text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the Invention
The present invention relates to a duplexer which is a transmitting/receiving separate type filter for use in UHF band mobile communication. In particular, the present invention relates to a duplexer having dual coupled line characteristics.
2. Description of the Prior Art
The duplexer which is used as a transmitting/receiving separate type filter in the UHF band mobile communications uses TEM mode dielectric coaxial resonators. The number of the coaxial resonators is decided depending on the filter requirement characteristics but generally, in order to increase the signal damping for the transmitting frequency at the band pass filter of the receiving terminal, the number of the resonators of the filter of receiving terminal is made larger than that of resonators of the band pass filter of the transmitting terminal.
FIG. 1 illustrates the constitution of a duplexer using the conventional dielectric. In this duplexer, an integrated type is provided in which a plurality of resonators are connected to a single dielectric block. That is, the duplexer includes: four resonators 2 of the transmitting terminal, five resonators 2' of the receiving terminal, and a resonator 3 used as a separating circuit for separating the transmitting/receiving signals.
In a dielectric block 1, the resonators 2, 2' and 3 having holes of the same size are formed from an upper face 1' of the dielectric block to its bottom. Further, the five faces of the dielectric block 1 excluding the upper face 1' are electroplated. Therefore, the resonators form short circuits connected from the bottom of the dielectric block to the ground. The upper face 1' functions as a 1/4 resonator which is an open end terminal. Further, the diameters of the resonators are uniform, and therefore, they are uniform impedance resonators in which the impedance of the open terminal is same as that of the short circuit terminal.
Further, in the first resonator and in the last resonator, there are inserted conductive rods 5 as input/output terminals. Further, dielectric sleeves are fitted to the input/output terminal conductive rods 5 for a capacitive coupling between the conductive rods 5 and the resonators 2. Further, resonator 3 is provided for the branching circuit so as to match the impedance between the transmitting terminal and the receiving terminal at an antenna terminal 5'. Therefore, input signals which are inputted into the transmitting filter are not transferred to the receiving filter, but are transmitted through the antenna terminal. The signals which are received through the antenna terminal are transferred to the transmitting filter but are transferred to the receiving terminal.
In this duplexer described above, the coupling between the resonators is done through a single coupling line in which the odd and even mode admittances of the open terminal and short circuit terminal are constant. Further, all the faces of the dielectric block except the upper face 1' are electroplated with a metal.
In the duplexer of FIG. 1, if an electric equivalent circuit is illustrated by using a coupling line for the transmitting filter, then it becomes as shown in FIG. 6. In FIG. 6, the equivalent circuit includes three resonators, and a UIR resonator is shown in the form of a short-circuited 1/4-wavelength resonator 19. Further, the coupling between the resonators is shown in the form of a distribution device 20 based on an induced coupling. Further, the coupling between the input/output conductive rods and the resonators is shown in the form of capacitance 21.
In this duplexer, if the insertion loss characteristics are illustrated for the band pass filters used in the transmitting terminal and the receiving terminal, then it becomes FIG. 9 in which the dampings at the frequencies higher or lower than the pass band are almost same.
However, in the mobile communication, in order to efficiently utilize the frequency, the transmitting band and the receiving band are closely positioned. Further, in order to make the damping of the adjacent frequency large, the transmitting band pass filter requires a more superior damping characteristic at a frequency higher than that of the pass band. Further, the band pass filter which is used at the receiving terminal requires a higher damping characteristic at a frequency lower than that of the pass band. In this band pass filter, in order to improve the damping characteristics, if the number of the resonators is increased, the damping characteristics are improved, but the insertion loss is increased, and the bulk of the filter is increased. Accordingly, there is required a pole filter having a blocking pole without transmitting the signals at a particular frequency, and without increasing the number of resonators.
FIG. 2 illustrates another conventional duplexer in which short-circuited 1/4-wavelength individual resonators 6 and a concentrated device are used, thereby providing a duplexer having a polarity. A transmitting filter includes three individual resonators, and a chip capacitor 9 is inserted into between a first resonator and input terminal 7. The coupling between the resonators is carried out in such a manner that an electrical pattern is connected on a PCB board 8, and that an external chip capacitor 9 is connected to it. In order to block the transmission of signals at a particular frequency, a separate chip inductor 10 is inserted into an open terminal of a second resonator. The resonance circuit is modified by connecting the chip inductor 10 to the open terminal of the second resonator so as to form a pole frequency. That is, at a frequency at which the impedance of the second resonance circuit becomes zero, the signals from the input side cannot be transferred, but flows through the resonance circuit to the ground, and therefore, there occurs a pole frequency. Such a pole frequency is generated at a frequency higher than the pass band of the transmitting filter, and therefore, the damping of the receiving signals can be increased. The filter of the receiving terminal includes four individual resonators, while a chip capacitor is inserted into between the last resonator and an output terminal. An equivalent circuit for this duplexer is illustrated in FIG. 7.
The equivalent circuit of FIG. 7 includes three resonators. The coupling between the resonators is done in such a manner that an electrical pattern is connected to a PCB board 8, and an external chip capacitor 9 is connected to it. In order to block the transfer of signals at a particular frequency, a separate chip capacitor 10' is disposed at an open terminal of a second resonator. Under this condition, the pole frequency occurs at a frequency lower than that of the pass band of the receiving frequency, and therefore, the damping of the transmitting frequency can be increased.
The frequency characteristics of this filter is illustrated in FIG. 10. In order to match the impedance of the filters of the antenna terminal 7', the transmitting terminal and the receiving terminal, there are used a chip inductor 11 and a chip capacitor 11'. Therefore, the signals which are inputted into the transmitting input terminal are not transmitted to the filter of the receiving terminal due to the impedance adjusting inductor, but are propagated through the antenna terminal to the external. The signals which are received to the antenna terminal are transmitted to the filter of the receiving terminal, thereby transferring energy.
In such a duplexer, a pole filter is formed, and therefore, the damping characteristics can be improved with a small number of resonators. However, external devices such as a chip capacitor or a chip inductor are used, and therefore, the bulk of the product is increased, as well as complicating the manufacturing process.
In the transmitting/receiving separate type filter of the mobile communication, a high damping characteristic is required, and owing to the compactness and light weight trend of the terminals, the filter and duplexer have to be miniaturized. Therefore, a duplexer which is small in size and superior in the damping characteristics is in demand. However, in the conventional duplexer, either the number of the resonators is increased, or an external device such as a chip capacitor or a chip inductor has to be used. Consequently, the size of the filter is increased, and the manufacturing process becomes complicated. Therefore, a duplexer which is superior in the damping characteristics and small in size is in demand.
Recently in the mobile communications, in order to efficiently utilize the frequency, the transmitting and receiving bands are closely approached, while the miniaturization and light weight of the terminals are progressing at a fast pace. | {
"pile_set_name": "USPTO Backgrounds"
} |
None
None
1. Field of Invention
This invention relates to mental therapy, particularly to such a therapy using a virtual reality environment. The invention will be used in medical, psychiatry, psychotherapy, education, selfhelp, home, and entertainment environments and produced with computer hardware and computer software.
2. Prior Artxe2x80x94Psychotherapy-Psychiatry-Mental Health
Originally prescriptions for mental health came from philosophers. Socrates recommended xe2x80x9cknow thyselfxe2x80x9d and this advice formed the core of psychoanalysis and psycho-dynamic treatment approaches. Though these methods permitted patients to know and understand themselves better, they failed to change thinking and behavior in a way that would cure emotional distress and impairment. Aristotle (384-323 BC) was the first person to write a systematic psychological treatise which emphasized that knowledge is gained by experience. Behavioral approaches to psychotherapy attempt to influence patient activities, but fail to explain why knowledge from that experience is not enough to correct it. Cognitive or thinking approaches to psychotherapy propose altering distortions in thinking because these lead to emotional distress. Attempts to influence conscious processes have achieved some degree of success, but patients often resist therapeutic interventions which suggest they should change their ways of thinking. Even when people are able to do so, relapses to painful thoughts and emotional distress are common.
Medical efforts to influence human behavior, mental process, and emotional distress have also relied upon invasive procedures. Trephining was a crude surgical practice of the Stone Age whereby a hole was chipped in the skull of a person who was behaving peculiarly. The procedure presumably was conducted to allow the escape of evil spirits. In the Middle Ages, bloodletting was performed for many physical and mental conditions.
Frenkel, in U.S. Pat. No. 4,327,712 (1982) describes an apparatus used to facilitate viewing of one""s facial image under controlled illumination patterns for purpose of either psychotherapy or merchandise selection. Simply allowing patients to view themselves without successfully interacting with the environment does not achieve or provide optimized corrective experience.
ECT or electroconvulsive therapy, as shown by Hyman, in U.S. Pat. No. 4,709,700 (1985), is a procedure that continues in psychiatric practice to produce an electric current through the brain to alleviate profound depression. The procedure is typically unpleasant and occasionally dangerous. Patients treated with ECT complain of memory impairment and disorientation in familiar environments.
The use of psycho-pharmacological medications dominate psychiatric practice today. Pharmacological interventions provide symptom management. Patients report some relief from emotional distress, but also complain about day-to-day life restricting side-effects of the medications. For example, psychiatric medications frequently leave patients with dry mouth, constipation, reduced or suppressed sexual interest, weight gain, bloating, sedation, benzodiazepine dependence and withdrawal, frustration with treatment failure, and dependence on the psychiatrist. Raw data from a survey of psychiatrists reveals the overall success rate with medications in the treatment of generalized anxiety disorder is less than 50%.
Woods, in U.S. Pat. No. 4,762,494 (1988) proposes using a doll-like figure on which tears can be applied or removed to reflect current or past mental states. Similar dolls are readily available in department and toy stores. Given the widespread availability of dolls with varying attributes, the possibility for a child-doll dialogue seems obvious.
An apparatus and method for treating undesirable emotional arousal of a patient is shown by Weathers in U.S. Pat. No. 5,219,322 (1993). This uses visual and auditory stimuli as a crude process for eliciting mental imagery of a negative experience. The apparatus does not correspond to natural human experience where people interact with the environment and with others. The primary goal of psychotherapy is to provide corrective experiences that can be effectively used by patients. The more closely the corrective experience simulates reality, the more effective the treatment. Weathers does not use any fully interactive visual and auditory stimulations that are under the control of the patient. He does not accurately simulate reality or permits the user to influence the environment as well as be influenced by it. His method does not closely correspond to events that occur in reality and thus, cannot be effective corrective learning contexts for patients. His method does not empower users because they are not in control of exposure to every aspect of the environmental experience.
Rodgers, in U.S. Pat. No. 5,403,263 (1995), describes a method for reducing anxiety and recovery time of a patient during preoperative, intra-operative, and postoperative phases of surgery. Unlike virtual therapy interactivity, this procedure is limited by its passive introduction of sound and voice to the patient. He does not provide much opportunity to reduce emotional distress by distraction to pleasant scenes accompanied by an auditory input. Also he does not provide opportunities for patients to recovery faster by viewing successes of others and by rehearsal of activities while immersed in a virtual environment known to facilitate recovery.
Brill, in U.S. Pat. No. 5,435,324 (1995), shows a method and apparatus for measuring psychotherapy progress. The procedure requires administration of questionnaires to patients and may be considered an assessment of the patient""s emotional state. However assessment during treatment is difficult to accomplish and requires cumbersome administration, collection, and analysis of paper and pencil tests. There is no verbal feedback during assessment and treatment, nor any description of successes and difficulties during environment encounters.
Rosenfeld, in U.S. Pat. No. 5,450,855 (1995), purports to treat alcohol and drug addiction and in U.S. Pat. No. 5,280,793 (1994) purports to treat depression by brainwave training for the purpose of achieving biofeedback. The patient is rewarded for changing asymmetry. This method of treatment shows little, if any, correspondence to known treatment practices of substance-related disorders and depression. Getting a patient to focus on brain waves de-emphasizes or eliminates the crucial variables known to cause the greatest problems for chemically dependent and depressed people. Those variables include distorted thinking, mood swings, depression, anxiety, cravings, denial, anger and rage reactions, isolation, interpersonal difficulties, family dysfunction, and need for medical detoxification, to identify but a few. He does not offers chemically dependent and depressed individuals any opportunity to achieve mastery experiences. Exposure and interactions are not under the patient""s control, any successes cannot be attributed directly to them. A lack of success does not build confidence. A lack of mental shifts from depressive thinking to optimism will not create hope or any motivation for additional successful experience.
Putnam, in U.S. Pat. No. 5,619,291 (1997), discloses an eye-movement desensitization and reprocessing treatment, but this is an awkward way to engage a patient and does not correspond to natural everyday experience. Visual displays elicit negative emotional responses. They are not interactive. There are no corrective visual sensory inputs for patient to use and experiment to achieve positive mastery experience.
3. Prior Artxe2x80x94Education and Self-Help
Dill, in U.S. Pat. No. 4,273,540 (1981), describes a training device for evaluating disorders of brain damaged patients and of patients who have suffered trauma to or disease of the central nervous system. The training attempts to help patients obtain confidence but is limited by the method. This device does not provide effective methods for assessing, preventing, and treating psychiatric conditions or for building self-efficacy. The power of a procedure is generally believed to aid in patient recovery from emotional distress. This device does not permits assessment of the patient while they are immersed in an environment, nor does it allow assessment of neurological strengths and deficits.
Ito, in U.S. Pat. No. 4,573,472 (1986), shows a medical apparatus for autogenic training. The self-help training procedure operates by providing bio-information stimuli. The user is expected to consider that information and alter behavior. This form of education and training is less effective than other self-help methods because it fails to incorporate intermediate variables known to influence human functioning. It does not provide sensory stimulations that evoke thinking distortions (fear), anticipatory anxiety, danger expectations, failure beliefs, physiological reactions (anxiety, deep breathing or holding of breadth, sweating) during exposure. The lack of composite reactions to visual exposure, auditory and tactile stimulations do not permit the practitioner to immediately introduce interventions for the purpose of achieving corrective experience. Variables that influence behavior, such as self-efficacy, cannot be assessed and strengthened during immersion of the patient in an environment. There is no development of mastery experience based upon instillation of learning principles, skill acquisition, and rehearsal.
Densky, in U.S. Pat. No. 4,717,343 (1988), shows a method for conditioning a person""s unconscious mind to effect a desired change in behavior. There is no scientific evidence for a map of the unconscious mind or how it may finction. A procedure designed to influence it cannot genuinely claim that some particular or general aspect of the unconscious mind is being influenced because the principles and processes of the unconscious are not well documented with scientific research. This self-help method exposes a person to a video picture appearing on a screen. The procedure claims that the viewer""s unconscious mind observes the video and that somehow the viewing conditions a person""s thought patterns that alter behavior in a positive way. Even if this claim were correct, the procedure is weak and does not use known learning principles and sensory stimulations to provide individuals with corrective experiences.
4. Prior Artxe2x80x94Virtual Reality Technology
The term xe2x80x9cvirtual realityxe2x80x9d has been used to describe a computer-generated environment. When viewed with goggles or head-mounted display, it provides the user with a three-dimensional, fully interactive experience. A hand-held grip is used to achieve movement or navigation within the environment. As the user turns his or her head, the view changes just as it would in reality. Buttons on the hand-held grip permit the user to experience movement from one location to another, thus adding a sense of reality, to virtual reality. The technology used to produce virtual reality consists of a graphics-generating computer, a head-mounted-display with a tracking device, a hand-held grip, and other sensory input devices. Various products may be used to achieve the experience of virtual reality (Pimentel, K. and Teixeira, K. 1993, Virtual Reality: through the new looking glass. Intel/Windcrest/McGraw-Hill, Inc. New York).
Virtual reality applications have been developed for art, business, entertainment, flight simulators, medicine, and military battlefield operations. Until 1993, medical applications included computed-aided surgery, building designs for handicapped persons, wheelchair equipped with a virtual reality system, rehabilitation, repetitive strain injury, surgical workstation, and teaching aids for surgeons.
Immersive, 3D, fully interactive virtual reality technology was first introduced as part of a psychotherapeutic method by the applicant (1993) in a Department of Psychiatry for the experimental treatment of acrophobia. The integration of virtual reality technology with learning principles and psychotherapeutic strategies was given the trademark Virtual Therapy by applicant in 1993. Virtual Therapy is a trademark for a method of treating acrophobia and other psychiatric conditions by immersion in simulated or virtual environments. Virtual Therapy provides patients with assessment of cognitive, emotional, and physiological functioning. It is also used for prevention and treatment of psychiatric conditions by providing users with corrective experiences. It is more than exposure treatment in a virtual environment and more than imaginal desensitization (Hodges et al., 1995, 1993; Rothbaum et al., 1995 (two refs.); Kooper, 1994; Williford et al., 1993).
Acrophobic individuals may experience phobic symptoms by simply thinking about heights. No exposure is required to produce anxiety, panic, or avoidance. One standard of care for this condition is cognitive-behavior therapy. Distorted thinking significantly contributes to phobic symptoms. A phobia of heights involves the interaction of thinking, behavior, and physiological arousal. Some have correctly diagnosed or evaluated the condition of acrophobia, yet proposed to treat it by exposure to a virtual environment. However, it is not the subjective evaluation that causes anxiety. There is an interaction between thinking, behavior, and physiology that contributes to anxiety. A subjective evaluation may lead to fear, which is different than anxiety. Fear is a thought. Anxiety is a physiological state. Danger expectations may produce fear whereas anxiety expectations may produce physiological arousal (anxiety). So, mere exposure to real or virtual environments is not enough to treat the condition.
A comprehensive theoretical and clinical discussion of fear, anxiety, panic, and acrophobia can be found in Virtual Therapy (Lamson, 1997). Prior studies exposed participants to virtual environments where the opportunity to perceive height and depth occurred. However, the method of treatment was not adequately explained and there was no theoretical or clinical rationale for exposure therapy. It differs from Virtual Therapy (Lamson, 1997) which describes a system of therapy for the treatment of acrophobia and other psychiatric conditions.
Carlin et al. (1997) present a case report to demonstrate the use of immersive computer generated virtual reality (vr) and mixed reality (touching real objects seen in virtual reality) for the treatment of spider phobia. A patient was exposed to virtual spider scenes over 12 weeks with each session lasting a total of 50 minutes. Exposure to virtual reality spiders produced reduction in anxiety with some symptom relief. The case is difficult to assess because of apparent co-existing obsessive-compulsive difficulties. The authors define their intervention as virtual reality exposure therapy. However, no theoretical rationale for conducting 12 treatment sessions with the patient was discussed.
North et al. (1997) reports on a five-session, single-case study, utilizing virtual reality as a desensitization procedure to reduce fear of flying. The authors"" three paragraph letter-to the editor failed to cite any research protocol, method of desensitization, or psychological rationale.
A virtual environment trademarked xe2x80x9cDetourxe2x80x9d (Addison, 1994) was constructed for the purpose of demonstrating the perceptual experience of one person who suffered brain damage from an auto accident. The application was developed for use in the CAVE, a trademark for an immersive room size virtual reality environment located at the University of Chicago. This particular application evokes deep empathy by visual and auditory sensory inputs. The virtual environment presents scenes of art and the impression of walking down a corridor viewing paintings hung on walls. Suddenly wheels screech and a crash and moan are heard. The scene becomes distorted and unclear, signifying the loss of vision and brain damage. Addison actually suffered brain injury. Though the virtual environment was created to dramatize her traumatic experience, it suggests avenues for other uses.
Gould, in U.S. Pat. No. 5,546,943 (1996) proposes use of a visualization system using a computer to provide a patient with a view of their internal anatomy based on medical scan data. The patient acts upon the information in an interactive virtual reality environment by using tools or other devices to diminish a visual representation of an ailment. In doing so, a psychoneuro-immunological response is postulated to occur in the patient for combating and recovering from the disease. The concept is interesting, yet the activation of a psychoneuroimmunological response may be due to any process that builds an individual""s self-efficacy. Self-efficacy is a well known psychological variable proposed to account for an individual""s conviction that they can achieve or accomplish or perform a certain task.
Jarvik, in U.S. Pat. No. 5,577,981 (1996) describes a virtual reality exercise machine and computer controlled video system. Jarvik""s machine produces a virtual reality environment for exercise regimens, exercise games, competitive sports, and team sports. It is also adapted to a user""s individual capabilities. It is used to achieve exercise results from rehearsal.
Walker, Lyon, Linton, and Nye, in U.S. Pat. No. 5,584,696 (1996) describe a simulation system for virtual reality experiences such as hang gliding or the like. They describe an embodiment for mechanical support, visual display, and a method for achieving pupil-forming images.
Kitchen and Bird, in U.S. Pat. No. 5,655,909 (1995) describe a skydiving trainer wind tunnel utilizing a non-immersive virtual reality environment produced by viewing film footage of scenarios descending toward the earth. They provide the user with an opportunity to practice emergency procedures. It does not use an head-mounted display for immersion into the virtual environment.
These devices do not use virtual environments for assessment, prevention, and treatment of psychiatric conditions and for conditions not described in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV, 1994). They do not rely upon the integration of learning principles and psychotherapeutic strategies with any virtual reality technology. They do not use visual, auditory, and tactile sensory stimulation and feedback during user immersion in virtual environments to assist patients in achieving corrective experiences. The lack of instillation of explicit learning principles during virtual environment exposure prevents users from the direct influence of psychological, emotional, and physiological processes for the development of mental health.
The following are the full citations of references given in abbreviated form in the text:
Addison, R. (1995). Detour: brain deconstruction ahead. In: Satava, R. M., Morgan, K., Sieburg, H. B., Mattheus, R., and Christensen, J. P. Interactive technology and the new paradigm for healthcare. Pp. 1-3. IOS Press, Amsterdam, Oxford, Washington, D.C.
American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders: Fourth Edition. DSM-IV. Washington, D.C.
Carlin, A. S., Hoffinan, H. G., and Weghorst, S. (1997). Virtual reality and tactile augmentation in the treatment of spider phobia: a case report. Behavior Research Therapy, 35(2): 153-58.
Hodges, L. F., Rothbaum, B. O., Kooper, R., Opdyke, D., Meyer, T., North, M., de Graaff, J. J., and Williford, J. (1995). Virtual environment for treating the fear of heights. IEEE Computer 28, 7, pp. 27-34.
Kooper, R. (1994). Virtually present: treatment of acrophobia by using virtual reality graded exposure. Master Thesis in Computer Science at the Technical University of Delft, Netherlands.
Lamson, R. (1989). The effects of a manual-guided cognitive intervention program upon substance abusers. Unpublished dissertation. University of Southern California.
Lamson, R. (1993). The effects of virtual reality immersion on anxiety disorders. Kaiser Foundation Research Institute.
Lamson, R. (1994). Virtual therapy of anxiety disorders: application: VR in psychotherapy. CyberEdge Journal, Issue #20, Vol. 4, No. 2. Sausalito, Calif.
Lamson, R. and Meisner, M. (1994). The effects of virtual reality immersion in the treatment of anxiety, panic, and phobia of heights. Proceedings for Virtual Reality and Persons with
Disabilities, pp. 63-68. Second Annual International Conference, Center on Disabilities, California State University, Northridge.
Lamson, R . and Meisner, M . (1995). Clinic al app lication of virtual therapy to psychiatric disorders: theory research, practice. Pre-Conference Workshop, Medicine Meets Virtual Reality #4.
Lamson, R. (1997). Virtual Therapy: prevention and treatment of psychiatric conditions in virtual reality environments. Polytechnic International Press. Montreal Canada. ISBN 2-553-00631-4.
Maier, S. F., Watkins, L. R., and Fleshner, M. (1994). Psychoneuroimmunology: the interface between brain, behavior, and immunity. American Psychologist, 49(12): 1004-17.
Manning, T. R. (1995). The emotional dimension of experience in information environments. In: Satava, R. M., Morgan, K. , Sieburg, H. B., Mattheus, R., and Christensen, J. P. Interactive technology and the new paradigm for healthcare. Pp. 231-236. IOS Press, Amsterdam, Oxford, Washington, D.C.
North, M. M, North, S. M., and Coble, J. R. (1997). Virtual reality therapy for fear of flying. Letter to the editor, American Journal of Psychiatry, 154:1, p. 130.
Pimentel, K. and Teixeira, K. (993). Virtual Reality: through the new looking glass. Intel/Windcrest/McGraw-Hill, Inc. New York.
Rothbaum, B. O., Hodges, L. F., Kooper, R., Opdyke, D., Williford, J., and North, M. (1995a). Virtual reality graded exposure in the treatment of acrophobia: a case study. Behavior Therapy, Vol. 26, No. 3, pp. 547-554.
Rothbaum, B. O., Hodges, L. F., Kooper, R., Opdyke, D., Williford, J., and North, M. (1995b). Effectiveness of computer-generated (virtual Reality) graded exposure in the treatment of acrophobia. American Journal of Psychiatry, Vol. 152, No. 4, pp. 626-628.
Williford, J. S., Hodges, L. F., North, M. M, North, S. (1993). Relative effectiveness of virtual environment desensitization and imaginal desensitization in the treatment of acrophobia. Proceedings Graphics Interface, 162, Toronto.
Objects and Advantages
Accordingly, it is one object of the invention to provide a method for treating psychiatric conditions by immersion into virtual reality environments for the purpose of providing corrective experiences.
The term Virtual Therapy was introduced by Lamson (1993) and is used to define a process that occurs when patients are visually immersed in a virtual environment. Since the environment is fully interactive, users engage in activity for the purpose of providing corrective experience to cognitive distortions, emotional distress, and behavioral deficits. Auditory and tactile sensory inputs may be included to enhance a user""s sense of reality during immersion. In the case of phobias, psychological distress is maintained by beliefs, appraisal of threat, anxiety, and situational avoidance. Healing occurs when users develop thinking strategies that result in reduction of distress, increased confidence, and approach behavior.
Exposure to Virtual Therapy environments is under the control of the user. During exposure, users encounter situations through visual, auditory, and tactile sensory stimulation. They may influence or be influenced by that environment. Virtual Therapy is a rapid, non-invasive form of immersive, three-dimensional, interactive treatment. Whether used as a therapeutic method by a licensed therapist, mode of education, self-help, or entertainment process, it presents a less-costly alternative to other forms of treatment currently used in psychiatry.
In addition to the above objects and advantages, several additional objects and advantages invention are described in the following factors 1.a to 1.p. and 2.a-2.m below.
1.a. Immersion into a Virtual Therapy environment permits rapid assessment, prevention, and treatment of psychiatric conditions.
1.b. The method of Virtual Therapy combines therapeutic strategies with learning principles to achieve corrective experiences.
1.c. Virtual Therapy combines methods of education and self-help with entertainment in virtual environments to enhance learning.
1.d. Exposure to visual, auditory, and tactile sensory inputs in the virtual environment are under the control of the user or patient.
1.e. Rapid habituation learning evidenced by rate and blood pressure reductions during virtual environment immersion and exposure.
1.f Virtual Therapy is a faster, better, cheaper method of psychotherapy than other existing methods. Treatment of acrophobia shows that patients benefit from one 50-minute session. Avoidance and anxiety are diminished or eliminated to the extent that patients are able to ascend to heights.
1.g. Compared to other known forms of treatment, Virtual Therapy shows approximately 50% savings.
1.h. Virtual Therapy is simpler than other methods of treatment. Direct sensory input and interactivity permit patients to immediately gain skill and relief from painful symptoms.
1.i. The technology of Virtual Therapy can be easily placed in shopping malls, community centers, schools, hospitals, and offices used for therapeutic interventions.
1.j. The method of Virtual Therapy de-emphasizes the notion of pathology known to psychodynamic forms of treatment. Instead, the method emphasizes learning, self-efficacy, mastery experience, and competence in virtual environments. The entertaining and educational components of Virtual Therapy make public access in shopping malls ideal locations for this form of treatment.
1.k. The technology is safe and easy to use. It produces reliable virtual environments with a lasting life cycle.
1.l. Virtual therapy satisfies several existing needs: cost effectiveness and prevention and treatment of alcohol and drug abuse; also it is entertaining, educational, and exciting.
1.m. Hundreds of telephone calls and letters from the United States and foreign countries have been received after news broadcasts concerning Virtual Therapy research. Many of those inquiring about the treatment offer to pay, regardless of cost.
1.n. Virtual Therapy may be combined with newly available wireless technologies. One example of wireless technology is a telephone with an eyepiece that permits a view of the person being called.
1.o. Though virtual reality technology has been used for visualization in flight simulators, games and entertainment, it is newly described here as a complete system of psychotherapy having medical and self-help ramifications.
1.p. The use of Virtual Therapy produced new and unexpected results and in doing so, suggests it may be used for commercial success. It also satisfies a long-felt but unsolved need to provide psychological services faster, better, cheaper and without the stigma of pathology attached to psychiatry departments.
Virtual Therapy is related to cognitive psychology, behavioral therapy, and behavioral neuroscience. The therapy actively involves the patients"" visual system. It is structured, time-limited, and has been successfully used in the treatment of specific phobias of the natural environment type, such as acrophobia. Generalization of treatment effects have been reported for conditions coexisting with acrophobia. For example, a substantial number of patients undergoing Virtual Therapy report past psychological trauma related to physical and emotional abuse, abandonment, and terror from living under a dictatorship. Post-treatment evaluation indicate reduced sense of treat from longstanding emotional disabilities. The therapy is based on clinical trials that show that virtual reality can be used to create experiences that influence how people feel, think, and act. When an acrophobic enters a virtual environment by visual immersion using a head mounted display (helmet), he or she immediately interact with the environment.
Patients receive proprioceptive-response feedback from turning the head to scan, for example, a computer-generated room with textured walls and muted lighting. Participants receive more feedback when they press a button on a hand-held grip in order to move in the virtual world, achieving gradual exposure to heights and depths by clicking or continuously pressing the button. To change the direction of movement, the user simply turns his or her head to the desired view and presses a button. Reduction of exposure to aversive stimuli occurs by looking away, moving to a new location in the virtual environment, using distraction techniques, talking or using other sensory input to re-establish contact with reality, or taking off the helmet.
A sense of danger during virtual reality immersion is derived from encounters that elicit fear. An encounter initially increases production of fearful cognitive processing for most people. Acrophobics may dwell on beliefs that emerge and flood their consciousness, such as xe2x80x9cI""m not capable. I can""t handle it. I""ll never be able to get over my fears.xe2x80x9d These beliefs are enduring for this person. One valuable component of Virtual Therapy is the opportunity to observe, challenge, and change dysfunctional beliefs.
The events that occur during immersion into a computer-generated environment stimulate memory. Some pertain to undesirable experiences. A sense of threat could unfold from memory, exposure, or both. These occur in the same context that also promotes healing. Exposure to phobic stimuli is known to provoke situational-bound anxiety or panic. The rapid onset of distress appears spontaneous. Therapeutic interventions provided at these critical moments can alter patient dysphoria: xe2x80x9cBreathe deeply. Stay there long enough to realize you are okay. Look around. You did this successfully a few minutes ago. You can do it again. You are safe. You are capable. You""re doing it.xe2x80x9d Patients achieve mastery experiences in this way, and their confidence grows.
Virtual Therapy gives the user an opportunity to experiment with thinking. Instead of dreading a fall from a virtual bridge perceived to be elevated hundreds of feet above water, the user may pause long enough to become familiar with safety. Safety is achieved by scanning the virtual environment. The patient first considers a location, then scouts out potential directions of travel. Thoughts, feelings, heart rate, and muscle tension are observed during the excursion. Threat and caution give way to experimentation. Moving closer to the side of the bridge and looking over may initially provoke feelings of threat. Yet, within a very short period of time, minutes, the user begins to experience habituation. Tension drains from the patient""s physiology (e.g. neck and shoulders) and deep breaths produce a relaxed posture.
Additional Objects And Advantages
2.a. Previous failure of others. Virtual Therapy is a form of treatment that provides exposure under the control of the patient. Previous exposure methods brought the patient into contact with reality in the presence of a clinical practitioner. Flooding is an example of this kind of exposure. Unfortunately, flooding was a crude attempt at desensitizing patients to their fears and phobias that showed varied success. Some patients became more sensitized, more anxious, and more phobic after flooding treatment than before.
2.b. Solves an unrecognized problem. Standard forms of psychotherapy utilize face-to-face visits with a clinician (therapist), group therapy, psycho-educational workshops (classes), and medications (which is an invasive procedure). Virtual Therapy does involve a therapist. But the treatment takes place in a virtual environment where the patient has the opportunity to face challenges and struggles by visual and auditory immersion. Virtual encounters permit the patient to rapidly confront and resolve problems resulting in anxiety, panic, phobias, depression, and chemical dependency.
2.c. Solves an insoluble problem. Transference is a psychological phenomena described in the literature. It is understood to be a relationship problem that evolved from the patient""s past experiences but was transferred on to the therapist. It occurs between the patient and therapist. In Virtual Therapy, the patient interacts with the technology and virtual environment. The patient influences the environment and is influenced by it. Thus, transference to the therapist is eliminated because the patient""s focus is absorbed by interactions with the virtual environment.
2.d. Commercial success. Virtual Therapy has NOT been offered commercially. However, the success of virtual therapy treatments has received media attention. Therefore, hundreds of calls from across the United States and around the world have been received, requesting treatment. Blue Shield of California is providing alternative health care such as acupuncture, chiropractic and other alternative health care services at discount prices to its 1.6 million California members. In January, 1998, the Blue Shield alternative health care program, called Lifepath, will offer access to a network of more than 1,000 qualified practitioners including massage therapists, stress management experts, and fitness clubs. xe2x80x9cConsumers don""t always want invasive procedures and Blue Shield is responding to their desire for more choicesxe2x80x9d said Myra Snyder, president of the California Association of Health Plans. The potential market for Virtual Therapy includes traditional health care subscribers and out-of-pocket payers for alternative care. Blue Shield estimates that consumers spend approximately $10 billion annually (out-of-pocket) on alternative health care services.
Virtual Therapy is a non-invasive procedure. It is currently used experimentally and suitable for other traditional and alternative health care environments as suggested by the Blue Shield Lifepath program.
2.e. Unappreciated advantage. Virtual Therapy is a new form of treatment that occurs when the patient interacts with a 3D computer generated immersive virtual environment which contains varied objects, images, colors, and sounds. A hand-held grip with buttons allows the patient to move forward with a sensation of walking of flying. It will also permit vertical upward or downward movement. The patient can change the environment by moving, adding, removing, enlarging, subtracting, and multiplying the number of objects present. For example, the patient may choose to pick up a chair and move it to another side of the room; turn on a fan; turn the room lights on or off; open a door; add a lamp to a table; drop an object that sounds as if it is breaking. and so on. Collectively, these movements provide therapeutic advantages over other forms of treatment because the patient, then and there, can rehearse and practice tasks previously consider overwhelming, in a safe virtual environment.
2.f. For millennia, healers, shamans, priests, and physicians attempted to call upon xe2x80x9chigher powersxe2x80x9d and spirits to cure the patient. Visions were reported by those afflicted with emotional distress (William James, Varieties of Religious Experience) Now, in Virtual Therapy, visual and auditory sensory inputs generate images and sounds to influence the patient. The virtual experience captures the imagination of the patient and can be used effectively to heal them.
2.g. Solution of long-felt need. Virtual Therapy solves a long-felt need to clarify the therapeutic process. Compared to other systems of psychotherapy, the process is well defined and can be replicated anywhere to validate treatment results. The personality of the therapist is less important with this form of treatment than others because the patient interacts with the technology to receive corrective experiences. It eliminates arguments about the nature of the cure because it is less the therapist and more the quality of the virtual environment interaction that leads to patient health.
2.h. Contrary to prior art""s tea ching. Virtual Therapy contradicts previous notion s that the therapist is all important in therapeutic endeavors because healing was presumed to take place through a transference process. It challenges prescriptions for therapy with someone specialized in psychodynamic, cognitive, behavioral, existential, gestalt or other mode or medium. Virtual Therapy eliminates such conceptualizations and arguments with the use of re-usabl e virtual environments for healing. The virtual contexts are integrated with learning principles for providing each patient with a corrective learning experience.
2.i. Virtual Therapy integrates virtual reality technology with known psychological principles derived from cognitive-behavioral therapies, existentialism, psychodynamic conceptualizations and knowledge based upon behavioral neuroscience, neurobiology and neurophysiology. The resultant form of treatment, virtual therapy, yields results far in excess of the principles specific to each contributing component. The synergistic effect was not anticipated by original pioneers in the fields of computer science and engineering who experimented with virtual reality. (Pimentel K. and Teixeira, K. (1993) Virtual Reality. Inte/Windcrest/McGraw-Hill, Inc., New Y ork).
2.j. Different combination. Virtual Therapy combines technology with learning principles to provide corrective experiences for patients diagnosed with psychiatric and medical difficulties. It may also be used for those not formerly diagnosed yet experiencing difficulties with daily living. The benefits of this form of treatment are documented (Lamson, R., 1997. Virtual Therapy, supra). Virtual Therapy currently utilizes 3D immersion technology, including a head mounted display. As technological innovations advance with the concurrent building of learning principles into virtual environments (for therapeutic change), the delivery of this information through visual sensory input may take varied forms. For example, the visual display may be attached to a phone so that remote access to virtual environments may occur at home, in the office, or in public areas. Cellular technology, combined with a visual display, increases the opportunity to influences conscious processes at remote sites. Virtual Therapy may use video in two dimensions or video in three-dimension immersion using a head-mounted display.
2.k. Prior-art references would not operate in combination. The prior-art of virtual reality, identifying computer technology, graphic displays, hand-held-grip, and graphics (e.g. military applications, flight simulation, NASA COSTAR Mission to repair the hubble telescope) was not enough to suggest application of the individual or collective components for psychiatric treatments.
2.l. The Virtual Therapy method demonstrates that it is an inventive combination of prior art. These include but are not limited to computer technologies that produce graphics (SGI Machines, Division ProVision 100, Pixel Plane Technology), head-mounted displays (Virtual Research Flight Helmut, Division, Eyegen 3, Stereo Graphics Crystal Eyes), hand-held grips (Division Joystick and Logiteck 3D), and software support (Division, DVS) to produce stereo image generation, binaural audio synthesis, collision detection, and integration of a range of peripheral devices such as gloves and head-mounted display systems. Authoring software (Division, dVISE) can be used by non-programmers to import objects for the purpose of building and modifying virtual environments. In addition, knowledge of assessment and treatment of psychiatric conditions from varied psychological perspectives and theoretical backgrounds serves as xe2x80x9cpsychological softwarexe2x80x9d for the production of virtual environments. Knowledge of vision and the development and influence of perception using psychological principles is findamental to this form of treatment.
Further objects and advantages of my invention will become apparent from consideration of the drawings and ensuing description.
Virtual therapy differs from the prior art by using virtual environments for assessment, prevention, and treatment of psychiatric conditions and for conditions not described in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV, 1994). Visual, auditory, and tactile sensory stimulation and feedback during user immersion in virtual environments are used to assist patients in achieving corrective experiences. The instillation of explicit learning principles during virtual environment exposure permit users to directly influence psychological, emotional, and physiological processes for the development of mental health.
Virtual therapy is primarily a psychotherapeutic, psychiatric, medical, educational, and self-help invention for prevention and treatment of psychiatric disorders and for problems not otherwise specified in psychological assessment and diagnostic literature. The process is comprehensive and takes place during immersion in fully interactive three-dimensional virtual reality environments utilizing computer generated graphics, images imported from photographs, and video for sensory stimulation. Immersion is achieved with goggles, a head-mounted-display, or another form of visual stimulation, such as surround projection screens or monitors or devices that permit the user to have a virtual experience. It includes the use of voice, music, and sound and other forms of physiological stimulation and feedback. Body sensors and devices such as a hand-held grip, permit the user to interact with objects and navigate within the virtual environment.
Virtual therapy is psychotherapeutic because it permits assessment, diagnosis, and treatment of cognitive, emotional, and behavioral functioning of the user during immersion in the virtual environment. Virtual therapy is also an educational intervention because principles of learning are built into the method so that the user achieves maximum benefit from the experience. Sensory stimulation is known to influence habituation and sensitization (forms of learning associated with neurons) along the visual pathway. Visual sensory input during immersion in the virtual environment shows promise for assessing and treating medical conditions related to vision, migraine headaches, pain, strokes and other neurological states influenced by learning and memory. Virtual therapy provides opportunities for self-help when the user of a virtual environment is provided with information on how to benefit from the experience or when a provider gives verbal directions on how to benefit from the experience or when the virtual environment itself provides the user with directions on effective use of learning strategies during immersion in the virtual environment.
Virtual therapy is an evolving system of psychotherapy conceptualized before and after clinical trials (Lamson, 1993) (full citations of all references are listed above) using virtual reality immersion technology. It utilizes descriptions of psychiatric disorders from Diagnostic and Statistical Manual of Mental Disorders IV (APA, 1994). It also derives the etiology of disorders from research literature and clinical interviews. It provides therapeutic principles and techniques unique to interventions aimed at reduction of distress, found, e.g., in anxiety, panic, phobias, depression, alcohol and drug abuse/dependence, and somatization conducted in virtual environments.
Virtual therapy includes the assessment of cognitive, emotional, and physiological functioning before, during, and after treatment of psychiatric conditions. Some of the conditions referred include obsessive-compulsive disorder, phobias, depression, panic disorder, migraine headaches co-existing with other psychiatric disorders and others. As a natural extension of treatment and referrals from other practitioners, virtual therapy has conceptualized evaluation and possible treatment of individuals suffering neurological impairments resulting from stroke and brain trauma. | {
"pile_set_name": "USPTO Backgrounds"
} |
Partially quaternized amino-functional organopolysiloxanes and use thereof in aqueous system on textile substrates are disclosed.
Organopolysiloxanes containing amino groups have long been used as textile finishes. Good and soft hand (hereinafter called softness effects) is achieved on textiles treated therewith. Preference is given to using organopolysiloxanes having the amino-functional group—(CH2)3NH(CH2)2NH2.
Such amino-containing organopolysiloxanes when used in textile finishing are customarily present in the form of aqueous microemulsions whose preparation is described in WO 88/08436 for example. Clear microemulsions are produced by heating a mixture of acid-neutralized amino-containing organopolysiloxane, water and emulsifier. According to the process described in EP-A 0138 192, this goal is achieved by shear emulsification in concentrated form, containing little water, by proceeding from the basic ingredients of amino-containing organopolysiloxane in neutralized form, emulsifier and water.
