text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the Invention
The invention relates to an implantable ventricular heart stimulator for stimulating the right or left or both ventricles of the heart. Such a heart stimulator is known as a single-chamber heart stimulator or as a biventricular heart stimulator and may also include the function of an implantable cardioverter/defibrillator (ICD).
2. Description of the Related Art
Implantable heart stimulators in the form of heart pacemakers or cardioverter/defibrillators are fundamentally known. Such heart stimulators are usually connected to electrode lines which have stimulation electrodes or defibrillation electrodes in one ventricle of the heart or in the immediate proximity thereof. A heart pacemaker may deliver an electric stimulation pulse to the myocardium of a heart chamber via a stimulation electrode to thereby induce a stimulated ventricular contraction if the stimulation pulse is of a sufficient intensity and if the myocardial tissue is not just then in a refractory phase. To trigger a stimulated ventricular contraction in this way, electrode lines having relatively small-area stimulation electrodes are usually used because for triggering a stimulated ventricular contraction, it is sufficient if only a small portion of the myocardium of this ventricle is stimulated initially. Within the context of this description, such a stimulated ventricular contraction is referred to as a stimulated event. If a natural ventricular contraction occurs, this is referred to as intrinsic action or an intrinsic event within the context of this description. A contraction of the right atrium of the heart, for example, is known as an atrial event, which may be a natural atrial event or, in the case of an atrial pacemaker, a stimulated atrial event. In the same sense, natural (intrinsic) and stimulated left ventricular and right ventricular events may also be differentiated.
With regard to the stimulation of a heart chamber, in particular the right or left ventricle of the heart, it should also be pointed out that the stimulation is performed in synchronization with the atrium in order to reproduce as well as possible the natural contractile frequency of the heart in which the right atrium contracts first and then, after an atrioventricular conduction time, the right ventricle contracts, while at the same time or slightly later the left ventricle contracts. Under certain circumstances, the natural ventricular contraction subsequent to a natural contraction of the atrium fails to occur. In typical biventricular pacemakers, the natural contraction of the atrium is therefore detected as an intrinsic atrial event and the right and/or left ventricle is/are stimulated after a predefined conduction time.
Such natural (intrinsic) events are detected by deriving electric potentials of the myocardial of the respective ventricle with the help of sensing electrodes, which are part of a corresponding electrode line. The sensing electrodes may at the same time be stimulation electrodes and may be used alternately as stimulation electrodes and as sensing electrodes. Typically an electrode pair consisting of a tip electrode and a ring electrode is provided for sensing, the tip electrode also serving as a stimulation electrode. The sensing and stimulation in the ventricle are performed with the help of a ventricular electrode line and the stimulation and sensing in the atrium (in the right atrium) are performed using an atrial electrode line which is separately connected in the respective heart stimulator. In addition, a left ventricular electrode line may also be provided, typically passing through the coronary sinus and a lateral vein branching off therefrom into proximity to the left ventricle and may have a small-area stimulation electrode and/or sensing electrode there.
The typical stimulation modes which are implementable with a heart stimulator may be assumed to be known (VVD, DDD, etc.) so they need not be explained further here.
Beyond the properties of a heart pacemaker already described here, of delivering to the heart a stronger current pulse, which should not only stimulate (depolarize) a small portion of the myocardium but should depolarize the largest possible amount of myocardium and thus make it refractory to thereby interrupt the typical cycling stimulation of the myocardium that is typical of fibrillation. Such a pulse is known as a defibrillation shock. It is typically delivered via a large-area defibrillation electrode in comparison with the stimulation electrode or sensing electrode.
This is often implemented in the form of a shock coil on the outer surface of the electrode line in the respective chamber of the heart. For example, a ventricular electrode line in addition to a tip electrode or a ring electrode for stimulation and sensing may also have a ventricular shock coil as well as a proximal shock coil situated in the superior vena cava after implantation.
A defibrillation shock is usually delivered when the heart stimulator detects a fibrillation, i.e., an irregular high-frequency intrinsic activity of the heart which does not lead to complete contraction of the respective chamber of the heart. Such a fibrillation is classified as a tachycardiac arrhythmia, which includes tachycardias in addition to fibrillations. In contrast with fibrillation, complete contraction of the respective chamber of the heart occurs regularly in tachycardia but at a higher rate than would be physiologically appropriate. Such tachycardias can often be treated by antitachycardiac stimulation and do not require a defibrillation shock. Fibrillations are usually treated with a defibrillation shock.
In ventricular tachycardias, a distinction is made between supraventricular tachycardias (SVT) and ventricular tachycardias (VT) in the narrower sense. The latter originate in the ventricle itself, whereas supraventricular tachycardias originate in the atrium. For the treatment initiated after detection of tachycardia, the type of ventricular tachycardia (ventricular tachycardia in the narrower sense (VT) or supraventricular tachycardia (SVT)) is important. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a folding bicycle constructed in a manner foldable about a central portion of a body thereof.
2. Description of the Related Art
A bicycle 71 shown in FIG. 12 is among folding bicycles of the above-mentioned type as the related art. The bicycle 71 includes a frame 74 rotatably supporting a front wheel 2 and a rear wheel 3, a drive mechanism 6 for driving the bicycle 71, a rack 75 secured above the rear wheel 3, a steering section 77 linked to the front wheel 2, a seat section 8 secured to a central portion of the frame 74, and a kick stand 79 that allows the bicycle 71 in its extended state to stand by itself and is capable of supporting the bicycle 71 in its folded state. The frame 74 is comprised of a front fork 11 connected to the steering section 77 and having the front wheel 2 secured thereto via an axle 2a, a steering head 12 holding the front fork 11 and the steering section 77 in a rotatable manner, a down tube 13, a folding mechanism 14 for folding the bicycle 71, a rear arm 85 connected to the down tube 13 via the folding mechanism 14 and having the rear wheel 3 secured thereto via an axle 3a, a seat tube 86 extending upward from the rear arm 85, for having the seat section 8 secured thereto such that the seat section 8 can be moved vertically, a seat stay 87 connecting between the rear end portion of the rear arm 85 and the upper end portion of the seat tube 86, and a stay 88 having the rack 75 secured thereto.
The drive mechanism 6 includes a pedal-side sprocket 33 to which are attached pedals 32, 32 via respective cranks 91a, 91b, and a rear wheel-side sprocket 35 which is rotated via a sprocket chain 34 as the pedal-side sprocket 33 rotates. The steering section 77 is comprised of a stem 95 connected to an upper end of the front fork 11 within the steering head 12 and a handle bar 96 secured to the upper end of the stem 95. Further, the seat section 8 is comprised of a seat post 51 secured to the seat tube 86 such that the seat post 51 can be moved vertically therein, and a saddle 53 secured to the upper end of the seat post 51 via a saddle angle-adjusting mechanism 52.
The bicycle 71 is folded through the following procedure. First, as shown in FIG. 13, the seat post 51 is pushed down into the seat tube 86 such that it is received therein. Then, after the handle bar 96 is turned downward to a position where each of the opposite ends thereof looks as if suspended from the upper end of the stem 95, the steering section 77 in this state and the front fork 11 having the front wheel 2 secured thereto are turned around. At this time, the front wheel 2 is shifted toward the folding mechanism 14 by a distance which is twice longer than a front fork offset. Subsequently, the bicycle 71 in this state is folded by and about the folding mechanism 14 at the central portion of the bicycle 71. As a result, the front wheel 2 is positioned at the left side of the rear wheel 3 (as viewed from the rear of the bicycle 71), whereby the length of the bicycle 71 is reduced approximately by half in comparison with the whole length of the bicycle 71 in its extended state. Thereafter, by placing the front and rear wheels 2, 3 and the kick stand 79 on the ground, with the kick stand 79 kicked backward as shown in FIG. 14, the bicycle 71 in its folded state stands in a state supported by the front and rear wheels 2, 3 and the kick stand 79.
However, the above bicycle 71 suffers from the following problems: As described above, the bicycle 71 is folded by and about the folding mechanism 14 at the central portion of the bicycle 71, so that the length of the bicycle 71 is reduced approximately by half in comparison with the whole length of the bicycle 71 in its extended state. However, the distance from the axle 2a to the folding mechanism 14 and the distance from the axle 3a to the folding mechanism 14 are each longer than the radius of the front wheel 2 and that of the rear wheel 3, and hence the down tube 13 and the rear arm 85 project considerably far from the front and rear wheels 2, 3 in the folded state of the bicycle 71. If the distance between the two axles 2a, 3a is reduced so as to solve the above problem by reducing the distances between the respective axles 2a 3a and the folding mechanism 14, running stability of the bicycle 71 is degraded due to the reduction of the distance between the axles 2a, 3a. Since it is thus difficult to reduce the distance from the axles 2a, 3a of the respective wheels 2, 3 to the folding mechanism 14 in the folded state while maintaining the running stability of the bicycle 71 in the extended state, reduction of the size of the bicycle 71 in its folded state (hereinafter also referred to as xe2x80x9cthe folded bicycle 71xe2x80x9d) is difficult.
Another problem occurs with the folded bicycle 71 when it is carried. If a user tries to move the folded bicycle 71 by rotating the wheels 2, 3 on the ground, rotation of the rear wheel 3 causes rotation of the rear wheel-side sprocket 35, whereby the pedal-side sprocket 33 is rotated via the sprocket chain 34. As a result, the pedal 32 attached to the crank 91a is brought into abutment with the front wheel 2 or the down tube 13. This abutment inhibits the rotation of the rear wheel-side sprocket 35, and hence it becomes impossible to rotate the rear wheel 3. Consequently, the user has to carry the folded bicycle 71 e.g. by holding the seat tube 86 by hand and lifting the whole bicycle 71.
Still another problem is as follows: In the bicycle 71, the handle bar 96 is turned with respect to the stem 95 for reduction of the size of the bicycle 71 in its folded state. However, even when the handle bar 96 is turned downward, the length from the steering head 12 to the upper end of the stem 95 is not reduced, and, what is more, the opposite ends of the handle bar 96 largely project leftward and rightward, respectively, from the folded bicycle 71. This also makes it difficult to reduce the size of the bicycle 71 in its folded state. Further, the pedals 32, 32 also largely project leftward and rightward, respectively, from the folded bicycle 71, which also makes it difficult to reduce the size of the folded bicycle 71.
Moreover, as shown in FIG. 15, when the bicycle 71 is folded, the front wheel 2 and the rear wheel 3 are not in a state held in parallel with each other. Therefore, in moving forward or backward the folded bicycle 71 with the wheels 2, 3 placed on the ground, once the parallelism of the front and rear wheels 2, 3 is lost, the state of the two wheels more pronouncedly tends to go further away from parallelism. For this reason, when the user tries to move the folded bicycle 71 straight in the direction of reverse rotation of the rear wheel 3 e.g. by pushing the seat tube 86, the resistance to rotation of the front wheel 2 is increased, which makes it difficult to carry the bicycle 71 in a state of the wheels 2, 3 being on the ground.
In addition, there is another problem that when the bicycle 71 is folded, the user has to carry baggage which was placed on the rack 75 during running of the bicycle 71, apart from the bicycle 71. More specifically, in the state of the bicycle 71 being folded, the rack 75 is inclined at a large angle with respect to the ground GL as shown in FIG. 14, so that if the baggage is left on the rack 75, the baggage can fall off the rack 75 due to its own weight. Therefore, it is hard to carry the bicycle 71 with the baggage placed on the rack 75, and hence the user has to carry the bicycle 71 by one hand while carrying the baggage by the other hand, which is very troublesome and laborious.
It is an object of the invention to provide a folding bicycle that is reduced in size in its folded state while maintaining the running stability in its extended state and easy to carry in its folded state.
It is another object of the invention to provide a folding bicycle that can be carried with baggage loaded thereon.
To attain the above objects, the present invention provides a folding bicycle including a front wheel, a rear wheel having an axle, a rear wheel-side sprocket connected to the rear wheel, a sprocket chain for being engaged with the rear wheel-side sprocket, and a folding mechanism permitting the folding bicycle in an extended state to be folded at an intermediate region between the front wheel and the rear wheel, wherein the folding bicycle is folded by the folding mechanism such that the front wheel is brought to a position at one side of the rear wheel.
The folding bicycle according to the invention is characterized by comprising an axle shift mechanism permitting the axle of the rear wheel to be shifted to a position toward the intermediate region, and a chain-holding mechanism that holds the sprocket chain at a predetermined position when the axle is shifted to the position toward the intermediate region by the axle shift mechanism, to thereby release engagement between the rear wheel-side sprocket and the sprocket chain.
According to this folding bicycle, since the bicycle is provided with the axle shift mechanism that permits an axle of the rear wheel to be shifted toward the intermediate region, it is possible to increase the distance between the two axles in the extended state of the bicycle, thereby securing the running stability of the bicycle, and at the same time it is possible to reduce the distance between the two axles in the folded state of the bicycle, thereby reducing the size of the folded bicycle. Further, in the folded state of the bicycle, the chain-holding mechanism holds the sprocket chain at the predetermined position when the axle is shifted toward the intermediate region by the axle shift mechanism, thereby releasing engagement between the rear wheel-side sprocket and the sprocket chain, so that it is possible to prevent the rear wheel-side sprocket from being rotated with rotation of the rear wheel, thereby allowing the folding bicycle to be moved by rotation of the wheels.
Preferably, the folding bicycle includes a front wheel-securing mechanism that rotatably secures the front wheel in a folded state of the folding bicycle, such that lines of intersection where a plane of rotation of the front wheel defined as an imaginary geometrical plane which contains a diameter of the front wheel and to which a rotational axis of the front wheel is perpendicular, and a plane of rotation of the rear wheel defined as an imaginary geometrical plane which contains a diameter of the rear wheel and to which a rotational axis of the rear wheel is perpendicular intersect with a ground plane defined as an imaginary geometrical plane corresponding to an arbitrary surface on which the front wheel and the rear wheel are supported are substantially parallel to each other.
According to this preferred embodiment, the front wheel-securing mechanism rotatably secures the front wheel in the folded state of the bicycle, such that lines of intersection where planes of rotation of the respective front and rear wheels intersect with the ground plane are substantially parallel to each other, so that when the folding bicycle in the folded state is moved by rotation of the wheels, the front and rear wheels rotate smoothly, thereby making it easy to move the folding bicycle.
Preferably, the folding bicycle includes an auxiliary wheel arranged in the vicinity of the folding mechanism such that the auxiliary wheel can be placed on a ground together with the front wheel and the rear wheel in the folded state of the folding bicycle, a rack arranged above the rear wheel, and a rack retainer mechanism that holds the rack generally horizontal with respect to a ground plane on which the front and rear wheels are placed, both in the extended state and in a folded state of the folding bicycle.
According to this preferred embodiment, by holding the rack horizontal by means of the rack retainer mechanism, it is possible to move the bicycle in the folded state with baggage placed on the rack by rotation of the front and rear wheels and the auxiliary wheel. Thus, the bicycle in the folded state can be used as a cart.
Preferably, the folding bicycle includes a kick stand arranged in the vicinity of the folding mechanism such that the kick stand can support the folding bicycle in a folded state thereof when the kick stand is in a predetermined position, and a seat post, and when the front wheel, the rear wheel, and the kick stand are placed on a ground in the folded state of the folding bicycle, the seat post is generally perpendicular to a plane of the ground.
According to this preferred embodiment, when the bicycle in the folded state is supported by the kick stand, the seat post is generally perpendicular to the ground plane, so that simply by adjusting a saddle such that it is held in a horizontal position with respect to the ground plane, it is possible to use the folded bicycle as a chair.
Preferably, the folding bicycle includes a pair of pedals, a pair of pedal cranks connected to the pedals, respectively, one of the pair of pedals projecting from a corresponding one of the pair of pedal cranks in a direction away from the one side of the rear wheel in a folded state of the folding bicycle, and a crank-turning mechanism that permits the one of the pair of pedal cranks to be turned in a manner such that the one of the pair of pedals projects toward the one side of the rear wheel.
According to this preferred embodiment, the crank-turning mechanism makes it possible to turn one of the pedal cranks such that the left and right pedals project in the same direction. Therefore, it is possible to reduce the width of the bicycle in the folded state, whereby the size of the folding bicycle can be further reduced in its folded state.
Preferably, the folding bicycle includes a handle system having a telescopic column portion, and an extended portion connected to an upper end of the telescopic column portion such that the extended portion can be fixed at a desired stem angle and that the extended portion can be rotated about an axis extending in a direction of extension of the extended portion.
According to this preferred embodiment, the bicycle is provided with the telescopically and rotatable handle system. Therefore, it is possible to make the bicycle in its folded state more compact, whereby the size of the folding bicycle can be reduced in its folded state. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to an electronic key for the actuation of a lock, having a housing on which a key bit for a mechanical lock is arranged and a receptacle for the key bit.
In automobiles particularly, the doors are often equipped with central locking, the locks of the doors being capable of being operated remotely by infrared or high-frequency radiation by means of an electronic key for the sake of increased convenience. An automobile door is usually provided with an additional mechanical lock for opening the door, the lock being actuable by means of an additional mechanical key. This ensures that at least one lock for opening a door can be actuated even if the electronic key fails, for example if the energy accumulator is empty.
In the case of electronic keys of this type, then, it is known to fasten the additional key bit;, serving as an emergency key for the mechanical lock, to the housing of the key. So that the additional key bit does not interfere with general operation, it is arranged pivotably on the housing, so that it can be folded into the housing.
Now these known electronic keys may also be provided with extended functions, in that they are used additionally for actuating the ignition lock in the automobile. While the automobile is in operation, the key is secured in the ignition lock against inadvertent removal which would unintentionally cause the automobile to be rendered inoperative. Now it has become clear that there are emergencies in which the known keys fail. If, for example, the voltage supply at the ignition lock breaks down while the automobile is in operation, the electronic key can no longer be removed from the ignition lock. It is consequently also no longer possible to lock the doors of the automobile at the mechanical lock by means of the emergency key. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an adjustable snow plow shovel and more particularly pertains to allowing easy removal of snow from sidewalks and driveways through the use of adjusting the angle of snow blades and pushing rather than lifting and throwing, so as to reduce back strain common to shoveling. The operator can lean into it and keep going.
The use of snow removal devices is known in the prior art. More specifically, snow removal devices heretofore devised and utilized for the purpose of removing snow are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
By way of example, U.S. Pat. No. 5,511,328 to Fingerer discloses an adjustable hand operated snow plow capable of positioning a pair of blades in a variety of angular configurations. U.S. Pat. No. 1,049,812 to Darling discloses a combination snow plow and shovel constructed of two blades attached to a diamond shaped frame. U.S. Pat. No. 5,472,252 to Barone discloses a snow shovel with an adjustable handle.
While these devices fulfill their respective, particular objective and requirements, the aforementioned patents do not describe an adjustable snow plow shovel for allowing easy removal of snow from sidewalks and driveways.
In this respect, the adjustable snow plow shovel according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in doing so provides an apparatus primarily developed for the purpose of allowing easy removal of snow from sidewalks and driveways with less effort and back strain.
Therefore, it can be appreciated that there exists a continuing need for a new and improved adjustable snow plow shovel which can be used for allowing easy removal of snow from sidewalks and driveways. In this regard, the present invention substantially fulfills this need. | {
"pile_set_name": "USPTO Backgrounds"
} |
Network attached storage (NAS) devices may comprise a wide variety of bays for their storage devices. However, as the number of drives increases, the NAS device typically requires more powerful processors and a different motherboard, redundant array of independent disks (RAID), and power and enclosure management architectures to support the different number of drives. This makes the hardware and software development and cost of the different NAS products difficult to manage.
NAS systems typically use I2C port expanders, which have limited addressing capabilities, to detect/control a fixed numbers of drives. Such I2C port expanders are only extensible by adding another port expander at another I2C address. These enclosure management topologies, however, use all of the limited I2C addressing space and can only control a limited number of drives. Unfortunately, when using a port expander, the software and control system must be modified or configured differently to address the devices. This makes both hardware and software design more complicated and costly. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a hob cutter with a coating and a method for coating a hob cutter. Milling cutters, for example hob cutter tools, are subjected in practice to high stresses. As a result, there is comparatively high wear. Hob cutter tools, in particular, are subject to strong strike or impact stresses during operation.
It is known to provide such tools with a coating that is adapted to their application conditions, for example a hard coating. For this, physical vapor phase deposition (PVD) is used. For hobbing and for other cutting work, thus far, mainly single layer coatings, e.g., TiN, TiAlN or AlCrN coatings have been used. With such coatings, there is a constant chemical composition across the thickness. There is a conflict of goals in that on the one hand the hardest possible coatings are desired for the wear resistance, however, such hard layers can absorb mechanical stress peaks only to a small degree. Such peak stresses occur, for example, during process steps with discontinuous cuts. Through this, cracks can propagate through the tool coating, and lead to tool failure. From WO 2004/059030 A2, the entire contents of which is incorporated herein by reference, a workpiece with a hard coating containing AlCr, and a method for its production are known. There, so-called gradient layers can be provided with increasing Al content towards the surface. The layer composition can change continuously or step-wise over the layer thickness.
The known coatings have in common that they do not always possess optimal properties with regard to their wear resistance on the one hand, and their sensitivity to strike or impact stress on the other. The removal of swarf from a workpiece being processed represents another problem. For optimizing the removal of swarf, it is known, for example for arc PVD coatings to smooth the surface of the coating through finishing treatment. However, this represents an additional work step and gives rise to corresponding costs.
For the production of tool coatings, it is known from WO 2004/059030 A2, the entire contents of which is incorporated herein by reference, to vaporize the metallic portion of the hard coating from alloyed sources (so-called targets) with respectively constant compositions (e.g., Al:Cr compositions). However, due to the constant composition of the target, the flexibility with regard to the possible composition of layers that can be deposited is limited. With highly stressed tools, such as hob cutters, the coating loses its function due to wear after a certain service life. In order to avoid having to replace the entire tool in such a case, it is desired to renew just the coating, thus, to carry out a recoating. For this, at least parts of the tool surface that have worn out coating must be removed, for example, abraded. Subsequently, the tool can be recoated. However, the surface areas not removed in the process, have sometimes been subjected to very high temperatures in the prior use of the tool. Due to the change effected thereby of these areas, this leads to an at least partially insufficient adhesion of the new coating. This in turn, leads to the fact that the coating can fail during operation, for example, detach. Due to this problem also, the number of possible recoatings is limited.
Starting from the described state of the art, the objective of the invention is to provide a hob cutter tool and method of the initially named type, wherein the wear resistance on one hand, and the sensitivity against strike and impact stress on the other hand are improved in a manner that is simple to produce, and the ability to be recoated is improved. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a motor. More specifically, the present invention relates to a motor that uses permanent magnets.
2. Background Information
A permanent magnet motor having a forward salient pole characteristic is known as an electric motor for use as a drive motor in electric vehicles. This permanent magnet motor has a so-called forward salient pole characteristic wherein a d-axis inductance is larger than a q-axis inductance. Such a permanent magnet motor having a forward salient pole characteristic is superior to a motor having a reverse salient pole characteristic with respect to achieving both high torque performance and high rotational speed performance with the same motor. One example of this kind of permanent magnet motor is disclosed in Japanese Laid-Open Patent Publication No. 2006-081338 (entitled “Rotor of Rotary Electric Machine”).
In the permanent magnet motor having a forward salient pole characteristic as in disclosed in Japanese Laid-Open Patent Publication No. 2006-081338, the forward salient pole characteristic of the d-axis inductance being larger than the q-axis inductance is achieved by reducing the q-axis inductance. The q-axis inductance is lowered by adopting an interior permanent magnet (IPM) structure and forming a plurality of slits on a radially outward side of the permanent magnets. The slits are arranged to be parallel to the magnetic flux.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved motor. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
The closest known prior art is U.S. Pat. No. 5,054,180 (1991) to Combs. Combs addresses the problem of removing a headed hinge pin from a car door. His tool gets the job done while offering some protection to the worker who is hitting the tool with a hammer. The present invention offers further protection for the worker's hand by providing a hand guard. Additionally the same tool can be used as a hammer, a nail puller, a pry bar and a roofer's shingle remover.
Related art is noted below. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to an electro-pressure conversion control device in which a plate is driven by an electrical actuator to open and close the jetting hole, through which fluid flows, thereby to control the fluid pressure, and to such an electro-pressure conversion control device which is combined with a fuel injection valve device in which the needle valve is operated by a predetermined fuel pressure to inject fuel from the fuel injection hole.
There has been a strong demand for electrical control fluid because of the recent development of electronic technique, and it has been requested to improve the response characteristic of an electro-pressure conversion control device.
The electro-pressure conversion control device comprises, in combination, an electro-mechanical converter (hereinafter referred to as "an electrical actuator" when applicable) for converting an electrical signal into a mechanical drive force, and a pressure control valve for controlling the pressure of fluid.
It is true that the response characteristics of the electro-pressure conversion control device is determined by the response characteristic of the electrical actuator.
Heretofore, research has been conducted mainly to improve the response characteristic of the electrical actuator; however, it has been difficult to provide a suitable electrical actuator.
In general, the performance of an electrical actuator for fluid control is evaluated in (1) generated drive force, (2) drive displacement, and (3) response characteristic. Generally, the items (1) and (3) or (2) and (3) are contradictory to each other. If the response characteristic is increased, then the drive force and the displacement are decreased. Stated differently, if the drive force and the drive displacement are sacrificed to same extent, the actuator may have a high responsibility.
However, a conventional pressure control valve requires the drive force and the displacement which are relatively large, and therefore it is rather difficult to improve the response characteristic of the electrical actuator. Accordingly, it has been impossible for the prior art to provide an electro-pressure conversion control device high in response characteristic.
On the other hand, recently electrical control of a fuel injection device has been developed to improve the combustion efficiency of an automotive engine or the like thereby to economically use fuel, to purify exhaust gas, and to decrease noise.
A variety of electrical control methods for fuel injection valves have been proposed, and various fuel injection valves have been proposed, and some of them have been put in practical use.
One example of the conventional fuel injection have control methods is as shown in FIG. 1, which is extensively employed for a gasoline fuel injection. In the method, the needle valve 15 of a fuel injection valve A is driven directly by an electrical actuator 16 to control the fuel injection. The fuel injection device shown in FIG. 1 is advantageous in that it is simple in construction and can be readily controlled; however, it is disadvantageous in that, in order to provide a high injection pressure, it is necessary to drive the needle valve 15 with a large drive force, and accordingly in this case it is necessary to use an electrical actuator 16 large in capacity; that is it is necessary to use a heavy electrical actuator 16, with the result that the response characteristic is lowered. Therefore, the injection control method is not practical for the high pressure fuel injection in which the injection pressure is over 10 kg/cm.sup.2.
An electrical control system in which, as shown in FIG. 2, an electromagnetic valve is used to control an accumulator injection valve B has been proposed in the art. The system permits a high-pressure fuel injection. However, the system is disadvantageous in that, as it is necessary to provide an accumulator 17 or a pressure intensifying piston 18 and pipes therefor, the injection valve is rather intricate in construction, and the response characteristic is not sufficient in practical use.
Thus, it is difficult for the prior art to provide an electrical control type fuel injection device simple in construction, high in injection pressure and excellent in control characteristic. | {
"pile_set_name": "USPTO Backgrounds"
} |
Stackable projectiles typically comprise a warhead coupled to a propulsion unit. The propulsion unit usually takes the form of a tailpiece containing a propellant burner, a primer and other components, and which is shaped to accommodate the nose of a similar projectile. Such projectiles can be stacked nose to tail in the barrel of a weapon and fired sequentially using a suitable firing mechanism.
A propulsion unit can be crimped or screw threaded amongst other methods onto a warhead in order to couple the two together. Both crimping and screw threading are direct approaches of joining the warhead to the propulsion unit. However, crimping and screw-threading are not suitable if the propulsion unit is made of different materials. For example, if the warhead is made of metal and the propulsion unit is made of plastic.
Furthermore, different manufacturing parties produce different profiles of warheads and propulsion units, so crimping and screw threading may not be the appropriate methods for joining different profiles of warheads and propulsion units. In order to couple the different profiles of warheads to propulsion units, the profile of the propulsion unit is usually redesigned to accommodate the profile of the warhead. Alternatively, the profile of the warhead can be redesigned to accommodate the profile of the propulsion unit. However, redesigning the profile of the warhead or propulsion unit can be time consuming and costly. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a spark plug of a type that is to be mounted on an internal combustion engine, and a producing method thereof.
2. Description of the Related Art
A glass sealable spark plug is conventionally known and it is manufactured by a process comprising the steps of: filling a seal glass material or a combination of seal glass material, a resistive material and seal glass material as a glass sealing material within a space between a center electrode at a top end thereof and a terminal electrode at a rear end thereof which are arranged in a axial hole of an insulator; melting the glass of the glass sealing material by heating; pressing the terminal electrode; and cooling them to solidify.
(A) When glass sealing is effected at a comparatively low temperature using glass sealing materials of low softening point, the energy cost is reduced and yet high operating efficiency is provided.
On the other hand, if the sealed portions (i.e., the top end of the terminal electrode and the rear end portion of the center electrode) are exposed to high temperature, the glass sealing materials will soften and both the terminal and center electrodes will loosen to impair the airtightness of the spark plug.
In addition, the binding force of the electrically conductive substance mixed in the sealing materials and the resistive material drops to produce a higher resistance.
(B) When glass sealing is effected at high temperature exceeding 800xc2x0 C. using glass sealing materials of high softening point exceeding 750xc2x0 C., the terminal electrode having a plate of nickel or zinc applied to a low carbon steel is oxidized to corrode in the process of glass sealing.
If the terminal electrode is oxidized to corrode, the plate will come off the steel to cause rust formation on the latter.
If rust forms, the electrical connection of the terminal electrode to the plug cap will deteriorate. In addition, the rust stains the barrel portion of the insulator to cause flashover.
It is an object of the invention to provide a spark plug that can be produced without causing oxidation and corrosion of the terminal electrode during glass sealing and which is protected against the increase in the resistance between the terminal and center electrodes.
A spark plug according to the present invention is comprised of an insulator having an axial hole; a center electrode provided at the top end side of the spark plug; a terminal electrode provided at the rear end side thereof, the center electrode and the terminal electrode being arranged to be opposite to each other in the axial hole; and seal glass filled in the axial hole between the center electrode and the terminal electrode; wherein glass sealing of the seal glass is effected at a temperature in the range of 500 to 1000xc2x0 C. at an oxygen concentration of not more than 12 vol %. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to the field of ribbon loudspeakers.
During extensive experimentation with ribbon loudspeakers, I have discovered that by reducing the gap between the side edges of the ribbon and the magnetic poles to distances of about 5 mils, a substantial reduction in the degree of harmonic sound distortion is produced relative to larger gaps in the neighborhood of 15-20 mils. I have determined experimentally that if the gaps between the ribbon edges and the poles are about six to seven mils, the third harmonic distortion is only 2% at about 1,000 cycles per second. In contrast, gaps of about 15 mils produced third harmonic distortion of 7% at about 1,000 cycles per second. Further gap reduction to about 3 mils produced a third harmonic distortion of 0.3% at about 1,000 cycles. The relatively large gaps of about 15 mils cause a pumping action of the air passing through the gaps during ribbon vibration which in turn produces turbulence, which is responsible for the increased distortion of reproduced sound. In my U.S. Pat. No. 3,564,163, incorporated by reference herein, I discuss at the bottom of Column 2 and the top of Column 3 the function of the transverse corregations which are advantageously formed within the ribbon.
The transversely formed corregations discussed and illustrated in the above mentioned patent, although deemed desirable to provide resilience because they allow the ribbon to be deflected back and forth without being permanently stretched, create difficulty in attempting to maintain the above mentioned desirable gap in the neighborhood of about 5 mils. This is because the ribbon will laterally shift about or "snake" due to what I call an "accordian" effect owing to the corregations, and the "snaking" will cause the edges of the ribbon to strike the pole pieces which produces ribbon damage and undesirable sound distorting clattering. Furthermore, the striking of one pole piece by one ribbon edge portion during "snaking" will result in an enlargement of the gap at the opposite edge portion, producing the spillage of a significant body of air through the enlarged gap, to in turn generate the aforementioned detrimental turbulence.
Thus, it is an object of the present invention to enable the use of greatly reduced gaps of about 5 mils to dramatically reduce sound distortion by preventing the above mentioned lateral ribbon shifting or "snaking" phenomenon.
At the top of Column 3 of the above mentioned patent, I briefly suggest a stiffening of the central ribbon portions by "longtitudinal corregations or dimpling." The use of longtitudinal corregations, oriented perpendicular to the transverse corregations at the terminal portions, was attempted to eliminate "snaking" and was unsatisfactory because undue stress was set up at the discontinuous boundary between the transverse corregations and the longtitudinal corregations, which in turn caused serious ribbon damage; likewise with respect to the dimpling approach, which involved forming dimples in the centralized ribbon portion. I have also attempted to form transverse corregations at terminal ribbon portions and eliminate all corregations at the centralized portion. The result is crinkling of the ribbon with accompanying distortion of sound. By shaking a thin sheet of ordinary kitchen aluminum foil, this crinkling sound may be heard. | {
"pile_set_name": "USPTO Backgrounds"
} |
Referring to FIG. 1, a conventional laser light source using an optical wavelength conversion element will be described. The laser light source is basically composed of a semiconductor laser 20, a solid state laser crystal 21 and an optical wavelength conversion element 25 made of KNbO3, which is a non-linear optical crystal.
As shown in FIG. 1, pumped light P1a emitted from the semiconductor laser 20, which oscillates at 807 nm, is collected by a lens 30 so as to excite YAG as a solid state laser crystal 21. A total reflection mirror 22 is formed on an incident surface of the solid state laser crystal 21. The total reflection mirror reflects 99% of light having a wavelength of 947 nm but transmits light in the 800 nm wavelength band. Although the pumped light P1a is thus efficiently introduced into the solid state laser crystal 21, the light with a wavelength of 947 nm, which is generated by the solid state laser crystal 21, is reflected to the optical wavelength conversion element 25 side without being emitted to the semiconductor laser 20 side. Moreover, a mirror 23, which reflects 99% of light having a wavelength of 947 nm but transmits light in the 400 nm wavelength band, is provided on the output side of the optical wavelength conversion element 25. These mirrors 22 and 23 form a resonator (cavity) for light having a wavelength of 947 nm, capable of generating oscillation at 947 nm as a fundamental wave P1.
The optical wavelength conversion element 25 is inserted in the cavity defined by the mirrors 22 and 23, whereby a harmonic wave P2 is generated. The power of the fundamental wave P1 within the cavity reaches to 1 W or higher. Therefore, the conversion from the fundamental wave P1 to the harmonic wave P2 is increased, whereby a harmonic wave having a high power can be obtained. A harmonic wave of 1 mW can be obtained by using a semiconductor laser having an output of 500 mW.
Next, referring to FIG. 2, a conventional optical wavelength conversion element having an optical waveguide will be described. The illustrated optical wavelength conversion element, when a fundamental wave having a wavelength of 840 nm is incident thereupon, generates a secondary harmonic wave (wavelength: 420 nm) corresponding to the fundamental wave. Such an optical wavelength conversion element is disclosed in K. Mizuuchi, K. Yamamoto and T. Taniuchi, Applied Physics Letters, Vol 58, p. 2732, June 1991.
As shown in FIG. 2, in this optical wavelength conversion element, an optical waveguide 2 is formed in an LiTaO3 substrate 1, with layers whose polarization is inverted (domain inverted layers) 3 being periodically arranged along the optical waveguide 2. Portions of the LiTaO3 substrate 1 where the domain inverted layer 3 is not formed will serve as a domain non-inverted layer 4.
When the fundamental wave P1 is incident upon one end (an incident surface 10) of the optical waveguide 2, the harmonic wave P2 is created in the optical wavelength conversion element and is output from the other end of the optical waveguide 2. At this point, light propagating through the optical waveguide 2 is influenced by a periodic structure formed by the domain inverted layers 3 and the domain non-inverted layer 4, whereby propagation constant mismatching between the generated harmonic wave P2 and the fundamental wave P1 is compensated by the periodic structure of the domain inverted layers 3 and the domain non-inverted layer 4. As a result, the optical wavelength conversion element is able to output the harmonic wave P2 with a high efficiency.
Such an optical wavelength conversion element includes, as a basic component, the optical waveguide 2 produced by a proton exchange method.
Hereinafter, referring to FIG. 3, a method for producing such an optical wavelength conversion element will be described.
First, at step S10 in FIG. 3, a domain inverted layer formation step is performed.
More particularly, a Ta film is first deposited so as to cover the principal surface of the LiTaO3 substrate 1, after which ordinary photolithography and dry etching techniques are used to pattern the Ta film into a striped pattern, thereby forming the Ta mask.
