prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- ## Copyright 2015-2021 PyPSA Developers ## You can find the list of PyPSA Developers at ## https://pypsa.readthedocs.io/en/latest/developers.html ## PyPSA is released under the open source MIT License, see ## https://github.com/PyPSA/PyPSA/blob/master/LICENSE.txt """ Power flow functionality. """ __author__ = ( "PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html" ) __copyright__ = ( "Copyright 2015-2021 PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html, " "MIT License" ) import logging logger = logging.getLogger(__name__) import time from operator import itemgetter import networkx as nx import numpy as np import pandas as pd from numpy import ones, r_ from numpy.linalg import norm from pandas.api.types import is_list_like from scipy.sparse import csc_matrix, csr_matrix, dok_matrix from scipy.sparse import hstack as shstack from scipy.sparse import issparse from scipy.sparse import vstack as svstack from scipy.sparse.linalg import spsolve from pypsa.descriptors import ( Dict, allocate_series_dataframes, degree, get_switchable_as_dense, zsum, ) pd.Series.zsum = zsum def normed(s): return s / s.sum() def real(X): return np.real(X.to_numpy()) def imag(X): return np.imag(X.to_numpy()) def _as_snapshots(network, snapshots): if snapshots is None: snapshots = network.snapshots if not is_list_like(snapshots): snapshots = pd.Index([snapshots]) if not isinstance(snapshots, pd.MultiIndex): snapshots =
pd.Index(snapshots)
pandas.Index
# coding: utf-8 # In[15]: import sys, os, time, pickle from timeit import default_timer as timer from humanfriendly import format_timespan # In[16]: import pandas as pd import numpy as np # In[17]: from dotenv import load_dotenv load_dotenv('admin.env') # In[18]: from db_connect_mag import Session, Paper, PaperAuthorAffiliation, db # In[19]: # test_papers_df = pd.read_pickle('data/collect_haystack_20180409/test_papers.pickle') # target_papers_df = pd.read_pickle('data/collect_haystack_20180409/target_papers.pickle') # train_papers_df = pd.read_pickle('data/collect_haystack_20180409/train_papers.pickle') # In[20]: # this is the data for the fortunato review on Community Detection in Graphs start = timer() test_papers_df =
pd.read_pickle('data/collect_haystack_2127048411_seed-1/test_papers.pickle')
pandas.read_pickle
# # Prepare the hvorg_movies # import os import datetime import pickle import json import numpy as np import pandas as pd from sunpy.time import parse_time # The sources ids get_sources_ids = 'getDataSources.json' # Save the data save_directory = os.path.expanduser('~/Data/hvanalysis/derived') # Read in the data directory = os.path.expanduser('~/Data/hvanalysis/source') hvorg_movies = 'movies.csv' hvorg_movies = 'movies_20171128.csv' path = os.path.expanduser(os.path.join(directory, hvorg_movies)) df = pd.read_csv(path) hvorg_legacy_movies = 'movies_legacy.csv' path = os.path.expanduser(os.path.join(directory, hvorg_legacy_movies)) df_legacy = pd.read_csv(path) # Change the IDs of the legacy movies so they are unique df_legacy.loc[:, "id"] = df_legacy.loc[:, "id"] + 10**(1 + np.int(np.ceil(np.log10(len(df))))) # Append the legacy movies df = df.append(df_legacy, ignore_index=True) data_type = 'helioviewer.org movies' # Get some figures of merit for the movies # When was the movie requested? request_time = [parse_time(x) for x in df.timestamp.tolist()] # What was the movie start time? movie_start_time = [parse_time(x) for x in df.StartDate.tolist()] # What was the movie end time? movie_end_time = [parse_time(x) for x in df.EndDate.tolist()] # How many movies in the CSV file? nmovies = len(request_time) # How much time did the movie cover? movie_durations = np.asarray([(movie_end_time[i] - movie_start_time[i]).total_seconds() for i in range(0, nmovies)]) # What was the mid point of the movie? movie_mid_point = [movie_start_time[i] + datetime.timedelta(seconds=0.5*movie_durations[i]) for i in range(0, nmovies)] # Calculate the time difference between the time of the request and the # movie time. The start time is used since this is the only one that # can time_difference = np.asarray([(request_time[i] - movie_start_time[i]).total_seconds() for i in range(0, nmovies)]) # Save the time information f = os.path.join(save_directory, 'hvorg_movie_durations_seconds.npy') np.save(f, movie_durations) f = os.path.join(save_directory, 'hvorg_movie_mid_point_seconds.npy') np.save(f, movie_mid_point) f = os.path.join(save_directory, 'hvorg_movie_time_difference_seconds.npy') np.save(f, time_difference) f = os.path.join(save_directory, 'hvorg_movie_request_time.pkl') pickle.dump(request_time, open(f, 'wb')) f = os.path.join(save_directory, 'hvorg_movie_start_time.pkl') pickle.dump(movie_start_time, open(f, 'wb')) f = os.path.join(save_directory, 'hvorg_movie_end_time.pkl') pickle.dump(movie_end_time, open(f, 'wb')) # Analyze the sourceID column. Split it up, find the unique elements, # and create a data frame. all_sources = [] for source_id in df.DataSourceID.tolist(): ids = source_id.split(',') for id in ids: if id not in all_sources: all_sources.append(id) def extract_data_source_names(a, removal_type='all'): if removal_type == 'all': b = a.replace(" ", "") b = b.split(',') if removal_type == 'lr': b = a.strip() b = b.split(' , ') return b all_data_source_names = [] for i, data_source_names in enumerate(df.DataSourceNames.tolist()): if isinstance(data_source_names, str): dsns = extract_data_source_names(data_source_names, removal_type='lr') for dsn in dsns: if dsn not in all_data_source_names: all_data_source_names.append(dsn) # Analyze the Helioviewer getsourcesid return - map the sourceIds to the nicknames f = os.path.expanduser(os.path.join(directory, get_sources_ids)) j = json.load(open(f, 'r')) def id_generator(dict_var): for k, v in dict_var.items(): if k == "sourceId": yield dict_var["sourceId"], dict_var["nickname"] elif isinstance(v, dict): for id_val in id_generator(v): yield id_val source_ids_and_nicknames = list(id_generator(j)) f = os.path.join(save_directory, 'hvorg_sourceids_and_nicknames.pkl') pickle.dump(source_ids_and_nicknames, open(f, 'wb')) # Create a new dataframe that explicitly holds which data source was used in each movie df_new =
pd.DataFrame(0, index=df.index, columns=all_sources)
pandas.DataFrame
""" try to classify reddit posts. """ import os import glob from collections import defaultdict from pprint import pprint import time from datetime import datetime import pandas as pd from sklearn_pandas import DataFrameMapper, cross_val_score import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler, LabelBinarizer from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.feature_selection import SelectKBest, mutual_info_classif, f_classif from sklearn.metrics import classification_report, precision_recall_curve from sklearn.model_selection import cross_validate, KFold, train_test_split, GridSearchCV from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.svm import LinearSVC, SVC from sklearn.dummy import DummyClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier def print_topk(k, feature_names, clf): """Prints features with the highest coefficient values, per class""" topk = np.argsort(clf.coef_[0])[-k:] print( "{}".format( " ".join(feature_names[j] for j in topk[::-1]) ) ) SCORES = [ 'accuracy', 'roc_auc', #'recall', #'precision', ] def run_experiment(X, y, max_features, feature_selector, args): long_precision_recall_row_dicts = [] long_result_row_dicts = [] algo_to_score = defaultdict(dict) clf_sets = [] C_vals = [0.1, 1, 10, 100] for C_val in C_vals: clf_sets += [ (LogisticRegression(C=C_val), 'logistic__c={}'.format(C_val), 'logistic', C_val, 'default'), ] clf_sets += [ (LinearSVC(C=C_val), 'linearsvc__c={}'.format(C_val), 'linearsvc', C_val, 'default'), ] if args.other_class_weights: clf_sets += [ ( LogisticRegression(C=C_val, class_weight='balanced'), 'logistic__c={}__class_weight=balanced'.format(C_val), 'logistic', C_val, 'balanced' ), ( LogisticRegression(C=C_val, class_weight={0: 1, 1:50}), 'logistic__c={}__class_weight=50x'.format(C_val), 'logistic', C_val, '50x' ), ( LinearSVC(C=C_val, class_weight='balanced'), 'linearsvc__c={}__class_weight=balanced'.format(C_val), 'linearsvc', C_val, 'balanced' ), ( LinearSVC(C=C_val, class_weight={0: 1, 1:50}), 'linearsvc__c={}__class_weight=500x'.format(C_val), 'linearsvc', C_val, '50x' ), ] clf_sets += [ (DummyClassifier(strategy='most_frequent'), 'SelectNoSentences', 'SelectNoSentences', 0.1, 'default'), #(DummyClassifier(strategy='constant', constant=1), 'SelectEverySentence',), ] if args.data_dir == 'psa_research': clf_sets += [ (DecisionTreeClassifier(), 'tree', 'tree', 0.1, 'default'), (GaussianNB(), 'GaussianNb', 'GaussianNb', 0.1, 'default'), (KNeighborsClassifier(3), '3nn', '3nn', 0.1, 'default'), ] for clf, name, algo_name, C_val, weights in clf_sets: # if name == 'logistic': # clf.fit(X, data.has_citation) # print_topk(10, mapper.transformed_names_, clf) cv = KFold(n_splits=5, shuffle=True, random_state=0) start = time.time() scores = cross_validate( clf, X=X, y=y, cv=cv, scoring=SCORES) ret = {} for key, val in scores.items(): if 'test_' in key: score = key.replace('test_', '') ret[score] = np.mean(val) ret[score + '_std'] = np.std(val) algo_to_score[name] = ret tic = round(time.time() - start, 3) algo_to_score[name]['time'] = tic X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=0) cal_clf = CalibratedClassifierCV(clf) cal_clf.fit(X_train, y_train) y_proba = cal_clf.predict_proba(X_test) precision, recall, thresholds = precision_recall_curve( y_test, y_proba[:,1]) long_result_row_dict = { 'name': name, 'algo_name': algo_name, 'max_features': max_features, 'feature_selector': feature_selector.__name__, 'C_val': C_val, 'weights': weights, 'time': tic, } for score in SCORES: long_result_row_dict[score] = algo_to_score[name][score] long_result_row_dict[score + '_std'] = algo_to_score[name][score + '_std'] long_result_row_dicts.append(long_result_row_dict) for precision_val, recall_val in zip(precision, recall): long_precision_recall_row_dicts.append({ 'precision': precision_val, 'recall': recall_val, 'name': name, 'max_features': max_features, 'feature_selector': feature_selector.__name__, 'algo_name': algo_name, 'C_val': C_val, 'weights': weights, }) #print(name, tic) result_df = pd.DataFrame(algo_to_score) result_df.to_csv('results/{}/{}_{}.csv'.format( args.data_dir, max_features, feature_selector.__name__, )) maxes = {} for key in SCORES: max_idx = result_df.loc[key].idxmax() max_val = result_df.loc[key, max_idx] maxes[key] = [max_val, max_idx] #print(maxes) results_df = pd.DataFrame(long_result_row_dicts) long_precision_recall_df = pd.DataFrame(long_precision_recall_row_dicts) # sns.factorplot(data=long_df, x='recall', y='precision', col='name', col_wrap=5) # plt.show() return maxes, results_df, long_precision_recall_df def main(args): if False: path = 'labeled_sentences/vincent_etal_chi_2018.csv' data = pd.read_csv(path, encoding='utf-8t') else: sentences_filepaths = glob.glob( "labeled_sentences/{}/*.csv".format(args.data_dir) ) data = None count = 100 for i, path in enumerate(sentences_filepaths): if i > count: break if data is None: data = pd.read_csv(path, encoding='utf-8') else: data = pd.concat([data, pd.read_csv(path, encoding='utf-8')]) # "Feature Engineering" def compute_hand_features(processed_text): ret = [ len(processed_text), any(char.isdigit() for char in processed_text), ',' in processed_text, '"' in processed_text, any(char.isupper() for char in processed_text[1:]), ] return ret data['length'], data['has_digits'], data['has_comma'], data['has_quote'], data['has_upper'] = zip( *map(compute_hand_features, data['processed_text']) ) mapper = DataFrameMapper([ ('processed_text', TfidfVectorizer( #stop_words='english', #lowercase=True, #ngram_range=(5,5) strip_accents='unicode', max_features=10000 ) ), (['length'], StandardScaler()), ('has_digits', LabelBinarizer()), ('has_comma', LabelBinarizer()), ('has_quote', LabelBinarizer()), ('has_upper', LabelBinarizer()), ]) X = mapper.fit_transform(data.copy()) y = data.has_citation feature_selectors = [ f_classif, #mutual_info_classif, ] maxes = {x: [0, None] for x in SCORES} long_result_dfs = [] long_precision_recall_dfs = [] #print(maxes) best_feature_max = None best_feature_selector = None for max_features in args.max_features_vals: for feature_selector in feature_selectors: if max_features != -1: #print('Features:', max_features) X_new = SelectKBest(feature_selector, k=max_features).fit_transform(X, y) if args.run: maxes_from_experiment, long_result_df, long_precision_recall_df = run_experiment(X_new, y, max_features, feature_selector, args) long_precision_recall_dfs.append(long_precision_recall_df) long_result_dfs.append(long_result_df) for score in SCORES: if maxes_from_experiment[score][0] > maxes[score][0]: maxes[score] = maxes_from_experiment[score] + ['{}_{}'.format(max_features, feature_selector.__name__)] if score == 'roc_auc': best_feature_max = max_features best_feature_selector = feature_selector if args.grid: # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X_new, y, test_size=0.5, random_state=0) tuned_parameters = [ { 'C': [0.1, 1, 10, 100, 1000] } ] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(LinearSVC(), tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print(clf.best_params_) print("Grid scores on development set:") means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print("Detailed classification report:") print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print(maxes) merged_precision_recall_df = long_precision_recall_dfs[0] for long_df in long_precision_recall_dfs[1:]: merged_precision_recall_df = pd.concat([merged_precision_recall_df, long_df]) merged_precision_recall_df.to_csv('results/{}/precision_recall_dataframe.csv'.format(args.data_dir)) merged_result_df = long_result_dfs[0] for long_df in long_result_dfs[1:]: merged_result_df =
pd.concat([merged_result_df, long_df])
pandas.concat
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # DATA COMPARISONS OF NEW hurs AND OLD hur DOWNSCALED DATA # <NAME> (<EMAIL>) September 2018 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def open_raster( fn, band=1 ): with rasterio.open( fn ) as rst: arr = rst.read( band ) return arr def seasonize( row ): if row['month'] in (12,1,2): season = 'DJF' if row['month'] in (3,4,5): season = 'MAM' if row['month'] in (6,7,8): season = 'JJA' if row['month'] in (9,10,11): season = 'SON' return season def make_seasonal_average( files, model, scenario, season, output_path ): arr = np.round( np.mean([ open_raster( fn, band=1 ) for fn in files ], axis=0), 2 ) basename = os.path.basename( files[0] ) month_str = basename.split('_')[-2] basename = basename.replace('_'+month_str+'_', '_'+season+'_' ) output_filename = os.path.join( output_path, model, scenario, basename ) try: dirname = os.path.dirname( output_filename ) if not os.path.exists( dirname ): _ = os.makedirs( dirname ) except: pass with rasterio.open( files[0] ) as rst: meta = rst.meta.copy() mask = rst.read(1) == -9999 meta.update( compress='lzw' ) arr[ mask ] = -9999 with rasterio.open( output_filename, 'w', **meta ) as out: out.write( arr.astype(np.float32), 1 ) return output_filename def season_group_ids( df ): # unpack groups = [ j for i,j in list(df.groupby(np.arange(0,df.shape[0])//3))] for count, df in enumerate(groups): df['season_id'] = count return
pd.concat(groups)
pandas.concat
### Notes: ### What does this function return ? # 1. A dataframe with daywise summary for the spends, leads, appointments and surgeries # 2. Added columns of CPL, CPA and CPS # 3. Split of Total leads, appointment and surgeries from Facebook and Google ### What does this function take as input?: # 1. Nothing. The function automatically reads the required csv files and returns the dataframes mentioned above. import pandas as pd import datetime import FB_Google import non_mri import numpy as np import time import FB_service_map import Google_service_map import Leads_cities_mapping import Apts_cities_mapping import Online_cities_mapping class summary_cities: def __init__(self): self.FB_data_raw = FB_service_map.FB_service_map() self.Google_data_raw = Google_service_map.Google_service_map() self.leads_data_raw = Leads_cities_mapping.Leads_city_mapping() self.apts_data_raw = Online_cities_mapping.Online_cities_mapping() def summary(self, city): FB_raw_data_raw = self.FB_data_raw Google_spends_data_raw = self.Google_data_raw leads_raw = self.leads_data_raw apts_raw = self.apts_data_raw FB_raw_data = FB_raw_data_raw[FB_raw_data_raw.City==city] Google_spends_data = Google_spends_data_raw[Google_spends_data_raw.City==city] leads_data = leads_raw[leads_raw.City==city] apts_data = apts_raw[apts_raw.City==city] #FB_raw_data = FB_state_city_mapping.FB_state_city_mapping() ### Lets define a daterange dataframe to be joined to every dataframe in this notebook #FB_raw_data = FB_state_city_mapping.FB_state_city_mapping() ### Lets define a daterange dataframe to be joined to every dataframe in this notebook dates = pd.date_range('2019-01-01', time.strftime("%Y-%m-%d"), freq='D').to_list() dates_df = pd.DataFrame({"Date":dates}) #### Lets process Facebook Spend here FB_data_dropped = FB_raw_data[["Reporting ends", "Ad set name", "Results", "Amount spent (INR)", "Impressions", "Link clicks", "CTR (link click-through rate)", "City", "Extracted_service", "Service", "Dept"]] new_columns = ["Date", "FB_Ad_set", "FB_Results", "Spend", "FB_Impressions", "FB_Link_clicks", "FB_CTR", "City", "FB_Extracted_service", "Service", "Dept"] FB_data_dropped.columns = new_columns FB_data_dropped["FB_spend"] = FB_data_dropped["Spend"]*1.18 ### Now lets summarise the FB spend data daywise to be later attached with the leads, appointments and surgery FB_datewise_spends = FB_data_dropped.groupby(["Dept", "Service", "Date"]).sum().drop(columns = ["Spend"]) FB_daily_spends = FB_datewise_spends.reset_index() FB_daily_spends.FB_spend = FB_daily_spends.FB_spend.replace(np.nan, 0) FB_daily_spends["Date"] = pd.to_datetime(FB_daily_spends["Date"], format = "%Y-%m-%d") FB_spends = pd.merge(dates_df,FB_daily_spends, on = "Date", how = "left") #FB_spends.head() ### Lets process Google Spend here Google_spends_data = Google_spends_data[["Day","Campaign", "Cost", "Impressions", "Clicks", "Conversions", "City", "Extracted_service", "Service", "Dept"]] Google_spends_data.columns = ["Date","Google_Campaign", "Spend", "Google_Impressions", "Google_Clicks", "Google_Conversions", "City", "Extracted_service", "Service", "Dept"] Google_spends_data["Google_spend"] = Google_spends_data["Spend"]*1.18 ### Now lets summarise the Google spend data daywise to be later attached with the leads, appointments and surgery Google_datewise_spends = Google_spends_data.groupby(["Dept", "Service","Date"]).sum().drop(columns = ["Spend"]) Google_daily_spends = Google_datewise_spends.reset_index() Google_daily_spends.Google_spend = Google_daily_spends.Google_spend.replace(np.nan, 0) Google_daily_spends["Date"] = pd.to_datetime(Google_daily_spends["Date"]) Google_spends = pd.merge(dates_df,Google_daily_spends, on = "Date", how = "left") #Google_spends.head() Spends_data = pd.merge(FB_spends, Google_spends, on = ["Date","Dept","Service"], how = "outer") ### Lets process Leads data here non_mri_leads = non_mri.MRI_filter(leads_data) non_mri_leads.City = non_mri_leads.City.replace(np.nan, "No_data") # Lets read overall leads and split it to daily leads for facebook and google overall_leads = non_mri_leads.groupby(["Date", "Dept", "Service"]).count() overall_leads = overall_leads.reset_index() daywise_leads = overall_leads[["Date", "Dept", "Service", "Lead_id"]] daywise_leads.columns = ["Date", "Dept", "Service","Total_leads"] daywise_leads.Date = pd.to_datetime(daywise_leads.Date) FB_leads_df, Google_leads_df = FB_Google.channels(leads_data) FB_leads = FB_leads_df[['Date',"Dept","Service",'Lead_id']] FB_leads.columns = ["Date","Dept","Service","FB_leads"] FB_daywise_leads = FB_leads.groupby(["Date","Dept","Service"]).count() FB_daily_leads = FB_daywise_leads.reset_index() FB_daily_leads.Date = pd.to_datetime(FB_daily_leads.Date, format = "%Y-%m-%d") Google_leads = Google_leads_df[['Date',"Dept","Service",'Lead_id']] Google_leads.columns = ["Date","Dept","Service","Google_leads"] Google_daywise_leads = Google_leads.groupby(["Date","Dept","Service"]).count() Google_daily_leads = Google_daywise_leads.reset_index() Google_daily_leads.Date = pd.to_datetime(Google_daily_leads.Date, format = "%Y-%m-%d") dummy1 = pd.merge(dates_df, FB_daily_leads, on = "Date", how = "left") dummy2 = pd.merge(dummy1, Google_daily_leads, on = "Date", how = "left") #daywise_leads.Date = pd.to_datetime(daywise_leads.Date, format = "%Y-%m-%d") leads_df = pd.merge(FB_daily_leads, Google_daily_leads, on = ["Date", "Dept", "Service"], how = "outer") #leads_df.head() ### Lets combine Spends and Leads dataframes Spends_leads_df = pd.merge(Spends_data, leads_df, on = ["Date", "Dept", "Service"], how = "outer") Spends_leads_data = pd.merge(Spends_leads_df, daywise_leads, on = ["Date", "Dept", "Service"], how = "outer") apts_data_dropped = apts_data[["Lead_id","f2f_sch_date", "f2f_comp_date","Service","Dept"]] apts_data_dropped.columns = ["Lead_id","f2f_sch","f2f_comp","Service", "Dept"] apts = non_mri.MRI_filter(apts_data_dropped) apts = apts[["Lead_id", "f2f_sch", "f2f_comp","Service","Dept_x"]] apts.columns = ["Lead_id", "f2f_sch", "f2f_comp","Service","Dept"] f2f_sch = apts[["Lead_id","f2f_sch", "Service", "Dept"]] f2f_sch.columns = ["Total_f2f_sch","Date", "Service", "Dept"] f2f_sch_df = f2f_sch.groupby(["Date", "Dept","Service"]).count() f2f_sch_df = f2f_sch_df.reset_index() f2f_sch_df.Date = pd.to_datetime(f2f_sch_df.Date, format = "%Y-%m-%d") #f2f_sch_daily = pd.merge(dates_df, f2f_sch_df, on = "Date", how = "left") f2f_sch_daily = f2f_sch_df # Lets take daily Total f2f completed f2f_comp = apts[["Lead_id","f2f_comp", "Service", "Dept"]] f2f_comp.columns = ["Total_f2f_comp","Date", "Service", "Dept"] f2f_comp_df = f2f_comp.groupby(["Date", "Dept","Service"]).count() f2f_comp_df = f2f_comp_df.reset_index() f2f_comp_df = f2f_comp_df[f2f_comp_df.Date>="2019-01-01"] f2f_comp_df = f2f_comp_df.reset_index() f2f_comp_df = f2f_comp_df[["Date","Dept", "Service","Total_f2f_comp"]] f2f_comp_df = f2f_comp_df[f2f_comp_df.Date!="Service NA"] f2f_comp_df.Date = pd.to_datetime(f2f_comp_df.Date, format = "%Y-%m-%d") #f2f_comp_df = f2f_comp_df.replace(r"\\N",0,regex = True) f2f_comp_df.Date = pd.to_datetime(f2f_comp_df.Date) #f2f_comp_daily = pd.merge(dates_df, f2f_comp_df, on = "Date", how = "left") f2f_comp_daily = f2f_comp_df # Combining Total daily f2f_sch and f2f_comp Apts_df =
pd.merge(f2f_sch_daily, f2f_comp_daily, on = ["Date", "Dept", "Service"], how = "outer")
pandas.merge
from keras.models import load_model from random import seed from random import randint import numpy as np import pandas as pd import sys import tensorflow as tf from keras.backend.tensorflow_backend import set_session def position_3D_approximation(result, strategy): # result => predicted #yclone = np.copy(y) #dfyclone = pd.DataFrame.from_records(yclone) global dfyclone global yclone #print(result) #print(result.shape) #print(result.shape[0], 3) #result.reshape((result.shape[0], 3)) #a = result.reshape(result.shape[0], 3) #print(a.shape) if (Neural_Network_Model == 3): #LSTM without channel result = result.reshape(result.shape[0], 3) #print(result.shape) #b = result.values.flatten() #n_patterns=len(result) #print(n_patterns) #result = np.reshape(b,(n_patterns,3)) #print(result) df3d = pd.DataFrame({'X':result[:,0],'Y':result[:,1],'Z':result[:,2]}) #print(df3d) df3d['X-pred'] = 0 df3d['Y-pred'] = 0 df3d['Z-pred'] = 0 df3d['ch0'] = 0 df3d['ch1'] = 0 df3d['w'] = 0 #dfyclone = pd.DataFrame.from_records(yclone) for index, row in df3d.iterrows(): #obtain the row with least geometric distance between predicted row and original rows (in yclone) Xpred=df3d.loc[index, 'X'] Ypred=df3d.loc[index, 'Y'] Zpred=df3d.loc[index, 'Z'] if (strategy==0): dfyclone['geodist'] = ( ((dfyclone[0] - Xpred) **2) + ((dfyclone[1] - Ypred) **2) + ((dfyclone[2] - Zpred) **2) ) row=dfyclone.loc[dfyclone['geodist'].idxmin()] lowerGeodistIndex=row.name else: lowerGeodistIndex=randint(0,dfyclone.shape[0]-1) X=yclone[lowerGeodistIndex,0] Y=yclone[lowerGeodistIndex,1] Z=yclone[lowerGeodistIndex,2] ch0=yclone[lowerGeodistIndex,3] ch1=yclone[lowerGeodistIndex,4] df3d.loc[index, 'X-pred'] = X df3d.loc[index, 'Y-pred'] = Y df3d.loc[index, 'Z-pred'] = Z df3d.loc[index, 'ch0'] = ch0 df3d.loc[index, 'ch1'] = ch1 #remove the hit used as approximation dfyclone.drop(dfyclone.index[lowerGeodistIndex]) #print(df3d) df3d.drop('X', axis=1, inplace=True) df3d.drop('Y', axis=1, inplace=True) df3d.drop('Z', axis=1, inplace=True) #print(df3d) #return the fourth hit of all tracks return(df3d) seed(1) # configure gpu_options.allow_growth = True in order to CuDNNLSTM layer work on RTX config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) set_session(sess) #Read input file with first 3 hits to dataframe tracks_to_be_reconstructed_file = sys.argv[1] all_hits_available_file = sys.argv[2] trained_model_file = sys.argv[3] reconstructed_tracks_file = sys.argv[4] #strategyFlag=0 -> LSTM #strategyFlag=1 -> Random strategyFlag= int(sys.argv[5]) Neural_Network_Model= int(sys.argv[6]) df = pd.read_csv(tracks_to_be_reconstructed_file) #create dataset ofa ll hists in dfyclone df_all_hits = pd.read_csv(all_hits_available_file) y=df_all_hits.iloc[:, [ 25,26,27,28,29 ]] yclone = np.copy(y) dfyclone = pd.DataFrame.from_records(yclone) #all tracks have at maximum 29 hits hits = np.arange(0,29,1) firstHit=1 lastHit=4 df1 = df.iloc[:,1:25] for firstHit in range(1, 26): #for firstHit in range(1, 2): lastHit = lastHit + 1 #begin with 3 know hits known_hits= np.arange(firstHit,lastHit,1) #next hit to predict hit_to_predict=known_hits[3] dataX2=df1.iloc[:, [ (hits[known_hits[0]]*6)+1,(hits[known_hits[0]]*6)+2,(hits[known_hits[0]]*6)+3 , (hits[known_hits[1]]*6)+1,(hits[known_hits[1]]*6)+2,(hits[known_hits[1]]*6)+3 , (hits[known_hits[2]]*6)+1,(hits[known_hits[2]]*6)+2,(hits[known_hits[2]]*6)+3 ]] dataXfeatures=df1.iloc[:, [ (hits[known_hits[0]]*6)+4,(hits[known_hits[0]]*6)+5 , (hits[known_hits[1]]*6)+4 , (hits[known_hits[1]]*6)+5 , (hits[known_hits[2]]*6)+4 , (hits[known_hits[2]]*6)+5 ]]#dataXfeatures=df.iloc[:, [ hits[known_hits[0]]+4,hits[known_hits[0]]+5,hits[known_hits[0]]+6 , hits[known_hits[1]]+4,hits[known_hits[1]]+5,hits[known_hits[1]]+6 , hits[known_hits[2]]+4,hits[known_hits[2]]+5,hits[known_hits[2]]+6 ]] #prepare data to inference b = dataX2.values.flatten() bfeat=dataXfeatures.values.flatten() n_patterns=len(df) X = np.reshape(b,(n_patterns,3,3)) Xfeat = np.reshape(bfeat,(n_patterns,3,2)) #perform the prediction model = load_model(trained_model_file) if (Neural_Network_Model == 1): #LSTM with channel as features result = model.predict([X, Xfeat],verbose=1) if (Neural_Network_Model == 2): #MLP result = model.predict(dataX2,verbose=1) if (Neural_Network_Model == 3): #LSTM without channel result = model.predict(X,verbose=1) pred = position_3D_approximation(result, strategyFlag) #concat tracks with predicted positions #print("df1") #print(df1) df1=
pd.concat([df1,pred],axis=1)
pandas.concat
import os import time import shutil import sys sys.path.append('C:/prismx/') import h5py as h5 import pandas as pd import numpy as np import random import show_h5 as ph5 import seaborn as sns import matplotlib.patches as mpatches from scipy import stats import matplotlib.pyplot as plt import prismx as px f100 = pd.read_csv("logs/validationscore100.tsv", sep="\t") pgene = stats.ttest_ind(f100["global_gene"], f100["prismx_gene"])[1] sns.set(font_scale = 2) f, ax = plt.subplots(figsize=(6, 6), frameon=True) ax.grid(True) ax.set_facecolor("white") ax.spines['bottom'].set_color('0') ax.spines['top'].set_color('0') ax.spines['right'].set_color('0') ax.spines['left'].set_color('0') plt.tight_layout() ax.scatter(f100["global_gene"], f100["prismx_gene"]) ax.plot([0, 1], [0, 1], transform=ax.transAxes, color='r', ls='--') ax.set_xlabel("global average AUC", fontsize=20) ax.set_ylabel("PrismEXP average AUC", fontsize=20) plt.savefig("figures/validation_gene.pdf") plt.close() plt.rcParams["axes.labelsize"] = 14 sns.set(font_scale = 3) plt.tight_layout() dd = pd.DataFrame({"global":f100["global_gene"], "PrismEXP":f100["prismx_gene"]}) ax = sns.violinplot(data=dd) ax.set_ylabel("average AUC", fontsize=35) plt.ylim(0.3, 1.2) plt.plot([0, 1],[1.07, 1.07], 'k-', lw=2) plt.text(-0.07, 1.1, "p-value: "+"{:.2e}".format(float(pgene)), fontsize=28) plt.savefig("figures/validation_gene_violin.pdf",bbox_inches='tight') plt.close() pset = stats.ttest_ind(f100["global_set"], f100["prismx_set"])[1] f, ax = plt.subplots(figsize=(6, 6)) ax.grid(True) ax.set_facecolor("white") ax.spines['bottom'].set_color('0') ax.spines['top'].set_color('0') ax.spines['right'].set_color('0') ax.spines['left'].set_color('0') plt.tight_layout() ax.scatter(f100["global_set"], f100["prismx_set"]) ax.plot([0, 1], [0, 1], transform=ax.transAxes, color='r', ls='--') ax.set_xlabel("global average AUC", fontsize=20) ax.set_ylabel("PrismEXP average AUC", fontsize=20) plt.savefig("figures/validation_set.pdf") plt.close() plt.rcParams["axes.labelsize"] = 14 sns.set(font_scale = 3) plt.tight_layout() dd = pd.DataFrame({"global":f100["global_set"], "PrismEXP":f100["prismx_set"]}) ax = sns.violinplot(data=dd) ax.set_ylabel("average AUC", fontsize=35) plt.ylim(0.3, 1.2) plt.plot([0, 1],[1.07, 1.07], 'k-', lw=2) plt.text(-0.07, 1.1, "p-value: "+"{:.2e}".format(float(pset)), fontsize=28) plt.savefig("figures/validation_set_violin.pdf",bbox_inches='tight') plt.close() f50 =
pd.read_csv("logs/validationscore50.tsv", sep="\t")
pandas.read_csv
import pandas as pd df_raw =
pd.read_csv("/data/wifi-analysis/competition/train.csv")
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import CategoricalIndex, Index import pandas._testing as tm class TestMap: @pytest.mark.parametrize( "data, categories", [ (list("abcbca"), list("cab")), (pd.interval_range(0, 3).repeat(3), pd.interval_range(0, 3)), ], ids=["string", "interval"], ) def test_map_str(self, data, categories, ordered): # GH 31202 - override base class since we want to maintain categorical/ordered index = CategoricalIndex(data, categories=categories, ordered=ordered) result = index.map(str) expected = CategoricalIndex( map(str, data), categories=map(str, categories), ordered=ordered ) tm.assert_index_equal(result, expected) def test_map(self): ci = pd.CategoricalIndex(list("ABABC"), categories=list("CBA"), ordered=True) result = ci.map(lambda x: x.lower()) exp = pd.CategoricalIndex(list("ababc"), categories=list("cba"), ordered=True) tm.assert_index_equal(result, exp) ci = pd.CategoricalIndex( list("ABABC"), categories=list("BAC"), ordered=False, name="XXX" ) result = ci.map(lambda x: x.lower()) exp = pd.CategoricalIndex( list("ababc"), categories=list("bac"), ordered=False, name="XXX" ) tm.assert_index_equal(result, exp) # GH 12766: Return an index not an array tm.assert_index_equal( ci.map(lambda x: 1), Index(np.array([1] * 5, dtype=np.int64), name="XXX") ) # change categories dtype ci = pd.CategoricalIndex(list("ABABC"), categories=list("BAC"), ordered=False) def f(x): return {"A": 10, "B": 20, "C": 30}.get(x) result = ci.map(f) exp = pd.CategoricalIndex( [10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False ) tm.assert_index_equal(result, exp) result = ci.map(pd.Series([10, 20, 30], index=["A", "B", "C"])) tm.assert_index_equal(result, exp) result = ci.map({"A": 10, "B": 20, "C": 30}) tm.assert_index_equal(result, exp) def test_map_with_categorical_series(self): # GH 12756 a = pd.Index([1, 2, 3, 4]) b = pd.Series(["even", "odd", "even", "odd"], dtype="category") c = pd.Series(["even", "odd", "even", "odd"]) exp = CategoricalIndex(["odd", "even", "odd", np.nan]) tm.assert_index_equal(a.map(b), exp) exp = pd.Index(["odd", "even", "odd", np.nan]) tm.assert_index_equal(a.map(c), exp) @pytest.mark.parametrize( ("data", "f"), ( ([1, 1, np.nan], pd.isna), ([1, 2, np.nan], pd.isna), ([1, 1, np.nan], {1: False}), ([1, 2, np.nan], {1: False, 2: False}), ([1, 1, np.nan],
pd.Series([False, False])
pandas.Series