Advantageous softness effects are obtained with organopolysiloxanes whose amino functions are present in the form of the aminoethylaminopropyl groups mentioned. The morphological molecular structure of this side chain is believed to possess particular affinity for the fibre molecules of the textile substrate by embracing them. This results in the polymer molecule having a specific orientation which is responsible for the good softness. This is indirectly corroborated by the fact that acylation (acetylation) of the outer, primary amino functions has an appreciable adverse effect on the softness of the textile substrates treated therewith, since the different kind of molecular structure no longer permits adequate embracing of the fibre molecules and the associated specific orientation.
The amino-containing organopolysiloxanes described and the organopolysiloxanes containing acylated amino groups are typically present as readily dissociable ammonium salts of organic or inorganic acids when in the form of their microemulsions. At above pH 7, the salts are converted into free bases. In the process, the stability of the microemulsions is reduced by the weaker dissociation in the alkaline region, and this in the case of insufficiently acidified textile material and resultant pH values above 7 leads to coalescence of the microemulsion particles and their floating as oil droplets on the surface of the treatment liquor. As the finishing process continues, the oil droplets can transfer to the textile material or else deposit on the rolls of the treatment assemblies. The textiles become stained with silicone spots which are very difficult or impossible to wash off.
This behaviour in textile finishing is an appreciable disadvantage since very many treatment steps to finish textile substrates are carried out in a strongly alkaline medium. Washing operations carried out with insufficient care may leave residual quantities of alkali on the substrate which are carried into the treatment baths during the subsequent finishing steps. Especially in equipment where the amount of treatment liquor is not very large, as in the case of a padder for example, the pH may in the process very quickly rise to above 9 and lead to the split emulsions mentioned.
A further disadvantage of the amino-functional polysiloxanes identified is a tendency to yellow which can arise at drying temperatures above 120° C. in the case of white and light-coloured textile substrates treated therewith.
The amino-functional polysiloxanes identified are used on all textile substrates in the prior art. Woven and knitted fabrics composed of natural fibres, such as cotton or wool for example, and also of synthetic fibres, such as viscose, polyester, polyamide or polyacrylonitrile for example, are successfully treated with such products on a large scale.
In some cases, it is a rather minor aspect of the finishing effects sought that amino-functional polysiloxanes endow textiles not only with good softness, but simultaneously also with a more or less pronounced, hydrophobic character. However, there are textile applications where hydrophobicity is unwelcome. For instance, towels are expected to have not only a good, fleecy softness but also excellent absorbency to achieve an optimal drying effect. Good absorbency is frequently likewise desired for underwear. Similarly, there are many clothing articles in the sports and out-doors sector, such as bicycling or soccer jerseys for example, where absorbency is a prerequisite for the textile base material as well as good softness. The use of amino-functional polysiloxanes is therefore limited or completely impossible in the cases mentioned.
It is also known that microemulsions of organopolysiloxanes bearing quaternary ammonium groups do not have the disadvantages which have been described with regard to thermal yellowing and with regard to stability in alkaline aqueous dilutions. As described hereinbelow, in some cases it is possible, depending on the method of making used and the composition, to achieve good hydrophilicity combined with good absorbency. Organopolysiloxanes bearing quaternary ammonium groups consequently constitute an improvement over amino-containing organopolysiloxanes with regard to these identified properties. However, the identified advantages of polysiloxanes bearing quaternary ammonium groups have to be weighed against the disadvantage that they, compared with polysiloxanes modified with lateral amino groups exclusively, generate less softness on textiles finished therewith.
Organopolysiloxanes bearing quaternary ammonium groups are known from the literature. Different ways are described to make them, and the quaternary ammonium groups of polysiloxanes obtained can be attached to different positions on the polymer backbone of the polysiloxan chain depending on the particular starting materials used and the methods of making. Lateral, terminal and polymer backbone internal positionings of the functional groups and also mixed forms thereof are possible.
For instance, DE-AS-14 93 384 describes a process for preparing organosiloxane compounds or compound mixtures wherein the corresponding methylhydrogenpolysiloxanes are used as starting materials. The methylhydrogenpolysiloxanes in question are generally equilibrated siloxane mixtures in which the number of methylhydrogensiloxy and dimethylsiloxy units conform to a random distribution. The organosiloxanes having quaternary ammonium groups are prepared in a conventional manner by reacting an epoxysiloxane with dimethylamine and converting the resulting dimethylaminoorganosiloxane with a hydrogen halide or with a methyl halide into the quaternary ammonium compound. The compounds prepared in this way are modified organopolysiloxanes where the quaternary ammonium groups are positioned laterally on the polysiloxan chain. The compounds mentioned are recommended for the water-repellent treatment of, for example, glass or aluminium surfaces.
A further way to prepare organopolysiloxanes having lateral quaternary ammonium groups is described in DE 19 652 524-A1. It involves, for example, aminoethylaminopropyl-containing organopolysiloxanes being reacted with methyl p-toluenesulphonate alkylating agent in the presence of water and suitable emulsifiers to form the corresponding quaternary organopolysiloxanes, a microemulsion forming at the same time. The disadvantage of these preparations is the fact that the softness of textiles finished therewith is less pronounced than that obtained with polysiloxanes modified exclusively with lateral amino groups.
The preparation and use of diquaternary polysiloxanes are described in U.S. Pat. No. 4,891,166. The synthesis is effected by reacting polysiloxanes containing terminal epoxy groups with tertiary amines in such ratios that there is at least one tertiary amino group for every epoxy group and the reaction takes place in the presence of an acid equivalent, based on the nitrogen atoms to be quaternized, at elevated temperature. The quaternary ammonium groups on the resulting diquaternary polysiloxanes are by virtue of this special method of preparation exclusively terminal-positioned. The compounds thus prepared are recommended for use in hair treatment agents and cosmetics. The disadvantage of these preparations, as the Applicant has found, is the fact that textiles treated therewith have a less pronounced softness compared with polysiloxanes modified with exclusively lateral amino groups.
A further way to prepare quaternarily modified organopolysiloxanes is described in DE 37 05 121-A1. In this case, the method of preparation is such that the quaternary ammonium groups are exclusively positioned within the polymer main chain. The method of polymerization involves for example a platinum-catalysed addition of allyl glycidyl ether onto α,ω-hydrogendimethylpolysiloxane and subsequent reaction of the resulting α,ω-diepoxypolysiloxane with a ditertiary alkyldiamine under acidic conditions. Hair care is contemplated as a possible use. Again, the disadvantage of these preparations, as the Applicant has found, is the fact that textiles treated therewith have a less pronounced softness compared with polysiloxanes modified with exclusively lateral amino groups.
WO 02/10259-A1 describes quaternarily modified organopolysiloxanes where the quaternary ammonium groups are likewise positioned within the polymer main chain and have terminal, tertiary amino functions. They are recommended for textile finishing and also for cosmetic formulations.
Further polyquaternary polysiloxane polymers having quaternary groups disposed within the polymer main chain are described in U.S. Pat. No. 4,533,714. They are used in cosmetic formulations for hair treatment.
U.S. Pat. No. 3,207,707 describes the preparation of polymers having nitrogen in the main chain, the nitrogen being present in the form of tertiary amino groups, although no quaternary ammonium groups are formed. The products thus prepared are described inter alia for use as packaging and insulating material.
U.S. Pat. No. 3,033,815 describes the preparation of organopolysiloxanes having laterally disposed amino-functional groups and recommended for use as a size for treating fibres, especially glass fibres.
WO 02/10501-A1 describes organopolysiloxanes for use as softeners having reduced foaming tendency which bear laterally disposed alkylated amino-functional groups.
U.S. Pat. No. 5,039,738 provides another way to prepare organopolysiloxanes having laterally disposed tertiary amino-functional groups. They are said to provide improved resistance to yellowing when used on textile substrates.
FR 1 184 198 A describes organofunctional alkylamino-alkylsilanes and organopolysiloxanes prepared therefrom whose laterally disposed amino-functional groups are present in tertiary form.
Silanes and siloxanes having a terminal quaternary ammonium group are described in GB 1 006 729 as useful for treating glass surfaces.
Cationic organopolysiloxanes are prepared in JP 02/157285-A. Because of only one terminal quaternary group, they have surface-active properties and are used as surfactants.
Cationic siloxane copolymers bearing quaternary ammonium groups in the main chain are described in Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 40, 3570-3578 (2002). They are highly branched and are recommended for use as ion exchangers or in the sanitary sector. | {
"pile_set_name": "USPTO Backgrounds"
} |
In news production, it is common to have videographers capture video in the field and to transfer that video to a newsroom for use. In practice, the captured video could be transferred as a live video feed to the newsroom, where the video could be broadcast in real-time, edited, and/or stored for later use. Alternatively or additionally, the captured video could be stored and perhaps edited in the field and subsequently transferred to the newsroom for further processing, broadcast, and storage.
As a newsroom accumulates such captured videos, it would be useful for the videos to be indexed in a meaningful manner, to facilitate later searching for desired footage. One way to do this would be to record for each video an indication of location where the video was captured. Provided with such location information, news production personnel could then conveniently search through an archive of video data for video that was captured at a particular location. Unfortunately, however, given the fast-paced nature of typical news production, it may be difficult to reliably record such location information for captured video. Consequently, an improvement is desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to improvements in a hot wire metal electrode inert gas (hereinafter MIG), welding torch, and to an improved method of consumable electrode arc welding for carbon steels, alloy steels, aluminum and its alloys, and other types of metallic materials. The invention is applicable to semi-automatic welding practice.
Many attempts to improve consumable electrode arc welding techniques have been made with the object of attaining high speed and efficiency, yet maintaining the high quality of conventional welding methods.
For instance, a method in which a plurality of electrodes are mounted inside a shield nozzle and a welding operation is carried out while the phase of a pulsed voltage or pulsed current supplied to each of said electrodes is shifted, has been proposed in a Japanese laid-open patent application (Kokai) No. 63-313674. Another type of welding equipment was described in Kokai No. 59-16680, in which the molten consumable electrode forms a spray pattern. This device has a means for supplying a separate metal filler wire into an arcuate area in such a way that the filler wire can contact the molten portion of the base metal being welded. The filler wire is heated by resistance, and there is a control means for adjusting the heating current in the filler wire to less than one-half of the welding current.
Although the aforementioned methods employ a pulsed voltage or a pulsed current in order to prevent arcing interference between the electrodes and to avoid interference between the consumable electrode and the filler wire, the control apparatus is complicated. As an additional example, another application, Kokai No. 63-20184, proposed apparatus in which the electrodes of two torches are positioned very close to one another; on one side the electrodes are in contact with the anode of the welding direct current supply, and on the other side the electrodes and base metal were connected to the cathode. In Kokai No. 63-313674 a plurality of electrically insulated electrodes is installed within a shield nozzle and the pulsed voltage, as well as the pulsed current, is phase-shifted and distributed such that each electrode in turn has a peak period, in turn, during a welding operation.
Hot wire MIG practice, described in the aforementioned Kokai Nos. 59-16680 and 63-20184 is superior to conventional MIG welding in that it allows an increased welding rate. However, hot wire MIG welding requires two welding torches of relatively large dimensions; one for the consumable electrode and the other for a filler wire.
While the prior art methods are applicable to a fully automatic welding machine, they are not suitable for semi-automatic welding in which a welder is required to carry or hold the welding torches during the procedure. High-speed, semi-automatic welding has long been desired in the art, but has not yet been achieved.
Another problem in the art which hinders high-speed welding operations is undercutting. When severe, undercutting will cause the formation of irregular beads in the weld which results in inconsistent weld quality. This phenomenon is believed to be caused by plasma current generated by the arc which gouges the molten base metal and affects the wettable interface at the walls of the molten metal bath developed during the arc welding process.
In high-speed welding it is generally necessary to increase the welding current in order to achieve a suitable penetration depth and metal deposit quantity. On the other hand, it is recognized that increasing the welding current results in increased plasma current with attendant risk of undercutting and formation of irregular beads. Control of the welding current has proven to be difficult. While high-speed welding can be achieved by employing the multi-electrode welding method described in Kokai No. 63-313674, formation of stable welding beads remains difficult because of the aforementioned problems of bead formation and also excess sputtering.
It is important to recognize that increasing the speed of deposition is not equivalent to increasing the rate of welding. Thus, even if deposition speed is accelerated, high-speed welding cannot be attained when welding current is increased to obtain sufficient penetration. Thus, increasing the speed of deposition confers higher welding efficiency, but not necessarily an increase in welding rate.
When welding aluminum and its alloys, additional weld defects are known which include cracking, porosity, weld distortion, and puckering. There are a number of known useful techniques to minimize these problems. These include reducing the weld heat input as much as possible, controlling the bath temperature, and applying reverse distortion. However, utilizing such techniques reduces welding performance.
The puckering phenomenon, which occurs when welding aluminum and its alloys, is described, for example, in the "Journal of Light Metal Welding", Volume 22, No. 9, pp. 395-407 (1984). This generally takes place under excessive weld current or with insufficient shielding. To prevent puckering of aluminum welds, controlling weld current or increasing the amount of shield gas are considered to be effective countermeasures. Again, these countermeasures cause a reduction in welding efficiency and increase the required amount of shield gas, resulting in uneconomical welding practice.
In a conventional semiautomatic welding torch, as illustrated in FIG. 9, a consumable electrode wire 23, which is supplied by a wire feeding device (not shown) through a flexible conduit 22, is passed inside a conductive contact tube 24, disposed in a welding torch 21. Shield gas is supplied through a gas hose 25 and is directed to a weld through cylindrical gas nozzles 26, which are coaxially mounted around the conductive contact tube 24. A welding current is conducted to a contact point on the consumable electrode wire 23 through a lead wire 28 inserted within a cooling water hose 27 through conductive contact tube 24. This current arcs across a gap to the base metal (not shown).
Cooling water is supplied through cooling hose 29 in order to cool nozzle 30. The cooling water is then exhausted into cooling hose 27 to cool the lead wire 28.
In the welding torch described above, only consumable electrode wire is generally supplied. Therefore, in order to perform hot wire MIG welding, separate torches for consumable electrode wire and filler are required. | {
"pile_set_name": "USPTO Backgrounds"
} |
Apnea and hypopnea are forms of disordered breathing characterized by periods of significantly reduced respiration. With hypopnea, respiration is reduced but still present. With apnea, however, respiration may cease completely for a minute or longer. Apnea most commonly occurs while the patient is asleep. Indeed, individual episodes of sleep apnea can occur hundreds of times during a single night. Accordingly, patients with apnea often experience excessive fatigue during the day. In addition, apnea can exacerbate various medical conditions, particularly congestive heart failure (CHF) wherein the patient suffers from poor cardiac function. Other medical conditions that can be adversely affected by apnea include: high blood pressure, risk for heart attack and stroke, memory problems, impotency and sexual dysfunction, migraine headaches, depression and anxiety, polycythemia (increase in the number of red blood cells), cor pulmonale (an alteration in the structure and function of the right ventricle caused by a primary disorder of the respiratory system), bradycardia (excessively slow heart rate), tachycardia (excessively fast heart rate), pulmonary hypertension hypoxemia (chronic daytime low blood oxygen) and hypercapnia (increased blood carbon dioxide (CO2)).
Apnea is often associated with Cheyne-Stokes Respiration (CSR), which is an abnormal respiratory pattern occurring in some patients with congestive heart failure (CHF). CSR is characterized by alternating periods of hypopnea and hyperpnea (i.e. fast, deep breathing.) Briefly, respiration is regulated by groups of nerve cells in the brain in response to changing blood chemistry levels, particularly blood CO2 levels. When blood CO2 levels exceed a certain threshold, the groups of nerve cells generate a burst of nerve signals for triggering inspiration. The inspiration nerve signals are relayed via phrenic nerves to the diaphragm and via other nerves to chest wall muscles, which collectively contract to expand the lungs. CSR arises partly due to a time lag between blood CO2 levels sensed by the respiratory control nerve centers of the brain and the blood CO2 levels. With CHF, poor cardiac function results in poor blood flow to the brain such that the nerve centers respond to blood CO2 levels that are no longer properly representative of the overall blood CO2 levels in the body. Hence, the nerve centers trigger an increase in the depth and frequency of breathing in an attempt to compensate for perceived high blood CO2 levels—although the blood CO2 levels will have already dropped. By the time the respiratory control nerve centers detect the drop in blood CO2 levels and act to slow respiration, the blood CO2 levels will have already increased. This cycle becomes increasingly unbalanced until respiration alternates between hypopnea and hyperpnea. The periods of hypopnea often become sufficiently severe that no breathing occurs between the periods of hyperpnea, i.e. periods of frank apnea occur between the periods of hyperpnea. The fluctuating blood chemistry levels caused by alternating between hyperpnea and apnea/hypopnea can significantly exacerbate CHF and other medical conditions. When CHF is still mild, CSR occurs, if at all, only while the patient is sleeping. When it becomes more severe, CSR can occur while the patient is awake. Accordingly, CSR is one mechanism by which apnea can occur while a patient is awake. Hence, apnea is not limited to occurring only while a patient is asleep.
Herein, apnea arising due to CSR is referred to as “CSR-induced apnea.” Hypopnea arising due to CSR is referred to as “CSR-induced hypopnea.” For the sake of generality, the term “CSR-induced apnea/hypopnea” is used to encompass both conditions. Note that, in some of the medical literature, apnea arising due to CSR is referred to as “CSA-CSR,” where CSA stands for “Central Sleep Apnea.” However, as noted, CSR-induced apnea can potentially occur while the patient is awake and hence is not necessarily a form of sleep apnea. Moreover, the term CSA also refers to a fundamentally different type of apnea, which is believed to be the result of a neurological condition within the central nervous system. With CSA, phrenic nerve signals are simply not generated during extended periods of time while the patient is asleep or are of insufficient magnitude to trigger sufficient muscle contraction to achieve inhalation. This occurs regardless of the blood CO2 levels and hence appears to be unrelated to CSR-induced forms of apnea. Herein, to avoid any possible confusion, the term CSR-CSA is not used. As noted, the term CSR-induced apnea/hypopnea is instead used. Note, also, that there is yet another form of apnea—obstructive sleep apnea (OSA). OSA arises when the respiration airway is temporarily blocked. OSA is not particularly relevant to the techniques described herein but is mentioned for the sake of completeness.
In view of the adverse consequences of CSR-induced apnea/hypopnea, it is highly desirable to provide techniques for suppressing episodes of the condition. A variety of techniques have been proposed, particularly for use by pacemakers, ICDs or other implantable medical devices. With many such techniques, the implantable device first detects an episode of apnea/hypopnea and then delivers therapy to alleviate the episode. Examples of techniques for detecting episodes of apnea/hypopnea are discussed in U.S. patent application Ser. No. 10/883,857, of Koh et al., entitled “System and Method for Real-Time Apnea/Hypopnea Detection Using an Implantable Medical System,” filed Jun. 30, 2004. See, also, U.S. patent application Ser. No. 10/795,009, of Koh, entitled “System and Method for Distinguishing among Obstructive Sleep Apnea, Central Sleep Apnea and Normal Sleep Using an Implantable Medical System,” filed Mar. 4, 2004 and U.S. patent application Ser. No. 10/844,023, of Koh, filed May 11, 2004, entitled “System and Method for Providing Demand-Based Cheyne-Stokes Respiration Therapy Using an Implantable Medical Device”. Once an episode of apnea/hypopnea is detected, therapy is delivered to terminate the episode and restore respiration that is more normal. Exemplary techniques include applying electrical stimulation directly to the phrenic nerves via implantable nerve stimulators so as to cause the diaphragm to contract. These and other therapeutic techniques are discussed in the aforementioned patent applications as well. If therapy is ineffective, warning signals can be generated to awaken the patient, which is typically sufficient to restore normal respiration.
It would be preferable, however, to provide techniques for suppressing CSR-induced apnea/hypopnea that do not require detecting individual episodes of apnea or hypopnea, as reliable detection can sometimes be problematic. It would also be desirable to provide suppression therapies that do not require phrenic nerve stimulators or other potentially elaborate or intrusive therapeutic measures. One technique that has been proposed is simply to increase a cardiac pacing rate so as to increase cardiac output. So long as the stroke volume of the heart remains constant, an increase in the cardiac pacing rate produces an increase in cardiac output. The increase in cardiac output tends to suppress CSR by increasing the blood flow to the brain thus avoiding the blood CO2 imbalances described above. Suppression of CSR, in turn, suppresses CSR-induced episodes of apnea/hypopnea. However, it is believed by the inventor of the present invention that the increase in cardiac output resulting from an increase in pacing rate is only temporary. This is illustrated in FIG. 1. Briefly, a cardiac pacing rate 2 is increased at time 3 resulting in an increase in cardiac output 4. The increase in cardiac output suppresses CSR, which is illustrated in the figure by way of a respiratory pattern 5 having crescendo/decrescendo patterns alternating between hyperpnea 5 and apnea 6. The increase in cardiac output is sufficient to temporarily diminish the severity of CSR thus permitting more normal respiration 7 to resume. However, as illustrated in the figure, the increase in cardiac output does not last, even though the higher pacing rate is sustained for an extended period of time. The cardiac output soon begins to drop, apparently due to intrinsic hemodynamic compensatory mechanisms within the patient. In this regard, hemodynamic systems of the patient appear to operate to reduce the stroke volume to compensate for the artificially increased heart rate. As a result, CSR eventually resumes (or it again becomes more severe), thus triggering further episodes of apnea. Note that the graphs of FIG. 1 should not be construed as depicting actual clinically-obtained data. The graphs set forth hypothetical data provided to clearly illustrate the affect of the intrinsic compensatory mechanisms on cardiac output and respiration. Actual variations in cardiac output and respiration may differ. Also note that, during actual CSR, the intervals of apnea/hypopnea are often longer in duration than the intervening intervals of hyperpnea. FIG. 1 illustrates relatively short intervals of apnea/hypopnea so as to permit many complete cycles of CSR to be illustrated within the timeline of the figure. The vertical scales of the graphs are in arbitrary units and the features illustrated therein are not necessarily to scale.
It would be highly desirable to provide techniques for use by an implantable medical device for achieving a sustained increase in cardiac output sufficient to suppress apnea/hypopnea, particularly CSR-induced apnea/hypopnea. It is to this end that certain aspects of the invention are directed. Although a sustained increase in cardiac output is helpful in suppressing apnea/hypopnea, the increase is beneficial in and of itself, since increased cardiac output tends to mitigate CHF, pulmonary edema, and other conditions. Accordingly, other aspects of the invention are directed to the more general goal of improving cardiac output within a patient using an implantable medical device. | {
"pile_set_name": "USPTO Backgrounds"
} |
Stimulation techniques may be used to increase the amount of hydrocarbons obtained from a subterranean formation. For example, some unconventional subterranean formations may be fractured to improve well productivity by placing or enhancing fractures which run from a wellbore into a surrounding subterranean formation. Other methods of increasing productivity include drilling additional wells in the subterranean formation. In some instances, a new well may be drilled between other existing wells and may reduce the well spacing of the field. In other cases, field development may be planned such that multiple wells may be placed in close proximity to accelerate recovery.
When wells are placed sufficiently close together, stimulation of one well may impact production of other wells if fluid communication between the wells is present. This may be referred to generally as “well bashing,” and this loss of production occurs because the stimulated well is in fluid communication with one or more of the producing wells and the treatment fluids used in the stimulated well may enter the other wells through connecting flow paths in the fracture networks within the subterranean formation. When two wells are in fluid communication, stimulation treatment fluids may be lost through flow into the non-stimulated well. If this occurs, the stimulation operation may require more stimulation treatment fluids than would be necessary if there was no fluid communication with other wells. This may result in increases in operation time and expenditure. Further, if the non-stimulated well is producing, well production may be reduced or lost due to the inflow of the stimulation treatment fluids into the producing well. In situations in which fluid communication is established between multiple producing wells the fluid used to displace the hydrocarbons may take the path of least flow resistance and may bypass reserves in low permeability areas and instead flow into another producing well leading to a loss in production in both producing wells.
Some methods used to reduce or prevent fluid communication between wells may involve the use of polymer solutions. The polymer solutions may be introduced into the flow paths between wells, and then the polymers may be cross-linked to reduce or prevent flow between the wells by blocking the flow paths between the wells. However, the polymers in the solution may hydrolyze over time and lose viscosity. As such, the polymers may only provide a temporary solution. Because of this degradation, the polymer solutions may need to be used every time a well stimulation is performed. They may also need to be used as a remedial measure in producing wells if fluid communication between producing wells occurs because the previously introduced polymers have degraded. Further, the polymers may not be thermally stable in high temperature environments, which are generally environments with temperatures greater than 200° F. The thermal degradation of the polymers may preclude use in high temperature environments, and the polymers may not be sufficient for reducing or preventing fluid communication in wells in high temperature subterranean formations or when operations requiring elevated temperatures need to be performed. When the polymers degrade, they may lose viscosity and become easier to displace when contacted by subsequent fluids such as stimulation treatment fluids or fluids used to displace hydrocarbons. As such, the polymer solutions may not provide a long-term solution to prevent well bashing and may not be stable in high temperature subterranean formations.
The illustrated figures are only exemplary and are not intended to assert or imply any limitation with regard to the environment, architecture, design, or process in which different examples may be implemented. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Kite string reel structure.
2. Background of the Invention
In the past various forms and designs of reels have been developed and used for retracting and paying skilled in this art, and compete competitively with one another in manipulating fighting kites. In manipulating fighting kites one competitor endeavors to so manipulate his kite as to destroy or so disable the competitor's kite that the latter will not continue to fly. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an apparatus for storing and dispensing vials. Generally, the vials of the invention may contain liquid or solid compositions, and more particularly the vials will contain pharmaceutical compositions. The dispenser may be displayed in a suitable location for easy identification and removal of vials for use.
Physicians and nurses typically handle a plurality of vials of medicine, saline and other pharmaceutical compositions daily. Usually these vials are stored in manufacturer""s packaged container and kept refrigerated, or the vials can be stored openly on a storage shelf. However, due to the variety of products typically stored in vials, clinicians and nurses require a dispensing apparatus that provide easy access in the selection and removal of particular vials when necessary.
The prior art contains a selection of devices for storing and dispensing a plurality of containers such as vials, bottles, cans, etc. Generally, the containers are of a similar size and shape. The composition within the containers may be sorted within the device according to color, flavor, concentration, variety, etc.
U.S. Pat. No. 5,131,563, issued Jul. 21, 1992 to Yablans, assigned to Pop Display, Inc., teaches an article dispensing apparatus wherein identical articles are vertically aligned in a plurality of separate columns and held in contact with one another. Each column has a dispensing side and a storage side as well as upper and lower sides. The dispensing side of the column has upper and lower sides that cooperate to retain an article until it is dislodged from the column by lifting the lower end and removing the article. One side of a spring coil is resiliently attached to an upper-dispensing side of the apparatus while the second side of the coil is attached to an article pushing assembly. The length of the coil is sufficiently long so that the pushing assembly can extend over the top of the column to the storage side of the apparatus. The coil can be extended so that the pushing assembly is behind the last article on the storage side of the apparatus. In operation, when one article is removed from the column, the spring coil retracts and causes the pushing assembly to advance the remaining articles towards the dispensing side of the column. The resiliency in the coil will continue to retract and move the articles towards the dispensing side of the column until all the articles are removed therefrom.
U.S. Pat. No. 5,240,124, issued Aug. 31, 1993 to Kunz, assigned to Decision Point Marketing, Inc., teaches a point of sale push device. The device can be characterized as having a slidably mounted pusher on parallel rails, wherein the rails have a dispensing side and a closed side. The first end of an resilient coil is attached to the pusher and the second end of the coil is attached to the dispensing side of the rails to allow the pusher to slidably extend to the closed side of the device. The dispensing side of the device has a stop so that articles placed in the device are held there until lifted from the device. After an article is removed from the device, the resilient coil retracts the pusher towards the dispensing side of the device to advance the remaining articles.
U.S. Pat. Nos. 5,743,428 and 5,649,363 to Rankin, VI, issued Apr. 28, 1998 and May 5, 1998, respectively, assigned to Vulcan Spring and Manufacturing Co., teach an apparatus for dispensing items. Rankin, VI teaches a device similar to Yablans, however, the retractable spring coil is vertically mounted atop to column. The coil also has a consecutive numbering sequence printed thereon to coincide to the number of articles remaining in the column.
The foregoing prior art, while providing dispensing devices that display and advance a plurality of articles for easy selection, it fails to provide a device suitable for dispensing vials containing pharmaceutical compositions. A vial dispensing device that provides a sufficient separation of the front most vial from the remaining vial for easy identification and selection is required. A device that maximizes space as well as placement of the vials in the dispenser is also desired.
The present invention relates to an apparatus for storing and dispensing a plurality of like pharmaceutical articles, comprising a plurality of parallel aligned columns for storing the articles, the articles characterized as a first article, several articles, and a rear article contacting one another, each column having a bottom side for holding articles and a front opening for dispensing the articles, the first article being adjacent to the front opening and the remaining articles being held in the column behind the first article, the articles in the column being biased from the rear article towards the first article by resilient spring means, the apparatus further comprising a tilt ramp attached to the front opening at a sufficient length and decreased angle to the bottom side of the column to provide space between the first and several articles allowing the first article to separate contact from the several article for removal of the first article from the front opening, the next of several articles being biased toward the front opening by elastic means.
The invention further relates to a method for arranging several dispensers having the tilt ramp to provide improved identification and dispensing of articles. | {
"pile_set_name": "USPTO Backgrounds"
} |
Digitally coded communication signals are used in certain wireless communication systems. One such system is a Code Division Multiple Access (CDMA) cellular system. In a typical CDMA system, digitally coded communication systems signals are transmitted in a common channel between a mobile station and a base station. In a typical CDMA system, multiple communication channels of a fixed bandwidth are used to handle communications with mobile units.
In order for a base station to support the reception of multiple communication channels, a separate receiver is provided for each of the communication channels. In a typical embodiment, each receiver includes a filter to isolate the channel of interest. However, providing a receiver for each communication channel increases the size and cost of base stations.
Additionally, signals received by base station are subject to interference from a variety of sources. In order to ensure proper reception of communication signals, base stations must be able to handle the interference while receiving the communication signals. In the CDMA standards for base stations, a base station needs to be able to process communication channels that are subject to one or two interferers. The interferers are signals of high signal strength located near a communication channel. In a typical CDMA system utilizing separate receivers for each communication channel, this requirement is easily satisfied by filtering out the interfering signals. One drawback of current systems is that base stations must have a receiver for each communication channel supported by the base station. This increases both the size of the base station and the cost to deploy the base station.
To decrease the size and cost of base stations, wideband receivers have been proposed that can receive and process several common channels. These receivers typically utilize an analog-to-digital converter (ADC) to convert the received analog signal to a series of digital values, before separating the signal into individual channels for further processing. However, because the interferers are not filtered out before processing in the ADC, the incoming signal may be of such strength that the maximum capability of the ADC is exceeded and the ADC becomes saturated, which results in the inability to reflect further increases in incoming signal strength as increases in the ADC output. In order to ensure the ADC is not saturated, the incoming signal should be attenuated. Therefore, what is needed is a digital wideband automatic gain control method and device. | {
"pile_set_name": "USPTO Backgrounds"
} |
(a) Field of the Invention
The present invention relates to an automatic performing apparatus for use in an electronic musical instrument, which apparatus being capable of making automatic chord performance based on the data which have been recorded in advance. The present invention is intended to reduce the amount of data by recording chord generation timing data as well as the chord name data with respect to those chords which are to be generated.
(b) Description of the Prior Art
As the prior art automatic performing apparatuses of this type, there has been known an apparatus arranged so that chord name data are recorded in the order of generation of chords as a music to be played progresses, and that these recorded chord name data are read out successively, to thereby make automatic chord performance. Such prior art apparatus has been disclosed, for example, in Japanese Utility Model Preliminary Publication Nos. Sho 50-925 and Sho 50-926.
According to such conventional system of automatic performance, however, there has been the inconvenience such that, in case there frequently or irregularly take place variations of chords during the progression of a music being played, the amount of such data as are required to be recorded becomes enormous, and that accordingly there have been required to provide external recording medium and/or internal memory of large capacities. | {
"pile_set_name": "USPTO Backgrounds"
} |
Multi-point communications systems having a primary site that is coupled for communication with a plurality of secondary sites are known. One such communication system type is a cable telephony system. Cable telephony systems transmit and receive telephone call communications over the same cable transmission media as used to receive cable television signals and other cable services.
One cable telephony system currently deployed and in commercial use is the Cablespan 2300 system available from Tellabs, Inc. The Cablespan 2300 system uses a head end unit that includes a primary transmitter and primary remote disposed at a primary site. The head end unit transmits and receives telephony data to and from a plurality of remote service units that are located at respective secondary sites. This communication scheme uses TDM QPSK modulation for the data communications and can accommodate approximately thirty phone calls within the 1.9 MHz bandwidth typically allocated for such communications.
As the number of cable telephony subscribers increases over time, the increased use will strain the limited bandwidth allocated to the cable telephony system. Generally stated, there are two potential solutions to this bandwidth allocation problem that may be used separately or in conjunction with one another. First, the bandwidth allocated to cable telephony communications may be increased. Second, the available bandwidth may be used more efficiently. It is often impractical to increase the bandwidth allocated to the cable telephony system given the competition between services for the total bandwidth assigned to the cable service provider. Therefore, it is preferable to use the allocated bandwidth in a more efficient manner. One way in which the allocated bandwidth may be used more efficiently is to use a modulation scheme that is capable of transmitting more information within a given bandwidth than the TDM QPSK modulation scheme presently employed.
The present inventors have recognized that OFDM/DMT modulation schemes may provide such an increase in transmitted information for a given bandwidth. U.S. Pat. No. 5,539,777, issued Jul. 23, 1996, purports to disclose a DMT modulation scheme for use in a communications system. The system principally focuses on applications in which a single secondary site includes a plurality of differing remote and transmitter devices. The transmitters and remotes used at the secondary site of the system described therein, however, are quite complex and require a substantial amount of processing power. As such, the system disclosed in the '777 patent does not readily or economically lend itself to multi-point communications systems in which there are a large number of secondary sites each having at least one remote.
Another concern with multipoint communications systems relates to the establishment of communications from a particular remote service unit to the head end unit receiver (up-stream). Prior to communication, the remote unit is not registered or synchronized over any upstream channel. In the past, if an unsynchronized, unregistered remote unit attempted to transmit in the upstream direction while other remote units were transmitting in the upstream direction, the unsynchronized remote unit would disrupt in-progress data transmissions with the other remote units.
Past systems have addressed this problem in the manner described in a paper entitled "Synchronized DMT for Multipoint-to-Point Communications on HFC Networks", by Jacobsen et al., 1995, published at the November, 1995 IEE Global Telecommunications Conference in Singaport. The Jacobsen et al. paper explains the conventional approach to synchronize discrete multi-tone data (DMT) for multipoint to point communications as follows. The network defines a silent interval in every upstream channel from the remote units. The silent interval has a predetermined length and is observed periodically by all synchronized remote units presently registered with the network. The unsynchronized remote units seeking to register with the network were only permitted to transmit upstream during the silent interval, at which time they requested an upstream channel assignment (e.g., they transmitted an installation signal). Once the head end unit received the request, it and the remote unit performed synchronization operations. The head end unit also registered the remote unit at that time. The duration of the silent interval was required to exceed at least the maximum round-trip signal delay over all remote units plus the time required to actually transmit the installation information. However, the foregoing conventional approach to upstream synchronization has drawbacks. For instance, the conventional approach requires that all remote units cease transmitting upstream during the silent interval, thereby substantially reducing the available upstream transmission capacity.
Therefore, a need remains for an improved upstream registration/synchronization method and apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
There has heretofore been known a replacement apparatus for replacing electrode tip of a welding gun, as disclosed in the Japanese Unexamined Utility Model Registration Application Publication, Jikkai Sho 62-165084. In such apparatus, a pair of electrode tips, attached to a pair of gun arms of a welding gun, are each provided with an engagement portion. An electrode coupler connects both the electrode tips to each other by engaging with the engagement portions when the welding gun is applied with pressure. The electrode tips can be pulled off from the respective gun arms, when the welding gun is operated, to open the gun arms. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is in the general field of obtaining an outline of a pair of eyeglasses for generating an add-on unit such as a clip-on whose lenses are readily mountable on and in registration with the eyeglass frame.
There are known in the art many types of add-on units that are fitted onto eyeglass frames. An example is a clip-on that matches in size and shape the eyeglass frame and is configured to be readily mounted thereon. Typically, such a clip-on has dark lenses, and when used, can convert conventional eyeglasses (having optical lenses) to sunglasses. Clip-ons are, thus, quite popular, since they are compact and insofar as the user is concerned, the need to have separate optical eyeglasses and sunglasses is obviated.
Normally, clip-ons are manufactured through a mass production process to fit popular eyeglass designs. Thus, the customer can, upon purchasing eyeglasses not only buy the eyeglasses of interest, but their matching clip-ons as well.
A typical manufacturing process of clip-ons includes feeding to a cutting machine data indicative of the outline of the eyeglass frame and cutting the clip-on lenses according to these data. Additionally, on the basis of pre-knowledge of the designated location of the clip-on parts (such as the bridge that connects the two clip-on lenses), the corresponding holes and sockets that are used to connect the clip-on parts can be prepared.
The outline data can be obtained, inter alia on the basis of known characteristics of the eyeglass frame and supplemental manual/automatic measurements. Once determined off-line, these data can be used throughout the mass production process for this particular eyeglass design.
The need to manufacture clip-ons arises not always on the industrial scale, but sometimes on a smaller scale, in particular in those cases where eyeglasses are not commercially available with a matching clip-on. Consider, for example, a customer who purchases eyeglasses (which are not provided with a clip-on) and wishes to order upon purchase, or later, a customized clip-on.
There is, thus, a need in the art to provide means to readily manufacture a customized clip-on, e.g. at the optometrist""s premises. To this end, there is a need to provide a system which is not too expensive and which can scan the eyeglasses and calculate an outline data of the eyeglass frame. These data can be used to cut the clip-on lenses to fit the form and shape of the frame. The device is further capable of calculating the location data of clip-on holes that will be served for anchoring the clip-on parts to the clip-on lenses, such as the bridge that holds together the clip-on lenses.
There is a further need in the art to provide for an integral system which scans the eyeglasses, calculates the frame outline and other necessary data and feeds the data to a cutting machine for substantially real-time production of a customized clip-on.
Considering that the specified system is typically useful for small-scale production, it should be relatively inexpensive in order to be commercially feasible.
There is a further need in the art to provide for a system of the kind specified used with frame-less or partially frame-less eyeglasses.
There is a further need in the art for a system of the kind specified suitable to manufacture eyeglass add-on units other than clip-ons.
There are known in the art publications that deal with the general problem of manufacturing clip-ons and obtaining contour data of objects, as follows: U.S. Pat. No. 5,123,724 to Salk; U.S. Pat. No. 5,347,762 to Shibata; U.S. Pat. No. 5,530,652 to Croyle et al.; U.S. Pat. No. 5,546,140 to Underwood; U.S. Pat. No. 5,774,200 to Markey; U.S. Pat. No. 5,838,417 to Dahan et al.; U.S. Pat. No. 5,910,854 to Varaprasad et al.; U.S. Pat. No. 6,087,617 to Troitski et al.; U.S. Pat. No. 6,243,960 to Andrews et al.; U.S. Pat. No. 6,249,991 to Rarick et al.; FR 2763707; U.S. Pat. No. 5,940,538; U.S. Pat. No. 5,974,169; U.S. Pat. No. 5,454,050; U.S. Pat. No. 5,809,179 and U.S. Pat. No. 6,178,264.
The present invention provides for a method for imaging eyeglasses, and obtaining data indicative of at least an outline of the eyeglasses and designated locations associated with the outline, comprising:
(a) placing the eyeglasses for imaging;
(b) acquiring and displaying an image of the eyeglasses using a short focal length imaging device;
(c) calculating and displaying an editable outline for each eyepiece of the eyeglasses, such that the editable outline can be compared to a respective eyepiece of the image;
(d) calculating supplemental locations associated with the outline for anchoring parts of an add-on unit; and
(e) providing data indicative of at least said outline and said supplemental locations;
whereby said data is useable for shaping lenses of at least one customized add-on unit and manufacturing in a non-industrial scale the at least one an add-on unit having, each, a size and shape that substantially matches the eyeglasses.
The invention further provides for a method for imaging eyeglasses having lenses, and obtaining data indicative of at least an outline of the eyeglasses and designated locations associated with the outline, comprising:
(i) placing the eyeglasses for imaging;
(ii) acquiring and displaying an image of the eyeglasses using a short focal length imaging device;
(iii) calculating and displaying an editable outline for each eyepiece of the eyeglasses, such that the editable outline can be compared to a respective eyepiece of the image;
(iv) calculating supplemental locations associated with the outline for manufacturing holes and/or slots that anchor clip-on parts that include bridge and legs; and
(v) providing data indicative of at least said outline and said supplemental locations;
whereby said data is useable for shaping clip-on lenses and shaping holes or slots in the clip-on lenses in order to anchor the clip-on parts to the clip-on lenses and to manufacture in a non-industrial scale at least one customized clip-on having, each, a size and shape that substantially matches the eyeglasses.
Still further, the invention provides for a method for manufacturing in a non-industrial scale and substantially in real-time at least one customized clip-on having, each, size and shape that substantially matches an eyeglasses frame, the method comprising the steps of:
(i) placing the eyeglasses for imaging;
(ii) acquiring and displaying an image of the eyeglasses using a short focal length imaging device;
(iii) calculating and displaying an editable outline for each eyepiece of the eyeglasses, such that the editable outline can be compared to a respective eyepiece of the image;
(iv) calculating supplemental locations associated with the outline for manufacturing holes and/or slots that anchor clip-on parts that include at least bridge and legs; and
(v) providing to a shaping machine data indicative of at least said outline and said supplemental locations;
(vi) shaping clip-on lenses and shaping holes and/or slots in the clip-on lenses according to said provided data; and
(vii) assembling the clip-on lenses and the clip-on parts so as to produce said at least one clip-on.
