text
stringlengths 2
806k
| meta
dict |
---|---|
End users appreciate reliable components for their printing devices. They also appreciate cost-effective solutions for their printing needs. Designers and manufacturers may, therefore, endeavor to create and provide printing device components directed toward at least some of these objectives. | {
"pile_set_name": "USPTO Backgrounds"
} |
Lawn mowers are known in the art. For example, stand-on mowers are discussed in U.S. Pat. Nos. 6,138,446, 6,390,225, 6,189,304, 6,438,930, 6,658,831, 6,560,952, 7,428,884 and 5,964,082, the disclosures of all of which are all hereby incorporated herein by reference. Example walk-behind lawn mowers are discussed in U.S. Patent Document 2005/0126146 and U.S. Pat. No. 4,920,733, the disclosures of which are all hereby incorporated herein by reference. Example mower operable by seated occupants are discussed in U.S. Patent Documents 2001/0001170, 2002/0059788, U.S. Pat. Nos. 6,438,930, 6,658,831, and 6,560,952, the disclosures of which are all hereby incorporated herein by reference.
FIGS. 1-4 illustrates different features of an example commercial mower, found in U.S. Pat. No. 6,138,446. The mower includes cutter deck 1, engine deck 3, a pair of front castor wheels 5, a pair of rear drive wheels 7, thigh pad 13 for permitting the operator to rest his/her thighs thereon during operation, support assembly 15 extending upwardly at an angle from engine deck 3 so as to support thigh pad 13 and handle control assembly 11, combustion engine 9, and operator support platform structure 18 which includes pivotal platform sheet 234 for supporting feet of an operator during mower operation. The handle control assembly 11 includes rigid handle bar 10 fixedly attached to supports 15, reverse control levers 17, and forward control levers 19. Control levers 17 and 19 are pivotally affixed to supports 15 about axis 21 so that the standing operator can control the steering of the mower via the rear drive wheels 7 by pivoting levers 17 and/or 19 during operation. The mower is of the zero radius turning type in certain example embodiments, with the wheels being hydraulically driven. When the mower is driven forward, it travels forward in travel direction TD when cutting grass.
Hydraulically driven (i.e., hydrostatically controlled) mowers often include a pair of drive wheels, each of which is independently operated by a hydraulic (i.e., hydrostatic) pump coupled to the mower's engine. A corresponding motor may be provided for each drive wheel, each motor being powered and controlled by one of the hydro pumps. Each pump typically includes a control lever for regulating fluid pressure and direction to its corresponding motor so that the drive wheels can be independently controlled so that each may be rotated at variable speeds in both forward and reverse directions. In this manner, the mower may be steered by controlling the speed and direction of the two drive wheels, and may be referred to as a zero radius turning mower. Zero radius turns are typically performed when the two drive wheels are operated at approximately the same speed but in opposite directions so that the mower pivots or turns about a vertical axis extending upwardly from a location between the drive wheels. In the FIG. 1-4 mower, the hydraulically controlled drive wheels 7 are considered rear drive wheels.
FIG. 2 illustrates standing platform supporting structure (with certain exceptions such as support sheet 234) shown generally by reference numeral 18. The supporting structure 18 includes support sheet 234 for supporting an operator's feet during mower operation, sidewalls 151 for isolating the operator's feet from the drive wheels 7 and their motors, vertical surface 153, elongated annular bar 155 welded to the platform structure so as to give structure for wheel motor brackets 157 on both sides of the platform, a pair of motor brackets 157, rigid channel shaped member 159 disposed between sidewalls 151, a rest 160 for the front of the standing platform, handlebar upright base members 163, via holes 165 for attachment purposes, support surface 164, and mounting holes 169 provided on each sidewall for permitting wheel motor brackets 157 to be affixed to the sidewalls.
FIGS. 3(a)-3(b) illustrate the handle bar support assembly and other items from the rear of the prior art mower. The assembly includes sheet metal supports 15 on either side of the mower, central bends 23 in supports 15, dash panel 27, pivots 63, bend sections 143 at the bottom areas of supports 15 for bolting supports 15 to the engine deck, cutter deck 1, operator foot platform 18, rear drive wheels 7, and platform sidewalls 151.
FIG. 4 illustrates the cutter deck 1 and a deck belt cover 331 (including wall 340) for resting thereon. The entire structure shown in FIG. 4 may be considered part of the cutter deck or cutter deck assembly. The cutter deck 1 in this non-limiting example instance includes top deck surface 602, wall 191 which extends from upper surface 602 of the cutter deck for housing pulleys and the like, vertical housing wall 181 located around the periphery of the cutter deck (mower deck), cutting blades (not shown in FIG. 4) located beneath top surface 602, cover 331 which rests on post members 332 and caps 333 when knobs 334 are tightened down, threaded studs 335 attached into idler pivot pin 336 in order to align cover 331 and knobs 334, and idler arms 339 which rotate on pins 336. The tops of idler pivots pins 336 may be slightly lower in elevation than the tops of caps 333.
FIGS. 1-4 have been provided to illustrate general components of an example non-limiting lawn mower. Further details of the structure shown in FIGS. 1-4 may be found in U.S. Pat. No. 6,138,446, the disclosure of which is hereby incorporated herein by reference.
While the aforesaid lawn mowers are desirable for many uses, they can also be improved in certain respects such as with respect to improving cutting performance. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention is based on an insertable tool with a rotationally driven disk-shaped hub.
Typically, disk-shaped insertable tools, such as grinding wheels or cutting-off wheels for angle grinders, consist entirely of bonded grinding means, and they have a central circular recess by way of which the insertable tool can be fastened to an angle grinder spindle with a lock nut by nonpositive engagement in the circumferential direction and by positive engagement in the axial direction. Both insertable tools that have a reinforcement of sheet metal in the region of the recess and those without such a reinforcement are known. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to new and critical information discovery, processing, and analysis. In particular, various embodiments of the present invention relate to a system and a method for knowledge pattern search from networked agents, wherein the knowledge pattern search is associated with a pattern-identifying analysis model construction and application and real-time data analysis. Furthermore, various embodiments of the present invention are also related to constructing knowledge patterns identified through data mining and text mining, supervised or unsupervised machine learning, and pattern recognition methods.
One of the disadvantages of using conventional search engines for a computer-networked environment (e.g. data network such as the Internet, intranets, LAN's, and etc.) is that they typically sort documents based on the popularity of documents among linked or relevant documents. The conventional popularity-based relevance ranking in conventional search engines for a computer-networked environment is often based on the assumption of linked documents or databases (e.g. Google's PageRank algorithm is largely based on how many in-coming links a page has), and not based on semantics among the documents or databases. Therefore, it may not satisfy search needs or relevance among pieces of information, if the links among the documents or databases are not available. For example, documents in a typical enterprise among different business categories, which are not cross-linked like in the world wide web, may not show up in search results together coherently, even if there are pieces of information in the contents (e.g. semantics) of the documents which render them to be mutually relevant.
Machine-based understanding of semantics and extracting meaning from the semantics among pieces of information to discover events, patterns, and trends can be a challenging task, which is currently only performed in small scales for a small amount of information. At best, there are a number of extant tools for data and text mining in the advanced search engines such as keyword analysis and tagging. These conventional search engines may employ search assistant and language tools, but only offer suggestions of keywords as a user types a certain term into a search engine. However, these conventional keyword analysis and tagging are unable to provide pattern identifications or predictive capabilities to a user.
Furthermore, there is increasing need to share data mining results and search indexes across multiple organizations and businesses that require analysis of open-source data, which may comprise uncertain, conflicting, partial, and unverified data. Organizations and businesses increasingly comprise culturally and geographically-diverse partners with rapidly changing team members and various organizational structures. Because real-time information present in computer networks, including structured data from databases and unstructured data such as text, is enormous and often distributed among millions of computers around the world, a method to collect relevant data to a centralized location has been devised (e.g. a web crawler), but these methods are generally expensive to implement and maintain.
Therefore, the conventional search engine business is generally expensive to operate and maintain, because computer systems associated with the conventional search engine has to copy and store all the data locally before it can index them. In order to respond to this challenge, more powerful information analysis tools which can quickly extract meaning and intent from an origin of data may be beneficial. It may be even more beneficial, if the data mining results or indexes can be accessed across a data network without leaving local computers, or other origins of localized data.
Because a popular piece information is not usually new or unique, the conventional method of searching information in a computer-networked environment may not be useful for certain types of information discovery applications in which a user seeks new, unique, and/or interesting information which may be not popular or well-known by other users. Searching for new, unique, and/or interesting information regardless of their popularity may enable more accurate predictions for early warnings systems for data anomaly detection, competitive intelligence, and business analysis. Furthermore, utilizing localized data mining results or search indexes in each learning agent (e.g. a local computer, an electronic device connected to a local computer, and etc.) to produce collaborate search returns without moving large amounts of data among different learning agents may also be beneficial.
Therefore, a novel system and a related method, which can discover useful information patterns and data anomalies based on semantical analysis and collaborative search returns of various pieces of disjointed yet new and unique information from multiple information sources (i.e. “learning agents”), may be highly beneficial for users in the field of data anomaly detection, competitive intelligence, and business analysis. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a roll paper conveying apparatus that conveys roll paper to a predetermined printing position, and also relates to an inkjet printer that uses the roll paper conveying apparatus.
2. Description of the Related Art
In a roll paper compatible printer that uses roll paper as a printing medium to print an image, the amount of the paper to be fed into a printing position must be controlled precisely because the load fluctuates as the amount of remaining roll paper being set changes. If the roll paper is directly pulled by carriage rollers, load fluctuation acts as a disturbance to the control of a conveying motor driving the carriage rollers, resulting in unstable control and therefore desired stop position precision may not be obtained. In addition, if roll paper having a large moment of inertia is directly pulled by the carriage rollers, the carriage rollers might slip on the roll paper to cause the amount of paper to be fed to change, resulting in print deviation even if the conveying motor is precisely controlled.
Therefore, such a roll paper compatible printer includes a driving source for unwinding the roll paper and pulling to covey the roll paper toward the carriage rollers. The driving source for unwinding and pulling the roll paper is provided separately from the conveying motor for driving the carriage rollers. Furthermore, a movable member is arranged upstream of the carriage roller so as to come into contact with the unwound roll paper and apply an optimal tension thereto. Thus, control of the conveying motor may be prevented from being affected adversely by a fluctuation in the load, which fluctuates as the amount of the remaining roll paper changes. Moreover, even if the roll paper slips, the amount of paper to be fed into the printing position can be controlled precisely.
In addition, as a technology related to conveyance of roll paper, Japanese Patent Application Laid-open No. S62-83968 discloses a technology that continuously detects the amount of displacement of a movable member, and increases or decreases the degree of roll paper to be unwound in a manner following the amount of displacement of the movable member to continuously manage pulling and conveying of the roll paper as well as tension thereof. More specifically, the technology disclosed in Japanese Patent Application Laid-open No. S62-83968 converts an encoder pulse corresponding to rotations of a roll paper driving motor for driving a roll paper shaft into a voltage, compares the voltage with a reference voltage, and performs proportional control to bring the difference between the voltage and the reference voltage to zero. The reference voltage is increased or decreased using the resistance of a rotary variable resistor corresponding to the roll paper diameter, and the resistance of a rotary variable resistor corresponding to the position of a movable guide plate.
The movable range of the movable member kept in contact with the roll paper to apply the optimal tension thereto is restricted by the space in which the movable member is installed inside the machine. In particular, when the machine is demanded to be compact, the movable range of the movable member tends to be restricted largely. In the technology disclosed in Japanese Patent Application Laid-open No. S62-83968, the rotations of the roll paper driving motor are controlled correspondingly to the amount of displacement of the movable member (movable guide plate). Thus, even if the amount of displacement of the movable member increases, the movable member is expected to gradually return to its home position (hereinafter, referred to as a “reference position”) as the roll paper driving motor is controlled continuously. However, such control lacks responsiveness. While the responsiveness of the control is expected to be improved by increasing the feedback gain, an increase in the feedback gain of the control of the roll paper driving motor that is to unwind and convey the roll paper having a large mass will result in oscillations and an unstable control. Therefore, the feedback gain cannot be increased.
Therefore, in an inkjet printer required to feed the roll paper intermittently in units of the print width to the printing position, it is difficult to bring the movable member to the reference position within a paper feeding cycle even if the technology disclosed in Japanese Patent Application Laid-open No. S62-83968 is applied in an attempt to control the amount of displacement of the movable member. A deviation of the movable member from the reference position gradually accumulates every time the intermittent paper feeding operation is repeated. As a result, the movable member might be displaced out of the movable range, and collide with the inner surface of the housing of the machine or other components inside of the machine, for example, to damage the movable member, to cause vibrations or abnormal noise, or to smear the paper. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to feeding offset-jogged sets of sheets.
Many devices for printing and/or processing sheets of paper, such as laser or other electronic printers, offset printers, photocopiers, and collating equipment, can be operated to produce plural "sheet sets," e.g., where each set of sheets is one copy of a multiple-page document. Successive sheet sets in the "stack" of sets are typically "offset-jogged" or "offset-stacked" with respect to one another. That is, each individual set is shifted or offset--either laterally, longitudinally, or radially--with respect to the immediately adjacent set or sets.
After being printed and/or collated, individual sheet sets are often processed, such as by covering, trimming, folding, stitching, or otherwise binding them. Such processing can occur either "on-line" or "off-line." In on-line processing, individual sheet sets are removed and transported to the processor as they are outputted from the printer or collator.
In off-line processing, the entire stack of sheet sets is transferred to the processor or processors after printing or collating is complete. The processor then identifies and processes individual sheet sets. Because processing equipment typically has a higher "throughput rate" (i.e., sheets per unit time) than printers or collators, the outputs of several printers and/or collators may be fed to a single processing unit. | {
"pile_set_name": "USPTO Backgrounds"
} |
Digital printers capable of outputting variable data which are in use and include those based on a inkjet method, and methods using magnetism, ions, electric condensation, etc, in addition to an electrophotographic method, but the electrophotographic method is currently the most widely spread. This electrophotographic method is a technique used in copying machines and laser printers, and also called a xerography method. This is a variable printing method which allows rewriting every time, and has been creating new demand for printing.
In a digital printer using this electrophotographic method, a positive charge is given by a corona discharge to a photo conductor drum charged by laser, and if an image is described into this photo conductor drum by the laser or a light emitting diode (LED), the charge is neutralized in the portion of the drum where the image has been described. If toner is provided to this part, the toner only adheres to the part where the charge remains, thereby forming an image. Then, the printing machine is used to transfer the image by superposing paper on the toner image.
This electrophotographic method described above further includes a direct transfer method which performs the transfer from the photo conductor drum directly to the paper, and an offset transfer method in which the image is once transferred to an intermediate transfer sheet and then transferred from the intermediate transfer sheet to the paper. The former provides printing quality lower than that of normal offset printing, and is not capable of printing on an embossed sheet and the like. The latter is very expensive because the intermediate transfer sheet has a particular configuration and performance. The latter also has a particular installation structure in which an electrode, among others, has to be removed when the intermediate transfer sheet is attached to a transfer drum, which causes much difficulty in handling.
The intermediate transfer sheet for use in the latter method includes, for example, an intermediate transfer blanket described in Japanese Patent Publication Laid-open No. 11-512910. This blanket comprises an image transfer portion adapted to receive an image which has already been formed, and a body portion attached to the transfer drum. The image transfer portion comprises an alignment layer provided under a release layer to be a transfer surface, while the body portion comprises a conductive top layer, a compressive layer and woven cloth layer. The blanket is formed by stacking the alignment layer of the image transfer portion on the top layer with or without the conductive layer in between.
To use the intermediate transfer blanket having such a configuration, an elongate conductive bar in which a series of L-shaped attachment legs is integrally formed is attached to an end of the intermediate transfer blanket for installation on the drum. To attach the conductive bar, the conductive layer is directly inserted without including the release layer, the alignment layer and an obstacle layer, thereby integrally forming the conductive bar.
Thus, in the known blanket, the conductive bar serves as the electrode to supply a voltage to the conductive layer. Therefore, the electrode also has to be removed when the blanket is attached to the transfer drum, which causes a problem in that the structure is complicated and that the attachment is troublesome. Another problem is that when the blanket is replaced, it is necessary to cut the blanket along an edge of an attachment member which is the conductive bar and to separate the attachment member from the blanket in order to remove the attachment member from the drum. Its manufacturing method is also complicated and significantly expensive.
It is therefore an object of this invention to provide an image transfer sheet which solve the foregoing problems, wherein printing quality equal to that of the normal offset printing is maintained in printing with an image forming technique (apparatus) using a principle of the electrophotographic method, and wherein the electrode can be directly removed from the drum and can be installed on the drum in a significantly simple manner.
Furthermore, this invention provides an image transfer sheet which can be manufactured in an inexpensive, simple and easy manner.
It is another object of this invention to provide an intermediate image transfer sheet particularly suited to transfer a liquid toner image. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to a system and method of controlling one device capable of accessing Internet Protocol Television (IPTV) using a second device and more specifically to manipulating video content.
2. Background Discussion
IPTV is capable of receiving services delivered using the architecture and networking methods of the Internet Protocol Suite and additionally, may be capable of receiving services delivered using a broadcasting network. IPTV services include, for example, live television, time-shifted programming, video on demand (VOD), and on-line transactions. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventionally, nut runners are widely used as a tool for performing tightening work and loosening work of bolts & nuts and screws.
Nut runners are roughly classified as straight nut runners having an output shaft pivotally supported on a straight line against the rotating shaft of the drive source, and angle nut runners having an output shaft pivotally supported approximately perpendicular to the rotating shaft 1 of the drive source M. Angled nut runners are applied to tightening work and loosening work at comparatively narrow points where a straight nut runner cannot be used, as shown in FIG. 3.
As greater importance is attached to quality control of industrial products, in recent years, a production control system has been adopted which consists of automatically measuring-recording the number of tightened pieces and tightening force of bolts & nuts and screws, and feedback the results of measurement in real time to the production of industrial products.
In the angle nut runner indicated in FIG. 3, a torque transducer TM for performing measurement of tightening force is disposed at about the middle position of the nut runner body B, to be available for use for the above-described production control system.
However, in the case where the torque transducer TM for performing measurement of tightening force is disposed at about the middle position of the nut runner body B, there is a problem that the genuine tightening force cannot be measured accurately, because the tightening force measured by the torque transducer TM inevitably includes the resistance, etc. of the power transmission mechanism for transmitting the turning force of the drive source M to the output shaft 2, to be concrete, the bevel gear mechanism BG. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cloud computing has evolved as an alternate model to regular computing operations of an enterprise. Generally speaking, cloud computing involves delivery of computing as a service rather than a product, whereby shared resources (software, storage resources, etc.) are provided to computing devices as a service. The resources are shared over a network, which is typically the internet. Cloud computing thus provides a quick and scalable access to computing resources and information technology (IT) services. | {
"pile_set_name": "USPTO Backgrounds"
} |
Presently, slide assemblies are utilized as the mounting hardware between a component and a rack within which the component may be stored. For example, if the component is an electronic component such as a server, then the use of a rack allows for a plurality of servers to be utilized with efficiency of storage, and convenience of accessibility. In many cases, the rack may have a back panel to which the electronic components can connect. Thereby allowing the components to receive their power connections, network connections, phone connections, and the like.
In general, the use of slide assemblies allows for a simple way to hold a component or plurality of components within the rack which also offers convenient access. For example, when a slide assembly is used then the component may be slid completely into the rack during normal function and slid partially out of the rack for maintenance. Therefore, once the component is mounted within the rack, there is no need to remove the component from the rack. This type of slide assembly becomes very useful when the component is heavy, cumbersome, fragile, or the like. For example, if the component is a server which is extremely heavy, then instead of two or more technicians or power assisting machinery being required to perform routine maintenance on the server, a lone technician may simply slide the server partially out of the rack thereby gaining access to the server while allowing the rack to support the weight.
When a component is initially prepared to be mounted on the rack, the inner most slide member may be mounted to the component. The inner most slide member and the component may then be positioned for insertion into the desired outer member of the slide assembly which has been mounted to the rack. The component and inner slide are then integrated with the rest of the telescoping slide assembly and the weight of the component is supported by the rack.
However, one deleterious effect of utilizing a slide assembly in conjunction with a rack is the possibility of the incorrect alignment of the slide assembly during the mounting of the component within the rack. Specifically, the difference between a correctly aligned inner slide and an incorrectly aligned inner slide may be as little as three-eighths of an inch. This distance is negligible when the mass and shape of the component being mounted are taken into account. For example, if the component is two feet wide and weighs 50 pounds, three-eighths of an inch may be imperceptible to the person mounting the component. Furthermore, an installer usually stands in front of the rack and therefore may not be able to see that the inner slide isn't actually entering the lead-ins of the intermediate or outer slide, but instead fails to couple with the lead-ins. Thus, the component is not attached and the installer is not aware of that fact.
If the inner member of the slide assembly is incorrectly mounted there are a plurality of possible outcomes. The best case is the component being inserted drops onto another component within the rack and little or no damage occurs. The worst case is the component being inserted drops and causes the catastrophic destruction of any other components within the rack and even the rack itself. Such destruction may result in extreme monetary losses as well as possible injury to any personnel in the area during the time of the catastrophic failure.
Thus, during the installation process more than one person is needed to ensure correct installation is accomplished with a minimization of damage. For example, during the installation of a component, one technician may be needed to support the weight of the component and insert the component into the rack, while a second technician may be needed to correctly align the slide assemblies. Both technicians would need to work in conjunction in order not to damage the rack, the slide assembly, components already in the rack, and/or the component being placed in the rack.
Consequently, the installation process is not user friendly, is time-consuming, is easily miss-installed, is dangerous, is cost associative, and lacks a desired “Design for Usability.” | {
"pile_set_name": "USPTO Backgrounds"
} |
When performing certain surgical procedures, there is a challenge to control bleeding and provide sealing of smaller vessels of tissue at the surgical site. For example, in a liver resection, also referred to as a hepatectomy, there is a challenge to create a resection plane through several inches of liver parenchyma. Within this parenchyma are bile ducts, arteries portal veins (bringing blood in) and hepatic veins (allowing blood out). When parenchyma is separated, there is a challenge to prevent bleeding, seal small (1-2 mm) bile ducts as well as larger 9+ mm vessels. There is also a challenge to isolate critical ducts and vessels without damaging them.
While several devices have been made and used, it is believed that no one prior to the inventors has made or used the device described in the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to flexible seals for bearing applications, and is concerned in particular with a flexible lip seal of the type employed in rolling mill oil film bearings.
2. Description of the Prior Art
One example of a prior art seal design is disclosed in U.S. Pat. No. 2,868,574, wherein a seal is surrounded by a stationary circular seal end plate having a radially inwardly extending rigid flange separating oppositely arranged shoulders. The flexible seal has radially outwardly extending flexible flanges which are in sliding contact with inclined surfaces on the shoulders of the seal end plate. The flange/shoulder surface interface on the inboard side serves to retain bearing lubricant in the bearing, and the flange/shoulder surface interface on the outboard side serves to exclude contaminants such as cooling water, mill scale, etc. from penetrating into the bearing.
This design exhibits problems such as leakage of the bearing lubricant, contaminant entering the bearing chamber and excessive wear of the seal components. These problems are due in large part to the seal flanges which are thick and heavy throughout their length. Therefore, the flanges are not as flexible as they should be and have a tendency to become distorted and fail to provide an effective seal.
In the seal design disclosed in U.S. Pat. No. 4,165,881, these problem were addressed by providing the seal flanges with peripheral relatively thin flexible lips. This design resulted in improved sealing performance, but leakage problems persisted when the seal was not properly aligned with respect to the seal end plate.
A need has continued to exist, therefore, for a seal that can operate effectively under all operating conditions, including those in which the seals are improperly aligned with respect to the seal end plates. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a stopper rod and particularly to a means of attaching a stopper rod to a lifting and lowering mechanism.
Stopper rods are well known for use in controlling molten metal flow from a vessel, e.g. a tundish, into a mould. A stopper rod is raised and lowered by a suitable mechanism positioned adjacent the vessel and can thereby be used to close fully or partially or open fully the outlet from the vessel, thus controlling flow of the metal from the vessel.
Conventionally, a stopper rod is formed as an elongate one-piece bonded graphite structure by isostatic pressing in a suitable mould. The stopper rod usually has a hollow structure in that it is formed to have a longitudinal, centrally-disposed bore by use of a suitable removable core in the mould. The lower end of the stopper rod bore may be closed or it may be vented to allow gas, e.g. argon, to be passed through the rod.
Thus, in the conventional manufacture of a stopper rod, the desired graphite composition is placed around a removable core in a deformable mould, i.e. the graphite composition fills the mould space between the core and the deformable mould. The deformable mould is then placed in a tank of liquid, for example water, and the pressure of the liquid is increased by known means to the pressure required to convert the graphite composition to the desired self-supporting structure. After removal of the isostatically pressed product from the mould, the core is removed to provide the hollow stopper rod.
The upper end of the rod must be provided with means by which it can be attached to the lifting and lowering mechanism. Various prior proposals have been made, including co-pressing a threaded bush in the upper end of the stopper rod to receive a threaded shaft; forming the upper end of the bore of the rod with an internal thread to receive an insert, e.g. of ceramic material, and placing a retaining pin through coterminous holes drilled through the stopper rod and an attachment rod.
While each prior proposal has certain merits, none is entirely successful and it is, therefore, an object of the present invention to provide an improved means of attaching a stopper rod to a lifting and lowering mechanism.
Accordingly, in one aspect the present invention provides a means of attaching a stopper rod in the form of an elongate moulded body having a longitudinal bore to a lifting and lowering mechanism, the means comprising a first sleeve to be moulded in-situ in the stopper rod body to lie coaxially with the stopper rod body in an annular recess surrounding and coterminous with the bore, the sleeve having a pair of circumferentially-spaced inwardly-directed, arcuate flanges, a connecting rod of diameter to fit into the stopper rod bore and of length to extend outside the stopper rod while passing through the first sleeve when the sleeve is in position in the stopper rod, the connecting rod having a pair of circumferentially-spaced, arcuate shoulders of size to pass through the spaces between the flanges of the first sleeve, whereby the connecting rod may be passed through the first sleeve until its shoulders have passed beyond the flanges of the first sleeve and then rotated until its shoulders are in circumferential correspondence with the flanges, and a second sleeve of external diameter to fit in the bore of the stopper rod and having at one end a pair of circumferentially-spaced, arcuate, axially-extending projections, the projections having an internal radius sufficient to accommodate the connecting rod through the second sleeve and the projections being of a size to fit into the spaces between the flanges of the first sleeve whereby the shoulders of the connecting rod may be locked beyond the flanges of the first sleeve.
In a second aspect, the invention provides a stopper rod fitted with the means of attachment to a lifting and lowering mechanism as defined in the immediately preceding paragraph.
The connecting rod is preferably externally-threaded, at least for a portion of its length intended to extend from the stopper rod, whereby it may be threadably connected to a corresponding portion of the lifting and lowering mechanism. (The lifting and lowering mechanism itself may otherwise be as conventionally used.) Alternative connecting means between the connecting rod and the lifting and lowering mechanism may, however, be utilised, if desired.
The bore of the stopper rod may extend for the entire length of the stopper rod or, if desired, the lower end of the stopper rod bore may be closed. In those embodiments where the lower end of the stopper rod is vented, i.e. the bore, albeit of possibly reduced diameter, extends throughout, so that gas, e.g. argon, may be passed through the stopper rod, the connecting rod should also have an axially-extending bore for that purpose.
The first sleeve, which may be of any suitable material, e.g. metal or ceramic material, is conveniently moulded into the desired position in the stopper rod body during the moulding of that body. Thus, for example, during the otherwise conventional isostatic pressing of the stopper rod in a mould containing a removable core to define the bore, the first sleeve is positioned in the desired position in the mould.
The first sleeve may be of circular outline in plan view but this is not essential. For example, it may be provided with one or more `flats`, i.e. flat-sided portions around its periphery in order to achieve better locking into position when it is moulded in-situ into the stopper rod body.
The second sleeve may also be of any suitable material, e.g. metal or ceramic material.
Preferably, the second sleeve is of such a height as to have its end remote from its projections lying in, or very close to, the plane of the upper end of the stopper rod when the attachment means is fitted. It is preferably of outside diameter such that it is a tight fit in the bore at the upper end of the stopper rod.
In a preferred embodiment, an apertured pressure disc is carried on the connecting rod and is maintained under pressure against the upper face of the stopper rod. It can thereby maintain pressure against the end of the second sleeve and thus ensure that, in use of the stopper rod, the second sleeve cannot move up the connecting rod and thereby loosen the locked nature of the attachment means. The pressure may be maintained by a nut threaded onto the connecting rod and rotated along the rod until it bears sufficiently on the disc.
If desired, of course, alternative means may be used to provide axially inward pressure on the end of the second sleeve to ensure that it remains in the locked position.
Sealing means may be provided as required. For example, a sealing washer may be positioned between the pressure disc and the upper face of the stopper rod and between the upper faces of the flanges of the first sleeve and the corresponding face of the second sleeve. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a voice recordable terminal and its image processing method, and more particularly, to an image processing method and terminal capable of generating an image during voice recording and verifying a recorded file using the generated image
2. Description of the Related Art
With the development of modern technologies, it is possible to generate and store various data using an electronic device, such as a camcorder, a digital camera, a voice recorder, a mobile phone, a Moving Picture Experts Group-1 (MPEG-1) Audio Layer-3 (MP3) player, and so on.
Among them, the voice recorder enables a user to store desired data without the aid of hand-writing or typing. The voice recorder is not restricted by place or time, and enables a user to store voice data without using any writing tools.
The voice data stored in the voice recorder is typically stored using words. Thus, a user checks the stored voice data one by one during a replay or inferring the content of the voice data using the word-based name. Further, when the voice data is created in the conventional voice recording devices, additional information other than the name, for instance the name combined with the created order and date, cannot be stored. | {
"pile_set_name": "USPTO Backgrounds"
} |
Kitchen gardens, in which flowers and vegetables are grown, are becoming more and more popular in Japanese homes and apartments these days. The beneficial effects of fragrance and of pets, respectively called aromatherapy and animal therapy, have been confirmed and are conventionally used in medical institutions and similar therapeutic settings. In recent years, the healing effects of growing and viewing plants, “green therapy,” has also been studied and is also attracting increasing attention.
There are two ways to obtain a plant for the kitchen garden or for other use: buying a seedling; and buying a seed, germinating it, and raising the seedling oneself. Since buying a seed to germinate is troublesome and requires some skills compared to buying a seedling, beginners in particular usually buy a seedling.
Since most of the commercially available seedlings are, generally speaking, of standard breeds, seedlings of new breeds and special plants are difficult to obtain, and seedlings are more expensive than seeds, the more advanced gardeners tend to buy seeds to germinate and to raise them to full growth themselves. The problem here, however, is that seeds of plants have different optimum temperatures for germination in accordance with their kind. Pansies, for example, can bloom as early as December in eastern Japan, for which the seeds must be sown from late September to early October in order for the seeds to germinate and seedlings to grow. However, the optimum temperature for the germination of pansy seeds is between 15° C. and 20° C.: hence this period is too hot for the seeds that they are prone to perish, thus reducing their germination rate in a general environment. If the seeds are sown after November, in which the temperature reaches the optimum temperature for germination, their germination rate rises. Nevertheless, the seedlings grow slowly because of the low temperature in raising them, and it is difficult for them to bloom before the end of the year.
