthesis evaluation, cerebral blood flow and receptor distribution imaging, oxygen utilization, stroke, heart, lung, epilepsy, breast cancer, dementia, oncology, pharmacokinetics, psychiatric disorders, and radio labelled antibody and cardiac studies. Since the SPECT and PET instruments use different types of radiotracers, the metabolic activities imaged are mostly different leading these two instruments to complement rather than compete with each other. The SPECT detectors have proven especially useful for heart and brain imaging. SPECT dates back from the early 1960s, when the first transverse section tomographs were presented by Kuhl and Edwards (1963) using a rectilinear scanner and analog back-projection methods. With the availability of computer systems and the impetus of computer-assisted tomography using transmitted x-rays, nuclear medicine instruments were modified, and a number of mathematical approaches to tomographic reconstruction were developed in the early 1970s. Rotating Anger cameras and advances in computers opened the way to three-dimensional SPECT systems. Recently interest in SPECT increased as mathematical reconstruction techniques improved. They allowed for attenuation compensation, scattered radiation correction and the availability of new radiopharmaceuticals with higher uptake in the brain or other organs. The major limiting factors for the SPECT systems presently are the sensitivities (≈10 Cts s−1 μCi−1 point and ≈1,000 Cts s−1 cm−1 volume), resolution (7 to 12 mm FWHM), size, and cost. Present SPECT systems mainly use the rotating Anger camera. Many different variations of the Anger camera and other smaller size rotating single or dual instruments have been designed and used. Most of the commercial instruments use NaI(Tl), CsI(Tl), CsF, BaF2, BGO and other related crystal detectors. The majority of the commercial instruments use the Anger cameras made of NaI(Tl) crystals. All commercial SPECT instruments use collimators for determination of the direction of the incident gamma rays. The main types are parallel and converging collimators. The converging fan or cone beam collimators produce higher sensitivity but increase the complexity of the data analysis. Pinhole and slit collimators are also used. The collimators for high resolution systems eliminate about 99.9 percent of the incident gamma rays. A typical collimator hole has an area of about 1 square millimeter and a length of 1.9 centimeters. Increasing collimator resolution decreases sensitivity and vice versa. Collimators made of high atomic number materials such as lead which also produce considerable amounts of scattered gamma rays on the inside surface of the collimator, thereby increasing the scattered photon background. Anger cameras are normally rotated on a gantry around the patient for about 20 minutes to acquire sufficient data for a reasonable image. The spatial resolutions are limited to about 7 to 12 millimeters although spatial resolutions are expected to reach 6 millimeters in the near future. The best energy resolution at gamma ray energies is about 10 percent, limiting the ability of Anger cameras to discriminate scattered photon background. Commercially available SPECT systems include ADAC ARC, GE Starcam, Elscint APEX, Trionix Triad, Digital Scintigraphics ASPECT and University of Michigan SPRINT II. From the foregoing it is apparent that an improved gamma ray imaging system is desired.
{ "pile_set_name": "USPTO Backgrounds" }
With the wide spread acceptance of the Internet as an ubiquitous, interactive communication and interaction platform, on-line (or electronic) commerce conducted over the Internet has become commonplace in a variety of business environments. On-line commerce is traditionally categorized as business-to-business (B2B), business-to-consumer (B2C), consumer-to-consumer (C2C) and even business-to-employee (B2E) commerce. In the B2B environment, a number of online exchanges or marketplaces (e.g., vertical exchanges) have been established with a view to facilitating electronic commerce between parties, for example, within a vertical supply chain. Such B2B exchanges typically provide a number of tools for facilitating commerce, such as aggregated and near real-time inventory information, Requests for Quotation (RFQ) capabilities and auctions. In the B2C and C2C environments, a number of marketplace exchanges and transaction facilities have proved popular. A leading electronic commerce system (or marketplace) is operated by eBay, Incorporated. Electronic marketplaces are also provided by Yahoo! Incorporated and Amazon.com. Further, a number of on-line services offer on-line classifieds, such as the Yahoo! Classifieds service offered by Yahoo! Incorporated. A number of the on-line marketplaces are utilized by merchants as an important, if not a primary, distribution channel for products. Further, various retailers and merchants also utilize free, or low-cost, classified advertisement services offered on the Internet, such as Yahoo! Classifieds. In order to complete the purchase of these products, buyers generally provide checkout information such as credit card numbers, checking account numbers and shipping addresses to the seller upon winning or completing the purchase. In the case of on-line auctions, sellers often wait days or weeks for the buyer's check out information, or never receive it at all and are forced to relist the item. Additionally, buyers forget to provide their checkout information.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention is generally directed to an improved data processing system. More specifically, the present invention is directed to an improved data processing system in which media content is classified using an ontology-based classification mechanism such that media indices may be generated for use in modeling and/or retrieving the media content. 2. Description of Related Art The growing amounts and importance of digital video data are driving the need for more complex techniques and systems for video and multimedia indexing. Multimedia indexing is the process by which multimedia content is classified into one or more classifications based on an analysis of the content. As a result of this classification, various multimedia indices are associated with the multimedia content. These indices may then be stored for later use in modeling the multimedia content, retrieving the multimedia content in response to search queries, or the like. Some recent techniques for multimedia indexing include extracting rich audio-visual feature descriptors, classifying multimedia content and detecting concepts using statistical models, extracting and indexing speech information, and so forth. While progress continues to be made on these approaches to develop more effective and efficient techniques, the challenge remains to integrate this information together to effectively answer user queries of multimedia repositories. There are a number of approaches for multimedia database access, which include search methods based on the above extracted information, as well as techniques for browsing, clustering, visualization, and so forth. Each approach provides an important capability. One methodology for multimedia indexing involves classification of multimedia content into a plurality of classifications, i.e. multiple classification. In the multiple classification area, each portion of multimedia input data is mapped into one or several possible concepts. For example, a “studio-setting” image or video can have two “newsperson” “sitting” behind a “desk”. This individual image or video content contains four concepts: “studio-setting”, “newsperson”, “sitting” and “desk”. For each concept, an associated classifier is developed for determining how to classify image or video data into that particular concept. This development is typically performed through a specific learning process. Thus, once the classifier has been developed, given unlabeled video or image data, the classifier can determine whether this shot contains the corresponding semantic concept, e.g., “studio-setting,” “newsperson,” or “desk.” The classification methodology of learning classifiers is essential to various multimedia applications, such as multimedia content abstraction, multimedia content modeling, multimedia content retrieval, and the like. However, the learned classifiers, especially those whose semantic coverage is very restrictive, are usually unreliable. This is most typically due to an under-representative training data set used to develop the classifiers, and imbalanced ratio of positive and negative training data, and other factors. Quite a few previous efforts have been made in the direction of improving individual classifiers based on other classifiers in the multiple classification area. However, these previous approaches lack the capability to improve the accuracy of individual classifiers from the reliable classifiers by studying the ontology structure. Unfortunately, taking influence from unreliable classifiers makes the system vulnerable to becoming unstable. For example, the system described in U.S. Pat. No. 6,233,575, entitled “Multilevel Taxonomy Based On Features Derived from Training Documents Classification Using Fisher Values as Descrimination Values,” issued on May 15, 2001, which is hereby incorporated by reference, organizes multiple concepts into a hierarchical decision tree. Each node represents one concept classifier. Classification decisions are made from a top-down traversal of the decision tree. However, concept classification is restricted in a sub-tree of the decision tree. This sacrifices global information and an error decision made in a top level of the decision tree may be propagated and accumulated in later sub-tree classifications. Reclassification models take classification outputs from single concept models as new features and then perform reclassification in order to improve performance of the classification model. The assumption behind reclassification is that points close in the feature space tend to produce similar outputs operated by these classifiers. However, the assumption of high-correlation classification outputs between various concepts might not be true. Furthermore, taking influence from unreliable classifiers would make the system vulnerable to becoming unstable.
{ "pile_set_name": "USPTO Backgrounds" }
Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants. OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety. One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single EML device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art. One example of a green emissive molecule is tris(2-phenylpyridine)iridium, denoted Ir(ppy)3, which has the following structure: In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line. As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules. As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between. As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form. A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand. As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level. As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions. More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety. Complexes based on the five-member ring imidazole heterocycle are known to be less stable in devices whether they are blue or green emitting complexes compared to phenyl-benzimidazole complexes. It is also known that replacing an N-alkyl on a benzimidazole with N-aryl results in an improvement in device stability due to the higher bond strength of the N-aryl bond. Thus there is a need in the art for new blue phosphorescent emitters based on pyridyl benzimidazole ligands. This invention fulfills this need.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a motor drive control device for driving and controlling at least one servo motor configured to drive one feed axis to move a table or tool of a machine tool and one spindle motor having one main axis to rotate a table or tool of a machine tool. 2. Description of Related Art In such a motor drive control device, in order to drive and control a servo motor and a spindle motor, alternating-current voltage or alternating current from a commercial alternating-current power source, such as a three-phase alternating-current power source, is converted into direct-current voltage or direct current and then, converted into alternating-current voltage or alternating current of an arbitrary frequency and the converted alternating-current voltage or alternating current is supplied to the servo motor and the spindle motor, respectively. To do this, the motor drive control device has: a first inverter unit to which one rectifier unit configured to convert alternating-current voltage or alternating current into direct-current voltage or direct current is connected, and which is configured to convert the direct-current voltage or direct current supplied from the rectifier unit into alternating-current voltage or alternating current and to supply the converted alternating-current voltage or alternating current to the servo motor; and a second inverter unit to which the rectifier unit is connected and which is configured to convert the direct-current voltage or direct current supplied from the rectifier unit into alternating-current voltage or alternating current and to supply the converted alternating-current voltage or alternating current to the spindle motor. If the electric power, which can be supplied by the rectifier unit, larger than the sum of the maximum output of the servo motor and the maximum output of the spindle motor is set, there is no possibility of the output of the servo motor and the output of the spindle motor running short. However, it is rare that the servo motor and the spindle motor reach the maximum output at the same time, and therefore, the electric power, which can be supplied by the rectifier unit, is usually set to an output supposed to be smaller than the sum of the maximum output of the servo motor and the maximum output of the spindle motor from the viewpoint of the installation space and cost of the rectifier unit. On the other hand, in the case where the sum of the output of the servo motor and the output of the spindle motor exceeds the electric power, which can be supplied by the rectifier unit, because of a high load caused during a machining operation, such as a cutting operation of a workpiece by a machine tool, etc., an alarm is issued and the machining operation is stopped by emergency-stopping the rectifier unit. In particular, if an instantaneous input power drop etc., occurs, the electric power, which can be supplied from the rectifier unit, is reduced, however, in order to prevent the machining operation from being stopped even in such a case, a motor drive control device that limits the torque of a motor so that the sum of the outputs of the motors does not exceed the electric power, which can be supplied by the rectifier unit, is proposed in, for example, Japanese Unexamined Patent Publication (Kokai) No. 2002-354396 (JP2002-354396A) and WO2008-093485 (JP2008-093485A1) If the torque of the servo motor is limited in order to limit the sum of the output of the servo motor and the output of the spindle motor, the ratio of the output of the servo motor to the sum of the output of the servo motor and the output of the spindle motor is remarkably small (for example, 10%), and therefore, it is difficult to effectively limit the sum of the output of the servo motor and the output of the spindle motor. Further, if the torque of the servo motor is limited in order to limit the sum of the output of the servo motor and the output of the spindle motor, there may be a case where the cutting operation of a workpiece by the machine tool is adversely affected because of deterioration of tracking of the position command to the servo motor. On the other hand, if the torque of the spindle motor is limited in order to limit the sum of the output of the servo motor and the output of the spindle motor, there may be a case where the cutting operation of a workpiece by the machine tool is affected adversely when it is no longer possible to continue the cutting operation because of the stop of the spindle motor due to the shortage of torque during the cutting operation of a workpiece by the machine tool, in particular, during the cutting operation of a heavy workpiece.