Yet further, the invention provides for a method for imaging eyeglasses having lenses, and obtaining data indicative of at least an outline of the eyeglasses and designated locations associated with the outline, comprising:
(i) placing the eyeglasses for imaging;
(ii) acquiring and displaying an image of the eyeglasses.
(iii) calculating and displaying an editable outline for each eyepiece of the eyeglasses, such that the editable outline can be compared to a respective eyepiece of the image;
(iv) calculating supplemental locations associated with the outline for anchoring clip-on parts; and
(v) providing data indicative of at least said outline and said supplemental locations;
whereby said data is useable for shaping clip-on lenses and to manufacture in a non-industrial scale at least one customized clip-on having, each, a size and shape that substantially matches the eyeglasses.
The invention provides for a system for imaging eyeglasses, and obtaining data indicative of at least an outline of the eyeglasses and designated locations associated with the outline, comprising:
a positioning device for placing the eyeglasses for imaging;
a short focal length imaging device configured to acquire an image of the eyeglasses;
a processor and associated display configured to perform at least the following:
calculating an editable outline for each eyepiece of the eyeglasses and display said outline and said image, such that the editable outline can be compared to a respective eyepiece of the image;
calculating supplemental locations associated with the outline for anchoring parts of an add-on unit; and
providing data indicative of at least said outline and said supplemental locations,
whereby said data is useable for shaping lenses of at least one customized add-on unit and manufacturing in a non-industrial scale the at least one an add-on unit having, each, a size and shape that substantially matches the eyeglasses.
The invention further provides for a system for imaging eyeglasses having lenses, and obtaining data indicative of at least an outline of the eyeglasses and designated locations associated with the outline, comprising:
a positioning device for placing the eyeglasses for imaging;
a short focal length imaging device for acquiring an image of the eyeglasses;
a processor and associated display configured to perform at least the following:
calculating an editable outline for each eyepiece of the eyeglasses and display said outline and said image, such that the editable outline can be compared to a respective eyepiece of the image;
calculating supplemental locations associated with the outline for manufacturing holes and/or slots that anchor clip-on parts that include bridge and legs; and
providing data indicative of at least said outline and said supplemental locations;
whereby said data is useable for shaping clip-on lenses and shaping holes or slots in the clip-on lenses in order to anchor the clip-on parts to the clip-on lenses and to manufacture in a non-industrial scale at least one customized clip-on having, each, a size and shape that substantially matches the eyeglasses.
Still further, the invention provides for a system for manufacturing in a non-industrial scale and substantially in real-time at least one customized clip-on having, each, size and shape that substantially matches an eyeglasses frame, the system comprising:
a positioning device for placing the eyeglasses for imaging;
a short focal length imaging device for acquiring an image of the eyeglasses;
a processor and associated display configured to perform at least the following:
calculating and an editable outline for each eyepiece of the eyeglasses and displaying the outline and the image, such that the editable outline can be compared to a respective eyepiece of the image;
calculating supplemental locations associated with the outline for manufacturing holes and/or slots that anchor clip-on parts that include at least bridge and legs;
providing to a shaping machine data indicative of at least said outline and said supplemental locations;
the shaping machine responsive to said data for shaping clip-on lenses and shaping holes and/or slots in the clip-on lenses according to said provided data, for assembling the clip-on lenses and the clip-on parts so as to produce said at least one clip-on.
Yet further, the invention provides for a system for imaging eyeglasses having lenses, and obtaining data indicative of at least an outline of the eyeglasses and designated locations associated with the outline, comprising:
a positioning device for placing the eyeglasses for imaging;
an imaging device for acquiring and displaying an image of the eyeglasses.
a processor and associated display configured to perform at least the following:
calculating an editable outline for each eyepiece of the eyeglasses and displaying the outline and the image, such that the editable outline can be compared to a respective eyepiece of the image;
calculating supplemental locations associated with the outline for anchoring clip-on parts; and
providing data indicative of at least said outline and said supplemental locations;
whereby said data is useable for shaping clip-on lenses and to manufacture in a non-industrial scale at least one customized clip-on having, each, a size and shape that substantially matches the eyeglasses. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many current padlocks use lock cylinders that are incorporated into the padlock and cannot be changed by the end user. Therefore, a padlock is sold at a particular security level, and this security level cannot be changed, for example, without limitation, upgraded to a higher level of security. Many styles of padlocks are available, for example, without limitation, Offset “Hockey Puck” style, flat back “Hockey Puck” style solid steel round and square body padlocks, laminated padlocks, aluminum body padlocks, double ball locking padlock and single ball locking padlocks, high security padlocks. Other types of locks and padlocks include without limitation, vending or T-handle locks. Current padlocks also do not enable users to change the security level of the locks.
Currently there are some solutions to provide changeable padlocks; however these solutions require the use of different types of sleeves with each lock or require specialized locks. For example, without limitation, solutions to this problem include a rekeyable lock, a lock with a pop-out lock mechanism, and a lock with a removable cylinder and/or locking pins. These solutions enable the user to change the security level of the lock; however, a specialized lock must be used in these solutions. Another existing solution is a padlock that enables the end user to change locks using a removable core lock, which is a lock that goes into a door and uses multiple keys to remove the lock. However, this solution uses sleeves with a mechanism on the back end rather than a universal spacer.
In view of the foregoing, there is a need for improved techniques for providing a lock with a universal spacer that enables a user to change the security level of the lock by just replacing the lock (lock cylinder).
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale. | {
"pile_set_name": "USPTO Backgrounds"
} |
The nearly exponential growth in the heat generated by miniaturized electronic devices in recent years demands significant improvements in cooling technology. Existing fan-assisted air cooling methods will be insufficient for the next generation of microprocessors. Only liquid-cooled heat exchangers will be able to absorb and dissipate heat rapidly enough to maintain safe microprocessor operating temperatures. A stringent requirement of high efficiency is imposed on such a heat exchanger. The cooling system must be small and must be a closed loop, so that it may: a) fit within a desktop or laptop computer; and b) not require external cooling water.
Microchannel Heat Exchangers
Decreasing the liquid cooling channel dimensions to the micron scale in a solid-liquid heat exchanger leads to high heat transfer rates. Convective heat transfer from the channel surface to water is fast, but diffusional heat transfer from the liquid at the interface to liquid in bulk is slow. By reducing the liquid cooling channel dimensions, the interface area-to-bulk volume ratio increases, thereby reducing rate-limiting diffusional heat transport.
There have been prior demonstrations of high solid-fluid heat transfer from microchannels, primarily in silicon-based microchannel heat exchangers. The use of silicon in such devices in these studies was not so much because silicon has desirable heat transfer properties, but rather because fabrication techniques for Si-based, high-aspect-ratio microscale structures (HARMS) are relatively mature and widely available. Indeed, Si possesses a substantially lower bulk thermal conductivity than that of the metals that would otherwise be preferred in larger-scale heat exchangers, such as Cu and Al. Further, Si is relatively brittle, and consequently Si-based devices tend to be fragile and easily damaged.
Si microfabrication techniques typically involve a photolithography process in which a uniform, polymerizable resist layer is deposited onto a Si substrate, and a desired pattern is photoexposed into the resist layer. Unpolymerized resist is removed chemically or by solvation, and the Si substrate is etched through the developed resist pattern either by wet chemical etching (WCE) or reactive ion etching (RIE). Additional deposition and etching of thin metal films may be required for the RIE process. Photolithography and etching are required for each Si microscale device, and to enjoy an economy of scale, a substantial investment in large clean room and thin film deposition facilities is required.
Microchannel heat exchangers have also been fabricated in materials other than Si by the LiGA process. LiGA combines deep X-ray/UV lithography (Lithographie) of a polymeric resist, followed by metal electrodeposition (Galvanoformung) into the developed resist recesses to form durable, primary HARMS. Replication of secondary HARMS from the primary HARMS via molding (Abformung) then follows. For example, U.S. Pat. No. 6,415,860 discloses Ni electrodeposition to make microscale Ni mold inserts that are then used to mold microchannel heat exchangers in polymethylmethacrylate (PMMA). Metal-based crossflow heat exchangers, such as those made from NiP alloys, were also made, by an additional electroless deposition onto LiGA-fabricated polymer templates. F. Arias et al., “Fabrication of metallic heat exchangers using sacrificial polymer mandrils,” JMEMS vol. 10, p. 107 (2001) reported the fabrication of Ni-based heat exchangers by electrodeposition of nickel onto sacrificial polymer mandrels.
There are unfilled needs in existing heat exchangers. For example, the thermal conductivity of PMMA is poor, and PMMA-based microchannel heat exchangers cannot endure temperatures higher than about 100° C. While Ni-based and NiP-based heat exchangers can function at higher temperatures, their heat conductivities are still less than optimal. Furthermore, the electrode-based and electroless deposition techniques used to make them are slow, and require close monitoring and control. Their cost of fabrication is high and is expected to remain high because of the extra deposition steps involved in these “lost-mold” processes.
Existing Si microfabrication techniques do not work for making metal-based microstructures. For example, the structural and chemical isotropy of polycrystalline metals leads to removing material in a somewhat isotropic manner in a WCE process, broadening features from those defined lithographically. RIE techniques are also inappropriate for metallic substrates. Because metal-based microchannel devices are highly desirable for heat transfer applications, there is an unfilled need for improved fabrication techniques to mass-produce metal-based microchannel devices rapidly and inexpensively.
Microchannel Fabrication by Compression Molding
Microscale compression molding, or hot embossing, of polymeric plastic materials is an established technique. First, a primary HARMS mold insert is produced, typically through a sequence of lithography, etching, deposition steps, with optional additional steps. Second, the mold insert is impressed into a substrate, and polymer fills voids in the mold insert through viscous or plastic flow to form the negative of the insert pattern. A large number of negative HARMS replicas can be reproduced from a single primary HARMS. In principle, under favorable conditions one primary mold insert may be used to produce hundreds or even thousands of replicas rapidly and at low cost.
The quality of the replica depends upon, among other factors, the mechanical yield strength of the mold insert at elevated molding temperatures. An important problem confronting compression metal microstructure molding is the lack of microstructure mold insert materials that retain high mechanical yield strengths at the molding temperatures required for metals. An electrodeposited Ni mold insert, for example, suffers permanent shape deformation when used to mold a higher-melting temperature metal, such as Cu.
Another problem can arise from chemical reactivity between the mold insert and the metal substrate. During compression, chemical bonds can form between the insert and the substrate. These bonds can cause the insert to break and can damage the molded structure as it is withdrawn from the substrate. These surface chemistry problems had restricted the metals that could be used as mold inserts and as substrates, until the development of a conformal ceramic surface coating to inhibit chemical bond formation. Using ceramic conformal coatings, secondary HARMS have been successfully reproduced in previously problematic, chemically reactive metals, such as Zn and Al, with LiGA-fabricated Ni mold inserts. See generally D. Cao et al., “Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications,” Thin Solid Films 398-399 (2001) 553-559; and D. Cao et al., “Conformal deposition of Ti—C:H coatings over high-aspect-ratio microscale structures and tribological characteristics,” Thin Solid Films 429 (2003) 46-54.
Bonding the Cover Plate
Once a microchannel has been fabricated in a substrate, whether Si or metal, a leak-tight cover plate must be affixed before it can be used as a practical heat exchanger. Several bonding methods have been reported for Si-based microsystems, including anodic bonding and direct bonding. However, these techniques are not well-suited for bonding metal-based HARMS.
Eutectic Bonding
Braze-bonding of bulk metal pieces has previously been used in different applications. Brazing is a joining process in which a non-ferrous filler metal or alloy is heated to its melting temperature and distributed between two (or more) close-fitting metal parts by capillary action. The filler metal can optionally be a eutectic mixture. A “eutectic” mixture is a mixture whose proportions are such that the melting point is as low as possible; and such that the constituents of the mixture all crystallize simultaneously at this temperature from molten liquid solution, a temperature that is called the eutectic point. For example, it has been reported that thin films of Si, Si—Al, and Zn—Al have been deposited onto bulk Al pieces by electron beam evaporation or sputtering. These Al pieces were then braze-bonded to one another by heating to 578-595° C., with flux introduced to remove surface aluminum oxides. This technique would be unsuitable for use with microchannels, however, because flux residue would tend to block the microchannels.
D. Tuckerman et al., “High performance heat sinking for VLSI,” IEEE Elect. Dev. Lett. 2, 126-129 (1981) discloses a water-cooled, integral heat sink fabricated in silicon with a Pyrex cover plate.
A. Tiensuu et al., “Assembling three-dimensional microstructures using gold-silicon eutectic bonding,” Sensor Actuat A 45, 227-236 (1994) discloses the use of gold-silicon eutectic bonding to join silicon microelements to one another.
B. Vu et al., “Patterned eutectic bonding with Al/Ge thin films for microelectromechanical systems,” J Vac Sci Technol B 14(4):2588-2594 (1996) discloses the use of an aluminum/germanium eutectic to bond silicon dice to one another.
P. Lee et al., “Investigation of heat transfer in rectangular microchannels,” Int. J. Heat Mass Transf., vol. 48, no. 9, pp. 1688-1704 (2005) discloses measurements and numerical modeling of heat transfer in rectangular microchannels. Test pieces were made of copper, with ten microchannels in parallel, and a polymeric cover plate.
D. Cao et al., “Microscale compression molding of Al with surface engineered LiGA inserts,” Microsyst Technol. 10 (2004) 662-670 discloses the use of high-temperature compression molding of aluminum plates with high-aspect ratio microscale mold inserts made of nickel conformally coated with a titanium-containing hydrocarbon. See also W. Meng et al., “Stresses during micromolding of metals at elevated temperatures: pilot experiments and a simple model,” J. Mater. Res. 20 (2005) 161-175; J. Jiang et al., “Further experiments and modeling for microscale compression molding of metals at elevated temperatures,” J. Mater. Res. 22 (2007) 1839-1848; U.S. Pat. No. 7,114,361; and U.S. published patent application 2005/0056074.
F. Mei et al., “Eutectic bonding of Al-based high aspect ratio microscale structures,” Microsyst Technol. 13: 723-730 (published online 16 Jan. 2007) reports work from our research group concerning the eutectic bonding of Al-based high aspect ratio microscale structures with Al—Ge intermediate layers. See also F. Mei et al., “Evaluation of eutectic bond strength and assembly of Al-based microfluidic structures, Microsyst Technol. 14: 99-107 (published online 3 Apr. 2007); F. Mei et al., “Fabrication, assembly, and testing of Cu- and Al-based microchannel heat exchangers, J. Microelectromechanical Systems 17(4): 869-881 (published online Jun. 27, 2008); and F. Mei et al., “Evaluation of bond quality and heat transfer of Cu-based microchannel heat exchange devices,” J Vac Sci Technol A 26(4):798-804 (published online Jun. 30, 2008).
U.S. Patent Application 2006/0142401 discloses the use of partial boiling in a minichannel or microchannel to remove heat from an exothermic process. Surface roughness was said to enhance nucleation for boiling. See, e.g., Example 11.
U.S. Patent Application 2006/0157234 discloses a microchannel heat exchanger, and briefly mentions surface roughness.
U.S. Pat. No. 5,727,618 discloses a modular microchannel heat exchanger formed from a stack of multiple thin copper sheets etched with rows of elongated holes, coated with silver and held together with the holes aligned, e.g. with pins. The stack is heated, and the copper and silver form a fused or eutectic alloy brazing the sheets together. The holes through the multiple sheets then form a microchannel. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is a requirement to screen cargo items for the detection of illicit materials and devices. Today, the use of X-ray imaging for cargo inspection is becoming more widespread. Such systems are typically made from large welded steel fabrications and are complex and time consuming to install. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an image forming apparatus for forming copy images of reflection originals such as documents or books which is endowed with the function of forming a copy image of a transmitting original such as a slide film or the like.
2. Description of the Prior Art
In a copying apparatus capable of copying not only ordinary reflection originals but also transmitted enlarged projected images of a slide film (hereinafter referred to as the combination copying apparatus), optical alignment for obtaining copies of the transmitted enlarged projected images of the slide film has been very difficult. This will hereinafter be described in detail by reference to FIGS. 1 and 2 of the accompanying drawings. In FIG. 1, reference numeral 50 designates a copying apparatus body, reference numeral 4 denotes an original supporting glass plate provided on the copying apparatus body 50, and P designates a slide projection device. The projection device P has a Fresnel lens 108, a reflecting mirror 107 for changing the optical path, a projection lens 109 for enlargedly projecting a slide film, and an illuminating portion 110 for holding the slide film 105 and illuminating it. The device P is removably mounted on the apparatus body 50. A photosensitive drum 1 and an optical system including a lens 8 are disposed within the copying apparatus body 50, as shown in FIG. 2, but these are not shown in FIG. 1. In FIG. 2, reference numeral 105 designates the slide film, and reference numeral 109 denotes the projection lens of the slide projection device P. In such a conventional combination copying apparatus, during the copying of an ordinary reflection type original, the bulky and weighty slide projection device including the reflecting mirror 107, the Fresnel lens 108 and the illuminating device 110 must be removed and moved from the original supporting glass plate 4 and thus, the change-over operation thereof has been cumbersome. Also, before the projected image of the slide is copied, the slide film 105 which is an original must be loaded into the projection device P and the point of focus must be adjusted on the upper surface of the original supporting glass plate 4 by the projection lens 109.
This has led to the necessity of the procedures of removing the Fresnel lens 108 on the original supporting glass plate 4, placing a sheet of white paper on the original supporting glass plate 4, projecting an image onto the white paper and adjusting the point of focus, thereafter removing the white paper from the original supporting glass plate 4 and adjusting the optic axis of the Fresnel lens 108. Alternatively, it is also conceivable to observe the point of focus by a projected image falling on the frame-like white paper for setting the copying area existing between the Fresnel lens 108 and the original supporting glass plate 4, but it is dangerous to adjust the point of focus in the marginal portion of the slide film 105 which lies outside the copying area, because it is very rare that the focused surface of the original lies around the slide film 105. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method and apparatus for determining cement conditions and, more particularly, to such a method and apparatus wherein an acoustic energy source is placed against an interior surface of a casing set within a wellbore to determine the quality of the cement bond, the thickness of the cement, and the acoustic velocity associated with the cement.
2. Setting of the Invention
After a wellbore has been drilled through a subterranean formation, a casing or tubing string is required by statute or regulation to be set therein with a hydraulic bond, as by cementing. Further, it is a requirement that the hydraulic bond be tested to determine if a channel in the cement is present, if a microannulus has formed between the cement and the casing as by shrinkage of the cement, or if the surface of the casing or tubing is defective.
Numerous prior art apparatuses have been developed to determine the quality of the cement bond and are referred to hereinafter as CBL methods and apparatuses. Primarily, the prior art CBL apparatuses include an acoustic transmitting transducer and a plurality of acoustic receivers suspended via a wireline within a wellbore. The acoustic transmitting transducer emits acoustic energy which must pass through the fluid in the wellbore, and into the casing.
In one type of prior art CBL system, acoustic energy encounters the casing and passes therethrough, i.e., the casing acts as a wave guide. The suspended acoustic receivers receive reflected energy and the resulting signals indicate the amount of energy attenuation as the acoustic energy passes through the casing. The better the cement bond with the casing, the greater signal attenuation will result. Conversely, little or no signal attenuation indicates that there are voids in the cement-casing interface.
Another type of prior art CBL system uses pulses of acoustic energy directed at a normal incidence to the casing so that the energy passes through the casing and is reflected back. The suspended acoustic receivers receive reflected energy and the resulting signal amplitudes are analyzed. The better the cement bond with the casing, the lower the signal amplitude. Conversely, a relatively high amplitude indicates a poor cement bond. In both systems, the acoustic receivers convert the acoustic energy reflections into electrical signals, which are preprocessed and transmitted to surface processing equipment to generate a signal amplitude-vs-time plot. A trained well log analyst then can review the plot and determine the quality of the cement bond.
Two of the major problems associated with the prior art methods described above are signal attenuation and transducer misalignment. By placing the acoustic transmitting transducer within the casing but not into contact with the casing, a substantial portion of the transmitted acoustic energy is attenuated by the wellbore fluid and the casing. The fluid's and the casing's impedance are substantially different from that of the transducer and the transmitted energy tends to reverberate within the casing causing it to "ring." Thus, on a plot of the received signals, the important signal representative of the interface between the cement and the casing can be hidden or "smeared" by the resultant signal caused by the casing ringing. Further, the equally critical interface between the cement and the formation can be hidden by the casing ringing or, because so much acoustic energy is lost to the wellbore fluid and casing, this interface is not discernible on the plot at all.
The major problem of transducer misalignment is caused when the pulse-echo transducer is not centered within the casing so that transmitted acoustic energy contacts the casing at a nonperpendicular angle, i.e., at a normal incidence. A substantial portion of the acoustic energy may not penetrate the casing and cement. Further, the energy becomes defocused making image reconstruction difficult.
Another major problem with prior art pulse-echo CBL methods and apparatuses is the frequency needed to penetrate the wellbore fluid is not best for signal interpretation. A low frequency signal is desired to prevent high signal attenuation as it passes out through the wellbore fluid and back, but a low frequency signal is the least desired for signal interpretation. This is because the length of the signal can be greater than that needed to define a particular event, such as the casing-cement interface. The low frequency signal smears the desired amplitude peaks used to define events.
Another major problem with prior art casing attenuation CBL methods and apparatuses is that the energy is transmitted radially and thus received radially. What this means is that one portion of the cement could be bonded adequately to the casing while another portion has no cement at all, which could lead to a catastrophic well failure, but because the signal is radially received, it is an average signal at that depth. The well log analyst would only "see" on the resulting plot an acceptable signal.
A paper entitled "Ultrasonic Cement Bond Evaluation" by R. M. Havira, SPWLA, July 1982 and U.S. Pat. No. 4,255,798 (Havira) both disclose a pulse-echo CBL method wherein a single acoustic transmitting and receiving transducer is suspended within a wellbore. Nowhere is it disclosed or suggested in these disclosures to place an acoustic transmitting and receiving transducer into contact with the interior surface of the casing to eliminate the problems associated with this type of system.
U.S. Pat. No. 3,691,518 (Schuster) and U.S. Pat. No. 3,883,841 (Norel, et al.), both disclose CBL methods wherein an acoustic transmitting transducer is suspended within a wellbore and at least one acoustic receiving transducer is placed into contact with the interior surface of the casing. Nowhere is it disclosed or suggested in Schuster or Norel, et al., to place an acoustic transmitting and receiving transducer into contact with the interior surface of the casing to eliminate the problems associated with this type of system.
U.S. Pat. No. 3,363,719 (Venghiattis) discloses a velocity logging method wherein an acoustic transmitting transducer and an acoustic receiving transducer are placed into contact with the formation material to determine the shear and compressional velocities of the formation. Nowhere is it disclosed or suggested in Venghiattis to place an acoustic transmitting and receiving transducer into contact with the interior surface of a casing or to determine the quality of the cement bond between the casing and the formation.
There is a need for a CBL apparatus and a method of use thereof which can evaluate and determine the cement conditions adjacent a cased wellbore such that a substantial portion of the acoustic energy passes through the casing into the cement and the formation with proper alignment so that the cement conditions can be determined more accurately than previously utilized methods.
The quality of the cement and the condition of the cement bond with the formation are important; however, equally important is the determination of the thickness of the cement and the acoustic velocity associated with the cement. Because the casing is usually not centered within the wellbore, cement may not uniformally surround the casing, i.e., where the casing is closest to the formation, little or no cement may be present. Prior art CBL methods use signal averaging of the cement bond at a certain depth, so the lack of cement at one azimuthal location on the casing may not be detected because its signal would be averaged into the signals from the other locations. Oftentimes cement can include various foreign material picked up during the passage through the wellbore. Therefore, the cement could include irregularities or voids and zones of inadequate strength. As stated above, prior art CBL methods use signal averaging of the cement bond readings, so the variations in cement quality at one azimuthal location may not be detected.
There is a need for a method of determining the thickness of the cement at a particular azimuthal location at a certain depth within the wellbore and a need for a method of determining an indication of the quality of of the cement, such as acoustic velocity, at a particular azimuthal location at a certain depth within the wellbore. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention:
The present invention relates to a method for forming an oxynitride layer, in particular, a method for forming an oxynitride layer to avoid boron penetration.
2. Description of the Prior Art:
In metal oxide semiconductor field effect transistors (MOSFETs), gate oxide plays a very important role, as its thickness must be continuously decreased to lower threshold voltage so that speed and current of the device are increased. Under these circumstances, boron penetration problems easily occur as the size of devices continuously decreases, especially PMOSFET with P+ polysilicon gates, wherein CMOS thereof must have low and symmetrical threshold voltage to achieve operation in low voltage. However, boron ions from the P+ polysilicon gate easily penetrate to the silicon substrate at the bottom. This not only shifts the threshold voltage to the positive direction, but also lowers the sub-threshold swing, which seriously affects the characteristics of time-dependent dielectric breakdown. Consequently, boron penetration must be overcome to obtain semiconductor devices that meet the operational requirements.
A few research papers have disclosed methods for improving oxynitride layers, such as forming an NH3-rich layer so that nitrogen accumulates at the surface of the oxide layer and the interface of oxide layer and silicon substrate, thereby inhibiting dopant diffusion. For hydrogen-related species, however, electron trapping problems can occur.
Another method discloses using N2O instead of NH3, but high thermal budget must be obtained to provide sufficient nitrogen concentration to achieve inhibition of boron penetration. If the thickness of the oxide layer is less than 35 xc3x85, using N2O cannot effectively solve the boron penetration problem. In another method, using NO, although there is no thermal budget problem as above, the maximum value of the nitrogen concentration located at the interface brings fixed-charge buildup. This, more or less, results in boron penetration to the oxide layer, which consequently affects the performance of the device. The optimum gate oxide layer must have a nitrogen diffusion barrier at the interface, and avoid boron penetration at the same time. A good oxide interfacial quality is then sufficient to maintain carrier mobility and transconductance.
In order to achieve the nitrogen profile, i.e. high nitrogen concentration at the interface, methods disclosed are nitridation of thermal oxide layer using high density of N2 plasma, and N2 ion implanting before oxidizing. However, nitridation with high density of N2 plasma is not compatible with the current process, and the latter method is more complicated, thus difficult to integrate with the current process. Moreover, defects associated with ion implantation can affect the quality of the oxide layer.
In order to overcome the above problems, an object of the invention is to provide a method for forming an oxynitride layer, using dry oxidation to form an oxynitride layer in a low-pressure state. Not only are the problems associated with boron penetration inhibited, promoting device quality, the method provided is also compatible with the current process.
In order to achieve the above objects, there is provided a method for forming an oxynitride layer, comprising: (a) providing a substrate and removing the native oxide layer; (b) forming a nitride layer on the substrate; (c) oxidizing the nitride layer to form an oxynitride layer; and (d) subjecting the oxynitride layer to in-situ annealing.
Native oxide layer removal in step (a) is accomplished by buffered oxide etching (BOE) solution, such as HF or NH4F. In step (b), the nitride layer is formed by thermal nitridation, where the parameters are as follows: pressure less than 10 torr, in 800xcx9c1000xc2x0 C. of NH3 gas. The nitride layer formed is 10xcx9c15 xc3x85 thick, preferably 13 xc3x85. Oxidation of nitride layer in step (c) is carried out in atmospheric O2, where the temperature is 900xcx9c950xc2x0 C. In-situ annealing in step (d) is performed in N2 gas, where the temperature is 900xc2x0 C. The oxynitride formed is 25xcx9c30 xc3x85 thick, preferably 28 xc3x85.
According to the invention, the peak value (5.11E21 atoms/cm3) of nitrogen concentration in the oxynitride layer formed is located at the interface of the oxynitride layer, i.e. the interface with the polysilicon layer formed thereafter. The peak value has shifted from the interface of oxide layer and the substrate to the interface of polysilicon/oxynitride. Consequently, it inhibits boron penetrates from the P+ polysilicon electrode into the gate oxide layer. Nitrogen concentration at the interface of the oxynitride layer also enhances the overall reliability of the device.
In addition, based on the results observed by Secondary Ion Mass Spectroscopy (SIMS), it is considered that the profile of nitrogen distributed in theoxynitride layer not only inhibits boron penetration, but also achieves accurate control of the thickness of the oxynitride layer.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, given by way of illustration only and thus not intended to be limitative of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application pertains to the art of surgery and surgical instruments and more particular to an apparatus and method for subcutaneously inserting catheters. The invention finds particular application in conjunction with the insertion of catheters in the cephalic vein through the subclavian area for introducing parenteral nutrition, antibiotics, chemotherapy, and the like. It is to be appreciated, however, that the invention finds further application for creating tunnels through and between various body tissues.
Heretofore, catheters were inserted in the cephalic vein through a cut-down site through the chest wall over the vein. Multiple injections of anesthesia were made through the skin along a proposed tunnel path from the cut-down site to the parasternal border at the level of the nipple. An ovum-seeking forceps or other elongated forceps, was inserted at the cut-down site and manually urged along the tunnel path thus separating the skin from the underlying tissue to form the subcutaneous tunnel. The end of the forceps exited through an incision at the parasternal border to grasp an end of the catheter. The catheter was then drawn by the forceps through the tunnel to the cut-down site. The catheter was then inserted through venotomy in the cephalic vein and positioned such that its tip lay in the superior vena cava.
One of the most uncomfortable parts of the catheter insertion procedure, which is often done under local anesthesia, was the creation of the subcutaneous tunnel.
The present invention contemplates a new and improved tunneling apparatus and procedure which reduces the patient discomfort and forms the subcutaneous channel more simply and precisely. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application claims the right of priority under 35 U.S.C. §119 based on Japanese Patent Application Nos. JP 2002-282737 and JP 2002-282738 which are hereby incorporated by reference herein in their entirety as if fully set forth herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a compression sleeve for pneumatically applying dynamic pressure to the Achilles tendon, and to the sole of the foot, particularly at the arch.
2. Description of Related Art
Active people commonly experience the ache and debilitating effects of posterior heel pain as a result of three commonly accepted causes: Haglund syndrome, Achilles tendinitis/osis and Sever's disease.
Haglund syndrome is characterized by a painful soft tissue swelling where the Achilles tendon attaches to the calcaneum (heel bone). Haglund syndrome can often result in the development of a bony deposit on the back of the calcaneum or in the inflammation of the bursa, the fluid filled sac that decreases friction between the Achilles tendon and the calcaneum, which is known as retrocalcaneal bursitis. It is believed that Haglund syndrome results from the repetitive application of trauma or stress to the Achilles tendon.
Achilles tendinitis and tendinosis describe two classifications of tendon injury around the Achilles tendon. Tendinosis refers to non-inflammatory intratendinous degeneration which is initially asymptomatic. Tendinitis describes symptomatic degeneration of the tendon associated with inflammation. Stanish has referred to these tendon classifications as non-union soft-tissue injuries. It is believed that non-union soft-tissue injuries are caused by inadequate perfusion of the local tissues. The affliction is characterized by soft tissue swelling, tenderness to the touch and roughening about the Achilles tendon known as crepitus. Those suffering from Achilles tendinitis/osis also experience pain with active pointing and passive raising of the foot.
Sever's disease results from a sclerosis or thickening and irregularity of the growth plate known as the calcaneal apophysis. It is believed that Sever's disease results from inflammation of the soft tissues of the heel following an injury. Sever's disease may cause a number of conditions including retrocalcaneal bursitis, traction apophysitis, which is the separating of the tendon from the bone, and osteochondrosis of the calcaneal apophysis which is irritation and inflammation of the bone and cartilage in the heel. Those suffering from Sever's disease experience pain down the back of the heel with passive raising of the foot, rapid and repetitive pointing of the foot and a springy gait. Sever's disease is aggravated by running and jumping.
These conditions are often treated by use of heel lifts which normally are foam pads approximately 0.25 inches thick; oral pain relievers; shoe inserts; anti-inflammatory medications; rest; ultrasound; various physical therapy treatments; and flexibility exercises. Surgical procedures such as diagonal removal of a heel bone known as oblique calcaneal osteotomy; removal of a deep and superficial retrocalcaneal bursae; cleaning and tendon repair are sometimes required for effective treatment.
Plantar fasciitis is an inflammation of the fascia along the bottom of the foot. The fascia are sheets of fibrous tissue beneath the surface of the skin that enclose muscles or muscle groups and separate muscular layers. Plantar faciitis can be quite painful to an individual but can be soothed by massages that increase circulation to the plantar fascia.
U.S. Pat. No. 4,841,957 in the name of Wooten, et al. describes a U-shaped pad for applying compression around the affected area of the heel. However, the device disclosed in the Wooten patent only applies static pressure to the affected area of the Achilles tendon. We have reason to believe that a dynamic pulsating pressure would be more effective in remedying maladies associated with the Achilles tendon.
Nitric oxide is known to be released with a change in sheer stress in blood flow against the endothelial cells lining the veins. Our studies indicate that pulsating pressure accelerates venous velocity. Other studies show that acceleration of venous velocity increases sheer stress. A recent study, Modulation of Tendon Healing by Nitric Oxide, authored by George A. C. Murrell and others indicates that nitric oxide is present during tendon healing, and that the inhibition of nitric oxide reduces the healing response. While the tendons are avascular, the small nitric oxide molecule is known to pass through vessel walls. Nitric oxide acts as a vasodilator, providing greater fluid and nutrition to local tissues.
The results indicated by testing the present invention supports the belief that application of a dynamic, pulsating pressure around the sides of the Achilles tendon provides relief and healing to those suffering from maladies afflicting the Achilles tendon.
United Kingdom patent No. 817,521 discloses an apparatus for facilitating the blood circulation in the extremities of the human body. The device shown in this patent is cumbersome, making the same difficult and time consuming to attach to the lower leg of the wearer. A further disadvantage in the use of this device resides in the fact that the inflatable cushions must be inflated from an external source, such as a pump.
U.S. Pat. No. 5,348,530 discloses a pneumatic ankle brace with a bladder and foot pump arrangement. The device of this patent is of rather complicated construction and requires use of a detachable hand-held pump.
U.S. Pat. No. 4,841,956 discloses a device adapted to be mounted to the lower leg and foot of a person for inducing venous blood flow in the leg. This device includes a pulse generator and programmable distributor necessitating a non-ambulatory position for the wearer during use.
U.S. Pat. No. 4,678,945 discloses a self-inflating ankle brace including air bags with resilient, compressible filler material. This patent discloses only a brace.
U.S. Pat. No. 6,322,530, assigned to the instant assignee and incorporated herein by reference in its entirety, discloses a wrap made of a plurality of stretchable flexible straps. The straps wrap around the foot to hold in place one aircell positioned in the vicinity of the Achilles tendon and another aircell positioned in the vicinity of the arch of the foot, the two aircells being operatively connected to one another through a conduit member. As the user walks and steps on the aircell at the arch, that aircell is compressed, and the pressure in the aircell at the Achilles tendon is increased. As the user step off the arch aircell, the airflow is reversed, and air travels back from the Achilles tendon aircell to the arch aircell, ready for the next cycle. This device provides effective pneumatic compression of the Achilles tendon, but can be difficult for the user to apply and adjust properly. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is highly desirable to reliably track respiration within patients having pacemakers and ICDs. Tracking patient respiration permits potentially dangerous respiratory disorders, such as apnea, hypopnea, hyperpnea, nocturnal asthma, and Cheyne-Stokes Respiration (CSR), to be detected. Apnea and hypopnea are abnormal respiration patterns characterized by periods of significantly reduced respiration. With hypopnea, respiration is reduced but still present. With apnea, however, respiration may cease completely for 10 seconds or longer. One common form of apnea is sleep apnea, in which hundreds of individual episodes of apnea can occur during a single night. Accordingly, patients with sleep apnea experience frequent wakefulness at night and excessive sleepiness during the day. In addition, apnea can exacerbate various medical conditions, particularly congestive heart failure (CHF) wherein the patient suffers from poor cardiac function. Indeed, the aberrant blood chemistry levels occurring during sleep apnea are a significant problem for patients with CHF. Due to poor cardiac function caused by CHF, patients already suffer from generally low blood oxygen levels. Frequent periods of sleep apnea result in even lower blood oxygen levels.
Episodes of apnea can also occur during CSR, which is an abnormal respiratory pattern often occurring in patients with CHF. CSR is characterized by alternating periods of hypopnea and hyperpnea (i.e. fast, deep breathing.) Briefly, CSR arises principally due to a time lag between blood CO2 levels sensed by the respiratory control nerve centers of the brain and the blood CO2 levels. With CHF, poor cardiac function results in poor blood flow to the brain such that respiratory control nerve centers respond to blood CO2 levels that are no longer properly representative of the overall blood CO2 levels in the body. Hence, the respiratory control nerve centers trigger an increase in the depth and frequency of breathing in an attempt to compensate for perceived high blood CO2 levels—although the blood CO2 levels have already dropped. By the time the respiratory control nerve centers detect the drop in blood CO2 levels and act to slow respiration, the blood CO2 levels have already increased. This cycle becomes increasingly unbalanced until respiration alternates between hypopnea and hyperpnea. The periods of hypopnea often become sufficiently severe that no breathing occurs between the periods of hyperpnea, i.e. periods of frank apnea occur between the periods of hyperpnea. The wildly fluctuating blood chemistry levels caused by alternating between hyperpnea and apnea/hypopnea can significantly exacerbate CHF and other medical conditions. When CHF is still mild, CSR usually occurs, if at all, only while the patient is sleeping. When it becomes more severe, CSR can occur while the patient is awake.
Abnormal respiration during sleep may also arise due to nocturnal asthma. With asthma, the linings of the airways swell and become more inflamed. Mucus clogs the airways and the muscles around the airways tighten and narrow. Hence, breathing becomes difficult and stressful. During an asthma attack, rapid breathing patterns similar to hyperpnea occur, though little or no oxygen actual reaches the lungs. An asthma attack may be triggered by allergens, respiratory infections, cold and dry air, or even heartburn. The majority of asthma attacks occur during the night, between 3:00 a.m. and 5:00 a.m. Nocturnal asthma has been associated with factors such as decreased pulmonary function, hypoxemia and circadian variations of histamine, epinephrine, and cortisol concentrations. Asthma attacks at night may also be triggered directly by sleep apnea. Nocturnal asthma attacks may be fatal, particularly within patients also suffering from CHF.
In view of the significant adverse consequences of apnea/hypopnea, nocturnal asthma, or CSR, particularly insofar as patients with CHF are concerned, it is highly desirable to provide techniques for detecting such conditions. Tracking actual patient respiration provides perhaps the most direct and effective technique for detecting respiratory disorders. For patients with pacemakers and ICDs, respiration is conventionally tracked based on thoracic impedance as measured via pacing/sensing leads implanted within the heart. Sensing of the intracardiac electrogram (IEGM) of the patient is temporarily suspended during each cardiac cycle so as to sense an impedance signal, from which respiration patterns are derived. See, for example, U.S. Pat. No. 6,449,509 to Park, et al., entitled “Implantable Stimulation Device Having Synchronous Sampling for a Respiration Sensor.”
Although impedance-based techniques are useful, it would be desirable to provide alternative techniques for tracking respiration, particularly for the purposes of detecting episodes of abnormal respiration, wherein respiration is derived solely from the IEGM signal so as to eliminate the need to detect or process impedance. Additionally, this eliminates need for additional sensors, and the sensing electrodes can be thus used for IEGM based breathing pattern detection and hence, the ease of implementability in current platforms. One technique for deriving respiration from an IEGM signal is set forth in U.S. Pat. No. 6,697,672 to Andersson, entitled “Implantable Heart Stimulator”, which is incorporated by reference herein. Briefly, Andersson provides a technique to extract parameters related to patient respiration from an analysis of intervals between various events detected within a ventricular-IEGM (i.e. V-IEGM) signal. For example, cycle-to-cycle variability is tracked in R-R intervals or in the amplitude of S-T intervals. In other words, the technique of Andersson exploits interval-based morphological features of the V-IEGM to track respiration. Although not discussed in the Andersson reference, autonomic variability arising during respiration causes the interval-based changes in the IEGM. R-waves (also referred to as QRS-complexes) are electrical signals representative of the depolarization of ventricular muscle tissue. The subsequent electrical repolarization of the ventricular tissue appears within the IEGM as a T-wave. Electrical depolarization of atrial muscle tissue is manifest as a P-wave. Strictly speaking, P-waves, R-waves and T-waves are features of a surface electrocardiogram (EKG or ECG). For convenience, the terms P-wave, R-wave and T-wave are also used herein (and in the literature) to refer to the corresponding internal signal component.
Although the interval-based variability technique of Andersson is effective, it is desirable to provide additional or alternative IEGM-based techniques for trending and tracking respiration and for detecting episodes of abnormal respiration. This general goal was achieved by the techniques of the parent application, cited above. Briefly, respiration patterns are detected based upon cycle-to-cycle changes in morphological features associated with individual electrical events with the IEGM signals. For example, slight changes in the peak amplitudes of QRS-complexes, P-waves or T-waves are tracked to identify cyclical variations representative of patient respiration. Alternatively, the integrals of the morphological features of the individual events may be calculated for use in tracking respiration. Once respiration patterns have been identified, episodes of abnormal respiration, such as apnea, hyperpnea, nocturnal asthma, or the like, may be detected and therapy automatically delivered.
Hence, the techniques of the parent application, which are also described herein below, are not limited to analyzing interval-based features of a V-IEGM, as with certain predecessor techniques. Instead, the techniques of the parent application examine changes within individual features of cardiac cycles over time. In this regard, it has been observed that respiration causes slight variations in the size and shape of individual electrical events of the IEGM signals, such as QRS-complexes, and that those changes are correlated with respiration. This differs from changes in intervals (such as R-R intervals), which, as noted, appear to arise due to autonomic variability. In one specific example, changes in the integrals of the QRS-complex derived from a V-IEGM channel signal are examined, alone or in combination with, integrals of P-waves derived from an atrial IEGM (A-IEGM) channel signal. Interval-based parameters, such as variations in A-A, R-R or AV intervals, may be additionally used to aid in tracking respiration but are not required.