In the case of tropical plants, the optimum germination temperature for the bitter melon, for example, is between 25 and 35° C., and the soil temperature reaches this optimum temperature for germination after the middle of June in the east area of Japan. Since it takes approximately 60 days to raise a seedling after germination until the harvest, the harvest is started after August. In addition, since the growth rate of bitter melon quickly decreases when the temperature is under 20° C., the harvest period is limited to approximately 2.5 months, from August to the middle of October.
Nevertheless, if a plant is taken care of at an appropriate temperature during the period of the germination and of the emergence of the young seedling, it can grow after that even if the temperature is a little higher or lower than the optimum temperature. Hence, if an appropriate temperature control is performed during this period, for example, the seeds of pansy, which is suitable for low temperatures, can be sown in September to raise the seedlings so that it blooms in December. If bitter melon or other tropical plants are germinated in March through April and the seedlings are raised and settled in April through May, it is possible to start the harvest from July, which extends the harvest period by more than one month.
Given these factors, with the aim of germinating seeds and growing young seedlings at an appropriate temperature, a plurality of germination/growing apparatuses have been conventionally available in the market. These apparatuses usually comprise: a heat shield chamber capable of containing a seed or plant; means for controlling the temperature of the inside of the heat shield chamber; means for illuminating the inside of the heat shield chamber; and other portions, where seeds or plants with different optimum temperatures for germination and for raising the seedling can be germinated or grown without the influence of season and weather (for example, refer to Patent Document 1). [Patent Document 1] Japanese Unexamined Patent Application Publication No. 2006-61126 | {
"pile_set_name": "USPTO Backgrounds"
} |
Pain is a debilitating effect due to any injury. Also pain in the joints causes serious disability affecting the daily chores and productivity, especially, Osteoarthritis contributes to pain of joints in most of the elderly people.
To reduce pain, the drug therapy, like capsaicin cream, acetaminophen, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are prescribed to reduce pain temporarily, but serious side effects are associated. Physical therapy, such as spa, massage, acupuncture and chiropractic manipulation, can help relieve pain for a short duration, but are usually expensive and require skilled personnel.
Currently, in physical therapy field, light therapy system is quite popular. However, during light therapy, the intensity/dosage of light can be adjusted only by intermittent switching on and off the light therapy system manually, which is not convenient and accurate. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates mainly to transmissions for vehicles.
2. Description of the Related Art
Examples of a dog type transmission that performs gear shifts without disengaging a clutch provided between an engine and the transmission includes a transmission disclosed in Japanese Unexamined Patent Application Publication (Translation of PCT Application) (JP-T) No. 2009-536713 and a transmission disclosed in JP-T No. 2010-510464 The dog type transmission includes a low speed gear and a high speed gear that are attached to an output shaft so as to freely rotate, a hub fixed to the shaft between the low speed gear and the high speed gear, and a first key and a second key that are attached to the hub so as to move freely in an axial direction and rotate integrally therewith in a circumferential direction.
According to this transmission, when the first key and the second key are moved to the low speed gear by an actuator during acceleration, for example, the first key engages with a dog provided on a side face of the low speed gear such that power transmission between the low speed gear and the hub is realized by the first key alone. At this time, the second key is disengaged from the low speed gear and can therefore be moved to the high speed gear while power transmission via the first key is underway.
When the second key is moved to the high speed gear, the second key engages with a dog provided on a side face of the high speed gear such that power transmission between the high speed gear and the hub is realized by the second key. When a power transmission path is switched from the low speed gear to the high speed gear, a rotation speed of the shaft decreases, and therefore the engagement between the first key and the low speed gear is released at the same time as the switch in the power transmission path so that the first key can be switched to the high speed gear. By moving the first key to the high speed gear, a gear shift from the low speed gear to the high speed gear can be completed without causing torque interruption.
In the transmission described above, however, each of the keys is engaged with the corresponding gear in a condition where a rotation difference remains between the key and the gear, and therefore, when the key engages with the dog of the gear, torque variation (to be referred to hereafter as “spike torque”) occurs in which the torque jumps momentarily and then returns to normal. When spike torque is generated during a gear shift in this manner, an impact sound is generated by the engagement between the key and the dog, noise is generated when an outer race of a bearing that supports the shaft impinges on a transmission case. Moreover, the spike torque generates torsion in the shaft, which causes vibration in a drive wheel and the transmission case.
It is known that when a key is engaged with a dog of a gear of a corresponding gear position during a gear shift, the spike torque described above increases in accordance with the number of gears that co-rotate with the gear of the corresponding gear position (i.e. rotary members related to the gear shift) and inertia therein. In a conventional transmission, drive gears attached to an input shaft and driven gears that are attached to an output shaft and mesh with the drive gears all co-rotate, and therefore the number of rotary members related to the gear shift and the inertia therein are large. As a result, large spike torque is generated during the gear shift. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to social networking, and in particular to providing relevant notifications for a user of a social networking system based on affinities that are common to the user and his or her friends in a social network.
Social networking systems have become prevalent in recent years because they provide a useful environment in which users can connect to and communicate with other users. A variety of different types of social networking systems exist that provide mechanisms allowing users to interact within their social networks. In this context, a user may be an individual or any other entity, such as a business or other non-person entity. Accordingly, while enabling social communications among friends, a social networking system can also be a valuable tool for businesses to engage with potential consumers.
However, businesses traditionally have had significant limits on providing advertisements and information to people that is relevant for people based on their interests, connections to others, and particular locations. At best, traditional avenues of providing information to users have consistently displayed advertisements based on basic user-provided profile information. Third party content providers have not yet been able to exploit the relationships and connections among members of a social networking website to determine preferences to impute to a user based on common preferences between the user and his or her connections in the social network. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This document relates generally to the field of communications, and in particular to handling data transfers that involve mobile wireless communications devices.
2. Description of the Related Art
Some companies or governments have different types of networks based on different levels of security. Some of the networks are more secure than others and provide additional levels of security, as well as different procedures for using that network. It is a security concern for data to move between the networks, specifically from a more secure network to a weaker network. An additional problem is how to prevent a malicious application from siphoning data from inside a corporation's firewall to outside the firewall.
For example the government may have a secret network and a non-secret network. The workstations on the secret network may not even be connected to the non-secret network to explicitly prevent data siphoning. To prevent data siphoning between these networks for mobile communications, the government would have to deploy two separate PDAs to each employee that uses both of the networks. This is a costly approach.
As another example, an organization may wish to deploy handhelds to employees, which connect to their corporate network as well as their personal (home) email accounts. It would be detrimental for an employee to siphon data between their corporate secure network to their personal accounts. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to pumping arrangements, and more particularly to pumps which are completely self-draining when not being operated.
There are already known various pump constructions, among them such which are often being referred to as self-draining pumps. In pumps of this type, all of the liquid that is being pumped by the pump while in operation is drained out of the pump when the pump is not being operated. The reason for this may be, for instance, when the pump is being used as a recirculating pump in conjunction with a whirlpool bath, a spa, or a similar facility in which water is being recirculated, to assure that no stale water will remain in the pumping system where it could promote growth of bacteria, fungi or mildew with possible attendant unpleasant odor, contamination or even possibly a health hazard. This potential problem has already been previously recognized, and it is for this and similar reasons that the so-called self-draining pumps have been developed.
So, for instance, there has already been proposed a self-draining pump construction in which a small aperture is provided in the pump housing assembly, this aperture communicating with the lowermost region of the pumping chamber and being connected, during the installation of the self-draining pump, to a drain, so that some of the water from the pumping chamber, which constitutes the high-pressure side of the pump, is drained into the drain even during the normal operation of the pump. Obviously, this is highly wasteful of energy since some of the usually heated water is drained out of the system and may have to be replenished with additional water which usually has to be heated before being introduced into the system. This energy waste is additional to the wasted energy resulting from the fact that some of the previously pressurized water goes into the drain.
On the other hand, it has also already been proposed to provide an adaptor for a pump with a central axial inlet nipple, which adaptor bounds an adaptor passage that leads downwardly from the central passage of the inlet nipple to an elevation low enough to be in substantial horizontal alignment with the bottom region of the pumping chamber of the pump, and to provide a draining passage with a relatively small cross sectional area in the pump housing and/or the adaptor between the bottom region of the pumping chamber and the lowermost region of the adaptor passage. However, experience with pumping arrangements of this type has shown that numerous problems resulting from the provision of the separate adaptor, including but not limited problems with sealing the additional interface between the adapter and the lid of the pump housing on which the adator is mounted, are encountered in this particular pump construction. | {
"pile_set_name": "USPTO Backgrounds"
} |
An active matrix substrate used in a liquid crystal display device, or the like, includes a switching element such as a thin-film transistor (Thin Film Transistor; hereinafter “TFT”) for each pixel. TFTs whose active layer is an amorphous silicon film (hereinafter, “amorphous silicon TFT”) and TFTs whose active layer is a polycrystalline silicon film (hereinafter “polycrystalline silicon TFT”) have widely been used as such switching elements.
In recent years, it has been proposed to use an oxide semiconductor, instead of an amorphous silicon or a polycrystalline silicon, as the material of the active layer of a TFT. Such a TFT is referred to as an “oxide semiconductor TFT”. An oxide semiconductor has a higher mobility than an amorphous silicon. Therefore, an oxide semiconductor TFT is capable of operating at a higher speed than an amorphous silicon TFT. Moreover, since an oxide semiconductor film is formed by a simple process as compared with a polycrystalline silicon film, it is applicable also to devices that require large areas. An active matrix substrate including an oxide semiconductor TFT (hereinafter, a “TFT substrate”) is disclosed in Patent Documents 1 and 2, for example. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
This disclosure relates generally to integrated circuits, and more specifically, to a comparator for synchronous rectification.
2. Related Art
In many circuit applications, DC to DC converters are used to convert an input DC voltage to an output DC voltage. A buck converter is a converter in which the output DC voltage is lower than the input DC voltage, and a boost converter is a converter in which the output DC voltage is greater than the input DC voltage. Buck and booster converters provide the output voltage by controlling current in an inductor controlled by two switches (typically a transistor and a diode). In the case of a buck or boost converter implementing synchronous rectification, diode is replaced by a second switch (typically, a second transistor). The use of a second switch rather than a diode allows for more efficient operation by avoiding the losses from the voltage drop across the diode.
In applications with highly variable loads, it is desirable to prevent reverse current in the inductor. Negative inductor current significantly reduces the efficiency of the converter. Therefore, a need exists for circuitry capable of sensing when the inductor current of a buck or boost converter reaches zero. | {
"pile_set_name": "USPTO Backgrounds"
} |
Proximity services or proximity-based services refer to services provided between devices (i.e., User Equipment (UE)) being in proximity to each other. Proximity services utilize the radio technologies of the UEs so that the UEs in close proximity can exchange communications directly with one another without going through the core network, which is also referred to as device-to-device (D2D) communications. A UE is considered in “proximity” of another UE if they are able to establish direct communications.
The Third Generation Partnership Program (3GPP) has defined Proximity Services (ProSe) for a Long Term Evolution (LTE) network. ProSe allows for D2D communications as an underlay to the cellular network. In D2D communications, UEs transmit data signals to each other over a direct link using the cellular resources instead of routing the data signals through the core network. Therefore, D2D communications involve directly transmitting traffic between UEs that are in the vicinity of one another instead of routing the traffic over a core network, such as the Evolved Packet Core (EPC). Because there is direct communication between UEs that are in close proximity, D2D communications offload traffic from the EPC network without additional infrastructure. D2D communications may also offer higher data rates, lower transfer delays, and better power efficiency within a UE.
Proximity services generally include direct discovery of UEs are that proximate to one another, direct communication between the UEs that are proximate to one another, and UE-to-network relay. UE-to-network relay is a function where a UE can relay any type of traffic from a remote UE to the network, or from the network to the remote UE. For example, if a UE (referred to as a remote UE) is outside of the coverage area of the base stations for a network, then the UE-to-network relay function allows the remote UE to transmit traffic to a relay UE that is in the coverage area of a base station through a direct communication with the relay UE. The relay UE in turn forwards the traffic from the remote UE to the network by communicating with a base station of the network. | {
"pile_set_name": "USPTO Backgrounds"
} |
In FIG. 1, there is shown one half 10 of a base for a utility pole 12, such as a traffic light or street light. Typically, the pole is mounted in concrete (not shown) with electrical source or light control wires (not shown) being fed from underground. The electrical connection between the source wires or control wires and the light fixture is made close to the bottom of the pole. A two part base is used to cover the wire connection and, among other things, to create a pleasing appearance.
As shown in FIG. 2, one half or member 10 of the split base is mounted opposite of another split base member 10, and they are joined together to make a single base unit. The top surfaces of a split base member 10 are shown in FIG. 3.
One problem that may occur with respect to the split base is that vandals attempt to remove or move the base, exposing the electrical connections. In the past, the opening 14 at the top of the completed base unit is larger than the outside diameter of the pole 12. Thus, the base unit can be slid upwardly without removal of screws (not shown) that hold the base members 10 together. | {
"pile_set_name": "USPTO Backgrounds"
} |
Traditional approaches for managing enterprise data revolve around a batch driven Extract Transform Load (ETL) process, a one size fits all approach for storage, and an application architecture that is tightly coupled to the underlying data infrastructure. The emergence of Big Data technologies have led to the creation of alternate instantiations of the traditional approach, one where the storage systems have moved from relational databases to NoSQL technologies like Hadoop Distributed File Systems (HDFS). In some cases, traditional approaches to data control in the context of Internet of Things (IoT) and other enterprise data settings have brought forth challenges due to content heterogeneity, requirements of scale, and robustness of ETL processes. | {
"pile_set_name": "USPTO Backgrounds"
} |
A touchscreen is an electronic visual display that can detect the presence and location of a touch within the display area. The term generally refers to touching the display of the device with a finger or hand. Touchscreens also can sense other passive objects, such as a stylus. Touchscreens are common in devices such as all-in-one computers, tablet computers, and smartphones.
The touchscreen has two main attributes. First, it enables one to interact directly with what is displayed, rather than indirectly with a pointer controlled by a mouse or touchpad. Secondly, it lets one do so without requiring any intermediate device that would need to be held in the hand. Such displays can be attached to computers, or to networks as terminals. They also play a prominent role in the design of digital appliances such as the personal digital assistant (PDA), satellite navigation devices, mobile phones, and video games.
Touch panel sensors disposed on the front side of an image display device and used as an input switch integral with the image display device are easy to use, and thus have been widely used in operation screens of, for example, an automated teller machine of a bank, a ticket-vending machine, a car navigation system, a PDA, a copy machine, and the like. Detection mechanisms of an input point include a resistance film type, a capacitance type, an optical type, an ultrasonic surface elastic wave type, a piezoelectric type, and the like. Among them, the resistance film type detection mechanism is most widely used because of low cost, simple structure, and the like.
The resistance film type touch panel sensor mainly includes an upper electrode, a lower electrode, and a tail. A transparent conductive film provided on a substrate (for example, a film substrate) included in the upper electrode, and a transparent conductive film provided on another substrate (for example, a glass substrate) included in the lower electrode are opposed to each other via a spacer. When a finger, a pen, or the like touches the film side of such a touch panel sensor, both transparent conductive films are brought into contact with each other, so that current flows through the electrodes on both ends of the transparent conductive films. And, a voltage division ratio due to resistances of the respective transparent conductive films is measured thereby to detect the touched position.
While the resistance film type touch panel is capable of detecting stylus, finger, or other devices touching the screen, they suffer from the drawback of accidental activation of the device when the screen accidentally comes into contact with an object, which is common when the device is stored in a purse, a holder, a pocket, and the like. Other types of sensors used with touch screen panels include surface acoustic wave, capacitive, including surface capacitance, projected capacitance, mutual capacitance, self-capacitance, infrared sensors, ultrasonic or acoustic pulse recognition, dispersive signal technology, and optical sensors. Capacitive touch sensor panels have received widespread acceptance in the industry.
Capacitive touch sensor panels can be formed from a matrix of drive and sense lines of a substantially transparent conductive material, such as Indium Tin Oxide (ITO), often arranged in rows and columns in horizontal and vertical directions on a substantially transparent substrate. It is due in part to their substantial transparency that capacitive touch sensor panels can be overlaid on a display to form a touch screen, as described in, for example, U.S. Patent Application Publication No. 2008/0309623, the disclosure of which is incorporated by reference herein in its entirety. Other capacitive touch sensor panels are formed underneath the screen and are comprised of a matrix of drive and sense lines of conductive material present on a substrate.
One such example is an integrated touch screen in which multi-functional elements form a part of the display circuitry of the display system, and can also form part of the touch sensing circuitry of a touch sensing system that senses one or more touches on or near the display. Such an integrated touch screen is disclosed in, for example, U.S. Pat. Nos. 7,859,521, and 7,995,041, the disclosures of each of which are incorporated by reference herein in their entirety.
The present embodiments relate to improved touch sensing arrays that provide resistive or capacitive sensing capabilities. The description herein of advantages or disadvantages of known apparatus, methods, and systems is not intended to limit the scope of the embodiments to their inclusion or exclusion. Indeed, some embodiments may include one or more known apparatus, methods, or systems, without suffering from the disadvantages described herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
Devices for storing and organizing sports equipment are used for a variety of purposes, such as transporting the equipment, storing the equipment while not at games, and keeping the equipment organized and easily accessible at the time of a sporting event. But the prior art relating to storage and organization of baseball and other sports equipment is lacking in several respects. Racks known in the art are generally sized to serve the needs of an entire team or at least a multitude of players. A These racks are generally designed to hold several pieces of equipment, such as a large number of bats, balls, or gloves. But an individual may desire to have a personal rack in order to keep personal equipment separate from that of others at games. With team racks, individual pieces of equipment may get lost or misplaced. Accordingly, there is a need to provide a sports equipment rack that can distinguish and separate one person's sports equipment from that of another.
An additional problem with a sports rack directed to an entire team is that the rack is most efficiently used only when the entire team or a multitude of players is assembled. While a team rack allows for convenient organization and storage at the site of the game, once the game is over and the players disperse the rack no longer becomes efficient for the storage of an individual's items. In particular, because the rack is capable of holding items of several players, an individual does not generally have a need for such a rack to store his own personal equipment once he returns home. There is thus need for a rack that can be used by an individual at games as well as at home and at other locations.
Smaller, more personal racks are known in the art, such as bat bags, but these bags are generally bulky and made of fabric, and are therefore difficult to manage and keep organized either at a sporting event or at other locations. Thus, both personal and team sports equipment storage racks known in the prior art generally have the problem of being large, heavy, and difficult to transport to games and use at games in view of the restricted space adjacent the playing field. There is therefore a need for a storage rack that is smaller, lighter, more portable, and easier to transport than the racks found in the prior art.
Because the racks of the prior art tend to be large and difficult to manage, another problem results from the fact that many racks will remain on the ground and create obstructions. This also increases the risk that the equipment will become damaged by people stepping on the equipment or hitting the racks. Accordingly, there is a further need to provide a sports equipment storage rack that does not create an obstruction and that protects the equipment from damage.
A further problem of storage racks in the prior art is that they generally lack the ability to distinguish the particular player or team possessing the rack. In particular, it may be desirable to have a storage rack that can display a team logo, advertisements of sponsors, and items tailored to the individual's own tastes. There is thus a further need for a storage rack that provides a usable display area.
Furthermore, storage racks found in the prior art are generally limited to holding items such as bats or hats or gloves. It is desirable to have racks that have even greater and more versatile storage capabilities. In particular, during sporting events there is often a need to consume beverages to prevent dehydration and to provide nourishment and refreshment. However, baseball dugouts and similar locations often lack a convenient place to put beverage containers. This creates the risk that drinks become misplaced, lost or accidentally spilled. There is thus a need to minimize these risks by providing a storage rack capable of securely holding a beverage container. | {
"pile_set_name": "USPTO Backgrounds"
} |
Genomics has identified a wealth of genes, but the function of most of these genes remains elusive. Technology does not yet provide straightforward methods for determining the biological role played by newly identified proteins. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to electrical insulators for electric fence wires and which are commonly mounted on vertical metal fence posts, for example, of the general type disclosed in U.S. Pat. Nos. 4,049,905, 4,077,611, 4,845,317 and 6,353,187, the disclosures of which are herein incorporated by reference. As disclosed in these patents, the insulator is commonly molded of an insulating plastics material and is adapted to be attached to a conventional T-type metal fence post at a selected vertical height or elevation according to the desired position of the electric fence wire. It is also common to mount two or more of the insulators on each fence post when it is desired to have vertically spaced electric fence wires.
In any such insulator, it is desirable for the insulator to mount quickly and positively on the fence post so that the insulator cannot be pulled off or slide or shift vertically on the post after it has been installed. It has also been found desirable to avoid relying on the flexibility of the molded plastics material in the portion of the insulator which mounts on or grips the metal fence post. If the spring property of the plastics material relaxes, the insulator may pop off or slide down the post, thereby allowing electric fence wire to sag and/or short out by contacting the fence post. It is also sometimes desirable to space the electric fence wire from the post to avoid grounding of the wire and to facilitate mowing of weeds directly under the wire so as to prevent an electrical short by the weeds. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention concerns the human hepatitis B virus genome, isolated from hepatocellular carcinoma (HCC), and with a mutation at amino acid residue 133 (Methionine to Threonine) within the major surface antigen, its nucleotide sequence, the deduced amino acid sequence of the four major proteins, antigen, antibody, detection systems, development of effective vaccines, and antiviral agents.
HCC is one of the most common human liver cancers, particularly in Asia where 70% of the worldwide new cases are found every year. It usually arises in cirrhotic livers as a complication of chronic liver disease. The clinical manifestations of HCC patients are unspecific with signs and symptoms only appearing in the later stages of the cancer.
One of the major causes of chronic liver diseases is hepatitis B viral infection. First discovered in 1963 as a human virus that is transmitted parenterally, chronic hepatitis B viral infection has been most commonly implicated in serological undefined pathogenesis of HCC. Despite the fact that hepatitis B virus does not display features of a complete viral oncogene, its involvement in the development of HCC can be attributed to various aspects of its interaction with host hepatocyte cells. These include the promiscuous transcriptional activity of the smallest viral protein, X, which enhances the expression level of many cellular target genes including proto-oncogenes. On the other hand, integrated viral DNA in the host chromosomes is regularly found in HCC patients. There is also evidence for an active role in the development of HCC by the major surface antigen. This protein has served as the main detection marker for carriers of hepatitis B virus. The most antigenic epitope is a highly conserved region spanning 23 amino acid residues and located from amino acid position 124 to 147 of the major surface antigen. This small region designated as the group specific determinant “a” is found in all subtypes and isolates of hepatitis B viral genomes. Its antigenic properties seem due to its proposed double loop structure, to which the vaccine-induced neutralizing antibody binds.
Our epidemiological data indicate that the wild type major surface antigen has been found in most HCC patients. Furthermore, observation indicates that several variants of the major surface antigen from HCC patients may be involved in the pathogenesis of HCC. Direct sequencing analysis indicated that 24 out of 63 HCC patients (around 38%) carry various mutations in the “a” epitope of the major surface antigen. When both the wild type and variant cases are combined, the proportion of the variant virus carrying a mutation at amino acid residue 133, located in the first loop of the “a” epitope of the major surface antigen (Methionine to Threonine), is as high as 12.7% in 63 HCC patients from the Southeast Asia region, and present in 5 local HCC cases. However, the same mutation is found in only 2% of hepatitis B virus carriers in a random population (more than 100 cases). The significance of this variant at amino acid residue 133 is further strengthened by the fact that the proportion of variant virus at amino acid residue 145 (Glycine to Arginine), better known as a vaccine-induced mutant and located in the second loop of the “a” epitope, remains constant at 8% in hepatitis B virus carriers in the random population sample.
Although this variant hepatitis B viral strain, carrying a mutation at amino acid residue 133 (Methionine to Threonine) of the major surface antigen in HCC patients, may arise differently from those induced following vaccination (i.e. with a mutation at amino acid residue 145 of the major surface antigen), this strain shares similar characteristics in that both are stable and cases of vertical transmission of these strains have been reported, despite effective hepatitis B virus prophylaxis and hepatitis B immunoglobulin (HBIG) being used.
The emergence of the variant human hepatitis B virus, carrying mutations in the “a” epitope of the major surface antigen, in HCC is of concern. The high proportion of the mutant virus with a substitution at amino acid residue 133 of the major surface antigen is of particular interest as it may point to a close association with the pathogenesis of HCC. This correlation would therefore require the urgent development of specific detection systems as well as effective prophylactic and therapeutic vaccines and antiviral agents. Determination of the nucleotide sequence of this mutant virus constitutes the first step towards these aims and will certainly be helpful for developing the above-mentioned diagnostic and treatment schemes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method of forming charged particle beam pattern writing data. For example, the present invention relates to a method of forming charged particle beam pattern writing data which forms pattern writing data from layout data of a circuit serving as design data. The pattern writing data is data to write a predetermined pattern while deflecting a charged particle beam.
2. Related Art
A lithography technique which leads development of micropatterning of a semiconductor device is a very important process which uniquely generates a pattern in semiconductor manufacturing processes. In recent years, with high integration of an LSI, a circuit line width required for semiconductor devices progressively decreases year after year. In order to form a desired circuit pattern on the semiconductor devices, a high-definition original pattern (also called a reticle or a mask) is necessary. In this case, an electron beam writing technique has an essentially excellent resolution and is used in production of a high-definition original pattern.
FIG. 31 is a conceptual diagram for explaining an operation of a conventional variable-shaped electron beam photolithography apparatus. A variable-shaped electron beam photolithography apparatus (EB (Electron Beam) writing apparatus) operates as follows. In a first aperture 410, a square, for example, rectangular opening 411 to shape an electron beam 442 is formed. In a second aperture 420, a variable-shaped opening 421 to shape the electron beam 442 having passed through the opening 411 in a desired square shape is formed. The electron beam 442 irradiated from a charged particle source 430 and having passed through the opening 411 is deflected by a deflector. The electron beam 442 passes through a part of the variable-shaped opening 421 and is irradiated on a target object 440 placed on a stage. The stage continuously moves in one predetermined direction (for example, defined as an X direction). More specifically, a square shape which can pass through both the opening 411 and the variable-shaped opening 421 is written in a writing region of the target object 440. A scheme which causes an electron beam to pass through both the opening 411 and the variable-shaped opening 421 to form an arbitrary shape is called a variable shaped beam scheme.
When the electron beam writing is to be performed, first, a layout of a semiconductor integrated circuit is designed. Layout data (design data) is then generated. The layout data is converted to generate pattern writing data for use in an electron beam writing apparatus. On the basis of the pattern writing data, a figure is split into shot sizes to actually shoot an electron beam to perform writing.
A pattern writing region of a target object is virtually split into a plurality of strip-like frame regions each having a deflectable width of a deflector along, for example, a Y direction. Writing is performed on the split frame regions while moving a stage having the target sample placed thereon and causing a single-stage or multi-stage deflector to deflect an electron beam. Upon completion of the writing on the first frame region, the stage moves in the Y direction. Next writing on the second frame region is performed. In this case, writing on the second frame region while moving the stage in an X direction. In this manner, writing is sequentially performed on the respective frame regions.
In this case, with respect to a method for electron beam writing in which a stage moves by a step-and repeat scheme when the stage moves in the X direction within one frame, the following technique is disclosed. More specifically, a pattern is split to eliminate a deviation of a pattern ranging over regions subjected to writing before and after mechanical movement. The technique decreases a dose depending on the number of split patterns (for example, see Published Unexamined Japanese Patent Publication No. 04-176114 (JP-A-04-176114)). A case in which there is a pattern ranging over sub-fields obtained by further splitting a main deflection region having a frame width angle is disclosed as the following technique. More specifically, a boundary position of the sub-fields is changed with reference to the pattern ranging over the sub-fields to prevent the pattern from ranging over the sub-fields (for example, see Published Unexamined Japanese Patent Publication No. 11-67648 (JP-A-11-67648)).
The pattern writing apparatus includes a single-stage or multi-stage deflection region. With respect to an area running out of a deflection region, deflection of a charged particle beam by a deflector does not reach the deflection region to make it impossible to writing. For this reason, when a pattern (for example, cell) ranging over deflection regions is desired to be arranged, the following countermeasure must be taken in formation of layout data. More specifically, a cell must be split in advance so as to prevent the cell from running out of the deflection region, to thereby form layout data. In this case, one cell is defined in a plurality of deflection regions. For this reason, pieces of information and the like of an arrangement position and a size of the cell are necessary. As a result, an amount of the layout data disadvantageously increases.
When there are cells which can be essentially obtained to have an array structure, the following countermeasure must be taken if some or all elements of the cells ranging to another deflection region. More specifically, the cells are purposely developed into arrays and must be defined in deflection regions which are arranged for the respective cells. Accordingly, pieces of information related to the cells are required. As a result, an amount of layout data disadvantageously increases.
As described above, when an amount of the layout data, especially, on the upstream side increases in a data conversion process, time required to convert data increases in the case of converting the layout data into pattern writing data. Furthermore, in addition to this, huge amounts of time are disadvantageously required to transmit the data to a conversion apparatus. In an increase in amount of data with an increase in integration density of LSIs in recent years, the increase in amount of data on the upstream side also influences a throughput of a pattern writing apparatus. When the amount of data is small, time (for example, format check) required to determine correctness of layout data can be reduced. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a data processing system and a data processing method for processing serial data, which is transferred over a serial bus in order of issuance of a data output instruction from a single processor or a plurality of processors formed as one chip, and transmitting the resultant data to another chip, and also relates to a computer-readable storage medium and a disk drive.
For example, the present invention is applied to a data processing system adapted to a disk drive (for example, a magnetic disk drive) comprising a disk driver that drives a disk, such as a magnetic disk, and a head driver that drives a head. For control of various motions including a motion for writing information (data) on a disk using a head and a motion for reading information from the disk, the data processing system efficiently processes a large amount of serial data transferred over a serial bus from a single processor or a plurality of processors formed as one chip, and transmits the resultant data to an output control circuit (for example, a read channel (normally abbreviated to RDC)) that is formed as another chip for control of reading or writing.
2. Description of the Related Art
Generally, in storage devices including a disk drive, a main memory is accessible to a processor formed as one chip. In efforts to apparently increase the storage capacity of the main memory, a plurality of memory banks (which hereinafter may be simply called banks) is included in a read channel or the like, which is formed as another chip, for registering data. The memory banks are appropriately switched in use.
For example, assume that serial data is transferred in units of a block from a main memory accessible to a processor formed in one chip, and that one block of serial data comprises twenty bits including eleven address bits, eight data bits, and one reading/writing control bit (R/W bit). Furthermore, the serial data of twenty bits shall be serial data whose four high-order address bits are fixed, whose seven low-order address bits are changeable, and whose eight data bits are changeable. If ten blocks of such serial data are transmitted to another chip, it takes a long time, calculated simply as a product of 20 bits by 10 serial clock cycles, to record the serial data blocks in registers or the like in another chip.