Next, a proton exchange process is performed at 260° C. for 20 minutes for the LiTaO3 substrate 1 whose principal surface is covered by the Ta mask. Thus, 0.5 μm thick proton exchange layers are formed in portions of the LiTaO3 substrate 1 which are not covered by the Ta mask. Then, the Ta mask is removed by etching for 2 minutes using a mixture containing HF:HNF3 at 1:1.
Next, a domain inverted layer is formed within each of the proton exchange layers by performing a heat treatment at 550° C. for 1 minute. In the heat treatment, the temperature rise rate is 50° C./sec and the cooling rate is 10° C./sec. In portions of the LiTaO3 substrate 1 where the proton exchange has been performed, the amount of Li is reduced as compared to that in other portions thereof where the proton exchange has not been performed. Therefore, the Curie temperature of the proton exchange layer decreases, whereby the domain inverted layer can be formed partially in the proton exchange layer at a temperature of 550° C. This heat treatment allows for formation of the proton exchange layer having a pattern upon which the pattern of the Ta mask is reflected.
Next, at step 2 in FIG. 3, an optical waveguide formation step is performed.
More particularly, step 2 is generally divided into step S21, step S22 and step S23. The mask pattern is formed at step S21; the proton exchange process is performed at step S22; and high-temperature annealing is performed at step S23.
These steps will be described below.
At step S21, the Ta mask used for forming the optical waveguide is formed. The Ta mask is obtained by forming slit-shaped openings (width: 4 μm, length: 12 mm) in a Ta film. At step S22, a high refractive index layer (thickness: 0.5 μm) linearly extending in one direction is formed in the LiTaO3 substrate 1 by performing a proton exchange process at 260° C. for 16 minutes for the LiTaO3 substrate 1 which is covered by the Ta mask. The high refractive index layer will eventually function as an optical waveguide. However, the non-linearity of the portions where the proton exchange has been performed (the high refractive index layers), as thus formed, is deteriorated. In order to restore the non-linearity, annealing is performed at 420° C. for 1 minute at step S22 after removing the Ta mask. This annealing expands the high refractive index layer in the vertical direction and in the lateral direction, thereby diffusing Li into the high refractive index layers. By reducing the proton exchange concentration in the high refractive index layers in this way, it is possible to restore the non-linearity. As a result, the refractive index of the regions located directly under the slits of the Ta mask (the high refractive index layers) is increased by about 0.03 from the refractive index in other regions, whereby the high refractive index layers function as an optical waveguide.
Next, a protective film formation step (step S30), an end face polishing step (step S40), and an AR coating step (step S50) are performed, thereby completing an optical wavelength conversion element.
By setting the arrangement pitch of the domain inverted layers periodically arranged along the waveguide to 10.8 μm, it is possible to form a third-order pseudo phase-matched structure.
With the above-described optical wavelength conversion element, when the length of the optical waveguide 2 is set to 9 mm, the harmonic wave P2 having a power of 0.13 mW can be obtained for the fundamental wave P1 (power: 27 mW) having a wavelength of 840 nm (conversion efficiency: 0.5%).
For forming a first-order pseudo phase-matched structure, the arrangement pitch of the domain inverted layers can be set to 3.6 μm. In this case, the harmonic wave P2 of 0.3 mW can be obtained for the fundamental wave P1 of 27 mW (conversion efficiency: 1%). The inventors of the present invention have experimentally produced a laser light source which outputs blue laser light by combining such an optical wavelength conversion element with a semiconductor laser.
Such an optical wavelength conversion element has a problem that the phase-matched wavelength thereof varies with the passage of time, whereby a harmonic wave cannot be obtained. When the wavelength of the fundamental wave emitted from a semiconductor laser is kept constant, but the phase-matched wavelength of the optical wavelength conversion element is shifted, the harmonic wave output will gradually decrease, and it will eventually becomes zero.
The object of the present invention is to stabilize a laser light source, to increase the output thereof, and to reduce the size and weight of a laser device or an optical disk apparatus by incorporating a high output laser light source into these devices/apparatuses. | {
"pile_set_name": "USPTO Backgrounds"
} |
Japanese Utility Model Application Publication No. 7-3983 provides a portable power supply for power tools and other equipment is to accommodate the rechargeable batteries in a waist belt that can be worn about the user's waist. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to the field of coated carbon fibers and to the field of carbon fiber composite materials.
2. Description of the Prior Art
It is now known that fibers produced from certain materials may have exceptional mechanical properties, properties which are many times greater than those of the same material produced in bulk form. Because of their form, however, such fibers have limited utility. To increase the utility, it is known to combine many such fibers in a suitable matrix material to form a composite material having a good overall combination of properties. Such a composite material is typlified by the material commonly known as fiberglass which consists of glass fibers in an organic resin matrix. Among the fibers which have been used in composites are glass fibers, boron fibers, ceramic fibers, metal fibers and carbon fibers. An overview of the fiber composite area is presented in the book entitled "High Modulus Fibers and Composites" by F. S. Galasso, published by Gordon and Breach, Science Publishers, Inc., New York, N.Y., 1969.
Carbon fibers have received a great deal of attention since they have a low density and high modulus. Such fibers are typically produced by heating an organic precursor fiber at a high temperature to first carbonize the fiber and then graphitize the carbonized fiber. Commercial carbon fibers have diameters of 5-10 microns and can be quite long; e.g., 10 feet or more. Such carbon fibers can be used in conjunction with a wide variety of organic matrices to produce composite materials. The specific details of the carbon fiber preparation and matrix material do not form a part of the present invention. Rather the invention is directed at a method for increasing the electrical resistance of the carbon fibers and their resistance to oxidation and corrosion so that when the fibers are incorporated in an organic matrix they will have high stability; and in the event of a fire and subsequent release into the air will not cause electrical short circuits.
It has been known in the prior art to form silicon carbide on various substrates by chemical vapor deposition. Silicon carbide filaments have been produced by using heated filaments as a substrate. Since the intent is to produce a high strength filament of silicon carbide, the precursor filaments are of small diameter relative to the finished filament diameter; e.g., 10%.
Limited work has been done using carbon fibers as a starting filament. For example, the article "Elevated Temperature Strength of Silicon Carbide on Carbon Filaments" by K. D. McHenry and R. E. Tressler in J. of Composite Materials V9 (January 1975) pp. 73-76 describes filaments formed on a starting carbon fiber of 0.001 in diameter. On this was deposited a pyrolytic graphite layer about 0.0001 thick, followed by silicon carbide. The resultant fiber was 0.004 inches in diameter. In this situation, the carbon core constituted about 7.5% of the final fiber area with silicon carbide making up the balance.
Similar work is described in "Improvement of Manufacturing Methods for the Production of Low Cost Silicon Carbide Filament" by H. DeBolt and V. Krokonis, AFML-TR-73-140 December 1972. This report is incorporated herein by reference for its teachings relating to specific methods of silicon carbide deposition.
SiC coated carbon fibers may also be advantageously combined with metal matrices. The SiC surface is more resistant to attack by molten metal than is the uncoated carbon surface. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to dynamoelectric machine rotor assemblies and methods of making same, and more particularly, it relates to a segmented, laminated rim that is secured in an optimum fixed relationship to a spider by a plurality of articulated key assemblies. Pursuant to the method of the invention, a base member of each key assembly is secured by a heat-shrinking operation in axially aligned keyways formed, respectively, in the spider and the inner circumferential surface of the laminated rim.
It is common practice in the manufacture of large-diameter rotors for dynamoelectric generators to utilize locking keys between the rotor spiders and rim laminations in a manner that enables the keys to be driven with a slight force fit into aligned keyways in the spider and the rim laminations. Such a manufacturing procedure is completely acceptable for generators that are designed for rotation around a vertical axis, because any radial expansion of the rim laminations that may be caused by centrifugal forces in the rotor assembly during its operation do not cause undesirable wear or other operating problems. However, it has been discovered that when such prior art designs or manufacturing methods are employed to fabricate generator rotors that are designed to rotate around a non-vertical axis, wear-producing movement will result between the rim laminations and the rotor spider. This undesirable relative movement is due to a combination of centrifugal force and gravitational force operating on the rotor as it is spun around the non-vertical axis of the machine.
In fact, it has been found that in addition to the resultant so-called bicycle chain effect between the laminated rim and the spider on which it is mounted, further undesirable relative movement occurs in such machines between the individual rotor rim laminations. Specifically, this second type of movement involves sliding or skewing of the segmented rim laminations relative to one another due to the typically loose tolerances allowed in prior art rotor keying arrangements. Because of such loose tolerances and the types of key structures employed heretofore, each rim lamination segment is not held in direct contact with a key to prevent it from sliding or skewing relative to other rim laminations.
A typical prior art procedure used to avoid skewing between adjacent rim laminations of segmented rotor assemblies of a kind normally fabricated on-site, requires the performance of relatively expensive machining operations by which the irregular sidewalls of keyways in the rim laminations are smoothed to within close tolerances of the width of associated keys. Accordingly, when the keys are positioned in the keyways they closely abut essentially all of the laminations and prevent relative movement between them. Of course, such machining operations make it necessary to provide a large vertically reciprocable planning tool at the often-remote sites where such relatively large diameter, segmented rim assemblies are normally fabricated, thus creating an undesirably high manufacturing cost that should preferably be avoided if possible.
It is also known in the prior art to manufacture relatively small-diameter dynamoelectric generators by heat-shrinking rotor laminations directly onto a shaft to secure them and prevent the above-mentioned looping or bicycle chain effect caused by centrifugal and gravitational forces brought to bear on the laminations when the rotors are turned at high speeds. As stated above though, it has been found that if the same type of heat shrinking fabrication methods are applied to make a large-diameter rotor of the type commonly useful for non-vertical shaft hydraulic turbine generators, it is necessary to provide an undesirably heavy and expensive spider structure to support the resultant high radial compressive forces necessarily created by such typically large magnitude heat shrinking processes on the laminated rim to assure its fixed relationship with the spider when the rotor is turned on its non-vertical axis. To the extent that the number of spokes in such a spider can be reduced, the resulting cost of manufacture of the generator can be minimized, thus, it is advantageous to employ a method for securing segmented rim laminations to relatively large-diameter spiders of non-vertical shaft generators by some other means than the conventional heat-shrinking processes currently employed in making smaller diameter, horizontally mounted dynamoelectric generators.
In terms of generator size, it should be understood that the present invention is particularly applicable to relatively large-diameter generator rotors such as those having diameters in excess of twenty feet. Such relatively large-diameter rotor structures normally employ radial spokes in the spider to minimize the overall weight and cost of manufacture of the rotor assembly, as distinguished from smaller diameter dynamoelectric generators that typically have a solid rotor core. The present invention enables the use of such a relatively lightly spoked, large-diameter rotor assembly while overcoming the aforementioned disadvantages of centrifugal and gravitational forces loosening the rim laminations, or skewing them relative to one another during normal rotation of the rotor around a non-vertical axis. | {
"pile_set_name": "USPTO Backgrounds"
} |
BACKGROUND TO THE INVENTION . . .
SUMMARY OF THE INVENTION . . .
BRIEF DESCRIPTION OF THE DRAWINGS . . .
DETAILED DESCRIPTION OF THE INVENTION . . .
DEFINITIONS . . .
STRUCTURAL UNITS . . .
DESIGN AND PRODUCTION OF THE ROD PROTEINS . . .
ASSEMBLY OF INDIVIDUAL ROD COMPONENTS INTO NANOSTRUCTURES . . .
STRUCTURAL COMPONENTS FOR SELF ASSEMBLY OF BEAMS IN VITRO . . .
APPLICATIONS . . .
KITS . . .
EXAMPLE 1: DESIGN, CONSTRUCTION AND EXPRESSION OF INTERNALLY DELETED P37 . . .
EXAMPLE 2: DESIGN, CONSTRUCTION AND EXPRESSION OF A gp37-36 CHIMER . . .
EXAMPLE 3: MUTATION OF THE GP37-36 CHIMER TO PRODUCE COMPLEMENTARY SUPPRESSORS . . .
EXAMPLE 4: DESIGN, CONSTRUCTION AND EXPRESSION OF A gp36-34 CHIMER . . .
EXAMPLE 5: ISOLATION OF THERMOLABILE PROTEINS FOR SELF-ASSEMBLY . . .
EXAMPLE 6: ASSEMBLY OF ONE-DIMENSIONAL RODS . . .
EXAMPLE 7: STAGED ASSEMBLY OF POLYGONS . . .
The present invention pertains to nanostructures, i.e., nanometer sized structures useful in the construction of microscopic and macroscopic structures. In particular, the present invention pertains to nanostructures based on bacteriophage T4 tail fiber proteins and variants thereof.
While the strength of most metallic and ceramic based materials derives from the theoretical bonding strengths between their component molecules and crystallite surfaces, it is significantly limited by flaws in their crystal or glass-like structures. These flaws are usually inherent in the raw materials themselves or developed during fabrication and are often expanded due to exposure to environmental stresses.
The emerging field of nanotechnology has made the limitations of traditional materials more critical. The ability to design and produce very small structures (i.e., of nanometer dimensions) that can serve complex functions depends upon the use of appropriate materials that can be manipulated in predictable and reproducible ways, and that have the properties required for each novel application.
Biological systems serve as a paradigm for sophisticated nanostructures. Living cells fabricate proteins and combine them into structures that are perfectly formed and can resist damage in their normal environment. In some cases, intricate structures are created by a process of self-assembly, the instructions for which are built into, the component polypeptides. Finally, proteins are subject to proofreading processes that insure a high degree of quality control.
Therefore, there is a need in the art for methods and compositions that exploit these unique features of proteins to form constituents of synthetic nanostructures. The need is to design materials whose properties can be tailored to suit the particular requirements of nanometer-scale technology. Moreover, since the subunits of most macrostructural materials, ceramics, metals, fibers, etc., are based on the bonding of nanostructural subunits, the fabrication of appropriate subunits without flaws and of exact dimensions and uniformity should improve the strength and consistency of the macrostructures because the surfaces are more regular and can interact more closely over an extended area than larger, more heterogeneous material.
In one aspect, the present invention provides isolated protein building blocks for nanostructures, comprising modified tail fiber proteins of bacteriophage T4. The gp34, 36, and 37 proteins are modified in various ways to form novel rod structures with different properties. Specific internal peptide sequences may be deleted without affecting their ability to form diners and associate with their natural tail fiber partners. Alternatively, they may be modified so that they: interact only with other modified, and not native, tail fiber partners; exhibit thermolabile interactions with their partners; or contain additional functional groups that enable them to interact with heterologous binding moieties.
The present invention also encompasses fusion proteins that contain sequences from two or more different tail fiber proteins. The gp35 protein, which forms an angle joint, is modified so as to form average angles different from the natural average angle of 137xc2x0 (xc2x17xc2x0) or 156xc2x0 (xc2x112xc2x0), and to exhibit thermolabile interactions with its partners.
In another aspect, the present invention provides nanostructures comprising native and modified tail fiber proteins of bacteriophage T4. The nanostructures may be one-dimensional rods, two-dimensional polygons or open or closed sheets, or three-dimensional open cages or closed solids. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a moving head light fixture, which moving head light fixture comprises a light generating head, which head is carried in a yoke, which head is rotatable to the yoke, which yoke is rotatable to a base, which head comprises electronic circuits for LED control.
2. Description of Related Art
Single sided moving head light fixtures are well-known.
FR 2 838 178 discloses a spotlight. The spotlight has a face which supports a large number of red, green and blue luminescent diodes which are controlled by an electronic card at the rear to produce various color shades. The spotlight housing may be rotated about a horizontal axis by a motor and toothed belt and about a vertical axis by a motor and toothed belt. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an imaging apparatus capable of tracking a subject.
2. Description of the Related Art
There is conventionally an imaging apparatus equipped with a so-called subject tracking function which recognizes the position of a main subject in an imaging frame and automatically tracks its position. By using this subject tracking function, it is possible to continuously perform automatic focusing control (AF control) and exposure control with respect to a moving main subject.
As an example of an imaging apparatus equipped with such a subject tracking function, Japanese Patent Application Laid-Open No. 7-110429 discusses an imaging apparatus such as a single-lens reflex camera which has a light metering unit for light metering separate from an imaging element and which tracks a subject based on light metering data output from the light metering unit. However, in the case where subject tracking is performed based on light metering data output from a light metering unit as in the case of the imaging apparatus discussed in Japanese Patent Application Laid-Open No. 7-110429, the following issues arise.
In an ordinary single-lens reflex camera like the imaging apparatus discussed in Japanese Patent Application Laid-Open No. 7-110429, the position of a quick return mirror provided in the camera is moved to switch between a state in which the incident light from the subject is guided to an imaging element and a state in which it is guided to an eyepiece (optical finder).
When the incident light from the subject is guided to the eyepiece, the incident light from the subject is also guided to a light metering unit, making is possible to perform light metering on the subject. In other words, in the state in which the incident light from the subject is guided to the imaging element, light metering cannot be performed at the light metering unit.
More specifically, when the state in which the incident light from the subject is guided to the imaging element and the state in which it is guided to the light metering unit, are successively switched with a short period, as in the case of continuous shooting, the accumulation time of light metering at the light metering unit is limited. In particular, when the light metering data output from the light metering unit is used for subject tracking, it is necessary to complete the subject tracking computation before AF control or exposure control is performed, with the result that the accumulation time is further limited than the period in which the incident light from the subject is guided to the light metering unit.
As a result, the accumulation time of the light metering unit is shorter than the flicker period, which results in an increase in the influence of the flicker, making it unlikely to obtain an accurate light metering value. Here, the flicker will be described. When light metering is performed under a fluorescent lamp or the like, there occurs a so-called flicker phenomenon, in which the brightness of the illumination light periodically varies due to the influence of an AC power frequency. In an area where the power frequency is 50 Hz, the flicker period is approximately 10 ms; in an area where it is 60 Hz, the flicker period is approximately 8.3 ms. When light metering is performed in such an environment, if the accumulation time of the light metering unit is not an integral multiple of the flicker period, a light metering value varies depending on a portion of the phase of the flicker period with which the accumulation period overlaps. Thus, it is difficult to perform exposure control in a stable manner.
If, in view of this, the accumulation time of the light metering unit is lengthened in order to reduce the influence of the flicker, the requisite time until completing the subject tracking computation is also lengthened, resulting in reduction in a shooting speed at the time of continuous shooting. | {
"pile_set_name": "USPTO Backgrounds"
} |
Integrated circuitry may include CMOS (complementary metal oxide semiconductor); with a CMOS structure comprising a PMOS (p-type metal oxide semiconductor; i.e., positive channel metal oxide semiconductor) transistor and an NMOS (n-type metal oxide semiconductor; i.e., negative channel metal oxide semiconductor) transistor. It is desired to develop improved CMOS architectures having PMOS and NMOS transistors tailored to achieve desired operational parameters, and to develop methods for fabricating such CMOS architectures. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to a golf club head, particularly a putter, with one or more alignment features that are vertically centered on a back surface of the head opposite the striking face.
Description of the Related Art
The prior art discloses many different types of alignment aids disposed on golf club heads, and on putters in particular. In fact, nearly all putters in the marketplace include some form of horizontal alignment aid, usually in the form of a paint-filled feature on the topline of the putter head, which is circled on the prior art putter shown in FIG. 1. These alignment aids are intended to give golfers a visual reference or gauge for the putter's face center along a horizontal axis, because ball speed and sidespin noticeably change if a golfer hits a ball with the heel or toe side of the putter face, i.e., a horizontal mishit, instead of with the face center. If a golfer is able to hit a golf ball with the center face of a putter, the distance and roll of the golf ball will be more reliable and predictable.
Similarly, ball speed, backspin, and topspin are all negatively affected if a golfer mishits the golf ball vertically, i.e., above or below the center of the putter face. Unfortunately, the prior art, including U.S. Pat. No. 7,341,526 to McCarthy, does not address this problem or provide optimal results. Therefore, there is a need for a putter alignment system that allows a golfer to vertically align the putter face with a golf ball when taking a shot. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to mechanical pumps. More particularly, the invention relates to piston-array pumps suitable for use in analytical instrumentation.
There are many different categories of pumps commonly used in instrumentation. Examples include such types as: centrifugal, diaphragm, gear, peristaltic, piston, and syringe. This evaluation will cover the mode of operation and advantages and disadvantages of each. In particular, the relevance of the characteristics of each type to FIA (Flow-Injection Analysis), SIA (Sequential Injection Analysis), and HPLC (High Pressure Liquid Chromatography) will be examined. These methodologies will hereafter be referred to as "Flow-Based Analytical Techniques".
Centrifugal pumps are typically not used directly in the analytical portions of instrumentation, as they are incapable of delivering sufficiently precise control of flow. They do, however, find use as sample loop circulation devices. They have the disadvantages of not being self-priming, are unidirectional in their pumping action, and cannot pump against much back pressure. They have the advantages of not requiring the use of check valves to regulate cycle direction, and of providing pulseless flow output. Use of this type of pump to provide micro-flows is highly unlikely, and they are typically not used in Flow-Based Analytical Techniques.
Diaphragm pumps have several advantages over centrifugal. They are self-priming, and they will pump against more back pressure. Again, precise flow control is not possible, pumping action is unidirectional, they require check valves to control flow direction, and they deliver highly pulsating flows. These pumps, like centrifugal pumps, are usually used only to drive sample loop flows. Use of this type of pump to provide micro-flows is unlikely, and this type, too, is not usable in Flow-Based Analytical Techniques.
Gear pumps have advantages over both centrifugal and diaphragm pumps. Like diaphragm pumps, they are self-priming, can pump against more back pressure than centrifugal pumps, and can provide higher output pressures than centrifugal pumps. Like centrifugal pumps, their output is pulseless. Unlike centrifugal or diaphragm units, gear pumps can pump either backwards or forwards, and require no check valves. Precise control of flow rate is difficult, as the gearing surfaces are difficult to seal against "slip leakage", and precise flow control becomes problematical when pumping against high back pressure. Gear pumps are also more vulnerable to damage from particulate matter, which causes mechanical wear and increases the "slip leakage" problem. One gear pump version (an experimental design produced by Transcience) purports to eliminate slip leakage by using elastomeric gears. The limiting problem with the Transcience pump is likely to be longevity--the elastomeric gearing will probably not deliver long time intervals without failure, due to rapid wear of the gears. This type of pump (Transcience) purports to deliver micro-flow capability. The Transcience pump is intended for use in the FIA/SIA market niche. It will not be usable in HPLC due to low pressure limitations.
Peristaltic pumps are self-priming, can pump against more back pressure than centrifugal pumps, require no check valves to regulate flow direction, and can pump bidirectionally. They have the significant advantage of being able to gang multiple pumping heads on a single drive unit, and delivering all flows "in phase". The flows delivered by peristaltic pumps are "pulsating"--to a lesser extent than piston pumps, but still significantly. The really significant problem with peristaltic devices is the rapid failure of the elastomeric pump tubing used due to "plastic fatigue" from mechanical wear. Micro-flow delivery from this pump type is problematic due to the very small i.d. pump tubing required. This is the current pump of choice for laboratory FIA, it can also be used for SIA, but not for HPLC due to low pressure limits. Use of peristaltic pumps in instrumentation for process control is unacceptable due to the high maintenance requirements caused by pump tube wear.
Piston pumps are self-priming, can pump against the most back pressure of any pump type available, and can deliver very precise and easily regulated flow velocities. They provide significantly pulsing flow, pump unidirectionally, and most types require the incorporation of check valves. This type of pump can easily be designed to deliver micro-flow capability, and can be configured to drive multiple heads with a single drive unit. This type of pump is suitable for FIA, provided the detector can tolerate some flow pulsation. It cannot be used in SIA due to its unidirectional pumping action. It is the pump of choice for most HPLC work, and in instrumentation for process control, due to its high reliability. ELDEX is a manufacturer of a unit typical of this type of pump. Piston pumps for instrumentation are usually designed primarily for HPLC, which requires pressure capabilities significantly higher than FIA or SIA (1000-5000 psi), and thus makes them relatively expensive, which expense increases rapidly if multiple streams must be pumped.
A unique subset of piston pumps is produced by FMI, Inc. This pump utilizes a special pumping cycle incorporating a piston that simultaneously reciprocates (providing pumping action), and rotates (providing valving action). This type of pump is self-priming, can pump against significant back pressure (but less than pumps designed specifically for HPLC), has no check valves, can deliver bi-directional pumping action, and allows very precise and easily regulated flow velocities. The pumping action is inherently pulsating. These pumps can easily deliver micro-flow capability, and can be configured to drive multiple heads with a single drive unit. They are suitable for FIA, and as they are bi-directional, can be used in SIA (again, with the limitation that the detector tolerate flow pulsation). They are not suitable for HPLC due to low output delivery pressure.
Syringe pumps are essentially very large piston pumps. They are self-priming, can deliver very high pressures, and, as long as their initial fill charge lasts, can deliver pulseless flow rates. They can easily be designed to deliver micro-flows. However, their cycle does require a long refill cycle once the fill charge is exhausted, which is a potential problem (and one soluble by using duplex syringe pumps). They also require some sort of external valving arrangement to control the fill/pump cycle. This type of pump (especially if used in a duplex configuration) is suitable for FIA, SIA, and HPLC. Practical experience has shown glass-barreled syringe pumps to be fragile, and a need to exercise care with the syringe barrel and plunger.
Prior art relating specifically to piston-array pumps include the following patents.
U.S. Pat. No. 2,518,619 to Huber discloses a cylindrical ring valve for multicylinder pumps.
U.S. Pat. No. 3,981,630 to Leduc et al. discloses a swash-plate pump wherein a plurality of pistons bear against the swash plate and are given a reciprocating movement when the plate is rotated by a drive shaft.
U.S. Pat. No. 4,880,361 to Ikeda et al. discloses a multi-piston swash-plate compressor for an air-conditioning system used in a motor vehicle. The compressor has combined cylindrical blocks closed at both axial end faces thereof by front and rear housings.
U.S. Pat. No. 5,009,574 to Ikeda et al. discloses a swash-plate compressor having a pair of axially combined front and rear cylindrical blocks forming therein a plurality of cylindrical bores, a swash-plate chamber, and an oil chamber in which lubricating oil is stored to be stirred by a swash plate rotatably received in the swash-plate chamber, a drive shaft centrally and rotatably mounted in the combined cylindrical blocks to effect rotation of the swash plate, a plurality of reciprocatory double-headed pistons slidably fitted in the bores and operatively engaged with the swash plate via shoe members to be reciprocated by the rotation of the swash plate, a pair of thrust bearings axially supporting the swash plate, and front and rear housings having suction chambers for the refrigerant gas after compression. The front housing has a shaft-sealing chamber formed therein and separated from the suction chamber thereof to define an intermediate pressure chamber between the high-pressure swash-plate chamber and the low-pressure suction chamber of the front housing, and a thin fluid passageway interconnecting the shaft-sealing chamber with the suction chamber. The intermediate pressure chamber and the thin fluid passageway prevent evacuation of the lubricating oil from the swash-plate chamber to the suction chamber even during the rotation of the compressor at a high speed, to thereby promote a lubrication of the thrust bearings, the shoes, and the swash plate.
U.S. Pat. No. 4,095,921 to Hiraga et al. discloses a multi-cylinder compressor suitable for use in a vehicular air-conditioning system. The compressor includes a pair of axially-spaced cylindrical blocks for receiving a refrigerant fluid therein for compression. First and second sets of pistons are respectively reciprocated within the front and rear cylinders, respectively, by first and second sets of rods of different axial lengths. A lubricating system for the compressor includes a flapper element located near the oil hole, to direct oil to the shaft seal for both clockwise and counterclockwise rotation of the compressor.
U.S. Pat. No. 2,475,350 to Capsek discloses a fuel-injection pump comprising a series of elementary parallel piston pumps arranged circularly about the longitudinal axis of the assembly.
U.S. Pat. No. 4,360,321 to Copp, Jr. et al. discloses a multi-cylinder refrigerant compressor having double-ended pistons operating in aligned cylinder bores of a cylinder block to discharge refrigerant from the opposite ends thereof to discharge chambers formed in opposite ends of the compressor. A muffler arrangement is completely formed within the compressor, and comprises a separate attenuation chamber ported at one of two opposing ends thereof directly to each discharge chamber. Each attenuation chamber is formed within and as an integral part of the cylinder block between two adjacent cylinder walls thereof, and an elongated attenuation passage directly connects the attenuation chambers at their other ends. The attenuation chamber is also formed in and as an integral part of the cylinder block, and extends between the two adjacent cylinder walls. The volumes of the attenuation chambers are substantially equal, and the length of the attenuation passage is substantially longer than the corresponding longitudinal dimension of the attenuation chambers in order to attenuate the refrigerant discharge pulses admitted to the discharge chambers to an acceptable output level totally within the compressor.
None of these prior-art pumps is capable of providing the precise, pulseless, and reversible flow of fluid action necessary for chemical analysis. A need therefore exists for a pump which provides such capability. Such a pump, which would have great versatility, is provided by the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the field of energy transfer measurement methods, apparatus, and systems. More specifically, the present invention relates to methods, apparatus and systems for measuring, and in some embodiments controlling, net energy transfer by radiation, convection and conduction through a fenestration, such as a window or translucent panel. The invention has applications in a variety of industrial and consumer fields, and it is emphasized that the background of the invention is discussed herein by way of comparison with merely one specific field of application, that of passive solar energy.
In the prior art, various systems have been proposed for operating solar heated buildings. For instance, it is known to use movable insulation to reduce heat loss through glazed openings such as windows, skylights, clerestories, and Trombe walls in a well-insulated building. Such movable insulation can be of hand operated variety, thermally sensitive type, or motor-driven type. Motor-driven applications are either manually activated or controlled by automatic timers, thermostats or light sensitive devices--examples are foam beads blown between double glazing, and motor-driven sliding insulation, blinds, or panels. Such systems feature relatively crude control of the insulation relative to the energy considerations which must be accounted for, thus wasting solar energy and consequently building heat.
In the passive solar heating of buildings, the solar energy should be turned on only when it is needed, so as to avoid overheating; and the solar energy should be turned off only when it is not needed, so as to avoid overcooling. Unfortunately, determining the threshold decision points is not a simple problem in the solar energy field. If the solar energy is to be controlled by movable insulation, it must be recognized that the highly time-variable solar radiation entering the building is accompanied by complex heat convection and conduction processes between building and environment, as well as reradiation. Unlike a furnace or electric heater which when energized always provides net heat energy flow from itself into the interior of the building, the control of the sun by means of movable insulation introduces variable radiation, convection, and conduction processes which often work at cross-purposes to each other. It is as if there is a "furnace" which can cool a building when it should be heating, and which can heat the building when it should be cooling, unless some means of accurate control can be found.
Accordingly, the accurate control of the timing of the use of solar energy in passively heated buildings is a significant problem, which a mere timer, wall thermostat, or light-sensitive cell is insufficient to solve. The reason is that accurate control depends on continuing knowledge of a quantity denominated herein as "net energy transfer (NET)". Net energy transfer is the actual solar energy available to pass into the building through a fenestration when the movable insulation is retracted or unblocked, net of losses by reradiation, convection, and conduction. Since an important advantage of passive solar energy is low cost, it is essential that the additional cost of such accurate measurement and control be kept small. Accordingly, the economical and convenient measurement of net energy transfer NET is an objective of the present invention.
Although it has just been stated that the ordinary wall thermostat is insufficient to provide the necessary accurate control of the solar energy, the consumer of energy usually finds it convenient and advantageously familiar to be able to control the building temperature by means of such a thermostat. Accordingly, it is a further objective of the present invention not only to accurately measure the net energy transfer NET through solar energy windows but also to control the solar energy with comparable convenience to the thermostatic manner in which natural gas, heating oil, and electric heating sources of energy in buildings are controlled in the prior art.
An additional problem in the solar energy field is accomplishing optimal control of more than one solar energy window in a passive solar building. In such a situation, it is not readily apparent whether all such windows should be blocked or unblocked at the same time, and if so when; or whether some windows should be blocked and others unblocked, and if so, which ones and when. Accordingly, it is a still further objective of the invention to provide accurate control for each additional solar energy window at relatively insignificant additional expense.
Other objectives and advantages of the present invention will be evident from the description of the invention hereinbelow. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various active safety systems have been developed to prevent injury to a user if they approach or come into contact with a dangerous portion of a machine. Such systems typically include two components: a detection portion and a braking portion. U.S. Pat. Nos. 3,785,230 and 4,026,177 to Lokey describe one such system. The system of Lokey uses a detection system that detects dangerous proximity of a part of a user's body. The system relies on a radio-frequency proximity detection. When the detection system detects a dangerous condition, a solenoid is triggered to shift a brake into engagement with the blade. Because the system of Lokey does not wait for contact to occur, the relatively low brake actuation speed provided by a direct-acting solenoid may be adequate to prevent injury. However, in a system that relies on contact detection, the braking time must be minimized. Even in proximity-based systems, it is beneficial to reduce braking time to minimize the chance of injury.
In a system that utilizes a brake to stop the machine, the spacing between the brake and the portion of the machine to be braked—typically a cutter or saw blade—can lead to significant delays in brake action. For instance, a solenoid may supply a few pounds of force over an eighth of an inch. With a relatively light brake of 150 g, a solenoid capable of generating 10 pounds of force takes five milliseconds to move the brake an eighth of an inch. Thus, it is important that the brake be located as close as possible to the portion of the machine to be stopped. However, where the brake contacts the blade directly, the position of the brake may need to be adjustable to accommodate variations in blade size. | {
"pile_set_name": "USPTO Backgrounds"
} |
In an image recognition apparatus which recognizes a commodity from an image photographed by a camera, the precision of recognition of the commodity varies depending on the environment of photography. For example, in the case of a POS system which recognizes a bar code of a commodity by using a camera, the precision of recognition of the bar code of the commodity varies depending on the environment of photography. | {
"pile_set_name": "USPTO Backgrounds"
} |
As known to those skilled in the art, Runway Incursion Algorithms detect collision hazards while aircraft are on the ground. These Runway Incursion Algorithms generally operate using information from a Traffic Information System (“TIS”). A TIS supplies information regarding other aircraft in a vicinity, among other things, and is known in the art. Typically, when a Runway Incursion Algorithm detects a collision hazard, a pilot must quickly assess the hazard, select the target, turn on a velocity vector, and adjust the velocity vector using a rotary knob for the desired time. This procedure is neither an efficient use of time nor invulnerable to human error. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is customary to drive power looms by an electric motor that is connected to an a.c. power supply or a three-phase power supply network. Preferably, pole-switchable or frequency-controlled motors are used. The main power drive is coupled by power transmission means, such as a belt and pulley drive, to a flywheel mass which is coupled to the main drive shaft of the loom, whereby the electric motor drives the flywheel mass. Prior art systems are so constructed that following the switching-on of the main drive, the flywheel mass is first accelerated by the motor to a predetermined rotational speed (called "rpm" herein for brevity). For starting the loom itself, a clutch-brake unit is used for coupling the flywheel mass to the main drive shaft of the loom, so that the rotating flywheel mass starts the loom from a standstill. The performance characteristic of the clutch the "stiffness" or stability of the motor, and the size of the effective flywheel mass, as well as friction resistances determine a very specific rotational speed or rpm progression characteristic on the one hand for the flywheel mass and on the other hand for the main drive shaft of the loom during the loom start-up process. The rpm of the flywheel mass drops substantially after the clutch is engaged and continues to drop until it matches the rpm of the main drive shaft of the loom that is accelerating from a standstill. During this process, the rpm difference between the main loom drive shaft and the flywheel mass involves the "slipping" of the clutch as it is engaged.
Start-up systems for the looms of the type mentioned above must satisfy special conditions in practice. For example, it is necessary that the loom be completely coupled to its power drive before the first beat up of the reed. It can happen during such a coupling operation that the main loom drive shaft is completely coupled to the power drive before the first reed beat-up, but that the instantaneous rotational speed of the loom is too low at the first reed beat-up. As a result, so-called start-up faults are formed in the fabric. Such start-up faults are formed at places where the inserted weft thread is not beat-up with sufficient force against the beat-up edge of the fabric, resulting in an enlarged spacing between neighboring threads. A series of such enlarged spacings resulting from improperly beat-up weft threads may show up as a stripe-type fabric fault. In order to avoid start-up faults that result from insufficient rotational speed in the start-up phase of the loom, it has been customary heretofore to try to construct the loom drive in such a way that it reaches the desired final instantaneous rotational speed if possible by the time of the first beat-up of the reed.
Such a method for starting up a main drive of a power loom is known from U.S. Pat. No. 4,837,485 (Meroth et al.), which issued to the applicant of the present application. The entire disclosure of U.S. Pat. No. 4,837,485 is incorporated herein by reference. While the system and method of U.S. Pat. No. 4,837,485 are effective for achieving the intended objects thereof, there is still room for further improvement. One shortcoming of the method disclosed therein is that it does not call for precisely determining how much the rated rpm of the main power drive, and thus the rpm of the flywheel mass, must be increased in order for the main loom drive shaft to reach the rated operating rpm by the time of the first beat-up of the reed after the main power drive has coupled with the main loom drive shaft. Instead, the prior method generally involves isolating or disconnecting the main power drive from the power supply network during the coupling operation and then reconnecting it to the network with a greater number of motor poles, for example, in order to select a specific rpm that lies between the starting rpm in the coupling operation and the rated rpm for the weaving operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to water heaters and similar systems in which a liquid reservoir is interposed in a pressurized line.