from collections import OrderedDict import contextlib from datetime import datetime, time from functools import partial import os from urllib.error import URLError import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas.util.testing as tm @contextlib.contextmanager def ignore_xlrd_time_clock_warning(): """ Context manager to ignore warnings raised by the xlrd library, regarding the deprecation of `time.clock` in Python 3.7. """ with warnings.catch_warnings(): warnings.filterwarnings( action="ignore", message="time.clock has been deprecated", category=DeprecationWarning, ) yield read_ext_params = [".xls", ".xlsx", ".xlsm", ".ods"] engine_params = [ # Add any engines to test here # When defusedxml is installed it triggers deprecation warnings for # xlrd and openpyxl, so catch those here pytest.param( "xlrd", marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param( "openpyxl", marks=[ td.skip_if_no("openpyxl"), pytest.mark.filterwarnings("ignore:.*html argument"), ], ), pytest.param( None, marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param("odf", marks=td.skip_if_no("odf")), ] def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool: """ Filter out invalid (engine, ext) pairs instead of skipping, as that produces 500+ pytest.skips. """ engine = engine.values[0] if engine == "openpyxl" and read_ext == ".xls": return False if engine == "odf" and read_ext != ".ods": return False if read_ext == ".ods" and engine != "odf": return False return True def _transfer_marks(engine, read_ext): """ engine gives us a pytest.param objec with some marks, read_ext is just a string. We need to generate a new pytest.param inheriting the marks. """ values = engine.values + (read_ext,) new_param = pytest.param(values, marks=engine.marks) return new_param @pytest.fixture( autouse=True, params=[ _transfer_marks(eng, ext) for eng in engine_params for ext in read_ext_params if _is_valid_engine_ext_pair(eng, ext) ], ) def engine_and_read_ext(request): """ Fixture for Excel reader engine and read_ext, only including valid pairs. """ return request.param @pytest.fixture def engine(engine_and_read_ext): engine, read_ext = engine_and_read_ext return engine @pytest.fixture def read_ext(engine_and_read_ext): engine, read_ext = engine_and_read_ext return read_ext class TestReaders: @pytest.fixture(autouse=True) def cd_and_set_engine(self, engine, datapath, monkeypatch): """ Change directory and set engine for read_excel calls. """ func = partial(pd.read_excel, engine=engine) monkeypatch.chdir(datapath("io", "data", "excel")) monkeypatch.setattr(pd, "read_excel", func) def test_usecols_int(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["A", "B", "C"]) # usecols as int msg = "Passing an integer for `usecols`" with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols=3) # usecols as int with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=3 ) def test_usecols_list(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["B", "C"]) df1 = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=[0, 2, 3] ) df2 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=[0, 2, 3] ) # TODO add index to xls file) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_usecols_str(self, read_ext, df_ref): df1 = df_ref.reindex(columns=["A", "B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A:D" ) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C,D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C,D" ) # TODO add index to xls file tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C:D" ) tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) @pytest.mark.parametrize( "usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]] ) def test_usecols_diff_positional_int_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["A", "C"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=usecols ) tm.assert_frame_equal(result, expected, check_names=False) @pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]]) def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["B", "D"]] expected.index = range(len(expected)) result = pd.read_excel("test1" + read_ext, "Sheet1", usecols=usecols) tm.assert_frame_equal(result, expected, check_names=False) def test_read_excel_without_slicing(self, read_ext, df_ref): expected = df_ref result = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str(self, read_ext, df_ref): expected = df_ref[["C", "D"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols="A,D:E" ) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str_invalid(self, read_ext): msg = "Invalid column name: E1" with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, "Sheet1", usecols="D:E1") def test_index_col_label_error(self, read_ext): msg = "list indices must be integers.*, not str" with pytest.raises(TypeError, match=msg): pd.read_excel( "test1" + read_ext, "Sheet1", index_col=["A"], usecols=["A", "C"] ) def test_index_col_empty(self, read_ext): # see gh-9208 result = pd.read_excel("test1" + read_ext, "Sheet3", index_col=["A", "B", "C"]) expected = DataFrame( columns=["D", "E", "F"], index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"]), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_col", [None, 2]) def test_index_col_with_unnamed(self, read_ext, index_col): # see gh-18792 result = pd.read_excel("test1" + read_ext, "Sheet4", index_col=index_col) expected = DataFrame( [["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"] ) if index_col: expected = expected.set_index(expected.columns[index_col]) tm.assert_frame_equal(result, expected) def test_usecols_pass_non_existent_column(self, read_ext): msg = ( "Usecols do not match columns, " "columns expected but not found: " + r"\['E'\]" ) with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, usecols=["E"]) def test_usecols_wrong_type(self, read_ext): msg = ( "'usecols' must either be list-like of " "all strings, all unicode, all integers or a callable." ) with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, usecols=["E1", 0]) def test_excel_stop_iterator(self, read_ext): parsed = pd.read_excel("test2" + read_ext, "Sheet1") expected = DataFrame([["aaaa", "bbbbb"]], columns=["Test", "Test1"]) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self, read_ext): parsed = pd.read_excel("test3" + read_ext, "Sheet1") expected = DataFrame([[np.nan]], columns=["Test"]) tm.assert_frame_equal(parsed, expected) def test_excel_table(self, read_ext, df_ref): df1 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) df2 = pd.read_excel("test1" + read_ext, "Sheet2", skiprows=[1], index_col=0) # TODO add index to file tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) df3 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, skipfooter=1) tm.assert_frame_equal(df3, df1.iloc[:-1]) def test_reader_special_dtypes(self, read_ext): expected = DataFrame.from_dict( OrderedDict( [ ("IntCol", [1, 2, -3, 4, 0]), ("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]), ("BoolCol", [True, False, True, True, False]), ("StrCol", [1, 2, 3, 4, 5]), # GH5394 - this is why convert_float isn't vectorized ("Str2Col", ["a", 3, "c", "d", "e"]), ( "DateCol", [ datetime(2013, 10, 30), datetime(2013, 10, 31), datetime(1905, 1, 1), datetime(2013, 12, 14), datetime(2015, 3, 14), ], ), ] ) ) basename = "test_types" # should read in correctly and infer types actual = pd.read_excel(basename + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) # if not coercing number, then int comes in as float float_expected = expected.copy() float_expected["IntCol"] = float_expected["IntCol"].astype(float) float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0 actual = pd.read_excel(basename + read_ext, "Sheet1", convert_float=False) tm.assert_frame_equal(actual, float_expected) # check setting Index (assuming xls and xlsx are the same here) for icol, name in enumerate(expected.columns): actual = pd.read_excel(basename + read_ext, "Sheet1", index_col=icol) exp = expected.set_index(name) tm.assert_frame_equal(actual, exp) # convert_float and converters should be different but both accepted expected["StrCol"] = expected["StrCol"].apply(str) actual = pd.read_excel( basename + read_ext, "Sheet1", converters={"StrCol": str} ) tm.assert_frame_equal(actual, expected) no_convert_float = float_expected.copy() no_convert_float["StrCol"] = no_convert_float["StrCol"].apply(str) actual = pd.read_excel( basename + read_ext, "Sheet1", convert_float=False, converters={"StrCol": str}, ) tm.assert_frame_equal(actual, no_convert_float) # GH8212 - support for converters and missing values def test_reader_converters(self, read_ext): basename = "test_converters" expected = DataFrame.from_dict( OrderedDict( [ ("IntCol", [1, 2, -3, -1000, 0]), ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]), ("BoolCol", ["Found", "Found", "Found", "Not found", "Found"]), ("StrCol", ["1", np.nan, "3", "4", "5"]), ] ) ) converters = { "IntCol": lambda x: int(x) if x != "" else -1000, "FloatCol": lambda x: 10 * x if x else np.nan, 2: lambda x: "Found" if x != "" else "Not found", 3: lambda x: str(x) if x else "", } # should read in correctly and set types of single cells (not array # dtypes) actual = pd.read_excel(basename + read_ext, "Sheet1", converters=converters) tm.assert_frame_equal(actual, expected) def test_reader_dtype(self, read_ext): # GH 8212 basename = "testdtype" actual = pd.read_excel(basename + read_ext) expected = DataFrame( { "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0], } ).reindex(columns=["a", "b", "c", "d"]) tm.assert_frame_equal(actual, expected) actual = pd.read_excel( basename + read_ext, dtype={"a": "float64", "b": "float32", "c": str} ) expected["a"] = expected["a"].astype("float64") expected["b"] = expected["b"].astype("float32") expected["c"] = ["001", "002", "003", "004"] tm.assert_frame_equal(actual, expected) with pytest.raises(ValueError): pd.read_excel(basename + read_ext, dtype={"d": "int64"}) @pytest.mark.parametrize( "dtype,expected", [ ( None, DataFrame( { "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0], } ), ), ( {"a": "float64", "b": "float32", "c": str, "d": str}, DataFrame( { "a": Series([1, 2, 3, 4], dtype="float64"), "b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"), "c": ["001", "002", "003", "004"], "d": ["1", "2", np.nan, "4"], } ), ), ], ) def test_reader_dtype_str(self, read_ext, dtype, expected): # see gh-20377 basename = "testdtype" actual = pd.read_excel(basename + read_ext, dtype=dtype) tm.assert_frame_equal(actual, expected) def test_reading_all_sheets(self, read_ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = "test_multisheet" dfs = pd.read_excel(basename + read_ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ["Charlie", "Alpha", "Beta"] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys()) def test_reading_multiple_specific_sheets(self, read_ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = "test_multisheet" # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, "Charlie", "Charlie"] dfs = pd.read_excel(basename + read_ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys()) def test_reading_all_sheets_with_blank(self, read_ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = "blank_with_header" dfs = pd.read_excel(basename + read_ext, sheet_name=None) expected_keys = ["Sheet1", "Sheet2", "Sheet3"] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403 def test_read_excel_blank(self, read_ext): actual = pd.read_excel("blank" + read_ext, "Sheet1") tm.assert_frame_equal(actual, DataFrame()) def test_read_excel_blank_with_header(self, read_ext): expected = DataFrame(columns=["col_1", "col_2"]) actual = pd.read_excel("blank_with_header" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) def test_date_conversion_overflow(self, read_ext): # GH 10001 : pandas.ExcelFile ignore parse_dates=False expected = pd.DataFrame( [ [pd.Timestamp("2016-03-12"), "<NAME>"], [pd.Timestamp("2016-03-16"), "<NAME>"], [1e20, "<NAME>"], ], columns=["DateColWithBigInt", "StringCol"], ) if pd.read_excel.keywords["engine"] == "openpyxl": pytest.xfail("Maybe not supported by openpyxl") result = pd.read_excel("testdateoverflow" + read_ext) tm.assert_frame_equal(result, expected) def test_sheet_name(self, read_ext, df_ref): filename = "test1" sheet_name = "Sheet1" df1 = pd.read_excel( filename + read_ext, sheet_name=sheet_name, index_col=0 ) # doc with ignore_xlrd_time_clock_warning(): df2 = pd.read_excel(filename + read_ext, index_col=0, sheet_name=sheet_name) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_excel_read_buffer(self, read_ext): pth = "test1" + read_ext expected = pd.read_excel(pth, "Sheet1", index_col=0) with open(pth, "rb") as f: actual = pd.read_excel(f, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) def test_bad_engine_raises(self, read_ext): bad_engine = "foo" with pytest.raises(ValueError, match="Unknown engine: foo"): pd.read_excel("", engine=bad_engine) @tm.network def test_read_from_http_url(self, read_ext): url = ( "https://raw.githubusercontent.com/pandas-dev/pandas/master/" "pandas/tests/io/data/excel/test1" + read_ext ) url_table = pd.read_excel(url) local_table = pd.read_excel("test1" + read_ext)
tm.assert_frame_equal(url_table, local_table)
pandas.util.testing.assert_frame_equal
import pandas as pd import numpy as np from tensorflow import keras from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split # instance of the neural network to predit future prices class Neural_Network: def neural_network(self, n_df): df = n_df.copy() df = df.replace('^\s*$', np.nan, regex=True) #df['itemId'] = df['itemId'].astype(int) df['listingType'] = pd.get_dummies(df['listingType']) df['endPrice'] = df['endPrice'].astype(np.float) df['shippingServiceCost'] = df['shippingServiceCost'].astype(np.float) #df['shippingServiceCost'] = df['shippingServiceCost'].interpolate() df['shippingServiceCost'] = df['shippingServiceCost'].fillna(df['shippingServiceCost'].mean()) df['bidCount'] = df['bidCount'].astype(np.float) #df['bidCount'] = df['bidCount'].interpolate() df['bidCount'] = df['bidCount'].fillna(df['bidCount'].mean()) df['watchCount'] = df['watchCount'].astype(np.float) #df['watchCount'] = df['watchCount'].interpolate() df['watchCount'] = df['watchCount'].fillna(df['watchCount'].mean()) df['returnsAccepted'] = pd.get_dummies(df['returnsAccepted']) df['handlingTime'] = df['handlingTime'].astype(np.float) df['sellerUserName'] = pd.get_dummies(df['sellerUserName']) df['feedbackScore'] = df['feedbackScore'].astype(np.float) df['positiveFeedbackPercent'] = df['positiveFeedbackPercent'].astype(np.float) df['topRatedSeller'] = pd.get_dummies(df['topRatedSeller']) df['endDate'] = pd.get_dummies(df['endDate']) #print('\nnull values in dataframe are:\n', df.isnull().any()) features_df = df.drop(['itemId','title','endPrice','location','endTime','startTime','endTimeOfDay'], axis=1) corr = features_df.corr() #print('\ncorr:\n', corr) num_of_cols = len(features_df.columns) #print('\nnumber of feature columns:\n', num_of_cols) features = features_df.values target = df.endPrice.values #print('\ntarget values:\n', target) #print('\nfeatures values:\n', features) #print('\ntarget shape:\n', target.shape) #print('\nfeatures shape:\n', features.shape) X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.3, random_state=124) #print('\nTRAIN TEST SPLIT EXECUTED\n') X_train = MinMaxScaler(feature_range=(-1,1)).fit_transform(X_train) X_test = MinMaxScaler(feature_range=(-1,1)).fit_transform(X_test) #print('\nX_train and X_test scaled\n') y_train = y_train.reshape(-1,1) y_test = y_test.reshape(-1,1) y_train = MinMaxScaler(feature_range=(-1,1)).fit_transform(y_train) y_test = MinMaxScaler(feature_range=(-1,1)).fit_transform(y_test) y_train = y_train.reshape(-1) y_test = y_test.reshape(-1) #print('\nshape of X_train:\n', X_train.shape) #print('\nshape of X_test:\n', X_test.shape) #print('\nshape of y_train:\n', y_train.shape) #print('\nshape of y_test:\n', y_test.shape) model = keras.Sequential() ''' input_layer = keras.layers.Dense(16, input_dim=num_of_cols, activation='sigmoid') model.add(input_layer) hidden_layer = keras.layers.Dense(num_of_cols, input_dim=16, activation='sigmoid') model.add(hidden_layer) output_layer = keras.layers.Dense(1, input_dim=num_of_cols, activation='softmax') model.add(output_layer) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model.fit(X_train, y_train, validation_split=0.2, batch_size=32, epochs=100, shuffle=True) ''' input_layer = keras.layers.Dense(units=16, kernel_initializer='uniform', input_dim=num_of_cols, activation='relu') model.add(input_layer) hidden_layer1 = keras.layers.Dense(units=18, kernel_initializer='uniform', activation='relu') model.add(hidden_layer1) model.add(keras.layers.Dropout(rate=0.25)) hidden_layer2 = keras.layers.Dense(20, kernel_initializer='uniform', activation='relu') model.add(hidden_layer2) hidden_layer3 = keras.layers.Dense(24, kernel_initializer='uniform', activation='relu') model.add(hidden_layer3) output_layer = keras.layers.Dense(1, kernel_initializer='uniform', activation='sigmoid') model.add(output_layer) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, validation_split=0.2, batch_size=15, epochs=10, shuffle=2) predictions = model.predict(X_test, verbose=1, steps=1) #print('\npredictions shape:\n', predictions.shape) #print('\npredictions values:\n', predictions) pred_nn_df = pd.DataFrame({'predictions':pd.Series(predictions.reshape(-1)),'actual_sell_prices':
pd.Series(y_test)
pandas.Series
#!/usr/bin/env python3 """A module for analyzing answer agreement. The experiment is this: * Each member of a group records the answers from a respondent. * All members of all groups submit their surveys to form a dataset. This dataset is analyzed with this module. A dataset is all submissions for a survey. A column in the dataset should identify which submitted surveys belong to which group. The simplest way to do this is to have a `group_id` column. Standard use cases for analysis are take as input a dataset and possibly a start and end column. In that case, the following analyzes: >>> DatasetAgreement.from_file(df_path, group_column, mask_first=first, ... mask_last=last) Another standard use case is to analyze results from an ODK dataset. Here, an XlsForm and a dataset are used as inputs, and possibly a start and end column. The XlsForm helps to make a mask of meaningful columns for comparison. Use the following: >>> DatasetAgreement.from_csv_and_odk(csv_path, odk_path, group_column, ... mask_first=first, mask_last=last) Logger: Has the name of 'aa.aa' Dataset columns: C_CORRECT_ANSWER = 'correct_answer' C_ALL_MISSING = 'all_missing' C_GROUP_ALL_CORRECT = 'group_all_correct' C_CORRECT_ANSWER_COUNT = 'correct_answer_count' C_PERCENT_CORRECT = 'percent_correct' Module attributes: SKIPPED_ODK_TYPES: A sequence of blacklisted ODK types that are not used for comparison within groups. SKIPPED_ODK_TYPES_START: A sequence of strings that blacklist all ODK types that begin with one of them. This module's mascot is aa, the Hawaiian name for a frothy lava flow. """ from collections import namedtuple from typing import Iterable, List import pandas as pd import xlrd C_CORRECT_ANSWER = 'correct_answer' C_ALL_MISSING = 'all_missing' C_GROUP_ALL_CORRECT = 'group_all_correct' C_CORRECT_ANSWER_COUNT = 'correct_answer_count' C_PERCENT_CORRECT = 'percent_correct' class GroupAgreement: """Class to hold analysis information for a group within a dataset. All results are attributes of the object. Instance attributes: dataframe: The full dataframe for this group group_id: The group id for this group column_mask: A list of column labels for which columns to keep and do analysis on. Default of None means to use all columns. group_size: The number of group members in this group. agreement_results: A dataframe with the column_mask as index and various calculated values of interest as columns. total_agreement: The proportion of masked questions with agreement. comparisons: The number of columns of comparison Properties: masked_dataframe: Group dataframe with the column mask applied. disagree_dataframe: Dataframe with only the columns where there is disagreement. """ def __init__(self, dataframe: pd.DataFrame, group_id, column_mask: list = None): """Initialize a GroupAgreement and do all relevant analysis. Args: dataframe: The full dataframe for this group. group_id: The group id for this group. Could be any value stored in a dataframe. column_mask: A list of column labels for which columns to keep and do analysis on. Default of None means to use all columns. """ self.dataframe = dataframe self.group_id = group_id self.column_mask = column_mask self.group_size = len(self.dataframe) masked = self.masked_dataframe self.agreement_results = self.generate_agreement_measures(masked) completed_mask = ~self.agreement_results[C_ALL_MISSING] self.total_agreement = self.agreement_results.loc[ completed_mask, C_GROUP_ALL_CORRECT ].mean() self.comparisons = completed_mask.sum() @staticmethod def generate_agreement_measures(dataframe: pd.DataFrame) -> pd.DataFrame: """Apply analysis function to columns, combine results, return. The input dataframe is a standard dataset with measurement variables as column headers and records as individual surveys. This function creates a dataframe where the measurement variables form the index and the new column headers are the various computed quantities. Args: dataframe: The full dataframe for this group. Returns: A dataframe with the computed quantities of interest. """ result = dataframe.T.apply(GroupAgreement.analyze_answer_votes, axis=1) return result @staticmethod def analyze_answer_votes(series: pd.Series) -> pd.Series: """Analyze a column of the dataset for agreement. This function is the workhorse of the analysis. It calculates all relevant quantities and saves them as a common series. This function calculates: * What the "correct" answer is based on the number of votes * Whether all values are missing * Whether each group member answered the same way * The number of group members answering the "correct" answer * The percentage of group members answering the "correct" answer Args: series: The column of the dataset to analyze. Returns: A series with calculated values and identifying names. """ correct_answer = None all_missing = True group_all_correct = False correct_answer_count = 0 group_size = len(series) counts = series.value_counts() if counts.empty: # All answers are NA, do nothing pass elif len(counts) == 1: # All are non-NA (at least one) are one answer correct_answer = counts.index[0] all_missing = False group_all_correct = counts.iloc[0] == group_size correct_answer_count = counts.iloc[0] elif counts.iloc[0] == counts.iloc[1]: # Top two answers have same vote count all_missing = False else: # One answer has more than anything else correct_answer = counts.index[0] all_missing = False correct_answer_count = counts.iloc[0] percent_correct = correct_answer_count / group_size new_series = pd.Series(( correct_answer, all_missing, group_all_correct, correct_answer_count, percent_correct ), index=( C_CORRECT_ANSWER, C_ALL_MISSING, C_GROUP_ALL_CORRECT, C_CORRECT_ANSWER_COUNT, C_PERCENT_CORRECT, )) return new_series @property def masked_dataframe(self) -> pd.DataFrame: """Return the masked dataframe. Combines the full dataframe and the mask to create a masked dataframe. """ masked_dataframe = self.dataframe if self.column_mask is not None: masked_dataframe = self.dataframe[self.column_mask] return masked_dataframe @property def disagree_dataframe(self) -> pd.DataFrame: """Return the dataframe of questions with disagreement. Returns: The subset of rows of the masked dataframe where there is disagreement and at least one answer. """ completed_mask = ~self.agreement_results[C_ALL_MISSING] some_disagreement = ~self.agreement_results[C_GROUP_ALL_CORRECT] masked = self.masked_dataframe return masked.loc[:, completed_mask & some_disagreement] def print_summary(self): """Print a summary of results.""" print(f'*** Summary for group {repr(self.group_id)}') print(f'- Points of comparison: {self.comparisons}') print(f'- Total agreement: {self.total_agreement}') def __repr__(self): """Get a representation of this object.""" return f'<GroupAgreement {repr(self.group_id)}>' class DatasetAgreement: """Class to hold answer agreement information for a whole dataset. Access to the individual GroupAgreement objects is meant through the `group` method. Instance attributes: dataframe: The full dataframe for the full dataset (has all groups). group_column: The column label for the column that defines which rows are in which groups. Default of None means the entire dataset is from the same group. column_mask: A list of column labels for which columns to keep and do analysis on. Default of None means to use all columns. unaccounted: A dataframe containing the rows that do not fit into any of the GroupAgreement objects. These are the rows that are null in a specified group_column. _data: A list of GroupAgreement objects, one for each group. Properties: group_ids: A list of the IDs in this dataset. """ def __init__(self, dataframe: pd.DataFrame, group_column: str = None, column_mask: list = None): """Analyze the groups of a dataframe. For each group in the dataset, this __init__ creates a GroupAgreement object and saves it. This __init__ uses a Pandas dataframe as input. The unaccounted attribute is populated only when a group_column is specified. Args: dataframe: The full dataframe for the full dataset (has all groups). group_column: The column label for the column that defines which rows are in which groups. Default of None means the entire dataset is from the same group. column_mask: A list of column labels for which columns to keep and do analysis on. Default of None means to use all columns. """ self.dataframe = dataframe self.group_column = group_column self.column_mask = column_mask self.unaccounted = None self._data = [] if self.group_column is None: this_group = GroupAgreement(self.dataframe, None, self.column_mask) self._data.append(this_group) else: grouped = self.dataframe.groupby(group_column) for key, group in grouped: this_group = GroupAgreement(group, key, self.column_mask) self._data.append(this_group) unaccounted_bool = self.dataframe[group_column].isnull() self.unaccounted = self.dataframe[unaccounted_bool] # pylint: disable=too-many-arguments @classmethod def from_file(cls, df_path: str, group_column: str = None, column_names: List[str] = None, mask_first: str = None, mask_last: str = None): """Create a DatasetAgreement object from file. This static method allows to initialize a DatasetAgreement object with more flexibility than the __init__ by accepting a path to the dataset and additional parameters to get the column masking correct. The resulting mask from inputs `column_mask`, `mask_first`, and `mask_last` is the set of columns that follow all conditions. Args: df_path: Path to the dataset. Currently only .csv and .xls(x) files are supported group_column: The column label for the column that defines which rows are in which groups. Default of None means the entire dataset is from the same group. column_names: A list of column labels for which columns to keep and do analysis on. Default of None means to use all columns. mask_first: The first possible column label to keep in the mask. This does not have to be in the column_mask. Default of None means start with the first column. mask_last: The last possible column label to keep in the mask. This does not have to be in the column_mask. Default of None means use through the last column. Returns: A properly initialized DatasetAgreement class. """ if df_path.endswith('.csv'): dataframe = pd.read_csv(df_path) elif df_path.endswith(('.xls', '.xlsx')): dataframe = pd.read_excel(df_path) else: msg = (f'Unable to create dataset from "{df_path}". Known ' f'extensions are .csv, .xls, and .xlsx') raise TypeError(msg) mask = create_mask(dataframe, column_names, mask_first, mask_last) return cls(dataframe, group_column, mask) # pylint: disable=too-many-arguments @classmethod def from_file_and_odk(cls, df_path: str, odk_path: str, group_column: str = None, mask_first: str = None, mask_last: str = None, odk_sep: str = ':'): """Create a DatasetAgreement object for ODK data. This static method allows to initialize a DatasetAgreement object by using information from an ODK file to produce a column mask. The resulting mask from inputs `column_mask`, `mask_first`, and `mask_last` is the set of columns that follow all conditions. Args: df_path: Path to the dataset. Currently only .csv and .xls(x) files are supported odk_path: The path to the XlsForm associated with csv_path group_column: The column label for the column that defines which rows are in which groups. Default of None means the entire dataset is from the same group. mask_first: The first possible column label to keep in the mask. This does not have to be in the column_mask. Default of None means start with the first column. mask_last: The last possible column label to keep in the mask. This does not have to be in the column_mask. Default of None means use through the last column. odk_sep: The group prefix separator. ODK CSV files use either '-' or ':', depending on if ODK Briefcase or ODK Aggregate, respectively, creates the file. Returns: A properly initialized DatasetAgreement class. """ if df_path.endswith('.csv'): dataframe =
pd.read_csv(df_path)
pandas.read_csv
import logging import numpy as np import pandas as pd import re from os import PathLike from pathlib import Path from scipy.ndimage import maximum_filter from typing import ( Generator, List, Optional, Sequence, Tuple, Union, ) from steinbock import io try: from readimc import MCDFile, TXTFile from readimc.data import Acquisition, AcquisitionBase imc_available = True except: imc_available = False _logger = logging.getLogger(__name__) def list_mcd_files(mcd_dir: Union[str, PathLike]) -> List[Path]: return sorted(Path(mcd_dir).rglob("*.mcd")) def list_txt_files(txt_dir: Union[str, PathLike]) -> List[Path]: return sorted(Path(txt_dir).rglob("*.txt")) def create_panel_from_imc_panel( imc_panel_file: Union[str, PathLike], imc_panel_channel_col: str = "Metal Tag", imc_panel_name_col: str = "Target", imc_panel_keep_col: str = "full", imc_panel_ilastik_col: str = "ilastik", ) -> pd.DataFrame: imc_panel = pd.read_csv( imc_panel_file, sep=",|;", dtype={ imc_panel_channel_col: pd.StringDtype(), imc_panel_name_col: pd.StringDtype(), imc_panel_keep_col: pd.BooleanDtype(), imc_panel_ilastik_col: pd.BooleanDtype(), }, engine="python", true_values=["1"], false_values=["0"], ) for required_col in (imc_panel_channel_col, imc_panel_name_col): if required_col not in imc_panel: raise ValueError(f"Missing '{required_col}' column in IMC panel") for notnan_col in ( imc_panel_channel_col, imc_panel_keep_col, imc_panel_ilastik_col, ): if notnan_col in imc_panel and imc_panel[notnan_col].isna().any(): raise ValueError(f"Missing values for '{notnan_col}' in IMC panel") rename_columns = { imc_panel_channel_col: "channel", imc_panel_name_col: "name", imc_panel_keep_col: "keep", imc_panel_ilastik_col: "ilastik", } drop_columns = [ panel_col for imc_panel_col, panel_col in rename_columns.items() if panel_col in imc_panel.columns and panel_col != imc_panel_col ] panel = imc_panel.drop(columns=drop_columns).rename(columns=rename_columns) for _, g in panel.groupby("channel"): panel.loc[g.index, "name"] = " / ".join(g["name"].dropna().unique()) if "keep" in panel: panel.loc[g.index, "keep"] = g["keep"].any() if "ilastik" in panel: panel.loc[g.index, "ilastik"] = g["ilastik"].any() panel = panel.groupby(panel["channel"].values).aggregate("first") panel = _clean_panel(panel) # ilastik column may be nullable uint8 now ilastik_mask = panel["ilastik"].fillna(False).astype(bool) panel["ilastik"] = pd.Series(dtype=pd.UInt8Dtype()) panel.loc[ilastik_mask, "ilastik"] = range(1, ilastik_mask.sum() + 1) return panel def create_panel_from_mcd_files( mcd_files: Sequence[Union[str, PathLike]] ) -> pd.DataFrame: panels = [] for mcd_file in mcd_files: with MCDFile(mcd_file) as f: for slide in f.slides: for acquisition in slide.acquisitions: panel = _create_panel_from_acquisition(acquisition) panels.append(panel) panel = pd.concat(panels, ignore_index=True, copy=False) return _clean_panel(panel) def create_panel_from_txt_files( txt_files: Sequence[Union[str, PathLike]] ) -> pd.DataFrame: panels = [] for txt_file in txt_files: with TXTFile(txt_file) as f: panel = _create_panel_from_acquisition(f) panels.append(panel) panel = pd.concat(panels, ignore_index=True, copy=False) return _clean_panel(panel) def filter_hot_pixels(img: np.ndarray, thres: float) -> np.ndarray: kernel = np.ones((1, 3, 3), dtype=bool) kernel[0, 1, 1] = False max_neighbor_img = maximum_filter(img, footprint=kernel, mode="mirror") return np.where(img - max_neighbor_img > thres, max_neighbor_img, img) def preprocess_image( img: np.ndarray, hpf: Optional[float] = None ) -> np.ndarray: img = img.astype(np.float32) if hpf is not None: img = filter_hot_pixels(img, hpf) return io._to_dtype(img, io.img_dtype) def try_preprocess_images_from_disk( mcd_files: Sequence[Union[str, PathLike]], txt_files: Sequence[Union[str, PathLike]], channel_names: Optional[Sequence[str]] = None, hpf: Optional[float] = None, ) -> Generator[ Tuple[Path, Optional["Acquisition"], np.ndarray, Optional[Path], bool], None, None, ]: unmatched_txt_files = list(txt_files) for mcd_file in mcd_files: try: with MCDFile(mcd_file) as f_mcd: for slide in f_mcd.slides: for acquisition in slide.acquisitions: matched_txt_file = _match_txt_file( mcd_file, acquisition, unmatched_txt_files ) if matched_txt_file is not None: unmatched_txt_files.remove(matched_txt_file) channel_ind = None if channel_names is not None: channel_ind = _get_channel_indices( acquisition, channel_names ) if isinstance(channel_ind, str): _logger.warning( f"Channel {channel_ind} not found for " f"acquisition {acquisition.id} in file " "{mcd_file}; skipping acquisition" ) continue img = None recovered = False try: img = f_mcd.read_acquisition(acquisition) except IOError: _logger.warning( f"Error reading acquisition {acquisition.id} " f"from file {mcd_file}" ) if matched_txt_file is not None: _logger.warning( f"Restoring from file {matched_txt_file}" ) try: with TXTFile(matched_txt_file) as f_txt: img = f_txt.read_acquisition() if channel_names is not None: channel_ind = _get_channel_indices( f_txt, channel_names ) if isinstance(channel_ind, str): _logger.warning( f"Channel {channel_ind} " "not found in file " f"{matched_txt_file}; " "skipping acquisition" ) continue recovered = True except IOError: _logger.exception( "Error reading file " f"{matched_txt_file}" ) if img is not None: # exceptions ... if channel_ind is not None: img = img[channel_ind, :, :] img = preprocess_image(img, hpf=hpf) yield ( Path(mcd_file), acquisition, img, Path(matched_txt_file) if matched_txt_file is not None else None, recovered, ) del img except: _logger.exception(f"Error reading file {mcd_file}") while len(unmatched_txt_files) > 0: txt_file = unmatched_txt_files.pop(0) try: channel_ind = None with TXTFile(txt_file) as f: if channel_names is not None: channel_ind = _get_channel_indices(f, channel_names) if isinstance(channel_ind, str): _logger.warning( f"Channel {channel_ind} not found in file " f"{txt_file}; skipping acquisition" ) continue img = f.read_acquisition() if channel_ind is not None: img = img[channel_ind, :, :] img = preprocess_image(img, hpf=hpf) yield Path(txt_file), None, img, None, False del img except: _logger.exception(f"Error reading file {txt_file}") def _create_panel_from_acquisition( acquisition: "AcquisitionBase", ) -> pd.DataFrame: panel = pd.DataFrame( data={ "channel": acquisition.channel_names, "name": acquisition.channel_labels, "keep": True, "ilastik": range(1, acquisition.num_channels + 1), "deepcell": np.nan, }, ) panel["channel"] = panel["channel"].astype(pd.StringDtype()) panel["name"] = panel["name"].astype(