On the other hand, in order to use part of the serial data as bank data, the four high-order bits are separated from the address bits and used to represent an address of a bank (in which serial data of sixteen bits is stored). Seven bits are used as address bits to record data in a register in another chip. In this case, after an address of a bank in which sixteen bits are stored is designated, it takes only the time, calculated simply as a product of 16 bits by 10 serial clock cycles, to record the blocks of data of 16 bits in registers.
In short, assuming that ten blocks of serial data of twenty bits (register designation serial data) transferred from one chip are recorded in registers in another chip, it takes a long time, calculated simply as a time required for registering 200 bits. In contrast, assuming that part (for example, four bits) of serial data is used as serial data (bank designation serial data) with which an address of a bank is designated, it takes only the time, calculated simply as the time required for registering 160 bits. Therefore, when part of the serial data transferred from one chip is treated as bank data, it has the advantage of shortening of the time required for recording serial data blocks in registers in another chip.
Assume that a plurality of processors is formed in one chip, designed as a large-scale integration (LSI) circuit, which treats serial data transferred from one chip as bank data. Under the circumstances, if the plurality of processors accesses data, the data may be stored in registers having consecutive addresses. As the other processor may modify an address of a bank, every time data is transferred in units of a block, an address of a bank must be designated.
Typically, as far as a conventional data processing system that processes serial data transferred from two processors incorporated in a disk drive or the like is concerned, a control unit for controlling various motions including reading and writing motions to be performed in the disk drive is constructed as one chip. The control unit comprises a microcontroller unit (MCU) that is one processor which manages a main memory and which has a memory conversion ability and a memory protection ability, a digital signal processor (DSP) that is the other processor which performs arithmetic operations on a digital signal (data) at a high speed, and a sequencer that transfers data sent from the MCU and DSP over a common serial bus. The MCU converts parallel data into serial data, and transfers the serial data to the sequencer. The DSP performs arithmetic operations on parallel data so as to convert the parallel data into serial data, and transfers the serial data to the sequencer. The sequencer transfers serial data in units of a block over the serial bus in order of issuance of a data output instruction from the MCU and DSP.
Furthermore, the conventional data processing system includes a data output processing unit that processes and transmits serial data transferred from the sequencer over the serial bus. The data output processing unit includes a data output circuit that serves as a buffer circuit mediating between one chip and another chip. The data output circuit receives serial data directly from the control unit, and transmits the serial data to an output control circuit in another chip in a through manner (without a change in the contents of data).
The output control circuit is constituted by a read channel (RDC) for use in controlling reading or writing of data from or into a disk drive. The output control circuit has the ability to record serial data, which is sent from the data output processing unit, in a bank designative register so that the serial data can be used as bank data.
However, assuming that serial data is accessed by the plurality of processors including the MCU and DSP, and recorded in the same bank designative register, if data accessed by the MCU and data accessed by the DSP are mixed, as the other processor (for example, the MCU) may modify an address of a bank, a bank address must be designated at every time of transmitting data in units of a block.
On the other hand, even when one processor is formed in one chip, if other serial data is mixed due to an interrupt caused by an external timer, an address of a bank may be modified. Therefore, the bank address must be designated every time.
In either case, bank designation serial data is transmitted over the serial bus in order to select an address of a bank. Thereafter, register designation serial data with which a register in other chip is designated must be transmitted. In short, in either case, the bank designation serial data and register designation serial data must be transmitted in pairs. Therefore, in the conventional data processing system, as a bank address must be designated every time, it takes a long time to transfer serial data.
On the other hand, when two or more register designation serial data items are transmitted successively, a currently designated address of a bank may be instantaneously modified. Therefore, bank designation serial data is needed every time. When the register designation serial data is transmitted without production of bank designation serial data, if an unexpected interrupt occurs, a completely different register may be designated.
Patent Documents 1 to 3 related to the foregoing conventional disk processing system will be presented below as related art literatures. Patent Document 1 discloses a vector processing system in which an address of an access code recorded in a vector register is detected, and whether the address is accessed continuously is determined. At this time, if the address is recognized to be accessed continuously, a data field of address information on the address is omitted. In the vector processing system, the continuity of addresses in a main memory is emphasized. However, an address of a bank in which current serial data is stored is not compared with an address of a bank in which immediately preceding serial data is stored.
Patent Document 2 discloses a memory control system in which, when successive requests for the same page are recorded, a plurality of accesses is successively achieved quickly in units of a page. Thus, a fast memory system is constructed. However, in the memory control system, an address of a bank in which current serial data is stored is not compared with an address of a bank in which immediately preceding serial data is stored.
Patent Document 3 discloses a memory control circuit that, when memory writing access to the same address is continuously requested, command/address information contained in a succeeding memory request is compared with command/address information which is contained a preceding memory request and with which an accessed bank is designated. If the pieces of command/address information disagree with each other, designation as a busy bank is canceled. Memory access is then performed. If the pieces of command/address information agree with each other, data to be written in the memory is updated with data to be written in response to the succeeding memory request. In reality, memory access is executed only once. However, in the memory control circuit, an address of a bank in which current serial data is stored is not compared with an address of a bank in which immediately preceding serial data is stored.
Consequently, in any of Patent Documents 1 to 3, when serial data transferred from one or two or more processors incorporated in a disk drive is processed, the same problems as those underlying the conventional data processing system take place.
1. Patent Document 1: Japanese Unexamined Patent Publication (Kokai) No. 5-020350
2. Patent Document 2: Japanese Unexamined Patent Publication (Kokai) No. 9-282223
3. Patent Document 3: Japanese Unexamined Patent Publication (Kokai) No. 11-194969 | {
"pile_set_name": "USPTO Backgrounds"
} |
This relates generally to electronic devices, and more particularly, to electronic devices with displays.
Electronic devices often include displays. For example, cellular telephones and portable computers often include displays for presenting information to a user. An electronic device may have a housing such as a housing formed from plastic or metal. Components for the electronic device such as display components may be mounted in the housing.
It can be challenging to incorporate a display into the housing of an electronic device. Size and weight are often important considerations in designing electronic devices. If care is not taken, displays may be bulky or may be surrounded by overly large borders.
It would therefore be desirable to be able to provide improved ways to provide displays for electronic devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
Passive Radio-Frequency Identification (RFID) tags typically consist of an integrated circuit (IC) connected to an antenna. The IC is often a low power device, powered purely by RF energy harvested from the reader signal. The tag responds to the reader by varying its input impedance (and reflectance) and thus modulating the backscattered signal.
In RFID systems, both forward (reader-to-tag) and reverse (tag-to-reader) links are important. Current passive CMOS RFID ICs are approaching the fundamental limits of their turn-on sensitivity, dictated by diode-based voltage multiplier limits of RF-to-DC power conversion. The best ICs currently have sensitivity of about −20 dBm which has been reached for several years and no further sensitivity improvement is expected.
Often the overall system performance is limited by the tag sensitivity; in other words, the tag is the weakest link in the communication system. For many applications, such as for tag reading in indoor multi-tag multipath scenarios, or AVI tolling applications, better passive tag sensitivity is desired. Every dB of improvement in tag sensitivity results in measurable system performance improvement, e.g. in the useable range of the tag.
In the past, improvements to tag sensitivity and range have been attempted. One such solution proposes a tag which can combine voltages from two ports of orthogonal dipole antennas to gain more tag sensitivity but requires a large cross-dipole tag and the presence of circularly polarized reader signal in order to extract power from both polarizations. Another solution is to eschew a passive tag design for a powered tag design, or to sacrifice bandwidth. These solutions increase the size of the tag and/or require battery replacement, often rendering them unsuitable for their target applications. Sacrificing bandwidth is also unacceptable in many applications.
Traditionally, the tag transmission performance has been viewed as paramount. The prevailing belief is that a reduction in tag transmission performance would reduce the range of the tag. Thus, solutions that improve tag range by sacrificing tag transmission performance have not been explored. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The present invention relates generally to insulation attachment studs and methods of attaching insulation to structures. More particularly, the invention relates to a stud and attachment assembly for securing individual studs to a composite material substrate so that thermal or acoustic insulating materials may be attached to the substrate.
2. Brief Description of Related Art
The Navy has studied the use of organic matrix composite materials, such as glass reinforced plastic (GRP), as structural components. Organic matrix composite materials exhibit high structural strength, resistance to the marine environment, and ease of manufacture. Thus it has been proposed that vinyl-ester and glass composites be employed as the structural material for an all composite deckhouse module.
However, the principal hindrances to the use of organic matrix composite materials as structural components are that exposure to increased temperatures reduce their strength and structural integrity and that close proximity exposure to high intensity heat sources can cause them to burn. In fact, Navy studies indicate that such composites are vulnerable to loss of strength at relatively low temperatures. Consequently, passive fire protection is required to protect organic composites from fire-related heat effects.
The Navy presently employs passive fire protection systems to protect metallic structural components on surface ships from fire. Passive fire protection systems are based on an insulation layer composed of mineral wool blankets with an outer sheet of fibrous glass cloth. Studs are welded, using a spot welding gun, to the metallic components and the insulation batts are impaled on the studs and held in place by steel retaining caps. However, there is no method available to weld metallic studs to organic composite materials. Thus there is a need for a means and method of attaching layers of insulation to organic matrix composite material structures in order to protect such structures from the detrimental effects of fire or other heat sources.
The Navy has studied a number of options for attaching fire protective thermal insulation to composite structures. Among the options considered are: embedding studs having enlarged bases within the composite; embedding nuts within the composite and inserting threaded studs into the nuts; embedding metal plates within the composite and using sheet metal screws to attach studs; drilling holes in the composite, installing threaded inserts in the holes and inserting threaded studs into the inserts; drilling through the composite and using through bolts to attach the studs; and either adhesively bonding the insulation layer directly to the composite or adhesively bonding a suitable baseplate having studs welded or otherwise bonded thereto directly to the composite.
However, all these proposals involve potential problems. Embedded systems would have to be installed during lay up of the composite material panels and, thus, would require that the panels be made with prior knowledge of the pattern and placement of insulation studs. Stud location is dependent on placement of insulation batts which is dependent on final placement of bulkheads and ancillary equipment, location of cable runs, and other factors involved in building a ship. Because proper stud location is very important to properly holding the insulation material in place, insulation batts have in the past been installed on an ad hoc basis. Changes in the ship's configuration or addition of bulkhead mounted equipment may require changing the location of insulation batts, thus, requiring alternative means of attaching the insulation in the field. Additionally, the composite panels must have sufficient thickness to securely hold the embedded elements. Currently, the Navy uses a vacuum bag process to produce composite panels. Including embedded studs in the manufacture process may cause holes in the bags and, thus, make manufacture of composite panels more difficult. Furthermore, the embedded elements and inserted studs must not over-penetrate and cause delamination of the composite layers.
Through bolts have a tendency to compress the composite material between the securing nuts and to increase the ship's radar cross-section due to the presence of bolt heads on the exterior of the deckhouse. Through holes may cause water leakage through exterior walls and bulkheads and could weaken the composite structure. Furthermore, through bolts can not be used in areas where both sides of the composite are not accessible.
Adhesive bonding requires an adhesive that is compatible with the composite material at normal and high temperatures and which will last the projected 30 to 50 year life of the ship. Presently, the Navy's passive fire protection insulation is based on a mineral wool blanket with an outer sheet of fibrous glass cloth. Directly adhering the insulation to the structure would require that the insulation be redesigned to accept adhesive on its inner surface. A compatible design would include a protective outer layer of fiberglass scrim, a mineral wool insulation, an additional inner layer of fiberglass scrim, and a quilt construction using high temperature threads to sew through the two fiberglass scrims. Adhesively bonding a base plate with attached stud directly to the structure would not require redesigning the insulation. However, recent tests indicate that adhesives may degenerate under heat load, especially near the limits of operation of the insulation.
To increase the high temperature bond strength of a system employing an adhesively bonded base plate with attached stud, it has been recommended to secure the base plate to the composite structure using two to four sheet metal screws in addition to an adhesive. This method would involve four operations: (1) laying out pilot holes for the screws; (2) drilling pilot holes; (3) applying glue to the base plate; and (4) positioning the base plate while driving the screws in place. While the non-embedded systems have the advantage of not necessitating a prior knowledge of required stud position, they are all very time and labor intensive since approximately three studs per square foot of surface area are required to hold the insulation in place. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is generally related to the field of dental implants, and, more particularly, to an organic shaped interface that may be employed with various dental implant devices.
2. Description of the Related Art
It is becoming more common to replace a missing tooth with a prosthetic tooth that is placed upon and attached to a dental implant. The dental implant serves as the artificial root in that it integrates with the jawbone. The prosthetic tooth preferably has a size and a color that mimics the missing natural tooth. Consequently, the patient has an aesthetically pleasing and structurally sound artificial tooth.
One known arrangement for a dental implant involves an implant portion, or artificial root, that is received in a hole prepared in a patient's jawbone (mandible or maxilla), and an abutment, or prosthesis support, that is securable to the implant portion and that extends beyond the gingival tissue to support a tooth prosthesis. The implant portion and the abutment are constructed as separate components that are secured together by an attachment means, such as a screw passed through the abutment and received within a threaded bore in the implant portion.
Current methods by which the prosthetic tooth and implant are completely integrated into the patient's mouth require six to ten months, and sometimes longer, because two distinct, time-consuming steps are involved. In a first surgical procedure, an incision is made in the gingival tissue to expose the alveolar bone. Following any dressing of the surface of the bone that may be necessary, a hole that is complementary in shape to the implant portion is drilled in the bone and the implant portion is inserted. A healing cap or screw is attached to the implant portion to occlude the threaded bore, and the gingival tissue is stitched closed over the implant portion to await osseointegration.
In a subsequent second surgical procedure, following osseointegration of the implant portion, the gingival tissue is again opened to expose the implant portion. The healing cap or screw is removed and replaced with a second healing cap having an outer surface corresponding in shape below the gum line to that of the abutment, but protruding slightly above the gingival tissue. The gingival tissue surrounding the second healing cap is sutured thereabout to await healing in conformity to the outer surface of the second healing cap.
After the gingival tissue has healed, the second healing cap is removed and replaced with a permanent abutment that is secured to the implant. The abutment can be configured to support a single tooth prosthesis fashioned thereon or to support a bridge structure carrying multiple tooth prostheses.
However, current abutment designs do not follow the scalloped shape of the bone surrounding the natural tooth. This natural bone architecture leads to the preservation of the soft tissue between the teeth (interdental papilla) necessary for aesthetic results. Many available implants have an unnatural shape due to the configuration of the interface between the abutment and the implant portion, i.e., a side-by-side flat or beveled interface. Such interfaces typically allow only the formation of approximately flat bone contours. Such prior art interfaces do not promote the formation of bone contours exhibiting desired facial to interdental height differences required to form the adequate papilla shape that is necessary to inhibit the formation of an unaesthetic empty space between the teeth (so-called black triangle disease).
The present invention is directed to various devices that may solve, or at least reduce, some or all of the aforementioned problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an imaging material of the type in which a layer of photosensitive microcapsules is provided on a photographic support and, more particularly, to an improved imaging material in which the microcapsules contain a solid diluent in the internal phase.
U.S. Pat. Nos. 4,399,209 and 4,440,846, assigned to The Mead Corporation, describe transfer and self-contained imaging systems in which the imaging sheet comprises a support carrying a layer of photosensitive microcapsules. The microcapsules contain an internal phase which includes a photosensitive composition which undergoes a change in viscosity upon exposure to actinic radiation. The photosensitive composition is typically a photohardenable composition such as a composition which undergoes free radical addition polymerization. The imaging materials can be used to form dye images or light scattering images. Most typically an image-forming agent, such as a substantially colorless electron donating compound, which generates a colored dye upon reaction with a developer, is encapsulated with the photosensitive composition in the internal phase of the microcapsules. In self-contained imaging systems, the co-reactive developer material is provided on the surface of the imaging sheet with the photosensitive microcapsules. In transfer imaging systems the developer is provided on a separate sheet.
To form images, the above described imaging sheets are image-wise exposed to actinic radiation and subjected to a uniform rupturing force whereupon the microcapsules rupture and image-wise release the internal phase. In the case of microcapsules containing a photohardenable composition, the internal phase is released in the areas which are not exposed to actinic radiation or areas which are underexposed. In these areas, the microcapsules rupture and the internal phase remains sufficiently fluid to be released from the microcapsules. Thus, in these areas the image-forming agent associated with the microcapsules can react with the developer material and produce a color image. In the fully exposed areas, the microcapsules are either incapable of rupturing or, if they do rupture, the internal phase is too viscous to be released from the capsules. A detailed explanation of these imaging materials and the process whereby images are formed can be found in both of the aforementioned patents. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a recorded-information reproducing apparatus. More particularly, the invention relates to a recorded-information reproducing apparatus for reproducing a recording medium on which is recorded a video FM signal and a digital audio signal frequency-division multiplex recorded thereon.
As recording media carrying video FM signals and digital audio signals frequency-division multiplex recorded thereon, so-called Hi-Fi video disks on which well-known video disk recording signals and EFM (eight-to-fourteen modulation) digital audio signals in a CD (compact disk) format are multiplex recorded have been commercialized. In such a Hi-Fi video disk, analog audio FM signals for two (right and left) channels are included in the information recorded on the disk. In the case, however, where the video signal band, determined by the width of the sidebands of the video FM signal, is made too wide, both the reproduced video and analog audio signals are affected by interference with the analog audio carrier. Consequently, it is difficult to make the video signal bandwidth more than about 4.2 MHz, resulting in a limit in resolution.
In this regard, in commonly assigned Japanese Patent Application No. 61-305782 there has been proposed a recording system in which no analog audio FM signal is recorded, and only an EFM digital audio signal is recorded as the audio signal so as to widen the available video bandwidth to thereby improve the resolution. FIG. 1 shows the frequency spectrum of a high frequency signal read from a recording medium carrying information recorded with the foregoing recording system. In the drawings, A.sub.- represents an EFM digital audio signal, and A.sub.+ represents the upper sideband generated as a result of pulse-width modulation multiplexing Y represents the spectrum of the video FM signal, and C.sub.+1 and C.sub.-1 respectively represent the upper and lower first sidebands of the chroma signal contained in the video signal. Further, I.sub.1 and I.sub.2 represent main components of an interference spectrum generated as a result of pulse-width modulation multiplexing of Y and A.sub.-.
FIG. 2 shows the frequency spectrum of a video signal output obtained by demodulating a high frequency signal having a frequency spectrum as described above and which is read from a recording medium. As seen from the frequency spectrum, a high-level interference component due to I.sub.1 is present in the video signal band at the high frequency end. This high-level interference component may cause beat interference in the chroma component C, lowering of the SN ratio of the Y (luminance) signal, or deterioration in the quality of the reproduced picture. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method for characterizing phenotypic traits of soybean varieties important for seed lot purity. More specifically, the invention relates to the use of molecular markers to select for the seed lot purity traits of flower color, pubescence color, hilum color, and pod wall color in soybean varieties.
Seed lot purity in commercial soybean seed lots is of particular importance to both seed consumers and seed producers. Seed consumers want to purchase a product with seeds of similar or identical characteristics related to species, variety, genetics, and germination rates. Seed producers want confidence in their soybean breeding programs to select for desired seed lot purity traits. Unfortunately, uncontrollable environmental factors may result in significant phenotypic variation for these seed lot purity traits resulting in breeding error selections. Therefore, a method to reliably select for seed lot purity traits during soybean seed production is critical for the evaluation of plants for promotion in soybean breeding programs to produce consistent seed lot for commercialization. The method to use molecular markers for the seed lot purity traits of flower color, pubescence color, hilum color, and pod wall color provides more consistent and reliable data to evaluate certain traits important for seed lot purity. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a dynamoelectric, rotating machine; and more particularly, to an axial airgap, dynamoelectric, rotating machine comprising a rotor assembly and a stator assembly that includes a frontiron section, a backiron section, and a plurality of stator tooth sections.
2. Description of the Prior Art
The electric motor and generator industry is continuously searching for ways to provide dynamoelectric, rotating machines with increased efficiencies and power densities. As used herein, the term “motor” refers to all classes of motoring and generating machines which convert electrical energy to rotational motion and vice versa. Such machines include devices that may alternatively function as motors, generators, and regenerative motors. The term “regenerative motor” is used herein to refer to a device that may be operated as either an electric motor or a generator. A wide variety of motors are known, including permanent magnet, wound field, induction, variable reluctance, switched reluctance, and brush and brushless types. They may be energized directly from a source of direct or alternating current provided by the electric utility grid, batteries, or other alternative source. Alternatively, they may be supplied by current having the requisite waveform that is synthesized using electronic drive circuitry. Rotational energy derived from any mechanical source may drive a generator. The generator's output may be connected directly to a load or conditioned using power electronic circuitry. Optionally, a given machine is connected to a mechanical source that functions as either a source or sink of mechanical energy during different periods in its operation. The machine thus can act as a regenerative motor, e.g. by connection through power conditioning circuitry capable of four-quadrant operation.
Rotating machines ordinarily include a stationary component known as a stator and a rotating component known as a rotor. Adjacent faces of the rotor and stator are separated by a small airgap traversed by magnetic flux linking the rotor and stator. It will be understood by those skilled in the art that a rotating machine may comprise plural, mechanically connected rotors and plural stators. Virtually all rotating machines are conventionally classifiable as being either radial or axial airgap types. A radial airgap type is one in which the rotor and stator are separated radially and the traversing magnetic flux is directed predominantly perpendicular to the axis of rotation of the rotor. In an axial airgap device, the rotor and stator are axially separated and the flux traversal is predominantly parallel to the rotational axis.
Except for certain specialized types, motors and generators generally employ soft magnetic materials of one or more types. By “soft magnetic material” is meant one that is easily and efficiently magnetized and demagnetized. The energy that is inevitably dissipated in a magnetic material during each magnetization cycle is termed hysteresis loss or core loss. The magnitude of hysteresis loss is a function both of the excitation amplitude and frequency. A soft magnetic material further exhibits high permeability and low magnetic coercivity. Motors and generators also include a source of magnetomotive force, which can be provided either by one or more permanent magnets or by additional soft magnetic material encircled by current-carrying windings. By “permanent magnet material,” also called “hard magnetic material,” is meant a magnetic material that has a high magnetic coercivity and strongly retains its magnetization and resists being demagnetized. Depending on the type of motor, the permanent and soft magnetic materials may be disposed either on the rotor or stator.
By far, the preponderance of motors currently produced use as soft magnetic material various grades of electrical or motor steels, which are alloys of Fe with one or more alloying elements, especially including Si, P, C, and Al. Most commonly, Si is a predominant alloying element. While it is generally believed that motors and generators having rotors constructed with advanced permanent magnet material and stators having cores made with advanced, low-loss soft materials, such as amorphous metal, have the potential to provide substantially higher efficiencies and power densities compared to conventional radial airgap motors and generators, there has been little success in building such machines of either axial or radial airgap type. Previous attempts at incorporating amorphous material into conventional radial or axial airgap machines have been largely unsuccessful commercially. Early designs mainly involved substituting the stator and/or rotor with coils or circular laminations of amorphous metal, typically cut with teeth through the internal or external surface. Amorphous metal has unique magnetic and mechanical properties that make it difficult or impossible to directly substitute for ordinary steels in conventionally designed motors.
A number of applications in current technology, including widely diverse areas such as high-speed machine tools, aerospace motors and actuators, and compressor drives, require electrical motors operable at high speeds (i.e., high rpm), many times in excess of 15,000–20,000 rpm, and in some cases up to 100,000 rpm. High speed electric machines are almost always manufactured with low pole counts, lest the magnetic materials in electric machines operating at higher frequencies experience excessive core losses that contribute to inefficient motor design. This is mainly due to the fact that the soft material used in the vast majority of present motors is a silicon-iron alloy (Si—Fe). It is well known that losses resulting from changing a magnetic field at frequencies greater than about 400 Hz in conventional Si—Fe-based materials causes the material to heat, oftentimes to a point where the device cannot be cooled by any acceptable means.
To date it has proven very difficult to cost effectively provide readily manufacturable electric devices, which take advantage of low-loss materials. Previous attempts to incorporate low-loss materials into conventional machines generally failed, since the early designs typically relied on merely substituting new soft magnetic materials, such as amorphous metal, for conventional alloys, such as silicon-iron, in machine's magnetic cores. The resulting electric machines have sometimes provided increased efficiencies with less loss, but they generally suffer from an unacceptable reduction in power output, and significant increases in cost associated with handling and forming the amorphous metal. As a result, they have not achieved commercial success or market penetration.
However, a further problem arising in electric machines capable of operating at high frequencies and high speeds is heating in the rotor. As the rotor rotates relative to the stator, the rotor magnets experience cyclic differences in permeance coefficient during the course of each rotation, as the rotor magnets alternately pass between alignment with the teeth of the stator core and positions centered in the gaps between the stator teeth. In turn, this variation in permeance results in changing flux within the rotor, inducing eddy currents in accordance with Faraday's law. Those currents in some cases are high enough to cause significant heating in the rotor. The heating, in turn, is likely to cause irreversible loss of magnetization and reduced device output. In extreme cases, the heating may even be severe enough to reduce the lifetime of the rotor magnets or destroy them.
Accordingly, there remains a need in the art for highly efficient electric devices, which take full advantage of the specific characteristics associated with low-loss material, thus eliminating the disadvantages associated with conventional machines. Ideally, an improved machine would provide higher efficiency of conversion between mechanical and electrical energy forms. Improved efficiency in generating machines powered by fossil fuels would concomitantly reduce air pollution. The machine would be smaller, lighter, and satisfy more demanding requirements of torque, power, and speed. Cooling requirements would be reduced. Motors operating from battery power would operate longer for a given charge cycle. For certain applications, axial airgap machines are better suited because of their size and shape and their particular mechanical attributes. Similar improvements in machine properties are sought for both axial and radial airgap devices | {
"pile_set_name": "USPTO Backgrounds"
} |
Since hydrogen is highly flammable, a hydrogen sensing device is required to be disposed in a room or place with hydrogen exposure for sensing hydrogen leakage.
Conventional hydrogen sensing devices are mainly classified as optical fiber-based hydrogen sensing devices, electrochemistry-based hydrogen sensing devices, and Schottky diode-based hydrogen sensing devices. There is still a need in the art to provide a hydrogen sensing device with improved sensitivity in sensing hydrogen. | {
"pile_set_name": "USPTO Backgrounds"
} |
A Database Management System consists of a set of tools used to develop and manage a database. The present system utilizes a DMSII, which is a Database Management System available on a Unisys Corporation's ClearPath HMP NX, and the Unisys A-Series systems. A background for the Unisys DMSII systems is available in a publication of the Unisys Corporation, Document 8807 6625 000, entitled “Getting Started With DMSII” and published in September 1997 by the Unisys Corporation. The DMSII Utilities provide database backup and recovery capability for the entire database or for partial databases. The background operations of the DMSII utility enhancements are published in a Unisys Corporation publication Document 98037/4 and entitled “DMSII Utility Enhancements” published on Mar. 31, 1999.
Database Management Systems are used by many large and small businesses such as airline reservation systems, financial institutions, retail chains, insurance companies, utility companies and government agencies. The present Database Management System (DMS) in its form as DMSII is used to build database structures for items of data according to some appropriate logical model, such as relational, hierarchical, or network. Further, the Database Management System is used to manage the database structures and keep the structures in some other stable order while various application programs may be retrieving or changing the data. The present embodiment of DMSII has a data definition language designated as Data And Structure Definition Language (DASDL).
There are various tasks that are performed in database management and these involve (i) monitoring and optimizing database performance; (ii) the use of database control for monitoring multi-program database access; (iii) the function of the data integrity and safety done by integrity checking and preventing access to the same data by multiple applications occurring at the same time; (iv) the function of defining data structures and the data fields within them, including the function of modifying data structures; (v) data access operations and developing an application program to retrieve data or to change data; (vi) the function of data shareability to provide multi-program access without conflicts and provide database definitions to the application program; (vii) in database and data security, to prevent unauthorized database access; (viii) ensuring independence of application programs from certain data changes and preventing the revision of application programs every time a structure changes; (ix) in database and data recovery, performing the resumption of database operations after an interruption; (x) tracking data changes by keeping a record of every change made to the data; (xi) for data change integrity, ensuring that update changes are applied to, or removed from, the database in their entirety; (xii) providing a recent copy of the database as a reserve by backing-up the database and storing copies of audit files and all other database files; (xiii) providing for database scalability by growing or shrinking the database according to the ongoing needs at the time.
The DMSII provides standard software files that perform services and operations for all the databases connected to the systems Enterprise Server. This enables a viewing of a list of all these files on the user terminal.
In the ordinary course of operations, the application program user will submit changes to data or retrieve data while running a particular application program. Then, changes can be made which add, modify and delete data. A Database Administrator (DBA) keeps the database running smoothly and enforces the rules for data integrity and security. Users access the database through a given application program which itself does not access the data directly. Instead, the program interacts with the DMSII software and the database tailored software, which is directed by the access routines of the Data Management System to provide accesses, retrievals and the storage of data in the physical database file.
In regard to access, an application user will access the data in order to (i) make an inquiry to get a Read of data in the database, or (ii) to provide an update by doing a Write to the database thus, adding, deleting or changing data. The access for either purpose contributes to an operation on the database, which is called a “transaction”.
A transaction is a sequence of operations grouped by a user program because the operations constitute a single logical change to the database, At the end and finality of the transaction point, the transaction is complete and without error, and it is considered as being committed to the database.
Actual real world data goes into special logical structures that are used by the Data Management System to store data. The database is designed to map categories of data into suitable structures. For example, the real world data would have a character with a structure called a “data set”. An example of this would be a particular person's name. Then, real world data that can serve as an index of a whole data set has a structured name called a “set”. This, for example, might be the social security number of any employee. Then there is data that can serve as an index of a data set under a certain condition, and this is called a “subset”. This might be an employee's work number, for example. Then, there is data about each instance of a particular category and the structure name for this is “data item”. An example of this might be the name and address of the category (person). Then, there is data related to the database as a whole, and this involves a structure called “global data item”. An example of this might be the total number of employees in a company. Once there has been identification of the real-world data which is to be stored in the database, it is then necessary to define that data in relationship to the data structures of the data management system that holds data. When this data is defined within “structures”, then the data management system and the system software programs an application program that can then understand how to make this data accessible for various inquiries and/or changes. This is done with the Data and Structure Definition Language (DASDL).
The Data Management System structures are the building blocks of the Data Management System database. Here, the “data set” has the purpose of storing data pertaining to a data category in a collection of records. A “set” has the purpose of indexing all records in a data set. A “subset” serves the purpose to index some records in a data set according to some given criteria. The “data item” is a structured name, which defines a unit of information about a category in a given field (column) of a data set record. A “global data item” serves the purpose of storing a unit of information about the entire database or any of its involved structures.
In general discussion about the types of data and the names of data structures, it is often seen that in a relational database, a “data set” is called a “table”. A “set” or “subset” is frequently called an “index”. A “data item” is often called a “field” or a “column”, or is often called by its data name, for example, a project number. “Structures” are made of common file components designated as records and fields.
A record is a group of logically related data items in a file. Often, a record is called a row. Data items reside in different fields in the records. For example, a record might involve a series of data such as an employee's name, the employee's I.D., the employee's social security number and years of employment. A group of such records would constitute a file.