Most water heaters include a pressure vessel that admits water supplied under pressure and, after heating, supplies the heated water under pressure to faucets and other terminal devices in the house that the water heater serves. Although water heaters do generally provide a reasonably long useful life, all eventually fail, and some common failure modes involve a rupture or leak of the pressure vessel. Such a failure can result in the release of a large amount of water; the water release can continue indefinitely if it is not detected, and in some cases the resultant economic loss is considerable.
It would therefore seem desirable to provide water heaters with automatically operated shut-off valves that stop the flow of water into the vessel when a leak occurs. Few such water heaters exist, however, because it is not ordinarily convenient to detect a leak by monitoring readily sensed physical quantities. For example, water pressure would not be a good leak indicator, because the pressure reduction, if any, caused by a leak would not be any greater than that which results from ordinary hot-water use unless the leak resulted from an atypically severe rupture. To sense a leak would therefore require a more-elaborate sensing scheme, such as a sensor for monitoring for moisture on the floor near the water heater. Clearly, such an approach would only rarely be practical. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a dispatch environment, a number of real-time audio messages may be received at the same time (i.e., temporally overlapping) in a single device. During simultaneous reception, individual messages become difficult to comprehend as the audio signals collide at the receiving system, which are summed by the receiving system and reproduced at the same time.
Some systems, such as those using Push-to-Talk (PTT) technology avoid this problem entirely. PTT technology differs from conventional voice networks in allowing audio from only one audio source to be forwarded at a given time. Only one audio source controls the “floor” at any given time, and control is typically achieved when one source releases control and another source assumes the control. Thus, overlapping messages from different audio sources on the selected channel are not permitted to be transmitted. Other systems employ techniques that are generally complicated and expensive.
It is desirous in certain situations, especially those involving emergency services, to have all real-time messages be received properly, even if the messages collide, and messages be delivered proactively in a narrow range of time. Further, large scale disasters result in numerous messages being generated within a very short period. All of these messages should to be received and processed rapidly, so that emergency services can be provided as soon as possible.
Accordingly, there remains a need for a method that minimizes real-time message collision in a device and also addresses at least some of the shortcomings of past and present techniques.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a pressure vessel for storing a gas serving to inflate an airbag for the protection of occupants of a vehicle, and, more particularly, to a pressure vessel having an outflow valve connected to the pressure vessel housing at a predetermined breaking zone and containing a piston which extends to a pyrotechnic system arranged in the vessel interior and which, when the pyrotechnic system is ignited, pierces the predetermined breaking zone of the housing and opens an outflow orifice for the gas.
A pressure vessel is shown German Auslegeschrift No. 2,118,745 where an outflow valve is arranged in the interior. The pressure vessel and is equipped with a piston which projects into a gas generator integrated in the vessel interior and the other end of the piston is connected to the wall of the pressure vessel in the region of a predetermined breaking zone. The piston has a cylindrical shape. After the ignition of the gas generator, the piston presses the predetermined breaking zone of the wall of the pressure vessel outwardly and thus opens an outflow orifice for the gas stored in the pressure vessel. The predetermined breaking zone is circular, so that, when the cylindrical piston is extended, an annular outflow orifice for the gas is obtained. The cross-section of this outflow orifice does not change in the course of the axial movement of the piston as far as its end position.
An object of the present invention is to provide a pressure vessel in which the outflow characteristic of the outflow orifice can be influenced in a controlled manner even during the opening movement of the outflow valve.
This object has been achieved in accordance with the present invention by providing an outflow valve which contains a control body adjoining the predetermined breaking zone and extending in the direction of the pyrotechnic system, the cross-section of which body changes in the axial direction of the outflow valve.
The size of the outflow orifice, the outer edge of which is determined by the contour of the predetermined breaking zone, is thereby varied during the opening movement of the outflow valve. As a result, the outflow of gas from the pressure vessel into the airbag can be influenced in time even during the opening movement of the outflow valve. The shape of the control body makes it possible, for example, to prevent an overload of the airbag at the start of the outflow operation by a smooth onset of the outflow characteristic.
In one currently contemplated embodiment of the present invention, the control body tapers in the direction of the pyrotechnic system. With an increasing opening movement of the outflow valve, therefore, the outflow orifice of the pressure vessel becomes larger.
In yet a further embodiment of the present invention, the predetermined breaking zone has a circular predetermined breaking line, and the control body is made rotationally symmetrical. This provides an annular outflow orifice which guarantees uniform outflow conditions.
In a further embodiment of the invention, the control body is provided with an outer contour curved in longitudinal section. It is thereby possible to obtain even a complicated outflow characteristic, such as, for example, an S-shaped characteristic of the pressure trend over the outflow time.
In a still further embodiment, the outflow valve is followed outside the pressure vessel by a diffuser with an inner wall widening in the axial direction towards the outflow valve and which centers and fixes the control body in its position opening the outflow orifice of the pressure vessel. The outflow valve thereby acquires a specific end position which at the same time defines the maximum outflow cross-section of the outflow orifice. | {
"pile_set_name": "USPTO Backgrounds"
} |
Loading and transporting sensitive electronic equipment has presented numerous problems. Typically, such equipment is packed in a suitable shipping container. Even slight impacts or vibrations to the container, however, produce shock forces that may damage precision instruments if they are not properly supported within the container.
To adequately protect electronic equipment, it is well known to use heavy-duty containers molded from polyethylene for high impact strength. An example of this type of shipping container is disclosed in U.S. Pat. No. 4,284,202, issued Aug. 8, 1981, to Barstow, Jr. It is also necessary to build into these rugged containers a shock-mitigation system that is capable of protecting the equipment from possible damage during shipping and other rough handling. One known system employs a mounting rack constructed from a plurality of welded vertical and horizontal frame members and shock mounts designed to hold the electronic equipment stationary and to absorb shocks.
The problem with that prior art electronic rack mounting frames is that the vertical and horizontal members are Gas Shielded Tungsten Arc (TIG) welded together to form an integral frame structure. Although the welded rack frame is sufficiently strong to withstand most impacts and transmit the shock forces produced thereby from the shock mounts to the electronic equipment without damage, there are difficulties associated with its construction.
First and foremost is the time required to weld the various frame members together and to correct any distortions caused during the welding process, which adds considerably to the cost of manufacturing the mounting rack. Because of imprecisions in the welding process, it is difficult to maintain alignment of the mounting holes which are used to secure the electronic equipment modules to the rack. A further disadvantage of a welded rack system is the storage space required to keep finished racks in stock in order to fill orders promptly. | {
"pile_set_name": "USPTO Backgrounds"
} |
Laterally diffused MOSFET (LDMOS) on fully depleted SOI (FDSOI) is gaining increased attention in semiconductor industry because it requires smaller dimensions compared to bulk LDMOS. Designing an LDMOS on FDSOI may form a drain that includes a lightly doped segment. The lightly doped drain (LDD) segment provides a voltage drop from the drain to edge of the gate that can help prevent gate dielectric breakdown. Thus, the LDMOS on FDSOI may support higher breakdown voltages compared to bulk LDMOS. However, the LDD segment also adds to the resistance of the LDMOS in on-state (on-resistance) which can be an issue in applications where fast turn on of the LDMOS is required. Therefore, providing an LDMOS on FDSOI with low resistance in on-state is highly desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to stabilizing/splinting fractures of bones, bone contusions, and sprains. More specifically it relates to the splinting of rib injuries.
Patients with blunt chest trauma are frequently seen in hospital emergency departments. Major initial concerns for the treating physician are lung collapse, which is ruled out by a chest x-ray, and other injuries that can be ruled out with a combination of physical exam and possibly other imaging studies. Once the evaluation is completed, the majority of patients are discharged home with narcotic pain medications and an incentive spirometer, a device used by the patient to monitor the volume of air inhalation during breathing. An incentive spirometer is imperative for chest wall injuries because it helps to facilitate maximal lung expansion, thereby minimizing the chance of minor lung collapse and subsequent pneumonia. With the exception of pain medication, no treatment is given to patients with rib injuries.
Splints and braces for stabilization of bony injuries and ligamentous injury are well known in the art and are used on all bony injuries except for rib injuries. Rib injuries present a unique splinting challenge due to their location. Proper splinting technique teaches that a splint should extend to include the joint on either side of the injury. Attempts have been made to follow this technique by splinting rib injuries using a brace which wraps circumferentially around the body. However, this proves unsatisfactory because the brace significantly limits lung expansion (both lungs), is associated with high rates of post-injury pneumonia, and is uncomfortable for the patient.
Applying an inelastic adherent patch over the site of a rib injury may give temporary relief. However, it is suboptimal because the amount of reducing force applied to the fracture will be dependant on the amount of chest expansion since the adherent patch is essentially inelastic. Additionally, it is not possible to adjust the patch to optimize patient comfort after application. Showering is problematic as the adherent patch must be removed and reapplied after showering, a task beyond the skill of most patients.
It is, accordingly, an object of this invention to produce a method for splinting rib injuries which affects only the injured portion of the chest allowing unimpeded expansion of the uninjured portion of the chest.
It also an object of this invention to produce a method for splinting rib injuries which produces a reducing force at the injury site even during minimal chest expansion.
It is further an object of this invention to produce a method for splinting rib injuries which allows adjustment after application of the splinting device so as to maximize patient comfort.
It is further an object of this invention to produce a method for splinting rib injuries in which the reducing force can be temporarily removed so as to allow the patient to fully expand the chest during, for instance, use of a incentive spirometer, without complete removal of the splinting means.
It is additionally an object of this invention to produce a method for splinting rib injuries having means which can be removed, reapplied and adjusted by the patient for maximum comfort, for instance, for showering.
It is also an object of this invention to produce a method for splinting rib injuries which is low cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to a fan array fan section utilized in an air-handling system.
Air-handling systems (also referred to as an air handler) have traditionally been used to condition buildings or rooms (hereinafter referred to as “structures”). An air-handling system is defined as a structure that includes components designed to work together in order to condition air as part of the primary system for ventilation of structures. The air-handling system may contain components such as cooling coils, heating coils, filters, humidifiers, fans, sound attenuators, controls, and other devices functioning to meet the needs of the structures. The air-handling system may be manufactured in a factory and brought to the structure to be installed or it may be built on site using the necessary devices to meet the functioning needs of the structure. The air-handling compartment 102 of the air-handling system includes the inlet plenum 112 prior to the fan inlet cone 104 and the discharge plenum 110. Within the air-handling compartment 102 is situated the fan unit 100 (shown in FIGS. 1 and 2 as an inlet cone 104, a fan 106, and a motor 108), fan frame, and any appurtenance associated with the function of the fan (e.g. dampers, controls, settling means, and associated cabinetry). Within the fan 106 is a fan wheel (not shown) having at least one blade. The fan wheel has a fan wheel diameter that is measured from one side of the outer periphery of the fan wheel to the opposite side of the outer periphery of the fan wheel. The dimensions of the handling compartment 102 such as height, width, and airway length are determined by consulting fan manufacturers data for the type of fan selected.
FIG. 1 shows an exemplary prior art air-handling system having a single fan unit 100 housed in an air-handling compartment 102. For exemplary purposes, the fan unit 100 is shown having an inlet cone 104, a fan 106, and a motor 108. Larger structures, structures requiring greater air volume, or structures requiring higher or lower temperatures have generally needed a larger fan unit 100 and a generally correspondingly larger air-handling compartment 102.
As shown in FIG. 1, an air-handling compartment 102 is substantially divided into a discharge plenum 110 and an inlet plenum 112. The combined discharge plenum 110 and the inlet plenum 112 can be referred to as the airway path 120. The fan unit 100 may be situated in the discharge plenum 110 as shown), the inlet plenum 112, or partially within the inlet plenum 112 and partially within the discharge plenum 110. The portion of the airway path 120 in which the fan unit 100 is positioned may be generically referred to as the “fan section” (indicated by reference numeral 114). The size of the inlet cone 104, the size of the fan 106, the size the motor 108, and the size of the fan frame (not shown) at least partially determine the length of the airway path 120. Filter banks 122 and/or cooling coils (not shown) may be added to the system either upstream or downstream of the fan units 100.
For example, a first exemplary structure requiring 50,000 cubic feet per minute of air flow at six (6) inches water gage pressure would generally require a prior art air-handling compartment 102 large enough to house a 55 inch impeller, a 100 horsepower motor, and supporting framework. The prior art air-handling compartment 102, in turn would be approximately 92 inches high by 114 to 147 inches wide and 106 to 112 inches long. The minimum length of the air-handling compartment 102 and/or airway path 120 would be dictated by published manufacturers data for a given fan type, motor size, and application. Prior art cabinet sizing guides show exemplary rules for configuring an air-handling compartment 102. These rules are based on optimization, regulations, and experimentation.
For example, a second exemplary structure includes a recirculation air handler used in semiconductor and pharmaceutical clean rooms requiring 26,000 cubic feet per minute at two (2) inches water gage pressure. This structure would generally require a prior art air-handling system with a air-handling compartment 102 large enough to house a 44 inch impeller, a 25 horsepower motor, and supporting framework. The prior art air-handling compartment 102, in turn would be approximately 78 inches high by 99 inches wide and 94 to 100 inches long. The minimum length of the air-handling compartment 102 and/or airway path 120 would be dictated by published manufacturers data for a given fan type, motor size and application. Prior art cabinet sizing guides show exemplary rules for configuring an air-handling compartment 102. These rules are based on optimization, regulations, and experimentation.
These prior art air-handling systems have many problems including the following exemplary problems: Because real estate (e.g. structure space) is extremely expensive, the larger size of the air-handling compartment 102 is extremely undesirable. The single fan units 100 are expensive to produce and are gene custom produced for each job. Single fan units 100 are expensive to operate.
Single fan units 100 are inefficient in that they only have optimal or peak efficiency over a small portion of their operating range. If a single fan unit 100 breaks down, there is no air conditioning at all. The low frequency sound of the large fan unit 100 is hard to attenuate. The high mass and turbulence of the large fan unit 100 can cause undesirable vibration.
Height restrictions have necessitated the use of air-handling systems built with two fan units 100 arranged horizontally adjacent to each other. It should be noted, however, that a good engineering practice is to design air handler cabinets and discharge plenums 110 to be symmetrical to facilitate more uniform air flow across the width and height of the cabinet. Twin fan units 100 have been utilized where there is a height restriction and the unit is designed with a high aspect ratio to accommodate the desired flow rate. As shown in the Greenheck “Installation Operating and Maintenance Manual,” if side-by-side installation was contemplated, there were specific instructions to arrange the fans such that there was at least one fan wheel diameter spacing between the fan wheels and at least one-half a fan wheel diameter between the fan and the walls or ceilings. The Greenheck reference even specifically states that arrangements with less spacing will experience performance losses.” Normally, the air-handling system and air-handling compartment 102 are designed for a uniform velocity gradient of 500 feet per minute velocity in the direction of air flow. The two fan unit 100 air-handling systems, however, still substantially suffered from the problems of the single unit embodiments. There was no recognition of advantages by increasing the number of fan units 100 from one to two. Further, the two fan unit 100 section exhibits a non-uniform velocity gradient in the region following the fan unit 100 that creates uneven air flow across filters, coils, and sound attenuators.
It should be noted that electrical devices have taken advantage of multiple fan cooling systems. For example, U.S. Pat. No. 6,414,845 to Bonet uses a multiple-fan modular cooling component for installation in multiple component-bay electronic devices. Although some of the advantages realized in the Bonet system would be realized in the present system, there are significant differences. For example, the Bonet system is designed to facilitate electronic component cooling by directing the output from each fan to a specific device or area. The Bonet system would not work to direct air flow to all devices in the direction of general air flow. Other patents such as U.S. Pat. No. 4,767,262 to Simon and U.S. Pat. No. 6,388,880 to El-Ghobashy et al. teach fan arrays for use with electronics.
Even in the computer and machine industries, however, operating fans in parallel is taught against as not providing the desired results except in low system resistance situations where fans operate in near free delivery. For example, Sunon Group has a web page in which they show two axial fans operating in parallel, but specifically state that if ‘the parallel fans are applied to the higher system resistance that [an] enclosure has, . . . less increase in flow results with parallel fan operation.” Similar examples of teaching against using fans in parallel are found in an article accessible from HighBeam Research's library (http://stati.highbeam.com) and an article by Ian McLeod accessible at (http://www.papstplc.com). | {
"pile_set_name": "USPTO Backgrounds"
} |
The embodiments described herein are related to electronic design automation tools, and more particularly to calculating timing characteristics (e.g., output delay and slew) of a circuit while modeling variations in circuit parameters, such as a voltage supply, temperature, and process parameters.
One aspect of integrated circuit design involves determining timing parameters and power consumption to characterize the chip. Currently, large scale integration (“LSI”) designs are transitioning from deep submicron to ultra deep submicron (“DSM/UDSM”) feature sizes. With this transition, timing and power verification becomes more critical to achieve high electrical performance with complex integrated circuit designs. In addition to feature sizes, the accuracy of timing and power verification is also critical due to the ever-increasing size of integrated circuit designs. Furthermore, fast and accurate power and timing verification techniques are critical to meet the time to market product window demands on today's integrated circuit designs.
In general, the timing parameters define how signals propagate from one section of the chip to another. For example, timing parameters define rising signal and falling signal propagation times from driver circuits to receiver circuits in large scale integration (“LSI”) circuits. Currently, timing and power information is generated based on instance-based delay and power calculation. The delay and power calculation is formulated from a fixed library. Specifically, the library defines the pin-to-pin delay and output rise and fall times from a fixed reference lookup table of input signal slew rates and output loading capacitances. Using a fixed base library, output rise and fall times are specified based on input signal slew rates and fixed output loading capacitances.
Using conventional methods to generate a library for timing verification, a load capacitance and input signal slew rate are used to derive the change of output voltage from the change of input voltage. However, this simple technique does not account for circuit level and device level non-linear characteristics. To further simplify the analytical requirements, the output signal curve is specified as a linear sweep. With the continuing rapid advances in lithography, and as transistor dimensions become smaller, this output signal curve is dominated to a much larger extent by the transistors' nonlinear region of operation. Operation of the transistors in the nonlinear region is a result of the transistor switching speed in CMOS circuits.
This technique causes errors in computing both the driving instance delay and the RC network propagation delay. Specifically, these linear sweep techniques cannot match actual signal curves and thus introduce unacceptable error for the delay calculation. In addition, resistive shielding effects are also not properly handled with the linear sweep technique. The resistive shielding effects are caused by the resistive element in the RC network. Using these techniques, the actual signal delay may be significantly different then the delay predictions. Accordingly, related U.S. Pat. No. 6,721,929 entitled “High Accuracy Timing Model for Integrated Circuit Verification” which is hereby incorporated by reference as if fully set forth herein, discloses a new driving methodology that properly calculates delay and power results to accurately reflect the nonlinear behavior particularly found in DSM/UDSM designs.
Another aspect of integrated circuit design involves accommodating changes in circuit parameters such as supply voltage, temperature, and process. For example, in the case of varying supply voltage, instances of the same cell may be used in different parts of a circuit with different supply voltages. The same circuit may be used for different functions depending on a particular application, and thus, require a different supply voltage or a range of supply voltages. Thus the circuit response to each value in supply voltage range must be analyzed. Process represents a collection of parameters including oxide thickness (tox), threshold voltage (Vt), transistor width (W), and transistor length (L). Each value of process is associated with a particular set of parameter values, one value for each parameter in the collection.
There is a need in circuit design to efficiently model timing characteristics of a cell when the cell must accommodate one or more circuit parameters that can vary within a given range. For the purposes of explanation, this description will use the embodiment of supply voltage variation and the embodiment of simultaneous variation of supply voltage and temperature as examples.
The conventional method of modeling supply voltage variation on delay is Linear Derating of the delay based on the supply voltage. Historically, delay at a given supply voltage is calculated by multiplying the known delay at a pre-characterized voltage by a constant “K-factor”, as shown in the following equation:delay(V2)=delay(V1)*(1+K(V2−V1))The V1 voltage is the operating condition at which the delay table in the library file is characterized. The K-factor must have been characterized in the library for the calculation to be effective. Linear derating of delay with supply voltage can lead to inaccuracies in the calculated delay as the supply voltage is decreased.
Another approach for modeling supply voltage variation would be to use the circuit characterization model found in U.S. Pat. No. 6,721,929 for each supply voltage value in the range. Disclosed in U.S. Pat. No. 6,721,929 is a variable current source model that accurately determines timing delays for designs of circuits implemented in integrated circuits. A design for an integrated circuit specifies a resistive-capacitive (“RC”) network, such as a wiring network that interconnects circuits in an integrated circuit. The RC network couples a driving point and a receiving point. A circuit specified in the design, such as a gate level circuit implemented in a standard cell, drives the RC network at the driving point. The variable current source model determines driving currents for the circuit at the driving point based on the RC network and a characterization of the circuit. A timing delay between the driving point and the receiving point is determined by simulating the drive of the RC network with the driving current at the driving point. A circuit characterization model is generated to determine, for each time instance, a new drive current from the drive voltage and the load capacitance from a prior time instance. The circuit characterization model depicts relationships among input signal slew rates, load capacitances, drive currents, and drive voltages for the circuit in the form of a characterization library. Each element in the characterization library stores an eleven element array for each slew and load capacitance parameters of the cell. Each array stores the output delay value and ten points on the output waveform.
A library of characterization data for each voltage value in the range would be stored for every cell. While this approach would be accurate, it needlessly burdens the memory requirements of a system and would require every cell to be characterized for every supply voltage value it could be operated under. A more accurate and efficient method of modeling voltage variation for delay calculation with variation in circuit parameters is needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
There are numerous medical procedures and devices in use today in which a medical device, generally tubular, such as a laparoscope, trocar, electrode, probe, introducer, or the like is inserted into the abdomen, chest, or body parts of a patient for performing some procedure or inspection after which tile device is withdrawn. When the device is inserted, a wound results and hemorrhagic complications arise during the insertion and/or removal of the device. Until my invention, there was no known device which addressed the hemorrhagic complications arising from the wound. If complications arose, the wound was treated in accordance with sound medical practice employing conventional techniques.
Within the prior art, the use of gelatin as a substance for making medication capsules for internal use and adapted to be absorbed by enzyme action or other physiological processes within the body is well known. Also, the use of gelatin material for various surgical techniques has been well documented. In particular, the use of a gelatin material in a "sponge" form or as a foam is commercially available from the Upjohn Company under the trademark "Gelfoam". Gelfoam with and without thrombin, a protein which is active at the last stage of clot formation and functions to change fibrinogen to fibrin, has been used in surgery in virtually all organ systems including prostrate, brain, musculoskeletal, vascular graphs and other areas without adverse complications. The use of gelatin as a coating for a fabric, blood-vessel graft is disclosed in U.S. Pat. No. 3,106,483 to Kline et al dated Oct. 8, 1963, incorporated herein by reference.
The use of hardened gelatin as forming a part of a surgical instrument is disclosed in U.S. Pat. No. 3,358,684 to Marshall dated Dec. 19, 1967, incorporated by reference herein. In Marshall, the distal cutting edge of a cannula which is used as a parenteral injection device is formed from a thiolated gelatin material. Specifically, the gelatin distal tip punctures a vein, and eventually dissolves, leaving the proximal portion of the cannula within the vein for administrating parenteral solutions. The cannula can be thus left in situ without vein damage which would otherwise arise from the presence of a sharp needle or the removal of the sharp needle from the vein. In this sense, the prior art recognizes that it is known to use gelatin as a surgical instrument which can be dissolved at the insertion site. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a semiconductor integrated circuit device and to a process for manufacturing the same; and, in particular, the invention relates to a process which can effectively be applied to a semiconductor integrated circuit device comprising a step for flattening a surface using CMP (Chemical Mechanical Polishing).
In semiconductor integrated circuit devices, such as a DRAM (Dynamic Random Access Memory), demand has been increasing in recent years for finer detail and a higher degree of integration. Due to the demand for greater detail in semiconductor integrated circuit devices, laminated structures in multilayer interconnections are unavoidable, but if a multilayer structure is used, imperfections are formed on the surface of the upper layer reflecting the imperfections in the substrate. If photolithography is performed when imperfections are present on the surface, sufficient tolerance of focal depth cannot be obtained in the exposure step, and this leads to poor resolution. Therefore, the surface is flattened using CMP in order to improve the photolithography of components formed on the surface.
The CMP technique is used also to form isolation regions. In the LOCOS (Local Oxidation of Silicon) technique, which was frequently used in the past, it is difficult to achieve more than a certain amount of detail due to the presence of a bird's beak. Thus, a shallow groove is formed on Ia main surface of the semiconductor substrate; this groove is filled with a silicon oxide film; and the silicon oxide in the regions outside the groove are removed by CMP to form a shallow groove isolation. With a shallow groove isolation, the periphery of the isolation region is sharply defined, so the periphery can also be used effectively as an element part, so that it is easier to achieve finer detail.
However, when the CMP technique is used for polishing, it is impossible to completely remove surface imperfections. When there are imperfections on the polishing surface, a history of imperfections remains on the polishing surface to some extent. Further, if parts which are easily polished and parts which are difficult to polish are both present on the polishing surface, dishing (polishing depressions) tends to occur in the part which is easy to polish. Due to the nature of polishing in the CMP method, this history of imperfections or dishing is particularly significant when the imperfections or parts which are easy to polish have a large area. Specifically, in polishing by the CMP method, although small imperfections can be flattened relatively well, undulations (global undulations) remain over a large area when a large pattern (usually of the order of several μm or more) is repeated, for example, and so it is difficult to flatten the surface completely.
However, a method has been proposed where a dummy pattern is disposed in regions where there are large patterns or where there is a wide pattern interval. In this method, the pattern interval is decreased due to the dummy pattern, so that the aforesaid wide area (global) dishing or undulations are suppressed. For example, in Japanese Unexamined Patent Publication No. Hei 10-335333 (1998)(Koho) (U.S. Ser. No. 09/050,416, 31 Mar. 1998), a technique is disclosed wherein a dummy pattern is disposed in a region with a wide pattern interval to improve the flatness of the surface of an insulating film which fills the pattern. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a computer system in which a population of computers has access to multiple software applications. The computers may be personal computers (PC's) or, for example, integrated circuit cards (“IC cards”), also known as “smart cards”. The applications may be programs available from a variety of sources, including computer tape or disc, and, in particular, remote computers with which a serial link, typically by telephone, is established.
In the PC environment, it is customary to distribute applications on floppy discs or CD ROMS and to retain them on a local hard disc for operation. In many ways, this is inconvenient, demanding high capacity local storage media and presenting difficulties with updates. In the field of smart cards, the problem of local application storage is much more acute, because storage capacity in the integrated circuit is relatively very limited. A solution in both cases is to make available applications held remotely and download them via a remote link. Internet and intranet systems are ideal vehicles for this, and it is possible to run PC's from Internet application modules (or “applets” as they are called) for immediate running and then to discard the applets. The applets require no local long-term storage capacity. An example of such a system is JAVA.
Several difficulties are associated with downloaded applications. One is hardware compatibility. Different computers have different microprocessors and different operating systems. It has been customary to re-write applications to cater to different computers, but this is cost-effective only for large, widely used, and static applications. It is not practicable for applets. A second problem is control of the applets. Without control, it would be possible for applets to make direct hardware calls to take control of local storage or communication devices. This could be mischievous at best and severely damaging or criminal at worst.
JAVA meets these two difficulties by ensuring that the applets are written in a common high-level interpreted language and that a local interpreter processes the applet instructions. Thus, all applets are written in the same language, and the interpreter constitutes both a hardware buffer and a control buffer. Similarly, and for the same reasons, proposals have been made for on-board interpreters in smart cards to run downloaded high-level language applications.
The wide availability of multiple applications to a population of computers raises another problem. For various reasons, it may be desirable to restrict the availability of certain applications to certain computers. For example, some applications may make demands which the hardware of a particular computer cannot meet. These represent technical limitations present in spite of the interpreter arrangement. Furthermore, there may be commercial or moral restraints to be placed on the accessibility of certain applications to certain computers. The present invention seeks to provide a solution to this problem.
IC cards are becoming increasingly used for many different purposes in the world today. An IC card typically is the size of a conventional credit card which contains a computer chip including a microprocessor, read-only-memory (ROM), electronically erasable programmable read only memory (EEPROM), an Input/Output (I/O) mechanism, and other circuitry to support the microprocessor in its operations. An IC card may contain a single application or may contain multiple independent applications in its memory. MULTOS™ is a multiple application operating system which runs on IC cards, among other platforms, and allows multiple applications to be executed on the IC card itself. This allows a card user to run many programs stored in the IC card (for example, credit/debit, electronic money/purse, and/or loyalty applications), irrespective of the type of terminal (i.e., ATM, telephone, and/or POS) in which the IC card is inserted for use.
A conventional single application IC card, such as a telephone card or an electronic cash card, is loaded with a single application at its personalization stage when it is manufactured and before it is given to a card user. That application, however, cannot be modified or changed after the IC card is issued, even if the modification is desired by the IC card user or issuer. Moreover, if a card user wanted a variety of application functions to be performed by IC cards issued to him or her, such as both an electronic purse and a credit/debit function, the card user would be required to carry multiple physical cards on his or her person, which would be quite cumbersome and inconvenient. If an application developer or card user desired two different applications to interact or exchange data with each other, such as a purse application interacting with a frequent flyer loyalty application, the card user would be forced to swap multiple cards in and out of the card-receiving terminal, making the transaction difficult, lengthy, and inconvenient.
Therefore, it is beneficial to store multiple applications on the same IC card. For example, a card user may have both a purse application and a credit/debit application on the same IC card, so that the user could select which type of payment (by electronic cash or credit card) to use to make a purchase. Multiple applications could be provided to an IC card if sufficient memory exists and an operating system capable of supporting multiple applications is present on the IC card. Although multiple applications could be preselected and placed in the memory of the IC card during its production stage, it would also be beneficial to have the ability to load and delete applications for the IC card post-production as needed.
The increased flexibility and power of storing multiple applications on a single IC card create new challenges to be overcome concerning the integrity and security of the information (including application code and associated data) exchanged between the individual IC card and the application provider, as well as within the entire system when loading and deleting applications. It would be beneficial to have the capability in the IC card system to exchange data among IC cards, IC card issuers, system operators and application providers securely and to load and delete applications securely at any time from a local terminal or remotely over a telephone line, Internet, or intranet connection or other data conduit. Because these data transmission lines are not typically secure lines, a number of security and entity authentication techniques must be implemented to make sure that applications being sent over the transmission lines are not tampered with and are loaded onto the intended IC cards only.
As mentioned, it is important—particularly where there is a continuing wide availability of new applications to the cardholder—that the system has the capability of adding applications onto the IC card subsequent to issuance. This is necessary to protect the longevity of the IC cards; otherwise, once an application becomes outdated, the IC card would be useless. It would be beneficial to allow the addition of applications from a remote location as well as from a direct connection to an application provider's terminal. For example, it would be beneficial for a card user to be able to plug his or her IC card into a home computer and download an application over the Internet. This type of remote loading of applications raises a number of security risks when transmitting the application code and related data over an unsecured communications line such as the Internet. Several issues need to be addressed in a system which provides such a capability.
One issue is to make sure that the IC card receiving the application is the intended IC card and not another IC card. A second issue is determining how the IC card can authenticate that the application came from the proper application provider and not an unknown third party. A third issue concerns preventing third parties from reading the application and making an unauthorized copy. If a portion of the application is encrypted to address the latter issue, the intended IC card needs to have access to the correct key to decrypt the application. In a system with many IC cards and additionally many application providers, a secure key transfer technique is required so that the intended IC card can use the correct key for the application which is received. These concerns are raised by both remote application loading as well as by local terminal application loading.
Accordingly, it is an object of this invention to provide a key transfer and authentication technique, and specifically to provide a secure IC card system that allows for the secure transfer of smart card applications which may be loaded onto IC cards.
A further security issue is that an entity which transmits an application or data to an IC card requires that only the intended IC card should receive the transmitted data. Third parties should not be able to intercept and view the data. Additionally, a transmitting entity will require verification that the IC card which has requested information is actually part of the overall IC card system and not simply posing as being part of the system. These concerns are also raised by both remote application loading as well as by local terminal application loading.
Accordingly, it is an object of this invention to provide secure transfer techniques, and, specifically, to provide a secure IC card system that allows for the secure transfer of data, including smart card applications which may be loaded onto IC cards.
According to the invention, a computer system comprises a population of computers; tamper-resistant modules each associated respectively with one of said computers; a plurality of computer applications; provider means for holding the computer applications; and means for coupling the provider means to the computers for downloading the computer applications to the computers.
The computers may be personal computers (PC's) or any other types of computers, in which case the tamper-resistant modules may be smart cards read by readers coupled to the computers or, for example, dongles, PC cards, or PCMCIA cards coupled to the computers. Furthermore, although the following description of the preferred embodiments revolves around a discussion of IC cards (or “smart cards”), the presently claimed methods and apparati are applicable to all tamper resistant modules generally, and not just to such cards. Thus, the term “tamper resistant module” can be used in lieu of the term “IC card” or “smart card” throughout this written description. The term “tamper resistant module” includes, but is not limited to, one or more IC cards, smart cards, dongles, PC cards, and/or PCMCIA cards. The IC cards, smart cards, dongles, PC cards, and/or PCMCIA cards may be coupled to one or more computers. | {
"pile_set_name": "USPTO Backgrounds"
} |
US20080309293A1, entitled “Method for Charging Battery Module in Multiple Stages,” discloses a method for charging a battery module in multiple stages. The method is configured for use with a battery module including a plurality of parallel-connected battery cells. US20080309293A1 discloses that the method is implemented by voltage control or current control to maintain a constant current for charging the battery module in an initial stage of charging. A charging current is lowered substantially to reduce the charging speed when the voltage of one of the parallel-connected battery cells exceeds a safety value or a total voltage of the battery module itself reaches a rated voltage. Accordingly, a safety problem of the battery can be avoided and meanwhile, the life span of the battery can be prolonged. However, the above technical solution disclosed in US20080309293A1 has a drawback; that is, lowering the charging current substantially to reduce the charging speed inevitably results in extending the duration of charging.
In light of the aforesaid drawbacks of the prior art, the inventor of the present invention is devoted to the improvement of the prior art and thus proposes a charging method and a charging device for use with a rechargeable battery with a view to shortening the duration of charging the rechargeable battery. | {
"pile_set_name": "USPTO Backgrounds"
} |
Although today's furniture pieces come in many styles and levels of quality, each piece is typically constructed for a narrow range of uses. For example, regardless of style or quality, chairs and benches are made for people to sit on, tables are made to hold items, and chests are made to store items.
Unfortunately, most of today's furniture pieces provide few, if any, features for entertaining the people who use them. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to vacuum distillation devices and specifically, to such devices that are compact and incorporate a refrigerant cycle and utilize components which result in low energy consumption. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention concerns a method for generating a yarn composed of at least two yarn components, wherein the yarn components in a last processing stage upstream from a collecting stage jointly are compacted into a yarn, and an apparatus for generating a yarn composed of at least two yarn components.
From the European Patent Application No. 0434 601 A1, a method and an apparatus are known for producing a non-twined yarn composed of at least two bundles of fibrils arranged constantly with respect to each other, in which arrangement the bundles of fibrils, called yarn components in the context of this description, each are treated separately in a processing stage each before being drawn, and after drawing are textured jointly. According to common knowledge, the textured yarn subsequently is entangled furthermore in such a manner that the bulked character of the yarn is adapted into a yarn suitable for further processing. In this arrangement, the processing stage upstream from the drawing stage consists of an entangling stage, or a false-twisting stage, in which the individual fibrils of the yarn components are compacted whereby it is rendered possible to keep the distances between the individual yarn components as small as possible without inter-entangling the outermost fibrils of the individual yarn components, which can result in disturbances or at least in an intermingling of the yarn components.
From a further European Patent document EP 485 871B1, a method and an apparatus are known for generating a texturized multicoloured yarn in which arrangement the individual colours are supplied separately from an extruder beam each and cooled, and subsequently are separately guided via an oiling device each and subsequently are guided separately through entangling nozzles each. In this arrangement, the entangling process is effected in such a manner that the entanglement is dissolved in the subsequent drawing process at least to a large extent. The entanglement is aimed at compacting the individual bundles of fibrils, also called yarn components, in such a manner that the individual bundles of fibrils are mutually intermingled in such a manner that the colour separation in the final yarn is disturbed. The drawn bundles of fibrils subsequently are directly textured jointly, cooled and jointly are entangled in an entangling device and subsequently are wound up in a package. The last mentioned entanglement is a collective entanglement, i.e. an interconnection of the three part-threads in such a manner that an actually coherent yarn is generated which can be wound up.