{ "pile_set_name": "USPTO Backgrounds" }
A self-doping type electroconductive polymer is generally soluble in water and has characteristics of being easily formed in an arbitrary shape, formed in a film or positioned, and is therefore characterized with its extremely excellent workability in preparation of a large-area film or in an electrical device requiring microfabrication technology. A charge-up preventing technology utilizing such characteristics in a lithographic process employing charged particle beams such as electron beams or ion beams is disclosed (JP-A No. 4-32848) and is being widely employed recently. A chemically amplified resist, which is an essential material in common technology for lithography utilizing light or charged particle beams such as electron beams or ion beams, is a resist which is easily influenced by the use environment and is difficult to handle. In case of coating a surface of the chemically amplified resist with an electroconductive composition, it is already known that a slight acid component in the coating material can have a significant influence on the sensitivity of the resist. That is, phenomenons that under a certain hydrogen ion concentration (pH) range, acid generated by exposure is neutralized by the coating material and that acid supplied from the coating material makes an unexposed part fall in the same state as an exposed part are observed. Such a phenomenon appears as a film thickness loss in case of a positive type resist, while in case of a negative type resist, such a phenomenon appears as formation of a hardly soluble layer or an insoluble layer. For suppressing a pH change in an aqueous solution of an aqueous solvent-soluble electroconductive polymer, there is disclosed a method of eliminating oxygen dissolved in the solution (JP-A No. 8-259673) and a method of suppressing a pH decrease by using a buffer solution containing a weak acid and an amine (JP-A No. 11-189746). Recently there is encountered a problem of resist collapse, caused by reduction in the minimum circuit line width of a semiconductor device, and attempts are being made to select an appropriate aspect ratio in order to avoid such phenomenon, whereby resist film thickness tends to become smaller. A resist patterned through a developing step is subsequently used for a pattern transfer to a substrate by a dry etching step, and dry-etching resistance of the resist in this process is becoming more important, so that requirements for the prevention of a film thickness loss phenomenon of the resist caused by a charge-up preventing film and for the maintenance of a resist profile are becoming stricter in recent years. More specifically, in a process of forming an antistatic treatment film on a resist surface, in case where a solvent having a high affinity with water contained in the antistatic treatment agent remains in the resist, the liquid components show mutual penetration. As the aqueous solvent-soluble electroconductive polymer also migrates with the penetration of the liquid components, a mixing layer is formed at the interface between the resist and the antistatic treatment film. When the concentration of an acid component derived from the aqueous solvent-soluble electroconductive polymer contained in the mixing layer exceeds the concentration inducing a chemical change of the resist, there is exhibited a film thickness loss phenomenon in case of a positive chemically amplified resist, or formation of a hardly soluble layer or eventually a fogging phenomenon in case of a negative chemically amplified resist. Such an undesired chemical change at the interface generates a profile called a bowing or a T-top in the resist after patterning. In the process of transferring such pattern onto a substrate such as a silicon wafer, the development of such profile detrimentally affects control of variation in the line width and the depth and shape of etching, thus constituting a serious problem in fine patterning. It is known that since chemical amplification resists are mostly oil-soluble and a coated film thereof is not easily mixed with water, in case of coating a resist surface with an electroconductive composition, a surfactant is added to the electroconductive composition for the purpose of improving a wettability. However conventional surfactants that have been employed often cause an influence on the resist profile such as film thickness loss of the resist, while decrease in the amount of the surfactant reduces the wettability, thus affecting the coating property. On the other hand, since the surfactant also has an influence on the resist, there is disclosed a method of utilizing a water-soluble polymer having a surfactant effect (JP-A. No. 2002-226721).
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an EMS (Electromagnetic susceptibility) analysis method and EMS analysis apparatus and a method for manufacturing semiconductor devices using the EMS analysis apparatus, and in particular to a method for performing high-speed and high-accuracy EMS analysis on an LSI (Large-scale Integration) circuit featuring large-scale integration and high-speed driving to analyze direct EMS caused by electromagnetic radiation and indirect EMS caused by a power source. As semiconductor integrated circuits have become faster and achieve larger packing densities, EMS (Electromagnetic susceptibility) has become a serious problem where semiconductor integrated circuits malfunction due to external noises. One of the possible causes of EMS is that a noise external to a semiconductor integrated circuit entering a power line is propagated inside the semiconductor integrated circuit, affecting signal lines and functional elements, thus causing malfunction of the circuit. Conventionally, tests have been conducted in the design stage to simulate a noise in the signal line of a semiconductor integrated circuit by using a circuit simulator or a faster delay simulator and to check whether such a noise could cause malfunction of the circuit, in order to analyze malfunction caused by a noise entering the semiconductor integrated circuit. Methods for analyzing a noise other than the EMS noise includes a method for analyzing a crosstalk noise between signal wires in an LSI circuit. As an example of such a method, a method is proposed for analyzing a noise propagated to the circuit elements of the victim caused by a variation in the signal output from the circuit elements of the aggressor due to a coupling capacitance between parallel signal lines thereby analyzing a noise between signal wires, as shown in FIG. 35 (Japanese Patent Publication No. Hei. 6-243193). This technology does not consider the influence that occurs between a power line and a signal line so that it is impossible to analyze the EMS noise. As shown in FIG. 36, it is possible to input a signal S containing a noise to a power source by using a transistor level simulator such as SPICE. However, in order to locate a disturbance leading to malfunction, it is necessary to perform a large number of test patterns, check the output signals at the circuit elements (gates) and conforming that values different from the expected ones are obtained. That is, it is necessary to provide test probes for all the cells in order to locate the disturbance. This work is quite difficult in the case of an LSI circuit. Even when the disturbance is located, which gate must be modified is unknown. To accurately locate the disturbance, it is necessary to place the LSI circuit in the operating state while using a large number of test vectors. The aforementioned related art requires huge simulation time for an LSI circuit. The technology considers the case where a noise is generated in a signal line due to a variation in a signal caused by circuit elements in the circuit, or a crosstalk noise, but not the case where a noise is generated in a power line, that is, the influence of indirect EMS on the interior of a semiconductor integrated circuit, or where a noise is generated inside a semiconductor integrated circuit caused by electromagnetic radiation, that is, direct EMS. It is difficult to analyze how the EMS affects a semiconductor integrated circuit and how a circuit is to be modified to cope with the EMS. As the circuit scale becomes larger, the semiconductor integrated circuit is facing a serious problem of malfunction due to an external power noise (indirect EMS) or a radiation noise due to electromagnetic waves (direct EMS). Conventionally, a method has been employed for evaluating the resistance of a semiconductor integrated circuit to an external noise by providing the semiconductor integrated circuit with a power noise or external strong electromagnetic waves after the semiconductor integrated circuit is manufactured, in order to check the resistance of a semiconductor integrated circuit to an external noise. In case the semiconductor integrated circuit is less resistant to a noise, a de-coupling capacitor is inserted in the semiconductor integrated circuit or the circuit is modified to improve the resistance to a noise. In this way, inspection on the resistance of a semiconductor integrated circuit to an external noise is performed after the circuit is manufactured. In case any problem occurs concerning an external noise during inspection, the entire semiconductor integrated circuit requires modification. This increases the design period. The invention has been proposed in view of the foregoing situation and relates to a method for reducing electromagnetic wave disturbance while maintaining the high integration density and high-speed characteristics of an LSI circuit. The invention aims at preventing malfunction caused by indirect EMS where an external noise enters the power source and malfunction caused by direct EMS caused by electromagnetic wave radiation as well as readily provide the layout of a reliable semiconductor integrated circuit device. The invention aims at providing a method for readily identify the location in the design stage where circuit malfunction could be potentially caused by a noise, by obtaining the propagation of a noise waveform in a large-scale semiconductor integrated circuit. Further, the invention aims at enhancing the resistance of a semiconductor integrated circuit to a noise before manufacturing the circuit by simulating the verification of circuit operation against a power noise. In order to attain the foregoing object, a method for analyzing an external noise to a semiconductor integrated circuit according to the invention is characterized in that the method comprises an impedance extraction step of extracting impedance information on the power wiring in the target semiconductor integrated circuit or the power wiring in the semiconductor integrated circuit and the external power wiring of the semiconductor integrated circuit, an equivalent circuit creating step of creating an equivalent circuit from the impedance information, and an analysis step of supplying a noise waveform externally and analyzing the influence of the noise on the semiconductor integrated circuit. According to such steps, an equivalent circuit is created from impedance information, a noise waveform is externally supplied to the equivalent circuit and the influence of the noise on the semiconductor integrated circuit is analyzed. It is thus possible to readily take high-accuracy EMS countermeasures. The second aspect of the invention is characterized in that the analysis step includes a noise waveform supplying step of supplying a start point power noise waveform, a power noise waveform calculating step of obtaining power noise waveforms at the internal node points and terminals in the semiconductor integrated circuit, and an error section detecting step of obtaining the influence of an external noise on the semiconductor integrated circuit and detecting sections susceptible to an external noise entering the semiconductor integrated circuit. With this configuration, it is possible to readily detect the sections susceptible to an external noise thus readily taking high-accuracy EMS countermeasures The third aspect of the invention is characterized in that the equivalent circuit creating step comprises a functional block power equivalent circuit creating step of creating a degenerate impedance circuit of each functional block in a semiconductor integrated circuit from the impedance information and an inter-block power equivalent circuit creating step of creating a circuit for analyzing the inter-block power wiring in the semiconductor integrated circuit from the impedance information and that the analysis step uses as the equivalent circuit at least one of the degenerate impedance circuit and the circuit for analyzing the inter-block power wiring. The fourth aspect of the invention is characterized in that the equivalent circuit creating step comprises a functional block power equivalent circuit creating step of creating a degenerate impedance circuit of each functional block in a semiconductor integrated circuit from the impedance information, an inter-block power equivalent circuit creating step of creating a circuit for analyzing the inter-block power wiring in the semiconductor integrated circuit from the impedance information and an external power equivalent circuit creating step of creating an a circuit for analyzing the power wiring external to the semiconductor integrated circuit from the impedance information, and that the analysis step uses as the equivalent circuit at least one of the degenerate impedance circuit, the circuit for analyzing the inter-block power wiring and the circuit for analyzing the power wiring external to the semiconductor integrated circuit. According to the third and fourth aspects, it is readily possible to identify the sections susceptible to EMS by inputting a power noise waveform to the power line external to a semiconductor integrated circuit, analyzing the propagation of the power noise waveform through simulation, and obtaining a power waveform at each point in the semiconductor integrated circuit. The fifth aspect of the invention is characterized in that the inter-block power equivalent circuit creating step is a step of creating the circuit for analyzing the inter-block power wiring by adding the impedance information on the inter-block power wiring to the degenerate impedance circuit created by the functional block power equivalent circuit creating step and that the analysis step uses as the equivalent circuit at least one of the degenerate impedance circuit and the circuit for analyzing the inter-block power wiring. The sixth aspect of the invention is characterized in that the inter-block power equivalent circuit creating step is a step of creating the circuit for analyzing the inter-block power wiring by adding the impedance information on the inter-block power wiring to the degenerate impedance circuit created by the functional block power equivalent circuit creating step, that the external power equivalent circuit creating step is a step of configuring a circuit for analyzing the power wiring external to the semiconductor integrated circuit by creating a degenerate impedance circuit in the circuit for analyzing the inter-block power wiring and adding the impedance information external to the semiconductor integrated circuit to the degenerate impedance circuit, and that the analysis step uses as the equivalent circuit at least one of the degenerate impedance circuit, the circuit for analyzing the inter-block power wiring and the circuit for analyzing the power wiring external to the semiconductor integrated circuit. According to the fifth and sixth aspects, a degenerate impedance circuit is used on top of the advantages of the third and fourth aspects. This simplifies the arithmetic operation and readily provides a reliable analysis. The seventh aspect of the invention is characterized in that the noise waveform supplying step is a step of supplying a start point power noise waveform to the power terminal in a circuit for analyzing the inter-block power wiring created from