The operating system, which is used by the data management system, will treat the record as a unit. The system makes data available to users in records and not in individual single items of data. In programming languages, the record is the unit of data that the system reads from or writes to a file in one execution cycle of a Read or Write statement in a program.
If the application program wants to change a data item in a given record, the Data Management System brings a copy of the record from the physical storage over to memory, then enables that data item to be changed, and then writes the changed record back to the file.
A “field” is a consecutive group of bits or bytes within a particular component of a record, which will represent a logical piece of data. A field or column is defined by the description of the data item it is to hold. For example, if one field carries the name of an employee, this field in the record could be called the name field.
The “data set” is a physical file, that is to say, a collection of related data records stored on a random-access storage device, such as a disk in which the data resides.
A data set is kept up-to-date in several ways: (i) here, application programs add, change, or delete individual pieces of data or records stored in the data set; (ii) the Database Administrator (DBA) maintains the structure of the data set by keeping the data set within certain maximized limits, by adding, deleting or changing the definition of a data item, creating new sets or subsets, monitoring automatic processes that guard data integrity and creating guard files to enhance the security of the data.
A “set” is a separate stored file that indexes all the records of a single data set. The Data Management System uses sets in order to locate records in a data set. A set has no meaning apart from its related data set. The set structure enables an application program to access all records of a data set in some logical sequence.
A “subset” can be considered identical to a set, except that the subset need not contain a record for every record of the data set. A subset is a file that indexes none, one, several, or all of the records in a data set. The subset structure enables an application program to access only records of a data set that meet a particularly required condition.
For example, an application program may compile a list of people who are “managers”. Thus, it is seen that the database designer created the “manager” subset. Thus, in order to retrieve a record of managers, the data management system can use the smaller file, that is, the subset, to quickly point to the corresponding records in the larger file, which is the data set. As with the set, the subset must also be kept up-to-date.
A “data item” is an element of data. In the Data Management System, a data item can also be the field (column) in the database record. For example, the social security number could be considered as a data item in the sample data set designated “person”. The purpose of the data item is to describe the data to be stored. The data item provides the identity—type, size, location, and attributes—of one element of data for a database entity. When an application submits an update to a data item, the Data Management System will accept the update if it corresponds to the definition of a data item. Otherwise, the change is rejected and reported as an exception. The Database Administrator will add, delete or change the data item definitions.
There are a number of data items that are used by the Data Management System. These include the type called “alphanumeric” which includes words and characters, names, addresses, dates and titles. Then, there are data items designated as “numeric” which involve integers and decimals with or without signs. Then, there are data items designated as “real” which involve single precision floating point numbers that occupy one word. An example of this would be, for example, an employee's salary. Then, there are data items, which are called “Boolean” which involve TRUE and FALSE values.
The “global data item” is a data item, a group item, or a population item that is not part of any data set but still pertains to the database as a whole. Such global data items are stored in one special record called the “global record” in the DASDL declaration, which is outside the structured definitions. Sometimes the global record is placed just before the structured definitions in the DASDL file. The global data item has the purpose of holding permanent information about the database as a whole or about a particular data set. It also acts as a placeholder for information that can be derived from the database.
One of the most significant options in DASDL (Data And Structure Definition Language) is that it is possible to define the database as to whether the database is to be audited. The data management system supports both logging changes to a database (auditing the database) or not logging changes (maintaining an unaudited database). There are advantages in auditing a database since this assures the user that if a database failure occurs, there will be a record of database changes with which one can restore the database to a completely integral state and thus avoid loss of information and corruption of information. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention is related to integrated circuits formed on a semiconductor substrate. More particularly, this invention is related to integrated circuits having multiple selectable functions. These functions are selectable during operation by xe2x80x9csoftwarexe2x80x9d programming.
1. Description of the Related Art
The structures of a field programmable gate array (FPGA) and programmed logic devices (PLD) are well known in the art. An FPGA and PLD each have configurable logic blocks (CLB) that will perform a Boolean logic operation on a group of input signals to perform a single complex logical function. The configurable logic blocks are then interconnected to form even more complex logic structures. The interconnection between the configurable logic blocks may be created by physically destroying fuses to break undesired connections or by activating pass transistors between wiring segments routed on the semiconductor substrate.
U.S. Pat. No. 5,740,069 (Agrawal et al.) describes a programmable integrated circuit that includes configurable logic blocks (CLB""s), configurable input/output blocks (IOB""s) and an interconnect network for providing program-defined routing of signals between the CLB""s and IOB""s. The interconnect network includes direct connect means for providing programmably-selectable, dedicated connections between a first CLB and one or more adjacent CLB""s and further between a first CLB and one or more CLB""s. The interconnect network also includes peripheral direct connect means for providing programmably selectable, dedicated connections between a first configurable IOB and first and second CLB""s.
U.S. patent application Ser. No. 09/246,303, filed Feb. 8, 1999, teaches an integrated circuit module that has a common function known good integrated circuit die with selectable functions. The selectable functions are selected during assembly of the known good integrated circuit die. The known good integrated circuit die is mounted to a second level substrate. The second level substrate has wiring connections to the input/output pads of the known good integrated circuit die that select desired input functions and output functions.
Further, the wiring connections on the second level substrate provide signal paths to transfer signals to the desired input function and signals from the desired output function, and signals to and from the common functions. In addition, the wiring connections form connections between the input/output pads and external circuitry. To select the desired input functions and the desired output functions, appropriate logic states are applied to input/output pads connected to a function selector to configure a functional operation of the integrated circuit module. The second level module substrate has connector pins to provide physical and electrical connections between the external circuitry and the wiring connections on the second level substrate.
U.S. Pat. No. 5,360,992 (Lowery et al.) illustrates a semiconductor package which allows pinouts and bond options to be customized after encasement of a semiconductor die. The semiconductor package has two assemblies in a first embodiment and an optional third assembly in a second embodiment.
As semiconductor processing technology has improved, the number of electronic components has increased until it is now possible to incorporate multiple complete functions on an integrated circuit die. The concept of being able to have multiple selectable functions incorporated on a single integrated circuit die is known in the art. U.S. Pat. No. 5,511,182 (Le et al.) teaches a pin configuration logic circuit. The pin configuration logic circuit has a pin function register which defines a selected pin function, such as chip enable, write enable, and output enable to be provided as a chip select signal. The logic circuit allows an arbitrary pipeline length by causing the chip select signal to obey only the timing of the active cycle. For a two-deep access pipeline the logic circuit marks whether a first or a second cycle owns the pin. The pin configuration logic circuit uses the timing associated with the selected pin function to provide the chip select signal during the first cycle if the attributes of the cycle, such as an access to a region programmed in the pin function register, are met. During the second cycle, the pin configuration logic circuit further obeys the timing associated with the selected pin function if the attributes of that cycle are also met.
Further, the concept of reconfigurable circuit functions has been explored in the art. xe2x80x9cTowards the Realistic Virtual Hardwarexe2x80x9d, Shibata et al., Innovative Architecture for Future Generation High-Performance Processors and Systems, October 1997, pp. 50-55 describes a virtual hardware system that executes dataflow algorithms. It is based on an MPLD (Multifunction Programming Logic Device), an extended FPGA (Field Programmable Gate Array) that implements multiple sets of functions as configurations of a single chip. An algorithm to be executed on the virtual hardware is written in the DFC dataflow language and then translated into a collection of FPGA configurations, each representing a page-sized sub graph of the dataflow graph. Although an emulation system and software environment for the virtual hardware has been developed it has tended to be an unrealistic system due to the difficulty of the MPLD implementation. However, with recent technologies of semiconductors, FPGA and DRAM can be implemented into a single LSI chip. By using the common buffer of the DRAM array as a configuration memory of an FPGA, replacement of configuration data can be done at almost the same speed as an MPU. Compared with the MPLD approach, a large amount of data can be stored in the integrated DRAM.
While Shibata, et al. describes a configurable digital logic system, mixed signal (analog and digital) applications can be designed for reconfiguration. xe2x80x9cReconfigurable Signal Processing ASIC Architecture For High Speed Data Communicationsxe2x80x9d, Grayver, et al., Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, June 1998, ISCAS ""98, Vol. 4, pp. 389-392 illustrates a flexible and reconfigurable signal processing ASIC architecture. The proposed architecture can be used to realize any one of several functional blocks needed for the physical layer implementation of high speed data communication systems operating at symbol rates over 60M samples/sec. In fact, multiple instances of a chip based on this architecture, each operating in a different mode, can be used to realize the entire physical layer of high-speed data communication systems. The architecture features the following modes (functions); real and complex FIR/IIR filtering, least mean square (LMS) based adaptive filtering, Discrete Fourier Transforms (DFT) and direct digital frequency synthesis (DDFS), at up to 60M samples/sec. All of the modes are mapped onto a common, regular datapath with minimal configuration logic and routing. Multiple chips operating in the same mode can be cascaded to allow for larger blocks.
An object of this invention is to provide an integrated circuit having multiple selectable functions that can be chosen by electrical signals controlled by software programming.
Another object of this invention is to provide a circuit to allow ease of programming of selected functions of the multiple selectable function on an integrated circuit chip.
To accomplish these and other functions, an electrically programmable multiple selectable function integrated circuit module has a plurality of input connectors to receive a plurality of input data signals. The plurality of input data signals transferred through the plurality of input connectors to a plurality of optionally selectable function circuits. The outputs of the plurality of optionally selectable function circuits are either interconnected to each other or connected to a plurality of output connectors to transmit manipulated output data signals to external circuitry.
The electrically programmable multiple selectable function integrated circuit module has at least one configuration connector connected to a function configuration circuit to receive electrical configuration signals indicating which of the optionally selectable function circuits are to be elected to manipulate the input data signals. The function configuration circuit is connected to the optionally selectable function circuits to selectively elect which of the optionally selectable function circuits are to manipulate the input data signals;
The electrically programmable multiple selectable function integrated circuit module optionally has a plurality of common function connectors to receive common input data signals and transmit common output data signals. The common function circuit is connected to the common function connectors and the plurality of optionally selectable function circuits to manipulate the common data signals, and transmit the common output data signals to the selectable function circuits.
The electrically programmable multiple selectable function integrated circuit module has the plurality of optionally selectable function circuits, the function configuration circuit, and the common function circuit fabricated on at least one semiconductor substrate. The semiconductor substrate has input/output connectors formed from a ball-grid array. The input/output connectors are the input connectors, the output connectors, the function configuration connectors, and the common function connectors.
The electrical configuration signal sets the electrically programmable multiple selectable function integrated circuit module to a program state, whereby the input data signals convey a programmed configuration to select the desired optionally selectable function circuits. The configuration circuit includes a function selector placed between the input connectors and the optionally selectable function circuits and between the optionally selectable function circuits and the output connectors to select which of the optionally selectable function circuits are to manipulate the input data signals and which of the optionally selectable function circuits are to transmit the manipulated output data signals. The configuration circuit also includes a function programming circuit to receive, interpret, and retain the input data signals containing the data to identify those optionally selectable function circuits to be selected. The configuration circuit further has a mode selector to transfer the integrated circuit module from an operational state to a program state that disconnects the input connectors from the optionally selectable function circuits and connects the input connectors to the function programming circuit such that the input data signal is interpreted to identify those optionally selectable function circuits that are to manipulate the input data signal during the operational state.
The function programming circuit has a plurality of latch circuits. Each latch circuit has an input to receive the input data signal, a memory element to retain the data to identify the optionally selectable function circuits, and an output to transmit the identity of those optionally selectable function circuits that are elected to manipulate the input data.
The mode selector is comprised of a plurality of switching circuits. Each switching circuit has an input terminal connected to one of the input connectors, a first output terminal connected to the optionally selectable function circuits through the mode selection circuit, a second output terminal connected to the function programming circuit, and a control terminal connected to the configuration connector to receive the electrical configuration signal. The second output terminal transfers the identity of those optionally selectable function circuits to the function programming circuit. The control terminal changes the integrated circuit module between the operational state to the program state. | {
"pile_set_name": "USPTO Backgrounds"
} |
Telecommunications systems utilize cables, such as fiber optic cables or copper twisted pair cables, for interconnecting pieces of telecommunications equipment or components. The systems commonly include telecommunication racks that hold a variety of different pieces of telecommunications equipment. Often thousands of cables are used to interconnect the various pieces of telecommunications equipment mounted on the racks.
Because of the large number of cables associated with telecommunications equipment, cable management is crucial. Cable management involves efficiently routing cables to minimize the occupied space, and routing cables in an orderly manner so as to reduce the likelihood of cable tangling. Ease of cable organization is also a factor related to effective cable management.
Cable management is also important in preventing damage to the cables. Unnecessary or excessive bending of fiber optic cables, for example, is undesirable. Bending of fibers can cause attenuation and loss of signal strength. As the fiber bends, the fiber can also break, resulting in complete loss of signal transmission through the fiber.
In general, conventional arrangements for managing cable can be improved. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computers normally come packaged in a cabinet commonly referred to as “box.” This is true both for personal computers (PCs) as well as server computers. Many of the various electrical components within the computer box generate heat while operating. For example, heat is typically generated by power supplies, hard drives, and circuit boards disposed within computer boxes.
To avoid overheating of the electrical components within a computer box, fans are typically used that draw and/or blow air over the heat-generating components. The airflow created by these fans provides forced convection that transfers heat from the heat-generating components to the ambient air. Normally, the heated air is permitted to exit the computer box through one or more exhaust vents, typically provided at the rear of the computer box.
Space is often limited in computer boxes, especially in situations in which many different electrical components are to be housed within the box, as in the case of server computers. Due to these space constraints, components to be provided within a given computer box occasionally must be reduced in size to ensure that they will fit properly within the computer box. For example, in the case of fans, smaller diameter fans than would be optimal for purposes of heat dissipation may need to be used. In such a case, the heat-generating components may not be provided with the degree of heat transfer that is required. Therefore, the computer designer may be faced with the equally undesirable choices of providing potentially inadequate heat transfer, or redesigning the entire computer layout or increasing the size of the computer box to provide the space required to accommodate the properly-sized fans. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the invention
The present invention relates to an electrical connector, and more particular to an electrical connector for a sheet-like connection member such as a flexible printed circuit (FPC), a flexible flat cable and so forth. All of these cables and circuit hereafter will be generally referred to as “FPC” for simplification.
2. Description of Related Art
U.S. Pat. No. 6,921,274 discloses a conventional electrical connector adapted for connecting an FPC. The connector comprises a longitudinal insulating housing defining a receiving cavity with a pair of slots respectively formed at opposite ends. A plurality of terminals is mounting on the housing with solder portions extending rearward to solder on a printed circuit board (PCB). A pair of retaining members is embedded in the slot and each comprises a retaining portion retained in a back end of the slot and a solder portion extending out of the slot to be soldered on the PCB. An actuator is rotatablely mounted on the housing 1 and presses the FPC to electrically contact with the terminals.
After the connector is mounted onto the PCB, if the FPC is enforced by an unexpected upward force, the front portion of the housing may be pulled upward because the retaining member only fix the rear portion of the housing, which will destroy the connection between the terminals and the PCB. Therefore, an improved electrical connector is required to overcome the problem. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a video system that uses a positive composite video signal, there is needed a burst gate pulse which is used in a video phase locked loop (PLL) block, as well as some reference synchronizing signals such as horizontal, vertical and composite synchronizing signals. Therefore, the PLL system requires a local oscillator having its oscillation frequency of 3.58 MHz (In other systems, it may be divided in frequency from 14.32 MHz) which is used as a reference signal for color signals in a receiver of the video system. To assure coincidence of a phase of the oscillation frequency with a burst signal of the input composite video signal, it requires a pulse signal to inform a position of the burst signal. The pulse signal is referred to as the burst gate pulse signal.
The video system of prior art has been equipped with an exterior synchronizing circuit which adopts discrete and operational amplifiers, wherein the phase is made to coincide with the burst signal of the input composite video signal in generating a signal having a frequency and a duty rate which is the same as that of the burst. Because the exterior circuit consists of several components, it raises the cost in producing the system. Moreover, it becomes very difficult to make the phase coincide with the burst signal of the input composite video signal if another synchronizing circuit is not equipped therewith, and thus the quality of the burst gate pulse began to degrade. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method of reducing the severity hip dysplasia in animals, and including a dog food composition which has been found to be highly effective for this purpose.
Canine hip dysplasia is a coxofemoral joint deformity which is a common problem in veterinary medicine. The disease affects many types of dogs but is particularly pronounced with breeds of dogs which are large in size, such as dogs that weigh more than 35 pounds. Generally, larger the size of the particular breed of dog involved, the higher the incidence of hip dysplasia. Canine hip dysplasia is a disease that occurs in young animals, such as puppies, and affects the dog for its entire lifespan.
Hip dysplasia in the dog has also been recognized as a hereditary disease that is characterized by laxity of the hip joints and a degeneration of tissues in the joint. Laxity of the hip joint begins a cycle, in which movement by the animal and force applied to the joint forces the femoral head into an abnormal position. The abnormal positioning of the femoral head results in erosion of the joint cartilage, fibrillation of the round ligament and inflammatory changes in the synovial membrane. The end result of joint laxity is an abnormally shallow acetabulum and a flattened femoral head.
Clinically, the disease is highly variable in dogs ranging from minimal clinical signs in some dogs to symptoms of a crippling disease in others. In addition, the severity of the clinical signs does not necessarily correlate with radiographic measurement or pathologic severity of the condition itself. Differences in breeds of dogs, as well as individual temperament of the dogs, can also affect the clinical signs of the disease.
For the most part, diagnosis of hip dysplasia is made by a standardized radiographic examination, which has been found to be more than 70% accurate, with an even higher degree of accuracy when the dogs age is closer to 2 years.
It has been recognized that most cases of canine hip dysplasia develop within the first two years of life. While long term breeding programs might reduce the severity of hip dysplasia in certain breeds of dogs, it is equally apparent that environmental factors during the first two years of growth may also be a contributing cause.
The exact nature of the environmental factors that might influence the severity or occurrence of hip dysplasia in dogs at the present time is not entirely known. There are a number of factors which have been considered. One of these factors is the influence of hormonal balance on the development of joint laxity. At the present time, endogenous hormone balance has not proven to be significantly involved in hip dysplasia with dogs. Studies have also been conducted in which the dogs were confined during part of the growth cycle in order to result in a lower occurrence of hip dysplasia, but this has also given conflicting results. Rapid weight gain has also been investigated and had been thought to be prominently associated with occurrence of canine hip dysplasia, but to date has not proven to be a primary cause.
The influence of the diet on the occurrence of canine hip dysplasia during the first year of growth has also been evaluated by various investigators. It has been reported for example, that hip dysplasia was accelerated by feeding a high carbohydrate diet and was ameliorated by feeding a high meat or all meat diet. The oral administration of ascorbic acid and its effect on canine hip dysplasia has also been investigated and it was determined that this did not significantly affect the incidence of canine hip dysplasia in dogs.
It is therefore an object of the present invention to provide a method for reducing the severity of hip dysplasia in animals such as dogs, by administering a diet which has found to be effective for this purpose.
It is another object of the present invention to provide a method of reducing the severity of hip dysplasia in dogs by the control of various nutritional factors in the diet of the animal during the early stages of life.
It is a further object of the present invention to provide a nutritionally balanced dog food composition which has been found to substantially reduce the severity of hip dysplasia in dogs.
It is a still further object to provide a nutritionally balanced dog food composition which may be fed to the animals during the first years of growth and result in less severity of hip dysplasia as the dog matures. | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent years a large and successful business has been developed which employs flexible plastic fasteners of a type designed to be inserted through hollow slotted needles for tagging or for joining two objects together. Such fasteners, together with apparatus for applying them, have been widely employed for the attachment of buttons to garments, for price tagging in retail establishments, for the pairing of items such as shoes, and in various industrial applications. Such fasteners and apparatus are shown in numerous references, including among others, U.S. Pat. Nos. 3,103,666; 3,399,432; 3,380,122; 3,444,597; 3,457,589; 3,470,834; 3,659,769; 3,733,657; 3,759,435; 3,875,648; 3,893,612; 3,895,753; and 3,948,128.
Most conveniently, plastic fasteners have been provided in assemblies for feeding sequentially through the dispensing apparatus. They have been supplied, as shown for example in U.S. Pat. No. 3,103,666, attached by means of severable necks to a runner bar, or, as described for example in U.S. Pat. 3,875,648, as a stock of continuous side members cross-coupled by a plurality of filaments, from which individual fasteners are severed. Fastener assemblies employing runner bars limit the number of fasteners which can be conveniently supplied in a single assembly and waste material since the runner bar is not put to productive end use. While these limitations are partially overcome by the fastener stock described in U.S. Pat. No. 3,875,648, a need has persisted for improvements in manufacture and in feeding and dispensing the fasteners, especially for applications such as price tagging where a single fastener end-bar is dispensed by means of a hand powered tool. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a dishwasher machine, in particular a domestic dishwasher machine, comprising a washing container and devices for washing items to be washed by means of washing solution, a control device, at least one wash program comprising the partial program steps “clean”, “intermediate rinse”, “clear rinse” and “dry” and comprising a sound wave generator for acting upon the interior of the washing container (2) with sound waves. The invention further relates to a method for cleaning items to be washed in a washing container of a dishwasher machine, in particular a domestic dishwasher machine, comprising the partial program steps “clean”, “intermediate rinse”, “clear rinse” and “dry” and wherein the interior of the washing container is acted upon by sound waves.
Conventional dishwasher machines are known to comprise a washing method whose program sequence generally consists of a partial program step “pre-wash”, a partial program step “clean”, at least one partial program step “intermediate rinse”, a partial program step “clear rinse” and a partial program step “dry”.
Various drying systems are known for drying the items to be washed in a dishwasher machine. For example, so-called condensation drying is used in which the items to be washed are heated to high temperature, usually 65° C., in a partial program step preceding the “dry” partial program step in order to evaporate the moisture as a result of the high temperature of the items to be washed (self-heat of the items to be washed) and/or the washing container. However, this procedure has the disadvantage that a considerable quantity of energy must be expended to heat the items to be washed. In addition, there are drying systems provided with a fan which circulates the air in the washing container and dries this circulated air outside the washing container e.g. as a result of condensation on cold surfaces and then preferably re-heats this air again before returning it into the washing container.
In addition, so-called sorption drying devices are known from DE 103 53 774 A1 of the applicant in which moist air is guided from the washing container onto a reversibly dehydratable material which extracts the moisture from the moist air. Since the moisture absorption capacity of the reversibly dehydratable material is limited, the reversibly dehydratable material is regenerated at a different point in time from the drying process. Compared with condensation drying, this method has the advantage that the drying of the items to be washed requires a considerably lower expenditure of energy. A disadvantage, however, is the somewhat more complex design of the dishwasher machine since additional components and lines must be provided in an area located outside the washing container.
Known from U.S. Pat. No. 3,854,998 is a dishwasher machine provided with an ultrasonic generator which acts upon the washing solution used to clean the items to be washed with ultrasonic vibration to enhance the cleaning performance. As a result of the design-dependent generation of ultrasonic vibration using water vapour and hot air which is intended to set in vibration the washing solution emerging from the washing device, the ultrasonic wave generator cannot be used for other purposes. In addition, the design configuration does not allow the use of dishwasher machines conventionally used nowadays in which two washing devices each allocated a holder for items to be washed are provided.
In addition, WO 91/01473 discloses an ultrasonic drying device, among other things for drying crockery. This comprises a power amplifier and/or an oscillator circuit, a transducer and a device for transmitting or focussing the ultrasonic waves. The sound wave can be generated using a compressed air source or an ultrasonic whistle. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to laser treating pile fabrics and, more particularly, to changing a fiber height in the pile fabric by laser energy, while maintaining a desired feel or hand of the fabric, wherein selected fabrics can exhibit color alteration.
2. Description of Related Art
Materials have commonly been used to make clothing, linens, footwear, belts, purses and wallets, luggage, vehicle interiors, furniture coverings, wall coverings, and many other manufactured goods. Consumer demand for graphics on these materials has increased over the recent years. Consumers often desire graphics on these materials to give the materials a unique and attractive appearance.
The typical methods of forming graphics on materials include dyeing, printing, weaving, embossing, and stamping. Unfortunately, such methods are very costly in terms of capital investment and operating cost. In addition, these prior methods are often unfriendly to the environment.
Lasers have been used in the fabric industry to cut fabrics into separate pieces. Lasers have also been used to fix dyes. However, in the past, certain technical barriers have often prevented the use of lasers to form graphics on certain fabrics.
Therefore, the need exists for a laser treatment of a pile fabric that can preserve the hand (feel) of the fabric, while still imparting a change in fiber length. That is, the need exists for pile fabric that can have a sculpted, three-dimensional appearance, without destroying the traditional soft feel of the pile. Thus, the aesthetic feel or tactile quality of something, such as a fabric, textile, or carpeting, that indicates its fineness, texture, and durability (hand) is substantially preserved, while imparting a variation in the pile height. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates generally to seed planting implements and, more particularly, to seed meters used on seed planting implements.
Generally, planting implements (e.g., planters) are towed behind a tractor or other work vehicle via a mounting bracket secured to a rigid frame of the implement. These planting implements typically include multiple row units distributed across the width of the implement, which are used to deposit seeds at a desired depth beneath the soil surface, thereby establishing rows of planted seeds. More specifically, each row unit may include a seed meter that controls the rate and/or spacing of seeds deposited in the ground.
Often, planting implements may include as many as sixteen to twenty-four individual row units. However, along the width of the implement, operating conditions of each row unit may vary. For example, row units located in a central portion of the planting implement may have a different desired vacuum pressure as compared to row units located in outer portions of the planting implement. Additionally, in some embodiments, one group of row units may be used to deposit different types of seeds than another group of row units. For example, a first group of row units may plant a larger type of seed (e.g., corn) and a second group of row units may plant a smaller type of seed (e.g., soybean). As such, a remote/centralized vacuum system may make it difficult to account for the varying operating conditions. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to gambling systems, and more particularly to a system and method for generating and executing insurance policies for gambling losses.
Gambling at casinos has long been a popular activity. Casinos offer a wide variety of games such as slot machines and table games. Some of the more common slot machines include standard reel machines, video poker, and keno machines. A conventional slot machine operates when a player inserts one or more coins, bills, or tokens into a coin acceptor and plays the game by pulling a handle or pushing a button. In many instances, the slot machines are connected to a network with a centralized tracking system.
Regardless of the particular type of game, gambling generally exposes the players to unpredictable gambling losses. Once a player starts gambling, it is sometimes hard for the player to keep accurate track of the amount of gambling losses, and even players that can do so sometimes find it hard to control the urge to continue playing. Thus, gambling may result in a substantial financial loss to the player.
It is known in the art to provide insurance policies against certain types of gambling losses. One system for providing such gambling loss insurance is described in U.S. Pat. No. 5,178,390 (Okada). This patent describes a slot machine that offers insurance by having the player insert coins into a coin acceptor dedicated to insurance payments. Thereafter, the slot machine provides a payout to the player depending on whether the machine has paid any jackpots over a given number of handle pulls. The payout, however, is not directly related to the amount of gambling losses, and the insurance protection applies only to a particular machine from which the insurance was purchased. Therefore, the player not only has limited flexibility in defining the policy requirements, the player must play at a particular machine during the entire insurance coverage period.
Another patent, U.S. Pat. No. 4,669,731 (Clarke), teaches a slot machine that pays out to the player when a predetermined number of consecutive games are lost. Similar to the Okada patent, however, the protection is not transferable between various slot machines, and the player cannot define the requirements of the protection, such as amount of losses.
Accordingly, not only are these systems restrictive in defining the type and scope of the insurance protection, they do not offer avenues for individuals to play different types of games at different locations under a single insurance coverage. Instead, the players must purchase the insurance at the particular machine at which they will play throughout the entire insurance coverage period. Additionally, once the player initiates the insurance period, the player does not have an option to suspend the gambling session. Thus, these systems not only provide limited protection against gambling losses, they also significantly limit the games that may be played while covered by an insurance policy.
Therefore, it is desirable to provide protection against unpredictable gambling losses with flexible insurance policies.
It is also desirable to offer insurance protection enabling players the freedom to move between slot machines while maintaining a high level of playing enjoyment.
It is further desirable to provide a method of procuring gambling loss insurance through commonly accessible means such as credit cards. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to printing ink compositions and, in particular, to printing ink compositions which are suitable for use in dry-planographic printing.
2. Description of the Prior Art
Recently, various methods have been proposed as a result of extensive investigational efforts directed toward the development of dry-planographic printing processes in which no dampening water is employed. For example, the most important method from the standpoint of practice was a method using planographic printing plates prepared by providing films of a non-sticky substance, such as silicone rubber, on the non-image areas, whereby printing with an oil-based printing ink in the absence of the water or dampening solutions is possible (see, for example, U.S. Pat. No. 3,511,178). One of the critical disadvantages in those dry-planographic printing plates has been the occurrence of scumming on the non-image areas when a conventional printing ink was employed.
In order to overcome this disadvantage, an improvement was proposed to enhance the tack of the printing ink by increasing its cohesion, which, however, results only in a very much increased piling of paper powder to a degree such that no practical printing has been possible.
A further improvement was proposed to formulate a printing ink composition suitable for dry-planographic printing, containing from 0.1 to 10% by weight of an organopolysiloxane (see, for example, Japanese Patent Publication No. 50-11287). This organopolysiloxane-containing ink composition, however, experimentally was found to be defective with respect to stability, bringing about the separation of the organopolysiloxane in the ink composition, since this composition was formulated by merely blending the organopolysiloxane with other materials.
The prior art printing ink compositions are not able to contain organopolysiloxane in high amounts, because there is a tendency for much of the organopolysiloxane content to cause increases in the viscosity of the ink composition, insufficient dispersion of pigments in the ink composition and other undesirable effects, as well as separation of the organopolysiloxane in the ink composition. Accordingly, the prior art ink compositions have had to have a low content of organopolysiloxane, and this eventually works to decrease the repellency of the ink composition, resulting in the occurrence of scumming on the printing plates.
The inventors of the present invention have conducted extensive studies on the improvement of the printing ink composition suitable for use in dry-planographic printing. They had held a basic concept that the problem should be a matter of interrelationship between the printing ink compositions and the printing plates. As a result, they have proposed printing ink compositions for dry-planographic printing containing a silicone-modified alkyd resin as disclosed in U.S. Pat. Nos. 3,945,957 and 3,948,827 or a silicone-modified vegetable oil as disclosed, for example, in Japanese Patent Disclosures No. 51-21907, having very good printability in the actual printing and capable of giving excellent printed copies.
These proposed printing ink compositions are, indeed, suitable for dry-planographic printing on a sheet-fed offset printing press. Such compositions exhibit a very good printability with excellent printed products, but the same compositions are defective when employed in a long-run printing on a high-speed web offset printing press, due to decreased ink tack and increased tendency to scumming. Scumming alone may be prevented from taking place during a long-run printing operation on the printing press by using an ink designed to have a higher initial ink tack, but such high tack tends to give rise to insufficient spread and unfavorable piling of the ink on the inking roller. | {
"pile_set_name": "USPTO Backgrounds"
} |
Many people suffer from inflammatory bowel disease (IBD). IBD is a generic term used to refer to two inflammatory diseases, ulcerative colitis and Crohn's disease. Ulcerative colitis is a chronic inflammatory disease of unknown etiology that affects various portions of the gastrointestinal (GI) tract, particularly the lower GI tract, and more particularly the colon and/or rectum. Crohn's disease is a serious inflammatory disease of the GI tract. It predominates in the small intestine (ileum) and the large intestine (colon). Various medications are being used to treat inflammatory bowel disease.