From the European Patent Application with the Publication No. EP .0784109 A2, it can be seen that part-threads of different types, e.g. differently coloured or differently stainable part-threads, are supplied either from extrusion beams or from thread packages and before being drawn first are oiled each and subsequently are pre-compacted, and after the drawing stage are textured either jointly in a common texturizing device, or individually each in a texturizing device. Downstream from the texturizing device, the plug emerging from the texturizing device is cooled, which cooling can be effected, at least partially, already within the texturizing device towards the exit end of the texturizing device.
After cooling of the plug, the part-threads each in an after-compacting stage preferentially are entangled and subsequently are jointly entangled again, i.e. combined, in a collective entanglement stage in such a manner that a yarn is formed from the part-threads which can be wound up.
In this arrangement various types of texturing devices as well as devices for generating a corresponding yarn are shown and described to which the present application refers to, and EP 0784109 A2 therefore is considered as an integral part of the present Patent Application and is thus incorporated herein by reference.
It is the goal of the present invention to guide the individual yarn components and to treat these yarn components distinctly and pre-determinably to the stage of common compacting in order to influence the yarn character generated after the common compacting stage. Additional objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
According to the present invention, the goals are achieved in a method in which at least one yarn component passes through at least one processing stage, known as such, before this yarn component passes jointly with the further treated or untreated yarn component or components through a last treatment stage and subsequently are collected as a yarn in the collecting stage, whereas in the apparatus at least two treating stages are provided which can be used as desired and in which at least one compacting stage and one collecting stage for a yarn consisting of two yarn components are provided.
In this arrangement, the yarn components can be freshly spun and drawn yarn components or can be drawn yarn components taken from a package. The yarn components also can have undergone already a pre-compacting process in the form of an entanglement or of a false twist process.
Furthermore, the yarn components can present further and differing characteristics as to the type and/or the structure and/or the colour of the yarn components. In this context, the type concerns differences in linear density (tex), or in the number of fibrils in the yarn components, or in the polymer type, or in the stainability, or in the cross-section of the fibrils, or in the additives in the fibrils and the structure as to changes, or differences respectively, in their crystalline or molecular structure.
Within the scope of the present invention, there still is the possibility of combining untreated and treated yarn components in the common compacting stage in order to influence the yarn character.
Furthermore, an untreated yarn component also can be understood to be a staple fibre yarn spun from man-made or from natural fibres, which upstream from the collecting stage, i.e. upstream from the winding up stage of the finished yarn, is compacted jointly with the other yarn components.
Treatment of the individual yarn component can consist of any texturing process known as such, any entangling process known as such, any false twist process known as such, or any other known method, which in the yarn component effects a type of change in structure and/or form of the individual fibrils in the yarn component.
As said yarn components, except the staple fibre yarn components mentioned, are already drawn, the individual yarn components in an immediately following inventive treatment, also called xe2x80x9con linexe2x80x9d treatment, can be, e.g., texturized each separately and after the texturizing process can be jointly compacted, preferentially entangled in such a manner that a yarn ready to be wound up is generated.
In this arrangement also either texturizing nozzles of the same type can be supplied with different gas pressures or at different temperatures or with different gas quantities per unit time, or additionally there is the possibility to choose for at least one yarn component a different texturizing nozzle which also can be operated in the manner described above.
There also is the possibility to maintain different thread tensions, to be described in the following with reference to the Figures, in the individual yarn components upstream from and/or in the common texturizing process in order to achieve variations in the yarn character after the compacting stage.
Furthermore, guidance, to be described in the following with reference to the Figures, of the individual yarn components in the compacting stage can be kept different in order to keep the influence of the compacting process onto the individual yarn components different in such a manner that an influence on the yarn after the compacting process is obtained.
In a further alternative solution, at least one treated yarn component is combined in the common compacting stage with at least one untreated yarn component in order to influence the yarn character resulting after the compacting stage.
In principle it is to be noticed that the yarn components are kept separate until they reach the collective compacting stage in order to obtain as many possible influences on the finished yarn as possible; in order to either simplify the method or to further differentiate the character, or the structure respectively, of the finished yarn, and within the method yarn components can be guided jointly through a treating stage.
The present invention thus is neither limited to the treating means mentioned nor to the compacting means mentioned, as any treating or compacting means desired can be used in the application of the inventive method.
The present invention thus is not restricted to the elements shown and described. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to an electromagnetic sensing apparatus in a touch screen display, and more particularly, to an electromagnetic sensing apparatus for sensing an external input from a user by sensing ElectroMagnetic Resonance (EMR).
2. Description of the Related Art
Generally, a user can enter inputs into a device including a touch screen display by touching the screen with a user's body part, e.g., finger, or an EMR pen.
A touch screen display that receives inputs from a user's finger is commonly referred to as a capacitive type touch screen. In general, a capacitive type touch screen includes transparent electrodes and condensers. When the user touches the touch screen, a mechanical displacement occurs in an area of a condenser, such that the touch may be sensed based on the resulting changed capacity of the condenser.
However, the capacitive type touch screen always requires a specific pressure or displacement caused by the user's touch, which may cause user inconvenience.
An EMR type touch screen controls generation of electromagnetic waves by passing current through a loop coil disposed on a Printed Circuit Board (PCB) and controls absorption of the electromagnetic waves into an EMR pen. For example, the EMR pen includes a condenser and a loop, and emits the absorbed electromagnetic waves in a specific frequency. Specifically, the electromagnetic waves emitted from the EMR pen are absorbed again into the loop coil of the PCB such that a position near to the EMR pen can be determined based on the absorbed electromagnetic waves.
FIG. 1A illustrates a communication device with an electromagnetic sensing circuit operating in a conventional EMR scheme.
Referring to FIG. 1A, the communication device 100 includes a display 110 and soft keys 120. The display 110 displays information to a user and may operate in either an EMR scheme or a capacitive scheme.
The soft keys 120 are a user interface provided separately from the display 110, which enable the user to intuitively perform basic functions such as back, cancel, menu display control, etc. Conventionally, the soft keys 120 operate only in the capacitive type scheme due to limitations on accommodation of capacitive sensors and EMR sensors arranged under transparent electrodes. Soft keys having EMR sensors built in them have not been specified yet.
FIG. 1B illustrates a plurality of loops arranged in a display of the communication device illustrated in FIG. 1A. Specifically, FIG. 1B illustrates a plurality of loops 131 to 134 arranged in the display 110.
Referring to FIG. 1B, the plurality of loops 131 to 134 may be arranged overlapping with each other. When a user places an EMR pen close the display 110, the loops 131 to 134 may sense an electromagnetic field from the EMR pen, thereby identifying a specific position on the display 110.
FIG. 1C is a graph illustrating induced current output from the plurality of loops illustrated in FIG. 1B.
Referring to FIG. 1C, each of the loops 131 to 134 may output current induced by the sensed electromagnetic field. A loop nearer to the EMR pen may sense a large-amplitude electromagnetic wave and emit induced current corresponding to the sensed electromagnetic wave. Therefore, induced currents with different magnitudes may be output as illustrated in FIG. 1C.
Accordingly, a microprocessor (not shown) of the communication device 100 determines a peak by interpolating the magnitudes of the output induced current and thus, may determine a user-input position on the display.
As described above, because only the capacitive scheme is adopted for the soft keys 120, users should input commands by touching the soft keys 120 with their fingers.
Further, even if channels are added to sense EMR on the soft keys 120, the numbers of channels and coils, as well as a size of the control circuit, increase. However, The larger control circuit and the increased number of coils increase manufacturing costs. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to nonvolatile memory devices. More particularly, the present invention relates to a magnetic memory cell construction for use in nonvolatile memory devices.
One type of nonvolatile memory device known in the art relies on magnetic memory cells. Known as magnetic random access memory (MRAM) devices, these devices include an array of magnetic memory cells. The magnetic memory cells may be of different types. For example, a tunneling magnetic junction (TMJ) memory cell or a giant magnetoresistive (GMR) memory cell.
The typical magnetic memory cell includes a layer of magnetic film in which the magnetization is alterable and a layer of magnetic film in which the magnetization is fixed or xe2x80x9cpinnedxe2x80x9d in particular direction. The magnetic film having alterable magnetization may be referred to as a data storage layer and the magnetic film which is pinned may be referred to as a reference layer. The data storage layer and the reference layer are separated by a layer of insulating material.
Conductive traces (commonly referred to as word lines and bit lines, or collectively as write lines) are routed across the array of memory cells. Word lines extend along rows of the memory cells, and bit lines extend along columns of the memory cells. Located at each intersection of a word line and a bit line, each memory cell stores the bit of information as an orientation of a magnetization. Typically, the orientation of magnetization in the data storage layer aligns along an axis of the data storage layer that is commonly referred to as its easy axis. External magnetic fields are applied to flip the orientation of magnetization in the data storage layer along its easy axis to either a parallel or anti-parallel orientation with respect to the orientation of magnetization in the reference layer, depending on the desired logic state.
The orientation of magnetization of each memory cell will assume one of two stable orientations at any given time. These two stable orientations, parallel and anti-parallel, represent logical values of xe2x80x9c1xe2x80x9d and xe2x80x9c0xe2x80x9d. The orientation of magnetization of a selected memory cell may be changed by supplying current to a word line and a bit line intersecting the selected memory cell. The currents create magnetic fields that, when combined, can switch the orientation of magnetization of the selected memory cell from parallel to anti-parallel or vice versa. Additionally, the write lines can be used to read the logic values stored in the memory cell.
The layers of magnetic material in the memory cell are typically formed as geometrically patterned films such as squares or rectangles, although other shapes are known to be used. One disadvantage of patterned magnetic layer storage structures is that multiple magnetic domains may form in the magnetic layers, rendering the state of the memory cell indeterminate during read operations. Specifically, patterned magnetic layers generate a magnetostatic field that tends to demagnetize the layer. At the edge of the patterned film, this demagnetization field is typically larger than any anisotropy terms maintaining the magnetization perpendicular to the pattern edge. As a result, the magnetostatic field tends to rotate the magnetic vector of the film near the pattern edges.
The magnetization rotation near the edges of the patterned layer form domain walls within the magnetic film, creating multiple domains of magnetic vectors where the magnetic vectors of the domains are not all aligned. When reading the magnetic memory elements, the multiple domains tend to create noise or areas of varying resistance across the memory cell that makes determination of the state of the memory cell difficult or impossible. In addition, variation in the domain states can produce fluctuations in the switching field that can render the memory cell writing process unpredictable.
From the above, it can be seen that maintaining the direction of the magnetization field in the magnetic layers is important. In the case of the fixed or pinned magnetization field of the reference layer, it is thus desirable to fix the field in a manner which minimizes the presence of multiple magnetic domains. In one common memory cell construction, the pinned reference layer may have its magnetic field fixed by interfacial exchange coupling with an adjacent antiferromagnetic layer. An example of the use of an antiferromagnetic layer is illustrated in U.S. Pat. No. 5,650,958 to Gallagher et al. The use of antiferromagnetic materials has several disadvantages including the need for annealing the materials in a magnetic field, corrosiveness of typical antiferromagnetic materials, and the added manufacturing complexity introduced by the presence of the antiferromagnetic layer. It is thus desirable to eliminate the use of antiferromagnetic materials in the construction of magnetic memory cells to reduce or eliminate the disadvantages associated with the use of those materials.
A magnetic memory device has a plurality of write lines and a plurality of memory cells. Each of the plurality of memory cells are operatively positioned between a corresponding pair of the plurality of write lines. Each of the plurality of memory cells has a sense layer and a reference layer separated by an insulating layer. In one embodiment according to the invention, the reference layer of each of the plurality of memory cells includes a high coercivity permanent magnet which provides a permanently oriented magnetic field without relying on an antiferromagnetic pinning layer. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a program, an information storage medium, and a game system.
A game system for allowing a player to play a music game has been conventionally known. In this game system, music is output from a sound output section, and a direction mark (note) for directing the operation timing of the player is displayed in a display section. The player enjoys the music game by performing the operation according to the displayed direction mark while listening to the output music.
In this conventional music game system, only one operation can be directed by one direction mark. Specifically, when the operation section includes a plurality of operation regions, one direction mark can merely direct the player to operate one operation region. Therefore, in order to direct the player to operate a plurality of operation regions of the operation section, it is necessary to display a plurality of direction marks corresponding to each operation. In more detail, a plurality of lines are provided, and the direction mark is moved on each line. When directing the player to operate first and second operation regions of the operation section at the same time, a first direction mark which moves on a first line and a second direction mark which moves on a second line are moved in parallel. The player operates the first and second operation regions at the same time aiming at a timing at which the positions of the first and second direction marks coincide with a reference position. When the timings are judged to coincide, points are added to the score of the player.
However, this conventional method has a problem in which it is difficult for the player to determine whether or not the first and second direction marks moved in parallel require a simultaneous operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
Vertical cavity surface emitting lasers (hereinafter referred to as “VCSEL's”) have become the dominant light source for optical transmitters used in short-reach local area networks and storage area network applications, in which a multi-mode optical fiber is used for data transmission. VCSEL's are low cost micro-cavity devices with high speed, low drive current and low power dissipation, with desirable beam properties that significantly simplify their optical packaging and testing. In order to extend the application of VCSEL's to optical networks with a longer reach, e.g., in Metropolitan Area Networks that are based on single-mode optical fibers, a long wavelength VCSEL is needed that can emit sufficiently high single mode output power in the 1.3 μm to 1.5 μm wavelength range.
The simultaneous requirement of high power and single mode lasing operation create an inherent contradiction in the VCSEL design. Whereas high power requires a large effective gain volume, single mode operation mandates a smaller active area that is typically less than 5 μm in cross section. This contradiction may be resolved by increasing the longitudinal extent of the gain volume while restricting its lateral area, but in practice this approach is limited by the diffusion lengths of the injected electrical carriers, which limit the thickness of the gain volume. This, along with the stronger temperature dependence of the lasing mode and the gain peak at longer wavelengths, has effectively limited the maximum single mode output power of a long wavelength VCSEL to 1 mW or less before the onset of thermal roll-over.
The use of multiple quantum well stacks arranged in a resonant gain configuration (with the quantum wells located at the anti-nodes) can greatly increase the gain volume and total optical of the VCSEL, but in practice this is limited by carrier diffusion to a single MQW stack. One approach for circumventing the carrier diffusion limit is to electrically cascade successive pn junctions formed by embedding individual gain regions (MQW stacks) between p-doped and n-doped contact layers. The successive pn junctions are electrically “shorted” and thus serially connected by means of Esaki tunnel junctions connecting neighboring p+-doped and n+-doped contact layers. While this approach can result in a higher optical output and differential slope efficiencies that exceed 100%, its principal drawback is the additive nature of the junction voltages, which require the use of high voltage drivers that are not readily available at high modulation speeds.
It would be highly advantageous, therefore, to remedy the foregoing and other deficiencies inherent in the prior art.
Accordingly, it is an object of the present invention to provide a new and improved method of fabricating an electrically pumped long wavelength vertical cavity surface emitting laser.
It is an object of the present invention to provide a new and improved method of fabricating an electrically pumped long wavelength vertical cavity surface emitting laser which operates at lower power.
It is another object of the present invention to provide a new and improved method of fabricating an electrically pumped long wavelength vertical cavity surface emitting laser which has improved light emission properties.
It is another object of the present invention to provide a new and improved method of fabricating an electrically pumped long wavelength vertical cavity surface emitting laser which generates less heat.
It is still another object of the present invention to provide a new method of improving the temperature performance of an electrically pumped long wavelength vertical cavity surface emitting laser which has a reduced temperature dependence. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a battery-connecting member and to a method of mounting a battery-connecting member to a battery.
2. Description of the Related Art
Japanese Unexamined Utility Model Publication No. S63-182048 and FIGS. 5 and 6 herein show a battery-connecting member. With reference to FIGS. 5 and 6, a battery-connecting member 100 has a battery terminal 101 coupled to a busbar 102. Fuses 103 are connected with the busbar 102 and a casing 104 accommodates the battery terminal 101, the busbar 102 and the fuses 103. The battery terminal 101 is mounted to a battery post 105 of a battery 106. Additionally, a cover 107 is provided integrally on the casing 104 via a hinge and can be rotated into a position for covering the fuses 103.
The battery-connecting member 100 may be connected with the battery 106 of an automotive vehicle to connect a plurality of circuits (e.g. a power circuit connected with a cell motor, circuits for devices connected with other electric devices, etc.).
The fuses 103 may have to be replaced for maintenance or other reasons after the battery-connecting member 100 is connected with the battery post 105. In such a case, the battery terminal 101 is detached from the battery post 105 so that the entire battery-connecting member 100 is disconnected electrically from the battery 106. The fuses 103 then are replaced.
The cover 107 of the casing 104 can be opened to access the fuses 103 of the battery-connecting member 100 while the battery terminal 101 is connected with the battery post 105. Some operators may try to replace the fuses 103 while the battery-connecting member 100 still is connected with the battery 106. However, there can be adverse effects on other electronic devices if the respective circuits are shorted at this time.
The present invention was developed in view of the above problem and an object thereof is to provide a battery-connecting member that prevents a fuse replacement without being disconnected from a battery post. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments described herein relate generally to magnetic resonance imaging.
2. Description of the Related Art
MRI is an imaging method which magnetically excites nuclear spins of an object (a patient) set in a static magnetic field with an RF pulse having the Larmor frequency and reconstructs an image based on MR signals generated due to the excitation. The aforementioned MRI means magnetic resonance imaging, the RF pulse means a radio frequency pulse, and the MR signal means a nuclear magnetic resonance signal.
In MRI, in order to obtain spatial positional information, mutually orthogonal gradient magnetic fields are applied. Thus, a gradient magnetic field generation system in an MRI apparatus includes a gradient magnetic field coil which adds spatial positional information to MR signals by applying a gradient magnetic field in an imaging space where an object is set.
This gradient magnetic field coil produces heat by being provided with pulse electric current during imaging. A gradient magnetic field generation system has various limitations in terms of the total upper limit of electric power, the respective upper limits of electric power in each channel and the like, and does not have enough ability to endure the maximum electric current in every channel (X-axis direction, Y-axis direction and Z-axis direction) concurrently.
Then, in Japanese Patent Application Laid-open (KOKAI) Publication No. 2010-75753 (hereinafter referred to as Patent Document 1), change of the order of imaging protocols and resetting of imaging cessation time are performed in order to keep residual heat of a gradient magnetic field coil equal to or less than an abort level.
Additionally, for example, in the case of reconstructing two-dimensional images, three gradient magnetic fields in a slice selection direction, a phase encode direction and a readout direction are used. Generally, a waveform of a gradient magnetic field is pulsed, and called a gradient magnetic field pulse. A waveform and amplitude of a gradient magnetic field pulse are defined as a part of parameters of an imaging sequence stipulated by an imaging method and imaging conditions.
Out of gradient magnetic field pulses, a gradient magnetic field pulse in the readout direction is to apply a magnetic field having gradient defined by amplitude of a gradient magnetic field pulse.
While a gradient magnetic field pulse in the readout direction is applied, i.e., on-span of a pulse, MR signals (echo signals) emitted from an object are sampled. If the amplitude of the gradient magnetic field pulse during the on-span is constant, the gradient of the magnetic field in the readout direction becomes constant, and this ensures a linear relation between the position of the readout direction and the frequency of MR signals.
In a high-speed imaging method, sampling in the readout direction is performed in a short span. For example, in a high-speed imaging method called EPI (Echo Planer Imaging), a scan (acquisition of MR signals) are performed speedily and consecutively by inverting a gradient magnetic field for each nuclear magnetic excitation.
The pulse waveform of the gradient magnetic field in the readout direction in EPI has a shorter pulse width and a shorter pulse cycle length, as compared with other imaging methods. That is, the frequency component of the pulse waveform of the gradient magnetic field in the readout direction in EPI is high, as compared with other imaging methods.
On the other hand, a gradient magnetic field pulse is generated by applying pulsed electric current to a gradient magnetic field coil. A waveform of the pulsed electric current applied to a gradient magnetic field coil is ideally a block pulse, but actually becomes a trapezoidal wave having a rising edge region and a falling edge region. As a result, a pulse waveform of a gradient magnetic field does not become an ideal block pulse, but becomes a trapezoidal wave having a rising edge region and a falling edge region.
Generally, in high-speed imaging methods such as EPI, a pulse width of a gradient magnetic field pulse is short, and a ratio of a rising edge region and a falling edge region in both ends of a pulse to the entire pulse width becomes high. Therefore, it is proposed to sample data in a rising edge region and a falling edge region as well as in sampling data a flat region of a pulse, so as to use the sampled data for image reconstruction.
The method of sampling data in a rising edge region and a falling edge region is called Ramp Sampling. The Ramp Sampling gives a shorter data acquisition time, as compared with other methods of sampling data only in regions whose gradient magnetic field intensity is flat.
However, raw data sampled at regular time intervals in a rising edge region and a falling edge region do not become equally-spaced in a k-space, because these raw data are sampled while a gradient magnetic field is changing. Then, it is preferable to rearrange the sampled data before reconstruction, in such a manner that the sampled data become equally-spaced in the k-space. This rearrangement processing is generally called regridding.
In the regridding processing mentioned in Japanese Patent Application Laid-open (KOKAI) Publication No. 2010-172383 (hereinafter, referred to as Patent Document 2), a waveform of gradient magnetic field pulse is assumed not a simple trapezoidal waveform but a non-linear waveform, and a non-linear waveform of a gradient magnetic field pulse is calculated based on a waveform of gradient magnetic field current. In the method of Patent Document 2, regridding processing is performed based on this waveform of a gradient magnetic field pulse.
However, in conventional technology, it is difficult to precisely estimate application limits of a gradient magnetic field generation system in terms of electric power depending on an imaging sequence.
Thus, a gradient magnetic field generation system is safely driven under control of keeping a sufficient margin between actual supplied amount of electric current and the application limit value. That is, the supplied amount of electric current to a gradient magnetic field generation system is controlled so as to surely fall below its application limit value.
In other words, in the aforementioned conventional technology, though there is an enough margin from its application limit, a gradient magnetic field generation system is sometimes driven more safely than its application limit. If there was an enough margin up to the application limit of a gradient magnetic field generation system, imaging could be performed under more optimized conditions by increasing a slice number by the value corresponding to the margin, for example.
Thus, it is preferable to accurately judge, in terms of electric load on a gradient magnetic field generation system in MRI, whether an imaging sequence is practicable or not, before performance of the imaging sequence. This is so that imaging is performed under more optimized conditions.
That is, technology to accurately judge whether an imaging sequence is practicable or not in terms of electric load on a gradient magnetic field generation system in MRI has been desired.
The conventional technology mentioned in Patent Document 2 is based on the assumption that a waveform of gradient magnetic field pulse is similar to a waveform of electric current supplied to a gradient magnetic field coil (hereinafter referred to as gradient magnetic field current). That is, if a waveform of gradient magnetic field current is non-linear, a waveform of a gradient magnetic field pulse is assumed to be similar to the non-linear waveform of the gradient magnetic field current.
Then, gradient magnetic field current is actually measured with an ammeter, and regridding processing is performed based on a gradient magnetic field pulse whose waveform is similar (homothetic) to the measured electric current waveform.
Additionally, technology to calculate an output electric current waveform based on an input signal (control signal) to a gradient magnetic field power supply by simulation, and perform regridding processing based on a gradient magnetic field pulse whose waveform is similar to the calculated output electric current waveform is also disclosed.
However, a waveform of gradient magnetic field current and a waveform of a gradient magnetic field actually generated by this gradient magnetic field current do not necessarily accord with each other. Especially, in a waveform of high frequency components like a gradient magnetic field used in high-speed imaging such as EPI, the following fact has been clarified. That is, a difference between a waveform of gradient magnetic field current and a waveform of a gradient magnetic field becomes large, and discordance of a gradient magnetic field waveform in a rising edge and a falling edge becomes conspicuous.
Therefore, MRI technology to accurately calculate actual gradient magnetic field waveforms and perform regridding processing or parameter correction processing with a high degree of accuracy based on the calculated gradient magnetic field waveform has been desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments of the invention relate to Worldwide Interoperability for Microwave Access (WiMAX) power-saving systems. In particular, embodiments of the invention are related to Mobile WiMAX systems.
2. Description of Related Art
Current enhanced voice codecs, such as G.723.1A, G.729B, and 3GPP Adaptive Multi Rate (AMR), can use a silence suppression scheme that prevents voice packets from being transmitted during silent periods in order to eliminate wasted bandwidth. Statistically silent periods occupy about 60 percent of the total duration of a voice over Internet Protocol (VoIP) call. Therefore the mobile station (MS) can save more energy if it can sleep during those periods. However, the conventional Power Saving Class (PSC) II used for VoIP services does not consider the silent periods of VoIP traffic, so the MS must wake up periodically during the silent periods even though it receives no voice packets. | {
"pile_set_name": "USPTO Backgrounds"
} |
Breast cancer is the second most common type of cancer worldwide (10.4%; after lung cancer) and the fifth most common cause of death by cancer (after lung cancer, stomach cancer, liver cancer, and colon cancer). Among women, breast cancer is the most common cause of death by cancer. In 2005, breast cancer caused 502,000 deaths worldwide (7% of the deaths by cancer; almost 1% of all deaths). The number of cases worldwide has increased significantly from the 1970s, a phenomenon which is partly due to the modern lifestyle in the western world.
Breast cancer is classified into stages according to the TNM system. The prognosis is closely related the results of the stage classification, and the stage classification is also used to assign patients to treatments both in clinical trials and in the medical practice. The information for classifying into stages is as follow: TX: The primary tumor cannot be assessed. T0: there is no evidence of tumor. T is: in situ carcinoma, no invasion. T1 The tumor is 2 cm or less. T2 The tumor is more than 2 cm but less than 5 cm. T3: The tumor is more than 5 cm. T4: Tumor of any size growing in the wall of the breast or skin, or inflammatory breast cancer. NX: The nearby lymph nodes cannot be assessed. N0: The cancer has not spread to the regional lymph nodes. N1: The cancer has spread to 1 to 3 axillary lymph nodes or to one internal mammary lymph node. N2: The cancer has spread to 4 to 9 axillary lymph nodes or to multiple internal mammary lymph nodes. N3: One of the followings applies: The cancer has spread to 10 or more axillary lymph nodes, or the cancer has spread to the infraclavicular lymph nodes, or the cancer has spread to the supraclavicular lymph nodes or the cancer affects the axillary lymph nodes and has spread to the internal mammary lymph nodes, or the cancer affects 4 or more axillary lymph nodes and minimum amounts of cancer are in the internal mammary nodes or in sentinel lymph node biopsy. MX: The presence of distant spread (metastasis) cannot be assessed. M0: There is no distant spread, M1: spreading to distant organs which do not include the supraclavicular lymph node has been produced.
The fact that most of the patients with solid tumor cancer die after metastasis means that it is crucial to understand the molecular and cellular mechanisms allowing a tumor to metastasize. Recent publications have demonstrated how the metastasis is caused by means of complex yet little known mechanisms and also how the different metastatic cell types have a tropism towards specific organs. These tissue specific metastatic cells have a series of acquired functions allowing them to colonize specific organs.
All cells have receptors on their surface, in their cytoplasm and the cell nucleus. Certain chemical messengers such as hormones bind to said receptors and this causes changes in the cell. There are three significant receptors which may affect the breast cancer cells: estrogen receptor (ER), progesterone receptor (PR) and HER2/neu. For the purpose of naming the cells having any of these receptors, a positive sign is placed thereto when the receptor is present and a negative sign if it is absence: ER positive (ER+), ER negative (ER−), PR+(positive), PR negative (PR−), HER2+ (positive) and HER2 negative (HER2−). The receptor state has become a critical assessment for all breast cancers since it determines the suitability of using specific treatments, for example, tamoxifen or trastuzumab. The alpha isoform of the estrogen receptor (ER) is over-expressed in about 65% of the diagnosed cases of breast cancer. This type of breast cancer is referred to as “ER-positive” (ER+). In this case the binding of the estrogen to the ER stimulates the tumor mammary cell proliferation. The ER+ tumor cells are highly dependent on this stimulus to proliferate, therefore ER is currently used as a therapeutic target.
The keystone for treating breast cancer is surgery when the tumor is localized with possible adjuvant hormone therapy (with tamoxifen or an aromatase inhibitor), chemotherapy, and/or radiotherapy. Currently, the suggestions for treatment after the surgery (adjuvant therapy) follow a pattern. This pattern is subject to change because every two years, a world conference takes place in St. Gallen, Switzerland to discuss the actual results of the worldwide multi-center studies. Likewise, said pattern is also reviewed according to the consensus criterion of the National Institute of Health (NIH). Based on in these criteria, more than 85-90% of the patients not having metastasis in lymph nodes would be candidates to receive adjuvant systemic therapy.
Currently, PCR assays such as Oncotype DX or microarray assays such as MammaPrint can predict the risk of breast cancer relapse based on the expression of specific genes. In February 2007, the MammaPrint assay became the first breast cancer indicator in achieving official authorization from the Food and Drug Administration.
Patent application EP1961825-A1 describes a method for predicting the occurrence of breast cancer metastasis to bone, lung, liver or brain, which comprises determining in a tumor tissue sample the expression level of one or more markers with respect to their corresponding expression level in a control sample, among which include c-MAF. However, this document requires determining several genes simultaneously to enable determining the survival of breast cancer patients and the correlation between the capacity of the gene signature for predicting the survivability free from bone metastasis was not statistically significant.
Bos, P. D., et al. [Nature, 2009, 459:1005-1009] describes genes involved in the breast cancer metastasis to the brain.
Patent application US2005/0181375 describes methods for the detecting metastatic breast cancer based on detecting the expression levels of a series of genes which are randomly regulated or downregulated in metastatic tumors and particularly in tumors metastasizing to the brain.
International patent application WO2010/000907 describes a gene signature useful as genomic predictor for distal metastasis in breast cancer patients.
However, there are no genetic markers, in the state of the art, which allow the diagnosis and/or the prognosis of whether a patient who suffers a specific breast cancer, such as ER− or ER+ breast cancer, will or will not suffer metastasis, thus a suitable therapy being able to be applied to the subject suffering said cancer. Therefore, there is the need of identifying new markers which allow diagnosing the presence of metastasis in subjects suffering ER+ or ER− breast cancer and/or predicting the probability of a subject suffering ER+ or ER− breast cancer to develop metastasis. The identification of new prognosis factors will serve as a guide in selecting the most suitable treatments. | {
"pile_set_name": "USPTO Backgrounds"
} |
ATA devices are those that comply with an ANSI (American National Standards Institute) ATA standard, for instance the standard “AT Attachment with Packet Interface Extension—(ATA/ATAPI-4)” or one of its predecessors. The letters ATA are an acronym for “AT Attachment”, based on a hard drive that was “attached” to the original IBM PC/AT. Sometimes ATA hard drives are also referred to as IDE (Integrated Drive Electronics) drives, indicating that a hard drive controller is integrated directly on the hard drive itself, and not on a separate board. There is no “official” IDE designation through ANSI, although the IDE name remains commercially popular.
The letters ATAPI stand for “ATA Packet Interface” and designate devices that operate on the same cable and bus as normal ATA devices, but communicate through the use of command packets. Most CD-ROMs and other type of mass storage drives conform to one of the ATAPI standards, and more specifically, to one of the ATA/ATAPI standards.
The ATA/ATAPI standards define the physical, electrical, transport, and command protocols for the attachment of devices to computers via an. ATA bus. FIG. 1 shows a typical configuration for a computer 20 capable of using one or more ATA data devices. A host processor 22 communicates with main memory 24 over a frontside bus 28. The processor 22 (and main memory 24) can also communicate with a variety of other system peripherals through a PCI (Peripheral Component Interconnect) bridge 26 and a PCI local bus 30.
The bandwidth of the PCI local bus 30 can be shared by a variety of computer components, some of which are depicted in FIG. 1. For instance, internal PCI-compliant devices such as modems, sound cards, video cards, etc. can be attached to the computer 20 via a set of PCI card slots 32, 34, typically mounted directly on the computer motherboard. In addition, a USB (Universal Serial Bus) interface 36 typically provides a number of USB ports 38 for the attachment of a wide variety of external devices, such as a mouse, a keyboard, a digital camera, audio devices, printers, etc.
An ATA host adapter 40 performs signal conversion between the PCI local bus 30 and yet another bus, an ATA bus 42. Up to two ATA devices (e.g., devices 44 and 46 on FIG. 1) can share a single ATA bus 42. A primary device is known as device 0, or the “master” when two devices are present. A secondary device is known as device 1, or the “slave”.
Another way to connect an ATA bus to the host computer 20 is through the USB bus. Specifically, FIG. 1 shows an ATA bus 52 connected through a USB/ATA-ATAPI bridge 50 to one of the USB ports 38. An ATA/ATAPI device 54 attaches to the ATA bus 52, which, as described above, is bridged to the USB bus through the USB/ATA bridge 50. Although providing the ATA bus 52 in this manner is convenient, a limit exists in that Mass Storage Class (MSC) definitions in the USE 2.0 specification limits the number of ATA devices able to be attached to a USB bus to one. This can be limiting because it may be desirable to attach more than one ATA/ATAPI devices to a USB bus. For instance, it would be convenient to hook an external CD-ROM drive and an external hard drive to a computer using only one of the USB ports 38.
Embodiments of the present invention allow more than one ATA/ATAPI device to be coupled to the USB bus. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Disclosure
This disclosure relates generally to information handling systems and, more particularly, to a light guide for display light enhancement.
Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Examples of information handling systems include portable devices such as notebook computers, media players, personal data assistants, digital cameras, cellular phones, cordless phones, smart phones, tablet computers, and 2-in-1 tablet-laptop combination computers. A portable device may generally be any device that a user may carry for handheld use and that includes a processor. Typically, portable devices are powered using a rechargeable battery.
Many information handling systems, including portable devices, are equipped with a display having a string of light emitting diodes (LED) that provide backlight to the display. | {
"pile_set_name": "USPTO Backgrounds"
} |
Traditional systems and methods for providing support for a surgical operation that involves a medical device (e.g., an implant to be inserted in the surgery, a tool used in the surgery, etc.) typically include pre-operation planning, providing support during the operation, and post-operation support. A product specialist for the medical device may provide such support for the use of the medical device throughout the surgical operation process.
The product specialist may provide various functions for a hospital relating to the medical device. The product specialist may be on-site to provide the various functions. For example, the on-site product specialist may provide the surgical staff support and training for using the medical device in a procedure (e.g., how to insert an implant into a patient, how to use one or more tools during a surgical operation, etc.). The on-site product specialist may also provide advisory services to a doctor relating to the use of the medical device. Further, the on-site product specialist may track inventory of the medical device in the hospital and provide sales-related services. For example, the on-site product specialist may order more medical devices for the hospital, create an invoice charging the hospital for use of the medical device, etc. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention pertains to abrasive pads used for the purpose of maintaining and supporting foot health.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98
The foot smoothing pad of the present invention provides a water-resistant completely washable pad for removing rough, dry skin from the feet and other body areas, such as the hands, thereby restoring the skin's natural softness. The pad is soft and contoured for ease in handling and is applicable to treatment of large areas, such as the heels, and small areas, such as the toes.
U.S. Pat. No. 3,857,133 discloses a polyurethane sponge with a sponge-like body and a surface layer of abrasive open cell polyurethane. The sponge is comprised of a closed cell core foam and an open cell surface foam. The abrasive effect is obtained from the structure of the open cell polyurethane on the surface of the sponge. The sponge is used for a combination of scrubbing and wiping.
U.S. Pat. No. 4,344,930 discloses an open celled polyurethane sponge containing a skin care composition dispersed into the sponge. The skin care composition is dispersed on the skin when the sponge is used.
U.S. Pat. No. 4,627,129 discloses a polyurethane sponge for body cleaning with a specific shape of a flat scrubbing surface and a cup-shaped hand holding back with provisions for a finger insertion. The material is characterized as mildly abrasive.
U.S. Pat. No. 4,966,609 discloses an abrasive sponge made of preferably polyvinyl chloride, but polyurethane also is disclosed, with abrasive materials attached by adhesives, or by binders such as rubber. This sponge is comprised of a flexible foam substrate with a reinforcing textile layer.
U.S. Pat. No. 5,640,737 discloses sponges comprised of at least two layers of polyurethane foam with the outer layers softer than the interior and which may be formed in a variety of shapes.
U.S. Pat. No. 6,142,156 discloses a wide variety of shapes of solid abrasive structures which are attached to a bathtub or shower for foot treatment. The structures may be made of pumice, concrete, silica, glass stone, volcanic rock, or sand and styrofoam and a pumice sponge made of pumice and polyethylene.