the impedance information and that the power noise waveform calculating step includes an inter-block power noise calculating step of obtaining an inter-block power noise waveform at each internal node point in the circuit for analyzing the inter-block power wiring as well as obtaining a block terminal power noise waveform at a terminal in each functional block and an intra-functional-block power noise waveform calculating step of obtaining a functional block power noise waveform at each node point in the functional block as well as obtaining an element terminal power noise waveform at the power terminal in each element by providing as input the block terminal power noise waveform to the impedance circuit in the functional block created from the impedance information, and identifies the circuit section expected to be susceptible to an external noise by using at least one of the block terminal power noise waveform, the inter-block power noise waveform, the functional block power noise waveform and the element terminal power noise waveform. The eighth aspect of the invention is characterized in that the noise waveform supplying step is a step of supplying a start point power noise waveform to the power terminal in a circuit for analyzing the power wiring external to the semiconductor integrated circuit created from the impedance information and that the power noise waveform calculating step includes external power noise waveform calculating step of obtaining a terminal power noise waveform at the power terminal in a circuit for analyzing the inter-block power wiring created from the impedance information through the circuit for analyzing the power wiring external to the semiconductor integrated circuit, an inter-block power noise calculating step of obtaining an inter-block power noise waveform at each internal node point of the inter-block power wiring as well as obtaining a block terminal power noise waveform at a terminal in each functional block and an intra-functional-block power noise waveform calculating step of obtaining a functional block power noise waveform at each node point in the functional block as well as obtaining an element terminal power noise waveform at the power terminal of each element by providing as input the block terminal power noise waveform to the impedance circuit in the functional block, and identifies the circuit section expected to be susceptible to an external noise by using at least one of the terminal power noise waveform, the block terminal power noise waveform, the inter-block power noise waveform, the functional block power noise waveform and the element terminal power noise waveform. With this configuration, it is possible to analyze a large-scale semiconductor integrated circuit by creating impedance models of the power wiring external to the semiconductor integrated circuit, inter-block power wiring in a semiconductor integrated circuit and block wiring in a semiconductor integrated circuit separately, and obtaining power noise waveforms in a layered step. The ninth aspect of the invention is characterized in that the error section detecting step comprises an error check step of identifying the circuit sections that will cause an error due to an external noise by providing a power noise peak threshold for the power noise waveform and assuming an error when the threshold is exceeded thus performing an error check. With this configuration, an error check is made in accordance with a predetermined threshold so that it is possible to effectively identify the circuit sections that will cause an error. The tenth aspect of the invention is characterized in that the error section detecting step performs a noise check step of performing a noise check by providing a threshold at the power terminal in the circuit for analyzing the inter-block power wiring and assuming an error when the threshold is exceeded and performs the inter-block power noise waveform calculating step only when an error is determined. With this configuration, the inter-block power noise waveform calculating step is performed only when an error is determined assuming that the threshold at the power terminal in the circuit for analyzing the inter-block power wiring is exceeded. This includes no useless steps and allows an efficient check. The eleventh aspect of the invention is characterized in that the threshold at the power terminal in the circuit for analyzing the inter-block power wiring is the maximum among the thresholds for the terminal in the functional block in the semiconductor integrated circuit and inter-block power wiring. With this configuration, the threshold at the power terminal in the circuit for analyzing the inter-block power wiring is set to the maximum among the thresholds for the terminal in the functional block in the semiconductor integrated circuit and inter-block power wiring. This prevents useless calculation and allows an efficient check. The twelfth aspect of the invention is characterized in that the error section detecting step performs a noise check step of performing a noise check by providing a peak threshold for a power noise at each functional block in a semiconductor integrated circuit and assuming an error when the threshold is exceeded at the power terminal in the functional block and performs the intra-functional-block power noise waveform calculating step only when an error is determined. With this configuration, the intra-block power noise waveform calculating step is performed only when an error is determined assuming that the threshold for a noise power peak for each functional block is exceeded. This includes no useless steps and allows an efficient check. The thirteenth aspect of the invention is characterized in that the threshold for a power noise at the power terminal in each functional block is the maximum of the thresholds for the functional elements in each functional block and power wiring. With this configuration, the threshold at the power terminal in the circuit for analyzing the inter-block power wiring is set to the maximum among the thresholds for the functional element in the semiconductor integrated circuit, the functional element in the functional block, and the power wiring. This prevents useless calculation and allows an efficient check. The fourteenth aspect of the invention is characterized in that the error check step comprises a noise check step of performing a noise check by providing a peak threshold for a power noise at each functional element in a semiconductor integrated circuit and assuming an error when the power noise peak value has exceeded the threshold. With this configuration, an error check is made in accordance with a predetermined threshold so that it is possible to effectively identify the circuit sections that will cause an error. The fifteenth aspect of the invention is characterized in that the error check step comprises a noise check step of performing a noise check by providing a peak threshold for a power noise determined by the distance to an adjacent signal line and length of parallel wiring for the power wiring in each functional block or inter-block power wiring and assuming an error when the power noise peak value has exceeded the threshold at each internal node points of the power wiring. With this configuration, the intra-block power noise waveform calculating step is performed only when an error is determined assuming that threshold for a noise power peak for the power wiring in each functional block or inter-block power wiring is exceeded. This includes no useless steps and allows an efficient check. The sixteenth aspect of the invention is analysis apparatus, characterized in that the apparatus comprises extraction means for extracting impedance information on the power wiring in the target semiconductor integrated circuit or the power wiring in the semiconductor integrated circuit and the external power wiring of the semiconductor integrated circuit, equivalent circuit creating means for creating an equivalent circuit from the impedance information, and analysis means for supplying a noise waveform externally and analyzing the influence of the noise on the semiconductor integrated circuit. With this configuration, an equivalent circuit is created from impedance information, a noise waveform is externally supplied to the equivalent circuit and the influence of the noise on the semiconductor integrated circuit is analyzed. It is thus possible to readily take high-accuracy EMS countermeasures. The seventeenth aspect of the invention is characterized in that the analysis step comprises a step of obtaining a power waveform at the power terminal of each circuit element in the semiconductor integrated circuit, a calculating step of calculating the delay time of the circuit element based on the power waveform at the power terminal of the circuit element, and a timing verification step of determining whether the delay time of the circuit element is within an allowable range. With this configuration, timing verification is made based on the calculated delay time in accordance with the power waveform at the power terminal of each circuit element. It is thus possible to readily perform high-accuracy verification. The eighteenth aspect of the invention is characterized in that the analysis step comprises a step of obtaining a power waveform at the power terminal of each circuit element in the semiconductor integrated circuit, a calculating step of calculating the delay time of the circuit element based on the power waveform at the power terminal of the circuit element, and a timing verification step of determining whether the sum of the delay times of the series of circuit elements is within an allowable range. With this configuration, it is possible to perform high-accuracy verification, on top of the advantage of the seventeenth aspect. The nineteenth aspect of the invention is characterized in that the analysis step comprises a database creating step of calculating the variation amount in the delay time of a circuit element obtained when at least one of the input timing and peak value of the noise waveform of the power terminal is varied and creating a delay variation amount database based on the calculation result, and that the calculating step comprises a step of obtaining the variation amount of the delay time of the circuit element with respect to a desired noise waveform from the delay variation amount database. The twentieth aspect of the invention is characterized in that the analysis step comprises a database creating step of calculating the variation amount in the delay time of a circuit element obtained when at least one of the input timing and peak value of the noise waveform of the power terminal is varied and creating a delay variation rate database by obtaining the calculation result as a rate to the delay time of the circuit element observed when no power noises are present, and that the calculating step comprises a step of obtaining the delay variation amount of the circuit element with respect to a desired noise, by multiplying the delay time of the circuit element observed when no power noises are present by the rate read from the delay variation rate database. The twenty-first aspect of the invention is characterized in that the analysis step comprises a step of obtaining the delay variation amount of the series of circuit elements with the timing the power noise where the variation amount of each circuit element is the maximum is input to the series of circuit element, as the maximum delay amount of the series of circuit elements. The twenty-second aspect of the invention is characterized in that the analysis step comprises a step of detecting a circuit section where a signal does not arrive within a time required for circuit operation due to a variation in the delay time of a circuit element caused by a power noise thus resulting in an unexpected circuit operation. The twenty-third aspect of the invention is characterized by further comprising an error element detecting step of exploring a circuit element whose delay time is most affected by a power noise from the detected circuit section and detecting the circuit element as an error element. The twenty-fourth aspect of the invention is characterized by further comprising are in forcing step of taking power noise hardening countermeasures on the error element. The twenty-fifth aspect of the invention is characterized by further comprising a replacing step of replacing the circuit element assumed as an error element in the error element detecting step with a circuit element whose delay variation amount with respect to a power noise is smaller. The twenty-sixth aspect of the invention is characterized by further comprising a replacing step of replacing the circuit element assumed as an error element in the error element detecting step with a circuit element which satisfies a constraint time. The twenty-seventh aspect of the invention is characterized by further comprising a step of manufacturing a semiconductor device through error-free layout design based on the analysis result using an electromagnetic disturbance analysis method according any one of the first to twenty-sixth aspects. With these configurations, the signal waveform at the power terminal of each circuit element in a semiconductor integrated circuit is obtained, then the input timing and peak value of a power noise at the power terminal of each circuit element in the semiconductor integrated circuit are obtained. A database may be created by simulation which calculates the variation amount of the delay time of the circuit element when the input timing and peak value of the power noise is varied. Based on the noise waveform at the power terminal of each circuit element and on the database of the delay time variation amount, the variation amount of the delay time of a circuit element may be calculated. Further, a circuit section, where a signal does not arrive within a time required for circuit operation due to a variation at the delay time of a circuit element caused by providing an arbitrary power noise thus resulting in an unexpected circuit operation, maybe detected. Noise tolerance maybe improved by changing a circuit element in order to satisfy the constraint time in the circuit section where an unexpected circuit operation occurs in case an arbitrary power noise is provided. The twenty-eighth aspect of the invention is a method for analyzing an electromagnetic disturbance in an LSI circuit, characterized in that the method comprises a library storage step of calculating the noise threshold for changing the output result or internal state caused by a power noise and storing the noise threshold into a library and an analysis step of analyzing whether each of the circuit elements in the LSI circuit suffer from the influence of the power noise while referring to the library. With this configuration, analysis is readily made with efficiency by storing the threshold into a library. The twenty-ninth aspect of the invention is characterized in that the library storage step comprises a step of storing into a library any of the peak, width and shape functions or values of the voltage or current waveform that can pass through a circuit element. The thirtieth aspect of the invention is characterized in that the library storage step comprises a step of storing into the library a noise threshold for a path on which a noise is input to the terminal of a circuit element and is output from the terminal of the circuit element or a path for changing the internal state. With the configurations of the twenty-ninth and thirtieth aspects, it is possible to perform more efficient analysis. The thirty-first aspect of the invention is characterized in that the analysis step comprises a step of analyzing a path to be input to the terminal of a circuit element and output from the terminal of the circuit element or to change the internal state. The thirty-second aspect of the invention is characterized in that the analysis step comprises a recording step of