The parent application also presented techniques for detecting episodes of abnormal respiration based on respiration patterns, such as episodes of such as apnea, hypopnea, nocturnal asthma, or CSR. The present application is primarily directed to providing further improvements in the area of abnormal respiration detection. | {
"pile_set_name": "USPTO Backgrounds"
} |
As is well known to those familiar with the production of oil and other hydrocarbons from underground formations, it is often desirable to enhance the flow-rate of hydrocarbons into the well bore after an initial period of production by injecting water into the same reservoir strata to increase its pressure. It is also quite common for the well bore to pass through at least one underground stratum that produces water into the bore that is located at a considerable distance above the hydrocarbon-bearing strata. These water-bearing strata can be isolated by mechanical seals or packers, or by cementing so that water does not find its way into the produced hydrocarbon stream that is typically produced from the bottom of the well bore.
In accordance with current water injection practices, water produced in the well bore or from other well sites is pumped to the surface and fed to the intake of high pressure pumps. Depending on the volume/flow-rate of available water, it may have to be accumulated before delivery to the pumping facility. The discharge from these high pressure pumps is then delivered, often over long distances, e.g., 25 to 30 kilometers, through high-pressure pipes ranging in size from 24 inches to 30 inches in diameter. It will be understood that the capital costs and expenses associated with the construction and operation of this infrastructure for a water injection system that services an oil field stretching over many hundreds or even thousands of square kilometers is substantial. From the above brief description of the prior art methods of providing pressurized water for injection into subterranean formations to enhance hydrocarbon production, the desirability of utilizing an apparatus and method in which this infrastructure is unnecessary is apparent.
It is therefore an objective of this invention to provide a method and apparatus that eliminates the necessity of constructing extensive low and high pressure pipeline systems and pumping stations at the earth's surface in order to deliver pressurized injection water.
It is a further objective of the invention to minimize the distance and, therefore, the associated energy requirements, over which water must be transported from its point of production to the location of its injection into the reservoir formation.
An additional objective of the invention is to provide an apparatus and method for employing an electric submersible pump (“ESP”) injection system that is protected from damage by sand and particulate matter carried by the produced formation water and which minimizes rigging time and costs during installation and retrieval of the completion.
Another objective of the invention is to provide a specifically configured, stand-alone apparatus and a novel method for delivering water from an upper formation zone to a lower formation zone that will permit retrieval and replacement of portions of the completion and will also allow access to the injection zone for logging and well intervention operations without removal of the sand exclusion screens completion. | {
"pile_set_name": "USPTO Backgrounds"
} |
In high speed floor burnishing machines of the type with which the present invention is concerned, an electric motor drives a pad driver assembly which includes the floor burnishing pad at high angular velocities. Because the pad is driven in rotation, and because the pad is made of a very loosely woven fiber-like material and is highly permeable to the flow of air, there are centrifugal forces which tend to cause the material of the pad to "creep"--i.e., to move out from beneath the flexible backing plate which holds it. In this connection, the term "flexible" means that the material of the backing member is semi-rigid, but will normally flex under usage or can be flexed or bent with the hands.
The pad itself is held in place by teeth or projections beneath the backing member, and at least one improvement, described in the above-identified copending application, provides a retaining skirt or flange on the periphery of the backing member to help restrain pad creep.
Although these measures have extended the useful life of the pad by some measure, there nevertheless is room for improvement in that some pads are being discarded because they have lost their shape rather than because they have lost their ability to polish.
Briefly, the present invention provides for a plurality of apertures in the backing member as well as the gripping element. These apertures are spaced at equal angular increments about the backing member and at intermediate locations between the axis of rotation and the outer peripheral edge of the backing member. When the pad driver assembly is rotated at high speed, the apertures in the backing member permit air to flow downwardly into the pad itself. Because the pad is rotating at high angular velocity, the air is forced radially outwardly at an accelerating rate, thereby creating a slight vacuum beneath atmospheric pressure. Atmospheric pressure causes the outer peripheral portion of the backing member and the gripping element to press downwardly onto the pad material. This has the dual effect of causing the gripping element to engage and hold the pad material more effectively, thereby reducing the tendency of the pad material to creep, and it also applies pressure on the peripheral area of the pad which has the greatest burnishing effect because of the higher pad speed in that area.
Other features and advantages of the present invention will be apparent to persons skilled in the art from the following detailed description of a preferred embodiment accompanied by the attached drawing wherein identical reference numerals will refer to like parts in the various views. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various methods are presently known in the art for the delivery of a pharmaceutical composition to treat various medical conditions. The pharmaceutical composition may be provided to a human or veterinary patient in need of therapeutic treatment by a variety of routes such as, for example, subcutaneous, topical, oral, intraperitoneal, intradermal, intravenous, intranasal, rectal, intramuscular, and within the pleural cavity. Administration of pharmaceutical compositions is usually accomplished orally or parenterally. However, it has become increasingly common to treat a variety of medical conditions by introducing an implantable medical device partly or completely into the esophagus, trachea, colon, biliary tract, urinary tract, vascular system or other location within a human or veterinary patient. For example, many treatments of the vascular system entail the introduction of a device such as a stent, catheter, balloon, guide wire, cannula or the like into the body.
Exposure, however, to a medical device which is implanted or inserted into the body of a patient can cause the body tissue to exhibit adverse physiological reactions. These adverse reactions can occur whether the medical device is introduced by a major surgical procedure or by a minimally invasive technique; they include, for example, the formation of emboli or clots, cell proliferation, occlusion of blood vessels, platelet aggregation, or calcification. To reduce the potential occurrence of such adverse effects associated with implanted medical devices, pharmaceuticals, such as anticoagulants and antiproliferation drugs, have been administered in or on such medical devices.
In addition to administering drugs to treat and/or prevent the adverse reactions to inserted or implanted medical devices, such devices can also be used for the improved localized delivery of drugs to diseased tissues or body lumens in most branches of medicine and for most types of drugs. Such drugs include, for example, antibiotics, anti-inflammatory agents, anti-cancer agents and genetic material for gene therapy. Thus, the medical device enables drugs to be administered locally rather than systemically.
Methods for delivering drugs to body lumens or tissues may involve, for example, the use of catheters having a balloon disposed on the distal end of the catheter, with the drugs coated on the balloon surface. For instance, U.S. Pat. No. 5,102,402 to Dror et al. and U.S. Pat. No. 6,146,358 to Rowe describe medical devices, typically a balloon catheter, in which the exterior surface of the balloon is coated with drugs. Generally, the drugs are applied to the surface of the balloon by known coating methods, including spraying, dipping, rolling, brushing, solvent bonding, adhesives, or welding. The drug is delivered to the target lumen or tissue by inserting the catheter into the body lumen and maneuvering it through the cardiovascular system to the target site. Once in the proper position, the balloon is inflated for contacting the afflicted tissue so that the drug is released and retained in the lumen or tissue as the balloon is deflated.
Rather then being coated directly on the balloon surface, as described supra, the drug may be embedded in a separate polymer layer, which is then coated or otherwise applied to the balloon surface. For instance, U.S. Pat. No. 6,409,716 to Sahatjian et al. and U.S. Pat. No. 6,364,856 to Ding et al. disclose balloon catheters with drug-embedded polymer layers coated upon the balloon surface. These medical devices allow for a rapid release of the drug from the coated polymer layer during compression of the polymer coating against the wall of the lumen as the balloon is expanded. Sahatjian et al. '716 describes a balloon catheter with a swellable hydrogel polymer layer adhered to the surface of the balloon, whereas Ding et al. '856 discloses a balloon catheter with a sponge non-hydrogel polymer coating applied to the surface of the balloon.
Drug-coated medical devices of the foregoing types do, however, have certain disadvantages. For example, the application of a separate coating (either of the drug itself or of a drug-containing layer) to the balloon surface usually involves multiple steps. The coating may not adhere properly to the balloon surface, thereby causing difficulties when using the device. For example, inserting or implanting the medical device may be difficult if the coating is not properly adhered to the balloon surface. In addition, the effectiveness of the drug application may be hampered if the coating has been compromised.
Hence, there is a need for a device which reliably delivers drugs, therapeutic agents, or bioactive materials directly into a localized tissue area so as to treat and/or prevent conditions and diseases. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to mobile station communications and, more particularly to location dependent behavior in a mobile station.
An increasingly common problem faced by mobile station users is that of prohibition of use. Reasons for such prohibitions vary, generally according to location. For example, operation of an electronic device, such as a mobile station, during the take-off and landing operations of an aircraft can interfere with electronic signals which are critical to the operation of the aircraft. As a result, the FAA prohibits the operation of certain electronic devices by passengers during take-off and landing operations. However, this prohibition does not ensure that deliberate violators and careless passengers will not operate their electronic devices during such critical periods. A means of addressing this specific hazard is disclosed in U.S. Pat. No. 5,815,407, entitled xe2x80x9cMethod and Apparatus for Inhibiting the Operation of an Electronic Device During Take-Offs and Landings of an Aircraft.xe2x80x9d Prohibitions on mobile station use due to critical operations can also occur in other environments. Such environments can include, for example, hospitals and other areas where sensitive medical instruments may need to be protected from possible radio frequency interference (RFI) caused by mobile stations.
In addition to prohibitions on the use of mobile stations and other electronic devices, warning devices which detect the radio frequency (RF) transmission of a mobile station may also be used. Such devices are based on the detection of a radio transmission sent by an electronic device such as a mobile station. The warning device can indicate RFI detection by an audio signal or warning lights. However, the warning device is merely reactive. That is, it does not register an alarm in absence of RFI detection. Therefore, until a mobile station is participating in a call or making location updates to a registered system, the warning device will not indicate a problem. By the time RFI is indicated, the interference has occurred. At this point, mere detection of the interference may not be enough to avoid the problems it can cause. Another drawback of the RFI warning device is that it does not indicate, with adequate precision, the source of the RFI. That is, the warning device cannot unambiguously indicate which particular mobile station is activated. This lack of precision can cause a delay in pinpointing the RFI source. Thus, the elimination of the RFI by switching off the source is delayed.
Secondary reasons may also exist for prohibiting or limiting the use of mobile stations in public and private areas. For example, in some areas, it may be particularly important that a mobile station that is in operating mode, i.e., ready to send and receive communications, does not cause a disturbance, for example, by ringing.
The ability to impart location dependent functionality to mobile stations is impeded due to the limits in both scope and accuracy of current positioning systems. The systems currently available are incapable of providing the positioning detail required for controlling mobile station behavior in a specific location. Systems using triangulation, signal strength indicators, or time difference of arrival systems, such as GPS, each have requirements which, in the context of mobile stations, such as handheld cellular telephones, make them unsuitable for implementing location specific, automatic terminal behavior control. By design, such systems require specially adapted receivers at the mobile station to receive and process the pilot tones, GPS signals, etc. Such sophisticated end equipment can substantially increase the cost of a mobile station. Also, the addition of special equipment can result in a handset which is extremely bulky and difficult to manipulate. This added weight and size can be detrimental to mobile stations which are handheld cellular telephones.
An additional drawback to current positioning systems is that when applied to wireless communications of interest to end consumers, i.e. communications in the 800 MHz to 2.5 GHz frequency band, the anticipated use of excessive frequency spectrum makes them undesirable.
A location dependent system is needed which is compatible with existing mobile stations. That is it should not degrade the operation or ergonomics of an existing system. In addition, a location dependent system should not require the allocation of more radio frequencies than are currently allocated to wireless telephone systems or a substantial portion of existing wireless frequencies. Moreover, current systems are reactive and restrictive. Current systems do not act until a mobile station is detected. When the current systems do act, it is to curtail the functionality of the mobile stations.
Additional general background, which helps to show the knowledge of those skilled in the art, may be found in the following: Laverghetta, Microwaves and Wireless Simplified (1998); and Balanis, Antenna Theory:
Analysis and Design (1997), both of which are hereby incorporated by reference.
The disclosed embodiments of present application provide a system and a method for modifying the behavioral characteristics of a mobile station terminal according to a functional location. A small transmitter, or button, which utilizes short range radio transmissions is used to define a functional location. The button is identified with particular functions using a device ID. In some of the disclosed embodiments, the button transmits the device ID continuously. In some other disclosed embodiments, the button transmission is triggered by a mobile station in proximity to the button. In some of the disclosed embodiments, the mobile station can store a mapping of device IDs to particular behaviors (or functions). In some other disclosed embodiments, the mobile station can request and receive a set of behaviors based on the device ID from a server attached to a telecommunications network. In some of the disclosed embodiments, receipt of a device ID can trigger a remote set of behaviors via a telecommunications network.
The disclosed embodiments can provide several advantages. For example, a low power button is a simple and inexpensive solution to providing location dependent services or functionality. It is possible to install such buttons in places where more expensive and sophisticated hardware would be at risk. Moreover, the small, unobtrusive button is easy to install, remove and relocate upon demand. For another example, the set of behaviors associated with a particular button can be defined and reconfigured centrally without requiring access to the button. For another example, a low power button allows an area which is considerably smaller than the micro or pico cells of a mobile cellular system to be defined. Such an area can be, for example, a building, a floor of a building, an office room, a shop, a department in a shop, etc. With smaller locations described functionally, as opposed to geographically, the functions performed by a mobile station can be augmented according to the mobile station""s environment. Use of a small button can allow the ID defined location to be mobile, for example, when the button is installed in a vehicle. Also, the low cost, ease of use and flexibility of the proposed system and method allow individual end-users to purchase and install buttons to create their own location dependent services. Finally, the proposed system is proactive and expansive. The proposed system does not rely on the mobile station to make its presence known prior to changing the mobile station functionality. Moreover, when mobile station functionality is affected by a device ID, it is possible that the functionality will be expanded by a wide variety of different services, either at the mobile station or by behaviors taking place remote from the mobile station. | {
"pile_set_name": "USPTO Backgrounds"
} |
In large scale, distributed, client/server applications, the server can service hundreds, if not thousands, of simultaneous requests from various clients. In many of these applications, the servers use the lightweight directory access protocol (LDAP) enabled. LDAP is a protocol that has been developed to query and modify directory services running over the Internet.
Client/server applications use LDAP to get authentication and authorization from a separate identity management system using the LDAP protocol. For example, the separate identity management system could be a single LDAP directory or several LDAP directories stored on an OpenLDAP, eDirectory, or Active Directory server.
In an LDAP environment, there is a server hosting a client/server application, and an LDAP server storing a data set used by the client/server application. The server hosting the application is considered an LDAP client, usually authenticating as a proxy and retrieving various details about its clients identities and their authorization permissions.
The LDAP client applications can be very aggressive, and can generate significant load to a LDAP server and create high utilization on that server. One way to avoid this burden on the server is to cache a subset of LDAP server data on the client. By caching a subset of LDAP server data, the LDAP client does not need to contact the LDAP server every time the data is referenced. Where there are several LDAP client applications, reducing the number of times a client application queries the LDAP server improves the time spent responding to the queries.
For example, as a client logs into an application using a user name and password, the LDAP client can submit the user name and password to the LDAP server for authentication. Then, if the authentication succeeds, the LDAP client can cache the user name and password to be used the next time the client logs into the application.
However, caching a subset of LDAP server data on the client introduces other problems. For example, data in the cache can become stale. A user name and password combination can be changed in the data set on the LDAP server after being cached on the LDAP client. In situations where security is especially important, stale cache of LDAP server data is unacceptable.
Accordingly, a need exists to update cache on a LDAP client to minimize the load to the LDAP server as changes are made to the data on the LDAP, frequently enough to limit the problem of stale data on the LDAP client. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a hologram recording and reproduction apparatus which records and reproduces a hologram in accordance with a shift multiplexing method, and more particularly to reduction in size and improvement in recording density of a hologram recording and reproduction apparatus of the type mentioned.
In the field of hologram memories which can achieve a large recording capacity by recording information three-dimensionally on a recording medium, various recording and reproduction methods such as angle multiplexing, shift multiplexing, wavelength multiplexing and phase modulation multiplexing have been heretofore proposed. Above all, it is preferable to adopt the shift multiplexing recording method for recording and reproduction of a hologram for which a rotational medium represented by a disk is used.
A conventional recording and reproduction apparatus which performs the shift multiplexing hologram recording has such a general configuration as shown in FIG. 5. Referring to FIG. 5, in order to record data on a hologram recording medium 12, a data page to be recorded is displayed on a spatial optical modulator (liquid crystal display apparatus of the light transmission type) 8 while a shutter 3 remains closed. Then, a spindle motor 24 is rotated to determine a recording place (recording area) of the hologram recording medium 12, and then the shutter 3 is opened.
Consequently, a coherent laser beam emitted from a laser light source 2 passes through the shutter 3 and enters a beam splitter 4, by which it is split into recording light 100 and reference light 200. The recording light 100 is introduced to the spatial optical modulator 8 by a mirror 6. When the recording light 100 passes through the spatial optical modulator 8 on which the data page is displayed, it is spatially optically modulated (amplitude modulated) by the spatial optical modulator 8. The modulated recording light is condensed on a recording area of the hologram recording medium 12 by a recording light lens (optical lens) 10.
Meanwhile, the reference light 200 is reflected to change its advancing direction by a mirror 14 and is then illuminated by a lens 18 so that it intersects in a fixed angle with the recording light 100 to generate interference fringes within the hologram recording medium 12. The data page (hologram) described above is recorded as a refractive index distribution according to a spatial distribution of the interference fringes.
After one hologram is recorded, the hologram recording medium 12 is moved by a fixed distance relative to the optical system, and then a next hologram is recorded. In the arrangement of FIG. 5, every time one hologram is recorded on the recording medium 12, the disk type hologram medium 12 is rotated by a fixed angle by the spindle motor 24. Then, after the hologram recording medium 12 makes one rotation, the optical system or the hologram recording medium 12 is moved in a radial direction of the hologram recording medium 12, and the recording in a circumferential direction of the medium is performed again. The sequence of operations described is repeated to record a large number of holograms over an overall area of the hologram recording medium 12.
In order to reproduce a hologram recorded in such a manner as described above, reference light (same as reproduction illumination light) of the same wave front is illuminated from the same position as that upon recording of the hologram on the hologram recording medium 12. Consequently, diffracted light corresponding to interference fringes recorded on a recording track of the hologram recording medium 12 is generated and is condensed by a lens 20 on and received by an image pickup element in a detector 22. Then, a resulting signal from the image pickup element is analyzed to restore the original image data (data page).
It has been proposed, for example, in Japanese Patent Laid-Open No. 2000-89648 that, where the hologram recording medium 12 is sufficiently thick when compared with the wavelength used for the recording, even if different holograms partially overlap with each other spatially, only a target hologram is reproduced if the shift amount between the holograms is greater than a fixed value. The fixed value of the shift amount relies upon the intersecting angle between the reference light 200 and the recording light 100, the f values of the individual lenses, the thickness of the hologram recording medium 12 and so forth. However, it is possible to realize, with regard to the along-track direction, a value of approximately several μm to several tens μm. It is to be noted that, where a spherical wave is used as the reference light, anisotropy appears and the shift selectivity in the cross-track direction becomes approximately 1 mm.
However, where cases of an optical disk recording and reproduction apparatus which are commercially established in the conventional field of optical memories are considered, a significant factor in apparatus miniaturization is miniaturization of an optical pickup. Meanwhile, in a hologram recording and reproduction apparatus of the shift multiplexing type, such elements as the lenses 18, 10 and 20 for reference light, recording light and reproduction light act similarly to the optical pickup of the optical disk recording and reproduction apparatus. Each of the lenses 18, 10 and 20 must be moved so as to follow up the information recording or reproduction position of the hologram recording medium 12. As the number of lenses to be moved is great, actuators for moving the lenses are obliged to be complicated and have increased sizes and servo systems are complicated, which decreases the degree of freedom in design. This makes it less easy to design a miniaturized apparatus. Thus, it is difficult to miniaturize a hologram recording and reproduction apparatus of the shift multiplexing type equivalently to existing optical disk recording and reproduction apparatus.
Further, the shift multiplexing is a method wherein the recording place of the hologram recording medium is successively moved in parallel little by little to perform multiplexed recording. However, since a spherical wave is used as the reference light, the recording density can be raised only in one direction due to the anisotropy. In particular, in the case of a disk type recording medium, while the shift selectivity of 10 μm can be taken in the along-track direction to achieve a high density, the shift selectivity in the cross-track direction is approximately 1 mm. Thus, there is a characteristic that the recording track pitch is great and the recording density cannot be raised. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a profile rail for affixing a flexible, sheetlike structure, such as a screen, a canvas or a foil, onto a substantially flat carrier in the shape of a frame or plate, said rail having a substantially U-shaped cross section and teeth or projections and being attachable to said carrier.
An extendible frame for painting canvas is already known which comprises a U-rail of this general kind (U.S. Pat. No. 3,529,653). This rail of the prior art which is intended to be clamped around one shank of an angle iron, around which the canvas is stretched, outside the latter, has the inside of its inner shank provided with teeth which penetrate into the canvas being clamped by means of the rail. The canvas and the rail are clamped on to the shank of the angle iron by means of an outer, stiffer rail which embraces the canvas and the rail and also has a U-shaped cross section. This known structure is comparatively complex since double rails are required. In addition thereto the fastening of the canvas is intricate, since it has to be grasped and held by hand while being fastened. In addition thereto it is almost impossible, on account of the saw-tooth shape of the teeth, to remove the fastened canvas without tearing it. | {
"pile_set_name": "USPTO Backgrounds"
} |
FIELD OF THE INVENTION
This invention relates to heat-sensitive recording materials, and especially to heat-sensitive recording materials capable of producing color images with improved storage stability. This invention is also concerned with novel phenol compounds, and in particular with novel phenol compounds useful as color-developing agents or additives for recording materials (for example, heat-sensitive recording materials) or as monomers or additives for high molecular materials.
Heat-sensitive recording materials making use of the color-producing reaction between an electron-donating chromogenic compound and an electron-attracting compound (color-developing agent) have been well known conventionally (for example, Japanese Patent Publication Nos. 4160/1968 and 14039/1970). These heat-sensitive recording materials are relatively inexpensive and, moreover, have the merit that recording equipment therefor are compact and maintenance-free. They have hence found utility in a wide variety of fields such as facsimiles, recorders and printers.
As electron-attracting compounds, phenol compounds are widely used. Among these, 2,2-bis(4'-hydroxyphenyl)propane (also called "bisphenol A") is extensively used for its availability at low cost. Bisphenol A is, however, accompanied by the drawback that heat-recording materials using bisphenol A as an electron-attracting compound cannot produce color images with good storage stability. In addition, heat-sensitive recording materials with bisphenol A as an electron-attracting compound also involve the drawback that their color-producing sensitivity is low. Heat-sensitive recording materials using, as an electron-attracting compound, a phenol compound other than bisphenol A have also been proposed, for example, 4-hydroxybenzoate esters (Japanese Patent Laid-Open No. 144193/1981 and Japanese Patent Publication No. 30640/1989), aralkyloxyphenols (Japanese Patent Publication No. 31678/1990 and Japanese Patent Laid-Open No. 225789/1985) and hydroxybenzophenones (Japanese Patent Laid-Open No. 193388/1982).
The use of 4-hydroxybenzoate esters, for example, benzyl 4-hydroxybenzoate as an electron-attracting compound, however, leads to the drawback that the density of a produced color image drops with time. It is also accompanied by the drawback that white crystals of benzyl 4-hydroxybenzoate are formed on the produced color image thereby to present a powdered appearance (the so-called "whitening phenomenon"). The use of aralkyloxyphenols, for example, 4-benzyloxyphenol as an electron-attracting compound also results in the drawback that the density of a produced color image drops as time goes on. When hydroxybenzophenones, for example, 4-hydroxybenzophenone is used as an electron-attracting compound, the resulting color image has poor storage stability (for example, hydrothermoresistance and waterproofness) so that they are not considered to have sufficient quality or properties for practical use.
On the other hand, heat-sensitive recording materials containing--as a method for improving the color-producing sensitivity--a thermofusible compound (sensitizer) in addition to an electron-donating chromogenic compound and an electron-attracting compound are also widely used. Proposed as thermofusible compounds include terphenyls (Japanese Patent Publication No. 7958/1988), benzyl 4-benzyloxybenzoate (Japanese Patent Publication No. 30878/1988), naphthol derivatives (Japanese patent Publication No. 42590/1988), aminophenol derivatives (Japanese Patent Laid-Open No. 211494/1983), benzylbiphenyls (Japanese Patent Publication No. 11437/1990), diaryloxyalkane derivatives (Japanese Patent Laid-Open Nos. 56588/1985 and 16888/1986), oxalate ester derivatives (Japanese Patent Laid-Open No. 1583/1989), etc. However, it is the current situation that, although heat-sensitive recording materials containing one or more of these thermofusible compounds have been improved to some extent in color-producing sensitivity, they are accompanied by the problem of the extremely poor storage stability of produced color images, said storage stability being usually still inferior to that of color images produced without the addition of any thermofusible compound.
Accordingly, there is now a strong demand for the provision of heat-sensitive recording materials free of the drawbacks or problems described above, namely, for the provision of heat-sensitive recording materials capable of producing color images with excellent storage stability and, further, heat-sensitive recording materials having good color-producing sensitivity and capable of producing color images with excellent storage stability. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present disclosure relates generally to water areas and, in particular, to managing water areas. Still more particularly, the present disclosure relates to a method and apparatus for monitoring and responding to safety related events in a recreational water area.
2. Background
Recreational water areas such as beaches and the water around the beaches are areas in which lifesaving operations may be performed for people involved in various activities at and around the beaches in these recreational water areas. For example, over 70,000 individuals are rescued each year from imminent peril at various beaches in the United States. Rescues may occur for individuals who are unable to swim in ocean waters, caught in rip currents, and/or encounter other conditions that may occur in the water.
These rescue missions involve lifeguards at the beaches. Lifeguards may be stationed at various lifeguard stands and other stations. Additionally, lifeguards also may move on vehicles to different locations to monitor the water in which recreational activities occur by the beaches.
The use of lifeguards is an expensive but necessary cost. With the use of lifeguards, however, the cost may restrain time periods when lifeguards are available. For example, lifeguards may only be available during normal operating hours of the beaches. After the normal operating hours, a smaller workforce of lifeguards may be present to monitor the same recreational water area. In some cases, after normal operating hours, lifeguards may be absent from the beaches. Moreover, less popular beaches may not be monitored at all.
As a result, individuals who use recreational water areas outside of normal operating hours or use recreational water areas where lifeguards are not present may find it more difficult to obtain assistance when needed. The absence or reduced number of lifeguards may make it more difficult to detect when individuals may need assistance after normal operating hours for a recreational water area.
Additionally, a desired number of trained lifeguards may be unavailable for use in recreational water areas. For example, even when funds are available for use to expand coverage areas or hours of operation for lifeguard services, the number of certified lifeguards available to work in the recreational water area may be fewer than desired. As a result, lifeguard services in the recreational water area may not be as effective as desired.
Further, even when more lifeguards are present during normal operating hours, the number of lifeguards monitoring a beach may not provide as much coverage as desired to monitor for events in which individuals may need assistance. For example, physical limitations of a lifeguard may limit the effectiveness of lifeguards in the recreational water area. As an example, a lifeguard may have difficulty seeing out into the water to identify that an individual is drowning at about 500 meters away. Further, even if the lifeguard does identify that the individual may be drowning, the time for the lifeguard to reach the individual may be more than desired. As a result, lifeguards may not identify all events in all of the different locations on the beach as quickly as desired and may not reach individuals needing assistance as quickly as desired.
Therefore, it would be desirable to have a method and apparatus that takes into account at least some of the issues discussed above, as well as other possible issues. | {
"pile_set_name": "USPTO Backgrounds"
} |
A computer network is a collection of interconnected computing devices that exchange data and share resources. In a packet-based network, such as the Internet, the computing devices communicate data by dividing the data into small blocks called packets. The packets are individually routed across the network from a source device to a destination device. The destination device extracts the data from the packets and assembles the data into its original form. Dividing the data into packets enables the source device to resend only those individual packets that may be lost during transmission.
Packet-based computer networks increasingly utilize label switching protocols for traffic engineering and other purposes. Multi-Protocol Label Switching (MPLS) is a mechanism used to engineer traffic patterns within Internet Protocol (IP) networks. MPLS may be viewed as a protocol that allows packet-based networks to emulate certain properties of a circuit-switched network. By utilizing MPLS, a source device can request a path through a network to a destination device, i.e., a Label Switched Path (LSP). An LSP defines a distinct path through the network to carry MPLS packets from the source device to a destination device. Each router along an LSP allocates a label and propagates the label to the closest upstream router along the path for use in forwarding MPLS packets along the path. Routers along the path cooperatively perform MPLS operations to forward the MPLS packets along the established path.
Routers at the beginning of the LSP are commonly known as ingress routers, while routers at the end of the LSP are commonly known as egress routers. Ingress and egress routers are more generally referred to as label edge routers (LERs). Internal routers along the LSP are commonly referred to as label switch routers (LSRs). A set of packets to be forwarded along the LSP is referred to as a forwarding equivalence class (FEC). A FEC, for example, may specify any packets associated with a particular destination address or prefix. As another example, the FEC may define quality of service (QoS) characteristics for the set of packets. A plurality of FECs may exist for each LSP, but there may be only one LSP for any given FEC. The ingress LER uses routing information, propagated from the egress LER, to determine the LSP, to assign labels for the LSP, and to affix a label to each packet of the FEC. The LSRs utilize MPLS protocols to receive MPLS label mappings from downstream LSRs and to advertise MPLS label mappings to upstream LSRs. When an LSR receives an MPLS packet from an upstream router, it switches the MPLS label according to the information in its forwarding table and forwards the packet to the appropriate downstream LSR or LER. The next router along the LSP is commonly referred to as a downstream router or a next hop. The egress LER removes the label from the packet and forwards the packet to its destination in accordance with standard routing protocols.
Each LSR within the MPLS network maintains a separate and distinct label space from every other LSR within the MPLS network, and each LSR along a given LSP may assign a different MPLS label to the same FEC associated with the LSP. As a result of the distinct label spaces and random mappings, one or more LSRs may assign different labels to a FEC associated with packets to be forwarded to a given destination IP address or prefix. Thus, when establishing a LSP through a network, the LSRs exchange label mappings to overcome the random and independent assignment of MPLS labels to different FECs.
In this way, each router along the LSP maintains a context that associates a FEC with an incoming label and an outgoing label. When an LSR receives a labeled packet, the LSR typically swap the label (i.e., the incoming label) with the outgoing label by performing a exact match label lookup in its internal context. The LSR then performs a full label swap to replace at least one of the labels in the packet with a label allocated by the next hop LSR. The LSR then forwards the packet to the next LSR along the LSP. | {
"pile_set_name": "USPTO Backgrounds"
} |
Semiconductor devices are usually either connected by means of an interposer substrate in a BGA (Ball Grid Array) on a printed circuit board or else the semiconductor device is connected directly on the printed circuit board as a WLP/CSP (Wafer Level Package/Chip Size Package).
In the case of a conventional BGA arrangement according to FIG. 4, a semiconductor device 10 is connected by means of solder balls 30 and a mechanical connecting device 31 to an interposer substrate 32 or a base. To protect the semiconductor device 10, it is surrounded by a cladding 33. Solder balls 30 serve in turn for the electrical bonding of the interposer substrate 32 onto a printed circuit board 34. As illustrated in FIG. 4 by the projection of an enlargement in the large oval, the bonding or the wiring takes place in or on the interposer substrate 32 by interconnects 35, for example of copper, which generally have a width of more than 100 μm and a height or thickness of more than 20 μm in the case of the printed circuit board technology illustrated. As a result, good electrical connection with low interconnect resistance is ensured, although this results in a high overall volume or large outer dimensions of the arrangement.
In FIG. 5, on the other hand, a conventional WLP/CSP arrangement is shown. In this case, the semiconductor device 10 or the semiconductor chip is connected by means of solder balls 30 directly to the printed circuit board 34. As in FIG. 4, in FIG. 5 the large oval is used to illustrate a detail of an enlargement, in which the semiconductor device 10 or the chip is represented with underlying electrical terminal contact devices 12. These contact or wiring devices 12 generally have a width of more than 20 μm and a height of approximately 2 to 4 μm, which are applied [sic] using thin-film technology.
Although the arrangement according to FIG. 5 allows a more compact construction without the additional interposer substrate, with this arrangement there is a disadvantage in that the conductivity of the wiring device of the WLP/CSP is lower by a factor of 5 to 10 than the conductivity of a conventional BGA with an interposer according to FIG. 4. In the case of a WLP arrangement, the resistance of the wiring device is high in comparison with the BGA alternative, for which reason the performance capability of the arrangement or the package is restricted, in particular in the case of high-frequency applications.
Represented in FIG. 6 is the cross section of a conventionally produced semiconductor device with a contact or wiring device. On a semiconductor substrate 10 of a chip or wafer there is firstly applied a carrier layer 11, preferably of titanium or a titanium compound, which is adjoined by a conductive layer 12 or interconnect level, for example comprising copper. The conductive layer 12 is followed by a barrier layer 40, which comprises nickel in particular and prevents metal atoms, for example gold, of a protective layer 41 applied on top of it from diffusing into the conductive layer 12, for example of copper.
Such an interconnect device protected from above, for example as a contact or wiring device of a semiconductor device 10, is applied by various production steps involving sputtering and/or electrochemical depositing processes and structured by an etching process with a photochemically structured photomask. The height of such a sequence of layers is usually approximately 4 to 6 μm. Disadvantages of such an arrangement are not only the multiple layer generating processes, which cause expenditure of time and consequently costs, but also those attributable to the fact that the side walls of the layer arrangement of the semiconductor substrate 10 are not protected and are consequently exposed in particular to electrochemical corrosion. In particular, the laterally exposed conductive layer 12, preferably of copper, is exposed to corrosion, the individual layers forming a galvanochemical element, which has a tendency to undergo undesired chemical reactions.
The necessary layers and method steps for the production of such a terminal or wiring device are generally sputtering on of an adhesive or carrier layer 11, sputtering on of a copper carrier layer (not represented), carrying out of a photolithographic process for the structuring of the sputtered-on metallizations 11, depositing of a copper interconnect layer 12, depositing of a nickel layer as a barrier or buffer layer 40, depositing of a gold layer 41 as protection and, finally, removal of the structured photomask and etching of the carrier layer in regions in which the structured photomask was previously provided.
In such a sequence of layers, the conductivity is determined by the deposited or plated copper layer 12. An improvement in the conductivity means increasing the depositing or plating time, which is associated directly with the process or production costs. To realize the same high conductivity as in the case of a BGA connection according to FIG. 4, which has an interposer 32 or base, the depositing or plating costs for a CSP/WLP terminal or wiring device as illustrated in FIG. 6 or FIG. 5 would not be economical. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a system and method for producing and storing freshly made baby food.
2. Description of Related Art
Fresh and organic baby foods are not readily available in supermarkets today, nor it is easy or convenient for one to prepare and store homemade baby foods. Store-bought jarred baby food is commonly considered a convenient way to feed a growing baby. However, the jarred food is overly processed compared to the fresh produce that it is made from. For example, typical jarred baby food can have a shelf life of up to three years because it has been heated to extremely high temperatures that can kill bacteria. This large amount of heat applied can also have a negative effect on the nutrition of the food. Jarred food can also contain fillers, preservatives, additives, sweeteners, and even a certain level of acceptable “non-food” ingredients such as bug parts, rodent hairs, and rodent droppings, among other things.
In addition, jarred food is more expensive than the amount of food that can be made from fresh produce. For example, jarred baby food can typically cost approximately one dollar per serving. On the other hand, one can produce, for example, approximately 10 servings of baby food from one organic sweet potato for the same price. One can also save time and money by making baby food at home rather than traveling to a grocery store.
An alternative to buying baby food in the supermarket is making it at home. However, there is no simple and convenient system or method available to do so. Current methods of producing homemade baby food are wasteful. One may create a large quantity of baby food using a blender or food processor but lack an organized system to store the food in a manner that indicates the freshness level of the food. As a result, excess food may be thrown away.
What is needed is a quick, more efficient, affordable, and convenient at-home system and method for producing and storing high quality, homemade blended foods. Also what is needed is a system that has an adjustable and reusable indicator to indicate the freshness level of the food. With these goals in mind, the inventor has created an easy-to-use and organized system and method for instantly making multiple days worth of fresh, homemade baby food having the aforementioned desired qualities. | {
"pile_set_name": "USPTO Backgrounds"
} |
Testing for interference with blood circulation is known, see the publication Prof. Volker, "Cardiac and Vascular Disorders" (English translation by Henry Mayer, M.D., published by Charles C. Thomas, second edition, Copyright 1965). The apparatus used is usually termed vasometric apparatus, to determine such interferences by vasography. A light sensor, which may be responsive to transmitted or reflected light is applied for example, to a toe of the person to be tested. The sensor is responsive to check the volume pulse of blood flow and provide representative electrical signals. The electrical signals, after amplification, are then displayed on a display monitor as a curve, or recorded on a curve drawing recording instrument. Curves are obtained from the right as well as the left side of the person to be tested, and upon comparison of the curves of similar digits, it is possible to determine the condition of blood vessels.
The measuring method described is subject to errors, in that the measuring result depends on the sensor as applied to the toe of the person to be tested, as well as on the maintenance of the foot in quiet and relaxed condition while the measuring takes place.
The digits to be tested may be the fingers or the toes of the person to be tested. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional refrigeration technology typically utilizes a heat pump that relies on compression and expansion of a fluid refrigerant to receive and reject heat in a cyclic manner so as to effect a desired temperature change or i.e. transfer heat energy from one location to another. This cycle can be used to provide e.g., for the receiving of heat from a refrigeration compartment and the rejecting of such heat to the environment or a location that is external to the compartment. Other applications include air conditioning of residential or commercial structures. A variety of different fluid refrigerants have been developed that can be used with the heat pump in such systems.
While improvements have been made to such heat pump systems that rely on the compression of fluid refrigerant, at best such can still only operate at about forty-five percent or less of the maximum theoretical Carnot cycle efficiency. Also, some fluid refrigerants have been discontinued due to environmental concerns. The range of ambient temperatures over which certain refrigerant-based systems can operate may be impractical for certain locations. Other challenges with heat pumps that use a fluid refrigerant exist as well.
Magneto-caloric materials (MCMs), i.e. materials that exhibit the magneto-caloric effect, provide a potential alternative to fluid refrigerants for heat pump applications. In general, the magnetic moments of an MCM will become more ordered under an increasing, externally applied magnetic field and cause the MCM to generate heat. Conversely, decreasing the externally applied magnetic field will allow the magnetic moments of the MCM to become more disordered and allow the MCM to absorb heat. Some MCMs exhibit the opposite behavior, i.e. generating heat when the magnetic field is removed (which are sometimes referred to as para-magneto caloric material but both types are referred to collectively herein as magneto-caloric material or MCM). The theoretical percentage of Carnot cycle efficiency achievable for a refrigeration cycle based on an MCM can be significantly higher than for a comparable refrigeration cycle based on a fluid refrigerant. As such, a heat pump system that can effectively use an MCM would be useful.
Challenges exist to the practical and cost competitive use of an MCM, however. In addition to the development of suitable MCMs, equipment that can attractively utilize an MCM is still needed. For example, an MCM that transfers heat to a fluid with minimal energy usage would be useful. In particular, an MCM with that provides high heat transfer to the fluid and low pressure drop through the MCM would be useful. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to measurement of the Frankfort Mandibular Plane Angle (FMA) and more specifically to the non-invasive, external measurement of FMA, without x-ray.
2. Description of the Background Art
The Frankfurt Mandibular Plane Angle is defined as the angle formed by the intersection of two extended lines: one drawn through the gonion and the second through the porion and orbitale. Traditionally, the FMA is determined by utilizing a lateral cephalometric radiograph, which is developed in an x-ray film processor, dried, labeled and then covered by an acetate sheet. The landmarks are marked, lines traced, and the FMA measured with a protractor. Most recently, charged coupled devices are irradiated in a similar fashion to the lateral cephalogram and the resultant image digitized. The FMA is then determined with the aid of a computer software program after the landmarks are identified. The major limitations and disadvantages of both of these techniques are that invasive x-rays irradiate most of the patient""s head, and very costly, cumbersome equipment is required. Also, a skilled dentist, radiologist, or highly trained technician, who has had long experience in tracing these radiographs, must spend time discerning indistinct landmarks, tracing on the acetate coversheet, and xe2x80x9cestimatingxe2x80x9d the FMA with a protractor. Specially shielded x-ray rooms are required when exposing dental x-rays, costly developing machines, and dangerous and harmful chemicals are required. Retakes of the x-ray must be done if the patient moves during exposure or if the head position or degree of mouth opening is not ideal.
It is an object of the present invention to measure a patient""s FMA without invasive procedures and without x-ray.
It is another object of the present invention to measure a patient""s FMA without x-rays.
It a further object of the present invention to measure a patient""s FMA without expensive special equipment.
These and other objects are achieved by a device that includes a frame having an upper bar and a downward bar extending from the upper bar at a known angle. The upper bar, when fitted to the patient, extends parallel to the patient""s porion-orbitale line. The rear bar is fixed to the upper bar extends from the patient""s porion to the patient""s gonion. A lower bar is movably attached to the rear bar and, when fitted to the patient, extends parallel to and at the same height as the patient""s gonion-menton line. Because the relationship between the fixed points of the bars and the fixed points of reference on the patient (porion, orbitale, gonion, and menton) and the dimensions and angular relationships between the various parts of the FMA gauge""s frame are known, the FMA can be determined by reading a measuring device on the gauge. In some embodiments, this angular determination can be made directly from the measuring device. In other embodiments, the measuring device indicates the position of the lower bar, once adjusted to the patient, with respect to the downward bar. This relative position may then be correlated with the patient""s FMA. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an external electronic device, and more particularly, to an external electronic device and a related computer system with convenient assembly/disassembly function.