U.S. Pat. No. 6,491,928 discloses cleansing articles in both concave and convex shapes which include a wide variety of cleansing compounds.
None of the discovered prior art discloses articles with the structure and advantages of the present invention, that is, a water-resistant abrasive pad which may be used dry or wet and which is shaped for efficient and optimum use on the feet and hands. | {
"pile_set_name": "USPTO Backgrounds"
} |
Surface relief holograms have been made in the past by several methods. It is standard practice to record an original hologram in a relief medium such as photoresist or hardened gelatin. It is also standard practice to replicate surface relief holograms by preparing a durable master in the form of a nickel electroform as an embossing die for thermally embossing the original hologram into PVC or other thermoformable plastics. Solvent casting has been demonstrated wherein a clear plastic dissolved in a solvent is coated onto a master hologram and allowed to dry by evaporation, and the resulting dry layer of plastic is peeled off the master.
Hot-foil stamping is a well-established printing technique and a well-established method of transferring pre-printed images to a substrate. A holographic hot-stamping foil was demonstrated in 1982, without disclosure of its method of manufacture. The foil was used to transfer pre-made holographic images onto a plastic substrate. | {
"pile_set_name": "USPTO Backgrounds"
} |
Relaxed silicon-germanium (SiGe) virtual substrates, including a tensilely strained layer and a relaxed underlying layer, enable the production of novel silicon (Si)-, germanium (Ge)-, and SiGe-based devices such as field-effect transistors (FETs). A “virtual substrate” includes a layer of SiGe that has been relaxed to its equilibrium lattice constant (i.e., one that is larger than that of Si). This relaxed SiGe layer can be directly applied to a Si substrate (e.g., by wafer bonding or direct epitaxy) or atop a graded SiGe layer, in which the lattice constant of the SiGe material has been increased gradually over the thickness of the layer. The SiGe virtual substrate can also incorporate buried insulating layers, in the manner of a silicon-on-insulator (SOI) wafer. In order to fabricate high-performance devices on these platforms, thin strained layers of Si, Ge, or SiGe are grown on the relaxed SiGe virtual substrates. The resulting biaxial tensile or compressive strain alters the carrier mobilities in the layers, enabling the fabrication of high-speed and/or low-power devices. Utilizing both strain and bandgap engineering, modulation-doped FETs (MODFETs) and metal-oxide-semiconductor FETs (MOSFETs) may be tailored for enhanced performance analog or digital applications. However, because these devices are fabricated on Si/SiGe virtual substrates rather than the Si substrates commonly utilized for complementary MOS (CMOS) technologies, they present new processing challenges.
One processing challenge to device fabrication on Si/SiGe virtual substrates is the definition of dynamic random access memory (DRAM) trench storage capacitors. DRAM storage capacitors require high quality insulating layers for storing charge. A conventional DRAM trench storage capacitor formed on, for example, a p-type Si substrate may include an outer plate of, e.g., n-type doped Si substrate material (also referred to as the buried plate), a high-quality insulator grown on the outer plate, and an inner plate of, e.g., n-type doped polysilicon. Thus, two conducting plates are separated by an insulating plate. Traditionally, in DRAM trench capacitors fabricated in bulk Si substrates, the insulator is a thermally-grown silicon dioxide layer or nitrided silicon dioxide.
A conventional DRAM trench storage capacitor structure ordinarily is not suitable for fabrication on SiGe virtual substrates. The trench for this structure may be 5-10 micrometers (μm) deep, and would, therefore, extend into the relaxed SiGe layer. This layer may have many defects due to a high density of dislocations necessary to relax the strain in this layer. This high defect density, in turn, may interfere with subsequent efforts to create an insulator. In particular, thermal growth may be hampered by the defects and may result in a leaky insulator with many imperfections. Thus, the high defect density of the relaxed SiGe prevents the formation of the good-quality thermal dielectric incorporated in conventional DRAM trench capacitors. Furthermore, the nature of the insulator produced by thermal oxidation of SiGe is not well understood, so that even if the trench is etched in a defect-free SiGe region, in some applications, the thermal oxide may not be of sufficiently good quality for DRAM charge storage.
An additional challenge to the formation of DRAM trench capacitors in SiGe virtual substrates pertains to the formation of the outer plate. In conventional processes, the outer or buried plate is created for electrical isolation, either by implantation or by out-diffusion from a sacrificial dopant source deposited in the trench, prior to trench sidewall oxidation and inner-plate deposition. For either method of outer plate formation, the thermal steps used in conventional trench-capacitor processes for proper distribution of dopants may employ temperatures too high for use with Si/SiGe substrates.
Despite the inherent challenges, a DRAM trench capacitor is generally a better design choice for Si/SiGe substrates than, for example, stacked capacitor structures. First, the trench capacitor is more compatible with front-end CMOS device fabrication processes, because the alternative stacked capacitor is traditionally fabricated using chemical vapor deposition (CVD) processes at temperatures potentially high enough to degrade high-performance transistors. The trench capacitor is also more compatible with a back-end process involving many levels of metal interconnect, because it is inherently more planar than the stacked capacitor. These issues may be critical for applications which require CMOS performance on par with leading-edge microprocessors. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a copy magnification change apparatus in a magnetic copying machine, and more particularly to a copy magnification change apparatus in a magnetic copying machine which can be suitably applied to a magnetic duplicator by which numerous copies can be automatically and speedily obtained from one original copy.
2. Description of the Prior Art
The Japanese Patent Publication No. 19793/1963 discloses a magnetic copying machine in which an image of a document is recorded as a magnetic latent image on a recording drum by a magnetic head, the magnetic latent image is sequentially developed, transferred and fixed onto a recording paper to obtain a copy. In the magnetic copying machine, the image of the document can be recorded as the magnetic latent image in enlargement on the recording drum. The ratio of a diameter of a document winding drum to a diameter of the recording drum is predetermined for enlargement. Further, the ratio of a speed of read-out means to a speed of the magnetic head in horizontal direction is predetermined for enlargement by a gear speed change mechanism. Generally, when a magnetic copying machine has copy enlarging function and/or copy reducing function, it is desired that it has further actual-size copying (magnification factor: 1) function. For example, when a copy of A4-size is obtained from a document of B4-size by a magnetic copying machine, it is desired that a copy of A4-size can be obtained from a document of A4-size by the same magnetic copying machine and that the copy magnification factor can be easily changed over by simple operation, for example, by operation of a switch arranged on a panel. In the above-described prior art, for example, the ratio of the diameter of the one drum to that of the other drum should be changed for different magnification factors. That is not simple operation.
Further in an electro-static copying machine using Xerography method, a lens system should be moved for copy enlargement and copy reduction by a complicated mechanism. Since copy magnification is changed in mechanical manner, changing operation of copy magnification requires much time. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method and system for detection of, and compensation for, the rapid change in temperature on a pressure measurement cell. More specifically, the present invention relates to the detection and measurement of the temperature change by generating a measurement signal and a reference signal proportional to the deflection of a diaphragm and establishing a reference band therefrom.
2. Description of the Related Art
The related art involves the development and use of pressure measurement cells. Pressure measurement cells are known from EP 1186875 B1, for example. Such a pressure measurement cell usually consists of a base body and a measurement diaphragm, with a shallow recess provided on the base body, covered completely by the diaphragm which, together with the recess, forms a pressure chamber. Electrodes, which together form a measurement capacitor whose measurement signal is analyzed, are provided on the inside of the diaphragm and in the recess. To compensate for interference effects such as temperature or drift, a reference capacitor is set up next to the measurement capacitor.
If such a pressure measurement cell is in thermal equilibrium with its environment, the temperature dependence of the pressure measurement can be compensated by means of a temperature sensor installed on the back side of the base body. A rapid change in temperature, e.g., a so-called thermal shock, may lead to stresses in the diaphragm of the pressure measurement cell, resulting in incorrect measured values due to the resulting deflection of the measurement diaphragm. The stresses in the diaphragm result from a difference in temperature between a medium acting on the diaphragm of the pressure cell and the base body of the pressure measurement cell which carries the diaphragm and faces away from the medium but is thermally connected to the environment.
This problem is solved according to EP 1186875 B1 cited above by the fact that a second temperature sensor is set up in the direction of an expected temperature gradient, namely in a connecting layer between the diaphragm and the base body carrying this diaphragm. Changes in temperature with a steep temperature gradient can thus be detected rapidly, so that thermal shocks can be differentiated from an actual change in pressure and can be compensated.
What is not appreciated by the prior art is that one disadvantage of this known approach is that with larger measurement ranges (e.g., 60 bar), a change in temperature can be detected only with a time lag because of the thick diaphragm. However, changes in measurement signal due to thermal shock must take place very rapidly, so that error compensation by means of the two temperature sensors is highly inadequate, in particular when there is a large measurement range.
In addition, the production of such a pressure measurement cell according to EP 1186875 B1 is very complex and, therefore, also expensive, because introducing a temperature sensor into the joint area between the diaphragm and the base body of the pressure measurement cell as well as contacting it and analyzing the signal are associated with additional expense.
Accordingly, there is a need for an improved a method for detection of, and compensation for, the rapid change in temperature on a pressure measurement cell based on the finding that deformation of the diaphragm due to pressure differs significantly in terms of measurement technology in comparison with deformation of a diaphragm due to thermal shock. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field
The described technology generally relates to a liquid crystal composition, a liquid crystal display, and a method of manufacturing the liquid crystal display.
Description of the Related Technology
A liquid crystal display is generally a device displaying an image by injecting a liquid crystal material between an upper panel in which a common electrode and the like are formed and a lower panel in which a thin film transistor, a pixel electrode, and the like are formed, applying different potentials to the pixel electrode and the common electrode to form an electric field, thus changing arrangement of liquid crystal molecules and adjusting transmittance of light therethrough.
A vertical alignment (VA) mode liquid crystal display in which the long axis of liquid crystal molecules are arranged to be vertical to upper and lower panels in a state where an electric field is not applied has a high contrast ratio and easily implements a wide viewing angle.
In preparation of a vertical alignment (VA) mode liquid crystal display a baking process needs to be performed in order to form a vertical alignment layer and an alignment agent needs to be applied on a transparent electrode corresponding to a pixel electrode or a common electrode, thus, process cost and time are increased.
Further, initial alignment of liquid crystal is important in the preparation of a vertical alignment (VA) mode liquid crystal display, and it is important to control a pretilt in order to favorably perform the initial alignment of the liquid crystal.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the disclosure and therefore it may contain information that is not known to a person of ordinary skill in the art and should not be considered as an admission of prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a nonreciprocal circuit device and a communication device.
2. Description of the Related Art
A general type of lumped-constant isolator (which is a type of nonreciprocal circuit device) adopted in mobile communication devices, such as portable telephones, serves to transmit signals only in a transmission direction and not in the opposite direction. In recent years, there has been an increasing demand for mobile communication devices with higher reliability and higher performance to satisfy an increasing range of uses. Consequently, there has been a need to improve the reliability and performance of the lumped-constant isolator.
Such a lumped-constant isolator comprises a permanent magnet, a ferrite to which a DC magnetic field is applied by the permanent magnet, a plurality of center electrodes placed on the ferrite, a resin casing for accommodating the ferrite and the center electrodes, upper and lower casings for accommodating the permanent magnet, the ferrite, and the center electrodes, and the like. The upper casing and the lower casing are joined so as to form a magnetic circuit and to also function as a yoke. The upper casing and the lower casing are usually made of a thin plate chiefly containing iron.
Hitherto, studies on the thickness and shape of the thin plate chiefly containing iron have been conducted in order to reduce the size of the isolator and to reduce the leakage of the DC magnetic field applied by the permanent magnet. Furthermore, there have been attempts to reduce the insertion loss of the isolator by plating the surface of the thin plate chiefly containing iron with a material having a low electrical resistance (for example, Ag).
However, no specific limitations have hitherto been placed on the surface roughness of the thin plate chiefly containing iron. This is because the surface roughness varies according to the type of working roll used to produce a rolled steel thin plate. For this reason, there are limitations to the degree to which the insertion loss of the isolator can be reduced.
The present invention provides a nonreciprocal circuit device and a communication device with high reliability and high performance and with reduced insertion loss.
According to an aspect of the present invention, there is provided a nonreciprocal circuit device including a permanent magnet, a ferrite to which a DC magnetic field is applied by the permanent magnet, a plurality of center electrodes placed on the ferrite, and a metal casing for accommodating the permanent magnet, the ferrite, and the center electrodes, wherein the metal casing is made of a material chiefly containing iron, and the average value of the surface roughness of the entirety of the metal casing is less than or equal to 0.9 xcexcm.
Since the average value of the surface roughness of the metal casing is set to be less than or equal to 0.9 xcexcm, the insertion loss of the nonreciprocal circuit device can be reduced, and the reliability and performance of the nonreciprocal circuit device can be improved.
According to another aspect of the present invention, there is provided a communication device having a nonreciprocal circuit device having the above features. This communication device can provide superior high-frequency characteristics.
Further, features and advantages of the present invention will become apparent from the following description of embodiments thereof, with reference to the attached drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure relates to computer animation and computer generated imagery. More specifically, this disclosure related to techniques for transferring information from one computer model to another.
With the wide-spread availability of computers, animators and computer graphics artists can rely upon computers to assist in the animation and computer generated imagery process. This may include using computers to have physical models be represented by virtual models in computer memory. This may also include using computers to facilitate animation, for example, by the designing, posing, deforming, coloring, painting, or the like, of characters or other elements of a computer animation display.
Pioneering companies in the computer-aided animation/computer generated imagery (CGI) industry can include Pixar. Pixar is more widely known as Pixar Animation Studios, the creators of animated features such as “Toy Story” (1995) and “Toy Story 2” (1999), “A Bugs Life” (1998), “Monsters, Inc.” (2001), “Finding Nemo” (2003), “The Incredibles” (2004), “Cars” (2006), “Ratatouille” (2007), and others. In addition to creating animated features, Pixar develops computing platforms specially designed for computer animation and CGI, now known as RenderMan®. RenderMan® is now widely used in the film industry and the inventors of the present invention have been recognized for their contributions to RenderMan® with multiple Academy Awards®.
One core functional aspect of RenderMan® software can include the use of a “rendering engine” to convert geometric and/or mathematical descriptions of objects or other models into images. This process is known in the industry as “rendering.” For movies or other features, a user (e.g., an animator or other skilled artist) specifies the geometric description of a model or other objects, such as characters, props, background, or the like that may be rendered into images. An animator may also specifying poses and motions for objects or portions of the objects. In some instances, the geometric description of objects may include a number of animation variables (avars), and values for the avars.
The production of animated features and CGI may involve the extensive use of computer graphics techniques to produce a visually appealing image from the geometric description of an object or model that can be used to convey an element of a story. One of the challenges in creating models for use in animated features can be balancing the desire for a visually appealing image of a character or other object with the practical issues involved in allocating the computational resources required to produce those visually appealing images. Often the geometric descriptions of objects or models at various stages in a feature film production environment may be rough and course, lacking the realism and detail that would be expected of the final production.
Computer generated imagery and animation typically can involve creating models for objects that are elements of a scene. One aspect of creating a model for use in computer generated imagery and animation can be to construct the object in a true 3-dimensional coordinate system. Sometimes, objects can be sculpted, much like real clay or plaster, working from general forms to specific details with various sculpting tools. Often, a model can be created by applying or fitting a topology (e.g., using a mesh of geometrical vertices, faces, and edges) to an object's form.
In a process called rigging, models can be given various controllers, animation variables, and handles for an animator to manipulate various locations of the object's topology to create complex movements and motions. For some models, a bone/joint system can be set up to deform various locations of the object's topology. For example, the bone/joint system can be connected to foot, ankle, knee, hip, and other leg locations of a humanoid model to provide the structure to make the humanoid model walk. Other types of information may also be “hung” on the object's topology to add further realism or additional control for the animator. In other words, information may be associated with a vertex, edge, span, or face of the mesh that forms to the object's topology. However, the above processes can be very involved and time consuming to simply generate a single model.
Additionally, a typical feature-length animation may require hundreds to thousands of model. This increase the production time and cost of the animation if each model may be required to be hand created and setup. One possible solution can be to hand copy the information from one model to another. However, this process still requires an animator to place or “hang” the copied data onto the correct position of the new objects topology. Rarely are each characters exactly the same, so each character's topology can have some differences that the animator has to deal with.
One issue with the production process is the time and effort involved when an animator undertakes to create the geometric description of a model and the models associated avars, rigging, shader variables, paint data, or the like. Even with models that lack the detail and realism expected of the final production, it may take several hours to several days for an animator to design, rig, pose, paint, or otherwise prepare the model for a given state of the production process. Further, although the model need not be fully realistic at all stages of the production process, it can be desirable that the animator or artist producing the model be able to modify certain attributes of the model at any stage. However, modifying the model during the production process may also involved significant time and effort. Often, there may not be sufficient time for desired modifications in order to maintain a release schedule.
Accordingly, what is desired are improved methods and apparatus for solving some of the problems discussed above, while reducing further drawbacks, some of which are discussed above. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to grain shelling apparatus and is directed more particularly to a method for making a roller assembly for rice pressing apparatus of the type having twin rollers.
2. Description of the Prior Art
The rice milling process includes a shelling procedure in which the hull or husk is removed from the kernel. The shelling procedure follows cleaning the rough rice and serves to remove the course husk from the kernel by use, in most cases, of a set of rubber roll shellers.
Rubber-surfaced rolls are disposed in parallel with a desired space therebetween and, in operation, are rotated toward each other as rough rice is fed between them. The rollers act to gently remove the husk, leaving the endosperm substantially intact. Thereafter, the kernel may be further refined.
The roll generally employed includes a hollow steel sleeve with a rubber surface. The life expectancy of the roll is relatively short, something on the order of less than three working days. When a roll has deteriorated to the point at which it requires replacement, the shelling apparatus must be shut down and the rolls removed and replaced. In view of the short life span for rolls, the "down time" of shelling apparatus is a problem.
Accordingly it would be beneficial to the industry to have available a roll with an improved life expectancy and with a capability for quick and easy replacement.
An object of the present invention is, therefore, to provide a method for making a roller assembly in which the milling, or shelling, portions are readily disconnected from the driving portion and replaced with minimal "down time".
Another object of the invention is to provide a method for making a roller assembly having enhanced cooling capabilities, so as to reduce deterioration of the shelling portions and thereby lengthen the time period between replacements of the shelling portions. | {
"pile_set_name": "USPTO Backgrounds"
} |
Inflow cannulas are used with implantable blood pumps, such as ventricular assist devices (“VAD”), which provide left and/or right heart support. Inflow cannulas typically include a relatively small diameter for positioning of the inflow cannula within a heart chamber using a transvascular or intravascular implantation method. In addition, a number of inflow cannulas include a tapered tip for navigating through the vasculature while attempting to reduce the risk of occluding an opening of the tip susceptible to obstruction from body tissue. Unfortunately, the relatively small diameter and the tapered tip may negatively impact flow capabilities during substantial or complete drainage of the heart chamber. As a further drawback, complete removal of the tip may generate suction through the cannula, thereby increasing the risk of occlusion.
Similar to the implantation of the inflow cannulas, known catheters may be implanted using the transvascular or intravascular approach. For example, steerable catheters include movable tip portions which provide steering through the body using one or more wires anchored on opposing ends of the catheter or in a handle unit. A lever or knob may be actuated to apply or reduce tension on the wires to provide the steering or deflection control. However, such steering catheters include closed tips that do not provide inflow through the catheter. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to memory devices, and, more particularly, to a read-only memory (ROM) device having single transistor memory cells that store two bits of data.
ROM devices are used for storing data by various electronic devices. A ROM device typically includes bit-lines, virtual ground lines, and an array of memory cells that each store a single bit of data. ROM devices retain the stored data even when the power of the electronic device is turned OFF. Typically, ROM devices are used to store data that does not require frequent updates.
Data can be stored or the ROM device is programmed during manufacturing. For example, data may be stored/programmed during the ion diffusion process of the semiconductor substrate of the ROM device. In another example, data may be stored during a metallization process of the ROM device. In yet another example, data is stored during a via formation process of the ROM device.
One way to achieve higher density is to reduce the width of the memory cells of the ROM device. However, one consequence of the reduced width is that the ROM device cannot operate at low input voltages. Thus, for low voltage devices, it is preferred not to decrease the width of the memory cells, which results in low density. One known technique to increase density is to store two bits of bit data in a single memory cell, as shown in FIG. 1, and also as described in U.S. Pat. Nos. 9,202,588 and 9691,496, each of which is herein incorporated by reference.
FIG. 1 is a schematic circuit diagram of a conventional ROM device 100 that includes first through fourth transistors 102-108 and a virtual ground generation circuit (VGGC) 110. The first through fourth transistors 102-108 constitute first through fourth memory cells. The ROM device 100 further includes first and second bit-lines BL0 and BL1, a virtual ground line VGND, and first through fourth word lines WL0-WL3. Each of the word lines WL0-WL3 is connected to output lines of an address decoder (not shown) for switching ON one of the transistors 102-108. The first and second bit-lines BL0 and BL1 and the virtual ground line VGND are connected to the VGGC 110. The VGGC 110 controls voltage levels of the first and second bit-lines BL0 and BL1 to perform a read operation, such that one bit of the data stored in the transistors 102-108 can be read at a time. The first through fourth transistors 102-108 are arranged in a column between the first and second bit-lines BL0 and BL1. Each of the transistors 102-108 stores two bits of data depending on the connections of the transistors 102-108 with the first and second bit-lines BL0 and BL1, and the virtual ground line VGND.
The first transistor 102 has a source connected to the first bit-line BL0 and a drain connected to the virtual ground line VGND. The first transistor 102 stores bits “10” based on the connection of its source and drain terminals with the first bit-line BL0 and the virtual ground line VGND, respectively. The first transistor 102 has a gate connected to the first word-line WL0. To read the data stored in the first transistor 102, an address decoder activates the first word-line WL0, which in turn switches ON the first transistor 102.
The second transistor 104 has a source connected to the second bit-line BL1 and a drain connected to the virtual ground line VGND. The second transistor 104 stores bits “01” based on the connection of its source and drain terminals with the second bit-line BL1 and the virtual ground line VGND, respectively. The second transistor 104 has a gate connected to the second word-line WL1. To read the data stored in the second transistor 104, the address decoder activates the second word-line WL1, which in turn switches ON the second transistor 104.
The third transistor 106 has a source connected to the first bit-line BL0 and a drain terminal to the second bit-line BL1. The third transistor 106 stores bits “00” based on the connection of its source and drain terminals with the first bit-line BL0 and the second bit-line BL1, respectively. The third transistor 106 has a gate connected to the third word-line WL2. To read the data stored in the third transistor 106, the address decoder activates the third word-line WL2, which in turn switches ON the third transistor 106.
The fourth transistor 108 has source and drain terminals that are not connected to any of either the first and second bit-lines BL0 and BL1, or the virtual ground line VGND. The fourth transistor 108 stores bits “11”. The fourth transistor 108 has a gate connected to the fourth word-line WL4. To read the data stored in the fourth transistor 108, the address decoder activates the fourth word-line WL4, which in turn switches ON the fourth transistor 108.
The ROM device 100 uses two bit-lines for a single memory cell. Thus, the width of each of the first through fourth memory cells 102-108 is greater than corresponding minimum processing widths. Hence, the ROM device 100 can be operated at low input voltages. However, the density of the ROM device 100 could be improved if the number of bit lines could be reduced. It would be advantageous to have a higher density ROM device. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to bonding particle materials, and more particularly to reactive or nonreactive synthesis, consolidation, or joining of metallic, ceramic, intermetallic, or composite materials to near-net shapes by application of high shear, high current (1-20 kA), and high pressure (about 1 to 2,000 MPa).
Pressure-assisted consolidation or sintering generally involves heating a particle powder compact, while applying pressure simultaneously. The powder compacts are typically heated externally using graphite or molybdenum heating elements and the pressure is applied hydraulically, pneumatically or isostatically depending on the type of the process. Conventional pressure assisted consolidation techniques include hot pressing, hot isostatic pressing, hot forging, and hot extrusion. The conventional techniques require long processing time and high chamber temperature in order to produce high-density parts. In addition, several preparatory steps are required, such as powder heat treatment, precompaction, canning, welding, and machining.
The field of powder consolidation includes powder particles with average particle sizes ranging from about 100 microns to less than 0.01 microns. In any powder consolidation process, the objective is to have minimum grain boundary contamination, maximum density and minimum grain growth. However, powder particles with large surface area, due to their surface charge distribution, readily react with the atmosphere and form a stable oxide phase, which significantly affects the consolidation process. The presence of these oxides, moisture and other contaminants on the surface of the particles, limits the final density that can be achieved and degrades the mechanical properties of the consolidated parts. Thus, it is important to reduce the surface impurities, such as oxygen and other contaminants present on the particle surfaces.
The consolidation of powders to near theoretical density, without significant grain growth has been a difficult task because of the tendency for the grains to coarsen at elevated temperature. Attempts have been made to consolidate powders with average particle size less than 0.01 microns by many techniques, such as furnace sintering, hot pressing, and hot isostatic pressing. However, the drawback is that the total time required for consolidation at the elevated temperature, is very long (several hours) which leads to significant grain growth, and poor mechanical and thermal properties.
Most refractory metals, ceramics, intermetallics and certain composite materials, are extremely hard and require diamond-tipped tools to machine them to final dimensions. In order to minimize expensive machining, the powder densification process must be capable of near-net shaping. The development of a novel process that consolidates the difficult-to-sinter materials into near-net shaped parts has been the goal of many powder metallurgy industries.
As application opportunities continue to emerge that require materials to perform at higher temperatures for sustained periods of time, joining of ceramic and intermetallic materials becomes necessary to enable advanced structure to be produced. Sinter bonding, sinter-HIP bonding, diffusion bonding are typically employed to join these advanced materials. However, long preparation and processing times are required in the conventional techniques that result in high manufacturing cost.
Ultrafine particle materials (with average particle size less than 0.01 micron) have great potential in structural, electronic, thermal management and optical applications since these materials exhibit superior performance characteristics.
Various techniques relating to compacting or sintering of powder materials are disclosed in U.S. Pat. Nos. 3,250,892; 3,340,052; 3,598,566; 3,670,137; 4,005,956; 5,084,088; 5,427,660; and 5,529,746; and in publications--F. V. Lenel, "Resistance Sintering Under Pressure", Journal of Metal, Vol. 7, No. 1, pp 158-167 (1955), and M. J. Tracey et al., "Consolidation of Nanocrystalline Nb--Al Powders by Plasma Activated Sintering", NanoStructured Materials, Vol. 2, pp. 441-449 (1993).
The prior art techniques are also not considered effective at least for the reasons that they: are limited to producing smaller size parts, result in nonuniform distribution of temperature throughout the powder compact, result in lower than near theoretical densities, result in undesirable grain growth, do not reactively consolidate or join the materials, do not consolidate or join precursor particle materials, require pretreatment or presynthesis of the particle material, do not apply to ultrafine particles (<1 micron), etc.
In view of the above, there is a need in the industry for a technique that can rapidly consolidate, bond or join precursor or elemental particle material to near theoretical density without requiring complicated preparatory steps. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a face mask apparatus, and more particularly, to a face mask apparatus for sleep apnea treatment, and methods of making same.
2. Description of the Prior Art
Sleep apnea is a condition characterized by pauses in breathing or shallow breaths while sleeping. The pauses in breathing may last for a few seconds to a few minutes, and may occur more than 30 times an hour. Left untreated, sleep apnea leads to excessive daytime sleepiness and an increased risk of high blood pressure, heart attack, stroke, obesity, diabetes, and heart failure.
Treatment options for sleep apnea generally include lifestyle changes (e.g., weight loss, avoiding sleeping on one's back, avoiding alcohol, smoking cessation), surgery, mouth pieces, and breathing devices. The most common treatment for sleep apnea is a continuous positive airway pressure (CPAP) or automatic positive airway pressure (APAP) device. These devices blow pressurized air via a hose to a nasal pillow, nose mask, or facial mask at a pressure high enough to splint the airway open during sleep.
It is known in the prior art to provide sleep apnea treatment medical devices. Currently, masks are made from plastic, and are adjusted by either foam or gel to suit the comfort level of the patient. In addition, the gel or foam is also utilized to form the seal between the mask and the patient's skin. The seal is an important part of the effectiveness of the mask because it ensures that air does not leak out.
It is also known in the art to provide customizable masks for facial application. It is further known in the art to use computer aided design for custom face mask design and manufacture. And it is also known to provide three-dimensional (3D) facial data for use for fabrication of a custom fit mask for medical procedures.
Examples of relevant prior art reference documents include the following:
U.S. Publication No. 20120305003 for “Rapid Production Of Customized Masks” by inventor Mark, filed Oct. 21, 2009 and published Dec. 6, 2012, is directed to a system designed for the rapid preparation of anatomically customized mask employing data from a patient. The data may take the form of a multidimensional image of a target area of a patient's face obtained by optical 3 dimensional imaging, or a dot or line scan form laser imaging, pattern laser photography or stereo photography. Also disclosed is a mask that is made of a thin layer, so it is lightweight and closely hugs the targeted region upon which it rests (e.g. the nasal region). The body of the mask is made of a thin layer, so it is lightweight and closely hugs the targeted region upon which it rests (e.g. the nasal region). Methods for producing anatomically customized masks are also described.
U.S. Pat. No. 5,280,305 for “Method and apparatus for forming a stylized, three-dimensional object” by inventors Monroe et al., filed Oct. 30, 1992 and issued Jan. 18, 1994, is directed to a device that produces a three-dimensional object with custom art work from an electronic signal. More particularly, the preferred implementation is a device for making masquerade-type masks, and includes a digital camera that captures a front-on image of an individual's face and converts the captured image to an electronic signal that is downloaded into a personal computer. The computer is utilized to select an image, process that image to remove background, scale the image to correspond to the dimensions and features of a facial die that will be used to mold the mask, and to provide for special effects processing of the selected image. An ink jet plotter is then directed to print the processed image upon thin, flat plastic, which is aligned with the facial features of the die and deformed to skin tight conformance with the die by a vacuum-forming process. The finished mask bears art work, upon its convex exterior, that realistically imitates the face of the individual which served as the model for the mask.
U.S. Pat. No. 4,985,116 for “Three dimensional plating or etching process and masks therefor” by inventors Mettler et al., filed Feb. 23, 1990 and issued Jan. 15, 1991, is directed to a process for plating or etching metalization patterns on the surface of a three dimensional substrate, wherein a flexible plastic mask is fabricated by first coating the surface of a thin plastic sheet with vacuum formable ink. The mask is then molded into the shape of the surface into which the pattern is to be formed. A low power YAG laser is used to remove areas of the ink through which light is to be allowed to pass. This mask may then be used in either a print and plate process or a print and etch process by drawing the mask into intimate contact with the workpiece by applying a vacuum between the mask and the workpiece. The workpiece may then be exposed to light through the clear areas of the mask.
U.S. Pat. No. 8,020,276 for “System and method for custom-orienting a medical mask to an oral appliance” by inventor Thornton, filed Nov. 29, 2007 and issued Nov. 20, 2011, is directed a medical mask including a body and an orientation structure. The body includes a first polymer, is configured to cover portions of a user's face comprising the user's mouth and at least portions of the user's nose comprising the nostrils, and is further configured to contact the user's face surrounding the covered portions of the user's face to substantially prevent gas from escaping between the body and the contacted portions of the user's face. The orientation structure is configured to receive an oral appliance post to establish and maintain a custom orientation between the medical mask and the oral appliance post and the orientation structure includes a deformable material which includes a second polymer capable of transitioning between deformable and non-deformable states.
U.S. Pat. No. 8,254,637 for “Mask fitting system and method” by inventors Abourizk et al., filed Jul. 26, 2007 and issued Aug. 28, 2012, is directed a system and methods for selecting a mask system for a patient, where certain example embodiments include generating 3D contours of patients and selecting mask systems based at least on those contours. These contours may be generated by using, for example, a cushion of translatable pins, a nasal cannular scanning device, and/or a shadow stereopsis sensor. Certain other example embodiments allow images and/or videos to be captured and optionally synchronized. Then, images of various mask systems may be overlaid to determine how well a mask system fits. In still other embodiments, a user can hold a transparency corresponding to a mask design in front of the patient's face to determine how well a mask system fits.
U.S. Pat. No. 7,827,038 for “Mask fitting system and method” by inventors Richard et al., filed Jun. 6, 2005 and issued Nov. 2, 2010, is directed to a mask fitting system for selecting a mask system for a patient includes at least one terminal which receives data unique to a patient. The patient data can be scanned in using a scanner, such as a handheld or 3-D scanner, or the relevant dimensions of the patient can be simply input into the terminal. A database is provided to store mask system data relating to a plurality of potential mask system solutions for the patient. A communication channel is provided by which the data received by the terminal can be compared with mask system data stored in a mask system database, so as to generate a best-fit mask system result. The best-fit result may include one or more mask system recommendations for the patient.
U.S. Publication No. 20060023228 for “Custom fit facial, nasal, and nostril masks” by inventor Geng, filed Jun. 10, 2005 and issued Feb. 2, 2006, is directed to a process for fabricating a facial mask to custom fit a patient's face for a comfortable fit for facilitating various medical procedures including the steps of generating a 3D data set to define a portion of a patient's face to be fitted with a custom mask, fabricating a patient's mask utilizing a patient's 3D facial data set, and fitting a patient with a custom fit facial mask for facilitating a desired medical procedure.
U.S. Publication No. 20040263863 for “System and method for design and manufacture of custom face masks” by inventors Rogers et al., filed Jan. 27, 2004 and issued Dec. 30, 2004, is directed to methods and systems for forming face masks. Embodiments may utilize computer-aided design and computer-aided manufacturing to form custom fitted face masks. System software may be configured to acquire facial topography information, design a mask based on the topography information, and send mask information to a computerized manufacturing device. The software may communicate with a scanning device for facial topography acquisition and a milling machine for pattern fabrication. In an embodiment, the scanning device may include a linear scan non-contact laser imager. In an embodiment, the scanning device may be manually moved with respect to an individual being scanned, thereby eliminating the need for motive apparatus. In such embodiments, position information may be determined based on data from a position sensor coupled to the scanning device.
U.S. Publication No. 20100199992 for “Cushion inside a cushion patient interface” by inventors Ho et al., filed Apr. 27, 2010 and published Aug. 12, 2010, is directed to a patient interface device that includes a mask shell and a cushion assembly. The cushion assembly includes a seal cushion and a support cushion. The seal cushion contacts a first area of a patient's face to form a seal therewith. The support cushion defines a second area over a face of such a patient when the patient interface device is being worn. The second area overlaps at least a portion of the first area.
U.S. Patent No. 20100258133 for “Face mask” by inventors Todd et al., filed Nov. 11, 2008 and published Oct. 14, 2010, is directed to a mask assembly for delivering gas to a patient that includes a mask body and a breathing circuit interface. The mask body includes an opening for reception of the gas and includes a seal structure for sealingly engaging with the face of the patient and surrounding at least the nose and mouth of the patient. The breathing circuit interface includes a first portion rotatably connected with the mask body and a second portion that is constructed and arranged to releasably connect with a conduit for delivering the gas to the patient through the opening.
U.S. Publication No. 20080060648 for “Stability Medical Mask” by inventors Thornton et al., filed Sep. 11, 2007 and published Mar. 13, 2008, is directed to a medical mask including a rigid sealing portion configured to cover and seal around at least a portion of a user's nose including the user's nostrils and a rigid stabilizing frame coupled to the rigid sealing portion. The rigid stabilizing frame includes a generally horizontal upper support member configured to bear against the user's forehead, a generally vertical support member coupled between the rigid sealing portion and the upper support member, and lower left and right support members coupled between the rigid sealing portion and the upper support member and configured to bear against the user's cheeks. The rigid stabilizing frame defines two openings configured to allow the user to see through the medical mask when the medical mask is positioned on the user's face.
WIPO Publication No. WO2013026091 for “Manufactured to shape headgear and masks” by inventors Dunn et al., filed Aug. 21, 2012 and published Feb. 28, 2013, is directed to a headgear or headgear segments that are manufactured to shape thereby producing little or no waste material. Techniques such as knitting, braiding, crocheting, and 3D printing can be used produce the headgear.
U.S. Pat. No. 5,492,116 for “Respiratory mask with floating seal responsive to pressurized gas” by inventors Scarberry et al., filed Jun. 3, 1994 and issued Feb. 20, 1996, is directed to a respiratory mask adapted to confront the face of a user in a manner to float with respect to the user's face on a cushion of gaseous medium contained within the mask for user breathing, the gaseous medium being contained within the mask by a flexible seal means carried by the mask and maintained in sealing engagement with the user's face while providing essentially no structural support for the mask with respect to the user's face. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a tilt cylinder device for an outboard engine for use on a small boat.