recording path information. The thirty-third aspect of the invention is characterized in that the recording step comprises a step of recording a circuit element where a noise is propagated. The thirty-fourth aspect of the invention is characterized in that the recording step comprises a step of recording a register element where a noise is propagated. The thirty-fifth aspect of the invention is characterized in that the recording step comprises a step of recording a damage that results when a circuit element where a noise is propagated is virtually changed to a circuit element with different drive capability. The thirty-sixth aspect of the invention is characterized in that the recording step comprises a step of recording a circuit element susceptible to a noise on the path. The thirty-seventh aspect of the invention is characterized in that the analysis step comprises a step of calculating the power noise by analyzing electromagnetic wave. The thirty-eighth aspect of the invention is characterized in that the analysis step comprises a step of recording a circuit element susceptible to a noise on the path entering a specified circuit element. The thirty-ninth aspect of the invention is characterized in that the analysis step comprises a step of recording a circuit element susceptible to a noise on the path entering a register element. With the configurations of the thirty-first through thirty-ninth aspects, efficiency of counter measure processing is considerably improved by detecting and recording a section susceptible to an electromagnetic disturbance more easily. The fortieth aspect of the invention is analysis apparatus for analyzing an electromagnetic disturbance in an LSI circuit, characterized in that the apparatus comprises a library storage step of calculating the noise threshold for changing the output result or internal state depending on a power noise and storing the noise threshold into a library, and an analysis step of analyzing whether each of the circuit elements in the LSI circuit suffer from the influence of the power noise while referring to the library. With this configuration, analysis is readily made with efficiency by storing the threshold into a library. The forty-first aspect of the invention is characterized by comprising a step of analyzing an electromagnetic disturbance in an LSI circuit, a sorting step of sorting blocks or instances that need countermeasures and a countermeasure step of taking countermeasures to erase a power noise on each block or instance. With this configuration, blocks or instances that need countermeasures are sorted so that it is possible to efficiently take countermeasures in this order. The forty-second aspect of the invention comprises a step of analyzing EMS of the block or instance after the countermeasure step, characterized in that the countermeasure step and analysis step are repeated until the influence of the power noise is found below a predetermined value in the analysis step. With this configuration, the countermeasure step and analysis step are repeated until the influence of the power noise is found below a predetermined value in the analysis step so that it is possible to take reliable countermeasures efficiently. The forty-third aspect of the invention is characterized in that the countermeasure step is a step of inserting a delay adjustment element for performing delay adjustment so that a switching element will become highly resistant with the timing a current including a noise enters the switching element and an RC filter circuit formed by the switching element and a capacitance element. With this configuration, it is possible to perform removal of noise only through adjustment of a switching element and a capacitance element to be inserted. The forty-fourth aspect of the invention is characterized in that the countermeasure step is a step of inserting an inductor. The forty-fifth aspect of the invention is characterized in that the countermeasure step is a step of adjusting the power wiring length distance. The forty-sixth aspect of the invention is characterized in that the countermeasure step is a step of changing the cell rank so that the drive capability of the cell with sufficient timing will be reduced. With the foregoing configurations, it is possible to efficiently perform removal of noise. The forty-seventh aspect of the invention is characterized by comprising means for analyzing an electromagnetic disturbance in an LSI circuit, sorting means for sorting blocks or instances that need countermeasures and countermeasure means for taking countermeasures to erase a power noise on each block or instance in accordance with the order arranged by the sorting means. With this configuration, blocks or instances that need countermeasures are sorted so that it is possible to efficiently take countermeasures in this order. The forty-eighth aspect of the invention comprises means for analyzing EMS of the block or instance that undertook countermeasures in the countermeasure means, characterized in that the countermeasure step and analysis step are repeated until the influence of the power noise is found below a predetermined value in the analysis step. With this configuration, the countermeasure step and analysis step are repeated until the influence of the power noise is found below a predetermined value in the analysis means, so that it is possible to perform efficient and reliable processing. With this configuration, it is possible to detect an increase in the power consumption observed when for example a buffer is replaced with one having larger drive capability. The forty-ninth aspect of the invention is characterized by comprising a display step of highlighting cells susceptible to a noise and paths connecting the cells as analyzed in the analysis step. The fiftieth aspect of the invention is characterized by comprising a display step of highlighting register cells such as memory cells. The fifty-first aspect of the invention is characterized by comprising a display step of displaying information on cells that were found susceptible to a noise and should be replaced in the analysis step. The fifty-second aspect of the invention is characterized by comprising a virtual display step of displaying parameters renewed for each cell virtually changed based on the information on cells that were analyzed to be replaced with spare in the analysis step. The fifty-third aspect of the invention is characterized by comprising a sorting step of sorting blocks or instances determined requiring countermeasures in the analysis step. The fifty-fourth aspect of the invention is characterized by comprising a countermeasure sorting step of sorting countermeasures to take on blocks or instances determined to require countermeasures in the analysis step. With the configurations of the forty-ninth through fifty-fourth aspects, EMS analysis and corresponding countermeasures take place. It is possible to sequentially display the steps and display which countermeasures are to be taken on which objects and resulting changes. This makes it possible to take countermeasures more efficiently. In this way, favorable EMS countermeasures are taken thus making it possible to provide automatically and with high speed the reliable layout structure of a semiconductor integrated circuit.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to a portable terminal, and more particularly, to a touch screen device for a portable terminal. 2. Description of the Related Art In general, portable terminals such as mobile communication terminals and portable multimedia devices typically include a display device and a transparent window member mounted on the display device. A portable terminal allows its user to input information or perform various manipulations using a separate input device such a keypad and a trackpad. Recently, however, as users may perform various functions such as Internet access and multimedia playback even on a mobile communication terminal, a touch screen is implemented on the display devices of portable terminals. That is, display devices having a sufficient size are mounted for Internet access and multimedia features, and instead of separate input devices, a touch screen feature incorporated on the display device serves as both input and output devices. Currently, the growing trend is that portable terminals are becoming thinner and smaller while the display area of a screen is getting larger to enhance the user's experience. Despite implementing a touch screen feature, the most frequently used main function keys, for example, a Menu key (menu call key), a Back key (command key for turning back to the previous screen), and a Home key (command key for switching to the main screen), are generally provided at the bottom of the touch screen. FIGS. 1 to 5 are diagrams showing the conventional touch screen device 10 with a structure in which the above-mentioned main function keys are disposed adjacent to each other in an area 11. The touch screen device 10 has a bezel that is formed on an inner surface of a window member 17 by conducting coating, and a logo of a carrier or a manufacturer may be printed in an area where the bezel is formed. A keypad area 13 is typically provided at one side of the area 11 and includes the frequently used main function keys such as a Menu key, a Back key and a Home key in the keypad area 13. Referring to FIGS. 3 and 4, an Indium Tin Oxide (ITO) film 15, known as a touchpad, is attached onto the window member 17, and a substrate assembly 20 for providing lighting to the keypad area 13 is provided thereunder. The substrate assembly 20 includes a printed circuit board 21 on which light emitting devices 23 are disposed in their associated places corresponding to the keys disposed in the keypad area 13, and the substrate assembly 20 is installed to be accommodated between upper and lower cases 31 and 33 of the portable terminal. The substrate assembly 20 has a thickness similar to or greater than that of the display device, thus making it difficult to ensure its installation space during the fabrication process. Further, such a cumbersome assembly has a drawback in efforts to miniaturize the portable terminal. Moreover, a separate manufacturing process for assembling and installing the substrate assembly 20 is required which in turn raises the manufacturing cost. Further, referring to FIG. 5, when a pair of housings is coupled to each other in a slide manner, a space 35 for coupling slide rails should be secured on the face facing in the screen display direction. However, the substrate assembly 20 having a thickness similar to or greater than that of the display device is an obstacle in securing the space 35 for coupling slide rails. When the display device, the slide rail coupling space, and the substrate assembly are placed on the same plane due to the limited thickness of the portable terminal, there are many limitations, therefore, in expanding the display device and setting the position of the substrate assembly.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an input level supervisory system in an automatic gain controller, and more particularly to a system for supervising the level of input applied to a level regulator of carrier frequency terminal equipment, which has highly accurate performance and can be manufactured at low costs. 2. Description of the Prior Art The level regulator used in carrier frequency terminal equipment of a frequency division multiplex communication system employs an electric current of a frequency outside the carrier frequency band as a supervisory current (pilot signal). Said electric current is transmitted with a constant amplitude and variations in the level of said electric current are detected to obtain equalization of characteristics deviation, change in the temperature, etc., occurring in the transmission line, terminal stations, etc. The level regulator changes the value of a variable element thereof, such as a thermistor or a field effect transistor (FET), in accordance with the level of the electric current thus detected, so as to compress the variations in the level of the electric current into smaller values, thus regulating the level of the input. In addition to said function of automatic level control, the level regulator is further provided with a function of supervising the level of the pilot signal. The pilot signal level being supervised is utilized for exhibiting an alarm function of transmitting a signal for lighting an alarm lamp and ringing an alarm bell when the pilot signal level exceeds a range that can be regarded as normal, and; for a pilot signal level indicating function of constantly indicating and recording the pilot signal level through a meter or a recorder for improved maintenance. Generally, supervision of the pilot signal level includes supervision of the level of input to the level regulator and supervision of the level of output therefrom. Of these types of supervision, the output level supervision has conventionally been employed. The two types of supervision are different in the supervising accuracy of the input level. It goes without saying that it is more desirable for higher accuracy to supervise the input level than to supervise the output level which has the same relation to the input level in a compressed state. Further, the International Telegraph and Telephone Consultative Committee recommends the input level supervision as a preferable one. In a conventional method of this art, the input level supervision uses an electric voltage which varies approximately in accordance with a decibel change in the level of input to the level regulator, which voltage is available from the control voltage for driving the variable element of the level regulator or a like voltage, thus supervising a pseudo input level. To be concrete, if there is a change in the input level, the change is detected so that the gain is controlled by the thermistor or the FET of the level regulator. Since the output voltage from the control circuit for driving the thermistor or the FET is somewhat mutually related to the input level, said output voltage, i.e., control voltage, is directly used to supervise a pseudo input level. Further, an improved method of the above-mentioned conventional supervising method has been proposed by German Patent P 22 35 230.3, owned by Siemens Aktiengesellischaft. According to this method, said control voltage is input to a non-linear element of a correcting circuit to produce an electric voltage more proportional to the input level, to be used as a supervisory output for a pseudo input level. However, this method is not sufficiently high in accuracy. This is because, the resulting amount of change may be too large (an elongation of the input level) or too small (a contraction of the input level) with respect to the change in the input level to perform accurate supervision of the input level. Further, there is another conventional method, according to which the input to the level regulator is branched. A particular narrow-band pilot signal filter is provided for extracting the pilot signal, and the pilot signal thus extracted is amplified and detected for performing supervision of the input level. To be concrete, for the level regulating operation, the output is fed back to produce a predetermined electric voltage through a control circuit, and said voltage is used to drive the variable element of the level regulator to control the gain. While, for the level supervising operation, a supervisory circuit is provided separately from said gain control loop, in which an input consisting of a voice signal and a pilot signal is applied to a pilot signal filter to extract only the pilot signal, which is then amplified and rectified to be obtained as a level supervisory output. However, since this method requires a particular narrow-band crystal filter with sharp attenuation characteristics and a particular rectifier circuit, it is disadvantageous with respect to manufacturing costs and simplicity in construction.