pd.StringDtype()
pandas.StringDtype
import requests import pandas as pd import numpy as np import arviz as az idx = pd.IndexSlice def get_raw_covidtracking_data(): """ Gets the current daily CSV from COVIDTracking """ url = "https://covidtracking.com/api/v1/states/daily.csv" data = pd.read_csv(url) return data def process_covidtracking_data(data: pd.DataFrame, run_date: pd.Timestamp): """ Processes raw COVIDTracking data to be in a form for the GenerativeModel. In many cases, we need to correct data errors or obvious outliers.""" data = data.rename(columns={"state": "region"}) data["date"] = pd.to_datetime(data["date"], format="%Y%m%d") data = data.set_index(["region", "date"]).sort_index() data = data[["positive", "total"]] # Too little data or unreliable reporting in the data source. data = data.drop(["MP", "GU", "AS", "PR", "VI"]) # On Jun 5 Covidtracking started counting probable cases too # which increases the amount by 5014. # https://covidtracking.com/screenshots/MI/MI-20200605-184320.png data.loc[idx["MI", pd.Timestamp("2020-06-05") :], "positive"] -= 5014 # From CT: On June 19th, LDH removed 1666 duplicate and non resident cases # after implementing a new de-duplicaton process. data.loc[idx["LA", pd.Timestamp("2020-06-19") :], :] += 1666 # Now work with daily counts data = data.diff().dropna().clip(0, None).sort_index() # Michigan missed 6/18 totals and lumped them into 6/19 so we've # divided the totals in two and equally distributed to both days. data.loc[idx["MI", pd.Timestamp("2020-06-18")], "total"] = 14871 data.loc[idx["MI", pd.Timestamp("2020-06-19")], "total"] = 14871 # Note that when we set total to zero, the model ignores that date. See # the likelihood function in GenerativeModel.build # Huge outlier in NJ causing sampling issues. data.loc[idx["NJ", pd.Timestamp("2020-05-11")], :] = 0 # Huge outlier in CA causing sampling issues. data.loc[idx["CA", pd.Timestamp("2020-04-22")], :] = 0 # Huge outlier in CA causing sampling issues. # TODO: generally should handle when # tests == # positives and that # is not an indication of positive rate. data.loc[idx["SC",
pd.Timestamp("2020-06-26")
pandas.Timestamp
import gym import numpy as np import torch import torch.nn as nn import tqdm import wandb import inspect from typing import List, Tuple, Optional, Dict from dataclasses import dataclass from gym import spaces from numpy import floor, inf from sequoia.methods import Method from sequoia.settings import (Actions, Environment, Observations, Rewards, Setting, SettingType) from sequoia.settings.sl import ClassIncrementalSetting, SLEnvironment, SLSetting from sequoia.settings.rl import RLEnvironment, RLSetting from sequoia.common.spaces import Image, TypedDictSpace from simple_parsing import ArgumentParser from torch import Tensor from wandb.wandb_run import Run from .models import (ActorCritic, Model, model_types_map, optimizers_map, schedulers_map) # Hparams include all hyperparameters for all methods from .utils import BaseHParams, seed_everything from .utils.rl_utils import sample_action class BaseMethod(Method, target_setting=Setting): """BaseMethod as a base for both SL and RL Settings """ @dataclass class HParams(BaseHParams): pass def __init__(self, hparams: BaseHParams = None) -> None: """initialization f the base method class Args: hparams (BaseHParams, optional): Hyperparameters used by the experiment. Defaults to None. """ self.hparams: BaseHParams = hparams or BaseHParams() self.model: Model self.optimizer: torch.optim.Optimizer self._scheduler_step = False self.scheduler = None self.buffer = None self.n_classes = None self.smoothing = 0.04 # for total loss plotting self.prev_loss = None self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self._is_rl = False if torch.cuda.is_available(): # cudnn auto tuner for faster inference torch.backends.cudnn.benchmark = True # reproducibility seed_everything(self.hparams.seed) def configure(self, setting: SettingType): """Called before the method is applied on a setting (before training). You can use this to instantiate your model, for instance, since this is where you get access to the observation & action spaces. Args: setting (SettingType): Current setting from Sequoia (ClassIncremental RL or SL) """ # This example is intended for classification / discrete action spaces. setting.num_workers = self.hparams.num_workers setting.batch_size = self.hparams.batch_size observation_space = setting.observation_space action_space = setting.action_space reward_space = setting.reward_space if isinstance(setting, RLSetting): # Default batch size of 1 in RL self.hparams.batch_size = 1 self.max_rl_train_steps = setting.steps_per_phase # to enable rendering of the gym self.render = False self._is_rl = True else: # SL setting assert isinstance(action_space, spaces.Discrete) assert action_space == reward_space self.classes_per_task = setting.increment self.n_classes = action_space.n x_space = observation_space.x # Downgrade the encoder to a mlp if the input space is not an image. if not isinstance(observation_space.x, Image): self.hparams.model_type = "mlp" # update model to actor critic for RL model_type = model_types_map[self.hparams.model_type] if self._is_rl: self.model = ActorCritic(model_type, x_space, action_space.n).to( self.device ) else: self.model = model_type(x_space, self.n_classes, bic=self.hparams.bic).to(self.device) optim_type, optim_defaults = self._get_optim_defaults( self.hparams.optimizer) if "base_optim" in optim_defaults: base_optim_type, base_optim_defaults = self._get_optim_defaults( optim_defaults["base_optim"] ) base_optim = base_optim_type( self.model.parameters(), **base_optim_defaults, ) optim_defaults.pop("base_optim") self.optimizer = optim_type(base_optim, **optim_defaults) else: self.optimizer = optim_type( self.model.parameters(), **optim_defaults,) if self.hparams.use_scheduler: scheduler_type, scheduler_defaults = schedulers_map[ self.hparams.scheduler_name ] if "step" in scheduler_defaults: self._scheduler_step = scheduler_defaults["step"] scheduler_defaults.pop("step") self.scheduler = scheduler_type( self.optimizer, **scheduler_defaults) self.task = 0 self.epoch = 0 # smooth loss initialization self.prev_loss = None self.best_smooth_loss = inf self.task_type = "RL" if self._is_rl else "SL" self.iteration_name = "step" if self._is_rl else "epoch" def setup_wandb(self, run: Run) -> None: run.config.update(self.hparams.__dict__) def _get_optim_defaults(self, optim_name): optim_type, optim_defaults = optimizers_map[optim_name] optim_signature = inspect.signature( optim_type.__init__).parameters.keys() if "weight_decay" in optim_signature: if "weight_decay" not in optim_defaults: optim_defaults["weight_decay"] = self.hparams.weight_decay else: self.hparams.weight_decay = optim_defaults["weight_decay"] if "lr" in optim_signature: if "lr" not in optim_defaults: optim_defaults["lr"] = self.hparams.learning_rate else: self.hparams.learning_rate = optim_defaults["lr"] return optim_type, optim_defaults def _method_specific_configure(self, setting: ClassIncrementalSetting): """Method specific initialization used for vars and settings needed per method Args: setting (ClassIncrementalSetting): Setting used in the configuration """ def fit( self, train_env: Environment[Observations, Actions, Rewards], valid_env: Environment[Observations, Actions, Rewards], ): """fitting function that is used for both SL and RL Args: train_env (Environment[Observations, Actions, Rewards]): training environment can be active or passive valid_env (Environment[Observations, Actions, Rewards]): validation environment active or passive """ if self._is_rl: self.fit_rl(train_env, valid_env) else: self.fit_sl(train_env, valid_env) def fit_rl(self, train_env: RLEnvironment, valid_env: RLEnvironment): """fitting function that is used for both RL Args: train_env (Environment[Observations, Actions, Rewards]): training environment valid_env (Environment[Observations, Actions, Rewards]): validation environment """ nb_epochs = self.pre_fit(train_env) all_lengths: List[int] = [] average_lengths: List[float] = [] all_rewards: List[float] = [] episode = 0 total_steps = 0 nb_steps = nb_epochs * self.max_rl_train_steps while not train_env.is_closed() and total_steps < nb_steps: episode += 1 print(f"Starting Episode {episode}") log_probs: List[Tensor] = [] critic_values: List[Tensor] = [] rewards: List[Tensor] = [] entropy_term = 0 observation: RLSetting.Observations = train_env.reset() # Convert numpy arrays in the observation into Tensors on the right device. observation = observation.torch(device=self.device) done = False episode_steps = 0 while not done and total_steps < self.max_rl_train_steps: episode_steps += 1 actor_output, critic_val = self.model.get_action_critic( observation.x.float() ) critic_val = critic_val.cpu().detach().numpy() action, log_prob, entropy = sample_action( actor_output, return_entropy_log_prob=True ) new_observation: Observations reward: RLSetting.Rewards reward, new_observation, done = self.send_actions( train_env, actor_output ) action = RLSetting.Actions( y_pred=action.cpu().detach().numpy()) if self.render: train_env.render() new_observation = new_observation.torch(device=self.device) total_steps += 1 reward_value: float = reward.y rewards.append(reward_value) critic_values.append(critic_val) log_probs.append(log_prob) entropy_term += entropy observation = new_observation # TODO update buffer with new observations Qval, _ = self.model.get_action_critic(new_observation.x.float()) Qval = Qval.detach().cpu().numpy() all_rewards.append(np.sum(rewards)) all_lengths.append(episode_steps) average_lengths.append(np.mean(all_lengths[-10:])) if episode % 10 == 0: print( f"step {total_steps}/{nb_steps}, " f"episode: {episode}, " f"reward: {np.sum(rewards)}, " f"total length: {episode_steps}, " f"average length: {average_lengths[-1]} \n" ) if total_steps >= nb_steps: print(f"Reached the limit of {nb_steps} steps.") break # compute Q values Q_values = np.zeros_like(critic_values) # Use the last value from the critic as the final value estimate. q_value = Qval for t, reward in reversed(list(enumerate(rewards))): q_value = reward + self.hparams.gamma * q_value Q_values[t] = q_value # update actor critic critic_values = torch.as_tensor( critic_values, dtype=torch.float, device=self.device ) Q_values = torch.as_tensor( Q_values, dtype=torch.float, device=self.device) log_probs = torch.stack(log_probs) advantage = Q_values - critic_values actor_loss = (-log_probs * advantage).mean() critic_loss = 0.5 * advantage.pow(2).mean() ac_loss = ( actor_loss + critic_loss + self.hparams.entropy_term_coefficient * entropy_term ) # TODO use backward function in base_method self.optimizer.zero_grad() ac_loss.backward() self.optimizer.step() self.post_fit() def fit_sl(self, train_env: SLEnvironment, valid_env: SLEnvironment): """ Example train loop. You can do whatever you want with train_env and valid_env here. NOTE: In the Settings where task boundaries are known (in this case all the supervised CL settings), this will be called once per task. """ nb_epochs = self.pre_fit(train_env) for epoch in range(nb_epochs): self.model.train() print(f"Starting {self.iteration_name} {epoch}") self.epoch = epoch # Training loop: stop = self._train_loop(train_env) # Validation loop: if not (self.hparams.submission) and not (self.hparams.early_stop_train): early_stop = self._validation_loop(valid_env) if early_stop: print(f"Early stopping at {self.iteration_name} {epoch}. ") break elif self.hparams.early_stop_train: if stop: print( f"Early stopping during {self.iteration_name} {epoch}. ") break self.post_fit() def pre_fit(self, train_env: Environment): """Prefit called before fitting a new task Args: train_env (Environment[Observations, Actions, Rewards]): training environment Returns: int: number of epochs used for that task """ if self._is_rl: n_batches_per_task = self.max_rl_train_steps else: n_batches_per_task = train_env.length() if self.hparams.use_scheduler: if self.hparams.scheduler_name == "lambdalr": # used to tune cyclic learning rate start_lr = 1e-7 end_lr = 0.2 def lambda_fn(x): return math.exp( x * math.log(end_lr / start_lr) / (self.hparams.max_epochs_per_task * n_batches_per_task) ) self.scheduler.__init__(self.optimizer, lambda_fn) elif self.hparams.scheduler_name == "cyclic": step_size_up = 4 * n_batches_per_task step_size_down = step_size_up self.scheduler.total_size = step_size_up + step_size_down self.scheduler.step_ratio = step_size_up / self.scheduler.total_size self.best_scheduler = self.scheduler.state_dict() if not(self._is_rl): # early stopping initialization if self.hparams.early_stop: self.best_val_loss = inf self.best_iteration = 0 self.patience = self.hparams.early_stop_patience if self.hparams.reload_best: self.best_model = self.model.state_dict() self.best_iteration = 0 self.best_optimizer = self.optimizer.state_dict() self.best_buffer = None if self.hparams.early_stop_train: self.train_patience = self.hparams.early_stop_train_patience self.best_smooth_loss = inf print(f"task {self.task}") self.prev_loss = None nb_epochs = int(floor(self.hparams.max_epochs_per_task)) return nb_epochs def post_fit(self): """Called after training the current task """ if self.hparams.wandb_logging and self.hparams.early_stop: wandb.run.summary[ f"best {self.iteration_name} on {self.task_type} task {self.task}" ] = self.best_iteration if ( self.hparams.reload_best and not (self.hparams.submission) and self.best_model is not None ): # FIXME need to think of away to enable reload best during a submission print( f"Loading model from {self.iteration_name} {self.best_iteration}!") self.model.load_state_dict(self.best_model) if self.scheduler is not None: self.scheduler.load_state_dict(self.best_scheduler) self.optimizer.load_state_dict(self.best_optimizer) # loading buffer corresponding to best epoch # make sure that best buffer was not empty before loading (this could happen in the first task) # Warning: the earlier the best epoch happens, the less we added examples to the buffer if self.best_buffer is not None and "examples" in self.best_buffer: print(f"Loading buffer from epoch {self.best_iteration}!") self.buffer.load_state_dict(self.best_buffer) if self.hparams.wandb_logging: self._additional_wandb_logging() # TODO self.task == 11 can be used on last task if self.hparams.bic and self.task == 11: self._fit_bic() self.hparams.max_epochs_per_task *= self.hparams.max_epochs_decay_per_task self.hparams.early_stop_patience *= self.hparams.early_stop_decay_per_task self.model.eval() def _fit_bic(self): """BIC based fit """ print("Starting bic fit") self.model.new_task() self.model.eval() memory_dict = self.buffer.get_data(self.hparams.buffer_size) memory_inputs = memory_dict["examples"] memory_targets = memory_dict["labels"] buffer_data = torch.utils.data.TensorDataset( memory_inputs, memory_targets) buffer_dataloader = torch.utils.data.DataLoader( buffer_data, batch_size=self.hparams.batch_size) self.bic_optimizer = torch.optim.Adam([self.model.bic_params], lr=0.1) # self.bic_optimizer = torch.optim.Adam( # self.model.bic_layer.parameters(), lr=0.02) for l in range(self.hparams.bic_epochs): if self.hparams.submission: # disable progress bar for faster train time bic_pbar = buffer_dataloader else: postfix = {} bic_pbar = tqdm.tqdm(buffer_dataloader) bic_pbar.set_description(f"BIC Epoch {l}") for i, (inputs, labels) in enumerate(bic_pbar): self.bic_optimizer.zero_grad() with torch.no_grad(): logits = self.model(inputs, bic=False) unbiased_logits = self.model.apply_bic(logits) loss_bic = self.loss(unbiased_logits, labels) loss_bic.backward() self.bic_optimizer.step() if not (self.hparams.submission): postfix.update({'CrossEntropyLoss': loss_bic.item()}) bic_pbar.set_postfix(postfix) if self.hparams.wandb_logging: # bic_param = self.model.bic_params.detach().cpu().numpy() wandb.log({f"BIC/Task{self.task}": loss_bic.item(), # f"BIC/Task{self.task}_w": bic_param[1], # f"BIC/Task{self.task}_b": bic_param[0] } ) def _train_loop(self, train_env): """Training loop for all batches inside a training environment Args: train_env (Environment[Observations, Actions, Rewards]): training environment Returns: bool: Flag used to stop the training used with early stopping """ stop = False torch.set_grad_enabled(True) if self.hparams.submission: # disable progress bar for faster train time train_pbar = train_env else: postfix = {} train_pbar = tqdm.tqdm(train_env) train_pbar.set_description(f"Training Epoch {self.epoch}") for i, batch in enumerate(train_pbar): self.optimizer.zero_grad() loss_dict, metrics_dict = self.shared_step( batch, environment=train_env, validation=False, ) self._backward_loss(loss_dict) self.optimizer.step() if not (self.hparams.submission): postfix.update(metrics_dict) train_pbar.set_postfix(postfix) if self.hparams.wandb_logging: # FIXME disable wandb for submission # FIXME disable metrics_dict population wandb_metrics_dict = {} for key, value in metrics_dict.items(): wandb_metrics_dict[f"Loss/Task{self.task}/"+key] = value wandb.log(wandb_metrics_dict) if self._scheduler_step: self._call_scheduler() if self.hparams.early_stop_train: if self.train_patience < 0: stop = True break if not (self._scheduler_step): self._call_scheduler() return stop def _call_scheduler(self): """Calls scheduler if it is enabled """ if self.scheduler is not None: self.scheduler.step() if self.hparams.wandb_logging: wandb.log( { "Train/Task {}/learning_rate".format( self.task ): self.optimizer.state_dict()["param_groups"][0]["lr"], } ) def _validation_loop(self, valid_env): """Validation loop after training the training Args: valid_env (Environment[Observations, Actions, Rewards]): validation environment Returns: flag: used to early stop or not """ self.model.eval() torch.set_grad_enabled(False) with tqdm.tqdm(valid_env) as val_pbar: postfix = {} val_pbar.set_description(f"Validation Epoch {self.epoch}") epoch_val_loss = 0.0 for i, batch in enumerate(val_pbar): val_loss_dict, metrics_dict = self.shared_step( batch, environment=valid_env, validation=True, ) epoch_val_loss += val_loss_dict["CrossEntropyLoss"] postfix.update(metrics_dict, val_loss=epoch_val_loss.item()) val_pbar.set_postfix(postfix) self.model.train() torch.set_grad_enabled(True) if self.hparams.wandb_logging: wandb.log({f"Loss/Task{self.task}/val_loss": epoch_val_loss}) if self.hparams.early_stop: if epoch_val_loss <= self.best_val_loss: self.best_val_loss = epoch_val_loss self.best_iteration = self.epoch self.patience = self.hparams.early_stop_patience if self.hparams.reload_best: self.best_model = self.model.state_dict() if self.scheduler is not None: self.best_scheduler = self.scheduler.state_dict() if self.buffer is not None: self.best_buffer = self.buffer.state_dict() self.best_optimizer = self.optimizer.state_dict() else: self.patience -= 1 print(f"Patience is {self.patience}") return self.patience < 0 else: return False def _create_metric_dict(self, loss_dict, y_pred, image_labels): """Creates metric dictionary automatically Args: loss_dict (dict): includes all losses y_pred (tensor): predictions image_labels (tensor): image labels Returns: dict: including metric summary incuding accuracy """ if self.hparams.submission: return {} accuracy = (y_pred == image_labels).sum().float() / len(image_labels) metrics_dict = {"accuracy": accuracy.cpu().item()} for loss_name, loss_val in loss_dict.items(): metrics_dict[loss_name] = loss_val.detach().cpu().item() return metrics_dict def _backward_loss(self, loss_dict, retain_graph=False): """back-propagation using input loss dictionary Args: loss_dict (dict): dictionary of losses used retain_graph (bool, optional): flag used to retain graph if we will call backprop twice on same network. Defaults to False. """ # first step to do a backward on incoming loss using autograd n_losses = len(loss_dict) loss = 0 compute_smooth_loss = ( self.hparams.early_stop_train or self.hparams.wandb_logging ) for loss_indx, loss_name in enumerate(loss_dict): loss_val = loss_dict[loss_name] loss_val.backward(retain_graph=loss_indx < n_losses - 1 or retain_graph) if compute_smooth_loss and loss_name == "dark": loss += loss_val.item() if compute_smooth_loss: if self.prev_loss is not None: loss = self.smoothing * loss + \ (1 - self.smoothing) * self.prev_loss self.prev_loss = loss if self.hparams.early_stop_train and self.epoch > 0 and self.task > 0: if loss < self.best_smooth_loss: self.best_smooth_loss = loss self.train_patience = self.hparams.early_stop_train_patience else: self.train_patience -= 1 if self.hparams.wandb_logging: wandb.log( {"Loss/Task{}/smoothDarkLoss".format(self.task): loss, } ) def _add_to_buffer(self, examples, logits, labels, task_labels, loss_scores): """Add data to buffer used for replay based methods Args: examples (tensor): batch of examples logits (tensor): batch of predicted logits labels (tensor): batch of labels task_labels (list): list of task labels loss_scores (tensor): individual losses used to prioritize sampling """ save_to_buffer = self.buffer is not None if self.hparams.save_from_epoch > 0: save_to_buffer = ( save_to_buffer and self.hparams.save_from_epoch <= self.epoch ) if save_to_buffer: with torch.no_grad(): self.buffer.add_data( { "examples": examples, "logits": logits, "labels": labels, "task_labels": task_labels, "loss_scores": loss_scores, } ) def _additional_wandb_logging(self): """Logging some extra information to wandb """ if self.hparams.wandb_logging_buffer and self.buffer is not None: import plotly.express as px import pandas as pd data = self.buffer.get_all_data() data.pop("examples") df =
pd.DataFrame(data)
pandas.DataFrame
import warnings import numpy as np import pandas as pd def isNumberAndIsNaN(obj): return obj != obj def scale_range(x, new_min=0.0, new_max=1.0, old_min=None, old_max=None, squash_outside_range=True, squash_inf=False, ): """ Scales a sequence to fit within a new range. If squash_inf is set, then infinite values will take on the extremes of the new range (as opposed to staying infinite). Args: x: new_min: new_max: old_min: old_max: squash_outside_range: squash_inf: Note: Infinity in the input is disregarded in the construction of the scale of the mapping. >>> scale_range([1,3,5]) array([ 0. , 0.5, 1. ]) >>> scale_range([1,2,3,4,5]) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> scale_range([1,3,5, np.inf]) array([ 0. , 0.5, 1. , inf]) >>> scale_range([1,3,5, -np.inf]) array([ 0. , 0.5, 1. , -inf]) >>> scale_range([1,3,5, -np.inf], squash_inf=True) array([ 0. , 0.5, 1. , 0. ]) >>> scale_range([1,3,5, np.inf], squash_inf=True) array([ 0. , 0.5, 1. , 1. ]) >>> scale_range([1,3,5], new_min=0.5) array([ 0.5 , 0.75, 1. ]) >>> scale_range([1,3,5], old_min=1, old_max=4) array([ 0. , 0.66666667, 1. ]) >>> scale_range([5], old_max=4) array([ 1.]) """ if squash_inf and not squash_outside_range: # TODO: "warn" is an unresolved reference warn(ValueError( 'Makes no sense to squash infinity but not other numbers outside the source range. Will squash all outside range.')) squash_outside_range = True if isinstance(x, list): x = np.array(x) if old_min is None: old_min = np.min(x[~np.isinf(x)]) if old_max is None: old_max = np.max(x[~np.isinf(x)]) old_range = old_max - old_min new_max = float(new_max) new_min = float(new_min) new_range = new_max - new_min retval = (new_range * (x - old_min) / old_range) + new_min if squash_inf: retval[np.isinf(x) & (x > 0)] = new_max retval[np.isinf(x) & (x < 0)] = new_min if squash_outside_range: retval[~np.isinf(x) & (x > old_max)] = new_max retval[~np.isinf(x) & (x < old_min)] = new_min return retval def generate_random_data(): np.random.seed(42) size = 10000 test_data_frame = pd.DataFrame() test_data_frame['entity'] = list(range(size)) test_data_frame['variant'] = np.random.choice(['A', 'B'], size=size, p=[0.6, 0.4]) test_data_frame['normal_same'] = np.random.normal(size=size) test_data_frame['normal_shifted'] = np.random.normal(size=size) test_data_frame.loc[test_data_frame['variant'] == 'B', 'normal_shifted'] \ = np.random.normal(loc=1.0, size=test_data_frame['normal_shifted'][test_data_frame['variant'] == 'B'].shape[0]) test_data_frame['feature'] = np.random.choice(['has', 'non'], size=size) test_data_frame['normal_shifted_by_feature'] = np.random.normal(size=size) randdata = np.random.normal(loc=1.0, size=size) ii = (test_data_frame['variant'] == 'B') & (test_data_frame['feature'] == 'has') with warnings.catch_warnings(record=True) as w: # ignore the 'flat[index' warning that comes out of pandas (and is # not ours to fix) warnings.simplefilter('ignore', DeprecationWarning) test_data_frame.loc[ii, 'normal_shifted_by_feature'] = randdata # provides random treatment start time in the past year # test_data_frame['treatment_start_time'] = np.random.choice(list(range(int(time() - 1*365*24*60*60), int(time()))), size=size) test_data_frame['treatment_start_time'] = np.random.choice(list(range(10)), size=size) test_data_frame['normal_unequal_variance'] = np.random.normal(size=size) test_data_frame.loc[test_data_frame['variant'] == 'B', 'normal_unequal_variance'] \ = np.random.normal(scale=10, size=test_data_frame['normal_unequal_variance'][test_data_frame['variant'] == 'B'].shape[0]) metadata = { 'primary_KPI': 'normal_shifted', 'source': 'simulated', 'experiment': 'random_data_generation' } return test_data_frame, metadata def generate_random_data_n_variants(n_variants=3): np.random.seed(42) size = 10000 test_data_frame =
pd.DataFrame()
pandas.DataFrame
import json import os import sqlite3 import pyAesCrypt import pandas from os import stat from datetime import datetime import time import numpy # Global variables for use by this file bufferSize = 64*1024 password = os.environ.get('ENCRYPTIONPASSWORD') # py -c 'import databaseAccess; databaseAccess.reset()' def reset(): resetActivities() resetSplits() # py -c 'import databaseAccess; databaseAccess.resetActivities()' def resetActivities(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute('DROP TABLE IF EXISTS activities;') conn.commit() conn.close() encryptDatabase() # py -c 'import databaseAccess; databaseAccess.resetSplits()' def resetSplits(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute('DROP TABLE IF EXISTS splits;') conn.commit() conn.close() encryptDatabase() def getLastDate(): decryptDatabase() lastActivityDate = '1970-01-01T00:00:00Z' conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='activities';") result = cur.fetchone() if result is not None: # There is data, so let's grab the max datetime cur.execute("SELECT MAX(start_date_local) FROM activities;") result = cur.fetchone() if result is not None: # Found a max date lastActivityDate, = result conn.commit() conn.close() encryptDatabase() return lastActivityDate def setConfig(strava_tokens): decryptDatabase() print('Lets put the tokens into the database') conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute('DROP TABLE IF EXISTS config;') cur.execute('CREATE TABLE config (token_type VARCHAR, access_token VARCHAR, expires_at BIGINT, expires_in INT, refresh_token VARCHAR);') cur.execute('INSERT INTO config (token_type, access_token, expires_at, expires_in, refresh_token) values (?, ?, ?, ?, ?);', (strava_tokens['token_type'], strava_tokens['access_token'], strava_tokens['expires_at'], strava_tokens['expires_in'], strava_tokens['refresh_token'])) conn.commit() conn.close() encryptDatabase() def getConfig(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute('SELECT * FROM config') rows = cur.fetchall() conn.commit() conn.close() encryptDatabase() return json.loads(json.dumps( [dict(ix) for ix in rows] ))[0] # Must be called to access the database, otherwise it can't be read # py -c 'import databaseAccess; databaseAccess.decryptDatabase()' def decryptDatabase(): if os.path.exists('strava_temp.sqlite'): print('Database already decrypted! Skipping. . .') else: if os.path.exists('strava.sqlite'): encFileSize = stat('strava.sqlite').st_size with open('strava.sqlite', 'rb') as fIn: with open('strava_temp.sqlite', 'wb') as fOut: pyAesCrypt.decryptStream(fIn, fOut, password, bufferSize, encFileSize) else: print('Unable to find database to decrypt! Skipping. . .') # Always call this after you touch the database to re-encrypt it def encryptDatabase(): if os.path.exists('strava_temp.sqlite'): if os.path.exists('strava.sqlite'): os.remove('strava.sqlite') with open('strava_temp.sqlite', 'rb') as fIn: with open('strava.sqlite', 'wb') as fOut: pyAesCrypt.encryptStream(fIn, fOut, password, bufferSize) if os.path.exists('strava_temp.sqlite'): os.remove('strava_temp.sqlite') else: print('Unable to find database to encrypt, skipping...') def setActvities(activities): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute('CREATE TABLE IF NOT EXISTS activities (id BIGINT, name NVARCHAR, upload_id BIGINT, type VARCHAR, distance NUMERIC, moving_time INT, average_speed NUMERIC, max_speed NUMERIC, total_elevation_gain NUMERIC, start_date_local DATETIME, average_cadence NUMERIC, average_watts NUMERIC, average_heartrate NUMERIC, UNIQUE(id));') conn.commit() for _, currentActivity in activities.iterrows(): acitivityName = currentActivity['name'] activityId = currentActivity['id'] print(f'Insert activity id [{activityId}], [{acitivityName}] to database') cur.execute('INSERT OR IGNORE INTO activities (id, name, upload_id, type, distance, moving_time, average_speed, max_speed, total_elevation_gain, start_date_local, average_cadence, average_watts, average_heartrate) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);', (activityId, acitivityName, currentActivity['upload_id'], currentActivity['type'], currentActivity['distance'], currentActivity['moving_time'], currentActivity['average_speed'], currentActivity['max_speed'], currentActivity['total_elevation_gain'], currentActivity['start_date_local'], currentActivity['average_cadence'], currentActivity['average_watts'], currentActivity['average_heartrate'])) conn.commit() print(f'[{acitivityName}] done. . .') conn.close() encryptDatabase() def setSplits(splits): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute('CREATE TABLE IF NOT EXISTS splits (split_id INT, activity_id BIGINT, activity_date DATETIME, average_speed NUMERIC, distance NUMERIC, elapsed_time INT, elevation_difference NUMERIC, moving_time INT, pace_zone INT, split INT, average_grade_adjusted_speed NUMERIC, average_heartrate NUMERIC, UNIQUE(split_id, activity_id));') conn.commit() for index, row in splits.iterrows(): cur.execute('INSERT OR IGNORE INTO splits (split_id, activity_id, activity_date, average_speed, distance, elapsed_time, elevation_difference, moving_time, pace_zone, split, average_grade_adjusted_speed, average_heartrate) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);', (index, row['id'], row['date'], row['average_speed'], row['distance'], row['elapsed_time'], row['elevation_difference'], row['moving_time'], row['pace_zone'], row['split'], row['average_grade_adjusted_speed'], row['average_heartrate'])) conn.commit() conn.close() encryptDatabase() def getActvitiesMissingSplits(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='splits';") result = cur.fetchone() storedActivities = pandas.DataFrame() if result is not None: storedActivities = pandas.read_sql_query('SELECT * FROM activities WHERE id NOT IN (SELECT activity_id FROM splits)', conn) else: cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='splits';") result = cur.fetchone() if result is not None: storedActivities = pandas.read_sql_query('SELECT * FROM activities', conn) conn.commit() conn.close() encryptDatabase() return storedActivities def deleteActvitiesMissingSplits(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='splits';") result = cur.fetchone() if result is not None: cur = conn.cursor() cur.execute('DELETE FROM activities WHERE id NOT IN (SELECT activity_id FROM splits)') conn.commit() conn.close() encryptDatabase() def getSplits(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='splits';") result = cur.fetchone() storedSplits = pandas.DataFrame() if result is not None: storedSplits = pandas.read_sql_query('SELECT s.split_id, s.activity_id, s.activity_date, s.average_speed, s.distance, s.elapsed_time, s.elevation_difference, s.moving_time, s.pace_zone, s.split, s.average_grade_adjusted_speed, s.average_heartrate, a.name, a.upload_id, a.type, a.distance AS total_distance, a.moving_time AS total_moving_time, a.average_speed AS total_average_speed, a.max_speed, a.total_elevation_gain, a.start_date_local, a.average_cadence FROM splits s INNER JOIN activities a ON a.id = s.activity_id', conn) conn.commit() conn.close() encryptDatabase() return storedSplits def getMonthSplits(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='splits';") result = cur.fetchone() storedSplits = pandas.DataFrame() if result is not None: storedSplits = pandas.read_sql_query('SELECT split_id, activity_id, STRFTIME("%Y-%m", activity_date) AS activity_month, activity_date, average_speed, distance, elapsed_time, elevation_difference, moving_time, pace_zone, split, average_grade_adjusted_speed, average_heartrate FROM splits', conn) conn.commit() conn.close() encryptDatabase() return storedSplits def getActivityDistances(): decryptDatabase() conn = sqlite3.connect('strava_temp.sqlite') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='activities';") result = cur.fetchone() activityCount = pandas.DataFrame() if result is not None: activityCount =