2. Description of the Relevant Art
FIG. 15 of the accompanying drawings shows, in side elevation, an outboard engine for use on a small boat, as disclosed in Japanese Laid-Open Patent Publication No. 60-1097. A pair of laterally spaced stern brackets 502 is fixedly mounted on the stern B of a boat, and a swivel case 504 is supported between the stern brackets 502 by a horizontal pin 503. An outboard engine assembly 501 has an engine body 507 supported by rubber mounts 506a, 506b on a vertical swivel shaft 505 extending through and mounted on the swivel case 504. The swivel case 504 is supported by a tilt cylinder device 510 whose lower end is coupled to the stern brackets 502.
The outboard engine assembly 501 has an engine (not shown) in its upper portion and a propeller 520 on its lower end.
The cylinder device 510 includes a hydraulic cylinder. The engine body 507 is turned upwardly about the pin 503 to the imaginary-line position (FIG. 16) when the boat sails in the shallows or to the solid-line position (FIG. 16) when the boat is grounded or put ashore. The engine body 507 remains held in the elevated position by the tilt cylinder device 510.
The tilt cylinder device 510 is disposed between the stern brackets 502 and the swivel case 504. If the tilt cylinder device 510 is of a large size, then the stern brackets 502 which surround the tilt cylinder device 510 are naturally large in size. It has been desired to reduce the size of the tilt cylinder device and hence the size of the stern brackets.
In the conventional mechanism disclosed in Japanese Laid-Open Patent Publication No. 60-1097, the tilt cylinder device 510 has a cylinder unit and a pressure fluid supply which are juxtaposed within the outer profile of the swivel case, with the longitudinal axis of the cylinder unit being displaced off the longitudinal axis of the swivel case.
Because the cylinder unit and the pressure fluid supply are positioned within the outer profile of the swivel case, any necessary fluid piping may be relatively short. However, the overall configuration of the swivel case is asymmetric since the longitudinal axis of the cylinder unit is positioned out of alignment with the longitudinal axis of the swivel case. As a result, the outboard engine assembly is not well balanced in shape and weight, tending to lower the structural strength of the swivel case. If the mechanical strength of the swivel case is increased, then the weight of the outboard engine assembly is also increased.
The outboard engine assembly that is made of aluminum or aluminum alloy is susceptible to electrolytic corrosion due to continuous contact with seawater. One corrosion-resistant mechanism comprises two anodic metal elements positioned near the propelling screw and at the lower ends of the stern brackets. The anodic metal elements are caused to corrode sooner than the outboard engine body, thereby protecting the outboard engine assembly from corrosion. A relatively large anodic metal element may be attached to the lower ends of the stern brackets.
If a corrosion-resistant mechanism of the above structure were incorporated in the arrangement disclosed in the above publication, then the outboard engine body, the swivel shaft, the swivel case, and the stern brackets would be successively electrically connected by leads. The out-board engine body would be electrically connected to the large-size anodic metal element at the lower ends of the stern brackets by the leads, so that the outboard engine body would be prevented from being corroded over a long period of time.
Since the leads would be interconnected between those members which are relatively movable, they would be exposed and tend to be damaged, making the outboard engine assembly open to attack by corrosion. The exposed leads would easily collect seaweed and dirt, and become unsightly in appearance. In addition, it would be tedious and time-consuming to connect the leads.
Japanese Patent Publication No. 59-5480 shows an outboard engine for small boats. If a lower portion of the disclosed outboard engine hits an underwater obstacle while the boat is sailing, a relief valve in a piston in a tilt cylinder is actuated to move the piston for dampening shocks, so that the outboard engine is prevented from being damaged.
Boats may move forwardly or rearwardly while they are sailing in the shallows. When a boat moves backwards, the lower portion of the outboard engine may be subjected to unexpected forces by an obstacle. The outboard engine disclosed in Japanese Patent Publication No. 59-5480 is, however, not structured for protection against shocks developed by external forces applied when the boat sails backwards.
The present invention has been made in an effort to solve the aforesaid problems and disadvantages of the conventional outboard engines for small boats. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to the field of distributed computing environments, and more particularly to a method for managing granular events by processing bundle events.
Distributed computing environments implement service platforms for managing lifecycles of software components of network devices. An Open Service Gateway initiative (OSGi) architecture is a known service platform that uses bundles to dynamically install and manage new services on network devices, as well as executing the services provided by those bundles. Bundles are basic units which run within an OSGI container responsible for performing a specific task, including at least one OSGi service, and undergo one or more bundle events.
Typically, event management for OSGi architectures and other service platforms involves a plugin descriptor to detect an occurrence of an event at the bundle level. Furthermore, detection of bundle events helps improve lifecycle management of objects in distributed computing environments. | {
"pile_set_name": "USPTO Backgrounds"
} |
A patch panel is a device that features a number of connectors, usually of the same or similar type, for connecting and routing circuits in a convenient and flexible manner. Patch panels are commonly used in computer networking, and in particular, cases are used with fiber optic cable. As network system infrastructures grow, there can be thousands of patch panel connections in a single system. As patch panels are a manual device, errors in connections can occur that are difficult to troubleshoot and correct. Furthermore, telecommunication bandwidth is often leased based on the number of circuits used. If a circuit has failed or is failing, it is difficult to determine that it has done so, and therefore, the leased bandwidth may be costing a consumer even though the bandwidth is not available. One advantage of traditional patch panels is that they do not rely on electronics or a power source to make and maintain a connection. As long as the connection is physically intact, the patch panel will function. Accordingly, there is a need for patch panel systems that can facilitate troubleshooting and monitoring the interconnected circuits while still remaining a simple fail-safe device.
The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed embodiments. Further, the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be expanded or reduced to help improve the understanding of the embodiments. Moreover, while the disclosed technology is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the embodiments described. On the contrary, the embodiments are intended to cover all modifications, equivalents, and alternatives falling within the scope of the embodiments as defined by the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
Recently several articles and patents have been published relating to the use of cyclodextrin in plant protecting formulations [Novenyvedelem, 19, 364 (1983); J. Szejtli: Cyclodextrins and their Inclusion Complexes, Akademiai Kiado, Budapest, 1982]. On forming complexes of molinate (S-ethyl-N,N-hexamethylene-thiocarbamate), bentiocarb (S-4-chlorobenzyl-diethylthio carbamate) and dichlorphos (2,2--dichlorovinyl-dimethyl-phosphate) the volatility of the active ingredient is significantly decreased and the activity of the pesticide remains sufficient for a longer period of time [Mikasa Chemical Industrial Co; KOKAI No. 80.81806; DOS No. 2,422,316 (1974); Acta Chem. Acad. Sci. Hung. 107, 195 (1981)]. Methyl-parathion (0,0-dimethyl-0-4-nitrophenyl-phosphorothioate) and natural pyrethrines and pyrethroides, respectively, are converted into the cyclodextrin A 3673/77-OE complexes in order to increase the stability against light and oxygen to a considerable extent [Pestic. Sci. 11, 134 (1980); U.S. Pat. No. 3,846,551 (1974);Nippon Noyaku Gakkaishi 1, 41 (1976); 2, 41 (1977)]. The dichlobenyl (2,6-dichloro-benzonitrile) active ingredient easily sublimates and on standing the granulated product sticks together; this can be inhibited by forming complex with cyclodextrin [5th Int. Cong. Pesticide Chem. (IUPAC) Kyoto (1983)].
The complex formation of 2-chloromethane-phosphonic acid with cyclodextrin results in the fact that on contacting with plant tissue the ethylene release is a long-lasting process and this is more efficient than the delivery of ethylene from a very promptly acting active ingredient [Acta Chim. Acad. Sci. Hung. 107, 231 (1981)]. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present disclosure relates to a method and device for evaluating waveforms, including acoustic waveforms. More specifically, the present disclosure relates to a method and a device for evaluating acoustic waves transmitted through a subterranean formation and received by multiple receivers.
2. Description of Related Art
Information concerning the characteristics of subterranean formations can be obtained by investigating acoustic waves that have propagated through at least a portion of the formation. Typically the investigation involves emitting one or more types of wave into the formation at one location, recording the wave at another location after it has passed through the formation, and analyzing how the wave has been affected by its travel through the formation. One common device for this investigation technique is a sonde 10 disposed in a wellbore 5 for transmitting and receiving acoustic signals. As shown, the sonde 10 is tethered to a wireline 9, control commands are provided to the sonde 10 via the wireline 9 and data recorded by the sonde 10 may be transmitted back through the wireline 9 to a surface truck 2. The sonde 10 is shown having an acoustic transmitter T1 for creating and transmitting the acoustic signals into the formation. Also included with the sonde are multiple receivers (R1-RM) disposed along the length of the sonde for receiving the acoustic signals as they have passed through the formation.
FIG. 2 provides an example of acoustic data 12 sampled by the sonde of FIG. 1. The acoustic data 12 comprises waveforms that represent acoustic signals (A1-AM) received by the respective receivers (R1-RM). Each waveform has a noise portion (N1-NM) that represents ambient noise signals recorded by each receiver and a signal portion (S1-SM) that represents the transmitted signal from the transmitter as received by the receivers. The point on the waveform at the beginning of the signal portion is typically referred to as the “first break” or “first arrival” of the acoustic signal. The moveout or slowness of the waveforms can be determined by creating a line 14 that intersects the first break of each waveform and taking the slope of that line 14.
Identifying the first break of a signal can be difficult since the magnitude of the ambient noise often equals or exceeds that of the signal itself. One technique for identifying this break point relies on the assumption that the acoustic signal received by each receiver (R1-RM) will largely have the same form. The technique involves comparing portions of the waveform of the signals (A1-AM), the initial point at which these forms largely match is determined to be the first break. As noted above however, ambient noise or noise from a monitoring device can be received by the receivers and mistaken for the actual signal—this is often referred to as a “false signal” or “false” first break detection. Thus due to the potential for detecting false signals; improved techniques for first break identification are still desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a climb assist system and, more particularly, relates to a climb assist system adapted for installation in locations providing limited access space.
2. Background of the Invention
The present invention provides a climb assist system which may be readily mounted to an existing fall prevention system, such as may be found on a vertical, generally planar climbing structure, such as a ladder or similar vertical structure. Initially, the distinction between a fall arrest system and a climb assist system should be noted. A fall arrest system generally includes a rope or cable extending along a climbing structure for receiving a rope grab attached to a person, where the rope grab will immovably engage the rope or cable if a downward force is applied to an actuator of the rope grab, such as may occur when a person begins to fall from the climbing structure. In contrast, a climb assist system generally provides an upward force, such as from a counterweight attached via a rope or cable to a person to assist the person in ascending or descending the climbing structure. The counterweight provided by the climb assist system may facilitate slowing a person's descent, should the person fall from the climbing structure, but generally may not provide the safety of a fall arrest system to prevent or arrest the continued fall of a person from the climbing structure.
In recent years, a growing use of installations comprising elevated structures supporting equipment requiring maintenance, has resulted in an increased desirability to provide a climb assist system to facilitate access to the equipment. One such installation comprises wind tower installations in which wind driven turbines are mounted at the top of towers. Such wind tower installations are being designed to increasing heights in a continuing effort to place the wind turbine on the top of the tower at an optimal location for receiving wind energy. For example, wind towers are now often constructed to heights exceeding 200 feet, and the wind towers may typically be grouped together in wind turbine farms, some of which may include hundreds of wind turbines. Maintenance of the wind turbines themselves requires experienced workers that typically have an expertise in working on electrical equipment. Further, maintenance of multiple wind towers in a wind turbine farm may require a worker to climb several towers each day which, when combined with the increasing height of the towers, may contribute to worker fatigue.
One proposed climbing aid for assisting a climber's ascent within a wind tower is noted in WO 2004/071930 A2. A counterweight is disclosed attached to a climber via a system of pulleys for counterbalancing the climber's weight to thereby assist ascent of the climber.
One difficulty in designing a system for installation in a wind tower relates to the particular construction of wind towers in which a plurality of platforms are provided in the ascent from the ground to the top of the tower. A slot or hole is provided through each of the platforms for a ladder and for allowing a climber to pass upwardly or downwardly through the platforms; however, the platforms pose a difficulty in that they may restrict passage of a counterweight or a modification of the platforms may be required to accommodate a counterweight.
It would be desirable to provide a climb assist system for a wind tower that may be installed without modification of the platform structures, and that may be implemented in a compact form so as to avoid intrusion into the operable space of a climber using the ladder. | {
"pile_set_name": "USPTO Backgrounds"
} |
One method for reducing the fuel consumption of internal combustion engines, in particular vehicles, is start/stop operation, in which the vehicle engines are switched off, for instance, when stopped for a relatively long time in front of traffic lights. As soon as the driver wants to continue driving, the vehicle engine is restarted. The restarting produces unavoidable starting noises, which affect riding comfort. The starting noises are a consequence of, inter alia, the engagement of the starter pinion with the starter ring gear of the vehicle.
In order to reduce the engaging noise and the starting time as well, it is known that the engagement for restarting the engine can be carried out not only after the engine is completely stopped, but rather during its running-down phase. In this manner, the awareness of the unpreventable engagement noise produced by the meeting of the starter pinion and the starter ring gear on top of each other is considerably reduced.
The engagement during the running-down of the engine can only take place at low engine speeds in the range of app. 50 to 100 revolutions/minute. It is problematic that the rotational direction of the engine can change several times during the running-down phase of the engine. This known, final oscillation of the engine during the running-down of the engine is disadvantageous for the engagement of the starter pinion with the starter ring gear, since it may result in engagement occurring during a reversing motion of the engine, which in turn results in a marked jerk of the engine. This jerk stresses the mechanical parts and is perceived by the driver as uncomfortable.
Therefore, an object of the present invention is to provide a method of engaging during the running-down of the engine, which method reduces the stress on the mechanical parts as much as possible and additionally increases the ride comfort of the driver. | {
"pile_set_name": "USPTO Backgrounds"
} |
One of the major challenges which any cellular network operator faces is to ensure that the network is operating to its maximum efficiency. As a result, cellular network optimization is a major feature of many modern cellular networks.
In order to provide the best possible performance to the cellular network subscribers, the network is periodically optimized so that its resources can be more effectively utilized within the core network and/or the Radio Access Network (“RAN”).
Typically, network optimization is affected by manually modifying network parameters in the Radio and Core Networks based on information that relates to network performance. Such information is retrieved periodically and analyzed by the Operations and Support System (OSS) to derive Key Performance Indicators (KPIs) therefrom. The state of the art KPIs include typical system level (e.g. related to user or cell throughputs) and link level (e.g. various transmission error rates) metrics.
Traditional optimization methods are slow, operate with a high degree of granularity, and have a long turnaround time. Optimization of a communication network using presently available tools basically entails changing one static parameter setup to another followed by several iterations of a cumbersome verification stage.
In order to support rapidly changing network needs, it would be highly beneficial to have a fully integrated automated load balancing application with a built in feedback mechanism, thereby freeing the operators from their tedious roles of manual optimization to software applications and focus on defining network policies, performance goals and network plans.
Several solutions have been proposed in the art for analyzing a wired/wireless communication network to optimize its performance.
US 2005064820 describes continuously collecting data from all elements constituting the communication network and analyzing the data to find an element of which performance and/or efficiency deteriorates.
US 2004085909 discloses scheduling transmissions in a wireless communication system using historical information and usage patterns of remote users in the system. Usage patterns for users within a system are stored and analyzed to optimize transmissions and resources in the system.
US 2010029282 describes collecting various wireless performance metrics by respective network access points as an aggregate measure of the wireless network performance. Aggregated data can be utilized to generate a performance model for the network and for individual access points. Changes to the data are updated to the model to provide a steady-state characterization of network performance. Wireless resources are generated for respective access points in a manner that optimizes wireless performance. Additionally, resource assignments can be updated at various intervals to re-optimize for existing wireless conditions, whether event driven or based on performance metrics. Accordingly, a robust and dynamic optimization is provided for wireless network resource provisioning that can accommodate heterogeneous access point networks in a changing topology.
US 20060068712 relates to a method of correlating probed data captured from various interfaces to create a combined picture at a call level. Thus, the method described allows real time distributed analysis and troubleshooting of the data on the interfaces of N radio network controllers from a single location.
US 20080139197 discloses providing a probe application by a network server for downloading by a mobile device. The probe application monitors a level of performance for various use applications provided by the network for the mobile device, and reports the monitored level of performance for at least one of the applications to the network server. The network server collates the performance data from the plurality of communication devices and provides resource allocation instructions to the mobile in order to optimize a level of performance for the use applications for the communication device.
Our co-pending application U.S. Ser. No. 13/680,779 filed Nov. 19, 2012 describes a computing platform for optimizing operation of a cellular network by: (a) probing for information exchanged between a mobile access network and a core network; (b) retrieving statistical KPIs generated by a plurality of network elements; (c) predicting a trend characterizing future performance of cells; and (d) triggering changes in the operation of the cellular network based on the predicted trend.
However, there is still a need for a solution that provides further optimization capabilities for operating cellular networks, such that can take into account traffic load effects by using a pre-selected cluster of cells and using parameter settings derived from such considerations, thereby enabling further optimization of the performance of a network under near real time conditions. | {
"pile_set_name": "USPTO Backgrounds"
} |
The advantages of being able to calculate the location of a moveable device are enormous, but measuring the location of a movable device can be difficult. And many applications need to track a movable device by repeatedly measuring the location of the movable device. Some known devices have problems. Devices based on gyroscopes are prone to accumulating errors and need to be reset periodically. Devices based on measuring radio waves may suffer from interference from many other devices that generate radio waves. Devices based on videoing the real person or lights attached to the real person (or object) and then calculating the person's (or object's) location by computational methods requires expensive hardware to implement Additionally, it may be that the movable device is wireless so that the power source must be contained in the movable device.
Therefore, there is a need in the art for reliably calculating the position of a movable device that does not rely on radio waves or gyroscopes. | {
"pile_set_name": "USPTO Backgrounds"
} |
People's imaginations are fueled by visual images. What we actually see at sunset, what we dream at night, the pictures we paint in our mind when we read a novel--all of these memorable scenes are composed of visual images. Throughout history, people have tried to record these images with pencils or paints or video tape. But only with the advent of the computer can we begin to create images with the same vividness, detail and realism that they display in the real world or in the imagination.
Computer-based home video game machines such as the Nintendo Entertainment System and the Super Nintendo Entertainment System have been highly successful because they can interactively produce exciting video graphics. However, without additional add-on hardware, these prior video graphics systems generally operated in two dimensions, creating graphics displays from flat (planar) image representations in a manner somewhat analogous to tacking flat paper cutouts onto a bulletin board. Although very exciting game play can be created using two dimensional graphics techniques, a 2D system cannot provide the realism offered by a three-dimensional graphics system.
3D graphics are fundamentally different from 2D graphics. In 3D graphics techniques, a "world" is represented in three dimensional space. The system can allow the user to select a viewpoint within the world. The system creates an image by "projecting" the world based on the selected viewpoint. The result is a true three-dimensional image having depth and realism.
For many years, specialists have used super computers and high end workstations to create incredible realistic 3D images--for example, ultra-detailed models of cars, planes and molecules; virtual reality as seen from the cockpit of a jet fighter or the front seat of an Olympic bobsled; and dinosaurs of "Jurassic Park." However, in the past, computer systems required to produce such images interactively cost tens of thousands of dollars--well beyond the reach of the average consumer.
The low cost high performance 3D graphics system disclosed herein is intended to for the first time give millions of game players, not just the specialists, the chance to interact right inside these magnificent virtual 3D worlds with a richly featured high performance low cost system. What players get is truly amazing--many times the power of any home computer system, far more realistic 3-dimensional animation, stunning graphics--all delivered at a sufficiently low cost to be within the reach of the average consumer.
The following are a few examples of the many advantageous features provided by a system in accordance with the present invention:
Realistic interactive 3D graphics in a low price system PA1 Optimum feature set/architecture for a low cost system for use with a color television set to provide video game play and other graphics applications in a low cost system and/or to produce particular screen effects PA1 Coprocessor that provides high performance 3D graphics and digital sound processing PA1 Signal processor sharing between graphics digital processing and audio signal processing to achieve high quality stereo sound and 3-D graphics in a low cost color television based system PA1 Unified RAM approach increases flexibility PA1 All major system components can communicate through the shared RAM PA1 Techniques/structures for compensating for narrow main memory bus width PA1 Executable code from a storage device (e.g., a portable memory cartridge) can be loaded into the common RAM and accessed by the main processor through coprocessor memory access/arbitration circuitry PA1 Graphics coprocessor loadable microcode store receives microcode from a portable storage medium to provide additional flexibility and simplify compatibility issues PA1 Microcode is loaded via execution of "boot ROM" instructions PA1 Optimal commands and associated formats are used to invoke graphics and audio functions within the coprocessor and provide an interface between the graphics coprocessor and the rest of the system PA1 Coprocessor register set including particular hardware register definitions, formats and associated functions PA1 Microcode graphics and audio structure/processes provide efficient high performance operation PA1 Vector unit provides optimal performance for graphics and audio digital processing in a low cost package PA1 Pipelined rasterizing engine provides a one-pixel-per-cycle and two-pixel-per-cycle modes to minimize hardware cost while providing a rich feature set PA1 Low coprocessor pin out | {
"pile_set_name": "USPTO Backgrounds"
} |
One or more applications on mobile device may occasionally wish make a network/data connection with a network element in some cases. Such a network connection may include a virtual private network (VPN), where a VPN is a private communications network used to communicate confidentially over a publicly accessible network. VPN message traffic can be carried over a public network infrastructure (e.g. the Internet) on top of standard protocols. VPNs are used, for example, to enable employees to connect securely to a corporate network. In other cases the network connection may be a connection to a WiFi network over a WiFi interface.
Standard routing rules for network connectivity may not be suitable for VPN connections since various network interfaces are incompatible with VPN connectivity. For example, certain cellular networks include non-Internet protocol (IP) interfaces. In other situations, a network interface may be virtual and not usable for VPN connections.
Further, interfaces may not be permanent for mobile connectivity. In particular, an interface may be added or become unavailable periodically. VPNs connected to interfaces that go down are affected. Also, a new interface may be better for a VPN than a currently used interface. | {
"pile_set_name": "USPTO Backgrounds"
} |
In some engines, diesel fuel has been used as a fuel efficient alternative to other fuels such as gasoline. In one example, air inducted into a combustion chamber of the engine is compressed by a piston and increased in temperature, while diesel fuel is injected directly into the combustion chamber to initiate combustion in the hot compressed gasses. This method forms a stratified mixture of air and diesel fuel, which when combusted may result in high production of NOx and soot, under some conditions. In another example, known as homogeneous charge compression ignition (HCCI), diesel fuel may be mixed with inducted air to form a substantially homogeneous mixture before being compressed to achieve auto-ignition of the air and fuel mixture. In some conditions, HCCI may produce less NOx and/or soot compared to stratified diesel combustion.
Under some conditions, it can be difficult to achieve a substantially homogeneous mixture with diesel fuel since it does not vaporize as readily as some other fuels such as gasoline. Furthermore, the timing of auto-ignition may be more difficult to control than stratified combustion where the injection of diesel fuel initiates combustion resulting in pre-ignition, knock or misfire. One approach used to improve the mixing of fuel, while controlling the timing of auto-ignition includes the addition of large quantities of exhaust gas recirculation (EGR). The EGR may be used to delay auto-ignition until a substantially homogeneous mixture is formed.
However, the inventors herein have also realized several disadvantages with the above approach. In particular, variations in EGR distribution between individual cylinders and/or engine cycles may result in auto-ignition of the mixture occurring too early or too late in the engine cycle. Furthermore, transient operation of the engine may exacerbate these variations, such as lag in EGR control that can result in uncertainties in combustion timing.
In one approach, at least some of the above issues may be addressed by a method of operating an internal combustion engine including at least a combustion chamber having a piston disposed therein, wherein the combustion chamber is configured to receive air, a first fuel and a second fuel to form a substantially homogeneous mixture, and wherein the piston is configured to compress said mixture so that auto-ignition of said mixture is achieved, the method comprising varying the amount of at least one of the first fuel and the second fuel that is received by the combustion chamber to adjust the timing of auto-ignition, where the first fuel includes diesel fuel.
In this manner, the combustion timing may be controlled by varying the ratio or relative amount of diesel fuel and a second lower cetane fuel utilized during each cycle. In some examples, the timing of combustion may be further controlled by adjusting the timing and/or quantity of these fuel injection(s). Thus, combustion timing control may be improved during transient engine operation and EGR usage may be reduced, thereby reducing engine pumping losses while increasing engine efficiency.
Furthermore, the inventors herein have also recognized that during cold ambient conditions, such as during engine start-up, it may be difficult to achieve HCCI operation with some fuel formulations. For example, it may be difficult to vaporize and/or ignite some low cetane fuels such as ethanol and methanol at low temperatures.
In another approach, the above issues may be addressed by a method of operating an internal combustion engine including at least a combustion chamber having piston disposed therein, wherein the combustion chamber is configured to receive a mixture of air and at least one of diesel fuel and a second fuel, the method comprising during a first condition, performing a first injection of the diesel fuel directly into the combustion chamber to form a stratified mixture of air and the diesel fuel, and to initiate combustion of the stratified mixture; and during a second condition, performing a first injection of the diesel fuel directly into the combustion chamber and a second injection of the second fuel into an air intake passage upstream of the combustion chamber to form a substantially homogeneous mixture of inducted air, diesel fuel, and the second fuel within the combustion chamber; and achieving auto-ignition of said substantially homogeneous mixture by compression ignition.
In this manner, fuel formulation can be adjusted in response to ambient conditions to improve engine start-up and warm-up operations while achieving the desired combustion timing. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the development of computer programs for end users, persistence of values of fields is almost universally necessary. However, in creating such programs, designating fields for which values must be persisted is extremely labor intensive. The presently disclosed embodiments provide solutions to these, and other problems in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to the human pancreatic cholesterol esterase gene. In particular, the invention relates to the identification of restriction fragment length polymorphisms (RFLP) of the human pancreatic cholesterol esterase gene. Specifically, the invention relates to the use of RFLP analysis for identifying individuals with a particular genetic variant of the human pancreatic cholesterol esterase gene. The invention also relates to development of methods for identifying individuals for appropriate treatment with therapeutic drugs for the prevention or alleviation of disease states in a human related to cholesterol metabolism.
Cholesterol metabolism is of critical interest to those involved in protecting human health. Atherosclerosis is the leading cause of death in the United States and reduction of serum cholesterol levels has recently been embraced as a national health priority. See NIH Consensus Panel Report, J.A.M.A. 253: 2094 (1985). NIH recommendations include measurement of serum cholesterol in all adults, with efforts to reduce cholesterol in those individuals with levels above 200 mg %. In this regard front line therapy is a reduction in the amount of cholesterol and triglycerides ingested, followed by the use of agents that interfere with absorption of ingested lipids. See Consensus Full Report, Arch. Inst. Med. 148: 36 (1988).
Since free cholesterol comprises about 90% of dietary cholesterol, it is not obvious that knowing either the phenotype or the genotype of the pancreatic cholesterol esterase gene would be useful. In fact, it had been thought prior to this time that cholesterol esterase was not important for cholesterol absorbsion [Huang and Hiu, J. Lipid Res. 31: 2029 (1991)]. Unexpectedly, pancreatic cholesterol esterase plays a pivotal role in the absorption of cholesterol and fatty acids (U.S. Pat. No. 5,017,565, issued May 21, 1991. Alterations in the genotype or phenotype of this enzyme may be a factor responsible for differences among individuals in susceptibility for developing cardiovascular disease and/or lipid abnormalities.
One way of investigating such genotypic alterations is the use of restriction fragment length polymorphism (RFLP) analysis. Using this technique, DNA polymorphisms can be detected as differences in the length of DNA fragments after digestion with DNA sequence-specific restriction endonucleases. Restriction fragments can then be separated by agarose gel electrophoresis, according to their molecular size, to reveal a pattern of RFLP-related bands. Differences in the length of a particular fragment may result from individual or multiple base substitutions, insertions or deletions. These genotypic changes can be recognized by the altered mobility of restriction fragments on agarose gel electrophoresis. Specific DNA sequences can then be detected by hybridization with a complimentary radioactive probe [see, for example, Botstein et al. Am. J. Hum. Genet. 32: 314-331 (1980)].
RFLP analysis has been used in studying a number of genes believed to be involved in either the absorbsion, transport or metabolism of cholesterol in vivo. These include the low density lipoprotein (LDL) cholesterol receptor gene relating to the diagnosis of familial hypercholesterolemia (FH) [see, for example, Lehrman et al., Proc. Natl. Acad. Sci. USA 83: 3679-3683 (1986); Hobbs et al., J. Clin. Invest. 81: 909-917 (1988); Daga et al., Hum. Genet. 84: 412-416] and the genes of apolipoproteins A-I, A-IV, and C-III [see, Karathanasis et al., Nature 304: 371-373 (1983); Karathanasis et al., Nature 305: 823-825 (1983); Shaw et al., Hum. Genet. 74: 267-269 (1986); Johansen et al., Clin. Genet. 37: 194-197 (1990); Funke et al., J. Clin. Invest. 87: 371-376 (1991)], all of which are associated with premature coronary heart disease [Antonakis, N.E.J.M. 320: 153-163 (1989)].
The present invention provides methods and reagents for detecting RFLPs in the human pancreatic cholesterol esterase gene. In addition, the invention provides methods and reagents for identifying RFLPs in this gene. Specifically, the invention relates to a RFLP in the gene that is related to a particular phenotype associated with the cholesterol esterase gene. This invention also provides methods and reagents for screening a human population for a particular RFLP and for identifying a target patient population for treatment of cholesterol esterase-related disease.
2. Information Disclosure Statement
Borja et al., Proc. J. Exp. Biol. and Med. 116: 496 (1964) teach that cholesterol esterase is secreted by the pancreas, and that its catalysis of cholesterol ester hydrolysis to produce free cholesterol and free fatty acids is essential for the absorption of cholesterol derived from cholesterol esters.
Botstein et al., Am. J. Hum. Genet. 32: 314-331 (1980) teach the use of restriction fragment length polymorphisms (RFLPS) for genetic mapping.
Norum et al., Physiol. Rev. 63: 1343-1419 (1983) review the biochemistry of cholesterol absorbsion and metabolism, including the role of pancreatic cholesterol esterase.
Karathanasis et al., Nature 304: 371-373 (1983) disclose RFLPs in the human apolipoprotein A-I and C-III genes.
Karathanasis et al., Nature 305: 823-825 (1983) disclose an RFLP in the human apolipoprotein A-I gene.
Lehrman et al., Proc. Natl. Acad. Sci. USA 83: 3679-3683 (1986) teach the association between an RFLP in the low density lipoprotein gene (LDL) and familial hypercholesterolemia (FH).
Bosner et al., Proc. Natl. Acad. Sci. USA 85: 7438-7442 (1988) teach that cholesterol esterase performs its function while anchored to the intestinal membrane via a receptor-like interaction with brush border membrane associated heparin.
Hobbs et al., J clin. Invest. 81: 909-917 (1988) disclose RFLPs associated with FH.
Cooper & Clayton, Hum. Genet. 78: 299-312 (1988) teach the use of RFLP analysis for the diagnosis of genetic disease and review the association between genetic polymorphism in apolipoprotein genes and atherosclerosis.
Ordovas & Schaefer, Ann. Biol. Clin. (Paris) 46: 24-29 (1988) teach the relationship between an RFLP in a PstI site in the human apolipoprotein A-I gene and coronary artery disease.
Kyger et al., Biochem. Biophys. Res. Comm. 164: 1302-1309 (1989) teach the nucleic acid sequence of a cDNA clone of bovine pancreatic cholesterol esterase.
Kissel et al., Biochim. Biophys. Acta 1006: 227-236 (1989) teach the nucleic acid sequence of a cDNA clone of mRNA encoding pancreatic cholesterol esterase of the rat.
Nilsson et al., Eur. J. Biochem. 192: 323-326 (1990) teach the nucleic acid sequence of a partial cDNA clone of human pancreatic cholesterol esterase.
Daga et al., Hum. Genet. 84: 412-416 (1990) disclose a RFLP in the LDL receptor gene associated with FH.
Johansen et al., Clin. Genet. 37: 194-197 (1990) disclose RFLPs in the apolipoprotein A-I/C-III gene cluster.
Berg, Acta Genet. Med. Gemellol. (Roma) 39: 15-24 (1990) review the association between RFLPs in human apolipoprotein genes and coronary heart disease.
Taylor et al., Genomics 10: 425-431 (1991) disclose the localization of the human cholesterol esterase gene to the terminal region of the long arm of chromosome 9.
Funke et al., J. Clin. Invest. 87: 371-376 (1991) disclose an RFLP in the human apolipoprotein A-I gene related to disease. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to digital data storage apparatus and more specifically to a digital storage apparatus employing a hard or "fixed" magnetic disk as a data storage medium. Still more specifically, the invention pertains to a system in such apparatus for reducing errors in reading data on such storage media.
In rotating magnetic disk apparatus in general, the individual bits of information are recorded on the disk as a pattern of reversals of magnetization. The transducer on scanning the disk produces a forward voltage for each forward or north seeking magnetization and a negative voltage for each reverse or south seeking magnetization, thereby providing one cycle of alternating current for each logic one. The transducer puts out no voltage for the logic zero since this is represented by unmagnetized regions on the disk. Such output from the transducer is amplified and directed into a read circuit, which reconstructs the recorded data by detecting the peaks of the transducer output waveform.
A problem has heretofore been encountered in thus reading data on the magnetic disk. Noise magnetizations are accidentally created on those parts of the disk track which should have been left unmagnetized to represent the logic zero, as well as on interblock gaps and any other gap between groups of signals on the disk. Conventionally, read errors occurred in such cases because the read circuit misconstrued such noise magnetizations as the logic one. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a self-bias adjustment circuit, arranged on a previous stage of an internal circuit, for supplying an appropriate signal to an internal circuit.
As a conventional self-bias adjustment circuit, for example, a self-bias adjustment circuit disclosed in a reference xe2x80x9cDesign Considerations for Very-High-Speed Si-Bipolar IC""s Operating up to 50 Gb/sxe2x80x9d, H.-M. rein (IEEE Journal of Solid-State Circuits, vol. 31, no. 8, pp. 1076-1090, August 1996). FIG. 6 is a schematic diagram showing the configuration of an integrated circuit including the conventional self-bias adjustment circuit. This integrated circuit 82 comprises an input terminal 87 which receives a signal current I80 from an output circuit 84 of another integrated circuit 81 through a signal transmission line 86, a terminal resistor 88 (resistance RS80) arranged between a high-potential side 82a of the power supply of the integrated circuit 82 and the input terminal 87, and an internal circuit 89.
A potential difference VGAP80 is generated across the low-potential side 81b of the power supply of the other integrated circuit 81 and a low-potential side 82b of the power supply of the integrated circuit 82. The output circuit 84 of the other integrated circuit 81 has a signal current source 85 to output the signal current 180 from the signal current source 85 to the signal transmission line 86. The terminal resistor 88 constitutes a self-bias adjustment circuit 91. The power supply voltage of the integrated circuit 81 and the power supply voltage of the integrated circuit 82 are equal to each other. More specifically, equation (1) is established:
(VCC81xe2x88x92VEE81)=(VCC82xe2x88x92VEE82)xe2x80x83xe2x80x83(1)
In this equation, VCC81 denotes the voltage of a high-potential voltage side 81a of the power supply of the integrated circuit 81, VEE81 denotes the voltage of the low-potential side 81b of the power supply of the integrated circuit 81, VCC82 denotes the voltage of the high-potential side 82a of the power supply of the integrated circuit 82, and VEE82 denotes the voltage of the low-potential side 82b of the power supply of the integrated circuit 82. The internal circuit 89 may be an internal circuit having a single-phase output or an internal circuit having a differential output. The output impedance of the output circuit 84 is equal to the impedance of the signal transmission line 86. The impedance of the terminal resistor 88 is equal to the impedance of the signal transmission line 86. The internal circuit 89 has a high-input impedance of several kxcexa9 or more.
The signal current I80 output from the output circuit 84 is flowed into the high-potential side 82a of the power supply of the integrated circuit 82 through the input terminal 87 and the terminal resistor 88. If a potential difference VGAP80 is 0 volt, a DC voltage VDC80 across the input terminal 87 and an input terminal 90 can be expressed by equation (2). A signal amplitude (amplitude of signal voltage) VAC80 between the input terminals 87 and 90 can be expressed by equation (3).
VDC80=VCC82xe2x88x92(I80xc3x97RS80)/2xe2x80x83xe2x80x83(2)
VAC80=I80xc3x97RS80xe2x80x83xe2x80x83(3)
When bias design for the internal circuit 89 is performed in accordance with signal voltages expressed by equation (2) and equation (3), the internal circuit 89 can be normally operated. In this manner, a self-bias adjustment circuit can be constituted by a simple circuit obtained by the terminal resistor 88 having the function of impedance matching and the function of terminating.