{ "pile_set_name": "USPTO Backgrounds" }
Several arrangements are already known in the field of tripping and firing mechanisms. Among them, are the mechanisms of the "Holland" variety with a hammer, associated with which are a tripping rod and a safety lever. The rod and lever are generally mounted side-by-side and are provided with terminal appendices that are concurrently engaged by the trigger when the hammer is disengaged. However, with such or similar arrangement it is not possible to employ a selecting device, so as to determine at will, in the case of a firearm with a single trigger, the selective disengagement of the hammer first to the left and subsequently to the right, or vice versa. Such selectivity becomes possible only through the employment of very complicated arrangements that are, furthermore, cumbersome and hard to set in motion. Also known is an arrangement, similar to the above which, in order to allow the employment of a firing selector, is provided with a tripping rod that is actuated by the trigger and which, in turn, actuates the safety lever when the hammer is disengaged. However, this second arrangement does not allow a tripping operation which is both safe and light as required by a first class firearm. In addition, none of the known arrangements provide at all for the block-wise and manual disassembly of the firing mechanism from the form housing, so that there are serious limitations with respect to the practicality, adaptability, versatility and maintenance of the known arrangements.
{ "pile_set_name": "USPTO Backgrounds" }
Acne is a disorder resulting from the actions of hormones on the sebaceous glands, which leads to plugged pores and outbreaks of lesions, commonly called pimples. Nearly 17 million people in the United States have acne, making it the most common skin disease. Severe acne can lead to disfiguring, permanent scarring. Acne is described as a disorder of the pilosebaceous units (PSUs). Found over most of the body, PSUs consist of a sebaceous gland connected to a canal, called a follicle that contains a fine hair. These units are most numerous on the face, upper back and chest. The sebaceous glands make an oily substance called sebum that normally empties onto the skin surface through the opening of the follicle, also called a pore. Cells called keratinocytes line the follicle. The hair, sebum and keratinocytes that fill the narrow follicle may produce a plug, which is an early sign of acne. The plug prevents sebum from reaching the surface of the skin through a pore. The mixture of oil and cells allows bacteria Propionibacterium acnes. (P. acnes) that normally live on the skin to grow in the plugged follicles. The bacteria produce chemicals and enzymes and attract white blood cells that cause inflammation. Then the wall of the plugged follicle breaks down, the sebum, shed skin cells and bacteria disseminate into the nearby tissues, leading to lesions or pimples. For patients with moderate to severe acne, the doctor often prescribes oral antibiotics. Oral antibiotics are thought to help control acne by curbing the growth of bacteria and reducing inflammation. Tetracyclines have been used because of their anti-bacterial and anti-inflammatory properties.
{ "pile_set_name": "USPTO Backgrounds" }
Advances in the technology surrounding today's integrated circuits designs, such as microprocessors, continue at an astounding rate. As a result of these advances, integrated circuits are more dense and faster than ever. Moreover, integrated circuits have input/output (I/O) which are operating at higher frequencies than ever. In addition, integrated circuits are consuming more power than their predecessors. These factors are bringing about new challenges for packaging engineers. On the issue of power consumption, today's microprocessors often consume up to 120 watts of power or more. With these microprocessors operating at a 1.2 volt level, 120 watts of power consumption means delivering significant amount of current, up to 100 amps, to these devices. A consequence of this is a requirement to dissipate a great amount of heat. As design advances continue, designs are predicted to approach 200 watts of power consumption in the near future. Successfully delivery of such power to today's and future integrated circuits has become, and will continue to be, a significant challenge. The factors causing the increase in power consumption are numerous. One such factor is the operating speed of today's designs. Today, core speeds of microprocessors have surpassed 2 GHz. Similarly, bus speeds have increased as well; today's bus speeds have surpassed 400 MHz. As operating frequency increases for a given size integrated circuit, power consumption is also increased. This increase is due to, among other things, parasitic resistance of the motherboard, socket pins and electronic packaging. Unfortunately, the cost to reduce parasitic resistance on motherboards, socket pins and electronic packaging can be extensive. Thus, delivering increased power to today's designs without incurring a significant increase in cost is one challenge facing packaging engineers. An additional issue facing today's packaging engineers with respect to integrated circuits is coupling associated with higher I/O signal switching speeds and the higher power being delivered to the integrated circuits. In addition to having more power and I/O signals to be delivered/facilitated than previous generations of designs, the desire is to have even smaller packaging of these integrated circuit designs. This is pushing the pins containing the higher speed I/O signals and pins providing increased power delivery closer together in the packaging. This, in turn, is creating further issues between the power delivered to an integrated circuit and the I/O signals entering and leaving the integrated circuit. Thus, significant challenges face today's packaging engineers with respect to signal I/O and power delivery to today's integrated circuits.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to an information-processing system and in particular to an information-processing system with high-density memory. 2. Description of Related Art For purposes of the present discussion, RAM devices may be divided into at least two general classes based on intended applications and cost/performance tradeoffs. A first class (type one RAM) is comprised of devices whose design is optimized for high-density and access to large amounts of contiguous data, while a second class (type two RAM) is comprised of devices whose design is optimized for random access to small amounts of data that may be discontiguous within the total address space of the memory. An example of type one RAM is Dynamic RAM (DRAM), which by definition includes Synchronous DRAM (SDRAM) and Double Data Rate Synchronous DRAM (DDR-SDRAM). Type one RAM memory cells may be packed relatively densely, so the large quantity of data that can be stored in such devices allows the cost per data unit stored to be minimized. Such devices are a typical choice for providing large amounts of memory in systems that require this. Since the performance of most such systems benefit from rapid access to large contiguous blocks of data, the designs are optimized to enable this, at the cost of providing relatively slower access to small blocks of discontiguous data. Such a design tradeoff is often appropriate because many business, scientific, engineering and graphics data processing applications have the characteristic of operating on relatively large blocks of contiguous data. Static RAM (SRAM) is one example of type two RAM. Type two RAM memory cells cannot be packed as densely as type one RAM memory cells and dissipate more power than type one RAM memory cells. The consequence of the relatively low packing density and the higher power of type two RAM is that the quantity of data that can be stored is lower than type one RAM devices would provide and a higher cost per unit data stored. Current design practice is to accept this higher cost in order to gain uniformly low access latency over the total address space of the memory. Certain data processing applications such as networking components inevitably need to operate on discontiguous data. The current design practice yields acceptable cost-effectiveness provided the quantity of memory which must be provided is relatively low, since the aggregate of the higher cost per data unit of the memory remains a low portion of the total system cost. But for systems requiring large amounts of memory, type two RAM can be infeasible due to cost, and the high power consumption and low density of type two RAM can create heat dissipation and physical size problems. The growing processing and memory needs of networking components provide one example of this situation. Network infrastructure speeds have increased dramatically, often generation-to-generation being 10X in throughput from the previous. Historically the infrastructure itself only required the information related to routing or other transient data/statistics to be maintained in the wire speed equipment. The servers themselves or other general purpose CPUs in equipment were responsible for the processing of persistent state such as TCP, UDP, IPSec or SSL connection information. General purpose CPUs with traditional memory systems or even specialized processors for routing (i.e., stand-alone Network Processors) do not have the memory subsystems to handle both the high-data-throughput and the high-simultaneous-connection specifications required. The aggregation of services at the edge of a data center can require one million or more TCP connections for an application such as SSL or similarly 500,000+ security associations for IPSec. Firewalls, load balancers, etc. could also be enhanced if there were a capability to either terminate or shadow TCP connections at wire speeds. A xe2x80x9cshadow TCP connectionxe2x80x9d is one that does not terminate the TCP connection, but maintains state with the connection so as to monitor the terminated TCP connection. It would be valuable to provide sufficient memory to support such tasks, but they inherently need to access small blocks of discontiguous data. The cost of providing adequate amounts of suitable memory using existing design precepts can make such systems infeasible due to total cost. In light of the above discussion, it would be desirable to provide a memory architecture that enabled the use of the high-density, low power and low cost devices such as type one RAM, while providing adequately low latency in accessing small blocks of discontiguous data. The present invention solves this and other problems. In light of reviewing the prior art, it is desirable to provide a memory architecture strategy based on the use of high-density storage devices, providing low latency in accessing the full address space of the memory to write or read small blocks of discontiguous data. A memory architecture design and strategy of the present invention uses memory devices that would normally be considered disadvantageous, but by accommodating the data input, output, and other peripheral controller services, overall performance in this mode is optimized. The surprising result is that even though the choice of memory is inappropriate for the task based on the precepts of the prior art, the overall memory system is effective. One example of a normally disadvantageous situation that is beneficial in connection with one or more embodiments of the present invention is bank switching in DDR-SDRAM, thereby achieving feasibility without resort to, for example, SRAM.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates in general to apparatus for reproducing a digital signal in which a clock signal is generated from the reproduced signal. 