pandas.read_sql_query("SELECT COUNT(*) AS cnt, CAST(CAST(nearest_5miles AS INT) AS VARCHAR(1000)) || ' < ' || CAST(CAST(nearest_5miles + 5 AS INT) AS VARCHAR(1000)) AS nearest_5miles FROM (SELECT id, ROUND((distance* 0.000621371)/5,0)*5 AS nearest_5miles FROM activities) a GROUP BY nearest_5miles", conn)
pandas.read_sql_query
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Atividade para trabalhar o pré-processamento dos dados. Criação de modelo preditivo para diabetes e envio para verificação de peformance no servidor. @author: <NAME> <<EMAIL>> """ import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from sklearn.neighbors import KNeighborsClassifier import requests print('\n - Lendo o arquivo com o dataset sobre diabetes') data = pd.read_csv('https://raw.githubusercontent.com/audreyemmely/mlclass/master/01_Preprocessing/diabetes_dataset.csv') #mostrando valores faltantes no dataset print(data.isnull().sum()) #plotando o histograma plot1 = data.hist(figsize = (10,10)) plt.show() #substituindo os valores faltantes com média (em caso de distribuição normal) ou mediana (caso n seja normal) data['Glucose'].fillna(data['Glucose'].mean(), inplace = True) data['BloodPressure'].fillna(data['BloodPressure'].mean(), inplace = True) data['SkinThickness'].fillna(data['SkinThickness'].median(), inplace = True) data['Insulin'].fillna(data['Insulin'].median(), inplace = True) data['BMI'].fillna(data['BMI'].median(), inplace = True) #plotando o histograma após a substituição plot2 = data.hist(figsize = (10,10)) plt.show() # Criando X and y par ao algorítmo de aprendizagem de máquina.\ print(' - Criando X e y para o algoritmo de aprendizagem a partir do arquivo diabetes_dataset') # Caso queira modificar as colunas consideradas basta algera o array a seguir. feature_cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] X = data[feature_cols] y = data.Outcome # Criando o modelo preditivo para a base trabalhada print(' - Criando modelo preditivo') neigh = KNeighborsClassifier(n_neighbors=3) neigh.fit(X, y) #realizando previsões com o arquivo de print(' - Aplicando modelo e enviando para o servidor') data_app = pd.read_csv('https://raw.githubusercontent.com/audreyemmely/mlclass/master/01_Preprocessing/diabetes_app.csv') data_app = data_app[feature_cols] y_pred = neigh.predict(data_app) # Enviando previsões realizadas com o modelo para o servidor URL = "https://aydanomachado.com/mlclass/01_Preprocessing.php" #TODO Substituir pela sua chave aqui DEV_KEY = "shantay u stay" # json para ser enviado para o servidor data = {'dev_key':DEV_KEY, 'predictions':
pd.Series(y_pred)
pandas.Series
""" Finnhub View """ __docformat__ = "numpy" import os from tabulate import tabulate import pandas as pd from matplotlib import pyplot as plt from pandas.plotting import register_matplotlib_converters from gamestonk_terminal.stocks.due_diligence import finnhub_model from gamestonk_terminal.helper_funcs import plot_autoscale, export_data from gamestonk_terminal.config_plot import PLOT_DPI from gamestonk_terminal import feature_flags as gtff register_matplotlib_converters() def plot_rating_over_time(rot: pd.DataFrame, ticker: str): """Plot rating over time Parameters ---------- rot : pd.DataFrame Rating over time ticker : str Ticker associated with ratings """ plt.figure(figsize=plot_autoscale(), dpi=PLOT_DPI) rot.sort_values("period", inplace=True) plt.plot(pd.to_datetime(rot["period"]), rot["strongBuy"], c="green", lw=3) plt.plot(pd.to_datetime(rot["period"]), rot["buy"], c="lightgreen", lw=3) plt.plot(pd.to_datetime(rot["period"]), rot["hold"], c="grey", lw=3) plt.plot(
pd.to_datetime(rot["period"])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.ticker import MultipleLocator import lasio import math from datetime import datetime import matplotlib.lines as mlines # %% Load LAS File las0 = lasio.read('WestAfricaLogs/YoyoPSI.las') dstep = las0.well.STEP.value znull = las0.well.STRT.value zstop = las0.well.STOP.value # %% Load Deviation Survey df_Deviation = pd.read_csv('WestAfricaLogs/Yoyo_Deviation.txt', delimiter = '\t') df_Deviation.rename(columns={"Depth": "DEPTH"}, inplace=True) df_Deviation=df_Deviation[['DEPTH','TVD']].astype(float) # %% Load Mudweight Data df_MW = pd.read_csv('WestAfricaLogs/YoyoMW_md.txt', delimiter='\t') #Check for capital letters df_MW.rename(columns={"Depth": "DEPTH"}, inplace=True) #Change type to float from int df_MW=df_MW[['DEPTH','MW']].astype(float) # %% Load LOT df_LOT =
pd.read_csv('WestAfricaLogs/YoyoLOT_md.txt', delimiter='\t')
pandas.read_csv
from typing import List, Text, Dict from dataclasses import dataclass import ssl import urllib.request from io import BytesIO from zipfile import ZipFile from urllib.parse import urljoin from logging import exception import os from re import findall from datetime import datetime, timedelta import lxml.html as LH from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC import pandas as pd import time from selenium.webdriver.support.ui import WebDriverWait import warnings import string import re from bs4 import BeautifulSoup import requests import glob import time import os from fake_useragent import UserAgent import brFinance.utils as utils import pickle ssl._create_default_https_context = ssl._create_unverified_context warnings.simplefilter(action='ignore', category=FutureWarning) @dataclass class SearchENET: """ Perform webscraping on the page https://www.rad.cvm.gov.br/ENET/frmConsultaExternaCVM.aspx according to the input parameters """ def __init__(self, cod_cvm: int = None, category: int = None, driver: utils.webdriver = None): self.driver = driver # self.cod_cvm_dataframe = self.cod_cvm_list() self.cod_cvm = cod_cvm if cod_cvm is not None: self.check_cod_cvm_exist(self.cod_cvm) self.category = category if category is not None: self.check_category_exist(self.category) def cod_cvm_list(self) -> pd.DataFrame: """ Returns a dataframe of all CVM codes and Company names availble at https://www.rad.cvm.gov.br/ENET/frmConsultaExternaCVM.aspx """ if self.driver is None: driver = utils.Browser.run_chromedriver() else: driver=self.driver driver.get(f"https://www.rad.cvm.gov.br/ENET/frmConsultaExternaCVM.aspx") #wait_pageload() for retrie in range(50): try: html = str(driver.find_element_by_id('hdnEmpresas').get_attribute("value")) listCodCVM = re.findall("(?<=\_)(.*?)(?=\')", html) listNomeEmp = re.findall("(?<=\-)(.*?)(?=\')", html) codigos_cvm = pd.DataFrame(list(zip(listCodCVM, listNomeEmp)), columns=['codCVM', 'nome_empresa']) codigos_cvm['codCVM'] = pd.to_numeric(codigos_cvm['codCVM']) if len(codigos_cvm.index) > 0: break else: time.sleep(1) except: time.sleep(1) if self.driver is None: driver.quit() return codigos_cvm def check_cod_cvm_exist(self, cod_cvm) -> bool: codigos_cvm_available = self.cod_cvm_list() cod_cvm_exists = str(cod_cvm) in [str(cod_cvm_aux) for cod_cvm_aux in codigos_cvm_available['codCVM'].values] if cod_cvm_exists: return True else: raise ValueError('Código CVM informado não encontrado.') def check_category_exist(self, category) -> bool: search_categories_list = [21, 39] if category in search_categories_list: return True else: raise ValueError('Invalid category value. Available categories are:', search_categories_list) @property def search(self) -> pd.DataFrame: """ Returns dataframe of search results including cod_cvm, report's url, etc. """ dataInicial = '01012010' dataFinal = datetime.today().strftime('%d%m%Y') option_text = str(self.category) if self.driver is None: driver = utils.Browser.run_chromedriver() else: driver=self.driver driver.get(f"https://www.rad.cvm.gov.br/ENET/frmConsultaExternaCVM.aspx?codigoCVM={str(self.cod_cvm)}") # Wait and click cboCategorias_chosen for errors in range(10): try: driver.find_element_by_id('cboCategorias_chosen').click() break except: time.sleep(1) # Wait and click for errors in range(10): try: driver.find_element_by_xpath( f"//html/body/form[1]/div[3]/div/fieldset/div[5]/div[1]/div/div/ul/li[@data-option-array-index='{option_text}']").click() break except: time.sleep(1) # Wait and click for errors in range(10): try: driver.find_element_by_xpath("//html/body/form[1]/div[3]/div/fieldset/div[4]/div[1]/label[4]").click() break except: time.sleep(1) # Wait and send keys txtDataIni for errors in range(10): try: driver.find_element_by_id('txtDataIni').send_keys(dataInicial) break except: time.sleep(1) # Wait and send keys txtDataFim for errors in range(10): try: driver.find_element_by_id('txtDataFim').send_keys(dataFinal) break except: time.sleep(1) # Wait and click btnConsulta for errors in range(10): try: driver.find_element_by_id('btnConsulta').click() break except: time.sleep(1) # Wait html table load the results (grdDocumentos) for errors in range(10): try: table_html = pd.read_html(str(driver.find_element_by_id('grdDocumentos').get_attribute("outerHTML")))[-1] if len(table_html.index) > 0: break else: time.sleep(1) except: time.sleep(1) table_html = str(driver.find_element_by_id('grdDocumentos').get_attribute("outerHTML")) table = LH.fromstring(table_html) results = pd.read_html(table_html) for df_result in results: if len(df_result.index) > 0: pattern = "OpenPopUpVer(\'(.*?)\')" df_result['linkView'] = table.xpath('//tr/td/i[1]/@onclick') df_result['linkDownload'] = table.xpath('//tr/td/i[2]/@onclick') df_result['linkView'] = "https://www.rad.cvm.gov.br/ENET/" + \ df_result['linkView'].str.extract(r"(?<=\')(.*?)(?=\')", expand=False) df3 = df_result['linkDownload'].str.split(',', expand=True) df3.columns = ['COD{}'.format(x+1) for x in df3.columns] df_result = df_result.join(df3) df_result['linkDownload'] = "https://www.rad.cvm.gov.br/ENET/frmDownloadDocumento.aspx?Tela=ext&numSequencia=" + \ df_result['COD1'].str.extract(r"(?<=\')(.*?)(?=\')", expand=False) + \ "&numVersao=" + df_result['COD2'].str.extract(r"(?<=\')(.*?)(?=\')", expand=False) + \ "&numProtocolo=" + df_result['COD3'].str.extract(r"(?<=\')(.*?)(?=\')", expand=False) + \ "&descTipo=" + df_result['COD4'].str.extract(r"(?<=\')(.*?)(?=\')", expand=False) + \ "&CodigoInstituicao=1" df_result = df_result[['Código CVM', 'Empresa', 'Categoria', 'Tipo', 'Espécie', 'Data Referência', 'Data Entrega', 'Status', 'V', 'Modalidade', 'linkView', 'linkDownload']] df_result['Data Referência'] = df_result['Data Referência'].str.split( ' ', 1).str[1] df_result['Data Referência'] = pd.to_datetime( df_result["Data Referência"], format="%d/%m/%Y", errors="coerce") df_result = df_result[df_result["Status"] == "Ativo"] df_result["Código CVM"] = self.cod_cvm df_result = df_result[['Código CVM', 'Empresa', 'Categoria', 'Tipo', 'Espécie', 'Data Referência', 'Data Entrega', 'Status', 'V', 'Modalidade', 'linkView', 'linkDownload']] df_result = df_result.reset_index(drop=True) break if self.driver is None: driver.quit() print(f"Resultados da busca ENET: {len(df_result.index)}") return df_result @dataclass class FinancialReport: def __init__(self, link: str, driver: utils.webdriver = None): self.link = link self.driver = driver @property def financial_reports(self) -> Dict: """ Returns a dictionary with financial reports available in a page such as Reports currently available: - """ link = self.link if self.driver is None: driver = utils.Browser.run_chromedriver() else: driver=self.driver erros = 0 max_retries = 10 dictDemonstrativos = None while erros < max_retries: try: print("Coletando dados do link:", link) driver.get(link) # Wait page load the reports for retrie in range(max_retries): # Quando o captcha é que quebrado, options_text trás as opções de demonstrativos options_text = [x.get_attribute("text") for x in driver.find_element_by_name( "cmbQuadro").find_elements_by_tag_name("option")] if len(options_text) > 0: break else: time.sleep(1) # Navega nos demonstrativos e salva o dataframe no dicionario refDate = driver.find_element_by_id('lblDataDocumento').text versaoDoc = driver.find_element_by_id( 'lblDescricaoCategoria').text.split(" - ")[-1].replace("V", "") report = {"ref_date": refDate, "versao": int(versaoDoc), "cod_cvm": int(driver.find_element_by_id('hdnCodigoCvm').get_attribute("value")) } dictDemonstrativos = {} for demonstrativo in options_text: print(demonstrativo) driver.find_element_by_xpath("//select[@name='cmbQuadro']/option[text()='{option_text}']".format(option_text=demonstrativo)).click() iframe = driver.find_element_by_xpath( "//iframe[@id='iFrameFormulariosFilho']") driver.switch_to.frame(iframe) html = driver.page_source if demonstrativo == "Demonstração do Fluxo de Caixa": index_moeda = -2 else: index_moeda = -1 moedaUnidade = driver.find_element_by_id( 'TituloTabelaSemBorda').text.split(" - ")[index_moeda].replace("(", "").replace(")", "") if demonstrativo == "Demonstração das Mutações do Patrimônio Líquido": df = pd.read_html(html, header=0, decimal=',')[1] converters = {c: lambda x: str(x) for c in df.columns} df = pd.read_html(html, header=0, decimal=',', converters=converters)[1] else: df = pd.read_html(html, header=0, decimal=',')[0] converters = {c: lambda x: str(x) for c in df.columns} df = pd.read_html(html, header=0, decimal=',', converters=converters)[0] for ind, column in enumerate(df.columns): if column.strip() != "Conta" and column.strip() != "Descrição": df[column] = df[column].astype( str).str.strip().str.replace(".", "") df[column] = pd.to_numeric(df[column], errors='coerce') else: df[column] = df[column].astype( 'str').str.strip().astype('str') # Pega apenas a primeira coluna de valores, correspondente ao demonstrativo mais atual, e renomeia para "Valor" if demonstrativo != "Demonstração das Mutações do Patrimônio Líquido": df = df.iloc[:, 0:3] df.set_axis([*df.columns[:-1], 'Valor'], axis=1, inplace=True) # Add data de referencia e versão aos Dataframes df["refDate"] = refDate df["versaoDoc"] = versaoDoc df["moedaUnidade"] = moedaUnidade df["refDate"] = pd.to_datetime(df["refDate"], errors="coerce") # Add ao dicionario de demonstrativos dictDemonstrativos[demonstrativo] = df driver.switch_to.default_content() print("-"*60) # Add data de referencia ao ditc de demonstrativos report["reports"] = dictDemonstrativos break except Exception as exp: print("Erro ao carregar demonstrativo. Tentando novamente...") print(str(exp)) erros += 1 continue if self.driver is None: driver.quit() return report @dataclass class Company: def __init__(self, cod_cvm: int): self.cod_cvm = cod_cvm def obtemCompCapitalSocial(self): self.ComposicaoCapitalSocial = composicao_capital_social(self._codCVM) def obterDadosCadastrais(self): listaCodCVM = obtemDadosCadastraisCVM(self._codCVM) listaCodCVM = listaCodCVM[listaCodCVM["CD_CVM"] == self._codCVM] self.dadosCadastrais = listaCodCVM.to_dict('r') @property def reports(self) -> List: driver = utils.Browser.run_chromedriver() search_anual_reports = SearchENET(cod_cvm=self.cod_cvm, category=21, driver=driver).search search_quarter_reports = SearchENET(cod_cvm=self.cod_cvm, category=39, driver=driver).search search_reports_result = search_anual_reports.append(search_quarter_reports) reports = {} for index, report_info in search_reports_result.iterrows(): m = re.search(r"(?<=\Documento=)(.*?)(?=\&)", report_info['linkView']) if m: document_number = m.group(1) # Create folder and save reports locally path_save_reports = f'{os.getcwd()}/reports' report_file = f'{path_save_reports}/{document_number}.plk' utils.File.create_folder(path_save_reports) # Check if report is available locally, otherwise scrape it. if utils.File.check_exist(report_file): with open(report_file, 'rb') as load_report: report_obj = pickle.load(load_report) print("Carregado localmente!") else: report_obj = FinancialReport(link=report_info["linkView"], driver=driver).financial_reports with open(report_file, 'wb') as save_report: pickle.dump(report_obj, save_report) reports[report_obj["ref_date"]] = report_obj["reports"] driver.quit() return reports if __name__ == '__main__': petrobras = Company(cod_cvm=9512) def obtemDadosCadastraisCVM(compAtivas=True, codCVM=False): """ Returns a dataframe of Registration data for all Companies available at http://dados.cvm.gov.br/dados/CIA_ABERTA/CAD/DADOS/cad_cia_aberta.csv """ url = "http://dados.cvm.gov.br/dados/CIA_ABERTA/CAD/DADOS/cad_cia_aberta.csv" #s = requests.get(url).content dados_cadastrais_empresas = pd.read_csv(url, sep=";", encoding="latin") if compAtivas: dados_cadastrais_empresas = dados_cadastrais_empresas[ dados_cadastrais_empresas["SIT"] == "ATIVO"] if codCVM: dados_cadastrais_empresas = dados_cadastrais_empresas[dados_cadastrais_empresas["CD_CVM"] == int( codCVM)] return dados_cadastrais_empresas def composicao_capital_social(codCVM): """ This metodh will be deprecated """ dfQuantPapeis = pd.DataFrame() for cod in codCVM: erro = 1 cod = str(cod) while erro <= 3: try: print(cod) url = "http://bvmf.bmfbovespa.com.br/pt-br/mercados/acoes/empresas/ExecutaAcaoConsultaInfoEmp.asp?CodCVM={codCVM}".format( codCVM=cod) # html_content = requests.get(url).content.decode("utf8") tableDados = BeautifulSoup(html_content, "lxml").find( "div", attrs={"id": "accordionDados"}) tickers = re.findall( "'[a-z|A-Z|0-9][a-z|A-Z|0-9][a-z|A-Z|0-9][a-z|A-Z|0-9][0-9][0-9]?'", str(tableDados)) tickers = [ticker.replace("'", "") for ticker in tickers] tickers = list(dict.fromkeys(tickers)) tickers = pd.DataFrame(tickers, columns=['ticker']) tickers["codCVM"] = cod dicCapitalSocial = BeautifulSoup(html_content, "lxml").find( "div", attrs={"id": "divComposicaoCapitalSocial"}) dfs = pd.read_html(str(dicCapitalSocial), thousands='.')[0] dfs.columns = ["Tipo", "Quantidade"] dfs["codCVM"] = cod dfs["dt_load"] = datetime.now() dfs = tickers.merge(dfs, on="codCVM") print(dfs) dfQuantPapeis = dfQuantPapeis.append(dfs) break except Exception as exp: print("Tentando novamente:", cod) print(str(exp)) erro += 1 print("*"*50) return dfQuantPapeis def obter_dados_negociacao(dateToday=datetime.now().strftime("%Y-%m-%d")): print(dateToday) url = f"https://arquivos.b3.com.br/api/download/requestname?fileName=InstrumentsConsolidated&date={dateToday}" payload = {} ua = UserAgent() headers = { 'User-Agent': str(ua.chrome)} response = requests.request("GET", url, headers=headers, data=payload) if response.ok: token = response.json().get('token') baseURL = f"https://arquivos.b3.com.br/api/download/?token={token}" data = pd.read_csv(baseURL, sep=";", encoding='latin-1', error_bad_lines=True) data["data_load"] = datetime.now() print("Baixando arquivo!") r = urllib.request.urlopen( "https://sistemaswebb3-listados.b3.com.br/isinProxy/IsinCall/GetFileDownload/NDY0ODk=").read() print("Descompactando arquivo!") file = ZipFile(BytesIO(r)) dfEmissor = file.open("EMISSOR.TXT") print("Abrindo arquivo CSV!") dfEmissor = pd.read_csv(dfEmissor, header=None, names=[ "CODIGO DO EMISSOR", "NOME DO EMISSOR", "CNPJ", "DATA CRIAÇÃO EMISSOR"]) data = data.merge(dfEmissor, left_on="AsstDesc", right_on="CODIGO DO EMISSOR", how="left") data.reset_index(drop=True, inplace=True) else: data = None return data def obtemCodCVM(): url = "https://cvmweb.cvm.gov.br/SWB/Sistemas/SCW/CPublica/CiaAb/ResultBuscaParticCiaAb.aspx?CNPJNome=&TipoConsult=C" print(url) tableDados = pd.read_html(url, header=0)[0] tableDados = tableDados[~tableDados['SITUAÇÃO REGISTRO'].str.contains( "Cancelado")] tableDados["CÓDIGO CVM"] = pd.to_numeric( tableDados["CÓDIGO CVM"], errors="coerce") tableDados = tableDados.drop_duplicates() tableDados = tableDados.reset_index(drop=True) return tableDados def obter_indices_anbima(dataIni, dataFim): link = "https://www.anbima.com.br/informacoes/ima/ima-sh.asp" driver = utils.Browser.run_chromedriver(system="Windows") #dataIni = datetime.now().strftime("%d%m%Y") dataIni = datetime.strptime(dataIni, '%d/%m/%Y') dataFim = datetime.strptime(dataFim, '%d/%m/%Y') root = os.getcwd() + "/downloads" try: os.makedirs(root) except FileExistsError: # directory already exists pass # Remover arquivos da pasta de destino do download antes de iniciar novo scrapping files = glob.glob(root) f = [] for (dirpath, dirnames, filenames) in os.walk(root): for file in filenames: if file.endswith(".csv"): os.remove(root + "/" + file) while dataFim >= dataIni: try: dateAux = dataFim.strftime("%d%m%Y") driver.get(link) driver.find_element_by_xpath( "//input[@name='escolha'][@value='2']").click() driver.find_element_by_xpath( "//input[@name='saida'][@value='csv']").click() dateInput = driver.find_element_by_xpath("//input[@name='Dt_Ref']") dateInput.click() dateInput.clear() dateInput.send_keys(dateAux) driver.find_element_by_xpath("//img[@name='Consultar']").click() dataFim -= timedelta(days=1) except Exception as excep: print(str(excep)) f = [] dfAmbima = pd.DataFrame() for (dirpath, dirnames, filenames) in os.walk(root): for file in filenames: try: df = pd.read_csv(root + "/" + file, header=1, sep=";", encoding="latin", thousands=".") os.remove(root + "/" + file) dfAmbima = dfAmbima.append(df) except: continue # Tipos de dados dfAmbima = dfAmbima.replace("--", "") dfAmbima["Data de Referência"] = pd.to_datetime( dfAmbima["Data de Referência"], format='%d/%m/%Y', errors='coerce') for column in dfAmbima.columns: if column != "Data de Referência" and column != "Índice": print(column) dfAmbima[column] = dfAmbima[column].astype( str).str.replace('.', '') dfAmbima[column] = dfAmbima[column].astype( str).str.replace(',', '.') dfAmbima[column] =
pd.to_numeric(dfAmbima[column])
pandas.to_numeric
import json import os from math import ceil, isnan import openpyxl import pandas as pd from Entities.SigfoxProfile import Sigfox def extract_data(file, output):
pd.set_option('display.max_columns', None)
pandas.set_option
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ Load & merge messages and categories ds messages_filepath: path for csv with messages categories_filepath: path for csv with cats Returns: df: dataframe """ # load messages dataset messages = pd.read_csv(messages_filepath) # load categories dataset categories = pd.read_csv(categories_filepath) # merge datasets df =pd.merge(messages,categories,how='inner',on='id') return df def clean_data(df): """ Loads df and cleans Input: df with joined messages and categories data Return: Clean dataframe free from duplicates """ categories = df.categories.str.split(';',expand=True) row = categories.loc[0] category_colnames = row.apply(lambda x: x[:-2]) categories.columns = category_colnames for column in categories: categories[column] = categories[column].apply(lambda x: x[-1:]) categories[column] = categories[column].astype('int') categories.drop('child_alone', axis = 1, inplace = True) df.drop('categories',axis=1,inplace=True) df =
pd.concat([df,categories],axis=1)
pandas.concat
############################################################# # ActivitySim verification against TM1 # <NAME>, <EMAIL>, 02/22/19 # C:\projects\activitysim\verification>python compare_results.py ############################################################# import pandas as pd import openmatrix as omx ############################################################# # INPUTS ############################################################# pipeline_filename = 'asim/pipeline.h5' distance_matrix_filename = "asim/skims.omx" asim_nmtf_alts_filename = "asim/non_mandatory_tour_frequency_alternatives.csv" process_sp = True # False skip work/sch shadow pricing comparisons, True do them process_tm1 = True # False only processes asim, True processes tm1 as well asim_sp_work_filename = "asim/shadow_price_workplace_modeled_size_10.csv" asim_sp_school_filename = "asim/shadow_price_school_modeled_size_10.csv" asim_sp_school_no_sp_filename = "asim/shadow_price_school_modeled_size_1.csv" tm1_access_filename = "tm1/accessibility.csv" tm1_sp_filename = "tm1/ShadowPricing_9.csv" tm1_work_filename = "tm1/wsLocResults_1.csv" tm1_ao_filename = "tm1/aoResults.csv" tm1_hh_filename = "tm1/householdData_1.csv" tm1_cdap_filename = "tm1/cdapResults.csv" tm1_per_filename = "tm1/personData_1.csv" tm1_tour_filename = "tm1/indivTourData_1.csv" tm1_jtour_filename = "tm1/jointTourData_1.csv" tm1_trips_filename = "tm1/indivTripData_1.csv" tm1_jtrips_filename = "tm1/jointTripData_1.csv" ############################################################# # OUTPUT FILES FOR DEBUGGING ############################################################# asim_zones_filename = "asim/asim_zones.csv" asim_access_filename = "asim/asim_access.csv" asim_per_filename = "asim/asim_per.csv" asim_hh_filename = "asim/asim_hh.csv" asim_tour_filename = "asim/asim_tours.csv" asim_trips_filename = "asim/asim_trips.csv" ############################################################# # COMMON LABELS ############################################################# ptypes = ["", "Full-time worker", "Part-time worker", "University student", "Non-worker", "Retired", "Student of driving age", "Student of non-driving age", "Child too young for school"] mode_labels = ["", "DRIVEALONEFREE", "DRIVEALONEPAY", "SHARED2FREE", "SHARED2PAY", "SHARED3FREE", "SHARED3PAY", "WALK", "BIKE", "WALK_LOC", "WALK_LRF", "WALK_EXP", "WALK_HVY", "WALK_COM", "DRIVE_LOC", "DRIVE_LRF", "DRIVE_EXP", "DRIVE_HVY", "DRIVE_COM"] ############################################################# # DISTANCE SKIM ############################################################# # read distance matrix (DIST) distmat = omx.open_file(distance_matrix_filename)["DIST"][:] ############################################################# # EXPORT TABLES ############################################################# # write tables for verification tazs = pd.read_hdf(pipeline_filename, "land_use/initialize_landuse") tazs["zone"] = tazs.index tazs.to_csv(asim_zones_filename, index=False) access = pd.read_hdf(pipeline_filename, "accessibility/compute_accessibility") access.to_csv(asim_access_filename, index=False) hh = pd.read_hdf(pipeline_filename, "households/joint_tour_frequency") hh["household_id"] = hh.index hh.to_csv(asim_hh_filename, index=False) per = pd.read_hdf(pipeline_filename, "persons/non_mandatory_tour_frequency") per["person_id"] = per.index per.to_csv(asim_per_filename, index=False) tours = pd.read_hdf(pipeline_filename, "tours/stop_frequency") tours["tour_id"] = tours.index tours.to_csv(asim_tour_filename, index=False) trips = pd.read_hdf(pipeline_filename, "trips/trip_mode_choice") trips["trip_id"] = trips.index trips.to_csv(asim_trips_filename, index=False) ############################################################# # AGGREGATE ############################################################# # accessibilities if process_tm1: tm1_access = pd.read_csv(tm1_access_filename) tm1_access.to_csv("outputs/tm1_access.csv", na_rep=0) asim_access = pd.read_csv(asim_access_filename) asim_access.to_csv("outputs/asim_access.csv", na_rep=0) ############################################################# # HOUSEHOLD AND PERSON ############################################################# # work and school location if process_sp: if process_tm1: tm1_markets = ["work_low", "work_med", "work_high", "work_high", "work_very high", "university", "school_high", "school_grade"] tm1 = pd.read_csv(tm1_sp_filename) tm1 = tm1.groupby(tm1["zone"]).sum() tm1["zone"] = tm1.index tm1 = tm1.loc[tm1["zone"] > 0] ws_size = tm1[["zone"]] for i in range(len(tm1_markets)): ws_size[tm1_markets[i] + "_modeledDests"] = tm1[tm1_markets[i] + "_modeledDests"] ws_size.to_csv("outputs/tm1_work_school_location.csv", na_rep=0) asim_markets = ["work_low", "work_med", "work_high", "work_high", "work_veryhigh", "university", "highschool", "gradeschool"] asim = pd.read_csv(asim_sp_work_filename) asim_sch = pd.read_csv(asim_sp_school_filename) asim_sch_no_sp = pd.read_csv(asim_sp_school_no_sp_filename) asim_sch["gradeschool"] = asim_sch_no_sp["gradeschool"] # grade school not shadow priced asim = asim.set_index("TAZ", drop=False) asim_sch = asim_sch.set_index("TAZ", drop=False) asim["gradeschool"] = asim_sch["gradeschool"].loc[asim["TAZ"]].tolist() asim["highschool"] = asim_sch["highschool"].loc[asim["TAZ"]].tolist() asim["university"] = asim_sch["university"].loc[asim["TAZ"]].tolist() ws_size = asim[["TAZ"]] for i in range(len(asim_markets)): ws_size[asim_markets[i] + "_asim"] = asim[asim_markets[i]] ws_size.to_csv("outputs/asim_work_school_location.csv", na_rep=0) # work county to county flows tazs = pd.read_csv(asim_zones_filename) counties = ["", "SF", "SM", "SC", "ALA", "CC", "SOL", "NAP", "SON", "MAR"] tazs["COUNTYNAME"] = pd.Series(counties)[tazs["county_id"].tolist()].tolist() tazs = tazs.set_index("zone", drop=False) if process_tm1: tm1_work = pd.read_csv(tm1_work_filename) tm1_work["HomeCounty"] = tazs["COUNTYNAME"].loc[tm1_work["HomeTAZ"]].tolist() tm1_work["WorkCounty"] = tazs["COUNTYNAME"].loc[tm1_work["WorkLocation"]].tolist() tm1_work_counties = tm1_work.groupby(["HomeCounty", "WorkCounty"]).count()["HHID"] tm1_work_counties = tm1_work_counties.reset_index() tm1_work_counties = tm1_work_counties.pivot(index="HomeCounty", columns="WorkCounty") tm1_work_counties.to_csv("outputs/tm1_work_counties.csv", na_rep=0) asim_cdap =
pd.read_csv(asim_per_filename)
pandas.read_csv