The integrated circuit 81 and the integrated circuit 82 are not necessarily mounted on the same substrate or in the same housing. In addition, even though the integrated circuit 81 and the integrated circuit 82 are mounted on the same substrate, voltage drop caused by a pattern resistor may occur because a pattern is drawn on the substrate. For this reason, the potential difference VGAP80 may not be 0 volt. The DC voltage VDC80 and the signal amplitude VAC80 can be expressed by equations (4) and (5), respectively, using the voltage VEE82: VDC80 = VCC82 - ( I80 xc3x97 RS80 ) / 2 + VGAP80 ( 4 ) VAC80 = ( VCC82 - ( ( VCC82 - ( I80 xc3x97 RS80 ) / 2 ) + VGAP80 ) ) xc3x97 2 = ( ( I80 xc3x97 RS80 ) / 2 ) - VGAP80 ) xc3x97 2 = ( I80 xc3x97 RS80 ) - 2 VGAP80 ( 5 )
According to equation (4), the DC voltage VDC80 across the input terminals 87 and 90 is shifted from a design value at which the internal circuit 89 can be normally operated by volts corresponding to the potential difference VGAP80. According to equation (5), the signal amplitude VAC80 across the input terminals 87 and 90 is shifted from a design value by (xe2x88x922xc3x97VGAP80) volts.
As a conventional self-bias adjustment circuit for avoiding a signal voltage from being shifted by the potential difference VGAP80, a self-bias adjustment circuit in which a capacitor is inserted on a signal line for transmitting an input signal, a signal component passes through the capacitor, and a DC voltage expressed by equation (2) is superposed on the signal component is known. In this self-bias adjustment circuit, the influence of the potential difference VGAP80 is suppressed by the capacitor inserted on the signal line.
However, according to the above-described conventional self-bias adjustment circuit (Design Considerations for Very-High-Speed Si-Bipolar IC""s Operating up to 50 Gb/sxe2x80x3), since the self-bias adjustment circuit has no function of suppressing the influence of the potential difference VGAP80, a shift between a bias voltage and a signal amplitude at the input terminal 90 of the internal circuit 89 is generated, and the internal circuit 89 may not be appropriately operated. In addition, the signal amplitude is disadvantageously deteriorated.
According to the conventional self-bias adjustment circuit having the capacitor, since a capacitor is inserted on a signal line for transmitting an input signal, when the input signal has a frequency component of a wide band, the low-frequency component of the input signal is attenuated, and the input signal is disadvantageously degraded. When the capacitance of the capacitor is set large (e.g., 1 nF or more) to pass the signal components of the wide band, the capacitor increases in size. For this reason, the capacitor is not easily formed in the integrated circuit, and the capacitor must be formed out of the integrated circuit. Therefore, peripheral devices increases in size, and the cost disadvantageously increase.
It is an object of this invention to obtain a self-bias adjustment circuit which can appropriately operate the internal circuit while suppressing the size and cost of the device from being increased and which can reduce a deterioration of a signal amplitude.
In the self-bias adjustment circuit according to the present invention, a detection unit detects the bias voltage of the input signal, and a superposing unit superposes the correction voltage for correcting the bias voltage to the predetermined voltage on the input signal to output the signal to the internal circuit.
Other objects and features of this invention will become apparent from the following description with reference to the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
The earliest event upon microbial invasion is the recognition of the pathogen at the plasma membrane. Recognition of microbial pathogens is evolutionary conserved in all classes of plants and animals, mediated by a range of pattern recognition receptors (PRRs) of the innate immune system. The innate immune response is distinguished as the first line of defence that precedes the highly specialized adaptive immune response, which confers long lasting immunity and immunological memory (Janeway and Medzhitov 2002). PRRs sense highly conserved molecular structures across a wide range of pathogens. Such structures exclusively from bacteria, fungi, parasites and viruses with the capacity to stimulate the innate immune system are referred to as pathogen associated molecular patterns (PAMPs). Examples of PAMPs include lipid-based bacterial cell wall components such as lipoproteins and lipopolysaccharides, microbial protein components such as flagellin, and foreign nucleic acids such as single stranded or double stranded DNA and RNA. The innate immune system includes cells and responses that defend the host from infection by pathogens in a non-specific manner. Cells of the innate immune system produce proinflammatory cytokines and chemokines that are involved in clearing the pathogens and also help shape the downstream adaptive immune response. A number of therapeutic strategies have been taken to exploit the human innate immune system as a tool to recognize and eliminate cancer cells, which is the premise of cancer immunotherapy.
The signaling PRRs include large families of membrane bound Toll like receptors (TLRs) and cytosolic PRRs. TLRs are the best-studied class of receptors that are essential players in the detection of a range of lipid-, protein-, nucleic acid-based PAMPs (Beutler 2009; Kawai and Akira 2011). Cytosolic DNA and RNA sensors on the other hand, have more recently been identified to play major roles in the recognition of nucleic acid PAMPs and in triggering innate immune responses (Keating et al. 2011). Several approaches have been attempted to design small molecules to activate TLRs to mount an innate immune response for use in treating infections, immune disorders, cancer, and as vaccine adjuvants. Local in vivo delivery methods of TLR ligands include topically applied antivirals or anti-tumor agents, intramuscular injections, and intranasal and mucosal administration of immune adjuvants (Hemmi et al. 2002; Ambach et al., 2004). However, the promising therapeutic potential of TLR agonists has been limited by drug delivery issues and by unwanted immune side effects. In terms of drug delivery, challenges remains to systemically target and efficiently release TLR agonists. Furthermore TLR ligands as anti-cancer agents face the challenge of the tumor microenvironment, which tends to suppress anti-cancer agent potential by preventing the agent to penetrate. This invention provides novel compounds that are TLR7 and/or TLR8 agonists conjugated to lipids which become cationic at physiological pH. They can aid cellular uptake, and when complexed to DNA, they are able to concomitantly introduce therapeutic genes into cells and trigger a strong innate immune response by stimulating multiple pathways of the innate immune system. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to vacuum filters and more particularly concerns a vacuum filter cartridge specially adapted for pulse-back vacuum applications.
Filters presently used in pulse back vacuum applications have circular cylindrical media configurations. Since the walls are vertical, filtered particulate which contacts the walls tends to remain against the walls even when there is no suction in the intake direction. The pulse-back action momentarily puffs particulate in the reverse direction away from the filter, but some dislodged particulate is recaptured by the filter before gravity settles it to the bottom of the dust canister.
Conical filters are sometimes used in non-pulse-back vacuum applications. Some have a casing on the outside wall of the filter which makes them inefficient or even unsuitable for pulse-back vacuum applications because the casing interferes with the pulse-back action. Even without the outside casing, known conical filters would all be less efficient in a pulse-back vacuum application than the circular cylinder media because falling particulate can descend only until it contacts the increasingly wider base of the media cone.
Furthermore, all of these filters, whether circular cylindrical or conical, have removable parts which must be disengaged to receive the media and re-engaged to secure the media during the media cleaning or replacement processes. Consequently, they not only clog quickly, but they also require inordinate expenditures of time to clean or replace them. The net result is a significant loss in useful operating time. This deficiency is especially troublesome in many construction-type applications. Particulate created by sanding, grinding and cutting wood, plaster, concrete and the like can clog a filter in a matter of minutes. A high percentage of the time and cost of a construction cleaning job is expended on cleaning and replacing filters. The unfortunate alternative presently is to work in a highly dust-contaminated atmosphere.
Another serious problem is encountered because of the complicated mounted structures. The removable components are generally secured by bolts and nuts and the junctions of components surrounding air flow paths are fitted with gaskets. The gaskets are generally not adequate to deal with types and quantities of contaminants encountered in construction applications. Moreover, the vibration of the machine during use, as well as the jostling of the machine during loading, transport and unloading, causes the bolts to loosen. Loosening of the bolts creates gaps in the system at the gaskets and elsewhere which allow collected particulate to be re-circulated through the machine clean air discharge and turbulently released into the atmosphere. In a matter of moments, a room can be filled with drifting particulate which cannot be vacuumed until it settles into every nook and cranny. To prevent this, it is necessary to tighten all of the bolts at the beginning of, as well as intermittently during, each job.
It is, therefore, an object of this invention to provide a barrier filter cartridge which is specially adapted for pulse-back vacuum applications. Another object of this invention is to provide a barrier filter cartridge which operates efficiently in construction-type vacuum applications. A further object of this invention is to provide a barrier filter cartridge which is efficient in collecting particulate resulting from sanding, grinding and cutting wood, plaster, concrete and the like. Yet another object of this invention is to provide a barrier filter cartridge which is efficient in vacuuming a highly dust contaminated atmosphere. It is also an object of this invention to provide a barrier filter cartridge which does not have a circular cylindrical filter media. Still another object of this invention is to provide a barrier filter cartridge which does not have a filter media which widens from top to bottom. An additional object of this invention is to provide a barrier filter cartridge which does not require an outer casing. Another object of this invention is to provide a barrier filter cartridge which does not require disengagement of removable parts to clean or replace the filter. A further object of this invention is to provide a barrier filter cartridge which facilitates cleaning and replacement of the filter. Yet another object of this invention is to provide a barrier filter cartridge which does not require nuts, bolts or gaskets in its assembly. It is also an object of this invention to provide a barrier filter cartridge which does not have components which loosen in response to operating vibration or the jostling experienced during loading, transport and unloading. Still another object of this invention is to provide a barrier filter cartridge which reduces the likelihood of occurrence of gaps via which collected particulate may be re-circulated through the machine clean air passage. And it is an object of this invention to provide a barrier filter cartridge which relieves the necessity for tightening connections of the cartridge before and during each job. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to magnetic resonance imaging (MRI), and more particularly, to a system and method to dissipate heat generated by predicting thermal generation based on a selected excitation of a coil assembly in an MRI apparatus and thereby maintain coil assembly temperature within acceptable operating limits.
When a substance such as human tissue is subjected to a uniform magnetic field (polarizing field B0), the individual magnetic moments of the spins in the tissue attempt to align with this polarizing field, but precess about it in random order at their characteristic Larmor frequency. If the substance, or tissue, is subjected to a magnetic field (excitation field B1) which is in the x-y plane and which is near the Larmor frequency, the net aligned moment, or xe2x80x9clongitudinal magnetizationxe2x80x9d, MZ may be rotated, or xe2x80x9ctippedxe2x80x9d, into the x-y plane to produce a net transverse magnetic moment Mt. A signal is emitted by the excited spins after the excitation signal B1 is terminated and this signal may be received and processed to form an image.
When utilizing these signals to produce images, magnetic field gradients (GxGy and Gz) are employed. Typically, the region to be imaged is scanned by a sequence of measurement cycles in which these gradients vary according to the particular localization method being used. The resulting set of received NMR signals are digitized and processed to reconstruct the image using one of many well known reconstruction techniques.
During patient scans, the gradient coils that produce the magnetic field gradients dissipate large amounts of heat, typically on the order of tens of kilowatts. The majority of this heat is generated by resistive heating of the copper electrical conductors that form the x, y, and z-axis gradient coils when these coils are energized. The amount of heat generated is in direct proportion to the electrical power supplied to the gradient coils. The large power dissipations not only result in increased temperature to the gradient coil, the heat produced is distributed within the gradient coil assembly, or resonance modules, and influences the temperature in two other critical regions. These two regions are located at the boundaries of the gradient assembly and include the patient bore surface and the warm bore surface adjacent to the cryostat that houses the magnets. Each of these three regions has specific maximum temperature limitations. In the resonance module, there are material temperature limitations, such as the glass transition temperature. That is, although the copper and fiber-reinforced backing of the coils can tolerate temperatures in excess of 120xc2x0 C., the epoxy to bond the layers typically has a much lower maximum working temperature of approximately 70-100xc2x0 C. On the patient bore surface, regulatory limits mandate a peak temperature on the patient bore surface of 41xc2x0 C. The warm bore surface also has a maximum temperature that is limited to approximately 40xc2x0 C. to prevent excessive heat transference through the warm bore surface and into the cryostat. Further, temperature changes of more than 20xc2x0 C. can cause field homogeneity variations due to a temperature dependence of the field shim material that exhibits a magnetic property variation with temperature.
Typically, the heat produced by the gradient coils in the resonance modules is removed from the gradient assembly by liquid filled cooling tubes embedded in the resonance modules at a given distance from the heat conductors. A liquid coolant, such as water, ethylene, or a propylene glycol mixture, enters the resonance module at a fixed temperature and flow rate, absorbs heat from the gradient coils as it is pumped through the cooling tubes, and transports the heat to a remote heat exchanger/water chiller. Heat is then ejected to the atmosphere by way of the heat exchanger/chiller. For each degree reduction of the coolant temperature as it enters the resonance module, the peak temperatures at each of the three critical regions (resonance module interior, patient bore surface, and warm bore surface) are also lowered.
However, in current systems, the minimum temperature of the coolant supplied to the resonance modules is limited by the dew point temperature of the ambient air. That is, since it is necessary to prevent the water vapor in the air from condensing in the resonance modules in general, and on the gradient coils in particular, the temperature of the coolant must remain above the dew point temperature of the ambient air. The high voltages and currents that are applied to the gradient coils dictates an atmosphere that must be free of such condensation. Current environmental specifications for MR rooms require 75% relative humidity at 21xc2x0 C., which requires a dew point temperature of 16xc2x0 C. Therefore, the minimum coolant temperature must be above 16xc2x0 C. under these conditions.
The maximum power which can be supplied to a resonance module is therefore limited by the external dew point temperature. To increase the power which can be received by the resonance module, it is necessary to lower the minimum coolant temperature. However, as indicated previously, environmental specifications limit the minimum coolant temperature to above 16xc2x0 C. for an MR room with 75% relative humidity at 21xc2x0 C. As a result, these current systems are unable to accommodate higher power patient scan sequences often required by resonance modules.
In these known systems, the lowest permissible coolant temperature is dictated by atmospheric conditions or the ambient dew point temperature. With these systems, the coolant temperature is set above the worst case dew point temperature based upon the given temperature and relative humidity specifications in the room housing the MR system.
Further, these systems must be kept from overheating. In case of increased temperatures of the resonance module or the patient surface, imaging scans must be interrupted or limited to low power sequences, which in turn reduces the efficiency and efficacy of the MR system. Time is then lost because imaging sessions cannot begin anew until the resonance module or patient surface cools sufficiently.
It would therefore be desirable to design a method and system to maintain gradient coil temperature within a specified range regardless of the selected excitation applied, thereby enabling higher power applications for faster imaging with improved image quality and longer scan times.
The present invention provides a predictive system and method overcoming the aforementioned drawbacks by removing heat from the gradient coil module of an imaging device based on the type of excitation applied while maintaining internal and external temperatures below maximum operating limits. Such a technique allows higher power applications for faster imaging with improved image quality, as well as, allowing longer scan times for interventional procedures.
A cooling system is provided to dissipate heat from an MRI resonance module. The cooling system includes a vacuum enclosure, a set of relative humidity, temperature and pressure sensors, and a control system that dynamically adjusts the temperature of coolant in cooling tubes embedded in the resonance module. The cooling fluid increases in temperature as it absorbs heat from the resonance module and transports the heat to a remote heat exchanger, such as, a water chiller. Since air and water vapor are removed from the vacuum enclosure containing the resonance module, condensation is prevented in the evacuated enclosure. As a result, the coolant temperature may be adjusted as needed to remove heat and maintain gradient coil temperatures within allowable levels.
Moreover, to further enhance proper operation and reliability, pressure and relative humidity sensors are placed in the vacuum enclosure to monitor for air and/or coolant leakage. To monitor condensation of water vapor on the exterior surfaces of the gradient coil, temperature sensors are installed on the patient and warm bore surfaces and in the vacuum enclosure. The control system is configured to provide the lowest practical coolant temperature while simultaneously preventing condensation on the patient and warm bore surfaces. Additionally, the relative humidity and pressure sensors may be used to trigger an alarm and disable the gradient coil drivers in response to an anomalous operating condition.
In accordance with one embodiment of the present invention, a method for cooling electrical coils in MRI device is provided. The method includes the step of determining a future thermal load for an electrical coil and determining an expected operating temperature range for the electrical coil based on the future thermal load. The expected operating temperature range is then compared to a device specification temperature range. If necessary, based on the comparison of the expected operating temperature range to the specification temperature range, cooling operating parameters are adjusted to drive the expected operating temperature range to be within the specification temperature range.
In another aspect of the present invention, a computer program is provided to maintain critical temperatures of an MRI system within acceptable limits. The computer program includes a set of instructions that when executed by a computer causes the computer to receive an imminent scan profile and predict a gradient thermal load required for the imminent scan profile. The set of instructions further causes the computer to determine a cooling profile to accommodate the gradient thermal load and to cool the MRI system according to the cooling profile.
In yet a further aspect of the present invention, an MRI apparatus is provided and includes a magnetic resonance imaging (MRI) system having a plurality of gradient coils. The gradient coils are configured to be positioned about a bore of a magnet to impress a polarizing magnetic field. The MRI system further includes an RF transceiver system and an RF switch controlled by a pulse module to transmit RF signals to an RF coil assembly to acquire MR images. The MRI apparatus also includes an input device to receive a selected scan sequence and a cooling system to dissipate heat from the plurality of gradient coils. The cooling system includes a temperature sensor positioned to sense an indication of gradient coil temperature and a set of coolant tubes having a coolant pass therethrough and in thermal contact to transfer heat from the gradient coils of the-MR system. A heat exchanger is connected to the coolant tubes to remove heat from the coolant. A control is connected to receive signals from the temperature sensor and send signals to the heat exchanger to control coolant temperature in response to the selected scan sequence.
In accordance with another aspect of the present invention, a predictive thermal control of an imaging device is provided. The thermal control includes an input to receive a user selected scan sequence and at least one temperature sensor positioned to sense an indication of gradient coil temperature of a gradient coil assembly of an imaging device. The control further includes a pressure sensor positioned to sense pressure of a vacuum enclosure housing the gradient coil assembly therein. A humidity sensor is also provided and positioned to sense relative humidity within the vacuum enclosure. The aforementioned sensors continuously provide feedback to a processor programmed to maintain device-operating temperature within a specification range, the processor is further programmed to determine a cooling profile based on the user selected scan sequence and, in response to the feedback, adjust the coolant profile on-the-fly to regulate proper cooling of the gradient coil assembly.
Various other features, objects and advantages of the present invention will be made apparent from the following detailed description and the drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
In an automatic soldering apparatus, various processing devices such as a fluxer, a preheater, a wave soldering tank, and a cooler are successively installed in the direction of travel of a conveyor which is installed above these processing devices. As a printed circuit board is being transported by the conveyor, it has flux applied to it by the fluxer, it is preheated by the preheater, it undergoes soldering in the wave soldering tank, and it is cooled by the cooler to perform soldering. Each of these processing devices affects the quality of soldering, but the effect of the wave soldering tank is particularly great.
A wave soldering tank carries out soldering of a printed circuit board by contacting the bottom surface of a printed circuit board with molten solder which is made to spout upwards. Therefore, a wave soldering tank is equipped with a discharge pump for pumping molten solder and a discharge nozzle for upwardly spouting molten solder which is pumped by the discharge pump. The discharge pump and the discharge nozzle are connected by a duct having the discharge pump installed at one end and having the discharge nozzle installed at the other end. The discharge pump is disposed inside a casing provided at the one end of the duct.
Molten solder which is sucked by the discharge pump is sent through the duct to the discharge nozzle and spouted upwards from the discharge nozzle. An inexpensive impeller pump has conventionally been used as a discharge pump, but in recent years, a screw pump has been used in order to eliminate pulsation of molten solder which is discharged by the pump. Therefore, in the following explanation, an example will be given of the case in which a screw pump is used as a discharge pump. A screw pump normally has a structure in which a single plate-shaped member is helically wrapped around the outer peripheral surface of a cylindrical rotating shaft, and the screw pump is housed inside a casing having a suction port for sucking molten solder. The rotating shaft of a screw pump passes through a through hole provided in the top of the casing and extends above the surface of molten solder and is connected to a drive source such as a motor. Molten solder is sucked on a helical path along the plate-shaped member on the outer periphery of the rotating shaft.
With this wave soldering tank, if a large amount of oxides is present in molten solder, the oxides may adhere to printed circuit boards. The oxides which adhered not only worsen the appearance of the boards, but if they straddle adjoining soldered portions of a printed circuit board and solder deposits thereon, they cause bridging. The principal locations where oxides develop in a wave soldering tank are the periphery of the discharge nozzle and the periphery of the rotating shaft of the screw pump.
In the periphery of the discharge nozzle, when molten solder which has spouted from a discharge nozzle falls and impacts the molten solder in the vicinity of the nozzle, air is sucked in the molten solder and oxides develop. Oxides mixed with solder becomes so-called dross which resembles water-containing sand. Since dross contains 5-10 mass % of oxides, it can be recovered after heating and stirring it together with a reducing agent or by squeezing under pressure. If a large amount of dross floats on the surface of molten solder in a wave soldering tank, it may overflow from the wave soldering tank such that it splatters or causes scorching of electrical wiring. Therefore, dross is recovered when a suitable amount has accumulated in the tank.
The rotating shaft of a screw pump rotates while immersed in molten solder. Therefore, molten solder in the periphery of the rotating shaft of a screw pump forms swirling. As a result, molten solder in this area oxidizes due to contact with air or rubbing by the rotating shaft. Accordingly, unlike the above-described dross which develops in the periphery of a discharge nozzle, oxides which develop in the periphery of the rotating shaft of a screw pump are pure oxides which have a black color and which do not have solder mixed therein.
In this manner, an swirling flow of molten solder exists in the periphery of a rotating shaft of a screw pump. Oxides which develop in the periphery of a screw pump are pulled downwards by this eddy flow. Oxides which are drawn downwards enter into the interior of the duct via the inlet from the screw pump, and they are spouted together with molten solder from the discharge nozzle and adhere to printed circuit boards. As a result, the oxides not only worsen the appearance of soldered portions but also adhere between soldered portions and cause bridging of printed circuit boards.
Patent Document 1 discloses an invention in which the periphery of a rotating shaft of a discharge pump is surrounded by a cylindrical member and oil which serves as an antioxidant is put in the interior of the cylindrical member in order to prevent the formation of oxides in the periphery of the discharge pump. According to that invention, due to the presence of oil surrounding the rotating shaft of the discharge pump, molten solder in the periphery of the rotating shaft of the discharge pump is isolated from air by the oil, and the formation of oxides in the periphery of the rotating shaft of the discharge pump is prevented.
However, in the invention disclosed in Patent Document 1, since oil, for example, is made to float atop high temperature molten solder, the oil generates smoke and deteriorates. The smoke flows to the exterior of the automatic soldering apparatus and worsens the operating environment. In addition, the smoke becomes soot, which not only pollutes the automatic soldering apparatus and various processing devices by adhering thereto, but if the soot adheres to the printed circuit boards being soldered, it pollutes the printed circuit boards and decreases their value as a product. In addition, since oil atop molten solder readily deteriorates at a high temperature and can maintain the effect of preventing oxidation for only a few hours, the oil must be exchanged with considerable frequency.
Patent Document 2 discloses an invention in which the formation of oxides in the periphery of a rotating shaft of a discharge pump is prevented by installing a protective pipe which projects above the surface of molten solder housed in a soldering tank and disposing the rotating shaft of the discharge pump so as to pass through the protective pipe. According to that invention, because the rotating shaft of the discharge pump passes through the protective pipe, the rotating shaft of the discharge pump is isolated by the protective pipe, and the formation of oxides in the periphery of the rotating shaft of the discharge pump is prevented.
However, in the invention disclosed in Patent Document 2, when there is a large gap between the protective pipe and the rotating shaft of the discharge pump, molten solder goes into the gap. Due to an increases in friction by the presence of molten solder penetrated into the interior of the gap, oxidation ends up becoming worse. If the gap is set to a narrow value so that molten solder will not penetrate into the gap between the protective pipe and the rotating shaft of the discharge pump, the protective pipe and the rotating shaft pump will rub against each other and damage each other, and smooth rotation of the rotating shaft of the discharge pump will be impaired. This is because in a wave soldering tank, solder is heated when the wave soldering tank is in use and is allowed to cool when it is not being used. Thermal expansion and thermal contraction at the time of use and at the time of non-use affect the protective pipe. When the gap becomes narrow, the protective pipe contacts the rotating shaft of the discharge pump. If the protective pipe even slightly deforms, as described above, they damage each other and smooth rotation cannot take place.
Patent Document 3 discloses an invention in which a plate-shaped member is made to elastically contact a rotating shaft of a discharge pump. By making rotating molten solder rebound against the rotating shaft of the discharge pump, the formation of oxides in the periphery of the discharge pump is prevented. According to that invention, the formation of an eddy flow due to rotation of the rotating shaft can be suppressed by contacting the plate-shaped member against the rotating shaft of the discharge pump.
However, in the invention disclosed in Patent Document 3, since molten solder in the periphery of the rotating shaft of the pump is agitated, oxidation cannot be completely prevented.
Patent Document 4 discloses an invention in which the formation of oxides is prevented over the entire area of a wave soldering tank, i.e., in the periphery of a rotating shaft of a discharge pump by installing a floating plate-shaped or box-shaped oxidation preventing member on the entire surface of molten solder except for the discharge nozzles, which is the surface where soldering takes place.
Patent Document 1: JP H3-36362 U
Patent Document 2: JP S52-56018 U
Patent Document 3: JP H1-150462 P
Patent Document 4: JP H5-50224 P | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to mounting assemblies of integrated circuit devices and methods for production thereof and more particularly, to a mounting assembly of an integrated circuit device in which an interconnection between an integrated circuit device and a mounting substrate is not exposed and also to a method for production thereof.
2. Description of the Related Art
An example of this type of prior art mounting assemblies of integrated circuit devices is disclosed in PCT International Publication Number 6-504408/94.
In FIG. 13 of the above Publication, a semiconductor chip assembly includes an integrated circuit device having a plurality of input/output terminals provided on the periphery of its top surface and a sheetlike interposer which is mounted on the integrated circuit device and has a plurality of bonding terminals provided on its periphery and connected to the plurality of input/output terminals of the integrated circuit device respectively. Provided on the sheetlike interposer are a plurality of terminals for external connection which are connected to the plurality of bonding terminals through wires, respectively. The input/output terminals of the integrated circuit device and the plurality of bonding terminals of the sheetlike interposer are interconnected by respective bonding wires.
The above prior art has such a problem that, since the input/output terminals of the integrated circuit device and the plurality of bonding terminals of the sheetlike interposer are interconnected by respective bonding wires, the bonding wires are externally exposed. This leads to another problem that the bonding tends to be easily separated, resulting in reduced reliability of the package.
In addition, since the bonding wires connecting the plurality of input/output terminals of the integrated circuit device and the plurality of bonding terminals of the sheetlike interposer are provided separately, a long manufacturing time is required. | {
"pile_set_name": "USPTO Backgrounds"
} |
Application programs, including web-based applications such as web pages, and the hardware associated with the applications, are often tested under extreme use conditions. Such conditions may be provided by a system that simulates a number of users simultaneously executing the application. A user may be simulated by execution of a program (e.g., a previously acquired script) that provides appropriate user inputs and responses to exercise the application. | {
"pile_set_name": "USPTO Backgrounds"
} |
As either professional tradespeople or do-it-yourself home-improvers will attest, nothing beats having the proper tool for a given job. The proper tool cannot only save time, money, and reduce damage to equipment and work supplies but also provide for the increased safety of the user.
One tool utilized in a wide range of applications is that of the pipe clamp. Its ability to clamp and hold objects in close and tight proximity while a given bonding agent is allowed to cure or a fastener is applied makes it ideal for use particularly in woodworking e.g., furniture making and cabinetry. Additionally, some clamps operate in reverse allowing them to be used to force objects apart—which is often required when repairing legs or table leaves on furniture without exposing the wood to the potentially damaging effects of an errant hammer blow or marring effects of overwrought nails or screws. However, the process for reversing the tension of a traditional pipe clamp is often complicated and takes much time to accomplish successfully if it is accomplished at all.
Many efforts have been made to address this problem such as U.S. Pat. No. 927,067 A, U.S. Pat. No. 7,159,859 B2, U.S. Pat. No. 307,439 A and US 20070222130 A1. However, these devices are unsatisfactory in both desired effect and ease of operation. Accordingly, there is a need for a means by a single pipe clamp may be selectively utilized to clamp objects together or spread them in tensioned opposition without the frustrations, and risky damages as described above. The device of the instant application accomplishes this task. | {
"pile_set_name": "USPTO Backgrounds"
} |
One type of distribution of content items popular on the Internet is the real-time distribution of audio streams to listeners. As used here, real-time refers to a situation where the audio stream is presented without substantial delay to the listeners as the audio stream is being produced (e.g., by a publisher). This may otherwise be referred to as a live content stream, or a live audio stream. However, compared to the presentation of live content using traditional means, such as via a radio broadcast, the presentation of a live audio stream over the Internet presents substantial challenges with regards to modification of the live audio stream. While in a traditional broadcast, such as a live broadcast of a sporting event, the modification of the broadcast stream (e.g., via insertion or replacement with other content) does not affect the content of the stream as heard (i.e., consumed) by the listeners, as every listener receives the same audio stream.
However, in the case of a live content stream broadcast over the Internet, an opportunity arises to provide additional interactivity and richer content, resulting in the ability to customize a content stream for individuals. This may be achieved by inserting customized content within certain content replacement break points specified within a live audio broadcast (e.g., during a timeout in a broadcast of a sports event). However, the insertion or replacement of content in a live content stream, especially when the duration of the content break may vary and is not known, may cause substantial issues with delay and differences in this delay between different listeners. This may not be desirable in many live audio streams and cause a decrease in the number of listeners of the broadcast.
For example, the live audio stream may be a broadcast of a sporting event, and different listeners receive different customized content inserted within content breaks of varying durations. This may cause the live audio stream to be presented to each listener differently. These differences may cause some listeners to hear about a significant event in the broadcast (e.g., a goal) after other listeners. Such issues may cause a listener to discontinue listening to the live audio stream, decreasing listenership for the content provider providing the live audio stream.
Thus, what was lacking, inter alia, was an ability for presenting customized live audio streams to users with content presented at substantially similar timeframes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Arcade game operators prefer to install arcade games, such as video games, pinball games, redemption games, claw cranes, etc., in locations where people may be localized for long periods of time, such as hotels, restaurants, theaters, shopping centers, and other public places. In particular, operators often have agreements with retailers to install arcade games in one or more locations of the retailer.
However, maintaining a network of arcade games at multiple locations of a multi-site retailer or multiple locations of multiple retailers can present difficulties to the operator of the arcade games. In some cases, monetary systems used for arcade game payments and monetary systems used for purchasing goods and services at the retailer may differ. A customer at a retailer location can use a gift card or proprietary charge card to pay for goods and services while the same gift card or proprietary charge card may not be used for an arcade game installed at the retailer location. As such, customers may lack the cash needed to play arcade games or it is not immediately convenient to activate a game. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The disclosure relates to a method, system, and article of manufacture for the writing of data of a first block size in a Redundant Array of Independent Disks (RAID) array that stores and mirrors data in a second block size.
2. Background
Redundant Array of Independent Disks (RAID) is a category of disk drives that combine two or more disk drives to provide fault tolerance for data. RAID allows for the redundant storage of the same data across a plurality of disks. In certain configurations of RAID, such as RAID-10 data may be mirrored to recover from a failure of a disk. The physical disks of a RAID may be said to be in a RAID array that may be addressed by an operating system as one single disk. Data may be written in stripes in a RAID array, wherein data striping is the spreading out of blocks of each file across a plurality of disk drives.
RAID-10 provides high availability by combining features of RAID-0 and RAID-1. RAID-0 increases performance by striping volume data across multiple disk drives. RAID-1 provides disk mirroring which duplicates data between two disk drives. By combining the features of RAID-0 and RAID-1, RAID-10 provides a second optimization for fault tolerance. RAID-10 may provide data mirroring from one disk drive module (DDM) to another DDM. RAID 10 stripes data across half of the disk drives in the RAID-10 configuration. The other half of the array mirrors the first set of disk drives. Access to data is preserved if one disk in each mirrored pair remains available.
In some cases, RAID-10 offers faster data reads and writes than RAID configurations such as RAID 5 because RAID-10 does not need to manage parity. However, with half of the DDMs in the group used for data and the other half used to mirror that data, RAID-10 disk groups may not use storage space very efficiently.
A sector is a specifically sized division of a disk. Previously, one sector of a disk was generally configured to hold 512 bytes of information. However, recently certain disks are being configured to hold 4096 bytes (i.e., 4 Kilobyte) of information by disk manufacturers.
A block is a group of sectors of a disk that an operating system can address. Count-key-data (CKD) is a disk data organization model of certain operating systems in which the disk is assumed to be comprised of a fixed number of tracks, each having a maximum data capacity. Multiple records of varying length may be written on each track of a CKD disk, and the usable capacity of each track depends on the number of records written to the track. CKD architecture derives its name from the record format, which comprises a field containing the number of bytes of data and a record address, an optional key field, and the data itself. CKD records are stored in 512 byte blocks. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a camera exposure controller, particularly to an exposure controller for a camera mounted on a mobile object.
2. Description of the Related Art
As set out in Japanese Laid-Open Patent Application No. 2006-129084, for example, technologies have been developed for predicting the location, shape and the like of a ghost formed on the imaging plane of an imaging device by internal reflection when a bright light source like the sun falls within the angle of view of a camera, determining which portion of the taken image is the ghost, and correcting (reducing) the determined ghost portion in response to photographer instructions or automatically. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fuel cells can offer potentially clean, quiet and efficient power generation. Unlike thermal energy based engines, fuel cells use an electrochemical or battery-like process to convert the chemical energy associated with the conversion of hydrogen gas into water. Typically, in fuel cells, hydrogen gas and oxygen gas are fed into the anode and cathode of the fuel cell, respectively. At the anode, the hydrogen gas is electrochemically dissociated into hydrogen ions (H+) and free electrons (e−). The electrons flow out of the anode through an external electrical circuit. In polymer electrolyte membrane (PEM) fuel cells, in general, hydrogen ions (H+) formed at the anode flow to the cathode through the PEM electrolyte. At the cathode, oxygen gas fed into the cathode is electrochemically combined with the hydrogen ions and with the free electrons to generate water. In solid oxide fuel cells employing a solid oxide electrolyte, in general, oxygen ions are electrochemically formed at the cathode and move to the anode through the solid oxide electrolyte. The overall reaction in a fuel cell is as follows:2H2+O2→2H2O(vapor)+Energy (1)Despite the advantages of clean and quiet power generation, fuel cell systems have faced a number of formidable market entry issues resulting from product immaturity, over-engineered system complexity, fuel efficiency, etc. Fuel efficiency can be increased by employing larger surface areas of the anode and cathode, or by increasing the number of fuel cells in a fuel stack. However, these approaches typically result in increases in the size of the fuel stack.
Therefore, there is a need for developing methods of increasing fuel efficiency in fuel cell systems without compromising the size of the fuel cell system, and for developing fuel cell systems having high fuel efficiency, and in particular fuel cell systems of relatively small size. | {
"pile_set_name": "USPTO Backgrounds"
} |
As computers become more ubiquitous throughout our environment, the desire to make computers and their interfaces even more user friendly continues to promote development in this area. For example, the MIT Media Lab, as reported by Brygg Ullmer and Hiroshi Ishii in “The metaDESK: Models and Prototypes for Tangible User Interfaces,” Proceedings of UIST10/1997:14-17,” has developed another form of “keyboardless” human-machine interface. The metaDESK includes a generally planar graphical surface that not only displays computing system text and graphic output, but also receives user input by responding to an object placed against the graphical surface. The combined object responsive and display capability of the graphical surface of the metaDESK is facilitated using infrared (IR) lamps, an IR camera, a video camera, a video projector, and mirrors disposed beneath the surface of the metaDESK. The mirrors reflect the graphical image projected by the projector onto the underside of the graphical display surface to provide images that are visible to a user from above the graphical display surface. The IR camera can detect IR reflections from the undersurface of an object placed on the graphical surface.
By detecting a specially formed object or IR-reflected light from an object disposed on a graphical display surface, the metaDESK can respond to the contemporaneous placement and movement of the object on the display surface to carryout a predefined function, such as displaying and moving a map of the MIT campus.
Others have been developing similar keyboardless interfaces. For example, papers published by Jun Rekimoto of the Sony Computer Science Laboratory, Inc., and associates describe a “HoloWall” and a “HoloTable” that display images on a surface and use IR light to detect objects positioned adjacent to the surface.
The interactive display systems described above, as well as other interactive display systems, generally employ separate optical systems for each of three different purposes. A first optical system is used to project images and data onto the display surface. A second optical system is used to evenly distribute IR light over the display surface to illuminate physical objects disposed adjacent to the display surface. A third optical system is used to receive and focus IR light reflected or generated by physical objects disposed adjacent to the display surface to detect user inputs.