2. Description of the Prior Art Transmission systems for transmitting information having burst-shape, such as recording and reproducing apparatus are known in which a plurality of rotary heads are mounted on the periphery of a tape guide drum and have, for example, equal angular spacing as, for example, an angular spacing of 180.degree. between the heads. A magnetic tape is wrapped around the periphery of the tape guide drum at an angular spacing which is smaller than the angular range of 180.degree. and might, for example, be in an angular range of 90.degree.. An example of such recording and reproducing apparatus is disclosed in European patent application No. 0092403 which was filed by the assignee of the present application and published on Oct. 26, 1983. In this prior art recording and reproducing apparatus, a radio frequency signal is reproduced by the rotary head during the normal playback mode and has a signal waveform of a burst-shape which has a high signal level as illustrated in FIG. 1A. This is because signals recorded on the tape are reproduced only when the rotary head is substantially in contact with the tape. The RF signal reproduced by the rotary head is waveform-equalized by a waveform equalization circuit and is waveform-shaped by a waveform shaping circuit and then fed to a phase locked loop circuit. The phase locked loop circuit is provided so as to generate a clock signal from the reproduced digital signal. When the level of the RF signal is sufficiently large the voltage controlled oscillator (VCO) of the PLL circuit is locked and placed in a stable state as illustrated in FIG. 1B. When the level of the RF signal is, on the other hand, very small which means that substantially no signal exists, the VCO of the PLL circuit is not in the locked condition and is in a free running state as illustrated in FIG. 1B so that the PLL circuit runs freely which means that the VCO runs freely. Thus, the oscillation frequency of the VCO will vary near the free running frequency and the unstable state will be maintained until a regular RF signal arrives again. This is also true for high speed playback modes such as the fast forward (FF) search mode and the rewind (REW) search mode. Thus, upon the high speed playback mode the plurality of rotary heads scan a plurality of tracks during one scanning such that at that time each head generates an output when it scans the tracks whose azimuths are coincidence with the head and each head generates no output when it scans the tracks whose azimuths are not coincident with the head so that an RF signal which has a so-called bead-shape illustrated in FIG. 2A is obtained. Thus, the PLL circuit to which such RF signal is supplied will be locked and placed in a stable state at a location on the tape where the level of the RF signal is sufficiently large, but it will not be locked as shown in FIG. 2B and will be in a free running state and become unstable at locations on the tape where no RF signal exists or at a trough portion of the RF waveform having bead-shape. In prior art apparatus in which the level of the RF signal becomes small, the PLL circuit is released from the locked state and the PLL circuit is put into the free running state and under these conditions there are various defects of the apparatus. First, the capture range (oscillation frequency range of the VCO in which the PLL can be locked to the input signal which is being varied from the initial state so that the PLL is not in a locked state) cannot be widened. Even if the capture range could be widened, the pull-in time of the PLL (time necessary for locking the PLL) becomes long and the locking range of the PLL (oscillation frequency range of the VCO in which the PLL can maintain the locked state to the input signal when the input signal is being varied from the initial state such that the PLL is in the locked state) is not substantially widened. At the present time, the lock range is about .+-.2 to 3% under best conditions. In addition, the adjustment of the free running frequency of the oscillator is required. Furthermore, even if the recovery time of the PLL (the time period from the time when the PLL is unlocked to the time when it is locked again) from a drop out of the RF is short then the PLL will be locked for a long period of time. Also, in the prior art waveform equalization circuit, the waveform equalization characteristic for equalizing a waveform of a signal reproduced from the tape is fixed to that which occurs in the normal playback mode. As a result in the case of for example, a high speed playback mode or a variable speed playback mode such as when the relative speed between the tape and the head becomes faster or slower than the speed in the normal playback mode, the waveform equalization characteristic which is fixed to the normal playback mode cannot properly operate with the various playback modes because the frequency of the data is shifted upwardly or downwardly in response to the relative speed. This defect causes the data error rates to be increased.
{ "pile_set_name": "USPTO Backgrounds" }
In the RF transmission of digital information, digital data is mapped to symbols to be modulated onto a quadrature carrier. The quadrature modulator can be applied in the digital domain, producing a real IF digital signal, or it can be applied in the analog domain. As a digital quadrature modulator is perfect, the result is a single side band, suppressed carrier analog signal. An analog quadrature modulator (AQM) is not perfect; gain, phase and DC imbalances between the two baseband signal paths cause image and Local Oscillator (LO) frequency components to leak through onto the resultant analog modulated signal. The modulated analog signal is either converted directly to the desired RF operating frequency, or through multiple conversion stages. The RF signal is then amplified to the desired output power with a power amplifier. Power amplifiers exhibit strong non-linearity, which, for variable amplitude modulation schemes, such as WCDMA, result in considerable spectral leakage into neighboring frequency bands. As this leakage is strictly regulated by government agencies, it must be minimized by either operating the power amplifier in a more linear region, which impacts the transmitter efficiency, or by employing a linearization scheme, such as feed-forward or digital predistortion. Many systems employing digital predistortion linearization schemes require large bandwidths to accommodate the compensation signal. Existing digital to analog converter (DAC) technology prevents the use of digital quadrature modulators for wide bandwidth systems, as the maximum bandwidth achievable is limited to FDAC/2 Hz. An analog baseband system utilizing an analog quadrature modulator, however, has effectively double the bandwidth capability. In multi-carrier transmission systems, the complex baseband signal can have multiple frequency-offset carriers. If these carriers are symmetrical about 0 Hz, the images created from imperfections in the analog quadrature modulator are hidden under the opposite carrier. However, to aid the design of the transmitter, many systems are able to position the baseband carriers at arbitrary offset frequencies. In this situation the images are visible and can, if not minimized, break the spectral emission requirements. The quality of the image side band suppression is dependent on the quality of the gain and phase balance between the in-phase and quadrature paths, manifested either on the input signal paths of the modulator or in the internal local oscillator. Additionally, any relative DC offset between the in-phase and quadrature paths degrades the carrier suppression. Accordingly a need presently exists for a system and method for compensation for gain and phase imbalances which is applied to the in-phase and quadrature paths prior to the analog quadrature modulator of a communications system.
{ "pile_set_name": "USPTO Backgrounds" }
A problem that is frequently encountered in engineering software is converting data from one unit system to another unit system. If users desire to perform computations on data that is stored in the US system and display the results in the metric system, then the stored data must be converted from the US system to the metric system. For example, a user may need to determine how many meters are in 100 feet. One approach to this problem is to hard code conversions into the engineering software. For example, the engineering software would have hard coded conversions from the US system to the metric system. However, since the conversions are hard coded, the engineering software is only useful in the countries that use the metric system. Furthermore, the engineering software is only useful for the units that are hard coded in the engineering software. For example, if conversions for only the meter unit and the foot unit are hard coded, then the engineering system can only convert between meters and feet. Therefore, the engineering software must be modified and recompiled for any change that is needed. It would be desirable if the engineering software could be used without modification and/or recompilation. Another approach to this problem is a proprietary file format, which defines measurements. For example, the American Petroleum Institute defines many measurements. However, existing proprietary file formats do not provide a standard method of defining measurements or of performing unit conversions. Based on the foregoing, it is desirable to provide an improved mechanism for performing unit conversions.
{ "pile_set_name": "USPTO Backgrounds" }
A computer network may facilitate the exchange and/or delivery of data packets, or communications, between multiple client nodes. Often, the same communications may be broadcast to all nodes. However, this may create unnecessary traffic over the network and an overload of information for the recipient users. Further, the transmitting user may find it difficult to track the broadcasted communication with each recipient user. This problem has intensified with the increasing use of mobile devices that allows for the timeless and remote transmission, receipt, and access of data by users. In order to facilitate more efficient communication between users, a more sophisticated approach towards the generation and distribution of communications may be required.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention generally relates to copying apparatuses and more particularly, to a copying apparatus in which copy paper sheets ejected out of an apparatus housing of the copying apparatus are received so as to be refed and a sheet feeding portion of the copying apparatus into the apparatus housing. Generally, in order to perform duplex copying or composite copying in copying apparatuses, one copy paper sheet is required to be fed twice. To this end, various copying apparatuses have been processed. For example, in order to simplify operations of duplex copying in a copying apparatus having a U-shaped sheet feeding passage, U.S. Pat. No. 4,017,173 proposes a sheet refeeding device in which an upper sheet cassette movable between a sheet ejecting portion and a sheet feeding portion is displaced, at the time of copying onto a front surface of a copy paper sheet, to the sheet ejecting portion so as to receive the copy paper sheet and is displaced, at the time of copying onto a back surface of the copy paper sheet, to the sheet feeding portion so as to refeed the copy paper sheet. Meanwhile, Japanese Patent Laid-Open Publication No. 134659/1983 discloses a sheet refeeding device for a copying apparatus having a straight pass type sheet feeding passage, in which a sheet cassette having a sheet receiving opening and a sheet feeding opening is detachably mounted on a sheet ejecting portion and a sheet feeding portion upon turnover of front and back surfaces of copy paper sheets. However, in the known sheet refeeding devices referred to above, since the upper sheet cassette or the sheet cassette itself is displaced from the sheet ejecting portion to the sheet feeding portion, another copy receiving tray is required to be additionally provided at the sheet ejecting portion at the time of copying onto the back surfaces of the copy paper sheets. Furthermore, the known sheet refeeing devices have such a drawback that the upper sheet cassette and the sheet cassette are designed for exclusive use in the known copying apparatuses, respectively and therefore, cannot be provided, as options, in other existing copying apparatuses having no sheet refeeding device.