# ActivitySim # See full license in LICENSE.txt. import logging import os import numpy as np import pandas as pd logger = logging.getLogger(__name__) def undupe_column_names(df, template="{} ({})"): """ rename df column names so there are no duplicates (in place) e.g. if there are two columns named "dog", the second column will be reformatted to "dog (2)" Parameters ---------- df : pandas.DataFrame dataframe whose column names should be de-duplicated template : template taking two arguments (old_name, int) to use to rename columns Returns ------- df : pandas.DataFrame dataframe that was renamed in place, for convenience in chaining """ new_names = [] seen = set() for name in df.columns: n = 1 new_name = name while new_name in seen: n += 1 new_name = template.format(name, n) new_names.append(new_name) seen.add(new_name) df.columns = new_names return df def read_assignment_spec(fname, description_name="Description", target_name="Target", expression_name="Expression"): """ Read a CSV model specification into a Pandas DataFrame or Series. The CSV is expected to have columns for component descriptions targets, and expressions, The CSV is required to have a header with column names. For example: Description,Target,Expression Parameters ---------- fname : str Name of a CSV spec file. description_name : str, optional Name of the column in `fname` that contains the component description. target_name : str, optional Name of the column in `fname` that contains the component target. expression_name : str, optional Name of the column in `fname` that contains the component expression. Returns ------- spec : pandas.DataFrame dataframe with three columns: ['description' 'target' 'expression'] """ cfg = pd.read_csv(fname, comment='#') # drop null expressions # cfg = cfg.dropna(subset=[expression_name]) cfg.rename(columns={target_name: 'target', expression_name: 'expression', description_name: 'description'}, inplace=True) # backfill description if 'description' not in cfg.columns: cfg.description = '' cfg.target = cfg.target.str.strip() cfg.expression = cfg.expression.str.strip() return cfg class NumpyLogger(object): def __init__(self, logger): self.logger = logger self.target = '' self.expression = '' def write(self, msg): self.logger.error("numpy warning: %s" % (msg.rstrip())) self.logger.error("expression: %s = %s" % (str(self.target), str(self.expression))) def assign_variables(assignment_expressions, df, locals_dict, df_alias=None, trace_rows=None): """ Evaluate a set of variable expressions from a spec in the context of a given data table. Expressions are evaluated using Python's eval function. Python expressions have access to variables in locals_d (and df being accessible as variable df.) They also have access to previously assigned targets as the assigned target name. lowercase variables starting with underscore are temp variables (e.g. _local_var) and not returned except in trace_restults uppercase variables starting with underscore are temp variables (e.g. _LOCAL_SCALAR) and not returned except in trace_assigned_locals This is useful for defining general purpose local constants in expression file Users should take care that expressions should result in a Pandas Series (scalars will be automatically promoted to series.) Parameters ---------- assignment_expressions : pandas.DataFrame of target assignment expressions target: target column names expression: pandas or python expression to evaluate df : pandas.DataFrame locals_d : Dict This is a dictionary of local variables that will be the environment for an evaluation of "python" expression. trace_rows: series or array of bools to use as mask to select target rows to trace Returns ------- variables : pandas.DataFrame Will have the index of `df` and columns named by target and containing the result of evaluating expression trace_df : pandas.DataFrame or None a dataframe containing the eval result values for each assignment expression """ np_logger = NumpyLogger(logger) def is_local(target): return target.startswith('_') and target.isupper() def is_temp(target): return target.startswith('_') def to_series(x, target=None): if x is None or np.isscalar(x): if target: logger.warn("WARNING: assign_variables promoting scalar %s to series" % target) return pd.Series([x] * len(df.index), index=df.index) return x trace_assigned_locals = trace_results = None if trace_rows is not None: # convert to numpy array so we can slice ndarrays as well as series trace_rows = np.asanyarray(trace_rows) if trace_rows.any(): trace_results = [] trace_assigned_locals = {} # avoid touching caller's passed-in locals_d parameter (they may be looping) locals_dict = locals_dict.copy() if locals_dict is not None else {} if df_alias: locals_dict[df_alias] = df else: locals_dict['df'] = df local_keys = locals_dict.keys() l = [] # need to be able to identify which variables causes an error, which keeps # this from being expressed more parsimoniously for e in zip(assignment_expressions.target, assignment_expressions.expression): target, expression = e if target in local_keys: logger.warn("assign_variables target obscures local_d name '%s'" % str(target)) if is_local(target): x = eval(expression, globals(), locals_dict) locals_dict[target] = x if trace_assigned_locals is not None: trace_assigned_locals[target] = x continue try: # FIXME - log any numpy warnings/errors but don't raise np_logger.target = str(target) np_logger.expression = str(expression) saved_handler = np.seterrcall(np_logger) save_err = np.seterr(all='log') values = to_series(eval(expression, globals(), locals_dict), target=target) np.seterr(**save_err) np.seterrcall(saved_handler) except Exception as err: logger.error("assign_variables error: %s: %s" % (type(err).__name__, str(err))) logger.error("assign_variables expression: %s = %s" % (str(target), str(expression))) # values = to_series(None, target=target) raise err l.append((target, values)) if trace_results is not None: trace_results.append((target, values[trace_rows])) # update locals to allows us to ref previously assigned targets locals_dict[target] = values # build a dataframe of eval results for non-temp targets # since we allow targets to be recycled, we want to only keep the last usage # we scan through targets in reverse order and add them to the front of the list # the first time we see them so they end up in execution order variables = [] seen = set() for statement in reversed(l): # statement is a tuple (<target_name>, <eval results in pandas.Series>) target_name = statement[0] if not is_temp(target_name) and target_name not in seen: variables.insert(0, statement) seen.add(target_name) # DataFrame from list of tuples [<target_name>, <eval results>), ...] variables = pd.DataFrame.from_items(variables) if trace_results is not None: trace_results = pd.DataFrame.from_items(trace_results) trace_results.index = df[trace_rows].index trace_results = undupe_column_names(trace_results) # add df columns to trace_results trace_results =
pd.concat([df[trace_rows], trace_results], axis=1)
pandas.concat
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """ This file contains training and testing settings to be used in this benchmark, mainly: TRAIN_BASE_END: Base training end date common across all rounds TRAIN_ROUNDS_ENDS: a set of dates denoting end of training period for each of the 6 rounds of the benchmark TEST_STARTS_ENDS: a set of dates denoting start and end of testing period for each of the 6 rounds of the benchmark """ import pandas as pd TRAIN_BASE_END = pd.to_datetime("2016-11-01") TRAIN_ROUNDS_ENDS = pd.to_datetime( ["2016-12-01", "2016-12-01", "2017-01-01", "2017-01-01", "2017-02-01", "2017-02-01",] ) TEST_STARTS_ENDS = [ pd.to_datetime(("2017-01-01", "2017-02-01")), pd.to_datetime(("2017-02-01", "2017-03-01")),
pd.to_datetime(("2017-02-01", "2017-03-01"))
pandas.to_datetime
# flu prediction import os import pandas as pd import feather from utils.fastai.structured import * from utils.fastai.column_data import * from sklearn import preprocessing from sklearn.metrics import classification_report, confusion_matrix import keras from keras.layers import Input, Embedding, Dense, Dropout from keras.models import Model from keras.callbacks import ModelCheckpoint, EarlyStopping from keras import metrics pd.set_option('display.width', 250) data_path = os.environ['DATA_DIR'] + 'epidata_flu/' def drop_columns(df, cols): """drop columns form dataframe""" df = df.drop(cols, axis=1) return df def show_prediction(model, raw_df, epiyear): """ compare prediction from actual values given epiyear """ def proc_df(df, max_n_cat=None, mapper=None): """ standardizes continuous columns and numericalizes categorical columns Parameters: ----------- df: The data frame you wish to process. max_n_cat: The maximum number of categories to break into dummy values, instead of integer codes. mapper: calculates the values used for scaling of variables during training time(mean and standard deviation). Returns: -------- x: x is the transformed version of df. x will not have the response variable and is entirely numeric. mapper: A DataFrameMapper which stores the mean and standard deviation of the corresponding continous variables which is then used for scaling of during test-time. """ df = df.copy() mapper = scale_vars(df, mapper) for n, c in df.items(): numericalize(df, c, n, max_n_cat) return pd.get_dummies(df, dummy_na=True), mapper def concat_prior(df, cols, shift_num=4): """ shift dataframe forward to compute prior epiweek features returns a dataframe with concatenated prior features cols is a list of columns to shift shift_num is how many prior weeks to shift """ # add concatenated features df_grp = df.groupby(['region']) df = [] for name, grp in df_grp: grp = grp.sort_values(['epiyear', 'epiweeknum'], ascending=True).reset_index(drop=True) grp_ = [grp] for idx in range(1, shift_num+1): grp_.append(grp[cols].shift(idx)) grp_[idx].columns = [c + '_prior_{}'.format(idx) for c, idx in zip(cols, len(cols)*[idx])] grp = pd.concat(grp_, axis=1).loc[shift_num:] df.append(grp) return pd.concat(df).fillna(0) def get_ml_data(recompute=False): """ preprocess data for ml training num_shift is number of prior epiweeks to cancatenate for feature columns """ ml_data_path = data_path + 'ml_data/' feather_names = ['train_x', 'train_y', 'val_x', 'val_y', 'test_x', 'test_y', 'train_xp'] mapper_names = ['mapper', 'le_wili', 'le_epi'] var_names = ['cat_vars', 'contin_vars', 'wiki_cols', 'pred_wili', 'pred_epi', 'pred_vars'] if not os.path.exists(ml_data_path): os.makedirs(ml_data_path) # read flu dataframe and shuffle df = pd.read_feather(data_path + 'joined_df.feather') #df = df.reindex(np.random.permutation(df.index)) # set categorial and continous data (prediction variables are also categorial) wiki_cols = [c for c in df.columns.tolist() if 'wiki' in c] cat_vars = ['region', 'epiweeknum', 'region_type'] contin_vars = ['epiyear', 'lag', 'ili', 'num_age_0', 'num_age_1', 'num_age_2', 'num_age_3', 'num_age_4', 'num_age_5', 'num_ili', 'num_patients', 'num_providers', 'wili', 'std_nc', 'value_nc'] + wiki_cols pred_wili = ['week_ahead_wili_1', 'week_ahead_wili_2', 'week_ahead_wili_3', 'week_ahead_wili_4', 'peak_intensity'] pred_epi = ['peak_week'] pred_vars = pred_wili + pred_epi # use data from 1997 to 2016 for train and 2017 for validation # use 2018 for weekly forecast testing, we can't tes season onset # and peak because data is not yet available for 2018 val_year = 2017 test_year = 2018 #df_ = df.copy() #n = 50000 # len(df) # training data sample #idxs = get_cv_idxs(n, val_pct=150000/n) #df = df.iloc[idxs].reset_index(drop=True) train_df = df[(df['epiyear'] != val_year) & (df['epiyear'] != test_year)].reset_index(drop=True) val_df = df[df['epiyear'] == val_year].reset_index(drop=True) test_df = df[df['epiyear'] == test_year].reset_index(drop=True) del df if not os.listdir(ml_data_path) or recompute: # split data into features and prediction variables print ('Splitting data into features and prediction variables ...') train_x = train_df[cat_vars + contin_vars].copy() train_y = train_df[pred_vars].copy() val_x = val_df[cat_vars + contin_vars].copy() val_y = val_df[pred_vars].copy() test_x = test_df[cat_vars + contin_vars].copy() test_y = test_df[pred_vars].copy() # numericalize and standardize training features / fit prediction values # train_xp contains pre transformation values print ('Numericalizing and Standardizing training data ...') train_xp = train_x.copy() for v in cat_vars: train_xp[v] = train_x[v].astype('category').cat.as_ordered() for v in contin_vars: train_xp[v] = train_xp[v].astype('float32') train_x, mapper = proc_df(train_xp) print ('Applying label transformation ...') bin_start_incl = np.round(np.r_[np.arange(0, 13.1, .1), 100], decimals=1) le_wili = preprocessing.LabelEncoder() # wili forecast percentages le_wili.fit(bin_start_incl) le_epi = preprocessing.LabelEncoder() # wili peak weak le_epi.fit(range(1,54)) for v in pred_wili: train_y[v] = train_y[v].transform(le_wili.transform) for v in pred_epi: train_y[v] = train_y[v].transform(pd.to_numeric) train_y[v] = train_y[v].transform(le_epi.transform) # apply training transformation to validation and test data print ('Numericalizing and Standardizing validatan and test data ...') apply_cats(val_x, train_xp) for v in contin_vars: val_x[v] = val_x[v].astype('float32') val_x, _ = proc_df(val_x, mapper=mapper) for v in pred_wili: val_y[v] = val_y[v].transform(le_wili.transform) for v in pred_epi: val_y[v] = val_y[v].transform(pd.to_numeric) val_y[v] = val_y[v].transform(le_epi.transform) if not test_df.empty: apply_cats(test_x, train_xp) for v in contin_vars: test_x[v] = test_x[v].astype('float32') test_x, _ = proc_df(test_x, mapper=mapper) for v in pred_wili: test_y[v] = test_y[v].transform(le_wili.transform) # generate dictionary from processed data ml_data = {} for fname in feather_names + mapper_names: ml_data[fname] = eval(fname) # save processed data to disk for fname in feather_names: feather.write_dataframe(eval(fname), ml_data_path + fname + '.feather') for fname in mapper_names: pd.to_pickle(eval(fname), ml_data_path + fname + '.pkl') for fname in var_names: pd.to_pickle(eval(fname), ml_data_path + fname + '.pkl') else: # read data from desk ml_data = {} for fname in feather_names: ml_data[fname] = pd.read_feather(ml_data_path + fname + '.feather') for fname in mapper_names: ml_data[fname] = pd.read_pickle(ml_data_path + fname + '.pkl') for fname in var_names: ml_data[fname] = pd.read_pickle(ml_data_path + fname + '.pkl') return ml_data, cat_vars + contin_vars, pred_vars # Embedding learning scripts def cat_map_info(feat): return feat[0], len(feat[1].classes_) def my_init(scale): return lambda shape, name=None: initializations.uniform(shape, scale=scale, name=name) def emb_init(shape, name=None): return initializations.uniform(shape, scale=2/(shape[1]+1), name=name) def get_emb(feat): name, c = cat_map_info(feat) #c2 = cat_var_dict[name] c2 = (c+1)//2 if c2>50: c2=50 inp = Input((1,), dtype='int64', name=name+'_in') # , W_regularizer=l2(1e-6) u = Flatten(name=name+'_flt')(Embedding0(c, c2, input_length=1, init=emb_init)(inp)) # u = Flatten(name=name+'_flt')(Embedding(c, c2, input_length=1)(inp)) return inp,u def get_contin(feat): name = feat[0][0] inp = Input((1,), name=name+'_in') return inp, Dense(1, name=name+'_d', init=my_init(1.))(inp) def top1(y_true, y_pred): return metrics.top_k_categorical_accuracy(y_true, y_pred, k=1) def get_model(dim, num_classes_wili, num_classes_epi): input_ = Input(shape=(dim, ), dtype='float32') x = Dropout(0.02)(input_) x = Dense(2000, activation='relu', init='uniform')(x) x = Dense(1000, activation='relu', init='uniform')(x) x = Dense(500, activation='relu', init='uniform')(x) x = Dropout(0.2)(x) y_wili_1 = Dense(num_classes_wili, activation='softmax', name='y_wili_1')(x) # 1 week ahead prediction y_wili_2 = Dense(num_classes_wili, activation='softmax', name='y_wili_2')(x) # 2 week ahead prediction y_wili_3 = Dense(num_classes_wili, activation='softmax', name='y_wili_3')(x) # 3 week ahead prediction y_wili_4 = Dense(num_classes_wili, activation='softmax', name='y_wili_4')(x) # 4 week ahead prediction y_peak_wili = Dense(num_classes_wili, activation='softmax', name='y_peak_wili')(x) # peak wili prediction y_peak_week = Dense(num_classes_epi, activation='softmax', name='y_peak_week')(x) # peak wili predictio model = Model(inputs=[input_], outputs=[y_wili_1, y_wili_2, y_wili_3, y_wili_4, y_peak_wili, y_peak_week]) return model if __name__ == '__main__': # generate ml data2 print ("Generating ML Data ...") ml_data, x_vars, y_vars = get_ml_data() train_xp = ml_data['train_xp'] mapper = ml_data['mapper'] le_wili = ml_data['le_wili'] le_epi = ml_data['le_epi'] train_x = ml_data['train_x'] val_x = ml_data['val_x'] test_x = ml_data['test_x'] train_y = ml_data['train_y'] val_y = ml_data['val_y'] test_y = ml_data['test_y'] # add time series variables prior = 4 train_x =
pd.concat([train_x, train_y], axis=1)
pandas.concat
from drain.aggregation import SimpleAggregation, SpacetimeAggregation, AggregationJoin, SpacetimeAggregationJoin from drain.aggregate import Count from drain import step from datetime import date import pandas as pd import numpy as np class SimpleCrimeAggregation(SimpleAggregation): @property def aggregates(self): return [ Count(), Count('Arrest'), Count(lambda c: c['Primary Type'] == 'THEFT', 'theft', prop=True), ] def test_simple_aggregation_parallel(drain_setup, crime_step): s = SimpleCrimeAggregation(inputs=[crime_step], indexes=['District', 'Community Area'], parallel=True) s.execute() print(s.result) def test_simple_aggregation(drain_setup, crime_step): s = SimpleCrimeAggregation(inputs=[crime_step], indexes=['District', 'Community Area'], parallel=False) s.execute() print(s.result) def test_simple_join(drain_setup, crime_step): s = SimpleCrimeAggregation(inputs=[crime_step], indexes=['District', 'Community Area'], parallel=True) s.execute() left = pd.DataFrame({'District':[1,2], 'Community Area':[1,2]}) print(s.join(left)) def test_simple_join_fillna(drain_setup, crime_step): s = SimpleCrimeAggregation(inputs=[crime_step], indexes=['District', 'Community Area'], parallel=True) s.execute() left =
pd.DataFrame({'District':[1,2], 'Community Area':[1,100]})
pandas.DataFrame
"""Bloch wave solver""" import importlib as imp import numpy as np,pandas as pd,pickle5,os,glob,tifffile from typing import TYPE_CHECKING, Dict, Iterable, Optional, Sequence, Union from subprocess import check_output#Popen,PIPE from crystals import Crystal from utils import glob_colors as colors,handler3D as h3d from utils import displayStandards as dsp #;imp.reload(dsp) from utils import physicsConstants as cst #;imp.reload(cst) from EDutils import postprocess as pp #;imp.reload(pp) from EDutils import structure_factor as sf #;imp.reload(sf) from EDutils import scattering_factors as scatf #;imp.reload(scatf) from EDutils import viewers #;imp.reload(viewers) from EDutils import utilities as ut #;imp.reload(ut) from EDutils import display as EDdisp #;imp.reload(EDdisp) from . import util as bloch_util #;imp.reload(bloch_util) class Bloch: """ Bloch wave simulation class Parameters --------- file structure file (3D:cif_file or wallpaper info in 2D) name optional name (used to save object see set_name) path A path for the simulation folder beam dictionary passed to :meth:`~Bloch.set_beam` keV electron wavelength (see :meth:`~Bloch.set_beam`) u beam direction [ux,uy,uz] in reciprocal space (see :meth:`~Bloch.set_beam`) Nmax max order of reflections/resolution (see :meth:`~Bloch.update_Nmax`) Smax maximum excitation error (see :meth:`~Bloch.solve`) solve solve the system by diagonalizing the Bloch matrix kwargs arguments to be passed to :meth:`~Bloch.solve` """ def __init__(self, cif_file:str,name:str='',path:str='', beam:Optional[dict]={},keV:float=200,u:Sequence[float]=[0,0,1], Nmax:int=1, Smax:float=0.2, solve:bool=True, eps:float=1, **kwargs, ): self.solved = False self.Nmax = 0 self.thick = 100 self.thicks = self._set_thicks((0,1000,1000)) self.eps=eps self._set_structure(cif_file) self.update_Nmax(Nmax) beam_args={'keV':keV,'u':u} beam_args.update(beam) self.set_beam(**beam_args) self.set_name(name,path) self._set_excitation_errors(Smax) self._set_Vg() if solve: self.solve(Smax=Smax,**kwargs) # if show_thicks or 't' in opts: # self.show_beams_vs_thickness(strong=['I']) # if 's' in opts: # self.save() def set_name(self,name='',path=''): """ Set the basename for saving a Bloch obj as path+name+'.pkl' Parameters ---------- name The name of the simulation(can include the full path) path The path to the simulation folder .. NOTE:: By default the simulation name is '<cif><zone axis>_<keV>keV_bloch' """ basefile = self.cif_file.replace('.cif','') if not name: u_str = ''.join(['%d' %np.round(u) for u in self.Kabc0]) name='%s%s_%dkeV_bloch' %(os.path.basename(basefile),u_str,np.round(self.keV)) if not path:path=os.path.dirname(basefile) self.path = path #; print(self.path) self.name = name #;print('name:',self.name) def update_Nmax(self,Nmax:int): """ Update resolution/max order (lattice and Fhkl) Parameters ---------- Nmax maximum h,k,l order """ if type(Nmax) in [int,np.int64] : if not Nmax==self.Nmax: self.Nmax=Nmax (h,k,l),(qx,qy,qz) = ut.get_lattice(self.lat_vec,self.Nmax) self.lattice = [(h,k,l),(qx,qy,qz)] self.hklF,self.Fhkl = sf.structure_factor3D(self.pattern, 2*np.pi*self.lat_vec,hklMax=2*self.Nmax) def set_beam(self, keV:float=200, # lam:float=None, u:Sequence[float]=[0,0,1], K:Optional[Sequence[float]]=None, u0:Optional[Sequence[int]]=None, ): """ Set the beam direction and wavelength Parameters ---------- keV beam wavelength in keV u beam direction K update beam direction and wavelength (overwrites keV) u0 beam direction zone axis notation .. note:: The order of priority for setting up the beam is K,u0,u """ if isinstance(K,list) or isinstance(K,np.ndarray): self.k0 = np.linalg.norm(K) self.u = K/self.k0 else: if isinstance(u0,list) or isinstance(u0,np.ndarray): u = np.array(u0).dot(self.lat_vec) self.u = np.array(u)/np.linalg.norm(u) self.k0 = 1/cst.keV2lam(keV) self.lam = 1/self.k0 self.keV = cst.lam2keV(self.lam) self.sig = cst.keV2sigma(self.keV) # self.u = self.K/self.k0 self.K = self.k0*self.u self.Kuvw = self.lat_vec.dot(self.K) #projection in reciprocal crystal basis self.Kabc = self.lat_vec0.dot(self.K) #projection in crystal basis self.Kabc0 = self.Kabc/(abs(self.Kabc)[abs(self.Kabc)>0.01].min()) #;print(Kabc) self.Kuvw0 = self.Kuvw/(abs(self.Kuvw)[abs(self.Kuvw)>0.01].min()) #;print(Kabc) def set_thickness(self,thick:float=100): """set thickness and update beams Parameters ---------- thick : thickness in A """ if type(thick) in [int,float] :self.thick=thick self._set_kinematic() if self.solved:self._set_intensities() def solve(self, Smax:Optional[float]=None,hkl:Optional[Iterable[int]]=None, Nmax:Optional[int]=None, beam:Optional[dict]={}, thick:float=None,thicks:Sequence[float]=None, opts:str='sv0', ): """ Diagonalize the Blochwave matrix Parameters ---------- Smax maximum excitation error to be included hkl Beams to include Nmax max order of reflections/resolution (see :meth:`~Bloch.update_Nmax` ) beam dictionary passed to :meth:`~Bloch.set_beam` thick thickness of crystal (can be modified without resolving) thicks range of thickness [z_min,z_max,z_step] opts s(save) t(show intensities) z(show beam vs thickness) 0(Vopt0) v(verbose) H(show H) .. note :: If hkl is specified, Smax is not taken into account """ if Nmax : self.update_Nmax(Nmax) if beam : self.set_beam(**beam) if Smax or isinstance(hkl,np.ndarray): self._set_excitation_errors(Smax,hkl) self._set_Vg() self._solve_Bloch(show_H='H' in opts,Vopt0='0' in opts,v='v' in opts) ##### postprocess if thick or 't' in opts: self.set_thickness(thick) if not type(thicks)==type(None) or 'z' in opts: self._set_beams_vs_thickness(thicks)#;print('thicks solved') if 's' in opts: self.save() ################################################################################ #### private ################################################################################ def _solve_Felix(self,felix_cif,npx=20,nbeams=200,thicks=(10,250,10),show_log=False): felix='%s/bin/felix' %os.path.dirname(__file__) if not os.path.exists(felix): print('Running with Felix not available. You need to install felix in %s :') print(felix) inp = bloch_util.get_inp(npx,nbeams,self.u,self.keV,thicks) with open("%s/felix.inp" %self.path,'w') as f:f.write(inp) print(colors.blue+"preparing simulation"+colors.black) cmd="""cd %s; if [ ! -d felix ];then mkdir felix;fi; cp %s felix/felix.cif; mv felix.inp felix; """ %(self.path,os.path.realpath(felix_cif)) # p=Popen(cmd,shell=True)#;p.wait();o,e = p.communicate();if e:print(e) p=check_output(cmd,shell=True).decode();print(p) print(colors.blue+"... running felix ..."+colors.black) cmd="""cd %s; cd felix; %s > felix.log 2>&1; """ %(self.path,felix)#os.path.dirname(__file__)) p=check_output(cmd,shell=True).decode() #;print(p) if show_log: print(colors.blue+"felix output"+colors.black) with open('%s/felix/felix.log' %self.path,'r') as f:print('\n'.join(f.readlines())) g = np.loadtxt(os.path.join(self.path,'felix/eigenvals.txt')) C = np.loadtxt(os.path.join(self.path,'felix/eigenvec.txt')) self.gammaj = g[:,3::2]+1J*g[:,4::2];g=g[:,0] self.CjG = C[:,3::2]+1J*C[:,4::2] self.invCjG=np.conj(C.T) def _solve_Bloch(self,show_H=False,Vopt0=True,v=False): ''' Diagonalize the Hamiltonian''' # Ug is a (2*Nmax+1)^3 tensor : # Ug[l] = [U(-N,-N,l) .. U(-N,0,l) .. U(-N,N,l) # U( 0,-N,l) .. U( 0,0,l) .. U( 0,N,l) # U(-N,-N,l) .. U( N,0,l) .. U( N,N,l)] hkl = self.df_G[['h','k','l']].values Sg = self.df_G.Sw.values pre = 1/np.sqrt(1-cst.keV2v(self.keV)**2) Ug = pre*self.Fhkl/(self.crys.volume*np.pi)*self.eps #/3 ##################### # setting average potential to 0 # Ug[U0_idx] = U0 # and Ug(iG,jG) are obtained from Ug[h,k,l] where h,k,l = hlk_iG-hkl_jG ##################### U0_idx = [2*self.Nmax]*3 Ug[tuple(U0_idx)] = 0 # if Vopt0 :Ug[tuple(U0_idx)] = 0 #setting average potential to 0 if v:print(colors.blue+'...assembling %dx%d matrix...' %((Sg.shape[0],)*2)+colors.black) H = np.diag(Sg+0J) for iG,hkl_G in enumerate(hkl) : U_iG = np.array([Ug[tuple(hkl_J+U0_idx)] for hkl_J in hkl_G-hkl]) #;print(V_iG.shape) # print('G : ',hkl_G) # print('U_G:',Ug[tuple(U0_idx+hkl_G)]) # print('idx iG:',[tuple(hkl_J+U0_idx) for hkl_J in hkl_G-hkl]) # print(U_iG) H[iG,:] += U_iG/(2*self.k0) #off diagonal terms as potential self.H = H*2*np.pi #to get same as felix if show_H:self.show_H() if v:print(colors.blue+'...diagonalization...'+colors.black) self.gammaj,self.CjG = np.linalg.eigh(self.H) #;print(red+'Ek',lk,black);print(wk) self.invCjG = np.linalg.inv(self.CjG) self.solved = True def _set_structure(self,cif_file): self.cif_file = cif_file self.crys = ut.import_crys(cif_file) self.lat_vec0 = np.array(self.crys.lattice_vectors) self.lat_vec = np.array(self.crys.reciprocal_vectors)/(2*np.pi) self.pattern = np.array([np.hstack([a.coords_fractional,a.atomic_number]) for a in self.crys.atoms] ) def _set_excitation_errors(self,Smax=0.02,hkl=None): """ get excitation errors for Sg<Smax - Smax : maximum excitation error to be included - hkl : list of tuple or nbeams x 3 ndarray - beams to be included (for comparison with other programs) """ K,K0 = self.K,self.k0 if isinstance(hkl,list) or isinstance(hkl,np.ndarray): hkl = np.array(hkl) h,k,l = hkl.T qx,qy,qz = hkl.dot(self.lat_vec).T else: (h,k,l),(qx,qy,qz) = self.lattice Kx,Ky,Kz = K Sw = K0-np.sqrt((Kx-qx)**2+(Ky-qy)**2+(Kz-qz)**2) Swa = (K0**2-((Kx+qx)**2+(Ky+qy)**2+(Kz+qz)**2))/(2*K0) if Smax: idx = abs(Sw)<Smax h,k,l = np.array([h[idx],k[idx],l[idx]],dtype=int) qx,qy,qz,Sw,Swa = qx[idx],qy[idx],qz[idx],Sw[idx],Swa[idx] q = np.linalg.norm(np.array([qx,qy,qz]).T,axis=1) d = dict(zip(['h','k','l','qx','qy','qz','q','Sw','Swa'],[h,k,l,qx,qy,qz,q,Sw,abs(Sw)])) self.Smax = Smax self.nbeams = Sw.size self.df_G =
pd.DataFrame.from_dict(d)
pandas.DataFrame.from_dict
''' ''' import spacy import numpy as np import pandas as pd from pprint import pprint import scipy.spatial.distance from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine import json import re import os def normal(token): # Should the token be kept? (=is normal) # Spacy treats 'To' (title case) as *not a stop word*, but # gensim will not compute tf-idf for 'To'. To remove 'To' as a stop word here, I # do an extra test to see if the lower case token is a stop word. return not token.is_stop and not token.is_punct and not nlp.vocab[token.lower_].is_stop def tokenizer(input_string): doc = nlp(input_string) tokens = [token for token in doc if normal(token)] return tokens def lemmatizer(tokens): lemmas = [t.lemma_ for t in tokens] return lemmas def vectorizer(tokens): vectors = [t.vector for t in tokens] return vectors nlp = spacy.load('en_core_web_md', entity = False, parser = False) # Connect to local PostgreSQL user = 'ubuntu' password = '' dbname = 'congress' host = 'localhost' local_port = '5432' es = "postgresql+psycopg2://"+user+":"+password+"@/"+dbname+"?host="+host+"&port="+local_port engine = sqlalchemy.create_engine(es) print(engine) Session = sessionmaker(bind=engine) session = Session() print('Session created') socialTagVectors = pd.read_csv('socialTagVectors.csv') congressRareTags = session.execute("SELECT bill_id, social_tags FROM congress_tagging;")#pd.read_csv('congress_rare_tags.csv', header = 0) congressRareTags = congressRareTags.fetchall() congressbillid = [i[0] for i in congressRareTags] congresstag = [i[1] for i in congressRareTags] congressRareTags = pd.DataFrame({'bill_id': congressbillid, 'social_tags': congresstag}) billVectors = pd.read_csv('bill_document_vectors.csv') print('read 3') words_column = 'official_title' tag_column = 'bill_id' dfm = pd.read_csv('bill_metadata_andrew.csv') dfm = dfm[['bill_id',words_column,'short_title']] dfv = pd.read_csv('bill_document_vectors.csv',header=None,index_col=None) bill_ids = dfm.bill_id.values.tolist() vectors = dfv.values.tolist() df = pd.DataFrame({'bill_id':bill_ids,'vector':vectors}) socialTagOrder = pd.read_csv('socialTagOrder.csv', encoding = 'cp1252') socialtagsorder = socialTagOrder.values.tolist() socialvectors = socialTagVectors.values.tolist() socialtagsorder = [i[0] for i in socialtagsorder] socialTagOrder =
pd.DataFrame({'social_tag': socialtagsorder, 'vector': socialvectors})
pandas.DataFrame
import os import math import warnings import torch import torch.nn as nn import numpy as np import pandas as pd import shutil as sh from glob import glob from PIL import Image from copy import copy from tqdm import tqdm from pathlib import Path from datetime import datetime import libs.dirs as dirs import libs.commons as commons import libs.utils as utils from libs.index import IndexManager from libs.get_frames_class import GetFramesFull # User Input def get_input_network_type(net_type_dict, message="network"): ''' Select bewteen reference or semiauto network/dataset ''' dictLen = len(net_type_dict) print("\nEnter {} type code from list:\n".format(message)) print("Code\tName") for i in range(dictLen): print("{}:\t{}".format(i, net_type_dict[i])) input_code = int(input()) if input_code < dictLen: target_net = net_type_dict[input_code] else: target_net = "UNKNOWN" while target_net not in net_type_dict.values(): input_code = input("Unknown network. Please select a network from the list.\n") try: input_code = int(input_code) except ValueError: continue if input_code < dictLen: target_net = net_type_dict[input_code] return target_net def get_input_target_class(net_class_dict): ''' Get user input of net target class. Applicable to rede3 only. ''' classLen = len(net_class_dict) print("Enter the target class code from list:\n") print("Code\tClass name") for i in range(classLen): print("{}:\t{}".format(i, net_class_dict[i])) input_class_code = int(input()) if input_class_code < classLen: event_class = net_class_dict[input_class_code] else: event_class = "UNKNOWN" while event_class not in net_class_dict.values(): input_class_code = input("Unknown class. Please select a class from the list.\n") try: input_class_code = int(input_class_code) except ValueError: continue if input_class_code < classLen: event_class = net_class_dict[input_class_code] return event_class # Reports and logging def get_class_counts(index, class_column, pos_label, neg_label): ''' Returns index class counts according to input labels. index: pandas DataFrame DataFrame with the elements to be counted. pos_label, neg_label: any object or list labels to be compared to elements of index[class_column]. If any neg_label is None, the count of negative elements will be <Total index size> - <positive count>. ''' if isinstance(pos_label, str) or not(hasattr(pos_label, "__iter__")): pos_label = [pos_label] if isinstance(neg_label, str) or not(hasattr(neg_label, "__iter__")): neg_label = [neg_label] posCount = 0 for label in pos_label: posCount += index.groupby(class_column).get_group(label).count()[0] negCount = 0 for label in neg_label: if label is None: negCount = index.shape[0] - posCount break # Else, count normally negCount += index.groupby(class_column).get_group(label).count()[0] return posCount, negCount def get_net_class_counts(index_path, net, target_class=None): ''' Chooses correct class labels to use in a get_class_counts function call according to input net and target_class. ''' assert Path(index_path).is_file(), "Index path does not exist." index = remove_duplicates(pd.read_csv(index_path, low_memory=False), "FrameHash") if (net == 3) and (target_class not in commons.rede3_classes.values()): raise ValueError("Net 3 requires a valid target_class.") if net == 1: classColumn = "rede1" posLabel = commons.rede1_positive negLabel = commons.rede1_negative mask = None elif net ==2: classColumn = "rede2" posLabel = commons.rede2_positive negLabel = commons.rede2_negative mask = (index["rede1"] == commons.rede1_positive) elif net == 3: classColumn = "rede3" posLabel = target_class negLabel = None mask = (index["rede2"] == commons.rede2_positive) if mask is not None: # Pass only relevant fraction of index to get_class_counts index = index.loc[mask, :] # Translate to binary classes index[classColumn] = translate_labels(index[classColumn], classColumn) return get_class_counts(index, classColumn, posLabel, negLabel) def save_seed_log(log_path, seed, id_string): # Save sample seed if Path(log_path).is_file(): f = open(log_path, 'a') else: f = open(log_path, 'w') f.write("{}\n{}\n".format(id_string, seed)) f.close() def get_loop_stats(loop_folder): # TODO: Finish function statsDf = pd.DataFrame() return statsDf def make_report(report_path, sampled_path, manual_path, automatic_path, prev_unlabeled_path, train_info, rede=1, target_class=None, show=False): sampledIndex = pd.read_csv(sampled_path) manualIndex = pd.read_csv(manual_path) autoIndex =
pd.read_csv(automatic_path)
pandas.read_csv