2. Description of the Prior Art
The electronic devices, such as tablet computers, are popular information technology products in the electronic products market presently. Tablet computers can be collocated with a base for supporting the tablet computer or providing a key-in function. For example, when it is desired to utilize the tablet computer in a notebook computer mode, the tablet computer can be inserted into the base with a keyboard. However, there is a single slot on the conventional base for connecting with the tablet computer so that the conventional tablet computer only can be utilized in a fixed angle. In addition, the tablet computer sways easily so that the tablet computer might be separated from the base to collide onto the floor or something else when the tablet computer is carried with the base because the tablet computer is fixed on the base only by the single slot. In consideration of it, it is a significant issue to design a fixing device for fixing a portable electronic device stably nowadays. | {
"pile_set_name": "USPTO Backgrounds"
} |
As a device for cooling various heat sources, there has been known an loop heat pipe that includes an evaporator to evaporate working liquid (a liquid phase of a working fluid) by adsorbing heat from a heat source, a condenser to condense vaporized working liquid (vapor phase of a working fluid?) by radiating heat, and a vapor line and a liquid line each connecting the evaporator with the condenser to form a closed loop.
The loop heat pipe is, in principle, a device that does not start up (a device that does not start to serve as a heat transport device; a device, circulation of the working fluid within which is not started) in situations where working liquid does not exists in the evaporator, even if the temperature of the evaporator rises owing to the temperature rise of the heat source. The loop heat pipe is therefore usually configured (installed in an apparatus) so that the height (vertical position) of the evaporator becomes lower than that of the condenser. However, among apparatuses into which the loop heat pipes are installed, there is an apparatus requiring that the evaporator occupies a higher position than the condenser.
Therefore, in order to enable the loop heat pipe having the configuration where the evaporator is located below the condenser to start up, it is proposed to attach a heater to part of the vapor line (a part of the vapor line near the evaporator) and to heat, by using the heater, the part of the vapor line during a prescribed time before activating a heat source (a cooling target).
With a contrivance that enables part of the vapor line to be heated before activating the heat source (when needed to start the loop heat pipe), it is possible to start, the loop heat pipe that is in situations where there exists no working liquid in the evaporator.
However, distribution profiles of the working liquid in the loop heat pipe vary according to the elapsed time after stopping the cooling target, even if the positional relationship between the evaporator and the condenser remains unchanged. Moreover, in the loop heat pipe built into a portable information processing apparatus (a notebook PC (Personal Computer) and the like), distribution profiles of the working fluid vary according to its attitudes while the portable information processing apparatus is carried and/or used. Further, there are cases where heating of the vapor line in short line allows the loop heat pipe to start up, depending on the distribution profile of the working fluid in the loop heat pipe. Consequently, if the heating time of the vapor line is fixed, there arise problems wherein energy more than needed is consumed by heating of the vapor line, the start timing of the cooling target is overdue more than needed, and so on. | {
"pile_set_name": "USPTO Backgrounds"
} |
Syndication is a process of gathering information from a range of sources and repackaging the information for access and display at a destination. Syndication is popular with interactive television (iTV) environments. In an iTV environment, a TV user can interact with a broadcast or service being provided on the TV. A well-known iTV syndication service is WebTV. WebTV provides a service through a set-top box such that a user can access content (e.g., a web page) on the Internet or World Wide Web via a remote controller and a browser operating on the TV.
Typically, a web page includes Hyper Text Markup Language (HTML) tags and attributes for displaying text and images designed for a web browser on a personal computer. To display a web page for the TV, however, WebTV uses a transcode server that applies a simple, generic or blind mapping of the HTML tags and attributes for the web page and targets it specifically for its own browser provided by its own set-top box. Basically, WebTV corrects elements of the web page for display on the TV. For example, the WebTV transcode server will perform a simple mapping of an object (e.g., changing the object size) to fit on the TV.
Thus, a disadvantage of using WebTV is that the generic mapping or blind transformation process does not account for certain drawbacks of displaying Internet content in the TV environment such as, for example, low-resolution of graphics, lack of support of several web languages, and lack of support for a mouse navigation interface. Another disadvantage of Web TV is that it does not provide for multiple platform use. Instead, WebTV can only be used with its own WebTV set-top box. Furthermore, WebTV does not allow for alteration or modification of content such that new look and feel content can be provided to the user. That is, new media content cannot be inserted along with existing content for display.
Current syndication technologies, which do enable the creation of HTML-enhanced TV content, require providers of the HTML content to re-implement or re-code the HTML content for use on different types of platforms. For example, if HTML content on the Internet is to be provided to a wireless device (e.g., a wireless telephone), the HTML content must be re-coded in a wireless markup language (WML). Such a re-coding process exacts a heavy burden on content providers to have their content accessible by different types of devices.
Current syndication technologies also do not provide a simple manner to navigate, acquire, and convert a given web page for a TV centric environment. Consequently, existing technologies that convert content from one form to another require manual hard coding of the navigation, acquisition, and transformation process. That is, each web page must be coded for the entire system and must be manually maintained and updated. Furthermore, current syndication technologies are not designed to accommodate conversion of the content into new languages for different devices and content formats. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various continuous vapor adsorption processes have been developed utilizing an adsorber wherein one or more bed comprising adsorbent media is utilized for capturing VOCs and other contaminates from a gas stream. In these systems, a gas stream is fed into the adsorber wherein contaminants from the gas stream are captured in the adsorbent media. After the contaminants are adsorbed, the loaded adsorbent media passes through a regenerator wherein the loaded adsorbent media is heated and the contaminants are released. After regeneration, the heated adsorbtion media is returned to the adsorber to be reused for capturing contaminates from the gas stream.
Typically, the rate of heated adsorbent media returning to the adsorber is small relative to the rate of the inlet gas fed into the adsorber. In such a process, the gas feed stream cools the heated regenerated adsorbent media such that the temperature increase to the adsorbent beds is acceptable and does not affect the capacity of the adsorbent to remove contaminates.
However, in the case of natural gas liquid (NGL) separation from a natural gas stream the concentration of heavier hydrocarbons is high. In this case the rate of hot adsorbent fed into the adsorber from the regenerator may be large compared to the feed rate of the natural gas stream. In such a case, the temperature of the adsorbent bed may be too high for effective NGL adsorbtion.
There is a need for an improved adsorptions process for recovering condensable components such as NGLs from a gas stream, particularly, a natural gas stream. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is a common desire to enhance images acquired from imaging devices to improve their image quality. There are fundamental attributes that govern the image quality of a grayscale image. These attributes are the brightness of an image, the dynamic range of an image, the contrast of detail in an image (or detail contrast), the sharpness of edges in an image, and the appearance of noise in an image. It is beneficial to provide a system that enables direct and independent control of these attributes of image quality. Further a system, which enables the control of the detail contrast, sharpness, and noise appearance in a density dependent fashion is also beneficial.
U.S. Pat. No. 5,805,721, inventors P. Vuylsteke and E. Schoeters, entitled “Method and Apparatus for Contrast Enhancement”, issued Sep. 8, 1998 describes a multi-resolution method for enhancing contrast with increased sharpness that includes dynamic range compression, and enhancing contrast without remarkably boosting the noise component. The described invention enhances detail contrast and sharpness via a multi-resolution method and controls dynamic range compression with a gradation curve to map the processed image into the appropriate dynamic range for the display. Application of the gradation curve will impact both the apparent detail contrast and dynamic range of the displayed image. Hence, both the modifying functions of the multi-resolution processing and the shape of the gradation curve affect the detail contrast in the image. This requires that both be adjusted when setting the detail contrast in the image.
U.S. Pat. No. 5,978,518, inventors Oliyide et al., entitled “Image Enhancement in Digital Image Processing”, issued Nov. 2, 1999 and U.S. Pat. No. 6,069,979 (continuation-in-part of U.S. Pat. No. 5,978,518), inventor VanMetter, entitled “Method for Compressing the Dynamic Range of Digital Projection Radiographic Images”, issued May 30, 2000, describe a multi-resolution method for performing dynamic range modification and high-frequency enhancement (including detail contrast). The methods include a tone scale look-up-table that is used to map the image for display rendering. A tone scale look-up-table impacts the dynamic range and contrast of detail in an image. Hence, in this method, the dynamic range and detail contrast of the image depends on both the settings of the frequency modification and the parameters of the tone scale look-up table. It is desirable, instead to have a single set of parameters that control these attributes independently.
U.S. Pat. No. 6,072,913, inventor M. Yamada, entitled “Image Processing Method and Apparatus”, issued Jun. 6, 2000, describes a multi-resolution method for enhancing frequencies with dynamic range compression. The described invention requires the definition of many functions to control the performance of the algorithm. It does not disclose a set of parameters that directly and independently control all of the fundamental attributes of image quality.
Thus, there is a need for a method that can be applied to an image, the parameters of which provide direct and independent control of the above stated fundamental attributes of image quality. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an apparatus for measuring a variation in a circumference of a body part and method for plethysmography.
Plethysmography is a procedure which has been known for some time now and which is used for determining macro- and microvascular parameters in the extremities, such as the venous capacity, the venous reflux, the venous elasticity, the venous outflow rate, the material blood flow and the capillary filtration rate. In general, plethysmography allows qualitative and quantitative statements to be made concerning the state and function of the macro- and microvascular circulation in an extremity of a patient.
Plethysmography can be carried out in a very wide variety of ways, for example as water plethysmography, air plethysmography, impedance plethysmography, capacitance plethysmography, induction plethysmography or strain gauge plethysmography. These procedures make use of different physical phenomena for determining the state of the blood vessels in a body part. The present invention applies equally to venous compression plethysmography, where blood flow in the veins is occluded by means of a cuff, and to dynamic or functional plethysmography, where the blood flow in the body""s blood vessels is influenced by exercise or maneuvers of the body.
In the prior art a form of strain gauge plethysmography concerning circumference changes in an extremity is disclosed in U.S. Pat. No. 3,847,142 (issued to Williams, Jr. et al. on Nov. 12, 1974). The apparatus described therein comprises a first cuff for the wrist to occlude the blood flow to the hand, a second cuff to be put arround the upper arm and a rubber strain gauge filled with mercury, to be put arround the largest part of the forearm to detect changes in its circumference. The strain gauge serves as one arm of a Wheatstone bridge circuit, the output voltage of which varies in a linear fashion according to the length of the strain gauge. The apparatus needs to be calibrated before use and requires two cuffs plus strain gauge; therefore it is rather difficult to operate. It also requires a strain gauge filled with mercury, which is relatively expensive and can be dangerous for the operating person in case of an accident or defect. For a patient suffering from venous disease, it would be desirable to have an apparatus for use at home, to determine the venous parameters himself. Such an apparatus should be easy to handle but at the same time reliably provide accurate measured values. It should be relatively low in costs and should not contain substances which could threaten the health of the patient or any other operating person.
It is therefore the object of the present invention to make available an apparatus for measuring a variation in a circumference of a body part and a method for plethysmography which does not have the disadvantages of the prior art.
According to the invention, there is provided an apparatus for measuring a variation in a circumference of a body part comprising an elongated force transmission element, an elongated support element, a casing, and a displacement measuring device, said force transmission element having a first end and a second end and not being expandable longitudinally, said support element having a first end and a second end and being expandable longitudinally, said force transmission element being slidingly arranged on said support element, said displacement measuring device having force connecting means for being connectable or connected to said first end of said force transmission element and being moveable relative to said casing, and having support connecting means for being connectable or connected to said first end and to said second end of said support element, and further having fixing means for being connectable or connected to said second end of said force transmission element and being fixed relative to said casing, said displacement measuring device having measurement means for measuring a relative movement between said force connecting means and said casing.
In the above paragraph, several elements are connectable or connected to other elements, because it is a question of convenience, costs and possibly other factors whether, for example, the force connecting means are connected to the first end of the force transmission element from the beginning, or whether this connection is only made by a person applying the inventive apparatus to a patient before beginning the measurement process.
It should also be noted, that the apparatus according to the invention measures a variation in a circumference of a body part, which requires a comparatively high resolution in terms of time e.g. measuring a value every 100 ms.
The present invention simplifies the procedure of plethysmography by measuring a variation in the circumference of a body part. An adjustment of the apparatus is not generally necessary, because the force transmission element is particularly adapted to the size of the body part of the patient which has to be examined.
Another distinct advantage of the present invention is, that it does not require an expensive strain gauge filled with mercury or a similar substance and therefore represents no danger to the health of the patient or the operating person. The force transmission element according to the invention is preferably a yarn made of polyester material which is relatively low in production costs, does not contain any harmful substances and is more stable than a conventional rubber strain gauge.
In a preferred embodiment of the invention said fixing means include adjustment means for varying the effective length of said force transmission element around said body part by either displacing said fixing means relative to said casing or by adding length to said force transmission element between said force connecting means and said fixing means. In case an adjustment of the apparatus has to be performed, the operator, for example the patient himself, a doctor or a nurse, successively adjusts the effective length of the force transmission element manually. The adjustment can be accomplished by a screw mechanism or a clamping mechanism. Both mechanisms may be applied to both, the displacement of the fixing means relative to the casing and to the addition of length to the force transmission element.
In another advantageous embodiment of the invention, said displacement measuring means include indicator means for indicating the correct position of said force connecting means in relation to said casing of said displacement measuring device by issuing an optical or acoustical signal.
Yet another preferred embodiment of the invention concerns a displacement measuring device, which includes inductive means for measuring said relative movement between said force connecting means and said casing.
The present invention also includes a system for venous compression plethysmography with an apparatus according to claim 1 and a cuff whose internal diameter can be varied in order to occlude blood flow in a body part.
The invention also comprises a method for plethysmography using an apparatus as described above, comprising the following steps:
a) arranging said apparatus on said body part by positioning said force transmission element and said support element around said body part, such that said first end of said force transmission element is connected to said force connecting means, that said second end of said force transmission element is connected to said fixing means, and that said first and second end of said support element are connected to said support connecting means, and
b) registering by means of said measurement means of said displacement measuring device any relative movement between said force connecting means and said casing.
It is also conceivable, that between steps a) and b) of the method according to claims 8-9, a further step of adjusting by means of adjustment means the effective length of said force transmission element is integrated. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is generally directed to staged water purification devices in which, during the first stage of purification, potable water passes through a filter for removing particulates and chemicals prior to the water passing on to the second stage in which the water is exposed to ultraviolet light for the killing and sterilization of bacteria and other microorganisms. More particularly, the present invention is directed to a unique baffle and deflector combination provided within an ultraviolet light treatment chamber for control of the flow pattern of water as it passes through the treatment chamber and is exposed to the ultraviolet light source.
Staged water purification devices which are used to purify potable water by passing the water through an ultraviolet light vessel subsequent to passing the water through a filter during a prior stage are known in the art. In designing such devices, it is desirable that during operation of such a device to provide exposure of as much of the water as possible to a source of ultraviolet light while maintaining a continuous, uniform flow of water through the device and adequate water pressure at the spigot. It is also desirable to control exposure time or residency of the water to the ultraviolet light source within the vessel in order to achieve optical kill rates of microorganisms.
Some prior artisans have attempted to achieve such optical results by designing a generally cylindrical ultraviolet water treatment vessel having a water inlet passage on one end of the vessel, a coaxially disposed ultraviolet light tube extending the length of the vessel and a water outlet passage disposed on the end opposite the inlet passage downstream from a filter. In such an ultraviolet water treatment vessel the ultraviolet light bulb in combination with the inside walls of the treatment vessel define a space, parallel to the sides of the cylindrical vessel, through which the water circuits for the inlet passage through the outlet passage wherein the water is exposed to the ultraviolet light radiating from the ultraviolet light bulb before passing on to a filter for further purification.
In such systems, the inlet passage is typically comprised of a tube which is small in diameter relative to the diameter of the cylindrical treatment vessel. One problem that is caused by water entering a relatively large chamber from a relatively small inlet passage tube is that some water typically would short-circuit through the chamber past the ultraviolet light bulb and out the outlet passage without receiving sufficient exposure to ultraviolet light to kill all microorganisms present while another portion of the water will linger in the treatment vessel in the form of small eddy currents creating dead spots. The combination of eddy currents and short-circuiting water results in the undesirable effect of having a portion of the water receiving insufficient exposure time to the ultraviolet light thereby compromising its effectiveness.
Other artisans have attempted to control the flow of water past an ultraviolet light source by passing the water through a helical conduit manufactured of ultraviolet light permeable material and coaxially disposing an ultraviolet light source through the center of the helix. While channeling the water through a helical conduit around an ultraviolet light source is effective in eliminating short-circuits and dead spots in the water path, such conduits have been known to be made of quartz or glass which can shatter and are difficult and costly to manufacture. Depending upon the purity of the quartz or glass, ultraviolet light will solarize impurities in the quartz or glass causing portions of the material to darken thereby compromising its transmission qualities for the transference of ultraviolet light.
In addition to maintaining the rate and pattern of flow of water through the ultraviolet treatment vessel, it is desirable in such water treatment systems to provide easy access to the ultraviolet light element by the user for replacement and inspection. Some prior artisans have provided a user removable housing cover for visually inspecting the wiring and other electric connections to the ultraviolet light element, yet have not provided an easy and safe way in which to remove the light element without first removing and disconnecting a complex array of electrical connections and/or structural components which mount and support the light element within the water treatment system vessel. Thus, it is highly desirable to provide a substantially self-contained ultraviolet light element which requires a minimum of disassembly by the user in order to access and/or remove the element from the water treatment system vessel. | {
"pile_set_name": "USPTO Backgrounds"
} |
Patients may consume a number of prescription drugs or other medicines during the course of a day or week. These patients may keep lists or other records reminding them of how and when to consume their medicines. These patients may also refer to packaging while trying to adhere to dosage regimens for their medicines. It may be difficult for patients to keep track of all their medicines, let alone for them to remember proper dosage, refill, and other medicine and prescription information. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to chemical analysis using microwave assisted nuclear magnetic resonance (“NMR”). In particular the invention relates to determining the moisture and fat and oil content of samples using NMR and microwave radiation.
The present invention relates to chemical analysis of foodstuffs or other materials for which it is advantageous to know the moisture and fat (and oil) content of the material. For example, commercial production of processed foods such as hot dogs and cheese requires close control of fat and oil content. Variation in fat and oil content during the production process is detrimental to product quality and can adversely affect production economics. From a more positive standpoint, the fat content of a sample also provides useful information about food products such as texture, heat resistance, mouth feel, and flavor release. Additionally, many foods are subject to various statutory and regulatory labeling and content requirements with respect to the fats and oils they contain. Information about fat and oil content is often valuable or necessary in controlling various food processing techniques.
Those skilled in the art know that there is little chemical difference between fats and oils, the primary distinction being that fats are solid at room temperature and oils are liquid. Accordingly, the terms “fat” and “oil” may be used interchangeably herein.
Traditional methods for determining the moisture and fat content of foodstuffs include extensive drying and solvent based chemical extractions. These traditional methods are time consuming. The time lag inherent in the most widely used testing methods prevents production processes from operating at optimal efficiency. Furthermore, many methods require solvents that are expensive, often hazardous, and pose disposal problems. Accordingly, scientists have sought alternative means for determining fat and oil content in samples.
Since the late 1960's scientists have proposed using NMR as an alternative means of determining the fat and moisture content of foodstuffs. NMR analysis is essentially a spectroscopic method that measures a phenomenon that occurs when the nuclei of certain atoms are placed in a static magnetic field and then exposed to a second oscillating electromagnetic field. In very simplistic terms, during NMR analysis a substance is placed in a magnetic field that affects the “spin” of the atomic nuclei of certain isotopes of elements. The nuclei orient themselves in a specific way in response to the magnetic field. If a second radio frequency (RF) magnetic field (e.g., radio wave) is passed over the nuclei, the protons in the nuclei will be made to reorient or “flip” when the RF field reaches a specific frequency. When the RF field is turned off, the nuclei “flip” back releasing energy that provides data on the molecular structure of the substance. This back-and-forth orienting of nuclei is known as resonance.
NMR resonance occurs at different frequencies for different materials. For liquids, the frequency band for NMR resonance is relatively narrow. For solids, the frequency band is broader. This distinction in NMR resonance makes it possible to distinguish the protons of liquid from those of solid constituents of the sample. In this manner the percentage of liquid and solid in a sample may be determined.
In another type of NMR, referred to as “pulsed” NMR, a sample is exposed to a pulse of radio frequency (“RF”) energy that magnetizes (“flips”) the proton nuclear magnetic moments in the sample. Following the pulse, the protons return to their initial states (“relaxation”), but do so over a characteristic period of time (relaxation time) that reflects the chemical surroundings of the proton, and thus the composition of the sample. A representative (although not limiting) discussion of pulsed NMR is set forth in published U.K. Patent Application GB2261072A.
Furthermore, under proper circumstances, NMR can distinguish not only between liquids and solids, but also between chemical compounds. Theoretically, in abstract circumstances, all protons should resonate at the same frequency or relax over the same time period. Surrounding electrons, however, interfere with the magnetic field acting upon a given proton, and thus each proton will resonate at a slightly different frequency, or relax over a different time period, depending upon the electron density around it. As a result, different compounds (and different functional groups within compounds) have different resonance frequencies and different relaxation times. These differences are typically represented as graphical peaks along a spectrum that plots resonance frequency or relaxation time, depending upon the type of NMR being used.
As mentioned previously, NMR has long held promise as an alternative to solvent extraction for quantitatively determining the components of a sample. Efficiently utilizing NMR in this regard, however, has proven difficult. This difficulty is especially prevalent in determining the fat and oil content of foodstuff samples.
For example, NMR resonance occurs over a narrow band for liquids and this narrow window of NMR resonance is used to easily distinguish liquids from solids. Traditional fat and oil analysis takes advantage of this by melting all the fat and oil in a sample prior to NMR analysis. Because many foods have a relatively high moisture content, and because high moisture content usually makes NMR analysis unfeasible, food samples typically must be thoroughly dried prior to NMR analysis.
After the sample is dried, the sample is usually heated until all the fat and oil present in the sample is assumed to have melted, with the further assumption that the only liquid remaining in the sample is fat. Melting the fat and oil also means that a portion of the fat and oil may drain from the sample. As a result, when the sample is removed from the oven and prepared for NMR analysis, the sample no longer contains the same amount of fat and oil as did the original sample. As a further disadvantage, if aggressive heating techniques, such as very hot convection ovens or conventional microwave ovens, are used to speed drying of the sample, the chemical structure of the sample may be altered (e.g., meat is cooked) which may alter the NMR results and provide a less accurate— or even highly inaccurate—analysis.
One proposed method for avoiding the problems associated with conventional drying techniques is to chemically remove the water from the sample prior to conducting a NMR analysis. UK Patent Application GB 2,261,072 proposes to chemically remove the water from the sample through the addition of a drying agent such as calcium carbide or calcium oxide. The addition of these drying agents, however, must be based upon expected moisture content. Accordingly, errors in the addition of the drying agent are unavoidable. Such errors affect the weight of the sample and possibly the NMR analysis (if moisture remains in the sample) thereby providing inaccurate results for fat and oil content.
In short, current methods for determining fat and oil content possess a high degree of statistical uncertainty or are unsuitable for continuous production processes. Therefore, a need exists for a method and apparatus for determining the fat and oil content of samples that does not possess the inherent inaccuracy of known methods. Preferably this new method and apparatus will rapidly and accurately determine the fat and oil content of a sample thereby providing a more efficient overall production process. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to fluid flow systems, and more particularly to a controllable fluid flow system for regulating the flow of air through a ventilation system.
Ventilation systems control the temperature and quality of air in an enclosed area such as a building. This is typically achieved by heating or cooling air by a centralized air conditioning unit then forcing the thermally conditioned air through a plurality of interconnected air carriers leading to various sections of the building. Ideally, the air carriers or ducts are configured and arranged to allow uniform distribution of forced air to maintain a desirable temperature setting throughout different areas of the building.
A properly balanced ventilation system results in lower operating costs and significant utilities conservation. However, due to structural restrictions, the air ducts must be bent and re-routed in order to reach the various areas of the building. Such deviations cause unpredictable flow impedance through the air ducts, thereby resulting in disparities in the optimal temperature level in various zones of the building.
Aside from the temperature imbalances caused by non-uniform distribution of thermally conditioned air, it may be required to individually control the temperature in various areas of a building. In modem buildings having various zones designed for variable functions and changing occupancy, it may be desirable to maintain a distinct temperature level in different zones. The conventional single source ventilation system connected to a centralized duct distribution network is not capable to provide variable flow impedance in different areas of the building.
One way of addressing the foregoing problems is to provide separate ventilation systems for individual areas of the building. Such solution is not economically feasible and requires extensive duct installation and isolation. Furthermore, the installation of such system results in waste of real estate dedicated to the individual ventilation systems.
Another possible solution to maintain desirable temperature balance in various parts of a building is to regulate the amount of forced air released from the ducts. Conventional ventilation systems often employ adjustable dampers incorporated into the exhaust end of air ducts to control the amount of forced air distributed to an area of the building. These dampers regulate the amount of air flowing through the respective ducts by adjusting the degree that the dampers open. The dampers may be manually adjusted to regulate the air flow, gravity or air flow actuated, or could be actuated by means of electric motors or solenoid actuators. See for example U.S. Pat. No. 5,433,660 issued Jul. 18, 1995 to Ohba. However, there are a number of drawbacks associated with the prior systems. Manual adjustment of the dampers is cumbersome since the ducts are typically located in inaccessible areas. Although the motor operated dampers can be thermostatically controlled, they are not an optimal implementation of a flow regulation system as they are expensive, consume energy, and are prone to breaking down. Moreover, it may be difficult to find a replacement motor if the motor has been discontinued. As for the solenoid actuators, they generally operate in cooperation with gravity, air pressure or the bias of a spring to actuate the damper. This is quite inefficient as the damper""s action is not in response to changes in the temperature.
The present invention provides a symmetrical magnetically controlled flow system for regulating the flow of thermally conditioned air in a multiduct ventilation system which addresses the shortcomings associated with known systems.
The present invention arises from the realization that the existing adjustable dampers used for regulating the distribution of thermally conditioned air to various zones of a building are inefficient, difficult to adjust and expensive to maintain and operate. To alleviate these problems, the present invention provides a magnetically controlled flap incorporated in the exhaust end of an air duct having a magnetically attractive member located thereon. Two coils with magnetizable cores are mounted inside the air duct and positioned so as to cooperatively bias the magnetically attractive member when the flap is in either a closed or an open position. By energizing the coils, the magnetically attractive member becomes attracted to the magnetizable cores in either coil, thereby actuating the flap between the closed and open positions. The coils"" action may be managed by a controller sensitive to changes in the ambient temperature.
In a first aspect, the present invention provides a device for controlling the flow of a fluid through a flow passage defined by a conduit, including a flap for mounting in the conduit for movement between a first position and a second position, the flap restricting the flow of the fluid in the conduit more in the second position than in the first position. A magnet is mounted on the flap. The device further includes a stationary first electromagnet for acting on the magnet to bias the flap towards the first position when energized and a stationary second electromagnet for acting on the magnet to bias the flap towards the second position when energized
In another aspect, the present invention provides a magnetically controlled flow system comprising: (a) a conduit for carrying the flow of thermally conditioned fluid to an enclosure; (b) blocking means movably disposed in the conduit and are selectively operable in an open position allowing flow of fluid, or a closed position blocking the flow of fluid therethrough; (c) a magnetically attractive member disposed on the blocking means; (d) a first latch means for acting on the magnetically attractive means to cause the blocking means to move to an open position; and (d) a second latch means for acting on the magnetically attractive means to cause the blocking means to move to a closed position.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures. | {
"pile_set_name": "USPTO Backgrounds"
} |
The following Patent Document 1 discloses a golf club set aiming at obtaining the struck ball with proper backspin commensurate with to the club number of the respective club. This golf club set is composed of golf clubs whose loft angles are increased as the club number becomes increased. And the score lines or grooves formed in the ball striking face of the respective golf club are configured such that the angle of the corner formed between the ball striking face and an inclined surface of the groove is gradually decreased as the club number becomes increased, wherein the angle is 90 degrees in the pitching wedge.
The following Patent Document 2 discloses an iron golf club set aiming at providing the iron golf club set with which it is easy to stop the golf ball when making a short-distance approach shot by using an iron club whose club number is more than that of a sand wedge, and it is easy to obtain a stable trajectory and a proper distance when making a full shot by using an iron club whose club number is smaller than that of a sand wedge. In the Patent Document 2, it is suggested that the groove edges of the score lines (grooves) of the sand wedge are rounded by a radius of 0.1 mm, and the groove edges of the score lines (grooves) of the rest of the clubs from 5-iron to the approach wedge are rounded by a radius of 0.3 mm.
Patent Document 1:
Japanese Patent Application Publication No. H09-192274
Patent Document 2:
Japanese Patent Application Publication No. 2007-007181 | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a plastisol-lined metal closure of the type which may be applied to a helically threaded finish of a glass or rigid plastic container by a press-on action, but which may be normally removed from the finish of the container only by a twisting action. More particularly, this invention relates to a press-on, twist-off plastisol-lined metal closure with improved top load resistance.
2. Description of the Prior Art
U.S. Pat. No. 4,552,279 (Mueller, et al.), which is assigned to the assignee of this application, describes a press-on, twist-off closure which is made up of a cup-shaped metal closure with a foamed vinyl plastisol material which is cast in situ within the closure to cover a portion of the inside of a base wall of the closure and a surrounding peripheral wall, to thereby engage the top rim and a portion of the side of the finish of a container upon the application of the closure to the container. After operations to shape and cure the plastisol lining of the closure, the closure is pressed upon the externally threaded finish of the container, the threads of the container forming threads in the plastisol lining after the application of the closure to the container to preclude normal removal of the closure from the container other than by a twisting action. Containers capped with closures of this type have heretofore been packaged in closed top corrugated fibreboard trays, each of the trays being closed by the infolding of top flaps at the tops of the side walls of the trays, as is known in the art. Even though such trays are usually superimposed several deep during shipment and storage, such closures, which are normally flush with the top of the tray and which, therefore, bear a part of the weight of the filled tray or trays thereabove, provide satisfactory top load resistance to those superimposed filled trays, but to a substantial extent as a result of the cushioning effect of the top structure of the closed top of the tray, which serves to fairly evenly distribute the superimposed loads from container to container within the tray and around the circumference of the closure on each container in the tray.
One of the recent advances in the packaging field is the use of open top trays in the packaging of containers closed with press-on, twist-off closures, since trays of this type use appreciably less corrugated fibreboard than their closed top counterparts and are, hence, appreciably less expensive. However, the use of open top trays can result in greater and less evenly distributed top loads on the closures of the containers packaged in any such tray which may be at or near the bottom of a stack of such trays, and this can result in a failure of the seal between any such closure and the container to which it is affixed. This problem can be particularly annoying when closures are used in the packaging of a liquid, for example, an infant juice formulation, which is a packaging application that frequently uses plastisol-lined closures.
U.S. Pat. No. 4,576,299 (Lecinski, Jr.) describes a press-on, twist-off plastisol-lined metal closure which claims to have improved top load leakage resistance. However, it is believed that closures according to this reference do not have adequate top load leakage resistance for use in many applications where the containers capped with such closures are packed in open top corrugated trays. Other types of press-on, twist-off lined metal closures are illustrated in U.S. Pat. Nos. 3,270,904 (C. N. Foster, et al.) 3,371,813 (R. C. Owen, et al.), 3,448,881 (D. H. Zipper), 3,685,677 (Westfall), 3,690,497 (Lecinski, Jr.), 3,741,423 (Acton, et al.), 4,000,825 (Westfall), and 4,603,786 (Lecinski, Jr.), but it is believed that closures of each of these references lack adequate top load leakage resistance for use on containers packaged in open top trays. | {
"pile_set_name": "USPTO Backgrounds"
} |
The World Wide Web (“Web”) provides a wealth of information and services to people around the world. The ability to discover information from around the globe often requires no more than a click of a mouse. At the same time, the Web is best suited for use by people. For example, tasks such as finding a specific translation of a word, searching for the lowest price on an item for sale, or making reservations at a restaurant or with an airline are often difficult for a machine to accomplish without human assistance.
As a result, work is being done to make the Web more understandable. The Semantic Web, for example, tries to provide a framework to make the Web more understandable to both humans and machines by defining the meaning of information and services available on the Web. The goal is to enable the understanding and satisfaction of requests from various sources. The Semantic Web aims to enable machines, for example, to perform some of the tasks that are performed by humans today.
Making the Web more understandable has many applications that include data integration, data classification, searching, content rating, data description, or the like. In order for these applications to come to fruition, however, it is necessary to identify the meaning or semantics of data and/or services on the Web.
One of the tools used to determine the semantics of data and services on the Web is ontologies. Ontologies are used to express relationships among resources. For instance, there are many different terms that can be used to describe the same things in various data sets. Ontologies can identify these relationships and make it easier to determine the semantics of these data sets. Unfortunately, constructing ontologies is a labor intensive and costly process. In addition, ontologies are often incomplete and unfocused. | {
"pile_set_name": "USPTO Backgrounds"
} |
Insulation for direct current (DC) transmission systems is important for the reliability of a transmission system. The reliability depends on the material used for covering the conductor layers. The geometry of the insulation material around the transmission system is also important.
The amount of power that can be delivered by a DC cable has increased dramatically in the past decades. Further increasing the amount of power that can be delivered by a DC cable can be achieved in several ways as described by Nordberg et al., Cigre, Session 2000, 21-302. Examples mentioned are increasing the size of the conductor or alternatively increasing the voltage. The latter has the benefit of lower power losses but necessitates an increase in the thickness of the insulation in general. This will increase the cables' size and weight. An alternative solution is to increase the maximum allowed conductor temperature or to increase the dielectric strength of the insulation material.
New insulation liquids have been developed, such as gelling liquids described in U.S. Pat. No. 6,383,634, to allow an increase in conductor temperature.
Laminated insulation materials have been developed to increase the dielectric strength of the insulation material. As explained by Hampton R., IEEE Electrical Insulation Magazine, Vol 24, No 1, 2008, page 5, important parameters for the provision of a reliable DC insulation material are electrical resistivity at a range of stresses and temperatures, DC breakdown performance, sensitivity to electrical aging and space charge development. Resistivity is dependent on DC stresses and temperatures as well as on the thickness of the insulation material, whereby the resistivity decreases with increased stress and temperature. Electrical charges that become trapped within the insulation material (space charge) will also have an effect on the electrical stress performance of the material. The breakdown strength may decrease with time of applied DC stress due to such space charges. The geometry of a transmission system such as a cable, cable joints, buses and the like, and the distribution of the temperature are further critical factors for the reliability of the DC transmission system. Hampton also explains the advantage of a homogenous insulation layer and mentions that a laminated insulation system may be a source for inhomogeneity, which in turn may affect the quality of the insulation material. Leakage of current should preferably be prevented. If leakage becomes too high, dielectric heating may occur. This condition may result in melting.
JP 10 283852 describes an insulation material for use in a direct current high viscosity oil impregnated power cable, whereby the insulation material comprises multilayer of paper and laminated paper sheets.
WO2011/073709 describes a high voltage direct current (HVDC) cable comprising an insulation layer of laminated polypropylene (PP)/Kraft paper. The insulation layer has a constant thickness over the entire insulation layer. The invention relates to delamination of the insulation layer during impregnation with an impregnation fluid having a medium viscosity of at least 1000 cSt at 60° C. and an air impermeability of at least 100000 Gurley sec−1. This problem is solved by using special paper in the insulation laminate.
U.S. Pat. No. 7,943,852 describes a superconducting cable that can be used in both DC and alternating current (AC) cables. The cables are housed in a heat-insulated pipe filled with a coolant. The resistivity of the laminated polymer (PP)/paper insulation material can be varied by varying the density, or by adding dicyandiamide to the paper, or by varying the thickness ratio of polymer to paper in the laminate. The insulation layer has a low resistivity on the inner part close to the conductor layer and a higher resistivity at increasing radial distance from the conductor layer. In the examples, Kraft paper is positioned around the conductor, while laminated polymer/paper is used as insulation material in the rest of the insulation layer. This laminated insulation layer comprises material having an increasing resistivity at increased radial distance so that the cable also has excellent AC electrical properties.
U.S. Pat. No. 6,399,878 describes insulation material for DC cables that may comprise three different parts, whereby the inner and outer part closest to the semiconductive layers contain paper that has a low resistivity. The middle insulation part comprises laminated polymer/paper material having higher resistivity. This layer may be divided in different parts, whereby the different parts have different polymer/paper ratios and whereby the ratios decrease at increasing radial distance from the inner conductor layer. (FIGS. 8a, 8b, 13 and 14) The resistivity in the middle layer thus decreases at increasing radial distance. The insulation material is impregnated with a medium viscosity oil having a viscosity from 10 centistokes and less than 500 centistokes (cSt) at 60° C.
U.S. Pat. No. 6,207,261 describes a laminated polymer/paper insulation material for DC cables, which is impregnated with a medium viscosity fluid. The thickness of the laminate may be varied by varying the thickness of the paper or the polymer. Nothing is mentioned about variation of thickness of the laminated material within one cable. After lamination, the laminate is being calendered or supercalendered. The paper in the laminate has one smooth and one rough surface.
EP 875907 describes insulation material comprising paper at the inner and outer part of the insulation layer, which paper material has low resistivity. The middle part comprises laminated polymer/paper material having higher resistivity. The thickness of the paper may be varied to change the resistivity. The aim of the invention is to provide insulation material having a resistivity between 0.1 ρ0 and 0.7 ρ0, where ρ0 is the resistivity of the normal Kraft paper, over the whole temperature range. This may be achieved by varying the quality of the materials, or using additives such as amine or cyanoethylpaper.
Hata R. SEI Technical review, 62, June 2006, page 3, describes solid DC submarine cable insulated with polypropylene (PP) laminated paper, whereby the inner part of the insulation layer in the vicinity of the conductor layer comprises paper, which is covered by a layer of laminated PP forming the middle part of the insulation material, which is subsequently covered with paper which forms the outer part of the insulation layer.
U.S. Pat. No. 3,987,239 describes insulation material, whereby the electrical stress distribution in a high voltage system is improved by providing insulation material comprising different parts located at different radial distances from the conductor layer. The different parts may comprise the same or different insulation material. The effect of the arrangement of layers is that the resistivity gradient in the insulation material from the inner part to the outer part of the insulation layer is as flat as possible. FIG. 9 in U.S. Pat. No. 3,987,239 shows that the resistivity is flat at the inner part of the insulation layer and then decreases at increasing radial distance from the conductor layer. The plastic material used has an E-stress below 22 kV/m. Modern insulation materials have an E-stress above this value.
U.S. Pat. No. 4,075,421 describes insulation paper, whereby the resistivity in the most inner part is higher compared to the resistivity in the outer part of the insulation layer.
A limiting factor in the development of DC transmission systems, especially cable joints and cable terminations, is the insulation breakdown strength. Experiments have shown that the breakdown location in a cable is often started from the semiconductive layer/insulation layer interface.
There is a need for insulation material, whereby the resistivity is lowered at locations close to the inner and outer semiconducting layers. There is a need for an improved resistivity control in the insulation material, especially at these locations. By improving the electrical field stress distribution, the breakdown stress of the insulation material can be improved.
Although many improvements have been made to laminated insulation materials for DC transmission systems, there is still a need for improving the electrical performance, increase the transmission capacity, improve the reliability, decrease aging and manufacturing costs for insulated transmission systems. With regard to high and ultra high voltage (UHV) DC and (U)HVDC for mass-impregnated non-draining (MIND) transmission systems there is a need for improved resistivity control over the entire insulation layer, especially with regards to insulation materials impregnated with high viscosity fluids. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many people suffer from compression injury to the soft tissues of the wrist and carpal tunnel. These injuries may be produced in the workplace, e.g., by frequent, sustained repetitive motions involving the use of the hands, or may be associated with trauma to the hand or wrist, pre-existing medical conditions, hormonal changes, hereditary traits, and use of medical apparatus such as wheelchairs, and other factors (Gross et al, 2002). Without treatment, such injuries accumulate and lead to chronic neuromuscular disorders of the hand and the upper limb. The most familiar of these disorders is carpal tunnel syndrome, which is a growing public health issue that affects approximately 0.1% of the U.S. population (Hunter, Mackin and Callahan, Rehabilitation of the Hand and Upper Extremity. Fifth Edition, Mosby press, USA, 2002) and produces pain, discomfort, nerve conduction disturbances and impairment of function of the hand and sometimes the upper limb as well.
Carpal tunnel syndrome is caused by compression of the median nerve in the carpal tunnel. The median nerve receives blood, oxygen and nutrients through a microvasculature network which is present in the connective tissue surrounding the nerve fiber. An increased pressure on the nerve fiber constricts the microvessels and reduces the blood flow to the nerve. Prolonged deprivation of oxygen and nutrients will result in severe nerve damage.
The carpal tunnel is a confined anatomic space defined by the transverse carpal ligament on the palmar (anterior) side of the hand and by a semicircular bony ledge comprised of the carpal wrist bones on the dorsal and lateral sides of the hand. The tunnel serves as a conduit for the median nerve, blood vessels, and tendons which supply the extrinsic hand muscles.
An increase in the volume of the carpal contents or a decrease in the cross-sectional area of the carpal tunnel will increase the hydrostatic (interstitial) pressure in the tunnel and can potentially lead to compression damage to the median nerve. For example, conditions that irritate or inflame the tendons can cause them to swell and exert pressure on the median nerve. The increase in volume of the tendons and the median nerve, when inflamed, can increase the likelihood of carpal tunnel symptoms. A thickening of the transverse carpal ligament or of the bones a butting the carpal tunnel can reduce cross-sectional area of the tunnel. The tunnel cross-sectional area also changes with wrist position. Wrist flexion or extension decreases the cross-sectional area, and increases the hydrostatic pressure of the tunnel. Most wrist flexion occurs around the lateral axis of the radiocarpal joint, whereas most wrist extension occurs around the lateral axis of the midcarpal joint. Wrist flexion causes the flexor tendons to rearrange so they are more likely to compress the median nerve. The median nerve responds by rearranging its position between the superficial flexor tendons (Skie et al, J. Hand Surgery [Am] 15: 934–939 (1990)). The carpal tunnel cross-sectional area is smaller in carpal tunnel syndrome patients compared with asymptomatic control populations.