It is known to use mesalamine, 5-aminosalicylic acid (5-ASA) to treat ulcerative colitis. While mesalamine may be active in treating ulcerative colitis, it may be absorbed as it passes through the GI tract. This absorption may adversely affect the amount of mesalamine that reaches the lower GI tract, particularly the colon and rectum.
Various mesalamine formulations have been introduced in an attempt to protect mesalamine as it passes through the gut and the upper GI tract. One such formulation is a delayed-release formulation that relies on a pH-sensitive coating surrounding the mesalamine. The coating allows the mesalamine to pass through the gut and upper GI tract without being absorbed so that the mesalamine reaches the target (i.e. the lower GI tract, particularly the colon and/or rectum) intact. In another formulation, mesalamine microspheres surround a mesalamine core. This formulation releases mesalamine throughout the GI tract, rather than targeting the colon specifically. It may be difficult to predict the bioavailability of the various mesalamine formulations when administered to a wide variety of individuals. As a result, it may be difficult to determine the proper dosage for a given individual.
It is also known to use sulfasalazine having the following formula to treat ulcerative colitis.
However, sulfasalazine is metabolized in the body to form mesalamine (5-aminosalicylic acid (5-ASA)) and sulfapyridine. Several adverse side affects have been noted from the use of sulfasalazine including nausea, vomiting, abdominal discomfort, and headache to name just a few. These adverse side effects are usually attributed to the activity of sulfapyridine in the GI tract, as well as that absorbed into the system.
U.S. Pat. No. 4,412,992 to Chan proposes mesalamine derivatives. Unlike sulfalazine, the breakdown of these compounds in the intestinal tract may not give rise to undesirable metabolic products. In fact, the non-mesalamine metabolic products may be innocuous.
Olsalazine having the following formula has been used to treat ulcerative colitis.
In addition to being relatively expensive to make, olsalazine may have adverse side effects including diarrhea.
It is known to use azathioprine (6-(1-methyl-4-nitoimidazol-5-ylthio)purine) in the treatment of inflammatory bowel disease. Azathioprine has the following chemical structure:
It is also known to use 6-mercaptopurine, a metabolite of azathioprine, to treat inflammatory bowel disease. 6-mercaptopurine has the following chemical structure:
Methotrexate (L-4-amino-N10-methylpteroyl-glutamic acid) has also been used to treat inflammatory bowel disease. Methotrexate has the following chemical structure:
The polypeptide cyclosporine, which has traditionally been given to transplant patients to prevent organ rejection, has also been used to treat inflammatory bowel disease. The use of cyclosporine to treat IBD may be limited, however, by the various side effects associated with this medication. These side effects include high blood pressure, kidney damage, tremors, headaches, seizures, excessive hair growth, excessive gum growth, confusion, coma, and gout. | {
"pile_set_name": "USPTO Backgrounds"
} |
Heating, ventilation, and air conditioning (HVAC) systems generally operate to provide optimal indoor air quality to occupants within interior building spaces. HVAC systems achieve optimal indoor air quality by conditioning air, removing particle contaminants by way of ventilation and filtration of air, and providing proper building pressurization.
While there are many different HVAC system designs and operational approaches, and each building design is unique, HVAC systems generally share a few basic design elements. For example, outside air (“supply air”) generally is drawn into a HVAC system of a building through an air intake. Once in the HVAC system, the supply air is filtered to remove particle contaminants, then heated or cooled, and then circulated throughout the building by way of an air distribution system. Many air distribution systems comprise a return air system configured to draw air from interior building spaces and return the air (“return air”) to the HVAC system. The return air is then mixed with supply air and then filtered, conditioned, and circulated throughout the building. Often times, a portion of the air circulating within the building may be exhausted to the exterior of the building so as to maintain a desired barometric pressure within the building.
As will be appreciated, the effectiveness of the HVAC system to provide an optimal indoor air quality depends largely on an ability of an air filter within the HVAC system to remove particle contaminants from the air within the building. A HVAC system air filter typically comprises fibrous materials configured to remove solid particulates, such as dust, pollen, mold, and bacteria from the air passing through the HVAC system. A drawback to conventional HVAC system air filters, however, is that highly effective air filters capable of removing very small contaminants, such as airborne molecular contaminants and volatile organic compounds (VOCs), tend to restrict airflow through the air filter, thereby making the HVAC system work harder and consume more energy.
Another drawback to conventional HVAC system air filters is that dirty or clogged air filters typically are removed from the HVAC system and discarded, and a new HVAC system air filter is then installed. Further, HVAC system air filters may be unnecessarily discarded and replaced in an effort to increase HVAC system airflow and thus decrease operation costs. Considering that there are millions of buildings with HVAC systems throughout the world, the volume of discarded air filters that could be eliminated from landfills is a staggering number. What is needed, therefore, is a HVAC system air filter that may be periodically cleaned and reused, and is configured for removing airborne molecular contaminants and VOCs without obstructing air flow through the HVAC system. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor integrated circuit comprising a plurality of functional blocks such as signal processing circuits. In particular, power consumption of each functional block can be realized.
2. Related Art
A conventional method of measuring power consumption of a semiconductor integrated circuit is explained below.
First, a semiconductor integrated circuit is mounted onto a circuit board. Next an ammeter is connected to power supply wiring prepared on the circuit board. Then, the circuit board and the semiconductor integrated circuit are operated. The ammeter measures the current passing through the power supply wiring prepared on the circuit board, and a measured current value is used for calculating the power consumption of the semiconductor integrated circuit.
If it is impossible to connect the ammeter to the circuit board (because of any reason, for example, the circuit board is built in a cabinet, and so on), applying the conventional measuring method as described above cannot measure the power consumption of the semiconductor integrated circuit.
Moreover, in case a plurality of semiconductor integrated circuits together with registers and so on are connected to a single set of power supply wirings prepared on a circuit board, applying the conventional measuring method as described above does not make it possible to realize power consumption of each device.
Furthermore, a semiconductor integrated circuit comprising a plurality of functional blocks that each operate in synchronization with a plurality of different clock signals has recently come into use. However, applying the conventional measuring method as described above does not make it possible to realize power consumption of each of the functional blocks inside the semiconductor integrated circuit.
Incidentally, a type of counter device, which has its counter operate to reduce power consumption only when needed, is known. (For example; refer to Japanese Patent Laid-Open Publication No. 2000-49593 (first page and FIG. 1)).
However, such a counter device described in Japanese Patent Laid-Open Publication No. 2000-49593 does not make it possible to measure power consumption of each of a plurality of functional blocks placed internally.
Furthermore, a type of semiconductor integrated circuit device and equivalent, in which a determination on supplying a clock signal is made for each module, is also known. (For example; refer to Japanese Patent Laid-Open Publication No. 2000-148284 (first page and FIG. 1)).
However, such a semiconductor integrated circuit device and equivalent described in Japanese Patent Laid-Open Publication No.2000-148284 do not make it possible to measure power consumption of each of a plurality of signal processing circuits placed internally.
Taking the points described above into consideration, the present invention aims to provide a semiconductor integrated circuit which comprises a plurality of functional blocks such as signal processing circuits and so on, and in which the power consumption of each functional block can be determined. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to the field of corn breeding. In particular, the invention relates to corn seed and plants of the variety designated CV215542, and derivatives and tissue cultures thereof.
2. Description of Related Art
The goal of field crop breeding is to combine various desirable traits in a single variety/hybrid. Such desirable traits include greater yield, better stalks, better roots, resistance to insecticides, herbicides, pests, and disease, tolerance to heat and drought, reduced time to crop maturity, better agronomic quality, higher nutritional value, and uniformity in germination times, stand establishment, growth rate, maturity, and fruit size.
Breeding techniques take advantage of a plant's method of pollination. There are two general methods of pollination: a plant self-pollinates if pollen from one flower is transferred to the same or another flower of the same plant. A plant cross-pollinates if pollen comes to it from a flower on a different plant.
Corn plants (Zea mays L.) can be bred by both self-pollination and cross-pollination. Both types of pollination involve the corn plant's flowers. Corn has separate male and female flowers on the same plant, located on the tassel and the ear, respectively. Natural pollination occurs in corn when wind blows pollen from the tassels to the silks that protrude from the tops of the ear shoot.
Plants that have been self-pollinated and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny, a homozygous plant. A cross between two such homozygous plants produces a uniform population of hybrid plants that are heterozygous for many gene loci. Conversely, a cross of two plants each heterozygous at a number of loci produces a population of hybrid plants that differ genetically and are not uniform. The resulting non-uniformity makes performance unpredictable.
The development of uniform corn plant hybrids requires the development of homozygous inbred plants, the crossing of these inbred plants, and the evaluation of the crosses. Pedigree breeding and recurrent selection are examples of breeding methods used to develop inbred plants from breeding populations. Those breeding methods combine the genetic backgrounds from two or more inbred plants or various other broad-based sources into breeding pools from which new inbred plants are developed by selfing and selection of desired phenotypes. The new inbreds are crossed with other inbred plants and the hybrids from these crosses are evaluated to determine which of those have commercial potential.
North American farmers plant tens of millions of acres of corn at the present time and there are extensive national and international commercial corn breeding programs. A continuing goal of these corn breeding programs is to develop corn hybrids that are based on stable inbred plants and have one or more desirable characteristics. To accomplish this goal, the corn breeder must select and develop superior inbred parental plants. | {
"pile_set_name": "USPTO Backgrounds"
} |
An atomic force microscope (AFM) is a comparatively high-resolution type of scanning probe microscope. With demonstrated resolution of fractions of a nanometer, AFMs promise resolution more than 1000 times greater than the optical diffraction limit.
Many known AFMs include a microscale cantilever with a sharp tip (probe tip) at its end that is used to scan the specimen surface. The cantilever is typically silicon or silicon nitride with a probe tip radius of curvature on the order of nanometers. When the probe tip is brought into contact with a sample surface, forces between the probe tip and the sample lead to a deflection of the cantilever. One or more of a variety of forces are measured via the deflection of the probe tip. These include mechanical forces and electrostatic and magnetostatic forces, to name only a few.
Typically, the deflection of the cantilevered probe tip is measured using a laser spot reflected from the top of the cantilever and onto an optical detector. Other methods that are used include optical interferometry and piezoresistive AFM cantilever sensing.
One component of AFM instruments is the actuator that maintains the angular deflection of the tip that scans the surface of the sample in contact-mode. Most AFM instruments use three orthonormal axes to image the sample. The first two axes (e.g., X and Y axes) are driven to raster-scan the surface area of the sample with respect to the probe tip with typical ranges of 100 μm in each direction. The third axis (e.g., Z axis) drives the probe tip orthogonally to the plane defined by the X and Y axes for tracking the topography of the surface.
Generally, the actuator for Z axis motion of the tip to maintain a near-constant deflection in contact-mode requires a comparatively smaller range of motion (e.g., approximately 1 μm (or less) to approximately 10 μm). However, as the requirement of scan speeds of AFMs increases, the actuator for Z axis motion must respond comparatively quickly to variations in the surface topography. In a contact-mode AFM, for example, a feedback loop is provided to maintain the tip of a cantilever in contact with a surface. The probe tip-sample interaction is regulated by the Z feedback loop, and the bandwidth of the Z feedback loop dictates how fast scanning can occur with the Z feedback loop remaining stable.
Conventionally, the signal that the Z feedback loop outputs to the Z actuator is imaged to create a topograph of a surface. However, this method of measuring topography is generally accurate only at low scan rates. Even if the probe tip tracks the sample surface perfectly at higher scan rates, the resulting image may still be distorted and full of ringing, thus leading to an unacceptable tradeoff between speed and image quality.
FIG. 6 is a simplified block diagram of a conventional AFM feedback loop, which includes controller 610, physical system 630 and sensor 650. The feedback loop regulates the distance between the probe tip and the sample surface as monitored by some relative height signal, which may be provided by cantilever deflection signal y (as shown in FIG. 6), or by resonant frequency, or by AC amplitude, for example, depending on the AFM mode. As the probe tip is scanned, the changing sample height h of the sample surface disturbs the deflection signal y as detected by sensor 650 from a deflection setpoint r, resulting in an error signal e. In response to the error signal e, the controller 610 adjusts the controller output signal u to change the probe height z of the probe tip, screening out the disturbance. However, the probe height z is not known and must be inferred from other signals in order to reconstruct the sample height h, which is the topography of the sample surface.
To address this issue, conventional AFMs scan the probe tip slowly, as mentioned above, to enable two approximations. The first approximation is that the probe tip tracks the sample surface perfectly, so that probe height z sample height h. The second approximation is that the desired physical system response P0 of the physical system 630 (including the piezoelectric actuator) is constant, so that that the probe height z is proportional to the controller output signal u, or probe height z≈P0u. Together, these two approximations lead to sample height h≈P0u, which enables maps of the controller output signal u to be calibrated into topographs. However, at higher frequencies, both the first and second approximations break down. As the bandwidth of the closed AFM loop is approached, the sample surface becomes poorly tracked, effectively negating the first approximation. Also, the physical system 630 possesses electromechanical resonances that amplify the probe tip motion at some frequencies and null it at other frequencies. This frequency dependence of the piezoelectric response P0 prohibits the probe height z from being directly inferred from controller output signal u, effectively negating the second approximation and otherwise introducing ringing artifacts into the topograph regardless of how well the sample is tracked.
Some conventional AFMs include a sensor that attempts to measure the actual extension of the piezoelectric actuator in the physical structure 630. However, such sensors typically have limited bandwidth and are otherwise oblivious to vibrations of the mechanical structures outside of the piezoelectric actuator that also affect probe-sample separation. When the sensor bandwidth is exceeded or the vibrational modes are excited, the sensor signal no longer reflects the probe height z, and thus image distortion and ringing artifacts still appear at moderate frequencies. | {
"pile_set_name": "USPTO Backgrounds"
} |
Aluminum is produced in Hall-Heroult cells by the electrolysis of alumina in molten cryolite, using conductive carbon electrodes. During the reaction the carbon anode is consumed at the rate of approximately 450 kg/mT of aluminum produced under the overall reaction ##EQU1##
The problems caused by consumption of the anode carbon are related to the cost of the anode consumed in the reaction above and to the impurities introduced to the melt from the carbon source. The petroleum cokes used in the anodes generally have significant quantities of impurities, principally sulfur, silicon, vanadium, titanium, iron and nickel. Sulfur is oxidized to its oxides, causing particularly troublesome workplace and environmental pollution. The metals, particularly vanadium, are undesirable as contaminants in the aluminum metal produced. Removal of excess quantities of the impurities requires extra and costly steps when high purity aluminum is to be produced.
If no carbon is consumed in the reduction the overall reaction would be 2Al.sub.2 O.sub.3 .fwdarw.4Al+3O.sub.2 and the oxygen produced could theoretically be recovered, but more importantly no carbon would be consumed at the anode and no contamination of the atmosphere or the product would occur from the impurities present in the coke.
Attempts have been made in the past to use non-consumable anodes with little apparent success. Metals either melt at the temperature of operation, or are attacked by oxygen or by the cryolite bath. Ceramic compounds such as oxides with perovskite and spinel crystal structures usually have too high electrical resistance or are attacked by the cryolite bath.
One of the problems arising in the developing of conductive ceramic anodes has been caused by the difficulty of making a durable electrical connection between the anode and the current conductor. Previous efforts in the field have produced connectors, primarily of metals such as silver, copper, and stainless steel. Can, U.S. Pat. No. 3,681,506, disclose a resilient metal washer held in place to form an electrical connection. Davies, U.S. Pat. No. 3,893,821, disclose a contact material containing Ag, La, SrCrO.sub.3 and CdO. Douglas et al., U.S. Pat. No. 3,922,236, disclose a contact material containing Ag, Cu, La, and SrCrO.sub.3. Fletcher, U.S. Pat. No. 3,990,860, disclose cermet compositions containing stainless steel or Mo in a matrix of Cr.sub.2 O.sub.3 and Al.sub.2 O.sub.3. Shida et al., U.S. Pat. No. 4,141,727, disclose contacts of Ag, Bi.sub.2 O.sub.3, SnO.sub.2 and Sn. Schirnig et al., U.S. Pat. No. 4,247,381, disclose an electrode useful for AlCl.sub.3 electrolysis comprising a graphite pipe, a metallic conductor with a melting point below the bath temperature, and a protective ceramic pipe surrounding the former. West German No. 1,244,343, U.S. Ser. No. 729,621, discloses borides or carbides of Ti, Zr, Ta, or Nb cast of Al using a flux of Li.sub.3 AlF.sub.6, Na.sub.3 AlF.sub.6 and NaCl. Alder, U.S. Pat. No. 4,357,226, discloses an anode assembly for a Hall cell comprising individual units mechanically held together by a clamping arrangement.
There have been several lines of development concerning nonconsumable anodes, with ceramics such as stannic oxide compounds, spinels, perovskites and various cermets as principal materials under study. A cermet is a composite material containing both metal and ceramic phases. All of these need some method for connecting to the current conductor. Landon et al., U.S. Pat. No. 4,462,889, disclose a cermet composition for a non-consumable electrode of this type. Secrist et al., U.S. Pat. No. 4,472,258, disclose a non-consumable electrode with a gradient cermet composition. Secrist et al., U.S. Pat. No. 4,484,997, disclose a non-consumable anode with a diffusion-limited composition. Clark et al., U.S. Pat. No. 4,491,510, disclose a non-consumable electrode having a specific configuration. Secrist et al., U.S. Pat. No. 4,495,049, disclose an electrode with a specific gradient metal-cermet joint. | {
"pile_set_name": "USPTO Backgrounds"
} |
The signals received by a radar which is intended chiefly to detect moving targets contain, up to the detection stage, echoes both from fixed targets and from moving targets.
In a fixed radar installation, echoes from fixed targets are characterized by Doppler frequencies of zero or virtually zero whereas echoes from moving targets are characterized by Doppler frequencies which are other than zero and which are related to the radial velocity of the targets. In the case of a moving installation, all the Doppler frequencies are shifted in proportion to the speed of the moving carrier.
Fixed echoes are usually eliminated by band-pass filtering of the video signals. The pass-band of the filter lies between the upper limit of the spectrum of the fixed echoes and the lower limit of the image of the spectrum of the fixed echoes, which is centered on the repetition frequency of the pulses.
Downstream of the filter, or bank of filters, which attenuates the fixed echoes but preserves the moving echoes, a threshold circuit of the bottom-clipping type eliminates any signal whose amplitude is below a predetermined value. This threshold is usually set at a level corresponding to the maximum amplitude of the residue of fixed echoes after filtering, so that any fixed echo has been completely eliminated behind the bottom-clipper. Only moving echoes whose amplitude is above the threshold are passed on.
The disadvantages of such an arrangement lie in its lack of flexibility and ineffectiveness in the presence of strong fixed echoes and weak moving echoes. In effect, throughout the range spread covered by the radar, there are ground echoes, generally few in number, of considerable amplitude, other echoes being of average or lower amplitude. The residue of a strong ground echo after filtering is of not inconsiderable amplitude. If this echo is not to appear on the display, it is necessary for the threshold of the bottom-clipping circuit to be positioned just above this amplitude. However, what this amounts to is eliminating from detection many moving echoes which are situated at various distances from the strong ground echo and which are surrounded by weaker ground echoes. One remedy for this disadvantage is deliberately to lower the threshold but in this case the number of false alarms increases. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mostly, electronic devices such as mobile phones and smart phones support multi-tasking capable of concurrently running two or more applications at one time. For example, while otherwise performing other operations, the electronic device can convert into a calendar application in order to view appointments or convert into an address book application in order to view contacts. While the electronic device plays multimedia data such as video or Moving Picture Experts Group (MPEG) Audio layer 3 (MP3), the electronic device can convert into a message application and respond to a message. However, as a result of the limitation of a display size of the electronic device such as the mobile phone and the smart phone, the electronic device has to convert one application screen into other application screen or display two application screens through screen split in order to perform multi-tasking.
Therefore, there are limitations in doing a multi-tasking work in the electronic device, because of requirements associated with portability of electronic devices, the electronic device has a display smaller than a monitor of a Personal Computer (PC).
The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
Water management is an important aspect for successful agricultural plant production since water stress may a pronounced effect on the vegetative growth, and number and size and quality of fruits. Excessive irrigation is expensive, can cause vigorous vegetative growth as well as delayed ripening and increases the need for disease and pest control. Excessive water supply will also cause percolation of water below the root zone, leaching nitrate and other chemicals into groundwater. Furthermore, the need to optimize crop water use has become more important given the decrease in the amount of available water for agriculture and the increase in the irregularity of rain distribution.
In practice, various irrigation methods have been developed for optimizing the amount of water and frequency of application in dependency on the evapotranspirative demand, weather conditions and the type of soil. Efficient irrigation requires precise information on the specific water requirements of the plant species at different growth stages and under varying (micro-)climatic conditions, and on crop water consumption to meet the correct irrigation scheduling timing and amount of water, fertilizers and to limit losses through deep percolation.
The water status of leaves can be determined using a pressure chamber (P. F. Scholander et al. in “Science” vol. 148, 1965, p. 339-346). The method is simple, but massively invasive, time-consuming and unsuitable for automation. Further drawback is that the number of leaves that can be measured is rather limited and, therefore, data can be misrepresentative of the overall in-situ conditions (due to variability in height, sun exposure, microclimate conditions, canopy circumference etc.). Most importantly and frequently ignored, the readings cannot always straightforwardly be interpreted in terms of xylem pressure and/or turgor pressure.
Further techniques for investigating the water status of plants, in particular for irrigation purposes, are known in practice. As an example, humidity sensors can be used for measuring soil moisture content directly. Although such sensors can be permanently installed at representative sites in an agricultural field, particular disadvantages are given in terms of soil heterogeneity and the requirement of a close contact to the soil matrix.
The most reliable information on the water status can be obtained if the turgor pressure in the plant cells is measured directly. Various types of turgor pressure measuring devices have been described in the past. An early example is the pressure measurement in plant cells described by U. Zimmermann et al. (“Die Naturwissenschaften”, 1969, vol. 56, p. 634), whereas the turgor pressure is sensed with a combination of a micro-needle and a pressure probe. Further turgor pressure measuring techniques, like e.g. ball tonometry, micro-indentation, cantilever bending measurements or aspiration measurements have been described by U. Zimmermann et al. (“New Phytologist”, vol. 162, 2004, p. 575-615) and by A. Geitmann (“American Journal of Botany”, vol. 93, 2006, p. 1380-1390). As another approach, the relationship between leave thickness and plant water potential has been described by T. McBurney (“Journal of Experimental Botany”, vol. 43, 1992, p. 327-335).
Generally, the conventional turgor pressure measurement techniques have disadvantages in terms of limited reliability and applicability under practical conditions of agriculture. It has been found that the results obtained with the conventional techniques have a limited significance. Furthermore, the conventional techniques are not suitable for long-term outdoor applications especially because of their susceptibility to gusty or high winds. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cancer is one of the leading causes of death in the United States. Several hundred thousand individuals die as a result of some form of cancer. Therefore, the need to diagnose and treat cancerous or otherwise harmful lesions at the earliest stage possible is highly coveted. Frequently, areas of the body may arouse suspicion as being or becoming cancerous due to a change in appearance, function, or physiology. Alternatively, one's familial history and/or lifestyle may lead a physician to believe that individual is more susceptible or likely to get cancer in a particular part of the body.
Testing the suspicious or otherwise targeted tissue for cancerous growths and/or indicia is commonly done by taking a sample or specimen of the tissue in a procedure called a biopsy. The tissue sample is removed from the body and diagnostic tests are performed on it to deduce its propensity for, or the presence of, malignant cell growth. A biopsy is commonly performed by inserting a needle into the targeted area along a straight path. The needle cuts the tissue sample and simultaneously collects it such that the sample can be removed from the body. A problem with cutting tissue samples along a straight path is that multiple samples (passes) must be taken in the targeted area to obtain a sufficient tissue volume for diagnostic testing. This can be both time consuming as well as uncomfortable for the patient, as acquiring multiple tissue samples requires multiple needle insertions. Additionally, the depth of the tissue sample taken is frequently a function of the length of the needle cutting edge and, thus, is approximated instead of closely monitored. Therefore, there is a need for a tissue sampling device capable of acquiring larger volumes of tissue within one pass to reduce the time of the procedure and discomfort to the patient. There is also a need to closely monitor the depth of the tissue sample acquired to ensure that only tissue from the targeted area, i.e., the abnormal tissue, is removed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The field of this invention is the control of nematodes, in particular the control of soybean cyst nematodes. The invention also relates to the introduction of genetic material into plants that are susceptible to nematodes in order to increase tolerance to nematodes.
2. Background Art
Nematodes are microscopic wormlike animals that feed on the roots, leaves, and stems of more than 2,000 vegetables, fruits, and ornamental plants causing an estimated $100 billion crop loss worldwide. One common type of nematode is the root-knot nematode, whose feeding causes the characteristic galls on roots. Other root-feeding nematodes are the cyst- and lesion-types, which are more host specific.
Nematodes are present throughout the United States, but are mostly a problem in warm, humid areas of the South and West, and in sandy soils. Soybean cyst nematode (SCN), Heterodera glycines, was first discovered in the United States in North Carolina in 1954. It is the most serious pest of soybean plants. Some areas are so heavily infested by SCN that soybean production is no longer economically possible without control measures. Although soybean is the major economic crop attacked by SCN, SCN parasitizes some fifty hosts in total, including field crops, vegetables, ornamentals, and weeds.
Signs of nematode damage include stunting and yellowing of leaves, and wilting of the plants during hot periods. However, nematodes, including SCN, can cause significant yield loss without obvious above-ground symptoms. In addition, roots infected with SCN are dwarfed or stunted. SCN can decrease the number of nitrogen-fixing nodules on the roots, and may make the roots more susceptible to attacks by other soil-borne plant pathogens.
The SCN life cycle has three major stages: egg, juvenile, and adult. The life cycle can be completed in 24 to 30 days under optimum conditions. When temperature and moisture levels become adequate in the spring, worm-shaped juveniles hatch from eggs in the soil. These juveniles are the only life stage of the nematode that can infect soybean roots.
After penetrating the soybean roots, juveniles move through the root until they contact vascular tissue, where they stop and start to feed. The nematode injects secretions that modify certain root cells and transform them into specialized feeding sites. The root cells are morphologically transformed into large multinucleate syncytia or giant cells, which are used as a source of nutrients for the nematodes. The actively feeding nematodes thus steal essential nutrients from the plant resulting in yield loss. As the nematodes feed, they swell and eventually female nematodes become so large that they break through the root tissue and are exposed on the surface of the root.
Male nematodes, which are not swollen as adults, migrate out of the root into the soil and fertilize the lemon-shaped adult females. The males then die, while the females remain attached to the root system and continue to feed. The swollen females begin producing eggs, initially in a mass or egg sac outside the body, then later within the body cavity. Eventually the entire body cavity of the adult female is filled with eggs, and the female nematode dies. It is the egg-filled body of the dead female that is referred to as the cyst. Cysts eventually dislodge and are may be found free in the soil. The walls of the cyst become very tough, providing excellent protection for the 200 to 400 eggs contained within. SCN eggs survive within the cyst until proper hatching conditions occur. Although many of the eggs may hatch within the first year, many also will survive within the cysts for several years.
SCN can move through the soil only a few inches per year on its own power. However, SCN can be spread substantial distances in a variety of ways. Anything that can move infested soil is capable of spreading SCN, including farm machinery, vehicles and tools, wind, water, animals, and farm workers. Seed sized particles of soil often contaminate harvested seed. Consequently, SCN can be spread when seed from infested fields is planted in non-infested fields. There is even evidence that SCN can be spread by birds. Only some of these causes can be prevented.
Traditional practices for managing SCN include: maintaining proper fertility and soil pH levels in SCN-infested land; controlling other plant diseases, as well as insect and weed pests; using sanitation practices such as plowing, planting, and cultivating of SCN-infested fields only after working non-infested fields; cleaning equipment thoroughly with high pressure water or steam after working in infested fields; not using seed grown on infested land for planting non-infested fields unless the seed has been properly cleaned; rotating infested fields and alternating host crops with non-host crops, such as, corn, oat and alfalfa; using nematicides; and planting resistant soybean varieties.
Methods have been proposed for the genetic transformation of plants in order to confer increased resistance to plant parasitic nematodes. U.S. Pat. Nos. 5,589,622 and 5,824,876 are directed to the identification of plant genes expressed specifically in or adjacent to the feeding site of the plant after attachment by the nematode. The promoters of these plant target genes can then be used to direct the specific expression of toxic proteins or enzymes, or the expression of antisense RNA to the target gene or to general cellular genes. The plant promoters may also be used to confer cyst nematode resistance specifically at the feeding site by transforming the plant with a construct comprising the promoter of the plant target gene linked to a gene whose product induces lethality in the nematode after ingestion. However, these patents do not provide any specific nematode genes that are useful for conferring resistance to nematode infection, and the methods are only useful for expressing genes specifically at the feeding sites for nematodes after attachment to the plant.
Recently, RNA interference (RNAi), also referred to as gene silencing, has been proposed as a method for controlling nematodes. When double-stranded RNA (dsRNA) corresponding essentially to the sequence of a target gene or mRNA is introduced into a cell, expression from the target gene is inhibited (See e.g., U.S. Pat. No. 6,506,559). U.S. Pat. No. 6,506,559 demonstrates the effectiveness of RNAi against known genes in C. elegans, but does not teach or suggest any novel genes that are essential for plant parasitic nematodes, and does not demonstrate the usefulness of RNAi for controlling plant parasitic nematodes.
In addition, RNAi was used in PCT Publication WO 01/96584 to target nematode genes, preferably in root-knot nematodes and potato cyst nematodes. Preferred targets included molecules involved in ribosome assembly; neurotransmitter receptors and ligands; electron transport proteins; metabolic pathway proteins; and proteins involved in protein and polynucleotide production, folding, and processing. However, none of the sequences provided in PCT Publication WO 01/96584 were demonstrated to be down-regulated using RNAi, and moreover, they were not shown to be useful in conferring resistance to plant parasitic nematodes.
PCT Publication WO 01/17654 A2 also proposed the use of RNAi for targeting essential plant pathogenic and parasitic nematode genes. The host plant is preferably transformed with a construct for expressing dsRNA that has substantial sequence identity to an endogenous and essential nematode gene. The publication proposes that the invention is particularly useful for targeting a vascular acetylcholine transporter protein, a choline acetyltransferase, and a ubiquinone oxidoreductase. WO 01/17654 demonstrated that RNAi was effective in reducing expression of sec-1, involved in vesicle trafficking, in Meloidogyne incognita. However, sec-1 was not shown to be essential for plant parasitic nematodes or useful for conferring plant resistance to nematodes. In addition, the patent publication does not teach or suggest any novel genes that are essential for plant parasitic nematodes.