#distance to com plots #first run dataprocessing.m #then run this file import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import seaborn as sns # %matplotlib inline import scipy.io as sio sns.set(style="white") from pylab import rcParams from matplotlib import rc # rcParams.update({'figure.figsize': (6.5,3)}) storage = sio.loadmat('for_python_FigSI4.mat') d = storage['storage'] df = pd.DataFrame(data=d,columns=['a','b','c','T_1','T_2','Stability','Branch']) top = df[df['Branch']==3.0] top = top.reset_index() top.head() middle = df[df['Branch']==2.0] middle = middle.reset_index() middle.head() bottom = df[df['Branch']==1.0] bottom = bottom.reset_index() bottom.head() topbar = top.mean() middlebar = middle.mean() bottombar = bottom.mean() print(topbar,middlebar,bottombar) top['Distance to COM'] = np.sqrt((top['a']-topbar['a'])**2 + (top['b']-topbar['b'])**2 \ + (top['c']-topbar['c'])**2 + (top['T_1']-topbar['T_2'])**2 \ + (top['T_2']-topbar['T_2'])**2) middle['Distance to COM'] = np.sqrt((middle['a']-middlebar['a'])**2 + (middle['b']-middlebar['b'])**2 \ + (middle['c']-middlebar['c'])**2 + (middle['T_1']-middlebar['T_2'])**2 \ + (middle['T_2']-middlebar['T_2'])**2) bottom['Distance to COM'] = np.sqrt((bottom['a']-bottombar['a'])**2 + (bottom['b']-bottombar['b'])**2 \ + (bottom['c']-bottombar['c'])**2 + (bottom['T_1']-bottombar['T_2'])**2 \ + (bottom['T_2']-bottombar['T_2'])**2) frames = [top,middle,bottom] dist_to_com = pd.concat(frames) dist_to_com.loc[dist_to_com['Branch']==3.0, 'Branch'] = 'Rac Dominated' dist_to_com.loc[dist_to_com['Branch']==2.0, 'Branch'] = 'Coexistence' dist_to_com.loc[dist_to_com['Branch']==1.0, 'Branch'] = 'Rho Dominated' dist_to_com.loc[dist_to_com['Stability']==-1, 'Stability'] = 'LPA Unstable' dist_to_com.loc[dist_to_com['Stability']==1, 'Stability'] = 'LPA Stable' g = sns.catplot(palette={"LPA Stable": [0.3,0.3,0.3], "LPA Unstable": [1,0,0]},x="Branch",y="Distance to COM",hue="Stability",kind="box",data=dist_to_com, height=3,aspect=1.3,legend=False) plt.legend(loc='upper right') plt.savefig('Distance to COM.eps') n = 50000 inside = [] annulus = [] outside = [] for i in range(0,n): x = 1.25*(2*np.random.rand(1,5)-1) r = np.linalg.norm(x) if r <= 1: inside.append(x) elif r <= 1.25: annulus.append(x) else: outside.append(x) inside = np.array(inside) inside = inside[:,0,:] insidedf = pd.DataFrame(data=inside,columns=['x1','x2','x3','x4','x5']) insidedf['Location'] = 'Sphere' insidedf.head() annulus = np.array(annulus) annulus = annulus[:,0,:] annulusdf =
pd.DataFrame(data=annulus,columns=['x1','x2','x3','x4','x5'])
pandas.DataFrame
import pathlib import shutil from loguru import logger import types import pathlib import importlib import pandas as pd import datamol def _introspect(module, parent_lib): data = [] for attr_str in dir(module): if attr_str.startswith("_"): continue # Get the attribute attr = getattr(module, attr_str) # Attribute type attr_type = type(attr) attr_type_str = attr_type.__name__ # Get the attribute's parent module (the first level module after `datamol`) if isinstance(attr, types.ModuleType): parent_module_str = [module.__name__] is_module = True else: parent_module_str = attr.__module__.split(".") is_module = False datum = {} datum["attr"] = attr_str datum["attr_type"] = attr_type_str datum["parent_list"] = parent_module_str datum["parent"] = parent_module_str[-1] datum["is_module"] = is_module data.append(datum) # Build dataframe data =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import polling2 import requests import json from web3 import Web3 import pandas as pd from decouple import config from datetime import datetime import logging from collections import defaultdict import time from sqlalchemy import create_engine, desc from sqlalchemy.orm import sessionmaker from models import EdenBlock, Epoch, Base, Distribution, DistributionBalance from apscheduler.schedulers.background import BackgroundScheduler INFURA_ENDPOINT = config('INFURA_ENDPOINT') PSQL_ENDPOINT = config('PSQL_ENDPOINT') engine = create_engine(PSQL_ENDPOINT) Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() query_dict = { 'block': 'block.graphql', 'distribution': 'distribution.graphql', 'block_lookup': 'block_lookup.graphql', 'epoch_latest': 'epoch_latest.graphql', 'epoch': 'epoch.graphql' } eden_governance_api = 'https://api.thegraph.com/subgraphs/name/eden-network/governance' eden_distribution_api = 'https://api.thegraph.com/subgraphs/name/eden-network/distribution' eden_network_api = 'https://api.thegraph.com/subgraphs/name/eden-network/network' def query_to_dict(rset): result = defaultdict(list) for obj in rset: instance = inspect(obj) for key, x in instance.attrs.items(): result[key].append(x.value) return result def get_web3_provider(): infura_endpoint = INFURA_ENDPOINT my_provider = Web3.HTTPProvider(infura_endpoint) w3 = Web3(my_provider) return w3 def get_latest_eth_block(): eden_db_last_block = get_latest_eden_block_db() w3 = get_web3_provider() latest_eth_block = w3.eth.get_block('latest')['number'] if latest_eth_block > eden_db_last_block: return latest_eth_block else: return None def get_latest_eden_block_db(): eden_db_last_block = session.query(EdenBlock).order_by(desc(EdenBlock.block_number)).limit(1).all() if eden_db_last_block != []: eden_db_last_block = eden_db_last_block[0].block_number else: eden_db_last_block = 0 return eden_db_last_block def clean_epoch_entry(epoch_string): epoch_number = int(epoch_string.split('+')[1].replace('epoch', '')) return int(epoch_number) def get_latest_distribution_number(): eden_db_last_number_query = session.query(Distribution).order_by(desc(Distribution.distribution_number)).limit(1).all() if eden_db_last_number_query != []: eden_last_number = eden_db_last_number_query[0].distribution_number return eden_last_number else: return 0 def ipfs_link_cleanup(raw_uri): final_ipfs_link = "https://ipfs.io/ipfs/" + raw_uri.split('//')[1] return final_ipfs_link def graph_query_call(api, query, variables=None): request = requests.post(api, json={'query': query, 'variables': variables}) if request.status_code == 200: return request.json() else: Exception('Query failed. return code is {}. {}'.format(request.status_code, query)) def fetch_query(query): query_file = query_dict.get(query) with open(query_file, 'r') as file: data = file.read() return data def get_epoch_number(block_number): epoch_number_query = session.query(Epoch).filter(block_number >= Epoch.start_block_number, block_number <= Epoch.end_block_number).limit(1).all() if epoch_number_query != []: epoch_number = epoch_number_query[0].epoch_number return epoch_number else: latest_epoch = get_latest_epoch() return latest_epoch def get_latest_epoch(): query = fetch_query('epoch_latest') latest_epoch_result = graph_query_call(eden_governance_api, query) latest_epoch_id = latest_epoch_result['data']['epoches'][0]['id'] latest_epoch_number = clean_epoch_entry(latest_epoch_id) return latest_epoch_number def get_block_number_from_id(block_id): query = fetch_query('block_lookup') variables = {'block_id': block_id} block_result = graph_query_call(eden_governance_api, query, variables) eden_block_number = int(block_result['data']['block']['number']) return eden_block_number def eden_block_call(): last_block = 0 last_block_current = get_latest_eth_block() eden_blocks_df = pd.DataFrame() while True: query = fetch_query('block') variables = {'number_gt': last_block} block_result = graph_query_call(eden_governance_api, query, variables) eden_blocks_df_temp =
pd.DataFrame.from_dict(block_result['data']['blocks'])
pandas.DataFrame.from_dict
# utils for plotting behavior # this should be renamed to plotting/figures from scipy.stats import norm, sem from scipy.optimize import minimize from scipy import interpolate from statsmodels.stats.proportion import proportion_confint from utilsJ.regularimports import groupby_binom_ci from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import pandas as pd import seaborn as sns import warnings import types import swifter import tqdm from concurrent.futures import as_completed, ThreadPoolExecutor from scipy.interpolate import interp1d # from utilsJ.Models import alex_bayes as ab # useless, use dir(plotting) instead # def help(): # """should print at least available functions""" # print("available methods:") # print("distbysubj: grid of distributions") # print("psych_curve") # print("correcting_kiani") # print("com_heatmap") # print("binned curve: curve of means and err of y-var binning by x-var") # class cplot(): # cplot stands for custom plot # def __init__(): def distbysubj( df, data, # x? by, # grid_kwargs={}, dist_kwargs={}, override_defaults=False ): """ returns facet (g) so user can use extra methods ie: .set_axis_labels('x','y') . add_legend data: what to plot (bin on) ~ str(df.col header) by: sorter (ie defines #subplots) ~ str(df.col header) returns sns.FacetGrid obj """ if override_defaults: def_grid_kw = grid_kwargs def_dist_kw = dist_kwargs else: def_grid_kw = dict(col_wrap=2, hue="CoM_sugg", aspect=2) def_grid_kw.update(grid_kwargs) def_dist_kw = dict(kde=False, norm_hist=True, bins=np.linspace(0, 400, 50)) def_dist_kw.update(dist_kwargs) g = sns.FacetGrid(df, col=by, **def_grid_kw) g = g.map(sns.distplot, data, **def_dist_kw) return g # def raw_rt(df) # f, ax = plt.subplots(ncols=2, nrows=3,sharex=True, figsize=(16,9)) # ax = ax.flatten() # for i, subj in enumerate([f'LE{x}' for x in range(82,88)]): # vec_toplot = np.concatenate([df.loc[df.subjid==subj, 'sound_len'].values+300, 1000*np.concatenate(df.loc[df.subjid==subj,'fb'].values)]) # sns.distplot(vec_toplot[(vec_toplot<=700)], kde=False, ax=ax[i]) # ax[i].set_title(subj) # ax[i].axvline(300, c='k', ls=':') # plt.xlabel('Fixation + RT') # plt.show() def sigmoid(fit_params, x_data, y_data): """sigmoid functions for psychometric curves fir params is a tupple: (sensitivity, bias, Right Lapse, Left lapse), x_data = evidence/coherence whatever y_data: hit or miss, right responses whatever""" s, b, RL, LL = fit_params ypred = RL + (1 - RL - LL) / ( 1 + np.exp(-(s * x_data + b)) ) # this is harder to interpret # replacing function so it is meaningful # ypred = RL + (1-RL-LL)/(1+np.exp(-s(x_data-b))) return -np.sum(norm.logpdf(y_data, loc=ypred)) def sigmoid_no_lapses(fit_params, x_data, y_data): """same without lapses""" s, b = fit_params ypred = 1 / (1 + np.exp(-(s * x_data + b))) # this is harder to interpret # replacing function so it is meaningful # ypred = RL + (1-RL-LL)/(1+np.exp(-s(x_data-b))) return -np.sum(norm.logpdf(y_data, loc=ypred)) def raw_psych(y, x, lapses=True): """returns params""" if lapses: loglike = minimize(sigmoid, [1, 1, 0, 0], (x, y)) else: loglike = minimize(sigmoid_no_lapses, [0, 0], (x, y)) params = loglike["x"] return params def psych_curve( target, coherence, ret_ax=None, # if none returns data annot=False, xspace=np.linspace(-1, 1, 50), kwargs_plot={}, kwargs_error={}, ): """ function to plot psych curves target: binomial target (y), aka R_response, or Repeat coherence: coherence (x) ret_ax: None: returns tupple of vectors: points (2-D, x&y) and confidence intervals (2D, lower and upper), fitted line[2D, x, and y] True: returns matplotlib ax object xspace: x points to retrieve y_pred from curve fitting kwargs: aesthethics for each of the plotting """ # convert vect to arr if they are pd.Series for item in [target, coherence]: if isinstance(item, pd.Series): item = item.values if np.isnan(item).sum(): raise ValueError("Nans detected in provided vector") if np.unique(target).size > 2: raise ValueError("target has >2 unique values (invalids?!)") """ not required if not (coherence<0).sum(): # 0 in the sum means there are no values under 0 coherence = coherence * 2 - 1 # (from 01 to -11) r_resp = np.full(hit.size, np.nan) r_resp[np.where(np.logical_or(hit==0, hit==1)==True)[0]] = 0 r_resp[np.where(np.logical_and(rewside==1, hit==1)==True)[0]] = 1 # right and correct r_resp[np.where(np.logical_and(rewside==0, hit==0)==True)[0]] = 1 # left and incorrect """ kwargs_plot_default = {"color": "tab:blue"} kwargs_error_default = dict( ls="none", marker="o", markersize=3, capsize=4, color="maroon" ) kwargs_plot_default.update(kwargs_plot) kwargs_error_default.update(kwargs_error) tmp =
pd.DataFrame({"target": target, "coh": coherence})
pandas.DataFrame
import logging import pickle import os import time import threading import urllib from base64 import b64encode from collections import defaultdict from io import BytesIO import matplotlib as mpl mpl.use('Agg') # noqa import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import pyinotify from jinja2 import Environment, PackageLoader import numpy as np import pytz from numpy import rot90 from scipy.misc import imread, imsave from datetime import datetime from scipy.interpolate import interp1d from bb_binary import parse_image_fname_beesbook, get_timezone from pipeline import Pipeline from pipeline.pipeline import get_auto_config from pipeline.objects import Image, FinalResultOverlay, IDs, LocalizerInputImage, \ CrownOverlay, SaliencyOverlay from pipeline.stages import ResultCrownVisualizer sns.set_style('whitegrid') def timeit(method): def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() logging.debug('{0} finished in {1:.2f} seconds'.format(method.__name__, te - ts)) return result return timed def get_b64_uri(bytes, format): src = 'data:image/{0};base64,{1}' return src.format(format, b64encode(bytes.getvalue()).decode('utf-8')) def get_image_bytes(image, format='jpeg'): b = BytesIO() imsave(b, image, format) return b def get_fig_bytes(format='png', **kwargs): b = BytesIO() plt.savefig(b, bbox_inches='tight', format=format, **kwargs) return b def localize(dt): return pytz.timezone('UTC').localize(dt).astimezone(get_timezone()) def get_localtime(): return localize(datetime.now()) class ImgTemplate: def __init__(self, id=None, src=None, alt=None, header=None, reload_interval=30000): self.id = id self.src = src self.alt = alt self.header = header self.reload_interval = reload_interval class RowTemplate: def __init__(self, num_cols): self.images = [ImgTemplate() for _ in range(num_cols)] class TabTemplate: def __init__(self, name, num_rows, num_cols, active_on_load=False): self.name = name self.rows = [RowTemplate(num_cols) for _ in range(num_rows)] self.set_active_on_load(active_on_load) def set_active_on_load(self, active_flag=False): self.div_class_extras = 'in active' if active_flag else '' self.li_class_extras = 'active' if active_flag else '' class SectionTemplate: def __init__(self, name, header=None, tabs=None, grid_class='col-xs-12 col-sm-12 col-md-6 col-lg-6'): self.name = name self.header = header self.grid_class = grid_class if tabs is not None: self.tabs = tabs else: self.tabs = [] class SiteBuilder: def __init__(self, output_path, template='index.html', min_interval=30): env = Environment(loader=PackageLoader('bb_live', 'templates'), trim_blocks=True) self.template = env.get_template(template) self.min_interval = min_interval self.output_path = output_path self.output_fname = os.path.join(output_path, template) self.uris = defaultdict(str) image_tabs = [TabTemplate(name, 2, 2) for name in ('detections', 'decodings', 'inputs', 'saliencies')] image_tabs[0].set_active_on_load(True) image_section = SectionTemplate('images', header=None, tabs=image_tabs) hive_tabs = [TabTemplate('bees', 1, 1, active_on_load=True), TabTemplate('population', 1, 1), TabTemplate('age', 1, 1)] hive_section = SectionTemplate('hive', header='Hive statistics over time', tabs=hive_tabs, grid_class='col-xs-12 col-sm-12 col-md-12 col-lg-12') metrics_tabs = [TabTemplate(name, 1, 1) for name in ('smd', 'variance', 'noise', 'contrast', 'cratio', 'cratioMinMax')] metrics_tabs[0].set_active_on_load(True) metrics_section = SectionTemplate('metrics', header='Image statistics over time', tabs=metrics_tabs, grid_class='col-xs-12 col-sm-12 col-md-12 col-lg-12') self.sections = [image_section, hive_section, metrics_section] def get_image_template(self, section_name, tab_name, idx): section = [s for s in self.sections if s.name == section_name] assert(len(section) == 1) section = section[0] tab = [t for t in section.tabs if t.name == tab_name] assert(len(tab) == 1) tab = tab[0] row_idx, col_idx = divmod(int(idx), len(tab.rows)) return tab.rows[row_idx].images[col_idx] def update_uri(self, key, value): self.uris[key] = value def save_image(self, name, im, format): fname = name + '.' + format imsave(os.path.join(self.output_path, fname), im) def save_figure(self, name, format): fname = name + '.' + format plt.savefig(os.path.join(self.output_path, fname), dpi=300, bbox_inches='tight', format=format) def save_tab_image(self, name, tab, section, idx, format, header=None): id = '{}_{}'.format(tab, name) fname = '{}.{}'.format(id, format) self.update_uri(name, '{}?{}'.format(fname, get_localtime().timestamp())) image_template = self.get_image_template(section, tab, idx) image_template.id = id image_template.src = fname image_template.alt = '{} live preview'.format(id) image_template.header = header def build(self): html = self.template.render(last_updated=get_localtime(), sections=self.sections, **self.uris) open(self.output_fname, 'w').write(html) class ImageHandler: def __init__(self, site_builder, camera_rotations={0: 1, 1: -1, 2:1, 3:-1}, detections_path='detections.pkl'): self.builder = site_builder self.rotations = camera_rotations self.pipeline = Pipeline([Image], [LocalizerInputImage, FinalResultOverlay, CrownOverlay, IDs, SaliencyOverlay], **get_auto_config()) self.crown = ResultCrownVisualizer() self.detections_path = detections_path if os.path.isfile(self.detections_path): self.detections = pickle.load(open(self.detections_path, 'rb')) else: self.detections = [] @timeit def run_pipeline(self, image): results = self.pipeline([image]) return results @timeit def plot_detections(self, num_plot_samples=1000, std_window_size=25): detections = pd.DataFrame(self.detections, columns=('datetime', 'camIdx', 'id', 'confidence')) minTs = detections.datetime.min().timestamp() maxTs = detections.datetime.max().timestamp() fig, ax = plt.subplots(1, figsize=(16, 4), facecolor='white') sumValues = None for camIdx in (0, 1, 2, 3): x = np.array([ts.timestamp() for ts in detections[detections.camIdx == str(camIdx)] .groupby('datetime').id.agg(len).keys()]) y = detections[detections.camIdx == str(camIdx)].groupby('datetime').id.agg(len).values if len(x) < 2: continue f = interp1d(x, y, fill_value='extrapolate') dts = np.arange(minTs, maxTs, step=((maxTs - minTs) / num_plot_samples)) dts = dts.astype(np.float64) values = f(dts) df = pd.DataFrame( [(localize(datetime.fromtimestamp(dt)), val) for dt, val in zip(dts, values)], columns=('datetime', 'cam{}'.format(camIdx))) df.plot(ax=ax) if sumValues is None: sumValues = values else: sumValues += values if sumValues is not None: df = pd.DataFrame( [(datetime.fromtimestamp(dt), val) for dt, val in zip(dts, sumValues)], columns=('datetime', 'combined')) df.plot(ax=ax, yerr=df.combined.rolling(window=std_window_size, min_periods=0).std(), ecolor=tuple(list(sns.color_palette()[4]) + [0.3])) ax.legend(loc='upper left') ax.set_xlabel('time') ax.locator_params(nbins=12) ax.set_xticklabels([dt.strftime('%a %H:%M:%S') for dt in df.datetime[ax.get_xticks()[:-1]]]) ax.set_title('Number of visible tagged bees in colony') locs, labels = plt.xticks() plt.setp(labels, rotation=45) self.builder.update_uri('detections', get_b64_uri(get_fig_bytes(), format='png')) self.builder.save_figure('bees_detections', format='png') self.builder.save_tab_image('detections', 'bees', 'hive', idx=0, format='png') plt.close('all') @timeit def process_image(self, path, fname): im = imread(path) camIdx = fname.split('.')[0][-1] im = rot90(im, self.rotations[int(camIdx)]).astype(np.uint8).copy() orig_im = np.copy(im) results = self.run_pipeline(im) dt = get_localtime() for id in results[IDs]: confidence = np.min(np.abs(0.5 - id)) * 2 self.detections.append((dt, camIdx, int(''.join([str(c) for c in np.round(id).astype(np.int)])), confidence)) pickle.dump(self.detections, open(self.detections_path, 'wb')) self.plot_detections() img_with_overlay = self.crown.add_overlay(im.astype(np.float64) / 255, results[CrownOverlay]) saliency_overlay = results[SaliencyOverlay] self.builder.save_image('detections_cam{}'.format(camIdx), results[FinalResultOverlay], format='jpeg') self.builder.save_image('decodings_cam{}'.format(camIdx), img_with_overlay, format='jpeg') self.builder.save_image('saliencies_cam{}'.format(camIdx), saliency_overlay, format='jpeg') self.builder.save_image('inputs_cam{}'.format(camIdx), orig_im, format='jpeg') self.builder.save_tab_image('cam{}'.format(camIdx), 'detections', 'images', camIdx, format='jpeg', header='Cam{}'.format(camIdx)) self.builder.save_tab_image('cam{}'.format(camIdx), 'decodings', 'images', camIdx, format='jpeg', header='Cam{}'.format(camIdx)) self.builder.save_tab_image('cam{}'.format(camIdx), 'saliencies', 'images', camIdx, format='jpeg', header='Cam{}'.format(camIdx)) self.builder.save_tab_image('cam{}'.format(camIdx), 'inputs', 'images', camIdx, format='jpeg', header='Cam{}'.format(camIdx)) class AnalysisHandler: def __init__(self, source_dir, site_builder, analysis_metrics=('filename', 'smd', 'variance', 'noise', 'contrast', 'cratio', 'cratioMinMax')): self.builder = site_builder self.analysis_metrics = analysis_metrics self.analysis_paths = [os.path.join(source_dir, f) for f in os.listdir(source_dir) if f.startswith('analysis')] @timeit def parse_analysis(self): dfs = [] for fn in self.analysis_paths: analysis = pd.read_csv(fn, sep='\t', names=self.analysis_metrics) analysis['camIdx'] = [parse_image_fname_beesbook(s)[0] for s in analysis['filename']] analysis['datetime'] = [localize(pd.datetime.fromtimestamp( parse_image_fname_beesbook(s)[1])) for s in analysis['filename']] dfs.append(analysis) analysis = pd.concat(dfs) analysis.sort_values('datetime', inplace=True) return analysis @timeit def plot_analysis(self, analysis): for column in self.analysis_metrics[1:]: fig, ax = plt.subplots(1, figsize=(16, 4), facecolor='white') for camIdx in (0, 1, 2, 3): analysis[analysis.camIdx == camIdx].plot('datetime', column, label='cam{}'.format(camIdx), title=column, ax=ax) ax.legend(loc='upper left') ax.set_xlabel('time') self.builder.update_uri(column, get_b64_uri(get_fig_bytes(), format='png')) self.builder.save_figure('{}_metrics'.format(column), format='png') self.builder.save_tab_image('metrics', column, 'metrics', idx=0, format='png') plt.close('all') def update(self): self.plot_analysis(self.parse_analysis()) class PeriodicHiveAnalysis: def __init__(self, builder, interval=3600, detections_path='detections.pkl'): self.builder = builder self.interval = interval self.detections_path = detections_path def get_detected_ids(self, detections, confidence_treshhold=0.99): # only use detections with very high confidence detected_ids = [list([int(c) for c in str(id).rjust(12, '0')]) for id in detections[detections.confidence > confidence_treshhold].id] # convert ids from pipeline order to 'ferwar' order adjusted_ids = np.roll(detected_ids, 3, axis=1) # convert to decimal id using 11 least significant bits decimal_ids = [int(''.join([str(c) for c in id[:11]]), 2) for id in adjusted_ids] # determine what kind of parity bit was used and add 2^11 to decimal id # uneven parity bit was used decimal_ids = np.array(decimal_ids) decimal_ids[(np.sum(adjusted_ids, axis=1) % 2) == 1] += 2048 return decimal_ids def get_unique_ids(self, decimal_ids, min_detections=None, max_id=3000): unique, counts = np.unique(decimal_ids, return_counts=True) if min_detections is None: min_detections = np.ceil(np.mean([count for id, count in dict(zip(unique, counts)).items() if id > max_id])) # determine approximate number of unique ids seen in last 24 hours filtered = [(u, c) for u, c in zip(unique, counts) if u < max_id and c > min_detections] unique, counts = zip(*filtered) return unique, counts @timeit def plot_analysis(self, unique_detections_hourly, time_delta): fig, ax = plt.subplots(1, 1, figsize=(16, 4), facecolor='white') median_detections = unique_detections_hourly.rolling( center=False, min_periods=2, window=10).median() std_detections = unique_detections_hourly.rolling( center=False, window=10, min_periods=2).std() medians_flat = median_detections.Uniques.as_matrix().flatten() stds_flat = std_detections.as_matrix().flatten() ax.fill_between( median_detections.index, medians_flat - 2 * stds_flat, medians_flat + 2 * stds_flat, alpha=0.2) median_detections.plot(ax=ax, legend=False, title='Number of bees in colony'.format( int(time_delta.total_seconds() // 3600))) nticks = 12 xticks = pd.date_range(start=unique_detections_hourly.index[0], end=unique_detections_hourly.index[-1], freq=(unique_detections_hourly.index[-1] - unique_detections_hourly.index[0]) / nticks) ax.set_xticks(xticks) ax.set_xticklabels([dt.strftime('%a %H:%M:%S') for dt in xticks]) ax.set_ylim((ax.get_ylim()[0] - 10, ax.get_ylim()[-1] + 10)) ax.set_xlim((ax.get_xticks()[1], ax.get_xlim()[-1])) self.builder.update_uri('count', get_b64_uri(get_fig_bytes(), format='png')) self.builder.save_figure('population_count', format='png') self.builder.save_tab_image('count', 'population', 'hive', idx=0, format='png') plt.close('all') @timeit def plot_age_distribution(self, ages): fig, ax = plt.subplots(1, 1, figsize=(16, 4), facecolor='white') sns.distplot(ages, bins=8, hist=True, kde_kws={'bw': 0.4, 'shade': True, 'color': 'b', 'alpha': 0.3}, hist_kws={'alpha': 0.3, 'color': 'gray'}, ax=ax, label='age distribution') ax.axvline(np.median(ages), color='gray', linestyle='dashed', linewidth=2, label='median ({} days)'.format(int(np.median(ages)))) ax.set_xlabel('Age in days') ax.set_ylabel('Proportion of detected bees') ax.set_title('Age distribution in hive') ax.set_xlim((np.min(ages), np.max(ages))) ax.legend() self.builder.update_uri('distribution', get_b64_uri(get_fig_bytes(), format='png')) self.builder.save_figure('age_distribution', format='png') self.builder.save_tab_image('distribution', 'age', 'hive', idx=0, format='png') plt.close('all') @timeit def analyse_age_distribution(self, unique, counts): urllib.request.urlretrieve( 'https://www.dropbox.com/s/ze3chu5mvetjwv2/TagsControl2016.xlsx?dl=1', 'TagsControl2016.xlsx') age_data = pd.read_excel('TagsControl2016.xlsx') age_data.drop('Unnamed: 0', axis=1, inplace=True) age_data.Date =
pd.to_datetime(age_data.Date)
pandas.to_datetime
import datetime as dt import glob import os import shutil import unittest import numpy as np import pandas as pd import devicely class EverionTestCase(unittest.TestCase): READ_PATH = 'tests/Everion_test_data' BROKEN_READ_PATH = 'tests/Everion_test_data_broken' #for testing with missing files WRITE_PATH = 'tests/Everion_test_data_write' def setUp(self): self.reader = devicely.EverionReader(self.READ_PATH) def test_basic_read(self): self._test_read_individual_dataframes(self.reader) expected_signal_tags = ['heart_rate', 'respiration_rate', 'heart_rate_variability', 'oxygen_saturation', 'gsr_electrode', 'temperature_object', 'barometer_pressure', 'temperature_local', 'ctemp', 'temperature_barometer'] expected_signal_quality_tags = ['heart_rate_quality', 'respiration_rate_quality', 'heart_rate_variability_quality', 'oxygen_saturation_quality', 'ctemp_quality'] expected_sensor_tags = ['accz_data', 'led2_data', 'led1_data', 'led4_data', 'accy_data', 'accx_data', 'led3_data', 'acc_mag'] expected_feature_tags = ['inter_pulse_interval', 'inter_pulse_interval_deviation'] expected_columns = set(expected_signal_tags + expected_signal_quality_tags + expected_sensor_tags + expected_feature_tags) self.assertEqual(set(self.reader.data.columns), expected_columns) def test_read_with_non_default_tags(self): signal_tags = [12, 15, 19, 119, 134] sensor_tags = [80, 83, 84, 85, 92] feature_tags = [17] reader = devicely.EverionReader(self.READ_PATH, signal_tags=signal_tags, sensor_tags=sensor_tags, feature_tags=feature_tags) # The individual should dataframes contain all tags, regardless of the initialization parameters. self._test_read_individual_dataframes(reader) expected_singal_columns = ['respiration_rate', 'temperature_local', 'ctemp', 'temperature_barometer'] expected_signal_quality_columns = ['respiration_rate_quality', 'ctemp_quality'] # no acc_mag because 86 (accz_data) is missing expected_sensor_columns = ['led1_data', 'led4_data', 'accy_data', 'accx_data'] #17 is a valid feature column, but it is not present in the testing csv expected_feature_columns = [] expected_columns = set(expected_singal_columns + expected_signal_quality_columns + expected_sensor_columns + expected_feature_columns) self.assertEqual(set(reader.data.columns), expected_columns) def test_read_with_invalid_tags(self): signal_tags = [12, 15, 19, 119, 134, 80] #80 is not a signal tag sensor_tags = [80, 83, 84, 85, 92, 70] #70 is not a sensor tag feature_tags = [17, 86] #86 is not a sensor tag call = lambda: devicely.EverionReader(self.READ_PATH, signal_tags=signal_tags, sensor_tags=sensor_tags, feature_tags=feature_tags) self.assertRaises(KeyError, call) def test_read_with_missing_files(self): print(os.listdir()) shutil.copytree(self.READ_PATH, self.BROKEN_READ_PATH) signals_path = glob.glob(os.path.join(self.BROKEN_READ_PATH, f"*signals*")).pop() attributes_dailys_path = glob.glob(os.path.join(self.BROKEN_READ_PATH, f"*attributes_dailys*")).pop() os.remove(signals_path) os.remove(attributes_dailys_path) reader = devicely.EverionReader(self.BROKEN_READ_PATH) self.assertIsNone(reader.signals) self.assertIsNone(reader.attributes_dailys) expected_sensor_tags = ['accz_data', 'led2_data', 'led1_data', 'led4_data', 'accy_data', 'accx_data', 'led3_data', 'acc_mag'] expected_feature_tags = ['inter_pulse_interval', 'inter_pulse_interval_deviation'] expected_columns = set(expected_sensor_tags + expected_feature_tags) self.assertEqual(set(reader.data.columns), expected_columns) shutil.rmtree(self.BROKEN_READ_PATH) def test_read_with_all_join_files_missing(self): #The signals-, sensors-, and features files are the three join files. shutil.copytree(self.READ_PATH, self.BROKEN_READ_PATH) signals_path = glob.glob(os.path.join(self.BROKEN_READ_PATH, f"*signals*")).pop() sensors_path = glob.glob(os.path.join(self.BROKEN_READ_PATH, f"*sensor_data*")).pop() features_path = glob.glob(os.path.join(self.BROKEN_READ_PATH, f"*features*")).pop() os.remove(signals_path) os.remove(sensors_path) os.remove(features_path) reader = devicely.EverionReader(self.BROKEN_READ_PATH) self.assertIsNone(reader.signals) self.assertIsNone(reader.sensors) self.assertIsNone(reader.features) pd.testing.assert_frame_equal(reader.data, pd.DataFrame()) shutil.rmtree(self.BROKEN_READ_PATH) def test_timeshift_to_timestamp(self): expected_aggregates_head = pd.DataFrame({ 'count': 5 * [4468], 'streamType': 5 * [5], 'tag': [40, 18, 21, 7, 100], 'time': pd.to_datetime(5 * [1525200281], unit='s'), 'values': [-2.0, 0.76, 21.0, 60.0, 0.0], 'quality': [np.nan, 13.0, np.nan, 0.0, np.nan] }) expected_analytics_events_head = pd.DataFrame({ "count": [5622, 5621, 5620, 5619, 5618], "streamType": 5 * [7], "tag": 5 * [1], "time": pd.to_datetime([1525204397, 1525204397, 1525204148, 1525204131, 1525203790], unit='s'), "values": [22.0, 2.0, 22.0, 22.0, 2.0] }) expected_attributes_dailys_head = pd.DataFrame({ "count": [14577, 14576, 14575, 14574, 14573], "streamType": 5 * [8], "tag": 5 * [67], "time": pd.to_datetime(5 * [1525207721], unit='s'), "values": [2.0, 4.0, 3.0, 11.0, 12.0], "quality": [15.0, 9.0, 8.0, 6.0, 5.0] }) expected_everion_events_head = pd.DataFrame({ "count": 5 * [46912], "streamType": 5 * [6], "tag": [128, 131, 129, 132, 126], "time": pd.to_datetime(5 * [1525192729], unit='s'), "values": [65295.0, 900.0, 44310.0, 4096.0, 0.0] }) expected_features_head = pd.DataFrame({ "count": [787000, 787001, 787002, 787003, 787004], "streamType": 5 * [4], "tag": 5 * [14], "time": pd.to_datetime([1525192675, 1525192675, 1525192676, 1525192677, 1525192678], unit='s'), "values": [950.0, 1085.0, 1074.0, 1021.0, 1056.0], "quality": [12.0, 11.0, 12.0, 10.0, 11.0] }) expected_sensors_head = pd.DataFrame({ "count": 5 * [22917264], "streamType": 5 * [16], "tag": [86, 81, 80, 83, 85], "time": pd.to_datetime(5 * [1525192361], unit='s'), "values": [2176.0, 51612.0, 668.0, 26377.0, 1232.0] }) expected_signals_head = pd.DataFrame({ 'count': 5 * [806132], 'streamType': 5 * [2], 'tag': [71, 13, 6, 66, 12], 'time': pd.to_datetime(5 * [1525192381], unit='s'), 'values': [0.0, 21.86422, 65.0, 1.5686275, 18.0], 'quality': [np.nan, 100.0, 85.0, np.nan, 93.0] }) timestamp = pd.Timestamp('1 May 2018 16:32:41') self.reader.timeshift(timestamp) pd.testing.assert_frame_equal(self.reader.aggregates.head(), expected_aggregates_head) pd.testing.assert_frame_equal(self.reader.analytics_events.head(), expected_analytics_events_head) pd.testing.assert_frame_equal(self.reader.attributes_dailys.head(), expected_attributes_dailys_head) pd.testing.assert_frame_equal(self.reader.everion_events.head(), expected_everion_events_head) pd.testing.assert_frame_equal(self.reader.features.head(), expected_features_head) pd.testing.assert_frame_equal(self.reader.signals.head(), expected_signals_head) pd.testing.assert_frame_equal(self.reader.sensors.head(), expected_sensors_head) new_joined_data_time_col = self.reader.data.index self.assertTrue((new_joined_data_time_col.date == dt.date(2018, 5, 1)).all()) def test_timeshift_by_timedelta(self): expected_aggregates_head = pd.DataFrame({ 'count': 5 * [4468], 'streamType': 5 * [5], 'tag': [40, 18, 21, 7, 100], 'time': pd.to_datetime(5 * [1532216847], unit='s'), 'values': [-2.0, 0.76, 21.0, 60.0, 0.0], 'quality': [np.nan, 13.0, np.nan, 0.0, np.nan] }) expected_analytics_events_head = pd.DataFrame({ "count": [5622, 5621, 5620, 5619, 5618], "streamType": 5 * [7], "tag": 5 * [1], "time": pd.to_datetime([1532220716, 1532220716, 1532220467, 1532220450, 1532220109], unit='s'), "values": [22.0, 2.0, 22.0, 22.0, 2.0] }) expected_attributes_dailys_head = pd.DataFrame({ "count": [14577, 14576, 14575, 14574, 14573], "streamType": 5 * [8], "tag": 5 * [67], "time": pd.to_datetime(5 * [1532220709], unit='s'), "values": [2.0, 4.0, 3.0, 11.0, 12.0], "quality": [15.0, 9.0, 8.0, 6.0, 5.0] }) expected_everion_events_head = pd.DataFrame({ "count": 5 * [46912], "streamType": 5 * [6], "tag": [128, 131, 129, 132, 126], "time": pd.to_datetime(5 * [1532220837], unit='s'), "values": [65295.0, 900.0, 44310.0, 4096.0, 0.0] }) expected_features_head = pd.DataFrame({ "count": [787000, 787001, 787002, 787003, 787004], "streamType": 5 * [4], "tag": 5 * [14], "time": pd.to_datetime([1532216891, 1532216891, 1532216892, 1532216893, 1532216894], unit='s'), "values": [950.0, 1085.0, 1074.0, 1021.0, 1056.0], "quality": [12.0, 11.0, 12.0, 10.0, 11.0] }) expected_sensors_head = pd.DataFrame({ "count": 5 * [22917264], "streamType": 5 * [16], "tag": [86, 81, 80, 83, 85], "time": pd.to_datetime(5 * [1532220108], unit='s'), "values": [2176.0, 51612.0, 668.0, 26377.0, 1232.0] }) expected_signals_head = pd.DataFrame({ 'count': 5 * [806132], 'streamType': 5 * [2], 'tag': [71, 13, 6, 66, 12], 'time': pd.to_datetime(5 * [1532216905], unit='s'), 'values': [0.0, 21.86422, 65.0, 1.5686275, 18.0], 'quality': [np.nan, 100.0, 85.0, np.nan, 93.0] }) timedelta = - pd.Timedelta('222 days, 15 hours, 51 minutes, 33 seconds') old_joined_data_time_col = self.reader.data.index.copy() self.reader.timeshift(timedelta) pd.testing.assert_frame_equal(self.reader.aggregates.head(), expected_aggregates_head) pd.testing.assert_frame_equal(self.reader.analytics_events.head(), expected_analytics_events_head) pd.testing.assert_frame_equal(self.reader.attributes_dailys.head(), expected_attributes_dailys_head) pd.testing.assert_frame_equal(self.reader.everion_events.head(), expected_everion_events_head) pd.testing.assert_frame_equal(self.reader.features.head(), expected_features_head) pd.testing.assert_frame_equal(self.reader.signals.head(), expected_signals_head) pd.testing.assert_frame_equal(self.reader.sensors.head(), expected_sensors_head) new_joined_data_time_col = self.reader.data.index.copy()