Carpal tunnel syndrome may be treated by non-surgical and surgical means. In early stages of development, therapies are directed to alleviating symptoms and preventing the occurrence of more severe symptoms. Such therapies include: restricting the motion of the wrist by means of wrist braces and splints, controlling swelling of soft tissue structures by administering anti-inflammatory medications, sometimes injecting steroids locally into the carpal tunnel; applying heat or cold to the affected site to promote repair of injured tissues; providing exercises to increase circulation, speed recovery and increase the range of motion of the wrist; and avoiding activities that produced the symptoms initially. Surgery, which may involve cutting the transverse carpal ligament to relieve pressure on the median nerve, may be necessary if the symptoms are severe and/or if the non-surgical therapies do not resolve the problem. Non-surgical therapies are reported to be effective in relieving symptoms of 86% of afflicted patients (Benefice, 1994).
The present invention is drawn to wrist brace technology for use by patients with existing carpal tunnel syndrome and related nerve entrapment disorders, and patients who are at risk for developing carpal tunnel syndrome and are in need of wrist support which allows motion of the fingers and palm.
The prior art wrist braces have one or more of the following drawbacks. They confine the wrist and forearm in a neutral position, but restrict the motion of the fingers required for daily activities; they enclose the hand, wrist and forearm in material which prevents air from circulating to the underlying tissues and promotes accumulation of moisture, bacteria and dirt between the brace and the tissue; they are difficult to attach to the hand and bulky to wear under clothing; they exert pressure on flexor tendons and the median nerve; and if made from a rigid material, they are uncomfortable to wear, develop unpleasant odors and have an anatomically incorrect shape.
U.S. Pat. No. 6,540,710 discloses a one piece molded plastic wrist brace that is designed to hold the wrist in a neutral position, block wrist flexion, extension, and ulnar/radial deviations, and limit hand movement without compressing the anterior forearm and flexor tendons. | {
"pile_set_name": "USPTO Backgrounds"
} |
The inventive concept relates to the field of solid state storage, and more particularly, to address mapping in solid state storage devices.
In general a storage device may include a flash translation layer (FTL) that maps logical addresses to physical addresses of the storage device. A mapping table including mapping information about the logical addresses and the physical addresses may be stored in the storage device. To prevent data loss, when there are changes to the mapping table, a journal may be used to log the changes to the mapping table before execution of the changes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a golf club head having a hollow outer shell made of light metals such as titanium or titanium alloy.
2. Related Art
Traditionally a wood club head has been made of a single persimmon block because it is light in weight and has relatively high strength. However, metals are becoming popular as a material for a golf club head instead of wood because it became difficult to find a suitable wood material such as good persimmon and manufacture costs of such wood material became high. Particularly, in recent years, in order to make the sweet area of the golf club head wider, a hollow shell formed of light metals, such as titanium or titanium alloy, are mainly employed as materials for manufacturing a golf club head.
As the volume of the golf club head made of titanium or titanium alloy is increased, the center of gravity of the golf club head begins to take a higher position, which is undesirable from the viewpoint of smooth swing of the golf club.
In order to lower the center of gravity of the golf club head, a typical golf club head made of titanium or titanium alloy includes at least one insert made of tungsten, whose specific gravity is greater than that of titanium, as a balance weight member. The balance weight member is integrally provided at substantially a middle portion of a sole plate of the club head by bonding, screwing or welding to increase a moment of inertia of the club head by lowering a center thereof.
However, it has been difficult to maintain enough bonding strength between the balance weight member and the sole plate by bonding agent only. Even when they are welded, sufficient welding strength cannot be obtained because the sole plate made of titanium and the balance weight member made of tungsten are different metals and their weldability was not sufficient. Further, when it is intended to connect them by screws, preparation of threads in the parts and assembly thereof are very cumbersome. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for repairing the refractory lining wall of a furnace, and more particularly to a method and apparatus for repairing the refractory lining wall of a blast furnace.
2. Description of the Prior Art
As is well known in the iron and steel industry, the wall of a blast furnace is composed of refractory bricks which line the inside of the steel shell of the blast furnace. The refractory bricks of this wall suffer considerable wear from contact with the furnace charge and the molten pig iron in the furnace.
Various methods and means for repairing the above-mentioned worn refractory bricks have heretofore been proposed. The repair of the refractory lining walls of blast furnaces has been carried out by injecting a repair material in a hot or cold state into the spot to be repaired in the furnace. The repair material can be divided into the following types: heat setting, hydraulic setting, and chemical setting. When the repair material is to be introduced under pressure in a hot state, a heat setting material is generally used, and when the material is to be introduced in a cold state, either a hydraulic setting or a chemical setting material is used. It is particularly important that the refractory composition of the repair material have excellent fluidity so as not to clog in an injector or hose. Ordinarily a refractory composition of either the clay or alumina type is used.
The conventional prior art methods for repairing the refractory lining wall of a furnace can be listed as follows:
(1) Placing an injection pipe on the outer shell of the furnace and injecting a repair material under pressure therethrough (FIG. 1).
(2) Inserting an injection nozzle for the repair material through the desired part of the furnace wall and extending into the furnace and injecting a repair material under pressure which is ejected from the nozzle within the furnace in directions perpendicular to the injection nozzle (FIG. 2).
The methods (1) and (2) have the common disadvantage that, since no reinforcing studs are provided, the repaired portion of the refractory lining is apt to peel or fall out so that the repaired refractory lining has only a short service life. | {
"pile_set_name": "USPTO Backgrounds"
} |
Reclining chairs have been popular for over a century. Most of these chairs include a back support which is pivotally connected to the chair frame or base for movement between various positions relative to the seat support.
Some reclining chairs have also included a pivotal connection between the seat support and the back support which allows correlative movement between the two supports. A few of these chairs have included inclined ramps attached to the chair frame to allow for angular changes in the seat support relative to the floor.
U.S. Pat. No. 860,729 is typical of these ramp-type reclining chairs. As disclosed in the '729 patent, the rectangular seat support rides up inclined ramp B and roller C as the back support G is moved towards its multiple reclined positions. The concept in the '729 patent was to change the angle of inclination of the seat relative to the floor in order to compensate for the movement of the back support. Other U.S. patents which teach this basic concept are Nos. 728,141; 2,016,183; 2,098,623; 2,508,598; 3,947,06; 4,768,829; and Italian Patent 566,544. In each of these patents, the objective was to raise the forwardmost portion of the seat support to maintain a consistent angle between the seat support and back support.
The prior art chairs identified above did not address the critical problem of eye level. Typically, when one of the prior chairs was shifted into a reclined position, the change in angle of the back support caused the user's eye level to be lowered. The lowering of a user's eye level can be especially annoying when the chair is used in several environments, such as theaters, offices, and vehicles to name a few.
The prior art chairs identified above also did not address the mechanical balance of the chair to allow for the chair's tilt action tension to automatically adjust to all variations of a user's weight. Typically, when one of the prior chairs was shifted into the reclined position it was unbalanced until it reached its full reclined position or it was necessary to lock the chair in various tilting degrees. The unbalanced design of these chairs is annoying for users of different body weight especially in offices, vehicles, and theaters where chairs are used by so many different users daily. | {
"pile_set_name": "USPTO Backgrounds"
} |
Personalisation systems for portable object such as smart cards are known and in particular those smart cards known as “intelligent”, that is, incorporating a microprocessor or a microcalculator. In a card personalisation system, several operations can be performed, comprising operations for relief marking of the card, printing of one or more surfaces of the cards, or electronic personalisation of the memory by means of electric contacts, magnetic tracks or devices so-called without contact such as radio or induction antenna, or control of cards for purposes of personalisation.
The document EP 1 228 481 describes a card production system for programming integrated circuit cards by means of a mechanism including several card programming stations, mobile along an axis of rotation. A rotary turret can be provided for introducing cards to the programming stations and for evacuating the fully programmed cards. This type of system can produce 3000 cards per hour. However, using a rotary, fragile and easily disruptable turret can cause reliability problems.
The patent FR 97 09643 describes an electronic personalisation cylinder with several processing locations, which takes the cards on a conveyor and processes them during its rotation. The fact of having several processing locations provides the processed cards at a greater rate than the processing time of a single location would allow.
The patent EP 0 797 167 divulges a rotating plate forming cylinder provided with a plurality of connection devices and an electronic processing card associated with each connection device. Use of this type of cylinder avoids using a fragile manipulator and easily disruptable arms for sending smart cards to be personalised to the processing locations when the personalisation stations are fixed. Each of the cards to be personalised is networked to the electronic processing card embedded in the rack of the rotating plate. This electronic card can be a part of an onboard PC. The electronic processing card is generally connected to a fixed computer of PC type paced outside the cylinder. The link between the system embedded in rotation and the installation fixed is assured by a turning collector. The connection is made by fixed contacts solid with the fixed part of the machine resting on a set of turning tracks solid with the rotating plate. The same goes for the feeds, necessary for the functioning of the equipment on board the rotating plate, made by fixed contacts supported on the feed tracks. The management software for personalisation of the cards onboard the cylinder can also manage graphic marking.
A disadvantage to cylinder installations is that the turning electronic connections do not transmit data at a high rate to the electronic processing cards. The rate is of the order of several tens of megabytes per second and thus remains much lower than 1 Gbps (gigabyte per second). There is therefore a need to boost the output of personalisation machines by transferring data more quickly to the cards to be personalised. | {
"pile_set_name": "USPTO Backgrounds"
} |
Microelectronic complexes, specifically systems and groups of discrete microelectronic functional modules, implement an important range of electronic devices, including microcomputers and microprocessors, and have important application in the design of electronic systems. Examples of such microelectronic complexes include semiconductor wafers containing a plurality of integrated circuits, as well as integrated circuits containing a plurality of microelectronic components.
An integrated circuit typically contains multiple terminals, these being positions at which a signal connection is established or broken. Connectors are normally used at such terminals to facilitate the signal connection, more particularly to create an interface between discrete circuit components, such as the wires and pins of functional modules, among other possibilities. These connectors are typically formed of at least two sets of signal conducting members, for example two sets of pins, two sets of wires or a set of pins and a set of sockets, where each set is capable to connect to a distinct circuit component.
In the case of a semiconductor wafer, the wafer is typically divided into a plurality of discrete functional cells, each cell including at least one integrated circuit. These cells are laid out within a dedicated area on the wafer face, typically forming a grid-like array. Thus, connectors are used to satisfy both intra-cell and inter-cell signal connection requirements of the wafer, where these connectors are typically fabricated in the semiconductor material of the wafer.
Connectors, whether for use on a semiconductor wafer or in a different type of microelectronic complex, must be manufactured with a high level of precision, in order to ensure precise alignment and the establishment of proper connections between the discrete circuit components to be connected. However, regardless of the level of precision with which connectors are manufactured, there always remains the possibility of connector defects, such as the short-circuiting of a pair of signal conducting members or a faulty wire.
In order to compensate for improper manufacturing tolerances in connectors, it is known to manufacture connectors with built-in fault tolerance. In U.S. Pat. No. 4,722,084, issued to ITT Corporation on Jan. 26, 1988, for which the only named inventor is Steven G. Morton, there is described an array reconfiguration apparatus for use in large integrated circuits and large systems. The apparatus uses spare wires in place of defective wires, and/or spare computation elements in place of defective computation elements, so that an operational system may be created in spite of the occurrence of numerous manufacturing or lifetime faults. The reconfiguration apparatus, or connector, allows for the bypassing of a bad cell in a row of cells, as well as for the circumvention of a bad wire within the connector, through the provision of an interconnection layout that includes spare wires.
However, existing connectors with built-in fault tolerance, including the apparatus described in U.S. Pat. No. 4,722,084, do not compensate for one of the most common fault types arising during the manufacture and use of connectors, that being a pair of fused or short-circuited signal conducting members within the connector. Unfortunately, such a fault, if undetected, may result in improper signal connections, and thus faulty signal exchanges, between discrete circuit components. If detected, such a fault may require the repair or replacement of a connector, which may increase the fabrication time and/or the cost associated with the manufacturing process.
Against this background, it clearly appears that a need exists in the industry for the development of a connector with improved fault tolerance. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention is related to a human powered vehicle and more specifically to a bicycle pedaled by a rider in a substantially horizontal position.
2. Description of the Related Art
Conventional bicycles are powered by the rider sitting above a crank. Bicycles have been proposed having rectilinear pedal movement in the place of a crank, but have not been seen in the marketplace. Several recumbent bicycles have the rider sitting upright with the feet forward for pedaling a crank.
There are several advantages to having a bicycle wherein the rider lies prone including reduced wind resistance, comfort, the negation of gravity which allows blood to easily flow from the heart to the legs and brain, an unrestricted diaphragm which allows full breaths, increased safety due to the short distance the rider falls in an accident and the close proximity of the eyes to the riding terrain which provides a heightened sensation of speed and a fun ride. There are several advantages for the use of rectilinear motion of pedals: the stroke length can be easily varied, the stroke can be dependent or independent and the stroke can power in both directions or forward only or backward only.
Heretofore, no one has created a bicycle taking advantage of these principles
Therefore there has been a need for a bicycle allowing the rider to lie horizontally, face down and providing for rectilinear movement of the pedals. | {
"pile_set_name": "USPTO Backgrounds"
} |
For example, various designs of grommets for guiding cables or entire cable sets through an opening in a component are known in automotive engineering. This type of grommet is usually already attached to the cables and cable sets as part of the assembly process during manufacture of a cable set for a vehicle. For practical purposes this is done only after the cables have been cut to size and stripped of insulation, plug connectors have been attached and the cables or sets of cables have been bundled together. Cables or cable sets assembled in this way are then delivered to the vehicle manufacturers for installation in the vehicle with the grommet already attached. Here the grommet is arranged on the opening in the component of the vehicle, for instance to guide the cable or cable set from the engine compartment of a vehicle through the opening in the component, in this case a splash panel, and on into the vehicle interior. However, the component opening may also be situated in the frame of a vehicle door or any other part of the vehicle.
A grommet of this type is known from DE 10 2010 028 592 A1, for example. The grommet described therein is molded from two different foamed plastics. A first foamed plastic surrounds the cable and is connected in a material bond to a flange-like fastening body for attachment to an opening in a component. An additional foamed sealing body is provided as a seal for the component opening. Although this grommet allows a tight seal between the cable and the component opening, it has been shown that the production effort and expense involved are relatively high due to the structural design and the quantity of foamed plastic used.
Another grommet is described in DE 10 2010 039 225 A1. This grommet consists of foamed plastic as the sealing inner part, and a flange-like frame made of a different plastic and provided for attachment to a component opening. A disadvantage of this is that the production of the grommet is complicated due to the structural design and the quantity of foamed plastic used.
What the grommets known in the state of the art have in common is that they are manufactured mainly of foamed plastics with the aid of foam-molding tools. For this purpose the cables or cable sets are transported first to the foam-molding tool, inserted manually into the tool and removed, again manually, after the foamed plastic has cured. Here there is a risk of damage, for instance by crushing, to an already finished cable set as it is being transported to the foam-molding tool or during foaming, insertion or removal. As a consequence of this type of damage, the assembled cable set is rejected. Depending on the customer's wishes, the electrical functionality of the cable set is tested either before or after the foam molding of the grommet. In the case of testing before foam molding it is possible that damage to the cable set during the foam molding procedure would go unnoticed, at least up until delivery. In the case of testing after foaming it is possible that an additional test has been conducted before the rejection. On the whole, foam molding of the grommet involves risks. In addition, placing the cable or cable set into the foam-molding tool, curing the foamed plastic and subsequently removing the cable or cable set involves a comparatively long process time, frequently amounting to seven minutes or more. Furthermore, foam molding of plastics is expensive due to the large volume of foam required, since the purchase price of foamed plastic is comparatively high.
Moreover, in DE 37 40 582 A1, DE 10 2005 022 937 B4 and EP 0 731 000 B1, for example, grommets are known that have to be threaded onto the assembled cable set, which could lead to rejection due to damage occurring in the process.
In DE 297 21 749 U1 and U.S. Pat. No. 5,545,854 A, two-part grommets are known that are pressed onto the cable set from a lateral direction, so that threading them on becomes unnecessary. A disadvantage of this is that the force required to press on the grommet can also crush the cables. In addition, a tool is usually necessary to press on the grommet with the required amount of force. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to methods and apparatus for joining multilayer joints of pipe. Dual layer and multilayer pipe joints are typically used in specialty pipeline systems, where pipeline repair or replacement is costly and corrosive elements or abrasive pipeline fluids substantially decrease the useful life of typical metal pipes. For instance, dual and multilayer pipelines are typically installed in subsea operations and in pipelines intended for transportation of corrosive or abrasive materials.
Although various barrier systems and reverse current techniques have been used to extend the life of the metal pipelines, pipelines having an inner material in contact with the fluid have been most widely accepted in the industry. Moreover, pipelines formed from only plastic materials have not been widely accepted in large pipeline systems because of poor stress characteristics. On the other hand, piping systems constructed of both metal and plastic layers have been widely accepted within the process piping industry.
A dual layer pipe typically comprises an outer casing which provides bending, tensile and radial strength to the pipe, and an inner plastic or rubber liner which serves as a smooth noncorrosive flow surface. Trilayer pipe typically utilizes a similar outer steel casing and an inner plastic pipe, but an annulus is provided between these layers which is typically filled with a cement grout or other inert material. Pipe with more than three distinct structural layers is also possible, although less common. For the purposes of the present invention, multilayer pipe is defined as pipe with three or more distinct structural layers.
A multilayer pipeline has the same benefit as a dual layer pipeline, but offers additional protection to withstand higher degrees of pressure, shock, impact and cyclic loading. Also, dual layer pipe may be suited for process piping applications, but is not suitable for many pipeline installations (e.g., subterranean applications). Multilayer pipe, on the other hand, is well suited for both process piping applications and pipeline applications. The cement grout provides a convenient means of joining together the outer steel casing and the inner plastic pipe. Further, the cement grout layer enables the multilayer pipeline to better withstand corrosion deterioration of the metal casing, serves as an added barrier between the metal layer and plastic layer to inhibit corrosion of the steel pipe if the plastic pipe were to leak (thereby extending the effective life of a pipeline handling corrosive fluids), serves as an insulator to reduce temperature variations in the transported fluids, and provides a means for regulating the pipeline buoyancy by varying the density of the cement grout mixture.
Corrosion resistant pipe may be formed by painting or coating the interior of a metal pipe. Dual layer pipe, on the other hand, is generally defined as pipe having two layers of distinct structural strength, and may be formed by extruding steel over plastic pipe, by contracting plastic pipe and subsequently expanding the plastic pipe to the interior of a metal pipe, or by wrapping steel bands over plastic pipe. Although dual layer pipe has been used commercially for years, it does not offer the substantial benefits of a multilayer pipe, and is seldom used in the pipeline field. Moreover, industrial acceptance of dual layer pipelines has been limited, in part, because the methods and apparatus for joining dual layer pipe sections have been time consuming and have often not resulted in leakproof seals between the plastic and metal layers of a pipe, especially at higher pressures.
Various types of joints for joining sections of pipe are depicted and described by Robert H. Perry and Cecil H. Chilton in Chemical Engineers' Handbook, Title Edition, commencing at page 6-57. Non-metallic pipe and lined pipe systems, and joints typically used in these systems, are subsequently described at page 6-79. Pipeline joints are also depicted in U.S. Pat. Nos. 3,827,733; 3,986,731; 4,011,652; 4,053,247; and 4,060,263. Yet, none of these joints have proven to be satisfactory in many situations, either because of pressure or expense.
Threaded pipeline joints are not generally accepted because they do not provide a continuous integral wall, and are therefore prohibited in many underground pipeline applications. Threaded joints also provide stress and corrosion concentration points, and do not lend themselves well to dual or multilayer pipe joints. Other joints do not adequately seal the plastic liner and allow corrosive fluid to come in contact with the metal outer casing. Dow Chemical Corporation and Peabody Corporation supply a dual layer plastic lined pipe, but the sections are flanged with molded raised face ends, or with ends suitable for gasketed pipe joints. These pipe sections are thus expensive and time consuming to install. Moreover, special precautions must be taken to insure that no welding operations are done on the pipe or flange components, since excessive heat can cause liner decomposition and failure.
For barrier corrosion control, as in coated pipe, a bell and sleeve joint supplied by AMF Tuboscope is also commercially available for joining pipe sections. This technique, however, requires that each end of pipe section be flared outwardly or belled to allow insertion of a joining sleeve, which substantially increases the cost of the pipe sections. A thin sleeve with an epoxy coating is provided for joining the sections of the pipe, but care must be taken so that the weld does not contact the sleeve when the pipe sections are joined or the epoxy coating may be severely damaged.
The above-described joints do not efficiently and reliably function to join sections of dual layer pipe, and these above-described joints therefore limit the acceptance of dual layer pipeline systems. Moveover none of the above-described joints may be satisfactorily employed to join sections of a steel-cement-plastic layer pipe, as described above. Although multilayer pipe is widely recognized as obtaining the same benefits as dual layer pipe plus significant additional features, the absence of an efficient and reliable multilayer pipe joint limits the industrial use and acceptance of standardized joints of multilayer pipe.
U.S. Pat. No. 3,662,045 describes a method for providing a multilayer pipeline which had proven satisfactory in many applications. The technique described in this patent, however, is particularly suitable for repairing a conventional metallic pipeline by inserting a smaller diameter plastic pipe within the line and subsequently filling the annulus with a cement grout. More particularly, the annulus of the multilayer pipeline described in this patent is filled with cement once the metallic line and inner plastic pipe are in place. This technique does not utilize a prefabricated joint for joining multilayer pipe sections, but rather forms a multilayer pipe in the field and uses flanged or welded joints spaced thousands of feet apart to join sections of pipe, wherein the joint is also formed at the installation site by filling the annulus portion with the cement grout. Thus, the technique described in this patent is not adaptable for forming convenient lengths of multilayer pipe at a plant location and transporting multilayer pipe sections to required installation sites.
The present invention overcomes these problems by providing a multilayer pipe joint which can be easily, effectively and reliably utilized to join prefabricated sections of multilayer pipe at the installation site. This enables convenient length (e.g. 40 foot) of multilayer pipe to be completely formed at a manufacturing plant with a cement grout in place, and the pipe sections may then be joined at the installation site without the need for time consuming cement pumping procedures.
The disadvantages of the prior art are thus overcome with the present invention, and novel methods and apparatus are hereinafter described for efficiently and reliably joining together sections of a multilayer pipeline. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus such as an image-shake preventing apparatus for preventing the shake of an image, and to a control method therefor.
2. Description of Related Art
It is known that, in an image pickup apparatus such as a small-sized video camera, a picked-up object image shakes due to the vibration of the image pickup apparatus, so that a video image intolerable to view might be outputted or recorded.
In particular, in such a kind of image pickup apparatus, it has become general these days that a zoom lens capable of continuously varying the focal length without changing the image point position is mounted in the image pickup apparatus, and, in recent years, an image pickup apparatus having a high zoom magnification ratio of ten or more times has widely come into the market. However, such an image pickup apparatus has a drawback that, when an object image is picked up with the setting of the telephoto side, which is set for the larger zoom magnification, a conspicuous shaking of the object image would occur.
Therefore, as measures to solve the above drawback, an image pickup apparatus having mounted therein an image pickup optical system having image-shake correcting means has been developed so far and has already been put on the market.
FIG. 18 is a conceptual diagram schematically showing the above-mentioned image pickup optical system, which is denoted by reference numeral 200. In the image pickup optical system 200, there are disposed, in order, a fixed lens 201 securely fixed to a lens barrel (not shown), a variator lens 202 arranged to move in the horizontal direction on an optical axis "c" as indicated by an arrow "a", a shift lens 203 arranged to move two-dimensionally within a plane perpendicular to the optical axis "c" (in the direction indicated by an arrow "b", a focusing lens 204 having the focus adjusting function and the function of correcting the movement of a focal plane resulting from the movement of the variator lens 202, and an image sensor 205 on which to form an object image. Further, in the respective predetermined positions adjacent to the shift lens 203, there are disposed an actuator 206 arranged to drive the shift lens 203 and a position detecting sensor 207 arranged to detect the position of the shift lens 203.
In the image pickup apparatus 200, even if, as shown in FIG. 19(a), the optical axis "c" deviates from a central axis "c'" of the image pickup optical system 200 due to the vibration thereof as much as a deviation angle e, it is possible to make the optical axis "c" and the central axis "c'" of the image pickup optical system 200 geometrically coincident with each other on the downstream side of the shift lens 203, by driving the actuator 206 to move the shift lens 203 as indicated by an imaginary line in FIG. 19(b). Accordingly, the above-mentioned deviation angle .theta. is corrected by an optical processing, so that the object image is formed on the image sensor 205 as a light flux having no shaking.
FIG. 20 is a block diagram showing the arrangement of a conventional image pickup apparatus which corrects an image shake by means of the image pickup optical system 200.
In the image pickup optical system shown in FIG. 20, when a power supply switch 208 is turned on, a mode microcomputer 209 notifies a main microcomputer 210 of the turning-on of the power supply switch 208. Then, having determined that the power supply has been turned on, the main microcomputer 210 starts its control operation.
Subsequently, a vibration signal forming circuit 211, which has detected the vibration of the body of the image pickup apparatus, forms a vibration signal and supplies the vibration signal to a vibration correcting circuit 212. In the vibration correcting circuit 212, the analog vibration signal is converted into a digital vibration signal by an A/D converter 213, and, then, a predetermined low-frequency component is removed from the digital vibration signal by a high-pass filter (HPF) 214. After that, the phase and gain of an output signal of the HPF 214 are corrected by a phase/gain correcting circuit and an output signal of the phase/gain correcting circuit 215 is integrated by an integration circuit 216 to calculate and output a correction target value.
The correction target value outputted from the vibration correcting circuit 212 is converted into an analog value by a D/A converter 217 and is then supplied to an adder 218. At the adder 218, the analog correction target value is added to a feedback signal supplied from the position detecting sensor 207 through an amplifier 219. Then, an output signal of the adder 218 is supplied to a driving circuit 220. The driving circuit 220 issues a driving signal to the actuator 206 to drive the shift lens 203.
When the shift lens 203 is driven by the actuator 206, as described above, the deviation angle e is optically corrected, so that the object image is formed on the image sensor 205 as a light flux having no shaking.
Further, an electric signal obtained through the photo-electric conversion by the image sensor 205 is supplied to a video signal processing circuit 222 via a camera signal processing circuit 221. Then, a video signal produced by the video signal processing circuit 222 is outputted to an output terminal 223 so as to be converted into a visible video image on the display screen, and, at the same time, is recorded, as video information in the form of an RF signal, on a recording medium such as a magnetic tape by a recorder 224.
Incidentally in the above-mentioned image pickup apparatus, the actuator 206 for driving the shift lens 203 is composed of a voice coil motor.
More specifically, the voice coil motor is disposed in a predetermined position adjacent to the shift lens 203. By causing current to flow to the voice coil motor to generate an electromagnetic force, the shift lens 203 is made to float, and by varying the electromagnetic force according to an output of the adder 218, the shift lens 203 is made to two-dimensionally move within a plane perpendicular to the optical axis "c" in the vertical direction (in the pitching direction) and in the horizontal direction (in the yawing direction).
However, since, in the conventional image pickup apparatus, as described above, the actuator 206 is composed of a voice coil motor, the shift lens 203 is held in a floating state by the voice coil motor when the voice coil motor is a conductive state with the power supply switch 208 turned on, but, when the power supply is turned off, the holding force for the shift lens 203 by the voice coil motor is canceled, so that the shift lens 203 drops due to its own weight. As a result, a lens holding frame which holds the shift lens 203 collides with an inner wall of the lens barrel to generate a collision sound, which is offensive to the ear.
Further, since the optical axis "c" decenters due to the movement of the shift lens 203, for example, if the power supply is turned off during the process of an image pickup operation of the image pickup apparatus, there is a possibility that a video image having an unnatural motion is outputted or recorded on the recording medium. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed generally to an apparatus for producing decorative ice products and, more specifically, to a self-contained, decorative ice bowl freezing apparatus.
In the prior art, it has been desirable for special occasions, such as weddings, birthday parties, graduation parties, anniversaries, etc., to provide sculptures and/or other objects made of ice as decorative features for the occasion. One such item has been a bowl made of ice. Such ice bowls have, in the past, been carved from a solid block of ice to include a cavity in the central portion thereof. In the central cavity of such carved ice bowls, a punch bowl has often been disposed in such prior art embodiments. However, such prior art carved ice bowls have been time consuming and expensive to produce and have required considerable skill in the manufacture thereof, often involving a waste of one or more blocks of ice due to slips of the craftsman and/or faults in the ice blocks which have led to fractures thereof.
An improvement over the hand-carved ice bowl has been the ice bowl which is formed by freezing water in a mold. One advantage of this type of improved ice bowl of the prior art has been that these improved techniques have permitted the inclusion of various decorative elements, such as flowers, letters, paper letters, or other decorative or visual indicia, within the structure of the ice bowl. However, a major disadvantage of such prior art molded ice bowls has been the necessity of requiring an ice block plant in order to freeze-form such molded ice bowls. This disadvantage has had the additional disadvantages of requiring a large capital investment in order to produce molded ice bowls; has made the source of supply of such ice bowls relatively concentrated; and has denied consumers in many areas of the country the benefit of such decorative ice bowls due to the fragile and ephemeral quality of these decorative ice bowls.
In view of the shortcomings and disadvantages of prior art ice bowl-forming techniques and devices, it is a material object and intent of the present invention to provide an improved, self-contained, decorative ice bowl freezing apparatus which will substantially overcome such disadvantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fuel cells are well known and are commonly used to produce electrical energy by means of electrochemical reactions. Comparing to the conventional power generation apparatus, fuel cells have advantages of less pollutant, lower noise generated, increased energy density and higher energy conversion efficiency. Fuel cells can be used in portable electronic products, home-use or plant-use power generation systems, transportation, military equipment, the space industry, large-size power generation systems, etc.
According to the electrolytes used, fuel cells are typically classified into several types, e.g. an alkaline fuel cell (AFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), a solid oxide fuel cell (SOFC) and a proton exchange membrane fuel cell (PEMFC). Depending on types of the fuel cells, the operation principles are somewhat different. For example, in the case of a direct methanol fuel cell (DMFC) which has the same structure as the PEMFC but uses liquid methanol instead of hydrogen as a fuel source, methanol is supplied to the anode, an oxidation reaction occurs in the presence of a catalyst, and protons, electrons and carbon dioxide are generated. The protons reach the cathode through the proton exchange membrane. Meanwhile, in the cathode, oxygen molecules take electrons from the anode and are reduced to oxygen ions by reduction. The oxygen ions react with hydrogen ions from the anode and thus produce water.
As know, an individual fuel cell unit supplies limited voltage (approximately 0.4 V). For a purpose of offering a sufficient operating voltage to an electronic product, a plurality of fuel cell units should be connected in series so as to form a fuel cell assembly. Depending on the arrangement of the fuel cell units, the fuel cell assemblies can be divided into two types, i.e. a stacked fuel cell assembly and a planar fuel cell assembly.
Referring to FIG. 1, an exploded view of a conventional stacked fuel cell assembly is illustrated. The stacked fuel cell assembly 10 comprises at least two membrane-electrode assemblies (MEAs) 11, a bipolar plate 12 located between two adjacent MEAs 11 and two electrode plates 13 and 14 at opposite ends of the cell assembly. Each MEA 11 includes an anode 111, a proton exchange membrane 112 and a cathode 113. The bipolar plate 12 comprises a plurality of channels 121 for flowing fuels and oxygen molecules therethrough. However, since the stacked fuel cell assembly 10 requires a large amount of cell units to be assembled in a stack form, the thickness and the weight thereof are considerably high. Therefore, the usage of such stacked fuel cell assembly is restricted in some situations.
Referring to FIG. 2, a planar fuel cell assembly 20 comprises a metal frame 21, a plurality of membrane-electrode assemblies (MEAs) 22 and two electrode plates 23 and 24 at opposite ends of the cell assembly. Likewise, each MEA 22 includes an anode, a proton exchange membrane and a cathode (not shown), and is embedded in the corresponding openings 211 of the frame 21. Furthermore, two current collectors 212 are disposed at one side of the frame 21 as the current output terminals of the planar fuel cell assembly 20. Each of the electrode plates 23 and 24 comprises channels 231 for flowing fuels and oxygen molecules therethrough. However, the metal frame 21 used in the planar fuel cell assembly 20 is both bulky and weighty. In addition, the procedure of aligning the MEAs 22 in the corresponding opening 211 of the frame 21 is complex and time-consuming. Such planar fuel cell assembly 20 is costly to manufacture, and also contribute a substantial weight and volume to the overall fuel cell assembly. In other words, such planar fuel cell assembly fails to be used in portable electronic products. | {
"pile_set_name": "USPTO Backgrounds"
} |
Drugs (e.g., including one or more therapeutic agents) are loaded into a variety of polymeric materials, which may serve as a vehicle for delivering the drug to a patient. Often the polymeric materials into which drugs are loaded are a part of or otherwise associated with implantable medical devices. For example, polymeric vascular catheters are commercially available with anti-infective agents loaded into the polymeric material forming the catheter body. The anti-infective agents prevent infection associated with implanting the catheters. In addition, it has been proposed that drug loaded polymeric boots to be disposed about implantable medical devices, such as cardiac defibrillators, infusion devices and implantable neurostimulators, may be similarly effective at preventing infection. However, the amount of drug that may be loaded into polymeric materials is currently limited. | {
"pile_set_name": "USPTO Backgrounds"
} |
Extending the functionality of a software application, in some cases, may be easier than creating a new software application that has the additional capabilities. An extension programming language is often embedded in an existing software application so that additional program code may be added to the software application to provide additional capabilities. The extension programming language may be a scripting language whose interpreter is embedded as a library into the software application. The scripting language code is interpreted at runtime thereby bypassing compilation. In this manner, the additional capabilities may be incorporated into the software application quickly and in a cost-efficient way. However, the runtime performance of the software application degrades due to the additional time consumed by the scripting language interpreter. In addition, semantic errors are not detected before execution of the software application thereby increasing the likelihood of erroneous calculations. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention lies in the field of water control valves. More particularly, it is concerned with a temperature sensitive valve which will stop the flow of water from a water line when the outdoor temperature is above, and will start the flow of water when the outdoor temperature is below a certain selected temperature.
2. Description of the Prior Art
In the prior art fairly complicated and expensive means have been provided, involving in many cases, electrically sensitive temperature sensing means controlling electro-magnetic valves, so that when the outdoor temperature becomes less than a selected value, in the neighborhood of 32.degree. F., then the valve will open and allow a small trickle of water to flow through the outdoor water line, the motion of the water being sufficient to prevent the freezing of the water in the water line exposed to the cold outdoor temperature. Because of the expense and complications of these various devices their use is limited and recourse is had to permitting the water to flow through the outdoor water line to be continuous throughout the time that the line is unattended, rather than to permit the flow only when the temperature is below the selected value. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method of producing inked-ribbon cartridges.
Recently, there has been a trend in the typewriter and business machine arts to incorporate an inked ribbon in a disposable cartridge or cassette which can be readily installed and/or replaced in such printing machines. The operator of one such machine merely removes the old cartridge when the ink in the ribbon is used up or the ribbon becomes frayed from use, and he installs a new cartridge without ever having to soil his hands by touching the ribbon itself. The cartridge usually has a feed means therein which cooperates with a driving member on the machine on which the cartridge is installed so as to transport the ribbon in the cartridge, and thereby present a fresh supply of inked ribbon to a print station located in the machine.
Some of the prior art ribbon cartridges employ two reels therein on which the ribbon is alternately wound and unwound as used. Other cartridges employ only one special reel on which an endless inked ribbon is wound, and as the reel rotates, the ribbon winds up on the "outer turn" of ribbon on the reel, and the ribbon is withdrawn therefrom by withdrawing the "innermost turn" of the ribbon from the reel. A third type of cartridge employs a length of about 15 yards of inked ribbon which is formed into an endless loop of ribbon which is not stored on any reel or reels within the cartridge, but is simply stuffed therein to produce many folds or convolutions in the ribbon. In this latter type of cartridge, the ribbon is simply fed into or "stuffed" into the cartridge by a feed means located at an entrance area thereof, and is pulled out of an exit area of the cartridge by the feed means as the ribbon is stuffed into the cartridge.
Some representative prior art, inked-ribbon cartridges and inking methods are shown in the following U.S. Pat. Nos.: 2,755,905; 2,878,751; 3,241,522; 3,643,779; 3,804,227; and 3,814,231.
One of the problems with producing the prior art ribbon cartridges is that the ribbon is inked prior to installing it in its associated cartridge. As a result, the cartridge itself and the hands of the operator who is installing the ribbon in the cartridge become smeared with ink, requiring extensive clean-up time for cleaning both the assembled cartridge and the operator's hands.
Another problem with producing prior art ribbon cartridges relates to producing cartridges including a length of inked ribbon which is formed into an endless loop. Because of the ink being in the ribbon at the time of forming an endless loop, an effective or lasting bond joining the ends of the length of ribbon is difficult to obtain, thereby subjecting the ribbon to potential failure at the bond. The utilization of pre-inked ribbon fabric also limits the number of bonding techniques which may be utilized to join the ends of a ribbon. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the past, performance of LSIs has been improved with advance of technology nodes by design shrinkage in accordance with a scaling law along with Moore's Law. Although 20-nm nodes and 14-nm nodes are currently under development, it is imperative to suppress short-channel characteristics of transistors. For example, degradation of the short-channel characteristics may cause an increase in a leakage current due to subthreshold leakage during standby. The leakage current is a major issue specifically in SRAMs and other memories. In recent years, an urgent task is therefore to reduce power consumption by replacement of volatile memories with non-volatile memories, and various kinds of non-volatile memories are under development. In particular, expectations are growing for spin transfer torque-magnetic tunnel junctions (STT-MTJs) that allows for high-speed writing and reading.
For high-speed writing, it is important to improve performance of select transistors. In general, responsiveness of writing and retention characteristics are in a trade-off relationship. Accordingly, application of a transistor having high performance makes it possible to select a material having high retention characteristics as a material of the MTJs, thereby securing performance stability as memories as well.
In order to improve transistor characteristics, for example, there is proposed in Patent Literature 1 that a channel of a transistor is provided in a direction perpendicular to a substrate surface. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention:
This invention relates to a tube puller for removing heat exchanger tubes from a tubesheet of a steam generator and more particularly to such apparatus for removing, during one pulling stroke, a plurality of such tubes.
2. Description of the Prior Art:
Hydraulically operated tube pulling apparatus for removing heat exchanger tubes from a heat exchanger such as a steam generator are known. Typically, such apparatus includes a tube gripping member, disposed within the end of the tube to be removed and expanded into gripping engagement with the interior surface of the tube. The gripping member is connected to an operating rod of a hydraulic cylinder that pulls the tube from the tubesheet in which it is mounted.
The expandable gripping member typically includes an externally toothed tube capable of being expanded into engagement with the inner surface of the heat exchanger tube by an axially tapered rod which, upon being moved axially within the gripping member, expands the gripping tube into a proper gripping engagement. Such tube pulling apparatus can be made to operate quite well, especially when a proper gripping relationship is established between the gripping surface of the expandable member and the inner surface of the heat exchanger tube. One factor in establishing this proper relationship is the radially expanding force provided by the internal tapered rod which expands the gripping member. Thus, for any one tube to be removed, the tapered rod must be positioned axially to a point resulting in such expanding force and gripping relationship being established.
In removing the tubes (or tube stubs) of a nuclear steam generator, it is preferable to increase the speed of the tube removal process (and thus reduce the personnel exposure to the irradiated equipment) by having tube pulling apparatus capable of removing a plurality of tubes upon each retraction of the hydraulic pulling cylinder. However, as the final axial position of each tapered rod for expanding the expandable tube into the proper or effective gripping relationship within the associated stub tube, can vary for each tube stub to be removed, a single automatic member which positions a plurality of such tapered rods must permit each individual tapered rod to attain the proper axial position without altering or affecting the ability of each of the other tapered rods in the group to achieve an axial position for establishing a like gripping engagement for each of the other tubes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fluorescent lights are the most common light source used in commercial buildings. As is well known, to provide the same amount of light output, a fluorescent bulb requires more electrical power when cold than after it has heated up. Once heated up, the extra power provided during start-up is dissipated as heat and does not substantially affect the light output of the bulb as perceived by the user. Indeed, the extra power has the advantage that the light output from the bulb does not perceptibly decrease when the line voltage drops, as, for example, when a large piece of electrical equipment such as an air-conditioner compressor comes on-line.
As a result of these considerations, the manufacturers of fluorescent lighting have historically used ballasts whose effective impedance, whether provided by electrical components (resistors, capacitors and/or inductors) or by electronic circuits, has been selected so that the fluorescent bulb is always operated in an overpowered condition. This overpowering has been substantial, with power consumption typically running 20-30% higher than that actually required to operate a warmed-up fluorescent bulb. Recently, energy efficient fluorescent bulbs have been introduced to the market. These bulbs consume less energy but take substantial periods of time before they reach full light output. Also, these energy efficient bulbs come with their own ballasts and thus do not address the problem of the installed base of existing fluorescent fixtures with ballasts designed for overpowering.
The need to reduce the electrical power consumed by lighting has become especially acute in older buildings whose electrical systems were designed at the time when the use of electronic equipment, e.g., computers, was less prevalent or substantially non-existent. In many of these buildings, it is physically impossible to feed more power to the building, especially in the case of older skyscrapers where the electrical conduits running up the center of the building are already filled to capacity. The situation has become so severe in some older buildings that entire floors cannot be used because of insufficient power to both light the floor and provide users with the electricity needed in a modern office.
Some efforts have been made to address the power consumption problem by installing fixed phase SCRs in the power lines leading to fluorescent light fixtures. In practice, these approaches have proved unacceptable to consumers because of (1) low output from the fluorescent lights during start-up and (2) reduced light output under low voltage conditions. That is, these approaches have simply re-introduced the problems which led to overpowering in the first place. Moreover, switching of the SCRs leads to unacceptable levels of noise (e.g., harmonic distortion) on utility power lines, as well as power factor issues. For large buildings, the electrical noise/power factor problems can reach levels where power companies often seek premium rates for their power, thus reducing the consumer's economic incentive to reduce power consumption.