Understandably, using multiple optical systems to carry out these functions adds bulk and cost to an interactive display system. In addition, using multiple, separate optical systems typically requires steps to be taken to correct for any misalignment of the respective images between the different optical systems. For example, if the image projected by the first optical system onto the display surface with which the user will interact is not aligned with the third optical system that is imaging the IR light produced by the user's inputs, the resulting projected and imaged input will be offset from each other. It will thus be necessary to correct for the offset to avoid errors in interpreting the user input relative to the projected image to which the user's input is directed. Conventional interactive systems of this type do not provide an efficient approach to avoid this problem. | {
"pile_set_name": "USPTO Backgrounds"
} |
As an increasing number of applications and services are being made available over networks such as the Internet, an increasing number of content, application, and/or service providers are turning to technologies such as cloud computing. Cloud computing, in general, is an approach to providing access to electronic resources through services, such as Web services, where the hardware and/or software used to support those services is dynamically scalable to meet the needs of the services at any given time. A user or customer typically will rent, lease, or otherwise pay for access to resources through the cloud, and thus does not have to purchase and maintain the hardware and/or software needed.
In some cases, a user or service provider would like to know how much energy is consumed through usage of these resources. For many hardware devices, however, it can be difficult to obtain an accurate accounting of energy consumption. Further, there might be multiple users or entities sharing a resource, and it can be difficult to accurately apportion the energy consumption among the users based on their relative usage. Further still, a user has very little control over the power states or operational states of these resources and components, which can be frustrating or at least inconvenient for a user, particularly where there are regulations on energy consumption or the user gets credits for reducing consumption. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to wireless communication systems and, more particularly, to the transmission and reception of ACKnowledgements (ACK) signals.
2. Description of the Art
A communication system includes a DownLink (DL) that conveys transmission signals from transmission points, such as, for example, Base Stations (BSs), or NodeBs, to User Equipments (UEs). The communication system also includes an UpLink (UL) that conveys transmission signals from UEs to reception points, such as, for example BSs or NodeBs. A UE, which is also commonly referred to as a terminal or a mobile station, may be fixed or mobile and may be embodied as a cellular phone, a personal computer device, etc. A NodeB is generally a fixed station and may also be referred to as an access point or some other equivalent terminology.
DL signals consist of data signals carrying information content, control signals carrying DL Control Information (DCI), and Reference Signals (RSs), which are also known as pilot signals. A NodeB transmits data information or DCI to UEs through a Physical DL Shared CHannel (PDSCH) or a Physical DL Control CHannel (PDCCH), respectively.
UL signals also consist of data signals, control signals and RSs. A UE transmits data information or UL Control Information (UCI) to a NodeB through a Physical Uplink Shared CHannel (PUSCH) or a Physical Uplink Control CHannel (PUCCH), respectively.
A NodeB transmits one or more of multiple types of RSs, including a UE-Common RS (CRS), a Channel State Information RS (CSI-RS), and a DeModulation RS (DMRS). The CRS is transmitted over substantially the entire DL system BandWidth (BW), and can be used by all UEs to demodulate data or control signals or to perform measurements. A UE can determine a number of NodeB antenna ports from which a CRS is transmitted through a broadcast channel transmitted from the NodeB. To reduce the overhead associated with the CRS, a NodeB may transmit a CSI-RS with a density in the time and/or frequency domain that is smaller than that of the CRS, for UEs to perform measurements. A UE can determine the CSI-RS transmission parameters through higher layer signaling from the NodeB. DMRS is transmitted only in the BW of a respective PDSCH, and a UE can use the DMRS to demodulate the information in the PDSCH.
A PDSCH transmission to a UE, or a PUSCH transmission from a UE, may be in response to dynamic scheduling or Semi-Persistent Scheduling (SPS). In dynamic scheduling, a NodeB conveys, to a UE, a DCI format through a respective PDCCH. The contents of a DCI format, and consequently its size, depend on the Transmission Mode (TM) for which a UE is configured for a respective PDSCH reception or PUSCH transmission. In SPS, a PDSCH or a PUSCH transmission is configured to a UE by a NodeB through higher layer signaling, such as, for example, Radio Resource Control (RRC) signaling. The transmission occurs at predetermined time instances and with predetermined parameters, as informed by the higher layer signaling.
FIG. 1 is a diagram illustrating a structure for a DL Transmission Time Interval (TTI).
Referring to FIG. 1, a DL TTI includes one subframe 110, which includes two slots 120 and a total of NsymbDL symbols for transmitting data information, DCI, or RS. Orthogonal Frequency Division Multiplexing (OFDM) is assumed for DL signal transmissions, and an OFDM symbol includes a Cyclic Prefix (CP). A first MsymbDL symbols are used to transmit DL CCHs 130. These MsymbDL symbols may be dynamically indicated in each DL TTI through a Physical Control Format Indicator CHannel (PCFICH) transmitted in a first subframe symbol. Remaining NsymbDL-MsymbDL symbols are mainly used to transmit PDSCHs 140. A transmission BW consists of frequency resource units referred to as Resource Blocks (RBs). Each RB includes NscRB or Resource Elements (REs). A unit of one RB in the frequency domain and one subframe in the time domain is referred to as a Physical Resource Block (PRB). A UE is allocated MPDSCH RBs for a total of MscPDSCH=MPDSCH·NscRB REs for a PDSCH transmission BW. Some REs in some symbols contain CRS 150 (or DMRS), which enable channel estimation and coherent demodulation of information signals at a UE.
Additional control channels may be transmitted in a DL control region. For example, assuming use of a Hybrid Automatic Repeat reQuest (HARQ) process for data transmission in a PUSCH, a NodeB may transmit HARQ-ACK information in a Physical Hybrid-HARQ Indicator CHannel (PHICH) to indicate to a UE whether its previous transmission of each data Transport Block (TB) in a PUSCH was correctly detected (i.e. through an ACK) or incorrectly detected (i.e. through a Negative ACK (NACK)).
FIG. 2 is a diagram illustrating an encoding process for a DCI format at a NodeB transmitter.
Referring to FIG. 2, a NodeB separately codes and transmits each DCI format in a respective PDCCH. A Cell or SPS Radio Network Temporary Identifier (C-RNTI or SPS-RNTI) for a UE, for which a DCI format is intended for, masks a Cyclic Redundancy Check (CRC) of a DCI format codeword in order to enable the UE to identify that a particular DCI format is intended for the UE. Alternatively, a DCI-type RNTI may mask a CRC if a DCI format provides UE-common information. A CRC computation unit 220 computes the CRC of (non-coded) DCI format bits 210. The CRC is then masked using an exclusive OR (XOR) operation 230 between the CRC and respective RNTI bits 240. The XOR operation 230 is defined as: XOR(0,0)=0, XOR(0,1)=1, XOR(1,0)=1, XOR(1,1)=0. For example, both a CRC and an RNTI consist of 16 bits. The masked CRC bits are appended to DCI format information bits using a CRC append operation at an append CRC unit 250. Channel coding is performed using a channel coding operation at a channel coding unit 260 (for example, using a convolutional code). A rate matching operation is performed to allocated resources at a rate matching unit 270. Interleaving and modulation are performed at an interleaving and modulation unit 280 for transmission of a control signal 290.
FIG. 3 is a diagram illustrating a decoding process for a DCI format at a UE receiver.
Referring to FIG. 3, a UE receiver demodulates a received control signal 310 and resulting bits are de-interleaved at a demodulation and de-interleaving unit 320. A rate matching applied at a NodeB transmitter is restored through a rate matching unit 330. Data is subsequently decoded at a channel decoder 340. After decoding the data, DCI format information bits 360 are obtained after extracting CRC bits at a CRC extraction unit 350. The CRC bits are de-masked by applying an XOR operation 370 with a respective UE RNTI mask 380. A UE performs a CRC test in a CRC test unit 390. If the CRC test passes, a UE considers the DCI format as valid and determines parameters for signal reception or signal transmission. If the CRC test does not pass, a UE disregards the presumed DCI format.
To avoid a PDCCH transmission to a UE that is blocking a PDCCH transmission to another UE, a location of each PDCCH in the time-frequency domain of a DL control region is not unique. Therefore, a UE needs to perform multiple decoding operations to determine whether there are PDCCHs intended for the UE in a DL subframe. The REs carrying a PDCCH are grouped into Control Channel Elements (CCEs) in the logical domain. For a given number of DCI format bits in FIG. 2, a number of CCEs for a respective PDCCH depends on a channel coding rate (Quadrature Phase Shift Keying (QPSK) is assumed as the modulation scheme). A NodeB may use a lower channel coding rate (i.e., more CCEs) for transmitting PDCCHs to UEs experiencing a low DL Signal-to-Interference and Noise Ratio (SINR) than to UEs experiencing a high DL SINR. The CCE aggregation levels may include, for example, of LCε{1,2,4,8} CCEs.
For a PDCCH decoding process, a UE may determine a search space for candidate PDCCHs after the UE restores the CCEs in the logical domain, according to a common set of CCEs for all UEs (i.e., a Common Search Space (CSS)) and according to a UE-dedicated set of CCEs (i.e., a UE-Dedicated Search Space (UE-DSS)). A CSS may include the first C CCEs in the logical domain. A UE-DSS may be determined according to a pseudo-random function having UE-common parameters as inputs, such as, for example, the subframe number or the total number of CCEs in the subframe, and UE-specific parameters such as the RNTI. For example, for CCE aggregation levels LCε{1,2,4,8}, the CCEs corresponding to PDCCH candidate m are provided by Equation (1).CCEs for PDCCH candidate m=L·{(Yk+m)mod└NCCE,k/L┘}+i (1)In Equation (1), NCCE,k is a total number of CCEs in subframe k, i=0, . . . , LC−1, m=0, . . . , MC(LC)−1, and MC(LC) is a number of PDCCH candidates to monitor in a search space. For example, for LCε{1,2,4,8}, MC(LC)32 {6,6,2,2}, respectively. For the CSS, Yk=0. For the UE-DSS, Yk=(A−Yk-1)mod D where Y−1=RNTI≠0, A=39827 and D=65537.
DCI formats conveying information to multiple UEs are transmitted in a CSS. Additionally, if enough CCEs remain after the transmission of DCI formats conveying information to multiple UEs, a CSS may also convey some UE-specific DCI formats for DL SAs or UL SAs. A UE-DSS exclusively conveys UE-specific DCI formats for DL SAs or UL SAs. For example, a UE-CSS may include 16 CCEs and support 2 DCI formats with L=8 CCEs, 4 DCI formats with L=4 CCEs, or 1 DCI format with L=8 CCEs and 2 DCI formats with L=4 CCEs. The CCEs for a CSS are placed first in the logical domain (prior to interleaving).
FIG. 4 is a diagram illustrating a transmission process of DCI formats in respective PDCCHs.
Referring to FIG. 4, encoded DCI format bits are mapped to PDCCH CCEs in the logical domain. The first 4 CCEs (L=4), CCE1 401, CCE2 402, CCE3 403, and CCE4 404 are used to transmit a PDCCH to UE1. The next 2 CCEs (L=2), CCE5 411 and CCE6 412, are used to transmit a PDCCH to UE2. The next 2 CCEs (L=2), CCE7 421 and CCE8 422, are used to transmit a PDCCH to UE3. Finally, the last CCE (L=1), CCE9 431, is used to transmit a PDCCH to UE4. The DCI format bits may be scrambled by a binary scrambling code, in step 440, and are subsequently modulated, in step 450. Each CCE is further divided into Resource Element Groups (REGs). For example, a CCE consisting of 36 REs can be divided into 9 REGs, each consisting of 4 REs. Interleaving is applied among REGs (blocks of 4 QPSK symbols), in step 460. For example, a block interleaver may be used. The resulting series of QPSK symbols may be shifted by J symbols, in step 470. Each QPSK symbol is mapped to an RE in the control region of the DL subframe, in step 480. Therefore, in addition to a CRS, 491 and 492, and other control channels such as a PCFICH 493 and the PHICH, the REs in the PDCCH contain QPSK symbols corresponding to a DCI format for UE1 494, UE2 495, UE3 496, and UE4 497.
A UE may transmit a HARQ-ACK signal in a PUCCH in response to detecting a PDCCH associated with a PDSCH, and may implicitly derive a respective PUCCH resource nPUCCH from the first CCE, nCCE of a respective PDCCH as set forth in Equation (2).nPUCCH=nCCE+NPUCCH (2)where NPUCCH is an offset the NodeB informed to UEs through higher layer signaling.
For a UL system BW consisting of NRBmax,UL RBs, where each RB consists of NscRB=12 REs, a Zadoff-Chu (ZC) sequence ru,v(α)(n) can be defined by a Cyclic Shift (CS) α of a base ZC sequence ru,v(n) according to ru,v(α)(n)=ejαn ru,v(n), 0≦n<MscRS, where MscRS=mNscRB is the length of the ZC sequence, 1≦m≦MRBmax,UL, and ru,v(n)=xq(n mod NZCRS) where the qth root ZC sequence is defined by
x q ( m ) = exp ( - j π qm ( m + 1 ) N ZC RS ) ,0≦m≦NZCRS−1 with q given by q=└ q+1/2┘+v·(−1)└2 q┘ and q given by q=NZCRS·(u+1)/31. A length NZCRS of a ZC sequence is given by the largest prime number such that NZCRS<MscRS. Multiple RS sequences can be defined from a single base sequence through different values of α. A PUCCH transmission is assumed to be in one RB (MscRS=NscRB).
FIG. 5 is a block diagram illustrating a UE transmitter for a ZC sequence.
Referring to FIG. 5, a sub-carrier mapping unit 520 maps a ZC sequence from a ZC sequence unit 510 to REs of an assigned transmission BW as they are indicated by RE selection unit 525. Subsequently, an IFFT is performed by an IFFT unit 530, a CS is applied to the output by a CS unit 540, followed by scrambling with a cell-specific sequence using a scrambling unit 550. A CP is inserted by a CP insertion unit 560, and the resulting signal is filtered by a time windowing unit 570. The transmission power PPUCCH is applied by a power amplifier 580, and a ZC sequence 590 is transmitted. Without modulation, a ZC sequence serves as an RS. With modulation, a ZC sequence serves as a HARQ-ACK signal.
The DL control region in FIG. 1 uses a maximum of MsymbDL=3 OFDM symbols and transmits a control signal substantially over a total DL BW. This configuration limits PDCCH capacity and cannot achieve interference coordination in the frequency domain among PDCCH transmissions from different NodeBs. There are several cases where expanded PDCCH capacity or PDCCH interference coordination in the frequency domain is needed for transmission of control signals. One such case is use of spatial multiplexing for PDSCH transmissions where multiple PDCCHs schedule same PDSCH resources to multiple UEs and expanded PDCCH capacity is needed. Another case is for heterogeneous networks where DL transmissions in a first cell experience strong interference from DL transmissions in a second cell, and interference coordination in the frequency domain between the two cells is needed.
A direct extension of the maximum DL control region size to more than MsymbDL=3 OFDM symbols is not possible at least due to the requirement to support legacy UEs, which cannot be aware of such an extension. An alternative is to support DL control signaling in the conventional PDSCH region by using individual PRBs. A PDCCH transmitted in PRBs of the conventional PDSCH region are referred to as Enhanced PDCCH (EPDCCH).
FIG. 6 is a diagram illustrating EPDCCH transmissions in a DL subframe.
Referring to FIG. 6, although EPDCCH transmissions start immediately after a conventional DL control channel 610 and are transmitted over all remaining DL subframe symbols, EPDCCH transmissions may instead start at a predetermined subframe symbol and extend over a part of remaining DL subframe symbols. EPDCCH transmissions may occur in four PRBs, 620, 630, 640, and 650, while remaining PRBs 660, 662, 664, 666, and 668 may be used for PDSCH transmissions. As an EPDCCH transmission over a given number of subframe symbols may require fewer REs than the number of subframe symbols available in a PRB, multiple EPDCCHs may be multiplexed in a same PRB. The multiplexing can be in any combination of possible domains (i.e., time domain, frequency domain, or spatial domain) and, in a manner similar to a PDCCH, an EPDCCH includes at least one Enhanced CCE (ECCE). Similar extensions may apply to PCFICH transmission (EPCFICH) or to PHICH transmission (EPHICH).
A UE can be configured by higher layer signaling the PRBs for potential transmissions of Enhanced CCHs (ECCHs), which can include, for example, EPDCCHs, EPCFICH, or EPHICHs. An ECCH transmission to a UE over a number of DL subframe symbols may be in a single PRB, if a NodeB has accurate DL channel information for the UE and can perform Frequency Domain Scheduling (FDS) or beam-forming, or it may be in multiple PRBs if accurate DL channel information is not available or if an ECCH is intended for multiple UEs. An ECCH transmission over a single PRB is referred to as localized or non-interleaved. An ECCH transmission over multiple PRBs is referred to as distributed or interleaved.
An exact design of a search space for EPDCCH candidates is not material to embodiments of the present invention and may be assumed to follow the same principles as a search space design for PDCCH candidates. Therefore, a number of EPDCCH candidates can exist for each possible ECCE aggregation level LE where, for example, LEε{1,2,4} ECCEs for localized EPDCCH and LEε{1,2,4,8} ECCEs for distributed EPDCCH. A UE determines EPDCCH candidates for each ECCE aggregation level in a search space according to predetermined functions similar to the one previously described for determining CPDCCH candidates for each CCE aggregation level.
FIG. 7 is a diagram illustrating an allocation of ECCEs for localized EPDCCH transmissions.
Referring to FIG. 7, the partitioning of ECCEs is in the frequency domain, a PRB contains 4 ECCEs, 710, 720, 730, and 740, and an EPDCCH transmission to a UE may consist of 1, 2, or 4 ECCEs. There are four orthogonal DMRS antenna ports using Code Division Multiplexing (CDM) and Frequency Division Multiplexing (FDM). DMRS port 1 750 and DMRS port 2 760 occupy the same REs and are separate through the use of the Orthogonal Covering Codes (OCCs) {1, 1} and {1, −1}, respectively, over two successive subframe symbols. The same applies for DMRS port 3 770 and DMRS port 4 780, which occupy different REs than the first two DMRS ports. A DMRS transmission from each antenna port may also be scrambled with a scrambling sequence. For localized EPDCCH, a UE is assigned a unique DMRS port, based for example on its identity (C-RNTI) or the subframe number, or the DMRS antenna port for a UE may also depend on the ECCE number or the EPDCCH candidate. An EPDCCH transmission is assumed to start, for example, in a first subframe symbol after legacy CCHs 790, if any, and extend in the remaining subframe symbols.
To improve the spectral efficiency of EPDCCH transmissions and therefore reduce the associated overhead and increase the DL throughout, EPDCCHs to different UEs may be transmitted using spatial multiplexing. This is enabled by the NodeB opportunistically using the same resources for multiple EPDCCH transmissions to respectively multiple UEs by applying a different precoding to each EPDCCH transmission so that it becomes substantially orthogonal to the remaining EPDCCH transmissions, thereby substantially suppressing the mutual interference. In enabling spatial multiplexing, it is essential to provide orthogonal DMRS to each UE so that a respective channel estimate can be accurately obtained and orthogonal projections to the remaining EPDCCH transmissions can be made. In this manner, and as the DMRS conveyed by each EPDCCH has the same precoding as the respective data, the use of spatial multiplexing is transparent to a UE.
FIG. 8 is a diagram illustrating a transmission of two EPDCCHs through spatial multiplexing using same ECCEs.
Referring to FIG. 8, a first EPDCCH transmission associated with DMRS port 1 810 and a second EPDCCH transmission associated with DMRS port 2 820 are multiplexed in REs corresponding to the same ECCEs #0 and #1 830. DMRS port 3 860 and DMRS port 4 870 may or may not exist. In the latter case, the respective REs may be used for EPDCCH transmission (or may remain empty). Also, although the spatially multiplexed EPDCCH transmissions are shown to be transmitted over the same number of ECCEs, they may instead be transmitted over a different number of ECCEs and partially overlap. Similar to the DMRS, the control information in a DCI format can be scrambled by a scrambling sequence.
The use of spatial multiplexing for transmissions of EPDCCHs associated with PDSCHs to respective UEs results in PUCCH resource collision for respective HARQ-ACK signal transmissions under the conventional PUCCH resource determination. Denoting the first EPDCCH ECCE as nECCE, the PUCCH resource for HARQ-ACK signal transmission is nPUCCHE=nECCE+NPUCCHE, where NPUCCHE is an offset a NodeB informed to UEs through higher layer signaling. NPUCCHE may be the same as NPUCCH or it may be separately configured for EPDCCH operation. When nECCE is the same for UEs with spatially multiplexed EPDCCH transmissions associated with respective PDSCHs, the PUCCH resource for each respective HARQ-ACK signal transmission is the same.
The previous PUCCH resource collision problem is further exacerbated when a UE is configured antenna transmission diversity for HARQ-ACK signal transmissions and a different PUCCH resource is required for each antenna. For two antennas, a conventional method is to obtain a PUCCH resource for the first antenna as for the case of a single antenna, nPUCCH=nECCE+NPUCCH, and obtain a PUCCH resource for the second antenna as nPUCCH=nECCH+1+NPUCCH. Due to the limited number of ECCEs per PRB, such as 4 ECCEs per PRB, the PUCCH resource collision problem for transmitter antenna diversity exists regardless of the use of spatial multiplexing for EPDCCH transmissions.
Regardless of whether spatial multiplexing is used for EPDCCH transmissions or transmitter antenna diversity is used for HARQ-ACK signal transmissions in response to an EPDCCH detection associated with a PDSCH, the channelization of respective PUCCH resources needs to be defined. These PUCCH resources in response to detections of EPDCCHs and in response to detections of PDCCHs can be shared or separate. Moreover, these PUCCH resources in response to detections of distributed EPDCCHs and in response to detections of localized EPDCCHs can be also shared or separate. In general, separate PUCCH resources increase UL overhead since the number of PDSCHs per subframe does not significantly vary regardless of whether the scheduling is only by PDCCHs, only by EPDCCHs, or by both.
In case a PUCCH resource nPUCCH, in response to an EPDCCH detection associated with a PDSCH, is implicitly derived as a function of the first ECCE nECCE and a NPUCCHE parameter configured by higher layer signaling, nPUCCHE=f(nECCE)=nECCE+NPUCCHE collisions among PUCCH resources used in response to PDCCH and EPDCCH detections by different UEs can be avoided by either one of the following approaches: a) The values of NPUCCH and NPUCCHE are such that different PUCCH resources are always used for HARQ-ACK signal transmissions corresponding to PDCCH and EPDCCH detections, respectively. b) A UE decodes a PCFICH and determines a total number of PDCCH CCEs (by determining a number of DL subframe symbols used to transmit legacy DL control region and knowing a number of CRS REs and PHICH/PCFICH REs). PUCCH resources corresponding to EPDCCH detections can then be sequentially numbered after the ones corresponding to PDCCH detections. c) A shared set of PUCCH resources is used and the NodeB scheduler is restricted in using the first CCE for a PDCCH transmission or the first ECCE for an EPDCCH transmission so that the respective HARQ-ACK signal transmissions do not use same PUCCH resources.
The first two approaches increase PUCCH overhead compared to using only PDCCHs for scheduling PDSCHs even though an average number of such PDSCHs per subframe may not be larger than when both PDCCHs and EPDCCHs are used. The first approach results in a larger increase in PUCCH overhead as, if a UE does not read the PCFICH, it may need to assume the largest number of CCEs for PDCCH transmissions. The third approach may avoid increasing the PUCCH overhead but may place significant restrictions on the scheduler operation, which may not be feasible in practice.
Therefore, there is a need to define PUCCH resources for HARQ-ACK signal transmissions in response to detections of PDCCHs, distributed EPDCCHs, and localized EPDCCHs associated with respective PDSCHs, while minimizing the associated overhead and avoiding using the same PUCCH resource for multiple HARQ-ACK signal transmissions.
There is also a need to allocate different PUCCH resources for HARQ-ACK signal transmissions from different UEs in response to respective EPDCCH detections associated with respective PDSCHs and sharing a same first ECCE.
There is a further need to enable antenna diversity for the transmission of a HARQ-ACK signal in response to an EPDCCH detection associated with a PDSCH. | {
"pile_set_name": "USPTO Backgrounds"
} |
Currently, extensive research is being conducted to determine associations between gastrointestinal dysfunction and a variety of human disorders that, heretofore, have been of unknown etiology. For example, an association between dysautonomic conditions and gastrointestinal dysfunction has been described in U.S. patent application Ser. No. 09/929,592, filed on Aug. 14, 2001, entitled “Methods For Diagnosing and Treating Dysautonomia and Other Dysautonomic Conditions, which is commonly owned and fully incorporated herein by reference. Further, a relationship between gastrointestinal conditions and PDDs such as Autism, ADD (Attention Deficit Disorder) and ADHD (Attention Deficit Hyperactivity Disorder) has been described in detail in U.S. patent application Ser. No. 09/466,559, filed Dec. 17, 1999, entitled “Methods For Treating Pervasive Development Disorders,” and U.S. Ser. No. 09/707,395, filed on Nov. 7, 2000, entitled “Methods For Treating Pervasive Development Disorders”, both of which are commonly owned and incorporated herein by reference.
Based on these findings, it is thus desirable to continue research in finding biologic markers of gastrointestinal dysfunction that may aid in the diagnosis of certain diseases and disorders. For example, the effect of various pathogens on the gastrointestinal tract, and the association of such pathogens to disorders such as PDD and dysautonomia, has heretofore not been researched. Various microorganisms that are of interest will now be discussed.
Helicobacter pylori (H. pylori) is generally associated with chronic gastritis and peptic ulcer in children and adults. The prevalence of H. pylori is highest in developing countries and lowest in developed countries. Ethnicity, socioeconomic status, household crowding, and other conditions contribute to the formation of H. pylori infection. Infection is rarely symptomatic in children, and duodenal ulcers are generally not seen in children less than 10 years of age. Various diseases that are caused, or believed to be caused by H. pylori infection are known. For instance, it has been postulated that H. pylori plays a role in auto-immune athero-sclerosis.
Esophageal reflux disease (GORD) has further been postulated to be caused by H. pylori in a mechanism whereby somatostatin induces the hypothalamus to decrease the release of growth hormone from the pituitary affecting the adrenal control of cortisol. The change in cortisol ultimately affects the gastrin release mechanism causing an increase in acid.
Cryptosporidium parvum can be associated with infections of the gastrointestinal tract in children and in immunocompromised populations. It is generally thought to account for up to 20% of all cases of diarrhea in developing countries and potentially life threatening in children with AIDS due to the induction of severe malnutrition. These infections are generally asymptomatic and occur in tandem with other infections such as one with Giardia.
In 1993, a large outbreak of Cryptosporidium parvum occurred in Milwaukee, Wis. in which 400,000 people were affected. It has a seasonal effect of being more prevalent in the late summer in children under the age of 15 years.
Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. In its most severe form, it has been found to cause infectious lymphocytosis. Although rare, infection with Giardia can be protracted and debilitating. Giardia lamblia is a flagellate that encysts, and generally does not cause symptomotology. However, when found in the trophozoite form, severe diarrhea can result. Symptoms can include diarrhea, vomiting, fatigue, and growth retardation in children. Malabsorption results from infection with the trophzoite form, and potential blockage of the microvilli of the intestines occurs. There may be an interaction between decreased levels of IgA in the gastrointestinal system and giardiasis.
Clostridium infections of the gastrointestinal tract are of the perfringes, botulinum and difficele varieties. Perfringens food poisoning is the term used to describe the common foodborne illness caused by C. perfringens. A more serious but rare illness is also caused by ingesting food contaminated with Type C strains. The latter illness is known as enteritis necroticans. The common form of perfringens poisoning is characterized by intense abdominal cramps and diarrhea which begin 8-22 hours after consumption of foods containing large numbers of those C. perfringens bacteria capable of producing the food poisoning toxin. The illness is usually over within 24 hours but less severe symptoms may persist in some individuals for 1 or 2 weeks. A few deaths have been reported as a result of dehydration and other complications. Necrotic enteritis caused by C. perfringens is often fatal. This disease also begins as a result of ingesting large numbers of the causative bacteria in contaminated foods. This disease is a food infection; only one episode has ever implied the possibility of intoxication (i.e., disease from preformed toxin).
Clostridium difficile is an infection generally caused by changes in the intestinal mucosa. Those changes are caused by an overuse of antibiotics creating an intestinal environment favorable to the infiltration with Clostridium difficile. Infection with C. difficile is generally debilitating and C. difficile is a gram-positive, spore forming, anaerobic bacillus which can produce toxin-mediated diarrhea or pseudomembranous colitis. It has been isolated from soil, sand, hay, and animal dung. C. difficile colonization of the colon occurs in 2%-3% of healthy adults. Following exposure to antibacterial agents, the rate of asymptomatic colonization in adults averages between 5% to 15%, but rates as high as 46% have been reported. Carriage rates of up to 70% have been reported in children below the age of one year, but by two years of age the “normal” colonic flora is established and the frequency of colonization decreases to that of healthy adults. Of interest is that healthy children less than one year of age are the only population in which C. difficile toxins are frequently detected in the stool in the absence of clinical symptoms. One suggestion advanced to explain this observation is that the infant's gut cannot respond to the toxin.
Clostridium botulinum is an anaerobic, spore-forming rod that produces a potent neurotoxin. The spores are heat-resistant and can survive in foods that are incorrectly or minimally processed. Seven types (A, B, C, D, E, F and G) of botulism are recognized, based on the antigenic specificity of the toxin produced by each strain. Types A, B, E and F cause human botulism. Types C and D cause most cases of botulism in animals. Animals most commonly affected are wild fowl and poultry, cattle, horses and some species of fish. Although type G has been isolated from soil in Argentina, no outbreaks involving it have been recognized. Foodborne botulism (as distinct from wound botulism and infant botulism) is a severe type of food poisoning caused by the ingestion of foods containing the potent neurotoxin formed during growth of the organism. The toxin is heat labile and can be destroyed if heated at 80° C. for 10 minutes or longer. The incidence of the disease is low, but the disease is of considerable concern because of its high mortality rate if not treated immediately and properly. Most of the 10 to 30 outbreaks that are reported annually in the United States are associated with inadequately processed, home-canned foods, but occasionally commercially produced foods have been involved in outbreaks. Sausages, meat products, canned vegetables and seafood products have been the most frequent vehicles for human botulism.
The life cycle of Entamoeba histolytica involves trophozoites (the feeding stage of the parasite) that live in the host's large intestine and cysts that are passed in the host's feces. Humans are infected by ingesting cysts, most often via food or water contaminated with human fecal material. The trophozoites can destroy the tissues that line the host's large intestine, so of the amoebae infecting the human gastrointestinal tract, E. histolytica is potentially the most pathogenic. In most infected humans the symptoms of “amoebiasis” (or “amebiasis”) are intermittent and mild (various gastrointestinal upsets, including colitis and diarrhea). In more severe cases the gastrointestinal tract hemorrhages, resulting in dysentery. In some cases the trophozoites will enter the circulatory system and infect other organs, most often the liver (hepatic amoebiasis), or they may penetrate the gastrointestinal tract resulting in acute peritonitis; such cases are often fatal. As with most of the amoebae, infections of E. histolytica are often diagnosed by demonstrating cysts or trophozoites in a stool sample. Infections that sometimes last for years may be accompanied by no symptoms, vague gastrointestinal distress, and/or dysentery (with blood and mucus). Most infections occur in the digestive tract but other tissues may be invaded. Complications include ulcerative and abscess pain and, rarely, intestinal blockage. Onset time is highly variable. It is theorized that the absence of symptoms or their intensity varies with such factors as strain of amoeba, immune health of the host, and associated bacteria and, perhaps, viruses. The amoeba's enzymes help it to penetrate and digest human tissues; it secretes toxic substances.
No extensive research is known to have been conducted heretofore to determine correlations and associations regarding the presence of pathogens in the gastrointestinal tract of individuals in, e.g., PDD, Parkinson's and Dysautonmia populations. Based on the findings described herein in accordance with the present invention, correlations and associations are found to exist between various disorders such as Autism, Parkinson's, ADD, ADHD and Dysautonomia, for example, and the presence of pathogens in an individual's digestive tract . | {
"pile_set_name": "USPTO Backgrounds"
} |
A golf set includes various types of clubs for use in different conditions or circumstances in which a ball is hit during a golf game. A set of clubs typically includes a “driver” for hitting the ball the longest distance on a course. A fairway “wood” can be used for hitting the ball shorter distances than the driver. A set of irons are used for hitting the ball within a range of distances typically shorter than the driver or woods. Every club has an ideal striking location or “sweet spot” that represents the best hitting zone on the face for maximizing the probability of the golfer achieving the best and most predictable shot using the particular club.
An iron has a flat face that normally contacts the ball whenever the ball is being hit with the iron. Irons have angled faces for achieving lofts ranging from about 18 degrees to about 64 degrees. The size of an iron's sweet spot is generally related to the size (i.e., surface area) of the iron's striking face, and iron sets are available with oversize club heads to provide a large sweet spot that is desirable to many golfers. Most golfers strive to make contact with the ball inside the sweet spot to achieve a desired ball speed, distance, and trajectory.
Conventional “blade” type irons have been largely displaced (especially for novice golfers) by so-called “perimeter weighted” irons, which include “cavity-back” and “hollow” iron designs. Cavity-back irons have a cavity directly behind the striking plate, which permits club head mass to be distributed about the perimeter of the striking plate, and such clubs tend to be more forgiving to off-center hits. Hollow irons have features similar to cavity-back irons, but the cavity is enclosed by a rear wall to form a hollow region behind the striking plate. Perimeter weighted, cavity back, and hollow iron designs permit club designers to redistribute club head mass to achieve intended playing characteristics associated with, for example, placement of club head center of mass or a moment of inertia. These designs also permit club designers to provide striking plates that have relatively large face areas that are unsupported by the main body of the golf club head. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is compelling evidence to suggest that there is a strong correlation between the sharply increasing levels of atmospheric CO2 with a commensurate increase in global surface temperatures. This effect is commonly known as Global Warming. Of the various sources of the CO2 emissions, there are a vast number of small, widely distributed emitters that are impractical to mitigate at the source. Additionally, large scale emitters such as hydrocarbon-fueled power plants are not fully protected from exhausting CO2 into the atmosphere. Combined, these major sources, as well as others, have lead to the creation of a sharply increasing rate of atmospheric CO2 concentration. Until all emitters are corrected at their source, other technologies are required to capture the increasing, albeit relatively low, background levels of atmospheric CO2. Efforts are underway to augment existing emissions reducing technologies as well as the development of new and novel techniques for the direct capture of ambient CO2. These efforts require methodologies to manage the resulting concentrated waste streams of CO2 in such a manner as to prevent its reintroduction to the atmosphere.
The production of CO2 occurs in a variety of industrial applications such as the generation of electricity power plants from coal and in the use of hydrocarbons that are typically the main components of fuels that are combusted in combustion devices, such as engines. Exhaust gas discharged from such combustion devices contains CO2 gas, which at present is simply released to the atmosphere. However, as greenhouse gas concerns mount, CO2 emissions from all sources will have to be curtailed. For mobile sources the best option is likely to be the collection of CO2 directly from the air rather than from the mobile combustion device in a car or an airplane. The advantage of removing CO2 from air is that it eliminates the need for storing CO2 on the mobile device.
Extracting carbon dioxide (CO2) from ambient air would make it possible to use carbon-based fuels and deal with the associated greenhouse gas emissions after the fact. Since CO2 is neither poisonous nor harmful in parts per million quantities, but creates environmental problems simply by accumulating in the atmosphere, it is possible to remove CO2 from air in order to compensate for equally sized emissions elsewhere and at different times.
Most prior art methods, however, result in the inefficient capture of CO2 from air because these processes heat or cool the air, or change the pressure of the air by substantial amounts. As a result, the net loss in CO2 is negligible as the cleaning process may introduce CO2 into the atmosphere as a byproduct of the generation of electricity used to power the process.
Various methods and apparatus have been developed for removing CO2 from air. For example, we have recently disclosed methods for efficiently extracting carbon dioxide (CO2) from ambient air using capture solvents that either physically or chemically bind and remove CO2 from the air. A class of practical CO2 capture sorbents include strongly alkaline hydroxide solutions such as, for example, sodium or potassium hydroxide, or a carbonate solution such as, for example, sodium or potassium carbonate brine. See for example published PCT Application PCT/US05/29979 and PCT/US06/029238.
There are also many uses for sequestered CO2. This includes the use of CO2 in greenhouses where higher levels of CO2 contribute to increased plant growth. CO2 may also be supplied to algae cultures. Researchers have shown that algae can remove up to 90% of gaseous CO2 from air streams enriched in CO2 and can also reduce the CO2 concentration in ambient air. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.