pd.testing.assert_index_equal(old_joined_data_time_col + timedelta, new_joined_data_time_col)
pandas.testing.assert_index_equal
"""Live and historical flood monitoring data from the Environment Agency API""" import requests import pandas as pd import flood_tool.geo as geo import flood_tool.tool as tool import numpy as np import folium __all__ = [] LIVE_URL = "http://environment.data.gov.uk/flood-monitoring/id/stations" ARCHIVE_URL = "http://environment.data.gov.uk/flood-monitoring/archive/" class get_map(object): ''' class to retieve rainfall data from website to design alert system and find historical data for a specific date ''' def __init__(self, date='2019-10-08'): self.station_url = 'http://environment.data.gov.uk/flood-monitoring/id/stations.csv?parameter=rainfall' self.value_url = 'http://environment.data.gov.uk/flood-monitoring/id/measures.csv?parameter=rainfall' self.spe_date_url = 'http://environment.data.gov.uk/flood-monitoring/data/readings.csv?parameter=rainfall&parameter=rainfall&_view=full&date=' + str(date) # for requirement 3 # read the latest values from website # read the corresponding values of stations # and it is updated once the new file is uploaded self.date = date DF_value = pd.read_csv(self.value_url) self.value = DF_value.loc[:, ['stationReference', 'value', 'dateTime']] # read the correspongding latitude and longitude of stations DF_location = pd.read_csv(self.station_url) self.location = DF_location.loc[:, ['stationReference', 'lat', 'long']] # merge the two DataFrame to be used later. # the purpose is to combine the location with value self.DF3 = self.value.merge(self.location, left_on='stationReference', right_on='stationReference') DF_readings = pd.read_csv(self.spe_date_url) readings = DF_readings.loc[:, ['stationReference', 'value', 'dateTime']] DF4 = self.location.merge(readings, left_on='stationReference', right_on='stationReference') # turns all elements in value column into floats DF4['value'] = pd.to_numeric(DF4['value'], errors='coerce') # converts np.nan into 0 DF4['value'] = DF4['value'].fillna(0) self.DF4 =DF4 def get_all_station(self, latitude, longitude, distance): ''' get corresponding rainfall value aroung each Postcode from latitude and longitude of the Postcode Parameters ---------- latitude: sequence of float Ordered collection of latitude longitude: sequence of float Ordered collection of longitude Returns ------- numpy.ndarray array of floats for rainfall value ''' DF3 = self.DF3 DF3['lat_max'] = DF3['lat'] + distance DF3['lat_min'] = DF3['lat'] - distance DF3['long_max'] = DF3['long'] + distance DF3['long_min'] = DF3['long'] - distance rainfall = [] for point in range(len(latitude)): stations_tem = DF3.loc[(DF3.lat_max >= latitude[point]) & (DF3.lat_min <= latitude[point])] stations = stations_tem.loc[ (stations_tem.long_max >= longitude[point]) & (stations_tem.long_min <= longitude[point])] rainfall_value = np.array(stations.value) rainfall_value = np.nan_to_num(rainfall_value) # if there is no station in the range of postcode, process the rainfall as 0 if len(rainfall_value) == 0: rainfall_value = np.array([0]) # mean = rainfall_value.sum() / len(rainfall_value) output = rainfall_value.max() rainfall.append(output) return rainfall def get_Risk_Level(self, postcode, distance): """ Get an array of corresponding latitude, longitude and risk level from a sequence of postcodes and distance range around every postcode Parameters ---------- postcodes: sequence of strs Ordered collection of postcodes distance: a float number Returns ------- numpy.ndarray array of floats for the latitude, longitude and risk level """ # create class Tool to use functions in tool.py # for apply function in tool.py later files = tool.Tool(postcode_file='flood_tool/resources/postcodes.csv', risk_file='flood_tool/resources/flood_probability.csv', values_file='flood_tool/resources/property_value.csv') #set the range of postcode to define stations and get latitude, longitude lat_long = files.get_lat_long(postcode) latitude = lat_long[:, 0] longitude = lat_long[:, 1] #get rainfall value for input Postcode rainfall = np.array(self.get_all_station(latitude, longitude, distance)) #change numpy.array to 0 which is convenient to process later rainfall = np.nan_to_num(rainfall) EOS_NOS = geo.get_easting_northing_from_lat_long(latitude, longitude) prob_band = files.get_easting_northing_flood_probability(EOS_NOS[0], EOS_NOS[1]) dataset = pd.DataFrame({'Postcode': postcode, 'Latitude': latitude, 'Longitude': longitude, 'Value': rainfall, 'Probability Band': prob_band}) #replace the probability band to threshold value threshold_DF= dataset.replace({'High': 1.00, 'Medium': 1.25, 'Low': 1.5, 'Very Low': 1.75, 'Zero': 2.00, 'No Risk': 2.00}) first_level = 0.2 second_level = 0.4 third_level = 0.6 def to_mark(diff): ''' get the corresponding risk level as str from the difference between threshold and rainfall value Parameters ---------- diff: a float number recording difference between threshold and rainfall value Returns ------- str: risk level ''' if diff < 0: result = 'No Risk' else: if diff < first_level: result = 'Low Risk' elif (diff >= first_level) & (diff < second_level): result = 'Medium Risk' elif (diff >= second_level) & (diff < third_level): result = 'High Risk' else: result = 'Dangerous' return result #comupute the difference between threshold and rainfall value diff_DF = threshold_DF.assign(diff=threshold_DF['Value'] - threshold_DF['Probability Band']) #change the difference to the corresponding risk level Risk_Ser = diff_DF['diff'].apply(to_mark) output = np.array(Risk_Ser) return latitude, longitude, output # work for Question 4 def get_spe_date(self): """ Get an array of corresponding latitude, longitude and risk level from a specific date Parameters ---------- data: str as specific format farmat: 'yyyy-mm-dd' such as '2019-10-08' Returns ------- numpy.ndarray array of floats for the latitude, longitude and risk level """ files = tool.Tool(postcode_file='resources/postcodes.csv', risk_file='resources/flood_probability.csv', values_file='resources/property_value.csv') DF4 = self.DF4 daily_rainfall = DF4.groupby('stationReference').value.sum() daily_rainfall =
pd.DataFrame(daily_rainfall)
pandas.DataFrame
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != len(values): v = next(v for v in values if v is not None) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([ x.index for x in values ]) singular_series = (len(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.tools.merge import concat return concat(values) if not all_indexed_same: return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = set(v.name for v in values) if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if not _np_version_under1p7 or isinstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concat gets the dtypes correct from pandas.tools.merge import concat result = concat(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = DataFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.isin(_DATELIKE_DTYPES).any()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if any([ isinstance(v,Timestamp) for v in values ]) else False return Series(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.tools.merge import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if isinstance(res, Series): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.append(group) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index concatenated = concat(applied, join_axes=[concat_index], axis=self.axis, verify_integrity=False) concatenated.sort_index(inplace=True) return concatenated def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed DataFrame on each group and return a DataFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) """ # try to do a fast transform via merge if possible try: obj = self._obj_with_exclusions if isinstance(func, compat.string_types): result = getattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = getattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remap index based on the grouper # and broadcast it if ((not isinstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or len(result.index) != len(obj.index)): results = obj.values.copy() for (name, group), (i, row) in zip(self, result.iterrows()): indexer = self._get_index(name) results[indexer] = np.tile(row.values,len(indexer)).reshape(len(indexer),-1) return DataFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can merge the result in # GH 7383 names = result.columns result = obj.merge(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if isinstance(func, compat.string_types): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we get the same results if res.shape == res_fast.shape: res_r = res.values.ravel() res_fast_r = res_fast.values.ravel() mask = notnull(res_r) if (res_r[mask] == res_fast_r[mask]).all(): path = fast_path except: pass return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: # pragma: no cover raise TypeError('Transform function invalid for data types') columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Example -------- >>> grouped = df.groupby(lambda x: mapping[x]) >>> grouped.filter(lambda x: x['A'].sum() + x['B'].sum() > 0) """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, 'name', name) res = func(group) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if (isinstance(res, (bool, np.bool_)) or np.isscalar(res) and isnull(res)): if res and notnull(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError("filter function returned a %s, " "but expected a scalar bool" % type(res).__name__) return self._apply_filter(indices, dropna) class DataFrameGroupBy(NDFrameGroupBy): _apply_whitelist = _dataframe_apply_whitelist _block_agg_axis = 1 def __getitem__(self, key): if self._selection is not None: raise Exception('Column(s) %s already selected' % self._selection) if isinstance(key, (list, tuple, Series, Index, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: %s" % str(bad_keys)[1:-1]) return DataFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) elif not self.as_index: if key not in self.obj.columns: raise KeyError("Column not found: %s" % key) return DataFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) else: if key not in self.obj: raise KeyError("Column not found: %s" % key) # kind of a kludge return SeriesGroupBy(self.obj[key], selection=key, grouper=self.grouper, exclusions=self.exclusions) def _wrap_generic_output(self, result, obj): result_index = self.grouper.levels[0] if result: if self.axis == 0: result = DataFrame(result, index=obj.columns, columns=result_index).T else: result = DataFrame(result, index=obj.index, columns=result_index) else: result = DataFrame(result) return result def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data, 1 else: return obj._data, 1 def _wrap_aggregated_output(self, output, names=None): agg_axis = 0 if self.axis == 1 else 1 agg_labels = self._obj_with_exclusions._get_axis(agg_axis) output_keys = self._decide_output_index(output, agg_labels) if not self.as_index: result = DataFrame(output, columns=output_keys) group_levels = self.grouper.get_group_levels() zipped = zip(self.grouper.names, group_levels) for i, (name, labels) in enumerate(zipped): result.insert(i, name, labels) result = result.consolidate() else: index = self.grouper.result_index result = DataFrame(output, index=index, columns=output_keys) if self.axis == 1: result = result.T return self._reindex_output(result).convert_objects() def _wrap_agged_blocks(self, items, blocks): if not self.as_index: index = np.arange(blocks[0].values.shape[1]) mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) group_levels = self.grouper.get_group_levels() zipped = zip(self.grouper.names, group_levels) for i, (name, labels) in enumerate(zipped): result.insert(i, name, labels) result = result.consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result).convert_objects() def _reindex_output(self, result): """ if we have categorical groupers, then we want to make sure that we have a fully reindex-output to the levels. These may have not participated in the groupings (e.g. may have all been nan groups) This can re-expand the output space """ groupings = self.grouper.groupings if groupings is None: return result elif len(groupings) == 1: return result elif not any([ping._was_factor for ping in groupings]): return result levels_list = [ ping._group_index for ping in groupings ] index = MultiIndex.from_product(levels_list, names=self.grouper.names) return result.reindex(**{ self.obj._get_axis_name(self.axis) : index, 'copy' : False }).sortlevel() def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy(self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions) def _apply_to_column_groupbys(self, func): from pandas.tools.merge import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1) from pandas.tools.plotting import boxplot_frame_groupby DataFrameGroupBy.boxplot = boxplot_frame_groupby class PanelGroupBy(NDFrameGroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self._selected_obj.items else: slice_axis = self._selection_list slicer = lambda x: self._selected_obj[x] else: raise NotImplementedError for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def aggregate(self, arg, *args, **kwargs): """ Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a Panel or when passed to Panel.apply. If pass a dict, the keys must be DataFrame column names Returns ------- aggregated : Panel """ if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) return self._aggregate_generic(arg, *args, **kwargs) def _wrap_generic_output(self, result, obj): if self.axis == 0: new_axes = list(obj.axes) new_axes[0] = self.grouper.result_index elif self.axis == 1: x, y, z = obj.axes new_axes = [self.grouper.result_index, z, x] else: x, y, z = obj.axes new_axes = [self.grouper.result_index, y, x] result = Panel._from_axes(result, new_axes) if self.axis == 1: result = result.swapaxes(0, 1).swapaxes(0, 2) elif self.axis == 2: result = result.swapaxes(0, 2) return result def _aggregate_item_by_item(self, func, *args, **kwargs): obj = self._obj_with_exclusions result = {} if self.axis > 0: for item in obj: try: itemg = DataFrameGroupBy(obj[item], axis=self.axis - 1, grouper=self.grouper) result[item] = itemg.aggregate(func, *args, **kwargs) except (ValueError, TypeError): raise new_axes = list(obj.axes) new_axes[self.axis] = self.grouper.result_index return Panel._from_axes(result, new_axes) else: raise NotImplementedError def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError class NDArrayGroupBy(GroupBy): pass #---------------------------------------------------------------------- # Splitting / application class DataSplitter(object): def __init__(self, data, labels, ngroups, axis=0): self.data = data self.labels = com._ensure_int64(labels) self.ngroups = ngroups self.axis = axis @cache_readonly def slabels(self): # Sorted labels return com.take_nd(self.labels, self.sort_idx, allow_fill=False) @cache_readonly def sort_idx(self): # Counting sort indexer return _algos.groupsort_indexer(self.labels, self.ngroups)[0] def __iter__(self): sdata = self._get_sorted_data() if self.ngroups == 0: raise StopIteration starts, ends = lib.generate_slices(self.slabels, self.ngroups) for i, (start, end) in enumerate(zip(starts, ends)): # Since I'm now compressing the group ids, it's now not "possible" # to produce empty slices because such groups would not be observed # in the data # if start >= end: # raise AssertionError('Start %s must be less than end %s' # % (str(start), str(end))) yield i, self._chop(sdata, slice(start, end)) def _get_sorted_data(self): return self.data.take(self.sort_idx, axis=self.axis, convert=False) def _chop(self, sdata, slice_obj): return sdata.iloc[slice_obj] def apply(self, f): raise NotImplementedError class ArraySplitter(DataSplitter): pass class SeriesSplitter(DataSplitter): def _chop(self, sdata, slice_obj): return sdata._get_values(slice_obj).to_dense() class FrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(FrameSplitter, self).__init__(data, labels, ngroups, axis=axis) def fast_apply(self, f, names): # must return keys::list, values::list, mutated::bool try: starts, ends = lib.generate_slices(self.slabels, self.ngroups) except: # fails when all -1 return [], True sdata = self._get_sorted_data() results, mutated = lib.apply_frame_axis0(sdata, f, names, starts, ends) return results, mutated def _chop(self, sdata, slice_obj): if self.axis == 0: return sdata.iloc[slice_obj] else: return sdata._slice(slice_obj, axis=1) # ix[:, slice_obj] class NDFrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(NDFrameSplitter, self).__init__(data, labels, ngroups, axis=axis) self.factory = data._constructor def _get_sorted_data(self): # this is the BlockManager data = self.data._data # this is sort of wasteful but... sorted_axis = data.axes[self.axis].take(self.sort_idx) sorted_data = data.reindex_axis(sorted_axis, axis=self.axis) return sorted_data def _chop(self, sdata, slice_obj): return self.factory(sdata.get_slice(slice_obj, axis=self.axis)) def get_splitter(data, *args, **kwargs): if isinstance(data, Series): klass = SeriesSplitter elif isinstance(data, DataFrame): klass = FrameSplitter else: klass = NDFrameSplitter return klass(data, *args, **kwargs) #---------------------------------------------------------------------- # Misc utilities def get_group_index(label_list, shape): """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations. """ if len(label_list) == 1: return label_list[0] n = len(label_list[0]) group_index = np.zeros(n, dtype=np.int64) mask = np.zeros(n, dtype=bool) for i in range(len(shape)): stride = np.prod([x for x in shape[i + 1:]], dtype=np.int64) group_index += com._ensure_int64(label_list[i]) * stride mask |= label_list[i] < 0 np.putmask(group_index, mask, -1) return group_index _INT64_MAX = np.iinfo(np.int64).max def _int64_overflow_possible(shape): the_prod = long(1) for x in shape: the_prod *= long(x) return the_prod >= _INT64_MAX def decons_group_index(comp_labels, shape): # reconstruct labels label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def _indexer_from_factorized(labels, shape, compress=True): if _int64_overflow_possible(shape): indexer = np.lexsort(np.array(labels[::-1])) return indexer group_index = get_group_index(labels, shape) if compress: comp_ids, obs_ids = _compress_group_index(group_index) max_group = len(obs_ids) else: comp_ids = group_index max_group = com._long_prod(shape) if max_group > 1e6: # Use mergesort to avoid memory errors in counting sort indexer = comp_ids.argsort(kind='mergesort') else: indexer, _ = _algos.groupsort_indexer(comp_ids.astype(np.int64), max_group) return indexer def _lexsort_indexer(keys, orders=None, na_position='last'): labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) for key, order in zip(keys, orders): # we are already a Categorical if is_categorical_dtype(key): c = key # create the Categorical else: c = Categorical(key,ordered=True) if na_position not in ['last','first']: raise ValueError('invalid na_position: {!r}'.format(na_position)) n = len(c.levels) codes = c.codes.copy() mask = (c.codes == -1) if order: # ascending if na_position == 'last': codes = np.where(mask, n, codes) elif na_position == 'first': codes += 1 else: # not order means descending if na_position == 'last': codes = np.where(mask, n, n-codes-1) elif na_position == 'first': codes = np.where(mask, 0, n-codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return _indexer_from_factorized(labels, shape) def _nargsort(items, kind='quicksort', ascending=True, na_position='last'): """ This is intended to be a drop-in replacement for np.argsort which handles NaNs It adds ascending and na_position parameters. GH #6399, #5231 """ # specially handle Categorical if
is_categorical_dtype(items)
pandas.core.common.is_categorical_dtype
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ts.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_date_unit(self, unit): df = self.tsframe.copy() df["date"] = Timestamp("20130101 20:43:42") dl = df.columns.get_loc("date") df.iloc[1, dl] = Timestamp("19710101 20:43:42") df.iloc[2, dl] = Timestamp("21460101 20:43:42") df.iloc[4, dl] = pd.NaT json = df.to_json(date_format="epoch", date_unit=unit) # force date unit result = read_json(json, date_unit=unit) tm.assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) tm.assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r"""{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }""" read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB")) dfj2["date"] = Timestamp("20130101") dfj2["ints"] = range(5) dfj2["bools"] = True dfj2.index = pd.date_range("20130101", periods=5) json = dfj2.to_json() result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_}) tm.assert_frame_equal(result, result) def test_misc_example(self): # parsing unordered input fails result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) error_msg = """DataFrame\\.index are different DataFrame\\.index values are different \\(100\\.0 %\\) \\[left\\]: Index\\(\\['a', 'b'\\], dtype='object'\\) \\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)""" with pytest.raises(AssertionError, match=error_msg): tm.assert_frame_equal(result, expected, check_index_type=False) result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]') expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @tm.network @pytest.mark.single def test_round_trip_exception_(self): # GH 3867 csv = "https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv" df = pd.read_csv(csv) s = df.to_json() result = pd.read_json(s) tm.assert_frame_equal(result.reindex(index=df.index, columns=df.columns), df) @tm.network @pytest.mark.single @pytest.mark.parametrize( "field,dtype", [ ["created_at", pd.DatetimeTZDtype(tz="UTC")], ["closed_at", "datetime64[ns]"], ["updated_at", pd.DatetimeTZDtype(tz="UTC")], ], ) def test_url(self, field, dtype): url = "https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5" # noqa result = read_json(url, convert_dates=True) assert result[field].dtype == dtype def test_timedelta(self): converter = lambda x: pd.to_timedelta(x, unit="ms") s = Series([timedelta(23), timedelta(seconds=5)]) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) s = Series([timedelta(23), timedelta(seconds=5)], index=pd.Index([0, 1])) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) frame = DataFrame([timedelta(23), timedelta(seconds=5)]) assert frame[0].dtype == "timedelta64[ns]" tm.assert_frame_equal(frame, pd.read_json(frame.to_json()).apply(converter)) frame = DataFrame( { "a": [timedelta(days=23), timedelta(seconds=5)], "b": [1, 2], "c": pd.date_range(start="20130101", periods=2), } ) result = pd.read_json(frame.to_json(date_unit="ns")) result["a"] = pd.to_timedelta(result.a, unit="ns") result["c"] = pd.to_datetime(result.c) tm.assert_frame_equal(frame, result) def test_mixed_timedelta_datetime(self): frame = DataFrame( {"a": [timedelta(23), pd.Timestamp("20130101")]}, dtype=object ) expected = DataFrame( {"a": [pd.Timedelta(frame.a[0]).value, pd.Timestamp(frame.a[1]).value]} ) result = pd.read_json(frame.to_json(date_unit="ns"), dtype={"a": "int64"}) tm.assert_frame_equal(result, expected, check_index_type=False) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize("date_format", ["iso", "epoch"]) @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta]) def test_timedelta_to_json(self, as_object, date_format, timedelta_typ): # GH28156: to_json not correctly formatting Timedelta data = [timedelta_typ(days=1), timedelta_typ(days=2), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) if date_format == "iso": expected = ( '{"P1DT0H0M0S":"P1DT0H0M0S","P2DT0H0M0S":"P2DT0H0M0S","null":null}' ) else: expected = '{"86400000":86400000,"172800000":172800000,"null":null}' if as_object: expected = expected.replace("}", ',"a":"a"}') result = ser.to_json(date_format=date_format) assert result == expected def test_default_handler(self): value = object() frame = DataFrame({"a": [7, value]}) expected = DataFrame({"a": [7, str(value)]}) result = pd.read_json(frame.to_json(default_handler=str)) tm.assert_frame_equal(expected, result, check_index_type=False) def test_default_handler_indirect(self): from pandas.io.json import dumps def default(obj): if isinstance(obj, complex): return [("mathjs", "Complex"), ("re", obj.real), ("im", obj.imag)] return str(obj) df_list = [ 9, DataFrame( {"a": [1, "STR", complex(4, -5)], "b": [float("nan"), None, "N/A"]}, columns=["a", "b"], ), ] expected = ( '[9,[[1,null],["STR",null],[[["mathjs","Complex"],' '["re",4.0],["im",-5.0]],"N\\/A"]]]' ) assert dumps(df_list, default_handler=default, orient="values") == expected def test_default_handler_numpy_unsupported_dtype(self): # GH12554 to_json raises 'Unhandled numpy dtype 15' df = DataFrame( {"a": [1, 2.3, complex(4, -5)], "b": [float("nan"), None, complex(1.2, 0)]}, columns=["a", "b"], ) expected = ( '[["(1+0j)","(nan+0j)"],' '["(2.3+0j)","(nan+0j)"],' '["(4-5j)","(1.2+0j)"]]' ) assert df.to_json(default_handler=str, orient="values") == expected def test_default_handler_raises(self): msg = "raisin" def my_handler_raises(obj): raise TypeError(msg) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, object()]}).to_json( default_handler=my_handler_raises ) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, complex(4, -5)]}).to_json( default_handler=my_handler_raises ) def test_categorical(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]}) df["B"] = df["A"] expected = df.to_json() df["B"] = df["A"].astype("category") assert expected == df.to_json() s = df["A"] sc = df["B"] assert s.to_json() == sc.to_json() def test_datetime_tz(self): # GH4377 df.to_json segfaults with non-ndarray blocks tz_range = pd.date_range("20130101", periods=3, tz="US/Eastern") tz_naive = tz_range.tz_convert("utc").tz_localize(None) df = DataFrame({"A": tz_range, "B": pd.date_range("20130101", periods=3)}) df_naive = df.copy() df_naive["A"] = tz_naive expected = df_naive.to_json() assert expected == df.to_json() stz = Series(tz_range) s_naive = Series(tz_naive) assert stz.to_json() == s_naive.to_json() def test_sparse(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = pd.DataFrame(np.random.randn(10, 4)) df.loc[:8] = np.nan sdf = df.astype("Sparse") expected = df.to_json() assert expected == sdf.to_json() s = pd.Series(np.random.randn(10)) s.loc[:8] = np.nan ss = s.astype("Sparse") expected = s.to_json() assert expected == ss.to_json() @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-10 05:00:00Z"), Timestamp("2013-01-10 00:00:00", tz="US/Eastern"), Timestamp("2013-01-10 00:00:00-0500"), ], ) def test_tz_is_utc(self, ts): from pandas.io.json import dumps exp = '"2013-01-10T05:00:00.000Z"' assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp @pytest.mark.parametrize( "tz_range", [ pd.date_range("2013-01-01 05:00:00Z", periods=2), pd.date_range("2013-01-01 00:00:00", periods=2, tz="US/Eastern"), pd.date_range("2013-01-01 00:00:00-0500", periods=2), ], ) def test_tz_range_is_utc(self, tz_range): from pandas.io.json import dumps exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]' dfexp = ( '{"DT":{' '"0":"2013-01-01T05:00:00.000Z",' '"1":"2013-01-02T05:00:00.000Z"}}' ) assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({"DT": dti}) result = dumps(df, iso_dates=True) assert result == dfexp def test_read_inline_jsonl(self): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @td.skip_if_not_us_locale def test_read_s3_jsonl(self, s3_resource): # GH17200 result = read_json("s3n://pandas-test/items.jsonl", lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_local_jsonl(self): # GH17200 with tm.ensure_clean("tmp_items.json") as path: with open(path, "w") as infile: infile.write('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n') result = read_json(path, lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(self): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) # simulate string json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_json_large_numbers(self): # GH18842 json = '{"articleId": "1404366058080022500245"}' json = StringIO(json) result = read_json(json, typ="series") expected = Series(1.404366e21, index=["articleId"]) tm.assert_series_equal(result, expected) json = '{"0": {"articleId": "1404366058080022500245"}}' json = StringIO(json) result = read_json(json) expected = DataFrame(1.404366e21, index=["articleId"], columns=[0]) tm.assert_frame_equal(result, expected) def test_to_jsonl(self): # GH9180 df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":1,"b":2}\n{"a":1,"b":2}' assert result == expected df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(pd.read_json(result, lines=True), df) # GH15096: escaped characters in columns and data df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(pd.read_json(result, lines=True), df) # TODO: there is a near-identical test for pytables; can we share? def test_latin_encoding(self): # GH 13774 pytest.skip("encoding not implemented in .to_json(), xref #13774") values = [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ] values = [ [x.decode("latin-1") if isinstance(x, bytes) else x for x in y] for y in values ] examples = [] for dtype in ["category", object]: for val in values: examples.append(Series(val, dtype=dtype)) def roundtrip(s, encoding="latin-1"): with tm.ensure_clean("test.json") as path: s.to_json(path, encoding=encoding) retr = read_json(path, encoding=encoding) tm.assert_series_equal(s, retr, check_categorical=False) for s in examples: roundtrip(s) def test_data_frame_size_after_to_json(self): # GH15344 df = DataFrame({"a": [str(1)]}) size_before = df.memory_usage(index=True, deep=True).sum() df.to_json() size_after = df.memory_usage(index=True, deep=True).sum() assert size_before == size_after @pytest.mark.parametrize( "index", [None, [1, 2], [1.0, 2.0], ["a", "b"], ["1", "2"], ["1.", "2."]] ) @pytest.mark.parametrize("columns", [["a", "b"], ["1", "2"], ["1.", "2."]]) def test_from_json_to_json_table_index_and_columns(self, index, columns): # GH25433 GH25435 expected = DataFrame([[1, 2], [3, 4]], index=index, columns=columns) dfjson = expected.to_json(orient="table") result = pd.read_json(dfjson, orient="table") tm.assert_frame_equal(result, expected) def test_from_json_to_json_table_dtypes(self): # GH21345 expected =
pd.DataFrame({"a": [1, 2], "b": [3.0, 4.0], "c": ["5", "6"]})
pandas.DataFrame