{ "pile_set_name": "USPTO Backgrounds" }
With the ongoing development in electronics technology, more and more products used in the home and at work are electronically based. Televisions, VCRs, computers and their monitors, printers, copiers, etc., are common electronic devices, and such devices require a source of power for operation. However, electronic devices are not able to directly use the 110V or 220V provided by electric power companies, and said electronic devices are installed with semiconductors, etc., that are driven by roughly 5V to 10V. A power supply performs the operation of transforming the 110V or 220V source to a suitable level of voltage, e.g., 5V to 10V. The switched-mode power supply is used in many electronic products since it is able to supply a stable power. A conventional switched-mode power supply is shown in FIGS. 1–4. Referring to FIG. 1, the switched-mode power supply, which receives an input power (Vin) and provides an output power (Vo) according to a load includes, a first power supply unit (100) that receives the input power (Vin) and undergoes switching according to variations in the output power (Vo) to thereby supply a power, the variations in the output power (Vo) occurring according to a load; and an output power supply unit (200) that receives the power output by said first power supply unit (100) through a coil winding ratio and generates an output power (Vo) for driving a load. The first power supply unit (100) includes a first power converter (110) for receiving the input power (Vin), rectifying the same, then outputting a resulting power; an output power sensing unit (120) for sensing the output power (Vo) that is output to the load from said output power supply unit (200); a switching controller (150), which outputs a signal for controlling the timing of the switching of said output power according to a signal output from the output power sensing unit (120); and a switching transistor (MOS130) that switches On and Off to transmit the power converted by the first power converter (110) to the output power supply unit (200). The first power converter (110) includes a bridge circuit (BR110) that receives the input power (Vin), performs a wave rectification of said input power, then outputs a resulting power; a first resistor (R111), with a first terminal connected to an output terminal of said bridge circuit (BR110); a capacitor (C110), with a first terminal connected to a second terminal of said resistor (R111), and a second terminal which is grounded; a first coil (L110), with a first terminal connected to the second terminal of said resistor (R111), and a second terminal connected to a drain of switching transistor (MOS130); and a second resistor (R112), with a first terminal connected to the output terminal of said bridge circuit (BR110). The output power sensing unit (120) includes, a phototransistor (PT120) for receiving, through a base thereof, an output power that is sensed and undergoes feedback from the output power supply unit (200), said phototransistor (PT120) receiving the output power as a light signal; a first capacitor (C120), with a first terminal connected to a collector of said phototransistor (PT120), and a second terminal which is grounded; a diode (D120), with a cathode connected to the collector of said phototransistor (PT120); a power sensing coil (L120), with a first terminal connected to an anode of said diode (D120), and a second terminal which is grounded, the power sensing coil (L120) being connected in parallel to the first coil (L110) of the first power converter (110); a first resistor (R120), with a first terminal connected to an emitter of said phototransistor (PT120); a second capacitor (C121), with a first terminal connected to the second terminal of said first resistor (R120), and a second terminal which is grounded; a second resistor (R121), with a first terminal connected to the second terminal of said first resistor (R120), and a second terminal connected to the source of said switching transistor (MOS130); and a third resistor (R122), with a first terminal connected to the source of said switching transistor (MOS130), and a second terminal which is grounded. The switching controller (150) includes a comparator (COM150), with a non-inverting terminal which receives a sensed signal from the output power sensing unit (120), and an inverting terminal which receives a first reference voltage of a predetermined value; a flip-flop (SR150), with a reset terminal connected to an output terminal of said comparator (COM150), and a set terminal which is connected to a clock signal; an OR gate (OR150), with a first input terminal connected to an inverted output terminal of the flip-flop (SR150), and a second input terminal connected to the clock signal; a first transistor (Q151), with a collector connected to a drive power source (Vcc), a base connected to an inverted output terminal of the OR gate (OR150), and an emitter connected to a gate of the switching transistor (MOS130); and a second transistor (Q152), with a base connected to a non-inverted output terminal of the OR gate (OR150), and a collector connected to the gate of the switching transistor (MOS130). The output power supply unit (200) includes an output power generating unit (210) that receives the power output from the first power supply unit (100) and generates a power for driving a load; and an output power feedback unit (220) for sensing the power generated by an output from the output power generating unit (210) and performing feedback of the power to the first power supply unit (100). The output power generating unit (210) of the output power supply unit (200) includes a second coil (L210) for receiving the power applied from the first power supply unit (100) through an induced current; a diode (D210), with an anode connected to a first terminal of the second coil (L210) (a second terminal of the second coil (L210) being grounded); and a capacitor (C210), with a first terminal connected to a cathode of the diode (D210), and a second terminal which is grounded. The output power feedback unit (220) of the output power supply unit (200) includes a first resistor (R220), with a first terminal which receives the output power of the output power generating unit (210); a second resistor (R230), with a first terminal connected to a second terminal of said first resistor (R220), and a second terminal which is grounded; an operational amplifier (OP260), with an inverting terminal connected to the second terminal of said first resistor (R220), and a non-inverting terminal which receives a reference voltage; a transistor (Q270), with a base connected to an output terminal of the operational amplifier (OP260), and an emitter which is grounded; a capacitor (C250), with a first terminal connected to the second terminal of said first resistor (R220); a fourth resistor (R250), with a first terminal connected to a second terminal of said capacitor (C250), and a second terminal connected to a collector of said transistor (Q270); a third resistor (R240), with a first terminal which receives an output power of the output power generating unit (210); and a photodiode (PD240), with an anode connected to a second terminal of said third resistor (R240), a cathode connected to the collector of said transistor (Q270) to emit a light proportional to an amount of a current passing through the photodiode (PD240) for output to the first power supply unit (100). The conventional switched-mode power supply structure operated in the following manner. The first power supply unit (100) typically receives the input power (Vin) and generates a power of a suitable level. This power is output through the first coil (L110) by the switching operation of the switching transistor (MOS130). The output power supply unit (200) receives the power by induction through the second coil (L210), which opposes the first coil (L110), then provides a power required to drive various electronic devices. The power applied from the first power supply unit (100) and the power supplied to the load are adjusted by the charging and discharging of the capacitor (C210). In order to control the On and Off operation of the switching transistor (MOS130), which regulates the power applied to the output power supply unit (200), the first power supply unit (100) senses the level of the output power (Vo) that is supplied to the load from the output power supply unit (200), and receives feedback of the output power (Vo). The sensing operation is performed in the output power feedback unit (220), and the transmission of the feedback signal is performed by a photo coupler, which is realized by the photodiode (PD240) and the phototransistor (PT120) of the first power supply unit (100). That is, part of the output power (Vo) inverted in the capacitor (C210) of the output power generating unit (210) is detected by a resistance ratio between the first resistor (R220) and the second resistor (R230) of the feedback unit (220), then this value is compared in the operational amplifier (OP260) with a pre-installed reference voltage (Vref). Accordingly, a current (Iphoto) flowing to the photodiode (PD240) is determined. The photodiode (PD240) then emits a corresponding amount of light, which is sensed in the phototransistor (PT120) of the output power sensing unit (120) by passing through the base of the phototransistor (PT120). As a result, a current (Ipt) of an amount corresponding to the amount of light sensed by the phototransistor (PT120) is generated, after which the current (Ipt) flows to the second resistor (R121) through the first resistor (R120). A resulting voltage drop VR121 across the second resistor (R121) is combined with a voltage VR122 of the third resistor (R122) such that an output value of the comparator (COM150) varies according to the voltage drop VR121 across the second resistor (R121). Further, the second resistor (R121) and the second capacitor (C121) turn on the switching transistor (MOS130) to thereby operate as a filter circuit for preventing noise occurring as a result of a surge current. That is, if the output value of the comparator (COM150) is a logical HIGH value, the flip-flop (SR150) is reset such that the output value of the non-inverting terminal of the OR gate (OR150) becomes LOW and the output value of the inverting terminal of the OR gate (OR150) becomes HIGH. The value of the output signal of said OR gate (OR150) is determined by an output signal of a clock generator (OSC) as shown in A of FIG. 2, and by the value of the inverting output terminal of the flip-flop (SR150) as shown in D of FIG. 2. Further, the value of the inverting output terminal of said flip-flop (SR150) is determined by the output signal of the comparator (COM150) as shown in C of FIG. 2, and the output signal of said comparator (COM150) is determined by a current (Isense) input to the non-inverting input terminal of the comparator (COM150) as shown in B of FIG. 2. The value of the inverting output terminal of said OR gate (OR150), with input to the base of the first transistor (Q151), is opposite the output signal of the inverting output terminal of said flip-flop (SR150). In addition, if the second transistor (Q152) is turned On, the switching transistor (MOS130) is turned Off such that power transmission does not occur. However, if said first transistor (Q151) is turned On, the said switching transistor (MOS130) is turned On such that a first power is transmitted to the output power supply unit (200). Therefore, in summary, if the output power (Vo) is increased, the amount of the current (Iphoto)flowing to the photodiode (PD240) is increased, and at the same time, the current (Ipt) flowing to the phototransistor (PT120) is also increased. Accordingly, the voltage drop across the second resistor (R121) is increased, and a DC offset voltage rises, resulting in a reduction in the On time of the switching transistor (MOS130). If the On time of the switching transistor (MOS130) is reduced, the power transmitted to the output power supply unit (200) is reduced, and the time that the capacitor (C210) of the output power generating unit (210) is charged is reduced. This ultimately results in a reduction of the output power (Vo). As described above, the conventional switched-mode power supply detects the output power (Vo), and adjusts the switching time of the switching transistor (MOS130) according to this value to thereby vary the output power (Vo). Typically, the conventional switched-mode power supply operating as described above is used to provide a stable supply of power to televisions, computer monitors, VCRs, etc. Such electronic devices often use a remote control to provide convenience to the user. With the provision of this capability, a minimum of transmitting and receiving circuitry is provided to enable control signals of the remote control to be received even when the controlled device is not being used. That is, a stand-by mode is supported in these devices with remote-control capability. However, with the conventional switched-mode power supply operating as described above, even in a cut-off mode or stand-by mode, in which the power load is low as when the electronic device is not operating and only a minimal amount of stand-by power is required, the electronic device comes to operate in a normal mode identical to when the device is normally operating, and the power loss occurring as a result of the switching operation of the switching transistor (MOS130) is greater than when power is supplied to a load. That is, there is always a loss of power in the conventional switched-mode power supply because of the switching operation of the switching transistor (MOS130). In the case where an electronic device operates normally such that the load is large, the switching loss is not as large as the power transmitted to the electronic device. However, if the electronic device operating as a load is in a cut-off mode or a stand-by mode, although there is not a large demand of power for operation since only a minimum amount of circuitry required to maintain such a stand-by state is operated, a great deal of power loss nevertheless occurs by the switching operation of the switching transistor (MOS130). Further, the amount of time that the switching transistor (MOS130) is controlled to On decreases in tandem with decreases in the size of the load. If the size of the load is extremely small, the amount of time the switching transistor (MOS130) is controlled to On also decreases significantly. If this short On time of the switching transistor (MOS130) is unable to be realized by the circuit, suitable power supply control is not possible.