There thus exists a need in the industry for improved systems for reducing the power consumption of fluorescent lights. In particular, there exists a need for improved systems that can be readily retrofitted into existing buildings employing overdriven fluorescent lights without reintroducing start-up and low voltage problems and without significantly affecting the operation of utility power lines. The present invention, in its preferred embodiments, addresses and solves these existing problems in this field. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention generally relates to a seat slide device, and more particularly, to a vehicle seat slide device for sliding a vehicle seat relative to a vehicle floor by driving a motor as a power source.
2. Discussion of the Related Art
Heretofore, as seat slide devices for vehicles, there have been known those of the constructions described in Japanese unexamined, published patent applications No. 9-142181 and No. 11-208322 and United States patent application publication No. US2006/0226674 A1 (equivalent of Japanese unexamined, published patent application No. 2006-290131) hereafter referred to respectively as “first to third patent documents”. Each of these devices is provided with a pair of left and right lower rails secured to a vehicle floor and a pair of left and right upper rails slidably supported along the lower rails and supporting a vehicle seat.
Each lower rail has a nut member fixedly held therein, while each upper rail has a screw shaft rotatably held and extending in a forward-rearward direction and a drive mechanism for driving the screw shaft. The screw shaft is in screw-engagement with the nut member. By operating the drive mechanisms to rotate the screw shafts, the upper rails are slidden to move in the forward-rearward of the vehicle relative to the lower rails. With the slide movement, the position of the vehicle seat held on the upper rails is adjustable in the forward-rearward direction of the vehicle.
The drive mechanism described in each of the first and second patent documents is composed of an electric motor and two reduction sections each for reducing the rotational speed of the electric motor and for converting the direction in which the rotational power is transmitted, from one direction into another. The reduction sections are respectively attached to the left and right upper rails through respective brackets holding the reduction sections. The electric motor is held on one of the reduction sections with its rotational shaft extending in a width direction (i.e., transversely of the rails). The rotation of the electric motor is transmitted to the other reduction section not holding the electric motor, through a rod (transmission shaft). In the device described in the third patent document (i.e., the US publication), a drive reduction gear mechanism for reducing the rotational speed of an electric motor is united with the electric motor, and direction conversion gear mechanisms each for converting the transmission direction of rotational power are arranged on left and right sides one for each side. These direction conversion gear mechanisms are respectively attached to the left and right upper rails through respective brackets holding the reduction sections. The electric motor and the drive reduction gear mechanism are arranged on an mid portion of a transmission shaft which drivingly connects the left and right direction conversion gear mechanisms. The transmission shaft is coupled to an output gear of the drive reduction gear mechanism, so that the rotation from the electric motor is transmitted to the left and right direction conversion gear mechanisms at a reduced rotational speed.
Japanese unexamined, published patent applications No. 9-207632 (hereafter referred to as “fourth patent document”) describes a seat slide device of the same construction as those described in the first and second patent documents. In the device, a flexible cable is used in place of the rod (transmission shaft) used in the first and second patent documents.
In the seat slide devices disclosed in the first to third patent documents, it may take place that the axes for the driving rotations which are inputted to the reduction sections or the direction conversion gear mechanisms attached to the left and right upper rails deviate from each other in the forward-rearward direction (occurrence of axis deviation). When the axis deviation occurs between the direction conversion gear mechanisms on the left and right upper rails, the upper rails cannot be slidden smooth or noises are generated with the rotational operation of the mechanisms. In the fourth patent document, the flexible cable is employed to serve as rotation transmission rod, so that the axis deviation is absorbed by the flexing of the cable to suppress the rotation-caused noises. However, the flexible cable capable of transmitting rotational power is expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
Currently, manual processes for working with chemicals in solution, isolation of components from solution, and the like involve time intensive operation of one (1) to 24 hours, including an overnight incubation period. Further, samples may need to be mixed, shaken, poured, agitated, and the like for certain time periods or a certain number of iterations.
In many lab processes, a sample of some material which contains components to be isolated, mixed, or the like is typically placed in a sample vessel, and processes comprising the steps to be performed on the sample are performed on the vessel and its contents. Materials may be removed from the vessel, added to the vessel, transferred to another vessel, and the like.
Typical lab procedures for working with samples include mixing and agitating the sample, adding material to the sample, removing material from the sample by pouring, and the like. These processes have traditionally been performed by hand. Such manual performance of tasks has been and continues to be labor intensive, requiring time consuming and repetitive tasks that occupy a technician, often to the exclusion of other tasks. The repetitive process steps of processes for working with chemicals, solutions, suspensions, and the like as described above require precision and attention to detail, and may often rely on the skill of the technician responsible for the isolation. Repetitive application of precise process steps lends itself to errors which may negatively affect the quality of the processes performed. In the case of unique or limited samples, such errors may occur when dealing with samples that cannot be duplicated, or are irreplaceable.
Further, during many types of laboratory procedures, such as isolation of DNA, vessels are capped and recapped so that samples and reagents can be added, contents can be shaken or moved, and so forth. Many manufacturing processes, including processes for producing packaged foods, chemicals, medicines, and so forth also involve capping or uncapping of vessels, and the adding and removal of contents.
Typically, threaded vessels and caps are used. Oftentimes, however, it is difficult to start the cap threads squarely on the vessel threads, which can cause the cap to not be securely attached, leading to leakage of vessel contents. In some cases, it may be necessary to stop the entire operation to clean up the spill, leading to reduced productivity. During precise laboratory procedures, such as DNA or RNA isolation, such content loss can also cause contamination and cross-contamination of samples and the laboratory, such that the entire process needs to be restarted. Furthermore, if the vessel itself rotates as the cap is being secured, the vessel may remain uncapped or the cap may not be in the proper position, again leading to problems with loss of vessel contents. Vessel movement can also adversely affect fragile contents, such as coagulated DNA strands suspended in a liquid, which can be torn by viscous effects in the liquid. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to packaged semiconductors, semiconductor packages, leadframe assemblies therefor, and more particularly, but not by way of limitation, to semiconductor packages that can accept semiconductor chips of various sizes without having to change the footprint of the semiconductor package.
2. History of Related Art
It is conventional in the electronic industry to encapsulate one or more semiconductor devices, such as integrated circuit dies, or chips, in a semiconductor package. These plastic packages protect a chip from environmental hazards, and provide a method of and apparatus for electrically and mechanically attaching the chip to an intended device. Recently, such semiconductor packages have included metal leadframes for supporting an integrated circuit chip which is bonded to a chip paddle region formed centrally therein. Bond wires which electrically connect pads on the integrated circuit chip to individual leads of the leadframe are then incorporated. An encapsulating material, or encapsulant, which covers the bond wire, the integrated circuit chip and other components, forms the exterior of the package. A primary focus in this design is to provide the chip with adequate protection from the external environment in a reliable and effective manner.
As set forth above, the semiconductor package therein described incorporates a leadframe as the central supporting structure of such a package. A portion of the leadframe completely surrounded by the plastic encapsulant is internal to the package. Portions of the leadframe extend internally from the package and are then used to connect the package externally. More information relative to leadframe technology may be found in Chapter 8 of the book Micro Electronics Packaging Handbook, (1989), edited by R. Tummala and E. Rymaszewski, incorporated by reference herein. This book is published by Van Nostrand Reinhold, 115 Fifth Avenue, New York, N.Y.
Once the integrated circuit chips have been produced and encapsulated in semiconductor packages described above, they may be used in a wide variety of electronic appliances. The variety of electronic devices utilizing semiconductor packages has grown dramatically in recent years. These devices include cellular phones, portable computers, etc. Each of these devices typically include a printed circuit board on which a significant number of such semiconductor packages are secured to provide multiple electronic functions. These electronic appliances are typically manufactured in reduced sizes and at reduced costs, which results in increased consumer demand. Accordingly, not only are semiconductor chips highly integrated, but also semiconductor packages are highly miniaturized with an increased level of package mounting density.
According to such miniaturization tendencies, semiconductor packages, which transmit electrical signals from semiconductor chips to printed circuit boards and support the semiconductor chips on the printed circuit boards, have been designed to have a small size. By way of example only, such semiconductor packages may have a size on the order of 1×1 mm to 10×10 mm. Examples of such semiconductor packages are referred to as MLF (micro leadframe) type semiconductor packages and MLP (micro leadframe package) type semiconductor packages. Both MLF type semiconductor packages and MLP type semiconductor packages are generally manufactured in the same manner.
One specific problem with the prior art is that chip sizes differ and/or increase due to different computing requirements of different products. With existing packaging design, fitting these larger chips means the packages must be made bigger. Bigger packages have larger footprints (the locations where the leads physically and electrically connect to printed circuit boards). The larger footprints forces the printed circuit boards to be redesigned for proper electrical connection. The redesign takes time and money. Thus, a semiconductor package that can fit circuit chips of different sizes without changing the semiconductor package's footprint is needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The subject matter disclosed herein relates to power production simulation and power distribution simulation, and more specifically, the integration of power production simulation with power distribution simulation.
Certain systems may model and simulate power production systems, such as a power production plant, and simulate the resulting power production systems, for example, to validate and verify a new power production plant design. Likewise, certain systems may model and simulate power distribution and/or consumption, such as an electric grid and power consumptive sites electrically coupled to the grid. The power distribution and/or consumption models may be useful, for example, in simulating the transmission of power through a network, and/or the subsequent use of the power. It would be advantageous to integrate systems that model and simulate power productions systems with systems that model and simulate power distribution and/or consumption systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to ion sources.
An ion source is an apparatus which produces ions in ion accelerating apparatus which uses these ions. Such an ion source ionizes atoms of a material necessary for some specific purpose, and the ion accelerating apparatus accelerates the ions using an electric field, etc.
One type of ion accelerating apparatus used in industry is ion implanting apparatus which is used to manufacture semiconductor devices. In such apparatus, in order to form P-N junctions on silicon wafers, one makes use of the production of various ions by means of an ion source, such as boron (B), phosphorus (P), arsenic (As), or antimony (Sb). Such ions are accelerated by any of a number of various ion accelerators, such as single-stage accelerators, tandem accelerators, rf linear accelerators, etc.
Among the aforementioned ions, only boron can be used as a P type dopant.
2. Description of the Prior Art
In order to produce these boron ions, since boron itself has a very high melting point of 2300.degree. C., it is difficult to produce the vapor, and in the past mainly BF.sub.3 (on rare occasions BCl.sub.3) have been used as the material for supplying the ion source. However, when these molecular-condition materials are supplied to the ion source, various types of ions such as F.sup.+, BF.sup.+, BF.sub.2.sup.+, etc. are formed in addition to the desired B.sup.+, and the defect occurs that the yield of the desired ion is adversely affected. Moreover, in order to increase the yield of B.sup.+ (viz. the rate of decomposition of molecules of BF.sub.3, etc.), one raises the temperature of the plasma, and it becomes necessary to use a greater scale filament electric power supply, anode electric power supply, cooling system, etc. Thus the defect occurs that the apparatus becomes large scale and high price. Moreover, electric discharges, etc. occur frequently because of higher power consumption, and thus the defect occurs that the operation of the ion source becomes unstable. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a closure for a bottle particularly a bottle with liquid contents which may be under a positive pressure. The closure includes a tilting nozzle through which the contents of the bottle are discharged.
Previously such closures have included a cap made from a plastics material with its side wall carrying an internal annular bead adjacent its open end for engagement with the neck of the bottle and its end wall including a tubular nozzle, the closure has also included a closure member arranged to seal against the open end of the bottle neck, the arrangement being such that the closure member can be partially lifted off the open end of the neck by a force applied laterally to the nozzle to tilt it, to discharge the contents of the bottle.
A known tilting nozzle closure of this kind is described in West German Offenlegungsschrift No. 2530232 and in the closure described in this specification the closure member is formed by the closed bottom end of the tilting nozzle. The nozzle is sealed through a central opening in the end wall of the cap and the closed bottom end of the nozzle includes an outer flange which engages the underside of the thickened rim portion of the end wall of the cap adjacent its side wall. When the closure is fitted on to the neck of a bottle the end wall of the cap engages the flange around the closed bottom of the nozzle and urges it against the open end of the bottle either directly or via an annular seal insert formed by soft, resilient material. The nozzle communicates with an annular chamber formed between the side wall of the cap and the upper end of the neck of the bottle by means of at least one radial duct through the side wall of the nozzle.
This closure suffers from various disadvantages. It is difficult to obtain a reliable seal between the closure member and the neck of the bottle when the closure does not include a separate sealing insert and this does not permit the closure to seal the bottle reliably when the contents of the bottle are under a positive pressure. Further, when the closure member includes a sealing insert a greater degree of tilting movement of the closure member is required before the contents of the bottle can be discharged.
Furthermore, the axial stress applied to the closure member to urge it against the open end of the bottle neck has to be provided by the side wall of the cap and, when the closure member is tilted to discharge the contents this axial stress in the side wall of the cap is increased. Firstly, this makes it more difficult to ensure a tight and positive sealing engagement between the annular bead on the internal face of the side wall of the cap and the outer annular bead on the bottle neck and, secondly, increases the risk that the cap will become disengaged from the bottle neck when the axial stress in the side wall is increased by tilting the nozzle. There is also a risk that, as a result of the transverse force applied to the nozzle to tilt it, the closure member will be displaced radially with respect to the open end of the bottle and, thereafter, not form an effective seal. Finally, it is possible that the duct through the side wall of the nozzle, particularly when this is opposite the point at which the transverse force is applied, will be constricted or closed when the nozzle is tilted.
Another closure is shown in the specification of West German Gebrauchsmuster No. 7036290 which is specifically arranged to be used with a bottle having contents under positive pressure. In the closure described in this specification the cap includes a resilient annular connection between the nozzle and the rim of the end wall together with a separate closure member and a sealing washer which is clamped between the open end of the neck of the bottle and the end wall of the cap. The separate closure member is located in the inside of the bottle neck and includes a spigot extending through the washer and into the inside of the nozzle. The closure member is urged towards the end wall of the bottle where it engages against the lower face of the sealing washer to form a seal by the pressure of the contents in the bottle.
The construction of this three part closure is complex and it is, therefore, difficult to produce and install. Moreover, the seal of the closure is only ensured whilst the internal positive pressure of the contents of the bottle is sufficient to thrust the closure member against the sealing washer. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to wrapping plants for purposes of display and transportation, and in particular to covering potted plants for such purposes.
Florists, plant nursery professionals, and the like, have a variety of means at their disposal for wrapping potted plants in an attractive fashion. The coverings must be easy to use, relatively economical, convenient for customers to carry after they have made a purchase, and present the potted plants in an inviting manner. Currently preformed potcovers are available that are leakproof, and can be obtained in a variety of colors and sizes to accommodate pots for plants of varying dimensions. Additionally a preformed plastic wrapping has been disclosed by Daniel Lapalud in French Patent No. 8809110 (filed Jun. 30, 1988-- issued Jan. 5, 1990).
While these wrappings provide and suggest useful conveniences in the merchandising of potted plants, the instant invention offers important additional improvements. Present wrappings either have their base open to permit moisture to drain away from the plant, or provide a leak proof seal at the base. In the former case moisture can be messy during storage and transport, and in the latter case water collecting at the base of the plant can cause vegetation to rot. And preformed potcovers have the disadvantage of being restricted to pots for plants of specific sizes. Also preformed covers tend to be bulky to store in large quantities.
The instant invention addresses these problems, and provides additional conveniences including accommodating a variety of pot dimensions in a particular size covering, built-in means for gripping the covering, means for including a greeting card within the cover, and means for securing large quantities of the covering to a hanger from which the covering can be easily torn away. Further, the aesthetic qualities of the covering are improved by having the cover laminated, with a decorative edge, such as a fluted edge. | {
"pile_set_name": "USPTO Backgrounds"
} |
Voice over IP (VoIP) is a technological development in the field of telecommunications that is utilized to establish and provide voice communications over a data network using the Internet Protocol (IP). Entities (e.g., businesses or individuals) implement VoIP by purchasing and installing the necessary equipment (e.g., one or more Customer Premise Equipment (CPE) devices) and service (i.e., a “high speed” network or broadband connection) to access a VoIP service provider and activating this telecommunication service. Since VoIP is a relatively new technology in terms of its commercial penetration, it has yet to completely supplant the existing and traditional telecommunications system more commonly referred to as the Public Switched Telephone Network (PSTN) or Plain Old Telephone Service (POTS). This is particularly notable in the wireless telecommunications space where cellular telephones, towers and satellites have augmented the “reach” of the PSTN beyond traditional land lines by operating according to wireless communications protocols such as Global System for Mobile communications (GSM) and the like. Accordingly, there is a huge amount of existing PSTN equipment that entities are reluctant to completely abandon for economic and strategic reasons. To further complicate matters, VoIP-based devices and existing PSTN-based devices are not compatible; thus, an entity desiring to exploit VoIP in a wireless environment would have to purchase additional equipment having the appropriate communications protocols such as IEEE 802.11 (also known as Wi-Fi).
To address this shortcoming, mobile telephones containing both cellular and non-cellular radios used for voice and data communication have been developed. Such dual mode phones use cellular radio which will contain GSM/CDMA/W-CDMA (normal and/or wideband code division multiple access) as well as other technology like (Wi-Fi) radio or DECT (Digital Enhanced Cordless Telecommunications) radio. These phones can be used as cellular phones when connected to a wide area cellular network and, when within range of a suitable WiFi or DECT network, these phones can be used as a WiFi/DECT phones for all communications purposes. This dual mode of operation capability can reduce cost (for both the network operator and the subscriber), improve indoor coverage and increase data access speeds. However, a VoIP-capable dual mode telephone must be provisioned using methods beyond the out-of-band methods used by the cellular network. A configuration file (part of the provisioning process) contains the necessary information to provision a VoIP-capable phone with the basic operational parameters to connect to a broadband network, register with the VoIP service provider and complete telephone calls as well as setting default attributes for various selectable functions and options. Since charges (either in the form of a pre-paid minute budget or actual monetary units per connection period) are incurred for accessing a GSM or similar network, it is not desirable to spend such time accessing the GSM network for the purpose of updating or otherwise maintaining a VoIP configuration file. Additionally, if an updated configuration file becomes available while the telephone is in a GSM environment (as opposed to a WiFi environment), signaling the telephone of the availability of such updated configuration file is not economical because there is no direct access to the VoIP service provider.
Therefore, there is a need in the art for a method and apparatus for optimizing both WiFi and GSM type networks in a dual mode telephone for the purposes of provisioning same so as to reduce the operational cost of the associated communications service and improve the user experience. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to improvements in a paper feeding apparatus used in an electrostatic copier or a document image reader in which the lowermost document in a document stack placed on a document stacker can be separated one by one and conveyed to the exposure position on a platen glass.
A recirculating document handler (RDH) and an automatic document feeder (ADF) are used as an automatic document feeder in which a plurality of documents are stacked on a document stacker and the documents are conveyed onto a platen glass of a copier. The paper separating efficiency of a document feeding unit is very important in this kind of apparatus.
The bottom conveyance type of document feeding apparatus is conventionally used as it is excellent in the paper separating efficiency. In Japanese Patent Application O.P.I Publication Nos. 69637/1983 and 76775/1976, this type of document feeding apparatus is disclosed. This apparatus is composed in such a manner that: the lowermost document stacked on a document stacker is separated from the stack and conveyed to the processing unit one by one; and the document is returned to the document stacker or a delivery stacker after the document is exposed.
A typical document feeder of a recirculating document handler (RDH) which realizes the bottom conveyance type of document feeder mentioned above, is the bottom conveyance and upper piling type of document feeder which is composed in such a manner that: a document feed opening is provided to the lower edge-portion of a document feeding unit; a document which is sent from the first document feeding unit close to the document feeding port, is guided from the second document feeding unit through the document feeding passage onto the upper surface of the platen glass of a copier; the document is moved on the platen glass to the exposure position by the motion of a conveyance belt provided on a platen glass; when the document is placed at the exposure position, an optical exposure system is reciprocated in order to expose the document; the exposed document is moved by the motion of the conveyance belt; and the document is conveyed through the recirculating passage and stacked on the uppermost position of the document stack placed on the document stacker.
In the conventional document feeder described above, the first document feeding unit is composed of: a document feeding belt which feeds the lowermost document of the document stack placed on the document feeding position; and a stop roller which comes into contact with the document feeding belt with pressure in order to prevent double feeding of documents. However, in the case of the document feeding apparatus described above, when the documents located at the regular position on the document stacker, are pushed by a push belt to the document feeding position, a plurality of documents are squeezed into the wedge-shaped portion formed by a document feeding belt and a stop roller and furthermore the documents enter into the nip portion.
Furthermore, as the above-mentioned stop roller comes into contact with the above-mentioned document feeding belt with pressure, the front side of the document and the reverse side of another document are rubbed with each other, so that the document surfaces are stained and the image on the document is damaged.
In order to solve the problems described above, the separating document feed system has been proposed in which the suction force or the blowing force by air is used.
The first type of the system was disclosed by the U.S. Pat. No. 4,345,751, which is the rotary suction document separating type of document feeding apparatus in which an rotating vacuum cylinder and the document conveyance unit are combined. This system is characterized in that: a vacuum suction cylinder is provided close to the tip of a document stack located on a document stacker; only the lowermost document of the stack is separated from the document stack by the suction force of the vacuum suction cylinder; and the separated document is adhered to the curved surface of the cylinder and sent downward so that the document can be transfered to the following conveyance unit. After the document is conveyed by the vacuum cylinder, the opening portion of the cylinder is returned to the position right below the document stack.
The cylinder unit of the document feeding apparatus of this proposal must be provided with a mechanism which is characterized in that: when a document is delivered, the vacuum suction is turned on; and when the cylinder is returned, the vacuum suction is turned off.
Furthermore, a strong vacuum suction unit by which the heavy static pressure can be generated, is necessary in order to increase the document separation force, so that it causes such problems that: the noise is increased; a wide space is necessary to install the unit; and the manufacturing cost of the document feed unit is increased.
In this rotating vacuum cylinder type of document feeding apparatus, a pipe made from aluminum alloy is used as a suction and conveyance surface. When the coefficient (.mu.) of friction between the aluminum alloy surface and the document surface is 0.3 to 0.5 and the coefficient of friction between the document surfaces is 1.0, the force necessary to pull out a document from a document stack composed of documents of A3 size, is about 1 kg The force needed to pull out a document from a document stack is determined by the area of the opening of the vacuum cylinder, the static suction pressure, and the coefficient (.mu.) of surface friction. When a strong force is given to a document in order to pull it out from a stack, the front side of one document and the reverse side of the other document are rubbed, which causes such a problem that the surfaces of documents are stained and damaged, so that the quality of images is deteriorated.
The above-mentioned vacuum cylinder and the conveyance roller must be eccentrically placed to the vacuum belt (the negative pressure belt) and their insides must be divided into two in the case of a document feeding apparatus which is composed in such a structure that: a plurality of throughholes are provided to the endless belt which conveys a document from the document stack to the platen glass; and negative pressure is activated to the document through the holes on the belt.
In the case of a plurality of endless negative pressure belt, the irregularity of speed is liable to occur among the belts. As a result, the conveyed document is sometimes deformed. Unless the deformation of a document is eliminated before copying, the document image can not be formed on a recording paper correctly. Furthermore, the structure and motion of this type of document feeding apparatus are complicated and especially the rotating mechanism of the suction drum is complicated.
Further, U.S. Pat. Nos. 4,284,270, 4,324,395, 4,411,417, and the like disclose another conventional document feeding system, which is called the air-knife document separating system.
In this document feeding system, the lowermost document is conveyed by a vacuum belt in such a manner that: the lowermost document of a document stack is sucked by a vacuum suction belt having a protruded portion in the middle so that a space can be made between the document and the document stack; air is blown into the space so that the document stack can be floated by air pressure; and the lowermost document can be pulled out from the stack.
When the document has been delivered from the above-described vacuum suction belt to the following conveyance roller, the vacuum suction must be stopped until the trailing end of the document passes through the vacuum suction belt. The reason to stop the vacuum suction is that: if the vacuum suction is continued after the document is delivered to the conveyance roller, the document is rubbed by the vacuum belt or the document is pulled by the vacuum suction belt. Consequently, it is necessary for the vacuum suction belt unit to be turned on or off every time a document is fed. For that reason, consideration must be given to the suction preparing time which is defined as the time (about some hundreds millisecond) necessary to start the vacuum suction after the vacuum unit is turned on. The suction preparing time is 10 times longer than that of the conventional friction separating type of document feeder, wherein in the case of the conventional friction separating type of document feeder, this suction preparing time is 30 to 50 ms which is the same as the response time of a magnetic clutch. As a result, the response lag of the air-knife separating system is 10 times larger than that of the conventional magnetic clutch system. For that reason, the air-knife separating system is inferior from the view point of the follow-up ability at a high speed, so that it is not suitable for high speed document separation and conveyance. Accordingly, these types of document feeding apparatuses have such problems that: (1) the shape of the document stacker surface is not simple, so that the shape of the suction box can not cope with various sizes of documents; (2) as the document is sucked by an air gap, the lead time is necessary, so that these types of document feeding apparatuses are not suitable for high speed document feeding; (3) as a special blower is necessary for these types of document feeding apparatuses, the control is complicated and the cost is increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application claims priority to Korean Patent Application No. 2002-54609, filed on Sep. 10, 2002, which is incorporated herein in its entirety by reference.
1. Technical Field of the Invention
The present invention relates generally to methods for fabricating a non-volatile memory device. The invention further relates to an EEPROM (Electrically Erasable Programmable Read Only Memory) device and methods for fabricating an EEPROM.
2. Background
In general, semiconductor memory devices are divided into two types: (i) RAM (Random Access Memory) devices in which stored information is lost when the power supply is stopped (i.e., volatile memory); and (ii) ROM (Read Only Memory) devices in which stored information is maintained when the power supply is stopped (i.e., non-volatile memory). One example of a non-volatile memory device is an EEPROM device, which electrically erases and programs information.
FIG. 1 schematically illustrates a layout of a unit cell in a conventional EEPROM device. More specifically, as depicted in FIG. 1, a unit cell of a conventional EEPROM device comprises active regions 11 that are arranged in a horizontal direction and separated by a predetermined interval. A sense line 13 and word line 15 are disposed perpendicular to the active regions 11, and are separated from each other by a predetermined distance.
A common source region 17 is arranged in the active regions 11 at the left side of the sense line 13, and a floating junction region 19 is arranged between the sense line 13 and the word line 15 and under a tunnel region 18 on the active regions 11. In particular, an N+ ion implantation region 21 is formed under the tunnel region 18. A drain region 23 is arranged at the right side of the word line 15, and a bit line contact hole 25, which is used to connect to a bit line (not shown), is arranged in the drain region 23.
In addition, during fabrication, field ion implantation masks 27 are arranged in the horizontal direction to be parallel with the active regions 11, on inactive regions which are separated from the active regions 11 in the horizontal direction by a predetermined distance. As explained below, field ions are implanted in regions of the device in the pattern of the field ion implantation masks 27. Furthermore, during fabrication, floating gate masks 29 are installed on the sense line 13 to overlap the field ion implantation masks 27 to form floating gates. As explained below, a polysilicon layer which is patterned to form floating gates is etched at the portions corresponding to the floating gate masks 29 so that the floating gates are separated by cell unit. The floating gate masks 29 are installed only on the sense line 13 in order to prevent the word line 15 from being broken.
The conventional EEPROM device of FIG. 1 is divided into two transistor regions: a memory transistor region comprising the common source region 17, the floating junction region 19, the floating gates (not shown), and the sense line 13; and a selection transistor region comprising the floating junction region 19, the drain region 23, and the word line 15.
FIGS. 2A through 5C are cross sectional views illustrating a method for fabricating the EEPROM device of FIG. 1. More specifically, FIGS. 2A, 3A, 4A, and 5A are cross sectional views illustrating the EEPROM device of FIG. 1 along the line Y1-Y1xe2x80x2. FIGS. 2B, 3B, 4B, and 5B are cross sectional views illustrating the EEPROM device of FIG. 1 along the line Y2-Y2xe2x80x2. FIGS. 2C, 3C, 4C, and 5C are cross sectional views illustrating the EEPROM device of FIG. 1 along the line X-Xxe2x80x2.
Referring to FIGS. 2A through 2C, a gate insulating layer 105 and a tunnel insulating layer 107 are formed on a semiconductor substrate 101 having inactive regions 103 as field insulating layers. A first polysilicon layer 109, which is later doped with impurities, is formed on the gate insulating layer 105 and the tunnel insulating layer 107.
Thereafter, first photoresist patterns 111 are formed on the first polysilicon layer 109. The first photoresist patterns 111 are formed by depositing a first photoresist layer on the first polysilicon layer 109 and then exposing and developing the first photoresist layer using a field ion implantation mask 27 (refer to FIG. 1). The first photoresist patterns 111 are formed by removing the portions of the photoresist that were covered by the field ion implantation masks 27 (i.e., positive resist).
Next, field ions 113 are implanted into regions of the semiconductor substrate 101 exposed by the first photoresist patterns 111. The field ion implantation process 113 is performed by implanting impurities, for example, boron ions into the portions of the substrate that were masked by the field ion implantation masks 27.
Referring to FIGS. 3A through 3C, the first photoresist patterns 111 are removed. Thereafter, second photoresist patterns 115 are formed on the first polysilicon layer 109. The second photoresist patterns 115 are formed by depositing a second photoresist layer on the first polysilicon layer 109, and then exposing and developing the second photoresist layer using the floating gate masks 29 (refer to FIG. 1).
Next, the first polysilicon layer 109 is etched using the second photoresist patterns 115 as an etch mask to form first polysilicon layer patterns 109a. In effect, the first polysilicon layer 109 is etched in regions corresponding to the pattern of the floating gate masks 29. As shown in FIG. 1, the floating gate masks 29 are disposed over the memory transistor region to prevent the word line 15, which is formed of the first polysilicon layer patterns or the second polysilicon patterns to be formed in a subsequent process, from being broken. As a result, the first polysilicon layer patterns 109a are separated by cell unit to become floating gates in the memory transistor region.
Referring to FIGS. 4A through 4C, after removing the second photoresist patterns 115 that were used as the etch mask to etch the first polysilicon layer, an insulating layer 117 is deposited over the semiconductor substrate 101 having the first polysilicon layer patterns 109a. Typically, the insulating layer 117 is formed of an oxide/nitride/oxide (ONO) layer.
Referring to FIGS. 5A through 5C, a second polysilicon layer 119 (in which impurities are doped) is formed on the semiconductor substrate 101 having the insulating layer. Thereafter, the second polysilicon layer 119 is etched to form second polysilicon layer patterns 119a as shown in FIG. 5C. The second polysilicon layer patterns 119a serve as the gate of the memory transistor region or the selection transistor region.
As described above, in a conventional EEPROM device, the floating gate masks are formed in the memory transistor region as shown in FIG. 1 in order to prevent the word line from being broken. In addition, only the first polysilicon layer 109 in the memory transistor region is etched (in accordance with the floating gate mask pattern), as shown in FIGS. 3A through 3C.
The process for fabrication a conventional EEPROM device as described above uses field ion implantation masks and floating gate masks to form photoresist patterns. However, as shown in FIG. 1, for example, these masks are overlapped. Accordingly, it would be desirable to develop a method for fabricating an EEPROM device in which the field ion implantation mask and the floating gate mask are combined into one mask in order to simplify the fabrication process.
The present invention is directed to EEPROM devices and methods for fabrication EEPROM devices using simplified fabrication processes.
According to one embodiment of the invention, an EEPROM device comprises: a memory transistor including a tunnel insulating layer, first conductive layer patterns, and second conductive layer patterns stacked on a first portion of a semiconductor substrate, and common source regions and floating junction regions arranged at opposite sides of the second conductive layer patterns; and a selection transistor, which is connected to the floating junction regions, and includes a gate insulating layer, the first conductive layer patterns, and the second conductive layer patterns stacked on a second portion of the semiconductor substrate, and drain regions arranged at one side of the second conductive layer patterns opposite the floating junction regions.
Preferably, the first conductive layer patterns in the memory transistor are separated by cell unit and floated, and the insulating layer and the second conductive layer patterns stacked on the first conductive layer patterns are connected to a cell and an adjacent cell, and the first conductive layer patterns and the second conductive layer patterns of the selection transistor are etched and connected by metal plugs.
Preferably, the first conductive layer patterns and the second conductive layer patterns are formed of polysilicon layers to which impurities are doped and the metal plugs are formed of a tungsten layer. Furthermore, the first conductive layer patterns and the second conductive layer patterns of the selection transistor are preferably etched at the portions of inactive regions and connected by the metal plugs.
According to another embodiment of the invention, a method of fabricating an EEPROM device comprises forming a tunnel insulating layer and a gate insulating layer on a semiconductor substrate on which active regions are defined, and forming a first conductive layer on the semiconductor substrate on which the tunnel insulating layer and the gate insulating layer are formed. The first conductive layer is patterned to form first conductive layer patterns, which are separated by cell unit, in a memory transistor, and first conductive layer patterns, which are broken in a word line direction, in a selection transistor. After forming an insulating layer on the first conductive layer patterns and inactive regions, a second conductive layer is formed on the insulating layer. By patterning the second conductive layer, second conductive layer patterns having contact holes are formed in the selection transistor. The second conductive layer patterns are patterned to form a sense line of the memory transistor and a word line of the selection transistor, and an interlevel insulating layer having metal contact holes is formed to expose the first conductive layer patterns. Thereafter, the first conductive layer patterns, which are broken in the word line direction, and the second conductive layer patterns are connected by forming metal plugs in the metal contact holes.
Preferably, after the first conductive layer is formed, field ions are implanted to the inactive regions. In addition, the same masks are preferably used to implant the field ions and form the first conductive layer patterns. Furthermore, it is preferable that the metal plugs are formed of tungsten and that the contact holes and the metal contact holes are formed on the inactive regions.
Advantageously, a method for fabricating an EEPROM according to the present invention provides a simplified process, and results in reduced resistance as a result of connecting word lines using metal plugs.
These and other embodiment, aspects, objects, features, and advantages of the present invention will be described or become apparent from the following detailed description of preferred embodiments, which is to be read in connection with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to well logging methods and apparatus and, more particularly, to methods and apparatus for determining characteristics of the earth formations surrounding a borehole by irradiating the formations with neutrons and measuring the resulting spatial distribution of the neutrons within the formations. The subject matter of this invention is related to subject matter described in copending U.S. Application Ser. No. 671,904 of Yves Boutemy and Christian M. Clavier, filed of even date herewith and assigned to the same assignee. | {
"pile_set_name": "USPTO Backgrounds"
} |
New applications of mobile communications demand high-speed and high-quality, bandwidth-efficient wireless access solutions. The application of MIMO (multiple antennas both in the transmitter and in the receiver) has been demonstrated to drastically improve channel capacity compared to single-antenna systems. On the other hand, OFDM has demonstrated its high spectral efficiency and ability to deal with frequency selective fading and narrow band interference. Therefore the combination of OFDM with spectrally efficient multiple antenna techniques opens the door to high data-rate wireless communication.
Compared with the single input single output (SISO) systems, two kinds of gains are provided by the MIMO wireless systems, namely diversity gain and multiplexing gain. With diversity gain more reliable reception can be realized. With multiplexing gain the capacity of MIMO systems increases linearly with the number of transmit and receive antennas. This is due to the fact that a rich scattering environment can provide multiple data pipes within the same frequency band by using techniques such as space-time coding and space-time layering. Since the capacity can be potentially increased by the application of multiple antennas, the use of up to four antennas at the transmitter and/or receiver has been considered to achieve an increased data rate for a given link performance criterion, or to improve link performance for a given data rate.
For wireless propagation environments, the inherent temporal and spatial variations of wireless channels impose more challenges on the design of a reliable communication system. For noise and interference limited systems, coherent demodulation can achieve 2.5-3 dB SNR gain compared to the differential demodulation. When coherent detection is performed in a receiver, reliable channel estimation is very important to the system performance. Channel estimation in MIMO systems is more complicated because multiple channels should be obtained individually. As the number of transmit antennas increases, the sensitivity to any channel estimation error becomes more pronounced.
OFDM modulation has been adopted by several standards, such as DVT-T, IEEE802.11a/g and IEEE802.16a/d. Different training schemes have been employed in these standards, including preamble, fixed-location pilot and variable-location pilot. However MIMO is not mandatory and is only adopted by IEEE802.16a as optional, and only two transmit antennas on the base station side and one receive antennas on the SS (subscriber station) side are employed. Since IEEE802.16a is designed for fixed and portable applications, the channel varies slowly. For the Wireless MAN (metropolitan area network) OFDM air-interface, the channel estimation is obtained from the preambles. For the Wireless MAN OFDMA air-interface, although variable location pilot symbols are introduced, they are only used to update the channel slowly. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a circuit and method for universally interfacing a sensor, regardless of whether current sourcing or current sinking, with a data bus.
2. Description of Related Art
Conventional current sinking sensors vary current from a current source, typically as a function of a sensed parameter. Conventional current sourcing sensors vary a current supply, also as a function of a sensed parameter.
Certain conventional interface circuits, such as those used with programmable controllers, have a mechanical selector switch for choosing between operating modes of an interface circuit or to select either a current sinking input or a current sourcing input.
U.S. Pat. No. 4,689,499 discloses an electronic circuit having two levels of comparators and associated circuitry that define two threshold levels between which neither comparator is actuated. In response to current flowing from or into a sensor terminal, a sensor input terminal has an input current that varies outside of a window of the threshold levels. Comparator output terminals are each connected to a separate output circuit which produces a signal that can be transmitted on a data bus, in response to actuation of either comparator.
Many conventional interface circuits have no capability to universally accept inputs from either type of sensor, a current sourcing sensor or a current sinking sensor. Other conventional interface circuits can indiscriminately accept inputs from either a current sourcing sensor or a current sinking sensor, but many conventional interface circuits require multiple levels or subcircuits, which increases the cost for a universal interface.
There is apparent need for a simple and low cost interface circuit that can produce an output signal or no output signal as a function of an input current from either a current sourcing sensor or a current sinking sensor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Implantable medical devices, such as electrical stimulators, may be used in different therapeutic applications. In some therapy systems, an implantable electrical stimulator delivers electrical therapy to a target tissue site within a patient with the aid of one or more medical leads that include electrodes. In addition to or instead of electrical stimulation therapy, a medical device may deliver a therapeutic agent to a target tissue site within a patient with the aid of one or more fluid delivery elements, such as a catheter.
Implantable medical devices, such as electrical stimulators, may target, for example, neurological disorders that include movement disorders, such as tremor, Parkinson's disease, multiple sclerosis, or spasticity. Implantable medical devices may also monitor functions of the organs with which they are associated, such as, for example, the functions of the brain. Monitoring functions of the organs targeted by an implantable medical device may support delivery of more effective therapy stimulation. In some cases, particularly with neurological and brain-related disorders and functions, abnormalities may be difficult to detect and distinguish from normal functionalities. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is often beneficial to monitor the condition of filter elements. One of the most common ways to monitor the condition of filter elements is to measure a pressure drop across a filter vessel using a differential pressure gauge. A measurable difference in pressure occurs over time because, in a clean filter, a fluid being filtered flows freely without restriction, and in a filter filled with dirt and debris, the fluid flow is restricted. Accordingly, a fluid flowing through a clogged filter will have a higher pressure before entering the filter and a lower pressure after exiting the filter.
Many types of differential pressure gauges are available. For example, a piston-type gauge can be used to measure pressure drop. A piston-type gauge typically includes a piston that is tightly fit into a cylinder, with a spring attached to one end of the piston. A fluid having a higher pressure is directed by tubing to one end of the piston while a fluid having a lower pressure is directed by tubing to an opposite end of the piston. The spring is configured to oppose motion of the piston in a direction from the higher pressure source to the lower pressure source. The pressure from each respective fluid source exerts a force on each respective end of the piston. When the difference in pressure between the two ends of the pistons is zero, the spring does not compress or extend and the piston is at rest. However, as the difference in pressure becomes greater, the piston is displaced, compressing or extending the spring until the forces on each side of the piston are equal. The position of the piston indicates the difference in pressure between the two ends of the piston.
The position of the piston may be determined in various ways. For example, the cylinder may be clear, allowing a user to actually see the altered position of the piston. Often this clear cylinder is in the form of a glass tube. There are, however, many disadvantages to housing the piston in a glass tube. One common problem is that the glass tube and the piston must each be formed from materials having a similar coefficient of thermal expansion for the piston to retain its close fitting relationship within the glass tube, especially when the piston-type gauge experiences a wide range of temperatures during use. Unfortunately, those materials available for forming the piston to have a coefficient of thermal expansion similar to that of glass are typically expensive metallic alloys, such as Invar 36, that greatly increases the cost of the piston-type gauge. These high cost metallic alloys are also problematic as they often are difficult to machine without causing serious burring in the metallic alloy, which in turn affects the quality of the seal between the piston and the glass tube.
Another problem associated with the use of a glass tube as a housing for the piston is that the strength of a glass tube decreases as a selected diameter of the glass tube is increased, prohibiting the piston-type gauge from utilizing a larger diameter glass tube if high internal pressures act on the glass tube. This occurs because the wall tension found in a cylindrical chamber is directly proportional to both the diameter of the cylindrical chamber and the internal fluid pressure within the cylindrical chamber, meaning that larger diameter glass tubes experience greater wall tensions than smaller diameter glass tubes exposed to the same internal pressure. Accordingly, larger diameter glass tubes fail due to wall tension at lower internal pressures than do smaller diameter glass tubes.
When the glass tube is used to house the piston, the diameter of the glass tube also limits the maximum diameter of the piston to be no greater than the inner diameter of the glass tube. This in turn limits the accuracy of the differential pressure reading. This occurs because the piston is manufactured to have certain tolerances in regards to the manufactured dimensions of the piston. Smaller dimensioned parts introduce a greater percentage of error than do larger dimensioned parts. Because the accuracy of a piston-type gauge is largely determined by an accurate measurement of the surface area of the piston end contacting the pressurized fluid, use of larger diameter pistons with less associated error is preferable.