A number of models have been proposed for the action of RNAi. See, e.g., Hammond et al. (2001) Nature Reviews Genetics 2, 110-119, and references cited therein. In mammalian systems, dsRNAs larger than 30 nucleotides trigger induction of interferon synthesis and a global shut-down of protein syntheses, in a non-sequence-specific manner. See, e.g., Bass (2001) Nature 411, 428-429; Elbashir, et al. (2001) Nature 411, 494-498. However, U.S. Pat. No. 6,506,559 discloses that in nematodes, the length of the dsRNA corresponding to the target gene sequence may be at least 25, 50, 100, 200, 300 or 400 bases, and that even larger dsRNAs (742 nucleotides, 1033 nucleotides, 785 nucleotides, 531 nucleotides, 576 nucleotides, 651 nucleotides, 1015 nucleotides, 1033 nucleotides 730 nucleotides, 830 nucleotides, see Table 1) were also effective at inducing RNAi in C. elegans. Moreover, Wesley, et al. (2001) The Plant Journal 27, 581-590 discloses that when hairpin RNA constructs having double stranded regions ranging from 98 to 854 nucleotides were transformed into a number of plant species, the target plant genes were efficiently silenced. There is general agreement that in many organisms, including nematodes and plants, large pieces of dsRNA are cleaved into 21-23 nucleotide fragments (siRNA) within cells, and that these siRNAs are the actual mediators of the RNAi phenomenon.
Notwithstanding the foregoing, there is a need to identify safe and effective compositions and methods for the controlling plant parasitic nematodes using RNAi, and for the production of plants having increased resistance to plant parasitic nematodes. | {
"pile_set_name": "USPTO Backgrounds"
} |
FIG. 1 is a block diagram showing a configuration of an ATM-PDS (Asynchronous Transfer Mode Passive Double Star) system as a conventional data transmission system. In FIG. 1, the reference numeral 101 designates a central office unit comprising multiple transmitting and receiving sections, although only one transmitting and receiving section 114 is shown for simplicity. The reference numeral 102 designates a star coupler as an optical distributor that is connected to the central office unit 101 via an optical fiber 103; 104a-104c each designate an optical fiber connected to one of split output terminals of the star coupler 102; and 105a-105c each designate a subscriber unit connected to one of the optical fibers 104a-104c. Since the split number of a single star coupler is 32 at present, the total of 32 subscriber units can be connected to each star coupler by connecting them to the split output terminals via the optical fibers 104a-104c . . . .
The central office unit 101 comprises a transmitting laser diode (LD) 112 for outputting a video signal generated by a video signal generator 111 in the form of an optical signal; a wavelength division multiplexer/demultiplexer (WDM) 113 supplied with the output of the transmitting laser diode (LD) 112 and the output of the transmitting and receiving section 114; an electric signal multiplexer/demultiplexer 115; and a processing section 116. The transmitting and receiving section 114 includes a wavelength division multiplexer/demultiplexer (WDM) 121; a receiving photodiode (PD) 123 for converting an optical signal supplied from the wavelength division multiplexer/demultiplexer (WDM) 121 into an electric signal; a transmitting laser diode (LD) 122 for converting an electric signal to an optical signal; and a signal processor 124. The processing section 116 includes a signal processor 117, a transmitting laser diode (LD) 118 and a receiving photodiode (PD) 119.
The subscriber unit 105a comprises a wavelength division multiplexer/demultiplexer (WDM) 131a connected to the fiber 104a; a receiving photodiode (PD) 132a for receiving a wavelength band of a video signal separated by the wavelength division multiplexer/demultiplexer (WDM) 131a and for outputting it as an electric signal; a video receiver 133a supplied with the electric signal; and a transmitting and receiving section 134a supplied with signals other than the video signal separated by the wavelength division multiplexer/demultiplexer (WDM) 131a. The transmitting and receiving section 134a includes a wavelength division multiplexer/demultiplexer (WDM) 141a; a receiving photodiode (PD) 142a for converting an optical signal fed from the wavelength division multiplexer/demultiplexer (WDM) 141a into an electric signal; a transmitting laser diode (LD) 143a for converting an electric signal into an optical signal; an electric signal multiplexer/demultiplexer 144a; an A/D (Analog/Digital) converter 145a to which a telephone 147a is connected; and an A/D (Analog/Digital) converter 146a to which a facsimile machine 148a is connected. A personal computer 149a is directly connected to the electric signal multiplexer/demultiplexer 144a. The subscriber unit 105b connected to the optical fiber 104b has a similar configuration. When no video receiver is required as in the subscriber unit 105b, a terminator 135b is connected in place of the receiving photodiode (PD).
Next, the operation will be described.
In the central office unit 101, the video signal generator 111 supplies its video signal to the transmitting laser diode (LD) 112. The transmitting laser diode (LD) 112 supplies it to the wavelength division multiplexer/demultiplexer (WDM) 113 in the form of the optical signal. The wavelength division multiplexer/demultiplexer (WDM) 113 multiplexes the optical signal with the optical signal from the transmitting and receiving section 114, and supplies it to the star coupler 102 via the optical fiber 103. The star coupler 102 splits the signal and supplies the split signals to the subscriber units 105a, 105b and the like.
In the subscriber unit 105a, the wavelength division multiplexer/demultiplexer (WDM) 131a demultiplexes the input signal into the video signal and the other signals, and supplies the video signal to the video receiver 133a via the receiving photodiode (PD) 132a. On the other hand, the signals other than the video signal are supplied to the receiving photodiode (PD) 142a via the wavelength division multiplexer/demultiplexer (WDM) 141a in the transmitting and receiving section 134a, to be converted into the electric signal. Then, the electric signal multiplexer/demultiplexer 144a demultiplexes the electric signal into respective signals so that the telephone signal is supplied to the telephone set 147a via the A/D converter 145a, and the facsimile signal is supplied to the facsimile machine 148a via the A/D converter 146a. As for the computer signal, the electric signal multiplexer/demultiplexer 144a supplies it directly to the personal computer 149a.
On the other hand, as for the signals from the devices connected to the subscriber unit 105a such as the signal from the telephone set 147a, for example, the A/D converter 145a converts it to the digital signal, and supplies it to the transmitting laser diode (LD) 143a via the electric signal multiplexer/demultiplexer 144a. The transmitting laser diode (LD) 143a converts it to the optical signal, and supplies it to the star coupler 102 via the wavelength division multiplexer/demultiplexers (WDMs) 141a and 131a. The star coupler 102 sends it to the central office unit 101 via the optical fiber 103, where it is supplied to the receiving photodiode (PD) 123 via the wavelength division multiplexer/demultiplexers (WDMs) 113 and 121, to be converted into the electric signal and output. The output signal passes through the signal processor 124 and the electric signal multiplexer/demultiplexer 115, and is supplied to the processing section 116, where it passes through the signal processor 117, and is converted to the optical signal by the transmitting laser diode (LD) 118, again, to be transmitted to another station.
In the foregoing conventional data transmission system, it is considered preferable to divide the wavelength range 1480-1580 nm, which is assigned to the downlink signals from the central office unit to the subscriber units, into two regions of 1480-1530 nm and 1530-1580 nm, and to assign the longer wavelength region 1530-1580 nm to video signal deliverance. In this case, the subscriber unit requires the wavelength division multiplexer/demultiplexer (WDM) that demultiplexes the wavelength region 1480-1580 nm assigned to the downlink signal into the wavelength region 1530-1580 nm for the video signal and to the wavelength range 1480-1530 nm assigned to the signals other than the video signal.
As a typical conventionally used wavelength division multiplexer/demultiplexer (WDM), a spatial optical filter is known. FIG. 2 shows a spatial optical filter. It comprises a glass substrate 151, on a side of which a reflecting layer 152 is formed that reflects a particular wavelength signal. It further comprises, at both sides of the glass substrate 151, condenser lenses 153 and 154 which are coupled with the optical fibers 155 and 156, respectively, and a condenser lens 157 coupled with an optical fiber 158 in such a manner that the reflected light off the reflecting layer 152 is launched into the optical fiber 158 through the condenser lenses 157.
As described above, the spatial optical filter has a complicated configuration. In particular, it is difficult to align the optical axes of the optical fiber and of the condenser lenses, increasing the total cost. Since the expensive spatial optical filter is installed in the subscriber unit to separate the video signal and the signals other than the video signal, the subscriber unit is costly. This offers a problem in that a subscriber who does not want to receive the video service must purchase the expensive subscriber unit.
The present invention is implemented to solve the foregoing problem of the conventional system. Therefore, an object of the present invention is to provide an inexpensive subscriber unit for a subscriber who does not want to receive the video service. | {
"pile_set_name": "USPTO Backgrounds"
} |
As is well-understood in the art, lithography processes are used in the fabrication of the various layers in semiconductor wafer processing. Important to such lithography fabrication processes is the correct and accurate alignment and orientation of various fabrication layers formed on a wafer. Each of the layers formed must be aligned within a certain level of accuracy otherwise the incidence of circuitry failure in a wafer (and its associated dies) is excessive. As is also known, overlay metrology targets are used to obtain accurate measurements of target features. In particular, such targets can be used to obtain accurate measurements of overlay errors between layers. Such targets commonly include arrays of uniformly constructed and uniformly spaced periodic features arranged to provide the best possible targeting information. Typical prior art example targets include periodic gratings or periodically configured higher dimensional target arrays comprised of a plurality of uniformly spaced and sized metrology features. Additionally, so-called “box-in-box (BiB) overlay targets find common usage.
Such periodic targeting structures typically feature two layers of similarly oriented periodic gratings formed one over the other. Typically, the layers are designed with a specified predetermined offset with respect to each other. This enables scattering signals to be generated when illuminated by a light beam. A comparison of the actual signal produced with the expected scattering signal enables highly accurate overlay metrology measurements to be made.
Measurements of the targets can be used to determine whether an overlying layer formed over an underlying layer is positioned with sufficient accuracy. Correctly positioned layers indicate that the fabrication processes can progress to further processing steps without adjustment. Layers that are misaligned badly enough may impair the electrical function of the dice formed on a wafer and require a reworking of the wafer and/or adjustment of fabrication parameters to enable a more accurate placement of the overlying layer.
In the existing art, analysis of a design file (e.g., a GDS (Graphic Data System) type file or other design data file associated with relevant mask reticle information) that describes an IC layout and other relevant design data is used to determine an error overlay budget for the alignment of two overlying layers. Such an overlay error budget can be determined using overlay modeling. Typically, a single parameter is used to characterize the permissible level of overlay error in an entire layer of a wafer (or alternatively an entire stepper field).
For example, Maximum Error Prediction (MEP) may be used to obtain a model-based lot “dispositioning parameter”. This parameter describes the maximum acceptable overlay error that will result in a functional die. Commonly, this involves identifying the regions of a layer most sensitive to layer misplacement (e.g., regions likely to suffer electrical failures in the event of the smallest layer misalignment). Then the maximum amount of misplacement is determined (for example, the maximum amount of misalignment that will still result in electrically functional circuitry). In other words, a worse case modeled overlay error is determined and used as the dispositioning parameter for the entire wafer or, alternatively, the entire scanning field of the fabrication device. Thus, for the entire wafer or field, the same parameter is used. Thus, one number is used to describe the acceptable limit for error tolerance for the entire wafer (or alternatively for the entire scanning field of the fabrication device). This has the advantage of providing a quick, simple, and easily applicable parameter that currently enjoys wide applicability in the industry. However, this method has the disadvantage of imposing an unnecessarily tight tolerance on the whole wafer, when many of the areas of the wafer may not require such a tight tolerance.
Once a dispositioning parameter is determined, metrology measurements are then made of the various targets on the wafer and the degree of overlay error is determined for the wafer based on these metrology measurements. Then the determined overlay error can be compared to the dispositioning parameter. Based on this comparison, a decision regarding wafer disposition is made. Metrology measurements having overlay errors greater than the dispositioning parameter generally indicate that the wafer must be reworked or discarded as necessary. Other methods of obtaining dispositioning parameters are also known and employed to generate single value dispositioning parameters. But in all such cases, the practiced methodologies require the determination of a single worst case dispositioning parameter that is used to provide a quick and simple method of dispositioning wafers (or portions of a wafer) based on a comparison to one threshold value (dispositioning parameter).
As indicated briefly above, a disadvantage of such methods is that they operate under the assumption that the overlay error budget is equal at all points on the wafer (or across the scanner field). However, in reality, some areas of a wafer or scanner field are much more sensitive to overlay errors than others. For example, some portions of a wafer design may be more susceptible to electrical failure if the pattern is misaligned than other portions of the wafer. However, present dispositioning technologies have no way of taking this into consideration. Because existing technologies rely on a single dispositioning parameter, such a simplified analysis of a surface may result in the rejection of wafers that may, in actuality, have satisfactory electrical function. Unfortunately, this can result in the rejection of functional and satisfactory wafers requiring unnecessary reworking and/or reprocessing when they would not otherwise need such additional processing. This is time consuming, costly, and in general wasteful.
Therefore, although existing dispositioning processes and tools are generally suitable for their intended purposes, improvements can be made. The present invention seeks to go beyond the limitations and structural shortcomings of existing technologies to provide an improved method of dispositioning wafers. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to structures that provide electrical contacts only from a backside of a multi junction photovoltaic cell in order to increase an effective area of the photovoltaic cell, and methods of manufacturing the same.
A photovoltaic cell is a device that converts light directly into electricity by the photovoltaic effect. Assemblies of photovoltaic cells are used to make solar panels, solar modules, or photovoltaic arrays. A photovoltaic cell can be formed by providing a large area p-n junction in a semiconductor material.
A space charge region is formed around a p-n junction in a photovoltaic cell. Photons that impinge on the space charge region generate at least one electron-hole pair if absorbed by the semiconductor material in the space charge region. The electrons and holes diffuse in opposite directions, thereby accumulating positive charges in the bulk portion of the p-doped material and accumulating negative charges in the bulk portion of the n-doped material.
Conventional photovoltaic cells are configured to provide a p-doped region on one side of the cell and an n-doped region on the opposite side of the cell. For example, the front side of the cell can be the p-doped region and the back surface of the cell can be the n-doped region, or vice versa. First electrical contacts are made to one node of the photovoltaic cell from the front side, and second electrical contacts are made to the other node of the photovoltaic cell from the back surface. Because the electrical contacts on the front side need to be wired together, a one dimensional array of metal lines is provided on the front side of conventional photovoltaic cells. Such metal lines are called “grid lines” on a photovoltaic cell.
However, such gird lines block a significant portion of the front side of the photovoltaic cell, thereby reducing the effective area of the photovoltaic cell. Moreover, the width of grid lines on the front side cannot exceed a threshold width in order to limit the reduction of the effective area of the photovoltaic cell. Thus, the resistance of the grid lines on the front side of the photovoltaic cell is significant, and the efficiency of the photovoltaic cell is reduced through resistive heating of the grid lines during operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
An EL indicating panel generates electro-luminescence when an electric field is applied to a film composed of zinc sulfide with small amounts of some transition metal such as Mn and rare earth elements. EL indicating panels have been known and used for quite some time and generally consist of a thin film construction composed of a light emitting film made of the above electro-luminescence materials and an insulating film making contact therewith either from both sides or one side being sandwiched between a lower electrode film and an upper electrode film. (Refer to, for example, M. J. Russ, et al; J. Electrochem. Soc. 114, 1964, p 66, and T. Isoguchi, et al; '74 SID Intern. Symp. 1974, pp. 84-85.) Furthermore, EL indicating panels-with luminance arranged with many fine EL picture elements on the panel surface have recently become available, and they are being watched closely for their future potential as self-lighting flat panel suitable for variable images. Explanations will be given hereunder of representative examples of such EL indicating panels with thin-film construction through reference to FIG. 5.
FIG. 5 shows a partially expanded view of a substrate for the EL panel that normally uses a transparent insulation substrate (10) made of glass or similar material over which many extremely thin electrode films, measuring about 2000.ANG. and made of ITO (indium tin oxide), are disposed as the lower electrode film (20). The lower electrode film (20) is formed in a striped pattern that is long and narrow from front to back and is arranged from right to left in a very narrow pitch of 100-150 .mu.m, so that about eight films are usually laid within a distance of 1 mm. Then on top of this, an insulating film (30) with a thickness of about 3000.ANG. made of a high insulation material, such as silicon nitride, a light emitting film (40) with a thickness of about 5000.ANG. such as ZnS containing Mn, and an insulating film (50) which is identical to the insulating film (30) are laminated in that order. Next, many upper electrode films (60) with a thickness of about 5000.ANG., and made of a metal such as aluminum, are disposed as the uppermost layer in such a manner that they perpendicularly intersect with the lower electrode films (20) in a long and narrow striped pattern from right to left as shown in the figure, and in an identically narrow arranging pitch from front to back as shown in the figure.
Thus, the EL indicating panel has a light emitting film (40) sandwiched by the insulating films (30) and (50) between the lower electrode films (20) and upper electrode film (60), while the parts of the light emitting film (40) corresponding to the intersection area of the striped pattern in which the electrode film (20) and (60) intersect with each other constitute the picture elements for indication. All the parts in the EL indicating panel are transparent except for the upper electrode film (60). The indicating voltage is applied across the electrode films (20) and (60) so that an electric field will be applied to the light emitting film (40) via the insulating films (30) and (50). Furthermore, the electro-luminescence generated from atoms of Mn or some similar element contained in the ZnS acting as the light emitting cores will be taken out from the insulating substrate (10) as an indicating light "LD" as shown in the figure.
Because the light emitting film (40) is an insulator, both of its sides may not necessarily be sandwiched by the insulating films, and it is therefore possible to omit either one of the insulation film (30 or 50) to minimize the film thickness sufficiently to prevent atom migration which is harmful to the light emitting film (40). In addition, the insulation film must be made as thin as possible to reduce the indication voltage and raise light emitting efficiency of the light emitting film. Meanwhile, the above described film thickness allows the internal electric field strength to normally reach about 10.sup.6 V/cm for an indication voltage of about 200 V.
There is a problem with insulation reliability in EL indicating panels having internal electric field strength in the insulating films as high as described above, and the displayed image quality tends to be degraded while the service life is shortened as a result of local insulation breakdown which develops at various weak points on the insulation films. For instance, the weak points on the insulation are the parts, "A", as referred to the lower insulation film (30) in FIG. 5, corresponding to corner sections of the lower electrode film (20). When silicon nitride, for example, is deposited on the insulation film (30) by the sputtering process, insufficient covering or film quality defects tend to occur because of the steps created by the low electrode film (20). In addition to this drawback, the electric field is concentrated to this corner section, "A".
The upper insulation film (50) in FIG. 5 also tend to develop local insulation breakdown where it interfaces with the light emitting film (40). This is caused by the necessity of growing crystal grains (41) of ZnS or some other similar substance, as shown in FIG. 6, by applying heat treatment to improve the EL characteristics after the light emitting film (40) has been formed. This may create concaves and convexes of normally several hundred .ANG. on the surface (42) of the light emitting film (40), tending to cause mechanical distortion or cracks at points making contact with the tips of the convexes of the crystal grains (41) of the insulation film (30) and electric field concentration on these parts, thereby resulting in insulation breakdown.
In addition, if the EL indicating panel is used for color indication, and the light emitting film (40) is divided, rather than in a continuous form as in FIG. 5, into light emitting parts (40r, 40g, and 40b) as shown in FIG. 7 for indications in red, green and blue, corresponding to each picture element, the parts "B" and "C" in the figure of the insulation film (30 or 50) in the vicinity of the corners will turn out weak points resulting from insufficient covering, film quality degradation, and electric field concentration, ultimately leading to insulation breakdown.
If such insulation breakdown occurs, that section will suffer an indication defect. Fortunately, however, the electrode films (20) and (60) will not immediately be short circuited in the case of an EL indicating panel, and the panel will, therefore, remain usable even though the image quality may be somewhat degraded, while the defective area will be small and will not greatly expanded. However, because a defective point tends to gradually expand (although this will vary depending on insulating film material), with the number of defects increasing slowly, any defect in the insulation film can rapidly degrade the image quality and shorten the useful life of the EL indicating panel.
For these reasons, it is an object of the present invention to reduce weak points in the insulation films of the EL indicating panel, thereby preventing the degradation of the image quality and a corresponding decrease in service life. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to a dryer for an inkjet printing system, and to a corresponding method for drying the print image of an inkjet printing system.
Inkjet printing systems may be used to print to recording media (for example paper). For this, one or more nozzles may be used in order to fire ink droplets onto a recording medium and in order to thus generate a desired print image on the recording medium.
An inkjet printing system may comprise one or more dryers in order to dry the recording medium after application of the print image, and in order to thus fix the applied ink onto the recording medium. An insufficient drying of the recording medium may lead to the situation that the print image is smeared by following processing steps, and/or that components of the inkjet printing system are contaminated by insufficiently dried ink. Furthermore, a degradation of the recording medium and/or of the print image may possibly be caused by the process of drying (in particular by too intensive a drying).
The exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method for transferring articles.
More specifically, this invention relates to a method for transferring articles and which can be used to transfer food products in a packaging system.
Systems of this kind are generally equipped with gripper heads having suction cups which pick up one or more articles and place them in a packaging container.
The articles to be packaged are placed on conveyor belts in such a way that customary pickup devices (grippers) equipped with gripper head can pick the articles up when these are positioned under them at the gripper heads. The pickup devices which have captured the articles with their gripper heads are then moved towards a container in order to fill it.
The articles are usually fed in “ranks”, that is to say, in rows.
In many cases, however, in most packaging systems, the articles are positioned on the conveyor belt in a relatively uncontrolled or erratic manner and this makes it difficult, if not impossible, for the gripper heads to pick up the articles simultaneously.
In effect, if the articles are not perfectly aligned and spaced from each other according to precise values, the recurrent risk is that the gripper head which should pick them up simultaneously is unable to capture them all correctly.
In other words, it is very difficult for all the articles in one row to be aligned precisely enough to allow them to be picked up by a single pickup device (or “gripper”).
To pick up all the articles in one row, therefore, the user must resort to individual gripper actions, thus increasing the number of movements necessary, that is, the total pickup time, and consequently increasing the number of pickup devices needed to complete the operation. | {
"pile_set_name": "USPTO Backgrounds"
} |
Recently, attempts are being made in marine industry to utilize wind power to propel aquatic vessels. A conventional propulsion system for an aquatic vessel includes one or more submerged propellers for propelling the aquatic vessel, and may further include multiple Magnus rotors for supplementing the propellers. The Magnus rotors are operable rotate about corresponding substantially upright axes to produce a Magnus effect for propelling the aquatic vessel. The Magnus effect is defined as a thrust acting on a rotating body in a moving airstream, such as wind, wherein the thrust acts perpendicularly to a direction of the moving airstream.
Magnus rotors are conveniently rotated by employing associated motors disposed internally within the Magnus rotors. During operation, the motors generate heat, thus requiring ventilation and/or cooling to lower a temperature of the motors. However, implementations of known Magnus rotors locate associated motors in restricted spaces, resulting in the motors being insufficiently ventilated and/or cooled. Moreover, the implementations of known Magnus rotors are problematic for servicing personnel, when accessing associated motors or other internal components of the Magnus rotors during service or overhaul routines.
Assembly and installation of the known Magnus rotors onto a deck of an aquatic vessel is potentially tedious and cumbersome on account of specific constructional limitations of such aquatic vessels. Therefore, in view of aforesaid problems in relation to known Magnus rotor propelled aquatic vessels, there exists a need for a Magnus rotor propulsion system that is capable of being easily retro-fitted onto existing aquatic vessels while providing ease of access to service personnel to motors and/or other internal components of the Magnus rotor propulsion system. Furthermore, there also exists a need for a propulsion system that facilitates improved ventilation and/or cooling of components therein, in contradistinction to known propulsion systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a throttle valve position controlling apparatus for an engine and a slip controlling apparatus, and more particularly, to a throttle valve position controlling apparatus and a slip controlling apparatus which does not use any throttle valve position sensor to detect the opening degree of the throttle valve.
The opening degree of the throttle valve of the engine is adjusted in correspondence to the amount of actuating of the accelerator pedal; however, it is necessary to adjust the valve opening degree without actuation of the accelerator pedal during idling, for example. Therefore, there exists a throttle valve which can be driven by a motor as well. Further, there also exists a tandem throttle valve which has a sub throttle valve whose opening degree is adjusted by a motor, in addition to a main throttle valve, the opening degree of which is adjusted by the accelerator pedal.
In order to exactly control the valve opening degree with use of a motor, a throttle valve position sensor is required which serves to detect the valve opening degree or the valve position exactly. There are two types of throttle valve position sensors, that is, contact type and non-contact type. The contact type throttle valve position sensor has a disadvantage that the component part suffers abrasion. In particular, since the throttle valve driven by the motor is used frequently at the opening degrees around its full-closed position, abrasion is notable in the vicinity of the full-closed position. Abrasion of the throttle valve position sensor hinders the detection of the throttle valve position from being effected exactly, thereby making it impossible to control the engine correctly. In order to avoid this disadvantage, it is possible to use a non-contact type throttle valve position sensor However, the non-contact type throttle valve position sensor is expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method and apparatus for programably treating water (preferably refrigerated) in a water cooler and more particularly to an improved method and apparatus for sanitizing water that is to be dispensed from a water cooler of the type having a cabinet with one or more spigots from a reservoir water supply that is hidden inside the cabinet.
There are several types of cabinet type water dispensers in use today. One of the most common types of such water dispensers is a floor standing cabinet having an open top that receives a large inverted bottle. The bottle is typically of a plastic or glass material having a constricted neck. The bottle is turned upside down and placed on the top of the cabinet with the neck of the bottle extending into a water filled reservoir so that the water seeks its own level in the reservoir during use. As a user draws water from a spigot dispenser, the liquid level in the reservoir drops until it falls below the neck of the bottle at which time water flows from the bottle and bubbles enter the bottle until pressure has equalized. Inverted bottle type water dispensers are sold by a number of companies in the United States and elsewhere. Many are refrigerated.
Other types of water dispensers have an outer cabinet that contains a reservoir or water supply. These other types of water dispensers having a cabinet include one type that stores a large bottle (such as three or five gallon) at the bottom of the cabinet. A pump transfers water from the large bottle to the reservoir. At the reservoir, the water is typically refrigerated.
Another type of water dispenser simply connects a water supply (e.g., city water, well water) directly to a reservoir that is hidden inside the cabinet. A float valve or other water level controller can be provided to insure that the reservoir is always filled with water but does not overflow. Water that is transferred from city water, well water or another source can be filtered or otherwise treated before being transmitted to the reservoir.
All of these types of water dispensers that employ cabinets typically have one or more water dispensing spigots on the outside of the cabinet. These spigots are typically manually operated, but can be automatically operated. For example, water vending machines dispense after a consumer pays for water. The water is automatically dispensed when coins are fed to the machine.
One of the problems with cabinet style water dispensers is that of cleansing the reservoir from time to time. Because the reservoir is not air tight, it breathes allowing bacteria to enter the reservoir over a period of time. The reservoirs are typically contained within the confines of the cabinet and are not easily accessed and cleaned by consumers or end users.
For inverted bottle type dispensers, in addition to the problem of an open top, the five gallon bottles are themselves a source of bacteria and germs. Most of these bottles are transported on trucks where the bottles are exposed to outside air. They are handled by operators that typically grab the bottle at the neck, the very part of the bottle that communicates with the open reservoir during use. Unfortunately, it is difficult to convince every person that handles these bottles to wash their hands frequently enough. In order to properly sanitize such a water dispenser or cooler, the user must carefully clean the neck of the bottle prior to combining the bottle with the cabinet. Further, the user should drain and sanitize the reservoir from time to time. The cleansing of the reservoir in such a water dispenser is a time consuming project that is typically not performed at regular intervals.
The dispensing spigots that are provided on common cabinet type water dispensers can also be a source of contamination. These spigots are typically manually operated and are therefore a source of contamination from the users that operate them. Individuals have also been known to drink directly from the spigot. Therefore, sanitation of the spigots as well as the reservoir should be a part of routine maintenance.
Process ozone diffusion by bubble reactor method in small static volumes of water with abbreviated water columns to diffused ozone levels satisfactory to disinfect microorganisms in brief time periods can be difficult to achieve. An ozone generator can be used as the source of ozone. The ozone generator can include an air pump as a source of oxygen for generating ozone. The air pump preferably includes a microbial filter to filter contaminants. A diffuser can be used to diffuse the generated ozone into the water reservoir.
Various factors impact the effectiveness of bacterial removal from the water such as the microbial load, pH, temperature, conductivity, and cooler characteristics (e.g., whether an ice ring has formed which can act as a shield for microbes trapped in the ice ring). Furthermore, the variability of power supply (e.g., European power supplies versus US power supplies) can cause a generator's application to be geographically limited unless modified. Additionally, time constraints for operation of the ozone generator and diffuser can impact operation.
Additionally, in certain refrigerated reservoirs an ice ring can form inside the reservoir adjacent to the cooling coils for the reservoir. Such an ice ring can serve as a form of protection for microbes contained in the ice ring when ozone is being diffused in the reservoir. After an ozone cycle, when the ice melts wholly or partially, the trapped microbes can enter the water and thus contaminate the reservoir.
Additionally, certain waters contain loadings of bromates which can cause problems.
The above indicate a need for developing a generator and diffuser containing flexibility regarding the timing, amount, and duration of ozone generated; along with the timing, amount, and duration of air supplied. Additionally, there is a need for killing microbes which may be trapped in ice rings. Furthermore, there is a need for addressing water containing bromates. Additionally, there is a need for addressing different types of electrical supplies for various geographical areas.
In a preferred embodiment the method and apparatus is directed to an economical means of overcoming each of the factors that limit process ozone's potential disinfecting capacity. It is concerned with the optimization of each point in small automated ozonation systems both upstream and downstream from the ozonator. The object of this effort is to devise a single, economical, high longevity system capable of sanitizing many of the shapes and sizes of water dispensers in use today.
The present invention thus provides an improved self sanitizing water dispenser apparatus as well as a method for generating ozone for cleaning the reservoir and the water contained within it.
While certain novel features of this invention shown and described below are pointed out in the annexed claims, the invention is not intended to be limited to the details specified, since a person of ordinary skill in the relevant art will understand that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation may be made without departing in any way from the spirit of the present invention. No feature of the invention is critical or essential unless it is expressly stated as being “critical” or “essential.” | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates to semiconductor devices. As semiconductor devices become highly integrated, a leakage current may occur through a gate insulation layer under a gate electrode. To inhibit the leakage current, a high-k dielectric layer may be formed to surround a bottom and a sidewall of the gate electrode. A parasitic capacitance, however, may occur between the gate electrode and a contact plug adjacent the gate electrode. | {
"pile_set_name": "USPTO Backgrounds"
} |
During development of an electronic document, it is often desirable to have multiple reviewers propose changes to and comment on a draft of the electronic document. For example, an author may create an initial draft of an electronic document and send a copy of the electronic document to multiple reviewers for comments. Each reviewer may independently propose changes or make comments in the electronic document and return a revised version of the electronic document back to the author. These steps may be repeated until the author and the reviewers are satisfied with a version of the electronic document. However, this process is time consuming and inefficient. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present invention relates to a method for controlling an energy management system, and more particularly, to a method for controlling an energy management system, which enables efficient energy management of the energy management system which includes a photovoltaic (PV) module for generating power and a battery for storing power and which is connected to a grid as an external power supplier and a power load as a power consumer.