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention pertains generally to steam desuperheaters or attemperators and, more particularly, to a uniquely configured spray nozzle assembly for a steam desuperheating or attemperator device is, the spray nozzle assembly being adapted to improve the atomization performance of the nozzle at very low flow rates. In one embodiment, the spray nozzle sub-assembly of the spray nozzle assembly comprises a fixed nozzle element which is integrated into a spring-loaded nozzle element. The spray nozzle sub-assembly is specifically adapted to improve water droplet fractionation at lower flow rates through the use of only the smaller, central fixed nozzle element, and at high flow rates through the concurrent use of the fixed and spring-loaded nozzle elements. Though at low flow rates, the spring-loaded nozzle element is generally ineffective in water fractionation, high flow rates facilitate the transmission of two spray cones from spray nozzle sub-assembly, one associated with the fixed nozzle element being positioned within one associated with the spring-loaded nozzle element. The double spray cone is able to provide good results at high flow rates by producing an effectively higher spray area through the formation of two water cones (rather than a single water cone), such water cones being sprayed into a flow of superheated steam in order to reduce the temperature of the steam. In another embodiment, the spray nozzle sub-assembly of the spray nozzle assembly comprises a nested pair of spring-loaded primary and secondary nozzle elements which are also adapted to provide an effectively higher spray area through the formation of two water cones. 2. Description of the Related Art Many industrial facilities operate with superheated steam that has a higher temperature than its saturation temperature at a given pressure. Because superheated steam can damage turbines or other downstream components, it is necessary to control the temperature of the steam. Desuperheating refers to the process of reducing the temperature of the superheated steam to a lower temperature, permitting operation of the system as intended, ensuring system protection, and correcting for unintentional deviations from a prescribed operating temperature set point. Along these lines, the precise control of final steam temperature is often critical for the safe and efficient operation of steam generation cycles. A steam desuperheater or attemperator can lower the temperature of superheated steam by spraying cooling water into a flow of superheated steam that is passing through a steam pipe. Attemperators typically comprise one or more spray nozzles or nozzle assemblies positioned so as to spray cooling water into the steam flow. By way of example, attemperators are often utilized in heat recovery steam generators between the primary and secondary superheaters on the high pressure and the reheat lines. In some designs, attemperators are also added after the final stage of superheating. Once the cooling water is sprayed into the flow of superheated steam, the cooling water mixes with the superheated steam and evaporates, drawing thermal energy from the steam and lowering its temperature. With regard to the functionality of any spray nozzle assembly of an attemperator, if the cooling water is sprayed into the superheated steam pipe as very fine water droplets or mist, then the mixing of the cooling water with the superheated steam is more uniform through the steam flow. On the other hand, if the cooling water is sprayed into the superheated steam pipe in a streaming pattern, then the evaporation of the cooling water is greatly diminished. In addition, a streaming spray of cooling water will typically pass through the superheated steam flow and impact the interior wall or liner of the steam pipe, resulting in water buildup which can cause erosion, thermal stresses, and/or stress corrosion cracking in the liner of the steam pipe that may lead to its structural failure. However, if the surface area of the cooling water spray that is exposed to the superheated steam is large, which is an intended consequence of very fine droplet size, the effectiveness of the evaporation is greatly increased. Further, the mixing of the cooling water with the superheated steam can be enhanced by spraying the cooling water into the steam pipe in a uniform geometrical flow pattern such that the effects of the cooling water are uniformly distributed throughout the steam flow. Conversely, a non-uniform spray pattern of cooling water will result in an uneven and poorly controlled temperature reduction throughout the flow of the superheated steam. Along these lines, the inability of the cooling water spray to efficiently evaporate in the superheated steam flow may also result in an accumulation of cooling water within the steam pipe. The accumulation of this cooling water, in addition to potentially causing the problems highlighted above, will eventually evaporate in a non-uniform heat exchange between the water and the superheated steam, resulting in a poorly controlled temperature reduction. In the current generation of combined cycle power plants, there is an increased interest in reducing the minimum load to which the plant is able to operate. The manner of plant operation, often referred to as “park-load,” effectively reduces the minimum load of the plant as the power generated is produced with a bypass valve in a partial opening mode. This mode of operation requires that smaller flows of steam be quenched and controlled through the use of the aforementioned attemperators. However, the designs of the spray nozzle assemblies of currently know attemperators are not particularly well suited for “park-load” plant operation. In this regard, in many current nozzle assembly designs, the valve or spray nozzle element thereof is energized by a spring and is set to a prescribed break-up pressure as is controlled by an upstream control valve. The pressure drop on the nozzle assembly when the nozzle element thereof is actuated to its open position facilitates the generation of a cone of water that is broken into multiple droplets which are mixed into the flow of high temperature steam. However, when using such nozzle assemblies to cool steam at lower flow rates, a low pressure similar to the nozzle assembly break-up pressure will typically result in the generation of a single jet of water, rather than a cone-shaped flow of water mist, thus not guaranteeing good control of steam attemperation. The present invention addresses these and other deficiencies of currently known spray nozzle assemblies. In this regard, various novel features of the present invention will be discussed in more detail below.
{ "pile_set_name": "USPTO Backgrounds" }
In general, an antenna is a device designed to radiate waves efficiently in a space, or propagate a signal efficiently by receiving waves. An antenna is fixedly installed to transmit or receive a signal in a predetermined frequency band used for military communication facilities, or to transmit or receive waves used for home appliances such as a TV or a radio. In the fixed state, the antenna transmits and receives signals by resonance in a predetermined frequency band according to a purpose that the antenna serves. Antennas have recently been developed for mobile devices, black boxes, and so on, which transmit and receive Global Positioning System (GPS) signals, images, voice, and data signals, while moving. As described above, an antenna capable of transmitting multi-band signals during movement has been developed and used. Further, in the case where a device is operated by rotating blades, such as a helicopter, an aircraft or drone with propellers, a wind power plant, or a windmill, an antenna is installed for transmitting and receiving various signals configured for monitoring, control, and data according to various purposes. However, a rotator with blades may interfere with waves transmitted and received from and at an antenna by the blades, thereby decreasing transmission and reception efficiency. Particularly, if the blades are formed of a metal, the metal itself has the property of reflecting waves. The resulting interference occurs to signals transmitted and received by rotation, thereby rapidly decreasing reception efficiency. Among the rotators, a drone with propellers takes off, flies, and lands by remote control of signals transmitted and received through an antenna. If a signal is blocked or becomes weak during flight, the drone is not controllable and thus collides with an adjacent object or falls down. Moreover, in the drone with propellers, thrust force and lift force are generated by rotation of propeller blades. As the body of the drone is formed of a metal robust against an external environment, such as aluminum or titanium, the metal interferes with signals transmitted and received from and at the antenna, thus degrading transmission and reception performance and making transmission and reception efficiency fluctuate according to altitudes. As a result, the drone is not controllable.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates in general to coking and in particular to a new and useful method and apparatus for cooling bulk material such as coke. In prior art dry coke cooling plants (for example according to German AS No. 10 71657), the hot coke produced in a coke oven battery is cooled by directing an inert cooling gas through the hot coke layer. It is further known (from Swiss Pat. No. 101,570) to circulate the cooling gas and re-cool it in a heat exchanger which is designed as a boiler. In addition, a blower for circulating the cooling gas, and a preliminary dust separator and a fine dust separator are provided in the cooling gas circuit. To obtain the desired steam production in the waste heat boiler and then a uniform generation of energy, a continuous operation of the coke cooling chambers is needed, i.e. only small variation in the heat amount removed from, and in the temperature of, the hot coke in the cooling chamber can be tolerated. This requires special measures. According to German AS No. 26 18 654, variations in the heat amount delivery caused by the intermittent bulk material supply are compensated for, and the plant conduits, particularly the boiler tubes, are prevented from overheating by branching off a controllable partial stream of the cooling gas before it enters the vertical chamber, and reuniting it with the heated cooling gas stream ahead of the entrance into the re-cooling heat exchanger. The equipment for carrying out the method comprises a bypass which is parallel to the cooling chamber and in which the partial stream of cooling gas is branched off after the circulating blower and is directed through a mixer for controlling the inlet temperature of the hot cooling gas, into the heat exchanger. In the head zone of the cooling chamber, the hot cooling gas is taken off about at the level of the outlet of the charging lock. By directing a variable amount of gas into the cooling chamber and introducing the balance through the bypass into the outlet line for the hot cooling gas, conditions are to be created for keeping the temperature of the cooling gas at the entrance into the recooling heat exchanger at about 550.degree. C. to 650.degree. C. It must be taken into account in this connection that only a partial gas stream is available for cooling the charged bulk material, while the gas recycling equipment, particularly the recooling heat exchanger, the dust separator, the circulation blower, and the gas lines must be dimensioned for the entire gas amount. In another method, disclosed in German Pat. No. 1,471,589, to obtain a sufficiently uniform rate of heat removal from the hot coke, a cooling chamber of refractory masonry with two operating zones is provided and the hot coke is kept ready in the antechamber section through which the cooling gas does not pass, and is cooled only after sinking into the lower section of the cooling chamber, by a countercurrently flowing gas stream, to the discharge lock exit temperature. The antechamber section is effective as a heat bank and temperature buffer. What is disadvantageous is that the large volume cooling chamber has a very complicated structure. An inner abrasion layer of refractory material is followed by layers of thermal insulation and backfilling inside a steel shell. In the interior of the masonry, passages and a ring conduit for evacuating the hot cooling gas are provided. This results in high capital investment and high operating costs.
{ "pile_set_name": "USPTO Backgrounds" }
The instant invention relates generally to clothes dryer exhaust vents and more specifically it relates to a vent bag for a clothes dryer which provides an air filter for catching lint coming out of the vent pipe of the clothes dryer. There are available various conventional clothes dryers which do not provide the novel improvements of the invention herein disclosed.
{ "pile_set_name": "USPTO Backgrounds" }
Providing adequate lighting for surgical and other medical procedures has traditionally proven to be quite difficult. In an effort to improve such lighting I have developed a number of devices including the intensity adjustable fiberoptic cable apparatuses disclosed in U.S. Pat. No. 5,784,510 and U.S. patent application Ser. No. 08/834,530 filed Apr. 4, 1997. I have also provided a fiberoptic cable apparatus with an adjustable color filter as set forth in U.S. patent application Ser. No. 09/010,413 filed Jan. 21, 1998, pending. These devices permit the surgeon or other medical personnel to quickly, conveniently, and accurately adjust the intensity and color, respectively of light used in surgery and other medical procedures. The descriptions contained in the foregoing references are incorporated in this application by reference.
{ "pile_set_name": "USPTO Backgrounds" }
Urinary incontinence affects over 13 million men and women in the United States. Stress urinary incontinence (SUI) affects primarily women and is generally caused by two conditions, intrinsic sphincter deficiency (ISD) and hypermobility. These conditions may occur independently or in combination. In ISD, the urinary sphincter valve, located within the urethra, fails to close properly (coapt), causing urine to leak out of the urethra during stressful activity. Hypermobility is a condition in which the pelvic floor is distended, weakened, or damaged, causing the bladder neck and proximal urethra to rotate and descend in response to increases in intra-abdominal pressure (e.g., due to sneezing, coughing, straining, etc.). The result is that there is an insufficient response time to promote urethral closure and, consequently, urine leakage and/or flow results. Moreover, the condition of stress urinary incontinence is often compounded by the presence of untreated vaginal vault prolapse or other more serious pelvic floor disorders. Often, treatments of stress incontinence are made without treating the pelvic floor disorders, potentially leading to an early recurrence of the pelvic floor disorder. These and related conditions, are often treated using an implantable supportive sling. Such slings may be made from a variety of materials, but are often made from a mesh material. The mesh may be placed, for example, under the urethra, close to the high-pressure zone with little or no elevation to the urethra. When abdominal pressure increases, such as from coughing, sneezing, or the like, the sling facilitates the collapse of the urethra as a mechanism for closing the urethra to inhibit urine leakage. Subsequent to implantation, scar tissue typically forms around the sling. This scar tissue further supports the urethra and sphincter muscle to facilitate complete urethral closure. Clinically, there are two major challenges to a successful outcome—the formation of prominent and permanent scar tissue around the sling, and release of the sling tension to accommodate the body growth. There is a need for an improved surgically implantable sling that better addresses these two challenges.
{ "pile_set_name": "USPTO Backgrounds" }