Alternatively, other piston-type gauges utilize a magnetic sensor to show the position of the piston. However, disadvantages of using a piston displayed through a magnetic sensor include expensive materials and manufacturing processes, increased errors due to damage or interference from the presence of contaminants of a magnetic nature between the piston and the cylinder, and a general decrease in the accuracy of the pressure difference readings due to unnecessary components.
It would be desirable to produce a differential pressure gauge including a remote indicator located remotely from a sensing area of the piston that minimizes errors, maximizes reliability, does not attract contaminants of a magnetic nature, and is inexpensive to make. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a semiconductor memory wherein each of memory cells includes an insulated gate field effect transistor having a floating gate, and more particularly to such a memory having a function of verifying that a memory cell supplied with a programming voltage is actually programmed.
A semiconductor memory employing an insulated gate field effect transistor having a floating gate as a memory transistor is widely used as a programmable read only memory (PROM). The memory transistor further has a control gate connected to a word line and a drain-source path connected to a bit line. In a data programming (write) operation, a programming high voltage is applied to the control gate and the drain-source path to inject carriers into the floating gate, so that the threshold voltage of the memory transistor is shifted from a first, low value to a second, high value. The memory transistor has the first, low threshold voltage, if no carrier is injected into the floating gate or if the carriers are released from the floating gate.
Since the carrier injection depends on the value of the programming voltage and/or a time period for applying the programming voltage and further on electrical characteristics of the memory transistor, it is required to verify that the memory transistor applied with the programming voltage is actually programmed. For this purpose, the PROM is brought into a data read operation immediately after the data programming operation without changing address data to read out data of the memory transistor which has been supplied with the programming voltage. This operation mode is called "program verifying operation". In the program verifying operation, the control gate of the memory transistor is supplied with a reading-out voltage that is larger than the first threshold voltage but smaller than the second threshold voltage. When the memory transistor is actually programmed, therefore, it is not turned ON by the reading-out voltage, so that no current flows through the drain-source path of the memory transistor. The bit line is thereby held at a high level and a data read-out circuit coupled to the bit line produces output data of "1", for example. On the other hand, in case where the memory transistor is failed to be programmed, it is turned ON by the reading-out voltage. In this case, if the threshold voltage of the memory transistor is shifted to a third value that is slightly smaller than the reading-out voltage, the conductive resistant of the memory transistor is considerably large, so that only a small current flows through the drain-source path thereof. The potential level of the bit line is thereby lowered with a large time constant. For this reason, the data read-out circuit produces erroneously the output data of "1" during the program verifying operation period. Thus, there occurs error in judgement. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a Joint Photographic Experts Group Extended Range (JPEG-XR)-based image encoding method and an image encoding apparatus for realizing the same.
2. Description of the Related Art
JPEG-XR, a standard format for handling image data, was internationally standardized in 2009 to compensate for the lack of color information in JPEG. An image encoding apparatus or an image encoding sequence for converting raw image data into an encoded stream by JPEG-XR is shown in FIG. 1.
A digital input image captured by an imaging device is segmented into two-dimensional (2D) blocks. Data of each block undergoes orthogonal conversion from color-space data into a conversion coefficient in the frequency space. If necessary, the conversion coefficient may undergo quantization. When a data pattern of an image exists over multiple blocks, the strength of the conversion coefficient may be further reduced by predicting the quantized conversion coefficient within a frame according to each frequency band.
The 2D conversion coefficient having undergone quantization and coefficient prediction is rearranged in one-dimensional (1D) data such that a significant coefficient may continue forward and a run (zero) may continue backward. An encoded stream is created by entropy-encoding the rearranged 1D data.
The JPEG-XR image encoding scheme capable of changing a quantized value or a coefficient prediction method for each block may change a scan order for each block.
According to the JPEG-XR standard, the detailed structure and sequence of a scan converter for changing the scan order are as shown in FIGS. 2 and 3, respectively.
An operation thereof will be described in detail with reference to FIGS. 4 to 9.
A conversion coefficient corresponding to, for example, a 4×4 pixel shown in FIG. 4 may be considered as a data block, which is a processing unit.
The data block is a set of data corresponding to a pixel, and the upper left data is excluded. A value of each data represents a significant coefficient. As shown in the drawings, a data position (hereinafter block position) in the data block is represented by Pj (where j=1˜15).
FIG. 5 illustrates accumulated non-zero information (herein, a value obtained by uniformly accumulating significant coefficients as 1) of data for each block position in a previously scanned data block. This is a scan state, and represents an evaluation function for determining a scan order. The lower the scan order, the greater its value. In FIG. 5, the scan order is represented in block position.
It is assumed herein that a data block having the values shown in FIG. 6 is input.
Then, the scan converter converts only a coefficient of a block position (i.e., a data value), which is non-zero, into 1, and sequentially adds the converted coefficient to the accumulated non-zero information in the scan order. In this manner, the accumulated non-zero information may be updated as shown in FIG. 7.
Next, the scan converter individually compares values of block positions, which are adjacent to each other in scan order, in the accumulated non-zero information. The values are sequentially replaced to be in descending order (see FIGS. 8 and 9) when there exists a part where the values are in ascending order (the shaded parts in FIG. 7.
The order of block positions when all comparisons and replacements are completed (i.e., the scan order shown in FIG. 9) represents the scan order of the following input data block.
Therefore, the above structure cannot sequentially handle the data block because the scan order of the following data block is determined after the conversion of the preceding data block is completed. Thus, the processing is delayed after the scan conversion, and a digital camera is unable to increase its consecutive photographing speed to a desired value or more.
In order to solve this problem, Japanese Patent Publication No. 2010-193097 discloses that a parallel processing determination unit determines whether the scan order is unchanged as a result of the input of two successive data blocks, and if so, the parallel processing determination unit performs parallel processing in scan order. When there is a change in scan order, the parallel processing determination unit performs the conventional sequential processing.
However, a substantial improvement in processing speed does not result, because the processing speed is improved only when the scan order is unchanged.
If the amount of data block is increased to improve the processing speed by increasing the degree of parallelism, the scan order is likely to be changed, making it difficult to ensure the high processing speed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an organic electroluminescent device (hereinafter, referred to as an “OLED”), and more particularly, to a flexible organic electroluminescent device for blocking moisture from being infiltrated into the organic electroluminescent device to enhance the life of the organic electroluminescent device.
2. Description of the Related Art
An organic electroluminescent device, which is one of flat panel displays (FPDs), may have high brightness and low operation voltage characteristics. Furthermore, the organic electroluminescent device has a high contrast ratio because of being operated as a self-luminous type display that spontaneously emits light, and allows the implementation of an ultra-thin display. Furthermore, the organic light-emitting diode has advantages such as facilitating the implementation of moving images using a response time of several microseconds (μs), having no limitation in viewing angle, having stability even at low temperatures, and being driven at low voltages between DC 5 to 15 V, thus facilitating the fabrication and design of a driving circuit thereof.
Furthermore, the fabrication process of the organic electroluminescent device can be carried out using only deposition and encapsulation equipment, and therefore the fabrication process is very simple.
The organic light-emitting diode having such characteristics can be largely divided into a passive matrix type and an active matrix type, and in the passive matrix type, a device may be configured with a matrix form in which the scan and signal lines are crossed with each other, and the scan lines are sequentially driven as time passes to drive each pixel, and thus instantaneous brightness as much as average brightness multiplied by the number of lines may be required to display the average brightness.
However, the active matrix type has a structure in which thin-film transistors, which are switching devices for turning on or off a pixel region, are located for each pixel region, and drive transistors connected to the switching transistors are connected to a power line and organic light emitting diodes, and formed for each pixel region.
Here, a first electrode connected to the drive transistor may be turned on or off in the pixel region unit, and a second electrode facing the first electrode may perform the role of a common electrode, thereby implementing an organic light emitting diode along with an organic light emitting layer interposed between the two electrodes.
In the active matrix type having such characteristics, a voltage applied to the pixel region may be charged at a storage capacitance (Cst), and applied until the next frame signal is applied and thus continuously driven for one screen regardless of the number of scan lines.
Accordingly, the same brightness can be obtained even if a low current is applied, thereby having an advantage of providing low power consumption, fine pitch and large screen sized display, and thus in recent years, active matrix type organic electroluminescent devices have been widely used.
The fundamental structure and operating characteristics of such an active matrix type organic electroluminescent device will be described below with reference to the accompanying drawings.
FIG. 1 is a circuit diagram for one pixel region in a typical active matrix type organic electroluminescent device.
Referring to FIG. 1, one pixel region of a typical active matrix type organic electroluminescent device 10 may include a switching thin film transistor (STr), a drive thin film transistor (DTr), a storage capacitor (Cst), and an organic light emitting diode (E).
A gate line (GL) is formed in the first direction, and a data line (DL) disposed in the second direction crossed with the first direction to define a pixel region (P) along with the gate line (GL) is formed, and a power line (PL) separated from the data line (DL) to apply a power voltage is formed.
Furthermore, a switching thin film transistor (STr) is formed at a portion where the data line (DL) and gate line (GL) are crossed with each other, and a drive thin film transistor (DTr) electrically connected to the switching thin film transistor (STr) is formed within the each pixel region (P).
Here, the drive thin film transistor (DTr) is electrically connected to the organic light emitting diode (E). In other words, a first electrode, which is one side terminal of the organic light emitting diode (E), is connected to a drain electrode of the drive thin film transistor (DTr), and a second electrode, which is the other terminal thereof, is connected to the power line (PL). Here, the power line (PL) transfers a power voltage to the organic light emitting diode (E). Furthermore, a storage capacitor (Cst) is formed between a gate electrode and a source electrode of the drive thin film transistor (DTr).
Accordingly, when a signal is applied through the gate line (GL), the switching thin film transistor (STr) is turned on, and the signal of the data line (DL) is transferred to the gate electrode of the drive thin film transistor (DTr) to turn on the drive thin film transistor (DTr), thereby emitting light through the organic light emitting diode (E). Here, when the drive thin film transistor (DTr) is in a turned-on state, the level of a current flowing through the organic light emitting diode (E) from the power line (PL) is determined, and due to this, the organic light emitting diode (E) may implement a gray scale, and the storage capacitor (Cst) may perform the role of constantly maintaining the gate voltage of the drive thin film transistor (DTr) when the switching thin film transistor (STr) is turned off, thereby allowing the level of a current flowing through the organic light emitting diode (E) to be constantly maintained up to the next frame even when the switching thin film transistor (STr) is in an off state.
On the other hand, FIG. 2 is a plan view schematically illustrating a plurality of sub-pixel regions of an organic electroluminescent device according to the related art, as a schematic view showing moisture being infiltrated through one sub-pixel region and diffused up to adjoining sub-pixel regions.
FIG. 3 is a schematic cross-sectional view of an organic electroluminescent device according to the related art.
FIG. 4 is a schematic enlarged cross-sectional view of an organic electroluminescent device according to the related art, as an enlarged cross-sectional view schematically illustrating moisture infiltrated through a bank being diffused along the bank.
Referring to FIG. 2, according to an organic electroluminescent device 10 according to the related art, a display area (AA) is defined on a substrate 11, and a non-display area (NA) is defined at the outside of the display area (AA), and a plurality of pixel regions (P), each defined as a region surrounded by the gate line (not shown) and the data line (not shown) are provided, and the power line (not shown) is provided in parallel to the data line (not shown) in the display area (AA).
Here, a switching thin film transistor (STr) (not shown) and a drive thin film transistor (DTr) (not shown) are formed in the plurality of pixel regions (SP), respectively, and connected to the drive thin film transistor (DTr).
According to an organic electroluminescent device 10 according to the related art, the substrate 11 formed with the drive thin film transistor (DTr) and organic light emitting diode (E) is encapsulated by a passivation layer (not shown).
Specifically describing the organic electroluminescent device 10 according to the related art, as illustrated in FIG. 3, the display area (AA) is defined, and the non-display area (NA) is defined at the outside of the display area (AA) on the substrate 11, and a plurality of pixel regions (P), each defined as a region surrounded by the gate line (not shown) and the data line (not shown) are provided, and the power line (not shown) is provided in parallel to the data line (not shown) in the display area (AA).
Here, an insulation material, for example, a buffer layer (not shown) formed of silicon oxide (SiO2) or silicon nitride (NiNx), which is an inorganic insulation material, is provided on the substrate 11.
Furthermore, a semiconductor layer 13 made of pure polysilicon to correspond to the drive region (not shown) and switching region (not shown), respectively, and comprised of a first region 13a forming a channel at the central portion thereof and second regions 13b and 13c in which a high concentration of impurities are doped at both lateral surfaces of the first region 13a is formed at each pixel region (SP) within the display area (AA) at an upper portion of the buffer layer (not shown).
A gate insulating layer 15 is formed on the buffer layer (not shown) including the semiconductor layer 13, and the drive region (not shown) and switching region (not shown) are provided on the gate insulating layer 15, and thus a gate electrode 17 is formed to correspond to the first region 13a of each of the semiconductor layer 13.
Furthermore, a gate line (not shown) connected to a gate electrode (not shown) formed in the switching region (not shown) and extended in one direction is formed on the gate insulating layer 15.
On the other hand, an interlayer insulating layer 19 is formed on an entire surface of the display area on the gate electrode 17 and gate line (not shown). Here, a semiconductor layer contact hole (not shown) for exposing the second regions 13b and 13c, respectively, located at both lateral surfaces of the first region 13a of each of the semiconductor layer, is provided on the interlayer insulating layer 19 and the gate insulating layer 15 at a lower portion thereof.
Furthermore, a data line (not shown) crossed with a gate line (not shown) to define the pixel region (SP) and formed of a second metal material, and a power line (not shown) separated therefrom are formed at an upper portion of the interlayer insulating layer 19 including the semiconductor layer contact hole (not shown). Here, the power line (not shown) may be formed to be separated from and in parallel to the gate line (not shown) on a layer formed with the gate line (not shown), namely, the gate insulating layer.
In addition, a source electrode 23a and a drain electrode 23b brought into contact with the second regions 13b and 13c separated from each other, and respectively exposed through the semiconductor layer contact hole (not shown) and formed of the same second metal material as that of the data line (not shown) are formed in the each drive region (not shown) and switching region (not shown) on the interlayer insulating layer 19. Here, the semiconductor layer and gate insulating layer sequentially deposited on the drive region (not shown) and the gate electrode 17 and interlayer insulating layer 19 and the source electrode 23a and drain electrode 23b formed to be separated from each other forms a drive thin film transistor (DTr).
On the other hand, a second interlayer insulating layer 25 and an organic insulating layer 27 having a drain contact hole (not shown) for exposing the drain electrode 23b of the drive thin film transistor (DTr) is formed on the drive thin film transistor (DTr) and switching thin film transistor (not shown).
Furthermore, a first electrode 29 brought into contact with the drain contact hole (not shown) through the drain electrode 23b and the drain contact hole (not shown) of the drive thin film transistor (DTr) and having a separated form for each pixel region (SP) is formed on the organic insulating layer 27.
In addition, banks 31a, 31b are formed in the boundary and non-display area (NA) of each pixel region (SP) on the first electrode 29.
Furthermore, a first spacer 33a is formed at an upper portion of the bank 31a of the each pixel region (SP), and second spacers 33b are formed at regular intervals at an upper portion of the bank 31b of the non-display area (NA). Here, the first spacer 33a of the each pixel region (SP) is formed in a dot shape, and the second spacer 33b of the non-display area (NA) at the outside of the panel is disposed at a regular interval in the horizontal direction perpendicular to the lateral surface of the display area (AA), and as illustrated in FIG. 3, is formed in a bar shape having a relatively larger size than that of the first spacer 33a.
However, in case of the second spacer 33b of the non-display area (NA) at the outside of the panel, an organic layer 41 with fluidity flows along the second spacer 33b as illustrated in FIG. 5 when coating the organic layer during the encapsulation process.
Accordingly, when the organic layer 41 is non-uniformly coated in the outside region of the panel, an inorganic layer successively deposited at the upper portion thereof, namely, the stack coverage of the second passivation layer 43 becomes poor, thereby providing a vapor path.
In addition, an organic light emitting layer 35 comprised of organic light emitting patterns (not shown) for emitting red, green and blue colors, respectively, is formed on the first electrode 29 within each of the pixel region (SP) surrounded by the bank 31a.
Furthermore, a second electrode 37 is formed on an entire surface of the display area (AA) at an upper portion of the organic light emitting layer 35 and bank 31a. Here, the first electrode 29 and second electrode 37 and the organic light emitting layer 35 interposed between the two electrodes 29 and 37 form an organic light emitting diode (E).
On the other hand, a first passivation layer 39 is formed on an entire surface of the substrate including the second electrode 37.
Furthermore, a high organic molecular substance such as a polymer is coated over the first passivation layer 39 to form an organic layer 41.
In addition, a second passivation layer 43 is additionally formed on an entire surface of the substrate including the organic layer 41 to block moisture from being infiltrated through the organic layer 41.
Moreover, an adhesive is located on an entire surface of the substrate including the second passivation layer 43 to face a barrier film 47 for the encapsulation of the organic light emitting diode (E), and the adhesive 45 is completely glued to the substrate 11 and barrier film 47 and interposed between the substrate 11 and barrier film 47.
In this manner, the substrate 101 is fixed to the barrier film 47 through the adhesive 45 to form a panel state, thereby configuring an organic electroluminescent device 10 according to the related art.
However, according to an organic electroluminescent device according to the related art, the second spacer of the non-display area at the outside of the panel is disposed at a regular interval in the horizontal direction perpendicular to the lateral surface of the display area, and since it is formed in a bar shape having a relatively larger size than that of the first spacer, an organic layer with fluidity flows along the second spacer as illustrated in FIG. 5 when coating the organic layer during the encapsulation process.
In this manner, when the organic layer is non-uniformly coated in the outside region of the panel, an inorganic layer successively deposited at the upper portion thereof, namely, the stack coverage of the second passivation layer becomes poor, thereby providing a vapor path.
Furthermore, the non-uniform portion at the outside of the panel has an uneven step, thereby easily creating a bubble when performing a barrier film bonding.
Accordingly, oxygen (O) and moisture (H2O) introduced through the defective portion, namely, part of the organic layer at the outside portion of the panel leads to a reliability problem such as pixel shrinkage or the like, thereby causing a failure. | {
"pile_set_name": "USPTO Backgrounds"
} |
Liquid and gas mixtures have to be phase separated in order to remove liquid droplets from industrial gas streams to satisfy environmental standards (e.g., radioactive water from steam at nuclear power plants) or to purify gas streams, increase liquid recovery, and to protect rotating equipment located downstream (e.g., oil processing facilities, engine air intakes, gas processing plants). A complete phase separation will eventually occur without employing any mechanical devices given the effects of gravity and long contact times; however, to accelerate this process several separation techniques have been proposed. These techniques operate based on one or more physical forces accelerating fluid separation, such as inertial, gravitational, diffussional, centrifugal and electrostatic. Mechanical equipment operating on these principles include impingement separators (baffle, wire mesh, vanes), cyclones, knock-out pots, and filters, as described in U.S. Pat. No. 6,017,377, and wet precipitators, as described in U.S. Pat. No. 5,843,210.
The above separation techniques are selected based on the liquid collection efficiency requirement, gas flow rate and liquid loading, solid deposition tolerance, pressure drop, and capital cost. There is a need to develop liquid/gas separators that will achieve high level of liquid removal efficiency and throughput and at the same time minimize the amount of energy that is required to treat the gas (pressure drop) and minimize capital cost.
One of the most widely used gas/liquid separators are impingement separators. The basic elements of impingement separators are strategically located devices (targets) on which liquid droplets collide. The simplest impingement separators consist of a baffle or disk inserted against the vessel inlet. These separators provide low droplet removal efficiency but can remove bulk of the liquid entering the vessel. To improve efficiency and recovery of smaller droplets more sophisticated impingement separators have been developed. One type of these devices is vane-type separator that consists of parallel plates (see, e.g., U.S. Pat. Nos. 4,581,051 and 4,557,740) that are straight or bent creating flow channels. Typically, the channels are of uniform cross section across their entire length (see, e.g., U.S. Pat. No. 5,972,062). In these devices, liquid droplets present in the gas stream impinge on the plates due to inertia of the droplets and collect on the vane surfaces in the form of a film of liquid. This liquid film (recovered liquid) drains down the vane into the collection devices without re-entrainment. The channels also can be arranged radially using serpentine vanes (see, e.g., U.S. Pat. No. 5,112,375).
With reference now to FIG. 1, shown is a chevron-style impingement vane bundle or pack 10. As shown, chevron-style impingement vane bundles 10 include vanes 12 affixed to (e.g., welded) inside boxing 14. Two concavely-curved, horizontal plates or outlet baffles 16 are affixed to (e.g., welded) to the boxing 14, channeling the flow of gas so that the gas only flows through the vanes 12 from the inlet-side 18 of the vane bundle 10 towards the outlet-side 20 of the vane bundle 10 and to the outlet nozzle of the separator vessel (not shown). The boxing 14 and the outlet baffles 16 may be welded or otherwise affixed to the separator vessel walls to secure the vane bundle 10 to the separator vessel. The outlet baffles 16 are curved to fit the separator vessel walls and block the vertical flow of gas on the outlet-side 20 of the vane bundle 10. The area formed on the outlet-side of the vane bundle 10, between the vanes 12, outlet baffles 16 and the interior wall of the separator vessel may be referred to as the outlet chord area.
Chevron-style impingement vanes bundles 10 are widely used for the separation of liquid phase droplets from industrial gas streams. Often such vane bundles 10 are employed in vertical vessels in which the gas stream is directed to the vane bundle 10 from either below of from above the vane bundle 10. Several factors limit the amount of gas that can be fed to a given vane bundle 10 without encountering localized flooding in the vane pack 10 and liquid carryover from the separator.
One of these factors is the inlet chord area available between the vane boxing 14 edge on inlet-side 18 of the vane pack 10 and the interior wall of the vessel (not shown). If velocities in this chord area exceed certain values, the gas stream will not disperse itself evenly across the vane bundle 10 and flooding and carryover will occur. To increase the available chord area, vane packs 10 have been placed off center of the vessel centerline, towards the outlet nozzle of the separator vessel. This is done as the inlet chord area is more important to separator performance than is the outlet chord area.
There is a need to increase the inlet chord area even further to increase the amount of gas that can be fed to a given vane bundle without encountering localized flooding in the vane pack and liquid carryover from the separator. | {
"pile_set_name": "USPTO Backgrounds"
} |
Ice cream is often supplied in cylindrical containers, particularly in larger sizes, such as gallons and larger. It may also be supplied in cylindrical containers of smaller measure than a gallon. In conventional ice cream containers the container takes up just as much room in the freezer when it is nearly empty as it does when it is full.
Accordingly, as an object of the present invention to provide one or more rip-strips along the axial length of the container for shortening the container one or more times as the ice cream is used up therefrom.
Yet another object of the present invention is to provide an ice cream container with one or more rip-strips along the axial length thereof with means sealing the rip-strips to balance of the container to prevent leakage when fluid ice cream initially is deposited therein, or upon softening of the ice cream during shipment between the factory and the ultimate consumer. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a drilling tool. More particularly, it relates to a drilling tool or bit which has a shaft member, a crown drilling member detachably connected with the shaft member and a center drilling member detachably connected with the shaft member and located in the interior of the crown drilling member.
Such drilling tools are known in the art and disclosed for example in the German Offenlegungsschrift No. 2,602,238. The center drilling member in the known drilling tool is screwed in a coaxial bore of the shaft member. The drilling tool operates in a satisfactory manner. It has been shown, however, that the drilling process in accordance with the diameter of the core drilling element can be considerably increased when after the initial drilling the central drilling element is removed from the tool. Then the entire impact energy of the hard alloy cutting edges of the ring-shaped crown drilling member can be transmitted to the lock to be drilled. This is true also for known drilling tools. It has been however recognized that many users of the drilling tool do not remove the center drilling means from the tool after the termination of the step of initial drilling. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to low glass transition temperature adhesive copolymers useful in hair-care products to provide hair styling hold, e.g., hair sprays, mousses, shampoos, and conditioners. The present invention further relates to hair styling compositions containing the copolymers of the present invention. In addition, the present invention relates to methods for providing styling hold to hair by utilizing a copolymer or hair styling composition of the present invention.
The desire to have hair retain a particular shape or configuration is one shared by many people, men and women alike. Approaches taken can either involve permanent alteration of the hair or a temporary alteration. The former involves the use of chemical agents to react with the hair in order to achieve the desired effect. This process can be carried out at either room temperature or elevated temperature.
The temporary set given to hair is, as the term indicates, a temporary arrangement which can be removed by water or by shampooing. The materials used to provide the set have generally been resins or gums. The temporary set compositions have taken the form of gels, lotions, and sprays, and, in more recent years, the form of an aerosol foam (i.e., a styling mousse). The compositions are most often applied to hair dampened with water; then combed or spread throughout the hair by other means; followed by letting the hair dry or blow drying the hair.
The set given will vary depending on the materials used. Temporary set hair styling products typically utilize adhesive polymers which are ethanol or water-soluble rigid polymers having glass transition temperatures well above the temperatures experienced in styling hair. Examples of such high glass transition temperature adhesive polymers are found in U.S. Pat. Nos. 3,743,715 to Viout and Papantoniou, issued July 3, 1973; 4,165,367 to Chakrabarti, issued Aug. 21, 1979; and 4,223,009 to Chakrabarti, issued Sept. 16, 1980; the disclosures of all these patents being incorporated herein by reference in their entirety. These adhesive polymers are typically applied to the hair in an ethanol or water solvent, and then set to form rigid welds between hair fibers when the solvent evaporates as the hair dries. These hair fiber welds form the basis for the style hold ability of conventional hair styling products. When these welds are broken, they remain broken unless the appropriate polymer solvent is added to redissolve the adhesive and reform the welds when the hair dries.
In addition, many polymers said to be useful in hair styling products are multi-component polymers which combine three, four, and even more monomers into the polymer chains. Frequently, one of the monomer components is vinyl pyrrolidone. Examples of such complex polymer systems are found in U.S. Pat. Nos. 3,222,329 to Grosser, et al., issued Dec. 7, 1965; 3,577,517 to Kubot, et al., issued May 4, 1971; 4,012,501 to Farber, issued Mar. 15, 1977; and 4,272,511 to Papantoniou and Mondet, issued June 9, 1981; the disclosures of all these patents being incorporated herein by reference in their entirety.
Other polymers said to be useful for hair styling compositions have been disclosed, such as block polymers. These block polymers have two or more glass transition temperatures. Examples of such block polymer systems are found in U.S. Pat. Nos. 3,907,984 to Calvert, et al., issued Sept. 23, 1975; 4,030,512 to Papantoniou, et al., issued June 21, 1977; and 4,283,384 to Jacquet, et al., issued Aug. 11, 1981; the disclosures of all these patents being incorporated herein by reference in their entirety.
Notwithstanding the great effort already put forth to identify these adhesive polymers for use in temporary set hair styling products, there remains a continuing need to identify new polymers which are useful to provide temporary set and other desirable properties to hair. The copolymers of the present invention are copolymers containing two or more selected monomer components randomly distributed in the copolymer chain, and having a single glass transition temperature within the temperature range of from about 0.degree. C. to about 80.degree. C. These copolymers have several properties which make them superior to previously disclosed hair styling polymers for application to hair.
Thus, an object of the present invention is to provide low glass transition temperature adhesive copolymers useful for providing temporary set style hold to hair. Another object is to provide adhesive copolymers that provide this temporary set style hold while remaining pliable on the hair. A further object is to provide adhesive copolymers which lengthen the time such temporary set style hold is perceived to be acceptable. Also, an object is to provide adhesive copolymers which provide good temporary set hair style retention while allowing the perception of continued naturalness such as good hair movement and good hair feel. In addition, an object is to provide polymers which do not make hair feel stiff or sticky. An object of the present invention is also to provide adhesive copolymers which give body and/or fullness to hair, and/or which give the ability to provide lift to hair, and/or which increase hair volume. Another object is to provide adhesive copolymers which are easy to synthesize and utilize in hair styling compositions. Finally, an object of the present invention is to provide superior hair styling compositions comprising the adhesive copolymers of the present invention; and to provide an improved method for styling hair by utilizing an adhesive copolymer or hair styling composition of the present invention.
These and other objects of the present invention will become readily apparent from the detailed description which follows.
All percentages and ratios used herein are by weight unless otherwise specified. | {
"pile_set_name": "USPTO Backgrounds"
} |
The field covers a multifunction warming device including a clinical garment with an elongate convective apparatus supported on the inside of the garment, transversely to the garment, running between its sleeves.
In this specification, use of the term “convective” to denote the transfer of heat from a device to a body refers to the device's principal mode of heat transfer, it being understood that heat may at the same time be transferred from the device to the body by conduction and radiation, although not to the degree of convection.
Convective devices that transfer heat to a human body are known. For example, there are devices that receive a stream of pressurized, warmed air, inflate in response to the pressurized air, distribute the warmed air within a pneumatic structure, and emit the warmed air onto a body to accomplish such objectives as increasing comfort, reducing shivering, and treating or preventing hypothermia. These devices are typically called “convective thermal blankets” or “covers”; for convenience, in this discussion and the following specification, they shall be called, simply, “thermal blankets.” Arizant Healthcare Inc., the assignee of this application, makes and sells such devices under the BAIR HUGGER® brand. One such device is the Model 522 Upper Body Blanket.
Thermal blankets have been specifically designed for particular deployments where therapeutic warming is indicated. Three representative thermal blankets known in the prior art are shown in FIGS. 1A-1D. A “full body” thermal blanket 10 is shown in FIG. 1A. The full body thermal blanket is adapted to lie upon a person and to extend longitudinally along the body of the person in order to cover substantially the person's entire body, from near the ankles or feet up to the neck. A “lower body” thermal blanket 12 is shown in FIG. 1B. The lower body thermal blanket 12 is adapted to lie upon the person and to extend longitudinally along the body of a person in order to cover the person's lower body, from near the ankles or feet up to the waist or pelvis of the person. An “upper body” thermal blanket 15 is illustrated in FIGS. 1C and 1D. The upper body thermal blanket 15 has a bow-tie shape that is adapted to lie upon and extend transversely across the upper body of a person in order to cover the person's chest and extended arms. A head drape 16 may be formed on or attached to the upper body thermal blanket 15 for draping over the head 17 of a person in order to retain warmed air expelled through the blanket 15 about the head to aid in therapeutic warming during surgery. When fed a stream of warmed pressurized air, each of the thermal blankets 10, 12, 15 inflates and distributes the air within itself. While the thermal blanket lies on the person, the warmed pressurized air flows through apertures or interstices in a permeable surface of the thermal blanket which faces the person. These thermal blankets may have one, two, or more inlet ports 18 through which an air hose 19 provides warmed pressurized air from a heater/blower unit (not shown in these drawings).
The construction of thermal blankets is well understood. Examples of specific constructions are given in U.S. Pat. No. 5,620,482, U.S. Pat. No. 5,443,488, U.S. Pat. No. 5,360,439, and U.S. Pat. No. 5,304,213. See also U.S. Pat. No. 5,974,605.
Clinical garments such as hospital gowns are widely used when patients remove clothes in preparation for surgery. A hospital gown provides a disrobed patient with privacy and dignity before and after surgery, and often remains on the patient throughout the surgical cycle. The utility of clinical garments has been expanded by a recent invention disclosed in the referenced Publication No. WO 2003/086500. The invention described in the publication adapts a clinical garment such as a robe or gown to receive a convective device such as a thermal blanket in order to warm a person wearing the garment in a clinical setting for comfort and mobility of the person. An invention covering a multifunction warming device for perioperative use is described in the referenced Publication US 2006/0122671 wherein a warming device is constituted of a clinical garment and a convective apparatus adapted for comfort and therapeutic warming that is supported on the inside surface of the garment.
The term “perioperative” is defined in the PDR Medical Dictionary, Second Edition, (Medical Economics Company, 2000), as “around the time of operation.” The perioperative period is characterized by a sequence including the time preceding an operation when a patient is being prepared for surgery (“the preoperative period”), followed by the time spent in surgery (“the intraoperative period”), and by the time following an operation when the patient is closely monitored for complications while recovering from the effects of anesthesia (“the postoperative period”).
According to Mahoney et al. (Maintaining intraoperative normothermia: A meta-analysis of outcomes with costs. AANA Journal. 4/99; 67, 2:155-164.), therapeutic warming is employed during at least the intraoperative period in order to prevent or mitigate effects that result from hypothermia. In fact, it is increasingly manifest that maintenance of normothermia perioperatively enhances the prospects for a quick, successful recovery from surgery. For example, maintenance of perioperative normothermia appears to be a factor in decreasing the incidence of surgical wound infections in patients undergoing colorectal surgery, (Kurz A, Sessler D I, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J. Med. May 9, 1996; 334(19):1209-1215). Other studies suggest that maintenance of perioperative normothermia improves surgical outcomes at low cost, (Harper C M, McNicholas T, Gowrie-Mohan S. Maintaining perioperative normothermia. BMJ. Apr. 5, 2003; 326(7392):721-722). The effectiveness of therapeutic warming depends upon delivery of enough heat to a patient's body to raise the patient's core body temperature to, or maintain it within, a narrow range, typically around 37° C. This range is called “normothermic” and a body with a core temperature in this range is at “normothermia.” Hypothermia occurs when the core body temperature falls below 36° C.; mild hypothermia occurs when core body temperature is in the range of 34° C. to 36° C. Therefore, “perioperative therapeutic warming” is warming therapy capable of being delivered during one or more of the perioperative periods for the prevention or treatment of hypothermia.
Therapeutic warming is contrasted with “comfort warming” which is intended to maintain or enhance a patient's sense of “thermal comfort”. Of course, therapeutic warming may also comfort a patient by alleviating shivering or a feeling of being cold, but this is a secondary or ancillary effect; and, comfort warming may have some therapeutic effect. However, even though thermal comfort is a subjective notion, environmental conditions that produce a sense of thermal comfort in a population of human beings are known and well tabulated. For example, Fanger (Thermal Comfort: Analysis and Applications of Environmental Engineering, Danish Technical press, Copenhagen, 1970) defines thermal comfort as “that condition of mind which expresses satisfaction with the thermal environment.” Even when a patient is normothermic, less than ideal environmental conditions can result in acute feelings of discomfort. Under normothermic conditions, thermal comfort is largely determined with reference to skin temperature, not core body temperature. Comfort warming is warming applied to a patient to alleviate the patient's sense of thermal discomfort.
Therapeutic warming may be indicated during any one or more of the perioperative periods. For example, for a short operation in a surgery with no warming equipment available, a person may be warmed preoperatively in a preparation area to raise mean body temperature to a level higher than normal in order to store enough thermal energy to maintain normothermia, without heating, intraoperatively. After surgery, it may be necessary to apply therapeutic warming in a recovery area to raise the core temperature to normothermia and maintain it there for a period of time while anesthesia wears off. Alternatively, for a long surgery in an arena with heating equipment available, a person may be warmed for comfort before surgery and warmed therapeutically during and after surgery.
Therapeutic warming is typically provided by convective devices such as the thermal blankets shown in FIGS. 1A-1D. An example of use of a full body thermal blanket for therapeutic warming is found in U.S. Pat. No. 6,524,332, “System and Method for Warming a Person to Prevent or Treat Hypothermia”, commonly owned with this application.
The upper body thermal blanket 15 shown in FIGS. 1C and 1D is frequently used during thoracic, abdominal and pelvic surgery and/or in the post anesthesia care unit (PACU) to satisfy the need for therapeutic warming. As is known, a patient's core body temperature can drop to hypothermic levels quickly during surgery. To prevent or mitigate the effects of hypothermia, an upper body blanket may be deployed for therapeutic warming during the intraoperative period. However, the need for therapeutic warming often is ascertained only after surgery commences and it is inconvenient, and sometimes it is not possible, to interrupt attendance on a patient during a surgical procedure in order to locate and deploy a thermal blanket and bring it into operation. In such cases, therapeutic warming can be delayed until the patient enters the PACU, when the patient may have been hypothermic for a significant period of time. Given the frequency with which upper body thermal blankets are used during and after surgery, it would be very useful and clinically beneficial to conveniently position an upper body convective device with respect to a patient so that it could be quickly accessed and deployed during thoracic, abdominal, or pelvic surgery with little or no time spent in retrieval.
A warming device combining a clinical garment with a convective insert to provide comfort warming does not provide for therapeutic warming during thoracic surgery. Thus, even for a patient wearing a clinical garment with a convective apparatus as disclosed in WO 2003/086500, an upper body thermal blanket must be unpackaged, made ready and deployed during such surgery. Warming may be indicated postoperatively in order to stave off hypothermia while the patient's recuperation proceeds. Manifestly, a substantial convenience and a significant gain in a patient's physical condition would result from use of a warming device capable of clothing a patient preoperatively, while positioning a convective apparatus to therapeutically warm the patient during thoracic, abdominal, or pelvic surgery and postoperatively. Because of wide-spread and frequent use, it would be particularly desirable to have a multifunction warming device constituted of a clinical garment with a convective apparatus supported on the inside of the garment for easy deployment and use in warming a patient's upper body.
The assignee's Publication US 2006/0184217 published Aug. 17, 2006 discloses a warming device for perioperative use in which thermal blankets are attached to the inside surface of a clinical garment. However, use of the thermal blankets for therapeutically warming a patient wearing the clinical garment requires either that the thermal blanket be detached from the inside surface and repositioned for use, or that the clinical garment be removed from the patient and repositioned in order to correctly orient the thermal blanket with respect to the patient. In either case, the extra steps to access the thermal blanket for operation complicate use of the warming device, and consume time otherwise spent tending to the patient.
The deterrents to adoption of the warming device disclosed in US 2006/0184217 are eliminated by disposing an elongate convective thermal blanket for upper body use on the inside of the clinical garment, transversely to the garment, between its sleeves, with its permeable surface facing the patient. This positioning of the convective apparatus in the clinical garment locates it against the chest of a patient wearing the garment and permits it to be deployed and used on the patient during and after surgery without removal of the clinical garment from the patient, without removal of the convective apparatus from the gown, and without reorientation of the clinical garment in order to correctly orient the convective apparatus with respect to the patient. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an adjustable spanner or similar gripping device of the type which comprises a shaft or a handle and a gripping head which is defined by two jaws, of which one is preferably stationary and the other is displaceable so as to permit variation of the opening or gap of the head, at least the second jaw being provided with cogs which are in permanent mesh with cogs rotatably journalled in relation to the shaft on a wheel which is actuable by, for instance, a spring to rotate in such a direction that the jaws always strive to approach one another, the wheel co-operating with a locking or arresting device which is switchable between two positions, namely a free position in which the wheel may rotate and a locked or arrested position in which rotation of the wheel is prevented and displacement of the one jaw in relation to the other is obstructed.
2. Description of the Related Art
Swedish patent specification No. 8401884-5, filed in the same name, discloses an adjustable spanner which utilizes a specific type of coupling entitled spline coupling for realizing mechanical interconnection. This prior art coupling fundamentally suffers from two major drawbacks, namely its relatively high cost and the fact that steplessness in interconnection is difficult to achieve, since the prior art coupling is stepped by its very nature, even if the steps may be made slight and, moreover, may be further reduced by specific additional measures. However, such measures in respect of the prior art coupling have a tendency to render the coupling even more expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
Row-Level Security enables customers to control access to rows in a database table based on the characteristics of the user executing a query (e.g., group membership or execution context). Row-Level Security (RLS) simplifies the design and coding of security in your application. RLS enables you to implement restrictions on data row access. For example ensuring that workers can access only those data rows that are pertinent to their department, or restricting a customer's data access to only the data relevant to their company.
However, many systems share a common database connection such that a database is unaware of the particular user accessing the database. Instead, an application is used to regulate access to the data. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method of treating a parasitic infection, particularly endoparasitic filarial infections, in animals, using certain pentafluorothio)benzamide-acetonitrile derivatives, hereinafter aminoacetonitrile (AAD) derivatives or compounds of the present invention.
There is a continuing need to provide new agents for the control of parasitic infections that present a threat to human and animal health. In particular, new agents are needed to manage parasitic infections in animals due to the increasing prevalence of parasites, and in particular nematodes, that are resistant or becoming resistant to many of the agents currently approved for this indication. For example, the heartworm, Dirofilaria immitis, is showing both phenotypic and genotypic signs of resistance to macrocyclic lactones, a usual course of treatment.
The aminoacetonitrile derivatives of the present invention have been previously described generically and as examples in U.S. Pat. No. 7,608,604, U.S. Pat. No. 7,622,500, and U.S. Pat. No. 8,168,681. Specific aminoacetonitrile derivatives and uses thereof as antiparasiticides in animals and/or plants have been disclosed in international patent application publications WO2010/056999, WO2008/144275, and WO2005/044784.
There remains a need for further compounds as alternative or improved therapeutic agents, particularly for the treatment of endoparasites, especially for filarial nematodes. Preferred compounds should be potent endoparasiticidal agents while presenting little or no toxicity to the host animal, and should exist in a physical form that is stable, non-hygroscopic and easily formulated. They should have high bioavailability, be metabolically stable and possess favorable pharmacokinetic properties. Heartworm data based on both the L4 larvae and microfilaria of D. immitis is presented herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
Gas turbine engines are used to power aircraft, watercraft, power generators, and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. In the combustor, fuel is mixed with the high pressure air and is ignited. Products of the combustion reaction in the combustor are directed into the turbine where work is extracted to drive the compressor and, sometimes, an output shaft. Left-over products of the combustion are exhausted out of the turbine and may provide thrust in some applications.
Gas turbine engines used in aircraft may include a fan assembly that is driven by the turbine to push air through the engine and provide thrust for the aircraft. A typical fan assembly includes a fan disk having blades and a fan case that extends around the blades of the fan disk. During operation, the fan blades of the fan disk are rotated to push air through the engine. The fan case guides the air pushed by the fan blades.
The fan assembly may further include a windage shield coupled to the fan disk to assist in guiding air through the engine. The windage shield may be positioned to block entry of high pressure air into ambient environments within the gas turbine engine. Harmful stresses may form in the windage shield during operation of the gas turbine engine. These stresses may result from high rotational speeds of the fan assembly or from differences in thermal and mechanical expansion rates between the windage shield and the fan disk. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.