2. Background
Generally, a power supplier supplies power to each residence at a fixed price and charges a corresponding fee in a unilateral or unidirectional manner (i.e., only in a direction from the power supplier to the consumer). However, such a unidirectional power supply system has problems in that it is not possible to satisfy all demands associated with power supply of consumers and it is difficult to appropriately cope with various environmental changes. In terms of payment, such a system also has a problem in that the consumer has no choice but to follow prices set by the power supplier.
Also, there is a problem in that a power reserve rate may be significantly reduced when a peak time of power use is reached as power demand has significantly increased recently.
There are also demands and movements for changing the power supply system from unidirectional to bidirectional. A system, which allows consumers to generate and sell power back to the electrical power corporation as a power supplier, has already been introduced.
Especially, as renewable energy, which will replace fossil energy that is being exhausted, has been vigorously studied, many studies have also been conducted upon a system which allows power generated by processing renewable energy to be supplied in a bidirectional manner.
Such a bidirectional power supply system may also operate in association with a next-generation power system, which is implemented by combining an information communication technology and a modernized power technology, which has come to the fore recently, and a smart grid which is a system for managing the power system.
The smart grid has a zone in which power price varies with time. Discussions have been conducted upon methods which allow each residence, which has a power load as a final power consumer, to generate and store renewable energy. For example, each residence may be equipped with a renewable energy generation module such as a photovoltaic (PV) module, a wind power generation module, or a fuel power generation module to generate energy and may also be equipped with a Lithium-ion battery or the like as an energy storage module to store energy provided by the grid or to store energy that is not consumed in real time in the residence or the like from among energy generated by the renewable energy generation module.
Thus, there is a need to provide a method for controlling an energy management system to achieve reasonable power distribution and use between the components of a smart grid by efficiently distributing, storing, and supplying power generated by the final power consumer as a power load, the renewable energy generation module, the energy storage module, and the smart grid. | {
"pile_set_name": "USPTO Backgrounds"
} |
In pursuit of high-efficiency, environmentally friendly energy production, solid oxide fuel cell (SOFC) technologies have emerged as a potential alternative to conventional turbine and combustion engines. SOFCs are generally defined as a type of fuel cell in which the electrolyte is a solid metal oxide (generally non-porous or limited to closed porosity), in which O2− ions are transported from the cathode to the anode. Fuel cell technologies, and particularly SOFCs, typically have a higher efficiency and have lower CO and NOx emissions than traditional combustion engines. In addition, fuel cell technologies tend to be quiet and vibration-free. Solid oxide fuel cells have an advantage over other fuel cell varieties. For example, SOFCs can use fuel sources, such as natural gas, propane, methanol, kerosene, and diesel, among others, because SOFCs operate at sufficiently high operating temperatures to allow for internal fuel reformation. However, challenges exist in reducing the cost of SOFC systems to be competitive with combustion engines and other fuel cell technologies. These challenges include lowering the cost of materials, improving degradation or life cycle, and improving operation characteristics, such as current and power density.
Among the many challenges with the manufacture of SOFCs, the formation of free standing and fully integrated SOFC stacks parameters remains a notable engineering hurdle, particularly, SOFC stacks utilizing a series electrical connection, or SOFC stacks utilizing a variety of different materials with different processing. In this respect, prior art techniques have focused on processing individual component layers or a plurality of layers having similar processing parameters combined with a final joining process to bond all of the components to form a SOFC stack. The final joining process usually involves bonding the individual layers or cells together using a solder or glass encapsulant and entails multiple firing cycles. Often the layers and the cells are merely clamped together and held under pressure. In view of the foregoing, the industry continues to have a need for improved SOFC cells and SOFC cell stacks. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of Invention
The present invention relates a fishing device, and more particularly to a fishing device for Asian carp.
Description of Related Arts
Conventional fishing methods which are commonly used includes fishhooks fishing, fishing by small fishing nets, seine fishing using a seine or dragnet and electrofishing. However, the use of fishhooks and small fishing nets for fishing has the drawbacks of low fish catch and large manpower requirement, which is not suitable for large scale fishing. When seine fishing is used, the fish being caught may escape into the water easily and hence the fishing efficiency is affected. When electrofishing is used, the ultrasonic wave may lead to hypoxia of the head and heart of the fish such that the fish is floated to the water surface. The survival rate of the fish catch from this fishing method is low, the fish catch cannot be effectively used and resources are wasted. Also, this method does not allow classification fishing for catching a specific species of fishes. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a conventional wireless packet communication apparatus, a wireless channel to be used is determined in advance. Prior to transmission of data packets, carrier sense is performed to detect whether or not that wireless channel is idle. Only when that wireless channel is idle, one data packet is transmitted. This management process enables a plurality of STAs to share one wireless channel in a staggered manner ((1) International Standard ISO/IEC 8802-11 ANSI/IEEE Std 802.11, 1999 edition, Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Phyusical Layer (phy) specifications”, (2) “Low-powered Data Communication System/Broadband Mobile Access Communication System (CSMA) Standard”, ARIB STD-T71 version 1.0, Association of Radio Industries and Businesses, settled in 2000).
On the other hand, a wireless packet communication method is studied in order to improve transmission efficiency of data packets, in which a plurality of data packets are transmitted simultaneously on one wireless channel by using a known MIMO technique (Kurosaki et al., “100 Mbit/s SDM-COFDM over MIMO Channel for Broadband Mobile Communications”, Technical Reports of the Institute of Electronics, Information and Communication Engineers, A. P 2001-96, RCS2001-135(2001-10)). In the space division multiplexing (SDM), different data packets are transmitted from a plurality of antennas on the same wireless channel at the same time. The data packets transmitted at the same time on the same wireless channel are received by digital signal processing that can deal with the difference in propagation coefficients of the respective data packets received by a plurality of wireless antennas of an opposed STA.
FIG. 14 shows a relationship between a transmitting signal and a receiving signal in MIMO. The relationship between the transmitting signal and the receiving signal is represented by a determinant shown in FIG. 14. Propagation coefficients hxx are unknown on a receive side. Thus, the receive side estimates those propagation coefficients, obtains an inversion matrix of a transmission coefficient containing the propagation coefficients, and calculates transmitting values s1, s2, and s3 from the obtained inversion matrix and receiving values r1, r2, and r3.
In general, the propagation coefficients hxx are changed with time and are also changed by a change in a wireless channel such as fading, reduction in signal intensities, and the like. Moreover, when MIMO number is increased, an effect of the change in the wireless channel on the channel condition becomes large. That is, a packet error rate or a bit error rate becomes larger with the increase of the MIMO number. Therefore, the MIMO number is determined (limited) in accordance with the propagation coefficients and the like.
When transmission of a data packet is unsuccessful, the receive side transmits a response packet indicating that failure or does not transmit any response packet. In this case, the transmitting side determines that transmission of the data packet is unsuccessful, and retransmits the data packet. However, retransmission of data packets simultaneously transmitted using MIMO is not specifically defined. Thus, a problem in the case where a conventional retransmission process is applied to such simultaneous transmission is now described.
FIG. 15 shows a general processing on exchanging data packets. After a transmit-side STA transmits a data packet, a receive-side STA transmits an acknowledgement (hereinafter, ACK) packet for the received data packet, thereby giving notice of information about the ratio of successful receptions of data packets to total receptions in the past on the receive-side STA. That method for transmitting an ACK packet can be applied without change to a wireless packet communication method that uses MIMO. In this case, it is considered that a packet exchange sequence as shown in FIG. 16 is performed.
An STA receiving a plurality of data packets multiplexed by MIMO generates ACK packets. The number of those ACK packets is the same as the number of data packets that are successfully received. The thus generated ACK packets are sent back to an STA that is a sender of the data packets while being multiplexed by MIMO. As the number of the data packets successfully received increases, the number of the ACK packets multiplexed by MIMO also increases. As a result, a ratio of successful ACK packet receptions to total receptions becomes lower with the increase of data packets successfully received. Thus, an effect of improving throughput achieved by transmission of data packets using MIMO is weakened.
This is because the transmit-side STA cannot distinguish failure in receiving of the data packets on the receive-side STA from failure in receiving of the ACK packets sent from the receive-side STA on the transmit-side STA. Thus, when the transmit-side STA does not receive the ACK packet, the transmit-side STA determines that transmission of the data packet is unsuccessful and retransmits the data packet. Therefore, in the case where the ratio of successful ACK packet receptions to total receptions is low, it is highly likely that the transmitting side wrongly determines that transmission of the data packet is unsuccessful although the receive side successfully receives the data packet. As a result, unnecessary control, i.e., transmission of the data packet that does not require retransmission is performed, thus reducing usability of a wireless channel.
It is an object of the present invention to, in the case where a transmit-side STA transmits a plurality of data packets simultaneously by using MIMO, surely transmit a packet containing information about the ratio of successful receptions of data packets and total receptions in the past from a receive side, thereby achieving high throughput. | {
"pile_set_name": "USPTO Backgrounds"
} |
Non-volatile memory devices as represented by NAND type flash memory are manufactured using semiconductor wafer processes. Also, the increase in capacity, the reduction in power consumption, and the reduction in cost have been achieved by progress in 2-dimensional microfabrication technology for wafer processes. However, massive equipment investment is required for further progress in microfabrication technology. Therefore, the development of memory devices with a 3-dimensional memory cell unit in which a plurality of memory layers is stacked is progressing. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a protective structure for semiconductor sensors, and more particularly a monolithic MIS protective structure for semiconductor sensors.
2. Description of the Related Art
Sensors that are exposed to environmental influences in order to be able to detect measured quantities cannot in any case be protected from electric or electrostatic overstress as effectively as other semiconductor devices. Ion-sensitive field-effect transistors (ISFETs), for example, do not have a metallic gate at which protective structures could be realized. On the contrary, here the gate insulator lies functionally exposed in the channel area of the transistor and is thus vulnerable to electric damaging. Such negative influences are, for example, electrostatic discharges (ESD) or disallowed electrical operating conditions such as excess voltage, polarity inversion and the like.
Ion-sensitive field-effect transistors are used in the analysis of liquid media, for example. In these sensors, for example, a drain-source current is regulated through ions in a measuring medium having direct contact with the gate insulator and causing, depending on the ion charge, an electric field there that influences the drain-source current whereby the measuring medium can be analyzed. Therefore, these sensors are also referred to as field-effect based sensors. For a flawless mode of operation and for the stability of the gate insulator, it is important that these semiconductor sensors are protected from a discharge of static voltages and/or from disallowed electrical operating conditions such as polarity inversions.
Currently, voltage-sensitive sensor structures can be protected by allocating a structure to the sensor element that can incorporate, for example, p-n junctions or also capacitor elements. A substantial disadvantage of protective structures in the form of conventional p-n junctions is the relatively high leakage current, whereby a precise potentiometric measurement can be influenced negatively. On the other hand, capacitors are disadvantageous as protective structures to the effect that they are conducting for alternating currents (e.g. EMC stress) and do not provide effective protection from other disallowed operating cases (polarity inversion). | {
"pile_set_name": "USPTO Backgrounds"
} |
When homogeneous combustion is performed during a cold start in a direct injection engine by injecting fuel in the intake stroke, the three-way catalyst is not activated, and hence HC is discharged without being reduced. JP2000-145510A, published by the Japan Patent Office in 2000, discloses a technique to prevent this by detecting the engine temperature, and injecting fuel in the compression stroke at an air-fuel ratio that is regulated to the lean side of the stoichiometric air-fuel ratio when the detected temperature is lower than a predetermined temperature.
According to this technique, the amount of fuel that adheres to the wall surface of the cylinder during a cold start can be reduced, and the amount of air-fuel mixture flowing into the quench zone during stratified charge combustion can also be reduced. Moreover, the exhaust gas temperature rises, thus accelerating the oxidation reaction of the HC in the expansion stroke, and hence an overall reduction in the amount of HC can be achieved. | {
"pile_set_name": "USPTO Backgrounds"
} |
Winches are commonly-used mechanical devices that can be used to wind up or let out rope, cable, chain, cord, wire, straps, or other flexible members or strands. Such devices can include a spool, hub, or drum and a mechanism for winding up or letting out the flexible strand. Such mechanisms can be manual, such as a crank or reel, or electronically operated, such as with a motor or other electromechanical device.
With winches, the flexible strand is typically connected to the spool at or near an end of the flexible strand. For example, an end of the flexible strand can be tied to itself or otherwise coupled or fixed to structure included in the drum. Such structures can include a bolt on a flange of the drum to which a user can attach an end of the rope, which can include a loop formed directly into (or spliced onto) the rope itself. In other devices, the drum can include a slot extending through the drum, through which an end of the rope can be passed and coupled to the drum. Examples of such attachment mechanisms can be seen, by way of example, in U.S. Pat. Nos. 8,925,687, 6,923,394, 6,719,241, 5,988,095, 5,957,433, 5,779,226, 5,664,766, 5,346,153, 5,312,061, 4,953,829, and U.S. Patent Publication Nos. 2017/0327355, 2016/0083231, 2014/0124719, and 2013/0334479.
Thus, to connect a rope to conventional winches, a user must have access to and be able to reach the winch hub and rope—typically the end or approximate end of the rope. In situations where a user is unable to get to or access the winch or rope, therefore, the user would not be able to connect the winch to the rope. By way of example only, these situations could include: rope hanging from cliff or tall building or other high, out-of-reach location; rope in a dangerous location or a location that one is not able to reach, such as on a frozen lake with thin ice, around a fire, or an area where hazardous chemicals are present, in hostile environments, or in a place where dangerous animals are located.
There is therefore a need for an improved winch device in which a user can connect to a rope at various points along a length thereof—even when the user is unable to manually access the flexible strand. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional methods for hydrophilizing the surfaces of materials include (1) applying a surfactant, (2) applying a water absorbing resin, (3) applying a hydrophilic photocatalyst, (4) forming either an inorganic coating by enameling or ceramic thermal spraying, or a silica film, and (5) mixing a hydrophilic component with a resin coating agent. For example, Japanese Unexamined Patent Application, First Publication No. 2000-191960 discloses a hydrophilic coating that uses a photocatalyst.
However, films formed by these methods suffer from a number of drawbacks, including poor durability with respect to detergents.
In other words, in the method (1), which involves applying a surfactant, because the surfactant is water soluble, the effect is lost within a short period of time in the presence of water or detergents. In the method (2), which involves applying a water absorbing resin, the resin is acidic, and consequently degrades in the presence of alkaline detergents. In the method (3), which involves applying a hydrophilic photocatalyst, satisfactory effects cannot be achieved in darker locations, and moreover, the silica binder used to fix the photocatalyst is alkaline, and degrades in the presence of neutral detergents. In the method (4), which involves forming an inorganic coating, only heat resistant materials can be treated by enameling or thermal spraying, and the resulting coatings also display poor impact resistance. Furthermore, silica films degrade in the presence of neutral or alkaline detergents. In the method (5), which uses a resin coating agent, the resin degrades in the presence of acidic or alkaline detergents.
The present invention takes the above problems into consideration, with an object of providing a hydrophilic film which displays excellent hydrophilicity, and also displays excellent durability with respect to acidic, neutral, and alkaline detergents and chemicals. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to techniques of nuclear magnetic resonance imaging. In particular, the present invention relates to, among other things, the detection and imaging of a noble gas by nuclear magnetic resonance spectrometry.
Current views as to the molecular basis of anesthetic action are mostly derived from experimental work carried out in vitro. Interpretation of many of the results of these studies are extremely controversial, e.g., changes in lipid structure are observed at exceedingly high, indeed toxic, concentrations of anesthetic. Changes observed in vitro, from animals whose physiology has been altered, or from animals administered non-clinical doses of anesthetics might not reflect the effects of these agents clinically. It is believed that significant progress can be made by employing direct non-invasive methods for the detection and characterization of anesthetics in living animals. Both lipid solubility and protein binding undoubtedly do play a role, but new ideas are now needed.
Attempts have been made to bring powerful nuclear magnetic resonance (NMR) techniques to bear on this problem. (References 1-3). Wyrwicz and co-workers pioneered the use of fluorine-19 (.sup.19 F) NMR spectroscopy to observe fluorinated anesthetics in intact tissues and recorded the first .sup.19 F NMR spectra from the brain of a live anesthetized rabbit. (References 1, 4). These early studies demonstrated the feasibility of studying the fate of anesthetics in live mammals. Burt and collaborators also used halothane and other fluorinated anesthetics for monitoring membrane alterations in tumors by .sup.19 F NMR. (References 5-6). In recent years, several groups have conducted .sup.19 F NMR studies which have shed light on the molecular environment of anesthetics in the brains of rabbits and rats. (References 3, 7). Using a surface coil placed on top of the calvarium during halothane inhalation, two overlapping spectral features observed by d'Avignon and coworkers, perhaps 0.1-0.2 ppm apart, could be resolved through their different transverse relaxation times (T.sub.2). (Reference 3). The biexponential dependence of the spin-echo amplitude on echo delay reported in this study demonstrated that anesthetics in different molecular environments could be discerned in the brain in vivo using .sup.19 F NMR. Such environments, separated by chemical shifts of only about 0.1 ppm, had previously been reported by Wyrwicz et al. in high resolution studies of excised neural tissue. (Reference 4).
Notwithstanding such attempts to use other compounds for NMR imaging, state-of-the-art biological magnetic resonance imaging (MRI) has remained largely restricted to the water proton, .sup.1 H.sub.2 O, NMR signal. The natural abundance of water protons, about 80-100 M in tissue, and its large magnetic moment make it ideal for most imaging applications. Despite its tremendous value as a medical diagnostic tool, however, proton MRI does suffer several limitations. Most notably, the water protons in lung tissue, and the protons in lipids of all interesting biological membranes, are notoriously NMR invisible as a result of the short T.sub.2 in such environments. (References 8-9). Other .sup.1 H signals and signals from other biologically interesting nuclides are either present in too low a concentration (10.sup.-3 to 10.sup.-1 M, compared to ca. 100 M for H.sub.2 O) or have undesirable NMR characteristics. In studying dynamic processes with .sup.1 H.sub.2 O, one must sacrifice much of the proton signal to exploit differences in effective spin density resulting from T.sub.1 and/or T.sub.2 spatial variation. (Reference 10).
Various noble gases are known to be effective anesthetic agents. For example, Xenon is approved for use in humans, and its efficacy as a general anesthetic has been shown. Attempts have previously been made to take advantage of the properties of Xenon for purposes of medical imaging, but success has heretofore been extremely limited, and techniques have been impractical at best. For example, the .sup.127 Xe isotope was used in early ventilation studies of the lung. (References 11-12). Unfortunately, the poor image quality attained limited its clinical use. Xenon has, however, been used as a contrast enhancement agent in computed tomography (CT) studies of the brain, (References 13-14), and as a tracer for regional cerebral blood flow (rCBF) measurements. (Reference 15).
An isotope of Xenon, Xenon-129 (.sup.129 Xe), has non-zero nuclear spin (i.e., 1/2) and therefore is a nucleus which, in principle, is suited to study by nuclear magnetic resonance techniques. Despite the apparent potential for use of Xenon in magnetic resonance imaging, its small magnetic moment, and the low number densities of gas generally achievable, have heretofore been insuperable obstacles to practicable magnetic resonance (MR) imaging of .sup.129 Xe at normal, equilibrium (also known as "Boltzmann") polarizations, P (P.about.10.sup.-5 in 0.5-1.5 Tesla (T) clinical imaging systems). However, unlike the water proton (.sup.1 H) employed as the nucleus in conventional NMR techniques, the nuclear magnetic resonance signals obtainable from .sup.129 Xe are extraordinarily sensitive to local environment and therefore very specific to environment.
Certain aspects of the behavior of .sup.129 Xe, and other noble gas isotopes having nuclear spin, in various environments have been studied and described. For example, Albert et al. have studied the chemical shift and transverse and longitudinal relaxation times of Boltzmann polarized .sup.129 Xe in several chemical solutions. (Reference 16). Albert et al. and others have also shown that oxygen can affect longitudinal relaxation time T.sub.1 of .sup.129 Xe. (References 17-18). Miller et al. have also studied the chemical shifts of .sup.129 Xe and .sup.131 Xe in solvents, proteins, and membranes. (Reference 2). However, none of these publications provides any indication of a method by which .sup.129 Xe could be used for nuclear magnetic resonance imaging.
It is known in the art that the polarization of certain nuclei, such as noble gas nuclei having nuclear spin, may be enhanced over the equilibrium or Boltzmann polarization, i.e., hyperpolarized. Such techniques include spin exchange with an optically pumped alkali metal vapor and metastability exchange.
The physical principles underlying the hyperpolarization of noble gases have been studied. (Reference 19). For example, Happer et al. have studied the physics of spin exchange between noble gas atoms, such as Xenon, with alkali metals, such-as Rubidium. (Reference 20). Others have studied spin exchange between Helium and alkali metals. (References 21-22, 49). Other publications have described physical aspects of spin exchange between alkali metals and noble gases. (References 23-24). The technique of using metastability exchange to hyperpolarize noble gases has been studied by Schearer et al. and by Hadeishi et al. (References 26-31).
Other publications, by Cates et al. and Gatzke et al., describe certain behaviors of frozen, crystalline .sup.129 Xe that has been hyperpolarized. (References 32-33). Cates et al. and others describe spin-exchange rates between Rubidium and .sup.129 Xe at high Xenon pressures as measured by magnetic resonance apparatus. (References 34-35). These publications, however, relate to .sup.129 Xe behavior in highly controlled physical systems and provide no description concerning how .sup.129 Xe might be used to produce images by nuclear magnetic resonance.
Raftery et al. have described optically pumped .sup.129 Xe as an adsorption probe for the study of surface structure by analysis of NMR spectra. (References 36-37). Long et al. have also observed the chemical shift of laser polarized Xenon adsorbed to a polymer surface. (Reference 38).
U.S. Pat. Nos. 4,856,511 and 4,775,522 to Clark describe a nuclear magnetic resonance technique for detecting certain dissolved gases in an animal subject. Gas compositions described as useful for this technique include fluorine compounds such as perfluorocarbons. Other gases suggested to be potentially useful for the technique of Clark include .sup.129 Xe, but Clark fails to recognize any of the difficulties which have heretofore rendered use of .sup.129 Xe for magnetic resonance imaging of biological subjects impracticable.
Therefore, it would be a significant advance in the art to overcome the above-described difficulties and disadvantages associated with nuclear magnetic resonance imaging, in a manner which would permit the imaging of noble gases, especially the imaging of noble gases in biological systems, without requiring excessively long image acquisition times and without being limited to systems and environments previously imageable only by .sup.1 H NMR. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known that small domestic rodents are usually hosted inside cages provided with at least one transparent wall which allows the observation of their particularly amazing movements, when the cage is provided with optional components such as slides, small staircases, wheels or whatever else could the animal need to perform physical activity.
The cage also comprises dispensers for food and water, as well as resting areas where to leave the small rodent during the whole day with the exception of the few moments required for the regular cleaning and maintenance.
At present, cages for small domestic rodents are made in a single block and with variable dimensions in relation to the number and the size of the animals to be hosted.
Cages are usually provided of large apertures to allow an easy extraction or insertion of the animals as well as their efficient cleaning.
Usually such apertures are closed by means of covers provided with openings or slits for the aeration of the inner part of the cage.
A drawback is constituted by the fact that small cages are not modular and need to be changed with larger ones when it is desired to increase the number of the animals.
Another drawback is constituted by the fact that cages of large dimensions are not always really appropriate to the domestic room in which they should be included and further, they can hardly be moved or displaced due to their large encumbrance.
A further drawback of the cages with higher capacity relates to the fact that they are difficult to clean, being divided in several portions or compartments with fixed walls which are in same cases quite difficult to be reached from the outside.
Document EP-A-0744122 discloses an animal rearing cage and a framework to which a plurality of side plates for together forming the periphery of the animal rearing cage are detachably attached.
Document U.S. Pat. No. 5,950,566 discloses a cage including two or more movable walls that can restrain an animal in two or more dimensions. the cage includes telescopic or movable planar surfaces, one preventing an animal's lateral movement, and another preventing vertical movement.
Document U.S. Pat. No. 5,247,901 discloses a containment system for animal microbiological isolation containment including a plurality of two room suites combined into two suite containment units, selectively separable adjoining exercise runs for individual and group isolation, the suites being constructed of transparent, glass panels and and satinless steel.
Document U.S. Pat. No. 4,036,177 discloses an animal confining and housing device having a wheel supported carriage with a plurality of two sets of vertically spaced and parallel guide members thereon. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to a carrier form which is designed to permit a number of smaller documents to be processed simultaneously through micrographics equipment to produce a microfiche film of the documents.
Carrier assemblies for displaying and/or storing smaller documents such as microfiche film, are well known. For example, see U.S. Pat. No. 4,156,978; Canadian Patent No. 1,177,355; and French Patent No. 2,229,082.
Other carrier constructions are known wherein documents, such as photographs, are adhesively secured to a substrate and covered by a transparent cover film or sheet. Examples of such carrier constructions may be found in U.S. Pat. Nos. 4,077,830 3,857,192; 3,736,685; 3,581,423 and 3,283,434.
The present invention provides a unique carrier construction wherein a number of smaller documents to be microfilmed may be adhesively mounted on a substrate and protected by a transparent cover sheet or film. In the carrier construction in accordance with this invention, a protective, removable liner sheet is interposed between the adhesive substrate and the transparent cover sheet. This removable liner sheet is preferably pre-printed and thereafter may be used as a record sheet upon its removal from the substrate as described further herein.
Accordingly, in one exemplary embodiment of the invention, a carrier construction is provided which includes a base sheet or substrate covered over the entirety of one side thereof with a low tack adhesive. A paper liner sheet is mounted over the adhesive side of the substrate, with a transverse slit provided near one end to permit the liner to be peeled from the substrate when ready for use. A transparent film or cover sheet is secured at this same end of the construction so that the transparent cover sheet can be rolled back away from the liner to permit removal of the latter. Documents to be microfilmed then can be mounted on the adhesive base sheet, and the transparent cover sheet returned to its original position overlying the documents thereon and pressed into adhesive engagement with the exposed areas of the base sheet.
In a preferred arrangement, the upper surface of the liner is provided with a known CB/CF coating to provide the liner with a carbonless image transfer system, also known as a "self-contained" system. Such carbonless transfer systems are well known, and reference is made in this regard to U.S. Pat. Nos. 2,712,507; 3,016,308; and 4,199,174. The typical arrangement in carbonless transfer systems includes the use of three sheets with the top sheet having its back surface coated (CB) with an encapsulated solution of a colorless color-former in a suitable solvent; the bottom sheet having its front surface (CF) coated with a solid material containing record-developing material; and the intermediate sheet being coated front and back (CFB), respectively, with the solid record developing material and with the color precursor. The back coatings (CB) normally comprise pressure rupturable microcapsules containing a color precursor in fluid form capable of reacting with the developing material to form a colored compound in the front coating of the next adjacent sheet so that, upon impact by a machine key or application of pressure by a stylus on the top sheet, a colored mark corresponding to the key or stylus will appear on the front surface of the next adjacent sheet.
In this case, it will be appreciated that separate CF and CB layers, or a single layer of mixed CF and CB coatings can be applied to the top surface of the liner to achieve essentially the same effect.
This arrangement permits the assembly to be passed through an impact-type printer so that variable information relating to, e.g., the documents to be placed thereon, can be applied to the liner sheet through the transparent cover sheet before removal of the liner from the assembly. After removal, the liner sheet can then serve as a record copy of the documents microfilmed on the associated substrate.
In an alternative exemplary embodiment, a double-sided document carrier is provided wherein the other or second side of the base or substrate is also provided with low tack adhesive, self-contained liner and transparent cover sheet as on the first side.
It is another feature of the present invention that the document carrier can be produced in continuous form, in the manner of a continuous business form assembly, with marginal feed strips along opposite side edges, and longitudinally spaced transverse lines of perforations defining individual carrier assemblies.
Accordingly, in one exemplary embodiment, the invention in its broader aspects relates to a document carrier assembly which comprises a web of paper having an upper and lower surface, at least the upper surface having a low tack adhesive layer applied thereon; a liner overlying the upper surface of the web and the low tack adhesive layer, the liner having a self-contained carbonless coating on an upper surface thereof; and a clear plastic film overlying the liner.
The invention as described herein provides an easy-to-use document carrier which has many applications including principally to facilitate simultaneous microfilming of a plurality of documents with an accurate record maintained thereof.
Other objects and advantages of the subject invention will become apparent from the detailed description which follows. | {
"pile_set_name": "USPTO Backgrounds"
} |
As integration of semiconductor devices increases and multi-layer interconnection processes are more readily applied, global planarization of interlayer dielectric layers is becoming increasingly important. While variable techniques have been used for the global planarization, CMP processes have been widely used in recent years due to numerous well-known advantages.
On the other hand, using the CMP process generates process dispersion, which usually result from changes in characteristics of dissipative parts such as pads, slurry, and heads. When use of the CMP process generates poor dispersion, adverse effects on performance and yield of products may result. For this reason, in the case of conventional CMP processes, a sample lot is polished by the CMP beforehand. The process time of polishing the sample lot is calculated and is then applied when a main lot is polished by the CMP. However, because this method is greatly influenced by prior factors, accuracy of a pre-set process time can vary depending on operator experience or ability. To overcome this problem, a method of controlling a process time was proposed, in which, although characteristics of a CMP apparatus change with time, a CMP time based on the latest characteristics of the CMP apparatus is applied. The method is disclosed in Korean Patent Publication No. 2001-55689 entitled “A METHOD OF CONTROLLING THE CMP TIME.”
FIGS. 1 to 4 are cross-sectional views illustrating a conventional CMP process.
The conventional CMP is divided into a process of planarizing an insulation layer and a process of forming a pattern. The process of forming a pattern comprises forming a polishing target layer on the patterned insulation layer and polishing the polishing target layer until the insulation layer is exposed, in order to form a contact plug, a capacitor electrode, or a metal interconnection. When a pattern is formed using the CMP, it is important that the polishing target layer does not remain on the insulation layer. Generally, an upper portion of the insulation layer is over-etched to prevent the polishing target layer from remaining on the insulation layer. An over-etched thickness is measured from a thickness of the insulation layer before and after the CMP. The over-etched thickness is compared with a reference value and this enables correction of a CMP time. Also, the corrected CMP time may be applied to a subsequent substrate. As a result, a process deviation of the CMP can be reduced.
Referring to FIG. 1, main patterns 8 are disposed on a main region b of a semiconductor substrate 1 where circuits or devices will be formed. Test patterns 2 for monitoring a process state of the main region b are disposed at a predetermined region of the semiconductor substrate 1. Generally, the test patterns 2 are disposed at a monitoring region a, which is positioned on a scribe line between the main regions b. Each test pattern 2 is formed to various shapes depending on monitoring processes.
Referring to FIGS. 2 and 3, a CMP target layer 10 is formed on an entire surface of the semiconductor substrate 1 where the test pattern 2 and the main pattern 8 are formed. Continuously, the CMP target layer 10 is polished to expose the main pattern 8 and the test pattern 2. Thus, an interconnection 12 is formed to fill a space between the main patterns 8. The main region b generally includes a region 8a of a high pattern density as well as a region 8b of a low pattern density. In addition, because the conventional test pattern 2 is formed for the purpose of measuring a thickness, the test pattern 2 is planarized unlike the main pattern 8. According to the CMP process, the polishing target layer 10 is polished by providing slurry having a high etch selectivity to the polishing target layer 10. Therefore, when the CMP process is performed, a polishing rate is dependant on a pattern density.
As illustrated in FIG. 4, after the CMP, an etched thickness of the test pattern 2 differs from that of the main pattern 8. In general, a thickness of the test pattern 2 is measured before and after the CMP in order to monitor the process. Thus, even though an etched thickness is measured to be appropriate, it is difficult to rely on a process state of the main region. In other words, it is possible that the main pattern 8 is unnecessarily over-etched according to a pattern density of each region of the main region b (see 16 of FIG. 4). Otherwise, the polishing target layer 10 may remain on the main pattern 8 (see 14 of FIG. 4).
Similar to the metal interconnection process, in the case where the polishing target layer 10 is composed of metals, a thickness of the test pattern 2 cannot be measured just before the CMP, because the test pattern 2 is covered with the polishing target layer 10. Thus, a thickness of the test pattern 2 should be measured before forming the polishing target layer 10. However, a cleaning process, which is performed before forming the polishing target layer 10, causes a change in the thickness of the test pattern 2. Consequently, an over-etched thickness of the test pattern 2 may be measured with low reliability. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a liquid ejection apparatus configured to eject liquid from ejection openings and a storage medium storing a program to be executed by the liquid ejection apparatus.
2. Description of the Related Art
There is known a technique in which humidifying liquid held near nozzles of an ink-jet head humidifies ink in the nozzles in order to prevent a viscosity of the ink in the nozzles from increasing. | {
"pile_set_name": "USPTO Backgrounds"
} |
I. Field
The following description relates generally to wireless communications, and more particularly to notification and related detection of system information modification.
II. Background
Wireless communication systems are widely deployed to provide various types of communication content such as, for example, voice, data, and so on. Typical wireless communication systems may be multiple-access systems capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, . . . ). Examples of such multiple-access systems may include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and the like. Additionally, the systems can conform to specifications such as third generation partnership project (3GPP), 3GPP long term evolution (LTE), ultra mobile broadband (UMB), and/or multi-carrier wireless specifications such as evolution data optimized (EV-DO), one or more revisions thereof, etc.
Generally, wireless multiple-access communication systems may simultaneously support communication for multiple mobile devices. Each mobile device may communicate with one or more base stations via transmissions on forward and reverse links. The forward link (or downlink) refers to the communication link from base stations to mobile devices, and the reverse link (or uplink) refers to the communication link from mobile devices to base stations. Further, communications between mobile devices and base stations may be established via single-input single-output (SISO) systems, multiple-input single-output (MISO) systems, multiple-input multiple-output (MIMO) systems, and so forth. In addition, mobile devices can communicate with other mobile devices (and/or base stations with other base stations) in peer-to-peer wireless network configurations.
MIMO systems commonly employ multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission. The antennas can relate to both base stations and mobile devices, in one example, allowing bi-directional communication between the devices on the wireless network. In addition, mobile devices can travel over a wireless network receiving wireless access service from various base stations. Thus, a mobile device reselects cells of the various base stations as it travels based on transmit power or other metrics. In addition, a mobile device, operating in idle mode, receives system information blocks (SIB) from the base stations that define information such as common channel configurations, idle mode mobility parameters, system acquisition information, etc. related to the base station. The base stations can modify the system information within scheduled modification periods and currently notify mobile devices of the scheduled modification period using paging (e.g., over a discontinuous receiver (DRX) for low-power duty cycle reception). Once notified, the mobile devices process the change for subsequent utilization (e.g., system acquisition when switching from idle to active mode). | {
"pile_set_name": "USPTO Backgrounds"
} |
Pipeline compressors are heavy and huge equipment adapted for compressing very large volumes of gas to high pressures, ranging up to 10,000 psi. Despite the size of such equipment, the internal rotating and stationary parts thereof, such as the impellers, diffusers, vanes, volutes, etc., are machined with an extremely high degree of precision so that the moving parts remain operable over a wide temperature range to provide a reliable and highly efficient compressor. The compressor shaft, which itself may be on the order of 6-10 inches in diameter, requires precision bearings so that rotation of the compressor bundle, including the shaft, rotors, impellers and diaphragm structures, can turn at a high speed, in close tolerance with the stationary parts. Often, such compressors are driven by a turbine engine with a 4,000-40,000 horsepower rating at speeds up to ten thousand revolutions per minute.
The assembly, disassembly and maintenance of such compressors requires the use of winches and/or roller dollies to accurately mate the parts together or to provide for safe disassembly thereof. In a barrel-type, or vertically split pipeline compressor, the housing comprises a heavy cylinder in which the compressor bundle is inserted laterally by the use of winch equipment. The compressor bundle is laterally moved into the barrel housing and thereafter the bearings and seals are installed between the shaft and the housing ends or heads. Often this can be accomplished by personnel reaching into the housing end through a small opening to assemble the seal on the shaft end and fix it in place. This not only requires a precise alignment between the compressor shaft and housing heads, but also additional time and labor in installing the bearings and seals. Such assembly can also present a safety hazard, especially with personnel working with the large and heavy equipment.
It can be seen from the foregoing that a need exists for an improved high pressure cartridge seal and method of installation thereof to facilitate assembly of compressor equipment. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to rock crushing systems, such as conical rock crushers or gyratory crushers. More specifically, the present invention relates to a spider piston sleeve and seal arrangement for rock crushers.
Gyratory rock crushers generally have a downwardly expanding central conical member which rotates or gyrates within an outer upwardly expanding frustroconically shaped member typically called a shell. The shell can be comprised of two or more pieces, e.g., a top shell and a bottom shell. The central conical member generally has a wearing cover or a liner called a mantle. A spider assembly rests on the top shell, forming the top of the support structure for the machine.
A shaft extends vertically through the rock crusher. The shaft is supported by a bearing in the spider assembly. The central portion of the shaft tapers inwardly in an upward direction to form the central conical crushing member. The central portion of the shaft supports the mantle, which moves with the shaft to effect the gyratory crushing operation.
The spider assembly is designed to support the shaft while allowing gyratory movement during operation of the machine. The vertical position of the shaft with respect to the spider assembly is controlled by a piston arrangement in the spider assembly. The piston arrangement is a complex mechanical apparatus including a piston, a bearing, and an attachment system. The piston is slidably disposed within the spider assembly. The bearing is supported by the piston and supports the shaft while allowing gyratory motion. The bearing has a hemispherical ball disposed in a socket; the hemispherical ball is lubricated by a lubricant, such as oil. The attachment system is required to clamp the shaft to the bearing.
The piston is supported by an annular hydraulic cushion that forces the piston to travel upward when it is filled with fluid. Because of the mass of the shaft being supported by the piston, the pressure inside the hydraulic ring is substantial. Seals are required both above and below the hydraulic cushion to prevent fluid from leaking downward into the crusher cavity or upward into the spider cavity.
Typically, cylindrical sleeves are used between the piston and spider to protect the spider from damage due to the motion of the piston. Therefore, leakage of oil from the hydraulic cushion must be prevented both between the piston and the cylindrical sleeves, and between the cylindrical sleeves and the spider. The sleeve and seal arrangements are complex with respect to the number of parts required and the difficulty of installation.
One conventional approach to the problem of sealing the hydraulic cushion has been to use an upper cylindrical sleeve that is installed from above the spider and a lower cylindrical sleeve that is installed from underneath the spider. The disadvantage to this approach is that if the lower sleeve needs to be replaced, it must be accessed from below the spider assembly, which is difficult because removal of the spider is required. Conventional sleeve arrangements also use additional rings to define the top and bottom of the oil cushion, in addition to the sleeves. The use of these rings is effective in sealing the space but not desirable because of the additional parts. A further disadvantage of conventional piston sleeve and seal arrangements is that both the lower and upper sleeves must be attached to the spider with additional hardware.
Therefore, it would be advantageous to have a piston sleeve arrangement that may be installed and replaced from above the piston, i.e., xe2x80x9ctop servicexe2x80x9d. Further, there is a need for a piston sleeve and seal arrangement that requires fewer parts. Further still, there is a need for a piston sleeve and seal arrangement that does not require hardware to install the lower sleeve.
An exemplary embodiment relates to a gyratory crusher that has a shell and a spider supported by the shell. The gyratory crusher has a piston disposed within the spider, and a shaft that is coupled to the piston. An upper cylindrical sleeve having a flange is disposed between the piston and the spider. A lower cylindrical sleeve having a flange is also disposed between the piston and the spider. The lower sleeve is retained by the spider and the upper sleeve without the use of other attachment means.
Another embodiment relates to a spider sleeve apparatus for a gyratory crusher. The gyratory crusher has a piston disposed in a spider. The spider sleeve apparatus has an upper cylindrical sleeve having a flange is disposed between the piston and the spider. The spider sleeve apparatus has a lower cylindrical sleeve having a flange is disposed between the piston and the spider. The lower sleeve is retained by the spider and the upper sleeve without the use of other attachment devices.
A further embodiment relates to a method of installing or replacing lower and upper cylindrical sleeves for a gyratory crusher. The gyratory crusher has a shaft supported by a bearing. The bearing is supported by a piston disposed within a spider. The method of installing or replacing the lower and upper cylindrical sleeves includes the steps of removing the bearing, removing the piston, and installing the lower sleeve by lowering it in from above the spider. The method includes further steps of installing the upper sleeve by lowering it in from above the spider, bolting the upper sleeve to the spider. The method also includes steps of replacing the piston, and replacing the bearing.
A still further embodiment relates to a gyratory crusher having a shell and a spider supported by the shell. The gyratory crusher has a piston disposed within the spider, and a shaft coupled to the piston. An upper cylindrical sleeve with a flange is disposed between the piston and the spider. A lower cylindrical sleeve with a flange is also disposed between the piston and the spider. The gyratory crusher has a hydraulic cushion in the space defined by the lower sleeve flange, the piston, and the upper sleeve. An upper o-ring is disposed between the upper sleeve and the spider. A lower o-ring is disposed between the lower sleeve and the spider. The o-rings provide a seal for the hydraulic cushion such that the need for an additional ring seal is eliminated.
A still further embodiment relates to a spider sleeve apparatus for a gyratory crusher. The gyratory crusher has a piston disposed in a spider. The spider sleeve apparatus has upper cylindrical sleeve means having a flange disposed between the piston and the spider. The spider sleeve apparatus has lower cylindrical sleeve means having a flange disposed between the piston and the spider. The lower sleeve is retained by the spider and the upper sleeve without the use of other attachment devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
A digital video recorder may be used to record television programming as recorded content and to later playback the recorded content when convenient. The digital video recorder may include functionality for recording television programming, managing recorded content, and playing recorded content to a display device. When a user records television programming, the television programming may be recorded at a resolution associated with a channel being recorded or a resolution associated with a service level agreement with a service provider. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a threshold matrix generation device and a method for generating a threshold matrix for generating a threshold matrix of a predetermined size used for halftone processing of a multitone image data using a dithering method.
2. Description of Related Art
A FM (Frequency Modulation) screen is known as an expressing method of intermediate tones for an image formation. And a screening process (half-toning process) by a dithering method using a threshold matrix is known to perform the FM screening. The process does quantization of an image data by arranging threshold (values) matrix corresponding to the multi-toned image data like tiles and outputting results of comparison between the image data and the threshold matrix.
With regard to a conventional image processing device for forming an image on a paper, reproducibility of the device may become different between a main scanning direction that is orthogonal to a paper feeding direction and a subscanning direction that is orthogonal to the main direction due to its characteristics. When performing the screening process to an image using the FM screen and reproducing the image on a paper, a region may be generated where collapse or missing (friar) of dots occurs widely due to the difference of reproducibility between the main direction and the subscanning direction.
For example, an image processing device of an electro-photography system, in which a laser beam is scanned using a polygon mirror, etc. in a main scanning direction to form an electrostatic latent image on a photoconductive drum and the latent image is developed by adhering toner, has a tendency of higher reproducibility of dots in the subscanning direction than the main scanning direction. FIG. 12 shows an example of dots reproducibility of an electro-photographic image processing device. The figure has a size of 128×128 pixels and the dots are reproduced in 50% of tone value using threshold matrix for an FM screen having spatial frequency characteristics whose frequency domain is circular. In FIG. 12, as shown by region A, the dots tend to collapse by a toner when the figure contains main components along the main scanning direction (fine horizontal lines, for example). On the other hand, the dots do not tend to collapse by a toner when the figure contains main components along the subscanning direction (fine vertical lines, for example), but tend to generate white patch.
In the case where an image processing device having such characteristics is used, a screen pattern having a region P where dots are collapsed and a region Q where dots are missing, as shown in FIG. 13, is repeatedly arranged like tiles even when an image is processed by threshold matrix for the FM screen having no periodicity as an image data. As a result, the collapse and missing of dots are repeatedly reproduced, as shown in FIG. 14, and the reproduced image in such a way is recognized as moiré fringes which are an undesirable pattern having periodicity.
In relation to the above mentioned problem, a technique for making conventional threshold matrixes is disclosed is disclosed in JP2006-311532A. In the document 1, FM screen threshold matrixes that have spatial frequency characteristics whose frequency domains are elliptical and the directions of the major axes of the elliptical figures of colors differ from each other are generated so as to reduce graininess in a color image. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to electron or vacuum tubes in general and, more particularly, to a gas circulation means which can be employed in conjunction with a gas filled electron tube, such as a thyratron of ceramic construction.
The prior art is replete with a number of gas filled electron tubes which have been employed extensively as high power devices. Early design tubes, as one is well aware of, are fabricated from glass and have glass envelopes, for example, and other glass supporting structures. There is, however, a modern variety of high power vacuum tubes which are fabricated from ceramic materials. A typical example of such a gas filled electron tube is the thyratron. Essentially, a thyratron has a grid placed between the anode and cathode and is a hot cathode, gas filled, switch tube having such a grid.
Pulsed outputs of a thyratron may be controlled by means of a positive DC voltage which is applied to the thyratron grid. A voltage greater than critical must be applied to permit conduction but after conduction starts, reduction in grid voltage does not affect conduction. This action produces a high peak to average load current ratio. Hence, thyratrons are manufactured in most of the gas filled switch tube sizes with ratings up to tens of thousands of volts in regard to peak forward and inverse voltages together with extremely large ampere ratings.
As indicated above, many thyratrons employ glass envelopes and other glass supporting structures while certain higher power thyratrons employ typical ceramic structures. The manufacture and construction of both glass and ceramic thyratrons are well known in the art. It is immediately noted that a thyratron is one example of a gas filled tube to which the present invention applies in general.
In any event, a distinct advantage of a glass envelope thyratron construction over a comparable ceramic device of similar rating is the neutral (non-ionized) gas flow path which shunts the main discharge and is contained within a metal/mesh, internal axial structure. This annular cross-sectional volume, located coaxially between the outside of the discharge containment structure and the inner glass envelope wall, provides a source path for neutral molecular hydrogen, from the gas reservoir located at the base of the tube, to the anode-grid region, where electronics are pumped. Gas is collisionally ionized in this tube region and heat is generated during the commutation and conduction phases of the thyratron operation. Maximum thyratron operating frequency is limited by the recombination (recovery) time. Recombination, a three body boundary surface reaction, is a strong function of long lived atomic, metastable and rotational energy gas species. It is expedited by the available "cold", neutral gas molecules flowing into the gap region through the electron mean-free-path (mfp) diameter holes of the mesh structure, into the discharge bulk volume of the gas tube.
Additionally, the maximum conduction current rating is a function of the neutral gas available for ionization (to prevent gas starvation) and thus switching capability is favorably enhanced by the above-described mechanism.
In any event, there is no "outside the discharge" path in a conventional ceramic envelope device. In such a device all gas flow must pass through the constrictions in the grid apertures and the baffle holes.
It is, therefore, an object of the present invention to create a parallel neutral, low temperature, molecular gas circulation path while concurrently avoiding long path discharge (PASCHEN breakdown) in a ceramic envelope device.
It is a further object to provide an "outside the discharge" path for a ceramic envelope device which will enable such a device to have the beneficial gas circulation characteristics of a glass envelope device while capable of more rugged operation, together with a higher power ceramic metal structure. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cement manufacture, a complex capital intensive process, is currently conducted in kilns, commonly using coal as fuel. The process starts with mixing the raw materials, usually limestone or chalk, as a source of calcium carbonate, and clay or shale, as a source of aluminum silicates, with small quantities of other minerals added in the desired portions. The batch materials are crushed to the order of 200 mesh and mixed in a fluidization chamber for one or two days The conventional technique of pyroprocessing cement clinker is to heat the mixed batch materials in a suspension preheater or precalciner In the process, calcium carbonate calcines to calcium oxide, and the exit temperature of the batch materials from the precalciner is approximately 900.degree. C. The batch materials then go to the kiln in which they are slowly heated to the clinkering temperature of approximately 1300.degree. C., at which temperature the clinker forms. The clinker, which is semi-melted and agglomerated or fused into rocks of several centimeters in size during the exothermic clinkering reaction, is then cooled in a clinker cooler. The clinker is then mixed with gypsum, fused to control final cement setting time, and crushed to about 325 mesh to form a powdered cement composition.
In the past, cement plants were principally natural gas fired. However, over the last 30 years or so many producers have used coal as a fuel because of its lower cost and because the ash and sulfur dioxide from coal burning can enter the cement batch materials without causing any damage to the product quality. For this reason coal burning does not cause much pollution. The only problems caused by coal burning are maintenance problems and the formation of alkali sulfates which are unacceptable in the clinker. To maintain alkali sulfate concentration within acceptable limits, part of the hot gas is bypassed at a location where the alkali sulfates are in vapor phase.
Reference is made to U.S. Pat. No. 3,469,828 for its disclosure of the use of inclined rotary kiln furnaces for calcining and clinkering of cement, and for modifying conventional rotary kiln furnaces in order to overcome some of the problems resulting therefrom. However inclined rotary kiln furnaces have inherent disadvantages for cement manufacture. The heat introduced to the rotary kiln produces an uneven temperature in the rotating kiln since the heat produces a higher temperature at the upper wall surface as the particulates travel down the lower wall surface of the rotating kiln. This can result in burning of the particulates as the overheated wall surface rotates into contact with the particulates. Even if the temperature is closely controlled to prevent burning, a large percentage of cement particles melt during the clinkering stage of passage through the rotary kiln since clinkering is an exothermic reaction. The temperature in the kiln must be high enough to initiate clinkering, and cannot be sufficiently reduced in the rotary kiln to prevent melting, agglomeration, wall-adhesion and other related problems.
References is also made to U.S. Pat. No. 3,692,285 for its disclosure of a vertical calcining furnace for drying and hardening iron ore pellets which are fed therethrough from a packed bed supply hopper in a zig-zag direction over the surfaces of ceramic balls and through preheating, indurating and cooling zones. The particles flow as a packed mass supported by the ceramic balls, and cooling air is directed upwardly through the beds of ceramic balls to cool the iron ore pellets prior to discharge. Such an apparatus is not suitable for clinkering cement since the particles are supported and packed together during heating, which will clog the apparatus if the particles are melted or agglomerated. Also the particles are unevenly heated and unevenly cooled in such an apparatus, which is unsatisfactory in the case of good quality cement compositions.
According to another prior-known process, disclosed in U.S. Pat. No. 4,002,422, a vertical shaft furnace is used for the heat reduction of particulate iron oxide material which is fed into the top thereof from a packed bed. Hot processing gas is introduced at an intermediate location to heat the bed of particulate material in an upper heat treatment zone as the particles fall therethrough to reduce the iron oxide to metallic iron. Cold processing gas is introduced radially-downwardly at an intermediate buffer zone to become heated by the iron particles falling therethrough for heat recovery purposes, the heated "cold" processing gas flowing upwardly to heat the incoming iron oxide particles in the same manner as the hot processing gas. Finally the falling iron particles pass through a lower converging cooling zone and exit onto an exterior conveyor. Such an apparatus is unsatisfactory for the preparation of cement clinkers since cement particles will melt and fuse or agglomerate if they are present in a packed bed at the top of a vertical shaft furnace; the exothermic clinkering reaction will be completed and will cause melting and agglomeration of the cement particles in the packed bed and/or in the upper heating zone of the furnace, and cooling of the agglomerates in the buffer zone or lower cooling zone will not restore the particles to their original dimensions. Also the particles are permitted to flow freely, under the effects of gravity, so that there is no way to adjust the residence time of the particles within zones of the furnace which may have different temperatures.
Reference is made to U.S. Pat. Nos. 4,584,022 and 4,595,416 which disclose fluidized bed cement clinkering methods and furnaces including a reactor furnace having a fluidized bed for receiving and clinkering therein a supply of sized pellets of feed material comprising cement-forming raw materials and carbon fuel. The feed material is combusted in the fluidized bed by additional fuel injected thereinto in the presence of fluidizing air forced up through a permeable support. Clinkered cement particles are discharged by gravity from the top of the fluidized bed into an overflow conduit to an outboard cooling tank containing a heat-exchanger for indirect cooling of the clinkers.
In the fluidized bed reactors of these patents the feed material is not suspended or heated substantially prior to entering the fluidized bed so that little or no calcining occurs outside the bed. Also the cooling of the clinkers occurs outside the furnace and the heat is not recovered for use in the calcining and clinkering reactions. Finally, the requirement of an outboard clinker-cooling tank increases the cost and size of the equipment.
Finally, reference is made to commonly-assigned U.S. Pat. No. 4,975,046 which discloses a furnace and processes for producing discrete clinkered cement pellets in which the batch materials are calcined, partially clinkered, and collected on a porous receiving base for completion of the clinkering reaction thereon while forcing cooling air upwardly therethrough to prevent agglomeration. The clinkered pellets are withdrawn from the bottom of the porous base at a rate which permits the pellets to complete clinkering between the time they enter the top of the bed and are withdrawn from the bottom thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a powder for disks, such as glass disks used in storage devices, and in particular to a powder for separating and cushioning stacked glass disks.
2. Background Information
Circular-shaped magnetic disks are typically used in hard disk drives of computers, for example, for use in data storage applications. Such magnetic disks may be formed from aluminum or from glass, for example, and will typically have a magnetic surface coating located thereon. A head of the disk drive interacts with the magnetic surface coating to read and write information to the disk. Such magnetic disks have achieved storage capacities of several gigabytes or more, using current technology.
Typically, the head of the disk drive that reads and writes information to the disk is arranged to fly a small distance above a surface of the disk. By bringing the head closer to the surface of the disk, higher density recording becomes possible.
As mentioned, often the magnetic disks are formed from aluminum. However, aluminum is relatively soft, so when it is handled, it is possible to ding the disk and form an area where data can not be retrieved from.
Further, the aluminum is typically coated with nickel plating to give the disk a harder and more defect free surface. However, the nickel plating has a low limit in hardness and has a tendency to become magnetic from composition or heating in sputter at temperatures greater than 300° C., causing errors in reading and writing to the disk.
Additionally, while aluminum disks can be made smooth, their surfaces are very easily damaged during disk manufacturing or file build causing asperities and glide failures. The smoother a magnetic disk can be made and kept, the closer the head can be brought to the surface of the disk during the read/write operations.
To overcome the problems associated with aluminum disks, attention has been directed to the utilization of glass disks, formed from alumina-silicate glass, for example. Typically, computer manufacturers purchase blank glass disks, for example from a glass manufacturer. Once received, the computer manufacturer subjects the blank glass disks to various processes that prepare the glass disks for use as a data storage device. For example, the blank glass disks may be polished by the computer manufacturer to remove surface scratches from the disks, and to planarize the surface of the disks to remove any waviness.
Conventionally, the glass manufacturer stacks the glass disks on top of one another to facilitate the transportation of the disks to the end user (i.e., the computer manufacturer, for instance). For example, the glass disks may be shipped in 50 disk stacks (i.e., 50 disks to a stack). To prevent the surface of one disk from scratching the surface of an adjacent disk, and to facilitate separation of the disks from the stack, it is further conventional to place a piece of paper between adjacent disks.
However, the use of such paper is problematic to the end user. For example, prior to any subsequent processing, the paper must be removed from between the glass disks and disposed of. Nevertheless, it is relatively common for some of the paper to end up in undesired locations, such as caught in the workings of an expensive piece of manufacturing equipment causing possible equipment damage and loss of thru-put, or as debris on the floor.
Moreover, in an attempt to automate the processing of the glass disks, it is also conventional to utilize specially tailored machines that are used to automatically remove the paper from the glass disks. For example, one such machine utilizes a needle to poke a hole in the paper and separate the paper from the associated disk. However, the paper will often fall off the disk at a non-desired location, such as in the final process cassette, causing manufacturing problems discussed above.
Moreover, occasionally more than one piece of paper will be erroneously placed between two adjacent stacked disks. Thus, even if the normal paper-removing process is successful in removing one of the pieces of paper, the other piece of paper may remain on the surface of the respective disk. This could cause the remaining paper to be moved into subsequent processing areas together with the disk, or the paper could be misidentified as the next disk, resulting in machine malfunctions. The paper could also be in a position to contaminate processing equipment.
Further, after the removal of the paper, the disks may be automatically moved using a disk-moving mechanism. However, if any paper remains on the surface of the disk, the disk-moving mechanism may erroneously identify the paper as being a disk, and attempt to move the paper, rather than the disk, to further processing stations. As will be appreciated, the presence of undesired paper can thus cause subsequent problems, including down time of the disk preparation processes, reduced productivity, and unnecessary expenses.
Thus, there is a need for a way to transport stacked glass disks that will protect the glass disks from damage, is compatible with subsequent processes to the glass disks, and will allow easy separation of the stacked glass disks, without the use of paper disposed between adjacent ones of the glass disks. | {
"pile_set_name": "USPTO Backgrounds"
} |
Internet streaming is the art of transmitting digital media in such a way that the media can be played at the receiver side as it is being received, without the requirement of saving a media file to disk. Streaming enables live broadcast in the digital world, similar to radio and television broadcasts in the analog world.
Conventionally, streaming has been used for time-based media, including digital audio and digital video. A user can listen to music generated from audio data and watch movies generated from video data, as the data is being received by his client computer from a server computer, without the need to save an audio file or a video file on the client computer. As additional data is received at the client, the music and video being played advance in time.
Image streaming is a new paradigm for non-time based media, useful for images and other media that can be interactively viewed and that require large amounts of data for storage. Although an image is a single frame, and not a time-ordered sequence, nevertheless there is great advantage in being able to interactively view the image as image data is being received, without the need to save the image data into a file.
A high-quality raster image generally cannot be displayed at its full resolution within a computer display screen. Instead, either a low-resolution version of the image can be displayed in full, or else a high-resolution version can be displayed in part. A user can interactively view different portions of the image by zooming in to a smaller portion of the image at a higher resolution, by zooming out to a larger portion of the image at a lower resolution, or by panning left, right, up and down within a fixed resolution.
Image streaming involves sending image data from a server computer to a client computer in response to a user's interactive viewing requests, in such a way that the client has the necessary data to display the currently requested portion of the image at the currently requested resolution. In distinction from audio and video streaming, which generally push data to the client in a time sequential order, image streaming generally pulls data from the server in an “on demand” order, based on individual user navigation. Thus, while a first user may navigate through the image in his own sequential order, a second user may navigate in a different order. In each case, “just enough data” is streamed to each user in order to satisfy each user's interactive requests.
For raster images, image streaming is implemented by generating versions of a raster image at various resolutions, and partitioning the image into rectangular local image tile regions at each generated resolution. A user request for a specific portion of the image at a specific resolution is satisfied by identifying and transmitting one or more appropriate local image tile regions.
Image streaming can be implemented using various architectures, including server-side rendering, client-side rendering, and hybrid server-side and client-side rendering. Server-side rendering requires the server to assemble together the appropriate local image tile regions, and crop and re-scale the assembled image as appropriate, to generate a single JPEG image, for each interactive user request. An advantage of server-side rendering is that image streaming is enabled for any client computer that has a conventional web browser running; i.e., it does not require special purpose software on the client side. Client-side rendering shifts the image processing burden from the server to the client. The appropriate local image tile regions are transmitted from the server to the client as raw unprocessed data, and the client does the processing work to assemble the local image tile regions. An advantage of client-side rendering is faster performance at the client.
A significant distinction between conventional time-based audio and video streaming and between non-time based image streaming, is recurrence of data that is rendered. Specifically, audio and video sequences are generally rendered in a one-pass forward play order, and the same data is generally not rendered more than once. Image navigation, however, is characteristically recurrent. While zooming in and out, and panning left, right, up and down, a user often returns to the same data over and over again. Typically, the same local image tile regions are rendered multiple times while a user is navigating through an image. As such, image streaming performance benefits greatly from tile caching.
U.S. Pat. No. 5,968,120 to Guedalia describes image streaming by transmitting local image tiles. U.S. Pat. Nos. 6,121,970 and 6,356,283 to Guedalia describe embodiments of server-side image streaming that operate by modifying references to image files within HTML pages, using the Internet Imaging Protocol.
U.S. Pat. No. 6,536,043 to Guedalia and U.S. Pat. No. 6,721,952 to Guedalia et al. describe progressive image streaming, in which successive chunks of image data are transmitted, each successive chunk serving to upgrade the quality of the rendered image.
U.S. Pat. No. 6,745,226 to Guedalia describes a push-pull method and system for transmitting image data, in which data for a low quality version of an image is pushed to a user's desktop, and data for upgrading the quality of the image is pulled on demand by a user at will.
With the advent of wireless devices and the cost of transmission time for large digital files, it has become more practical to distribute vector images for large graphics, instead of raster images. Vector images are generally comprised of vector primitives, also referred to as vector objects, such as points, lines and areas, and raster images are generally comprised of arrays of pixel color values. Vector objects are typically specified by attributes, including inter alia attributes for a color, a style and one or more control points. As such, for large graphics, vector image files are typically much smaller than their counterpart raster image files.
Moreover, vector images are significant for maps that can be viewed at a variety of scales, such as maps displayed by GPS systems.
Vector images are also significant for rich text format documents, since true type fonts are generally represented as vector objects. Many of today's wireless devices, such as cellular phones, do not have the capability to render rich text documents, such as WORD and PDF documents. Instead, the documents are converted to plain ASCII text. For example, if a user receives e-mail with a WORD document attachment on his cell phone, the WORD document is generally displayed in plain text.
The lack of capability to render rich text documents in wireless devices is not due to inherent limitations in wireless communication or wireless device processors. Instead, the primary reason for not rendering rich text documents is the drawback of the download time required to receive such a document over the air and save it to memory. Clearly image streaming should be used to mitigate such drawback. Image streaming should enable a client device to render portions of a document on demand, as data for the document is being received at the client, without the need to save the entire document to memory.
However, conventional image streaming applications only stream raster images, and not vector images. Using conventional technology, vector images have to be first converted to raster images before they can be streamed from a server computer to a client computer. Such conversion clearly eliminates the size advantage of vector images over raster images.
There is thus a need for an application that streams vector images without conversion to raster images, so that vector images can be interactively viewed by a user on demand. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.