from urllib.request import urlopen import requests import datetime import pandas as pd import pandas.io.sql as pd_sql import json import telepot import sqlite3 # OPENDART 고유번호 저장 from io import BytesIO from zipfile import ZipFile import xml.etree.ElementTree as ET crtfc_key = '개인이 각자 받은 API인증키' # 자신의 API키를 넣어야 됨. # 텔레그램 셋팅 token = '<KEY>' # 텔레그램 Bot 토큰 bot = telepot.Bot(token) Bot_ID = 'XXXXXXX' # 수신자 ID # 텔레그램 메세지 전송 def Sendmsg(msg): bot.sendMessage(Bot_ID, msg) # OpenDART에 등록된 회사별 고유번호 저장 및 df 반환 def Get_Stocklist_by_DART(): url = 'https://opendart.fss.or.kr/api/corpCode.xml?crtfc_key={}'.format(crtfc_key) with urlopen(url) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('corpcode') tree = ET.parse('corpcode/CORPCODE.xml') root = tree.getroot() df_corp = pd.DataFrame(columns=['종목명', '고유번호', '종목코드']) for company in root.iter('list'): stock_code = company.findtext('stock_code') stock_code = stock_code.strip() if stock_code: data = { '종목명': company.findtext('corp_name'), '고유번호': company.findtext('corp_code'), '종목코드': company.findtext('stock_code') } df_corp = df_corp.append(data, ignore_index=True) df_corp = df_corp.sort_values(by='종목명') con = sqlite3.connect("DB.db") df_corp.to_sql('LIST', con, if_exists='append', index=False) con.close() return df_corp # 기존 DB에 저장된 공시정보 읽음 def Check_Dart(stock): try: con = sqlite3.connect("DB.db") df =
pd.read_sql("SELECT 보고서번호 from DART WHERE 종목명='%s'"%(stock), con=con)
pandas.read_sql
import streamlit as st from PIL import Image import pandas as pd import subprocess import os import base64 import pickle # Molecular descriptor calculator def desc_calc(): # Performs the descriptor calculation bashCommand = "java -Xms2G -Xmx2G -Djava.awt.headless=true -jar ./PaDEL-Descriptor/PaDEL-Descriptor.jar -removesalt -standardizenitro -fingerprints -descriptortypes ./PaDEL-Descriptor/PubchemFingerprinter.xml -dir ./ -file descriptors_output.csv" process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() os.remove('molecule.smi') # File download def filedownload(df): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions href = f'<a href="data:file/csv;base64,{b64}" download="prediction.csv">Download Predictions</a>' return href # Model building def build_model(input_data): # Reads in saved regression model load_model = pickle.load(open('acetylcholinesterase_model.pkl', 'rb')) # Apply model to make predictions prediction = load_model.predict(input_data) st.header('**Prediction output**') prediction_output = pd.Series(prediction, name='pIC50') molecule_name = pd.Series(load_data[1], name='molecule_name') df = pd.concat([molecule_name, prediction_output], axis=1) st.write(df) st.markdown(filedownload(df), unsafe_allow_html=True) # Logo image image = Image.open('logo.png') st.image(image, use_column_width=True) # Page title st.markdown(""" # Bioactivity Prediction App (Acetylcholinesterase) This app allows you to predict the bioactivity towards inhibting the `Acetylcholinesterase` enzyme. `Acetylcholinesterase` is a drug target for Alzheimer's disease. --- """) # Sidebar with st.sidebar.header('Upload your CSV data'): uploaded_file = st.sidebar.file_uploader("Upload your input file", type=['txt']) st.sidebar.markdown(""" [Example input file](https://raw.githubusercontent.com/aminbenmansour/bioinformatics-computational-drug-discovery/main/bioactivity-prediction-app/example_acetylcholinesterase.txt) """) if st.sidebar.button('Predict'): load_data = pd.read_table(uploaded_file, sep=' ', header=None) load_data.to_csv('molecule.smi', sep = '\t', header = False, index = False) st.header('**Original input data**') st.write(load_data) with st.spinner("Calculating descriptors..."): desc_calc() # Read in calculated descriptors and display the dataframe st.header('**Calculated molecular descriptors**') desc = pd.read_csv('descriptors_output.csv') st.write(desc) st.write(desc.shape) # Read descriptor list used in previously built model st.header('**Subset of descriptors that most contribute to acetylcholinesterase inhibition**') Xlist = list(
pd.read_csv('descriptor_list.csv')
pandas.read_csv
#aggregation script from distributed import wait import pandas as pd import geopandas as gpd from panoptes_client import Panoptes from shapely.geometry import box, Point import json import numpy as np import os from datetime import datetime import utils import extract import start_cluster def download_data(everglades_watch, min_version, generate=False): #see https://panoptes-python-client.readthedocs.io/en/v1.1/panoptes_client.html#module-panoptes_client.classification classification_export = everglades_watch.get_export('classifications', generate=generate) rows = [] for row in classification_export.csv_dictreader(): rows.append(row) df = pd.DataFrame(rows) df["workflow_version"] = df.workflow_version.astype(float) df = df[df.workflow_version > min_version] df = df[df.workflow_name =="Counts and Behavior"] return df def download_subject_data(everglades_watch, savedir, generate=False): #see https://panoptes-python-client.readthedocs.io/en/v1.1/panoptes_client.html#module-panoptes_client.classification classification_export = everglades_watch.get_export('subjects', generate=generate) rows = [] for row in classification_export.csv_dictreader(): rows.append(row) df =
pd.DataFrame(rows)
pandas.DataFrame
#!/usr/bin/env python3 """ https://mor.nlm.nih.gov/download/rxnav/RxNormAPIs.html https://www.nlm.nih.gov/research/umls/rxnorm/docs/ """ ### import sys,os,re,json,logging,urllib.parse,tqdm import pandas as pd from ..util import rest # API_HOST='rxnav.nlm.nih.gov' API_BASE_PATH='/REST' BASE_URL='https://'+API_HOST+API_BASE_PATH # NDFRT_TYPES=('DISEASE','INGREDIENT','MOA','PE','PK') ## NDFRT drug class types # ############################################################################# def List_IDTypes(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/idtypes.json', parse_json=True) logging.debug(json.dumps(rval, indent=2)) df = pd.DataFrame({"idTypeList":rval['idTypeList']['idName']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_SourceTypes(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/sourcetypes.json', parse_json=True) df = pd.DataFrame({"sourceType":rval['sourceTypeList']['sourceName']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_RelationTypes(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/relatypes.json', parse_json=True) df = pd.DataFrame({"relationType":rval['relationTypeList']['relationType']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_TermTypes(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/termtypes.json', parse_json=True) df = pd.DataFrame({"termType":rval['termTypeList']['termType']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_PropNames(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/propnames.json', parse_json=True) df = pd.DataFrame({"propName":rval['propNameList']['propName']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_PropCategories(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/propCategories.json', parse_json=True) df = pd.DataFrame({"propCategory":rval['propCategoryList']['propCategory']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_ClassTypes(base_url=BASE_URL, fout=None): rval = rest.Utils.GetURL(base_url+'/rxclass/classTypes.json', parse_json=True) df = pd.DataFrame({"classType":rval['classTypeList']['classTypeName']}) logging.info(f"n_out: {df.shape[0]}") if fout is not None: df.to_csv(fout, "\t", index=False) else: return df ############################################################################# def List_Classes(class_types, base_url=BASE_URL, fout=None): n_out=0; tags=None; df=pd.DataFrame(); tq=None; url = (f'{base_url}/rxclass/allClasses.json') if class_types: url+=("?classTypes="+urllib.parse.quote(' '.join(class_types))) rval = rest.Utils.GetURL(url, parse_json=True) logging.debug(json.dumps(rval, indent=4)) clss = rval["rxclassMinConceptList"]["rxclassMinConcept"] if "rxclassMinConceptList" in rval and "rxclassMinConcept" in rval["rxclassMinConceptList"] else [] for cls in clss: if not tq: tq = tqdm.tqdm(total=len(clss), unit="classes") tq.update() if not tags: tags = list(cls.keys()) df_this = pd.DataFrame({tags[j]:[cls[tags[j]]] for j in range(len(tags))}) if fout is None: df = pd.concat([df, df_this]) else: df_this.to_csv(fout, "\t", index=False, header=bool(n_out==0)) n_out += df_this.shape[0] logging.info(f"n_out: {n_out}") if fout is None: return df ############################################################################# def Get_Name2RxCUI(names, base_url=BASE_URL, fout=None): n_out=0; df=
pd.DataFrame()
pandas.DataFrame
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ | :class:`pandas.Series` functions and operators implementations in HPAT | Also, it contains Numba internal operators which are required for Series type handling """ import numpy import operator import pandas from numba.errors import TypingError from numba.extending import (types, overload, overload_method, overload_attribute) from numba import types import hpat from hpat.hiframes.pd_series_ext import SeriesType from hpat.str_arr_ext import StringArrayType from hpat.utils import to_array @overload(operator.getitem) def hpat_pandas_series_getitem(self, idx): """ Pandas Series operator :attr:`pandas.Series.get` implementation **Algorithm**: result = series[idx] **Test**: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_static_getitem_series1 Parameters ---------- series: :obj:`pandas.Series` input series idx: :obj:`int`, :obj:`slice` or :obj:`pandas.Series` input index Returns ------- :class:`pandas.Series` or an element of the underneath type object of :class:`pandas.Series` """ _func_name = 'Operator getitem().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) if isinstance(idx, types.Integer): def hpat_pandas_series_getitem_idx_integer_impl(self, idx): """ **Test**: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_iloc1 """ result = self._data[idx] return result return hpat_pandas_series_getitem_idx_integer_impl if isinstance(idx, types.SliceType): def hpat_pandas_series_getitem_idx_slice_impl(self, idx): """ **Test**: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_iloc2 """ result = pandas.Series(self._data[idx]) return result return hpat_pandas_series_getitem_idx_slice_impl if isinstance(idx, SeriesType): def hpat_pandas_series_getitem_idx_series_impl(self, idx): """ **Test**: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_setitem_series_bool2 """ super_index = idx._data result = self._data[super_index] return result return hpat_pandas_series_getitem_idx_series_impl raise TypingError('{} The index must be an Integer, Slice or a pandas.series. Given: {}'.format(_func_name, idx)) @overload_attribute(SeriesType, 'at') @overload_attribute(SeriesType, 'iat') @overload_attribute(SeriesType, 'iloc') @overload_attribute(SeriesType, 'loc') def hpat_pandas_series_iloc(self): """ Pandas Series operators :attr:`pandas.Series.at`, :attr:`pandas.Series.iat`, :attr:`pandas.Series.iloc`, :attr:`pandas.Series.loc` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_iloc2 Parameters ---------- series: :class:`pandas.Series` input series Returns ------- :obj:`pandas.Series` returns an object of :obj:`pandas.Series` """ _func_name = 'Operator at/iat/iloc/loc().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_iloc_impl(self): return self return hpat_pandas_series_iloc_impl @overload_attribute(SeriesType, 'shape') def hpat_pandas_series_shape(self): """ Pandas Series attribute :attr:`pandas.Series.shape` implementation **Algorithm**: result = series.shape **Test**: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_shape1 Parameters ---------- series: :obj:`pandas.Series` input series Returns ------- :obj:`tuple` a tuple of the shape of the underlying data """ _func_name = 'Attribute shape.' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_shape_impl(self): return self._data.shape return hpat_pandas_series_shape_impl @overload_attribute(SeriesType, 'values') def hpat_pandas_series_iloc(self): """ Pandas Series attribute 'values' implementation. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.values.html#pandas.Series.values Algorithm: result = series.values Where: series: pandas.series result: pandas.series as ndarray Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_values """ _func_name = 'Attribute values.' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_values_impl(self): return self._data return hpat_pandas_series_values_impl @overload_attribute(SeriesType, 'index') def hpat_pandas_series_index(self): """ Pandas Series attribute :attr:`pandas.Series.index` implementation **Algorithm**: result = series.index **Test**: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_index1 python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_index2 Parameters ---------- series: :obj:`pandas.Series` input series Returns ------- :class:`pandas.Series` the index of the Series """ _func_name = 'Attribute index.' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_index_impl(self): return self._index return hpat_pandas_series_index_impl @overload_attribute(SeriesType, 'size') def hpat_pandas_series_size(self): """ Pandas Series attribute :attr:`pandas.Series.size` implementation .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_size Parameters ---------- series: :obj:`pandas.Series` input series Returns ------- :class:`pandas.Series` Return the number of elements in the underlying data. """ _func_name = 'Attribute size.' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_size_impl(self): return len(self._data) return hpat_pandas_series_size_impl @overload(len) def hpat_pandas_series_len(self): """ Pandas Series operator :func:`len` implementation .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_len Parameters ---------- series: :class:`pandas.Series` Returns ------- :obj:`int` number of items in the object """ _func_name = 'Operator len().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_len_impl(self): return len(self._data) return hpat_pandas_series_len_impl @overload_method(SeriesType, 'isin') def hpat_pandas_series_isin(self, values): """ Pandas Series method :meth:`pandas.Series.isin` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_isin_list1 Parameters ----------- values : :obj:`list` or :obj:`set` object specifies values to look for in the series Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object indicating if each element of self is in values """ _func_name = 'Method isin().' if not isinstance(self, SeriesType): raise TypingError( '{} The object must be a pandas.series. Given self: {}'.format(_func_name, self)) if not isinstance(values, (types.Set, types.List)): raise TypingError( '{} The argument must be set or list-like object. Given values: {}'.format(_func_name, values)) def hpat_pandas_series_isin_impl(self, values): # TODO: replace with below line when Numba supports np.isin in nopython mode # return pandas.Series(np.isin(self._data, values)) return pandas.Series([(x in values) for x in self._data]) return hpat_pandas_series_isin_impl @overload_method(SeriesType, 'append') def hpat_pandas_series_append(self, to_append): """ Pandas Series method :meth:`pandas.Series.append` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_append1 Parameters ----------- to_append : :obj:`pandas.Series` object input argument ignore_index: *unsupported* verify_integrity: *unsupported* Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object """ _func_name = 'Method append().' if not isinstance(self, SeriesType) or not isinstance(to_append, SeriesType): raise TypingError( '{} The object must be a pandas.series. Given self: {}, to_append: {}'.format(_func_name, self, to_append)) def hpat_pandas_series_append_impl(self, to_append): return pandas.Series(self._data + to_append._data) return hpat_pandas_series_append_impl @overload_method(SeriesType, 'groupby') def hpat_pandas_series_groupby( self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False): """ Pandas Series method :meth:`pandas.Series.groupby` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_groupby_count Parameters ----------- self: :class:`pandas.Series` input arg by: :obj:`pandas.Series` object Used to determine the groups for the groupby axis: *unsupported* level: *unsupported* as_index: *unsupported* sort: *unsupported* group_keys: *unsupported* squeeze: *unsupported* observed: *unsupported* Returns ------- :obj:`pandas.SeriesGroupBy` returns :obj:`pandas.SeriesGroupBy` object """ _func_name = 'Method Series.groupby().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) if by is None and axis is None: raise TypingError("{} You have to supply one of 'by' or 'axis' parameters".format(_func_name)) if level is not None and not isinstance(level, (types.Integer, types.NoneType, types.Omitted)): raise TypingError("{} 'level' must be an Integer. Given: {}".format(_func_name, level)) def hpat_pandas_series_groupby_impl( self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False): # TODO Needs to implement parameters value check # if level is not None and (level < -1 or level > 0): # raise ValueError("Method Series.groupby(). level > 0 or level < -1 only valid with MultiIndex") return pandas.core.groupby.SeriesGroupBy(self) return hpat_pandas_series_groupby_impl @overload_method(SeriesType, 'ne') def hpat_pandas_series_ne(self, other, level=None, fill_value=None, axis=0): """ Pandas Series method :meth:`pandas.Series.ne` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8 Parameters ---------- self: :class:`pandas.Series` input arg other: :obj:`pandas.Series`, :obj:`int` or :obj:`float` input arg level: :obj:`int` or name *unsupported* fill_value: :obj:`float` or None, default None *unsupported* axis: default 0 *unsupported* Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object """ _func_name = 'Method ne().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) if level is not None or fill_value is not None or axis != 0: raise TypingError('{} Unsupported parameters. Given level: {}, fill_value: {}, axis: {}'.format(_func_name, level, fill_value, axis)) if isinstance(other, SeriesType): def hpat_pandas_series_ne_impl(self, other): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8 """ return pandas.Series(self._data != other._data) return hpat_pandas_series_ne_impl if isinstance(other, types.Integer) or isinstance(other, types.Float): def hpat_pandas_series_ne_impl(self, other): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8_integer_scalar Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op8_float_scalar """ return pandas.Series(self._data != other) return hpat_pandas_series_ne_impl raise TypingError('{} The object must be a pandas.series and argument must be a number. Given: {} and other: {}'.format(_func_name, self, other)) @overload_method(SeriesType, 'add') def hpat_pandas_series_add(self, other, level=None, fill_value=None, axis=0): """ Pandas Series method :meth:`pandas.Series.add` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5 Parameters ---------- self: :class:`pandas.Series` input arg other: :obj:`pandas.Series`, :obj:`int` or :obj:`float` input arg level: :obj:`int` or name *unsupported* fill_value: :obj:`float` or None, default None *unsupported* axis: default 0 *unsupported* Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object """ _func_name = 'Method add().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) if level is not None or fill_value is not None or axis != 0: raise TypingError('{} Unsupported parameters. Given level: {}, fill_value: {}, axis: {}'.format(_func_name, level, fill_value, axis)) if isinstance(other, SeriesType): def hpat_pandas_series_add_impl(lhs, rhs): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5 """ return pandas.Series(lhs._data + rhs._data) return hpat_pandas_series_add_impl if isinstance(other, types.Integer) or isinstance(other, types.Float): def hpat_pandas_series_add_number_impl(lhs, rhs): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5_integer_scalar Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5_float_scalar """ return pandas.Series(lhs._data + rhs) return hpat_pandas_series_add_number_impl raise TypingError('{} The object must be a pandas.series and argument must be a number. Given: {} and other: {}'.format(_func_name, self, other)) @overload_method(SeriesType, 'sub') def hpat_pandas_series_sub(self, other, level=None, fill_value=None, axis=0): """ Pandas Series method :meth:`pandas.Series.sub` implementation. .. only:: developer Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5 Parameters ---------- self: :class:`pandas.Series` input arg other: :obj:`pandas.Series`, :obj:`int` or :obj:`float` input arg level: :obj:`int` or name *unsupported* fill_value: :obj:`float` or None, default None *unsupported* axis: default 0 *unsupported* Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object """ _func_name = 'Method sub().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) if level is not None or fill_value is not None or axis != 0: raise TypingError('{} Unsupported parameters. Given level: {}, fill_value: {}, axis: {}'.format(_func_name, level, fill_value, axis)) if isinstance(other, SeriesType): def hpat_pandas_series_sub_impl(self, other): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5 """ return pandas.Series(self._data - other._data) return hpat_pandas_series_sub_impl if isinstance(other, types.Integer) or isinstance(other, types.Float): def hpat_pandas_series_sub_number_impl(self, other): """ Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5_integer_scalar Test: python -m hpat.runtests hpat.tests.test_series.TestSeries.test_series_op5_float_scalar """ return
pandas.Series(self._data - other)
pandas.Series
# download.py : download am arff file from within a zipped file from a given url # author: <NAME>, <NAME> and <NAME> # date: 2020-01-15 """Downloads .zip url to current folder, unzips arff file, loads data, splits data and saves original CSV, as well as train/test splits into a data folder. Currently supports only .zip URLs with a .arff file inside. Usage: download.py --url=<url> --zip_folder=<zip_folder> --data_name=<data_name> Options: --url=<url> URL for the .zip file to be downloaded --zip_folder=<zip_folder> name of the zip folder at the url --data_name=<data_name> name of the file within the zip folder """ from docopt import docopt import zipfile import pandas as pd import urllib import requests from sklearn.model_selection import train_test_split import numpy as np from scipy.io import arff import os import _io # url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00426/Autism-Adult-Data%20Plus%20Description%20File.zip" # zip_folder = "../data/autism_screening.zip" # data_name = Austism-Adult-Data opt = docopt(__doc__) def main(url, zip_folder, data_name): # send request and save object # Test # Throw error if URL is incorrect try: r = requests.get(url) assert(r.status_code == 200) except Exception as req: print("You have entered an invalid URL") print(req) # extract content of response object 'r' and write to specified filename new_directory = zip_folder.split('/') new_directory = new_directory[0] if not os.path.exists(new_directory): os.makedirs(new_directory) # open the zip folder and write binary content to disk # Test to make sure file is a zipfile, raise comprehensable exception try: with open(zip_folder, 'wb') as f: assert(type(f) == _io.BufferedWriter) f.write(r.content) except Exception as bad_zip: print("This is not a zip file") # Extract the arff file located in the zipped folder using python library zipfile arff_file = data_name+".arff" with zipfile.ZipFile(zip_folder, 'r') as myzip: myzip.extract(arff_file) # Use 'scipy.io.arff' library to read in arff file data = arff.loadarff(arff_file) # The arff file contains a csv in element 0 and a description of the variables in element 1 df =
pd.DataFrame(data[0], dtype='str')
pandas.DataFrame
import pandas as pd import os ''' Label files from original dataset have following structure: DepthVideoName, EnteringNumber, ExitingNumber, VideoType DepthVideoName: the depth video name EnteringNumber: the number of people entering the bus ExitingNumber: the number of people exiting the bus VideoType: the video type. There are 4 video types represented by the index (0: N-C-, 1: N-C+, 2: N+C-, 3: N+C+) ''' HEADER = ['file_name', 'entering', 'exiting', 'video_type'] TOP_PATH = 'E:/pcds_downloads/' def main(): for file_name in os.listdir(TOP_PATH): if 'label' in file_name and not ('crowd' in file_name) and not (file_name == 'pcds_dataset_labels_united.csv'): df_labels = load_labels(TOP_PATH) labels_singlefile = get_labels(TOP_PATH, file_name) labels_singlefile = correct_path(labels_singlefile, file_name) unite_labels(TOP_PATH, df_labels, labels_singlefile) def unite_labels(top_path, df_labels, labels_singlefile): ''' Add content of all existing label.txt files to the pcds_dataset_labels_united.csv file and removes duplicates Arguments: top_path: Path where pcds_dataset_labels_united.csv must be placed and where shall be searched for label.txt files ''' df_labels = pd.concat([df_labels, labels_singlefile], axis=0).drop_duplicates(subset='file_name') df_labels.to_csv(top_path + '/pcds_dataset_labels_united.csv', header = None, index=None) def correct_path(df_labels, file_name): ''' Due to the change of the folder structure it has to be added the 'front_in' or 'back_out' dir Arguments: df_labels: The dataframe with the labels file_name: The filename of the label file returns: Corrected df of labels raises: ValueError if there is no back or front in the label path ''' if 'front' in file_name: df_labels['file_name'] = df_labels['file_name'].apply(lambda row: 'front_in' + row[1:-4].replace('Depth', 'Color') + '.npy') return df_labels elif 'back' in file_name: df_labels['file_name'] = df_labels['file_name'].apply(lambda row: 'back_out' + row[1:-4].replace('Depth', 'Color') + '.npy') return df_labels else: print(file_name) raise ValueError('File {} not a valid label file'.format(file_name)) def correct_path_csv(df_labels, file_name, save_folder): ''' Due to the change of the folder structure it has to be added the 'front_in' or 'back_out' dir and saves to label csv file Arguments: df_labels: The dataframe with the labels file_name: The filename of the label file save_folder: Folder where labels_united.csv shall be saved raises: ValueError if there is no back or front in the label path ''' if 'front' in file_name: df_labels['file_name'] = df_labels['file_name'].apply(lambda row: 'front_in' + row[1:-4] + '.npy') elif 'back' in file_name: df_labels['file_name'] = df_labels['file_name'].apply(lambda row: 'back_out' + row[1:-4] + '.npy') else: raise ValueError('File {} not a valid label file'.format(file_name)) df_labels.to_csv(os.path.join(save_folder, 'pcds_dataset_labels_united.csv')) def load_labels(top_path): ''' Checks in top path if there is an already existing 'pcds_dataset_labels_united.csv', otherwise return an empty df with correct header names Arguments: top_path: Path where shall be searched for the pcds_dataset_labels_united.csv file returns: The previously stored labels_united file as pandas Dataframe, and an empty Dataframe if no such file exists ''' files = os.listdir(top_path) if 'pcds_dataset_labels_united.csv' in files: return
pd.read_csv(top_path + 'pcds_dataset_labels_united.csv', names=HEADER)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # 1 Compiling notebook 2 outputs # In[1]: import configparser import glob import json import math import numpy as np import pandas as pd import re from utils.misc.regex_block import MutationFinder, TmVar, CustomWBregex, normalize_mutations with open("data/model_output/processed/temp_paper_mut_count.json", "w") as outfile: json.dump(paper_mut_count, outfile) print('All', ner_count, 'NER data rows were ignored. Only', regex_count, 'regex data rows were used.') # saving things data = pd.DataFrame(data[:], columns=['WBPaper ID', 'Method', 'Genes', '*Gene-Variant combo ', 'Mutations', 'Normalized Mutations', 'Sentence']) data.to_csv("data/model_output/processed/snippets_2.csv", index=False, encoding='utf-8') # # 3 Normalizing common gene name to its WormBase ID # And getting the gene and mutation frequency in a paper. # In[14]: data = pd.read_csv("data/model_output/processed/snippets_2.csv") data = data.to_numpy() # 'WBPaper ID', 'Method', 'Genes', '*Gene-Variant combo ', 'Mutations', 'Normalized Mutations', 'Sentence' with open("data/model_output/processed/temp_paper_wbgene_count.json", "w") as outfile: json.dump(paper_wbgene_count, outfile) # Checking if any detected gene was NOT in the WB gene dictionary # In[18]: data = np.array(data) data[len(data[:,2]) != len(data[:,3])] # above cell takes a while to complete, so saving the data temporarily data = pd.DataFrame(data[:], columns=['WBPaper ID', 'Method', 'Genes', 'WBGenes', '*Gene-Variant combo ', 'Mutations', 'Normalized Mutations', 'Sentence']) data.to_csv("data/model_output/processed/snippets_3.csv", index=False, encoding='utf-8') data = None # # 5 Validation # Finding the gene and mutation matches using the transcripts in c_elegans.PRJNA13758.WS281.protein.fa # Get the file here - ftp://ftp.ebi.ac.uk/pub/databases/wormbase/releases/WS281/species/c_elegans/PRJNA13758/c_elegans.PRJNA13758.WS281.protein.fa.gz data = pd.read_csv("data/model_output/processed/snippets_3.csv") data = data.to_numpy() # 'WBPaper ID', 'Method', 'Genes', 'WBGenes', '*Gene-Variant combo ', 'Mutations', 'Normalized Mutations', 'Sentence' proteinfa = Path('data/gsoc/proteinfa/c_elegans.PRJNA13758.WS281.protein.fa').read_text().split('>')[1:] wb_gene_and_prot = dict() # {wbgene: [transcript, protein]} for row in proteinfa: wbgene = re.findall("WBGene[0-9]+", row)[0] protein = "".join(re.findall("\n.*", row)).replace('\n', '') transcript = row.split(' ')[0] if wbgene not in wb_gene_and_prot.keys(): wb_gene_and_prot[wbgene] = [] wb_gene_and_prot[wbgene].append([transcript, protein]) len(wb_gene_and_prot) # #### Create a pair of gene and mutation only when BOTH are present in same sentence. # In[24]: paper_raw_info_compiled = [] # 'WBPaper ID', 'Method', 'Genes', 'WBGenes', '*Gene-Variant combo ', 'Mutations', 'Normalized Mutations', 'Sentence' for row in data: ppr_id = row[0] norm_muts = row[-2] wbgenes = row[3] sentence = row[-1] gene_var = row[4] # filtering out nan values if type(norm_muts) != float and type(wbgenes) != float: norm_muts = norm_muts[1:-1].split("', '") wbgenes = wbgenes[1:-1].split("', '") for m in norm_muts: for g in wbgenes: if len(m) and len(g): paper_raw_info_compiled.append([ppr_id, g, m, sentence, gene_var]) # In[25]: matches = [] final_sheet = [] # ppr_id, gene, transcript for info_from_ppr in paper_raw_info_compiled: ppr_id = info_from_ppr[0] gene = info_from_ppr[1] mut = info_from_ppr[2] sent = info_from_ppr[3] gene_var = info_from_ppr[4] if not len(mut): continue if gene not in wb_gene_and_prot.keys(): continue for row in wb_gene_and_prot[gene]: transcript, protein_string = row wt_res = mut[0] pos = int(''.join(n for n in mut if n.isdigit())) mut_res = mut[-1] try: if protein_string[pos-1] == wt_res: matches.append([ppr_id, gene, mut, gene_var, transcript, sent]) except IndexError: pass for r in matches: p = r[0] p, wbg, mut, gene_var, transcript, sent = r # Adding gene common names column, again # Current code doesn't keep any link between the WB gene name and the common name g_common_name = all_wb_genes[wbg] g_common_name = ', '.join(g_common_name) final_sheet.append([p, wbg, g_common_name, mut, gene_var, transcript, sent]) # In[26]: len(final_sheet) # #### Getting metadata on genes and mutations, and adding warnings column # In[27]: with open("data/model_output/processed/temp_paper_wbgene_count.json", "r") as f: paper_wbgene_count = json.loads(f.read()) with open("data/model_output/processed/temp_paper_mut_count.json", "r") as f: paper_mut_count = json.loads(f.read()) # In[28]: final_sheet = np.array(final_sheet) updated_sheet = [] for i, row in enumerate(final_sheet): warnings = [] paper_id = row[0] wbgene = row[1] mut = row[3] sentence = row[-1] for ppr_mut, count in paper_mut_count[paper_id].items(): if mut == ppr_mut and count == 1: warnings.append(f'{mut} mentioned only once in entire paper') break rows_with_same_mut = final_sheet[np.logical_and(final_sheet[:, 0] == paper_id, final_sheet[:,3] == mut)] same_mut_all_genes = list(set(rows_with_same_mut[:, 1])) # If the same variant is found in two different genes in the same paper - WARN! # It is more likely to belong to the gene it is most frequently encountered if len(same_mut_all_genes) > 1: temp_warn_store = f'{mut} was paired with other genes too:' for ppr_gene, count in paper_wbgene_count[paper_id].items(): if ppr_gene in same_mut_all_genes: temp_warn_store += (f' {ppr_gene} (seen {count} times),') warnings.append(temp_warn_store) cut_mut = re.sub("([A-Z])([0-9]+)([A-Za-z]+)", r'\1\2', mut) remaining_mut = mut.replace(cut_mut, "") same_cut_muts = [i for i,m in enumerate(final_sheet[:,3]) if (m[:len(cut_mut)] == cut_mut and m[len(cut_mut):] != remaining_mut)] if same_cut_muts: temp_warn_store = f'{mut} similar to:' for temp_i in same_cut_muts: temp_warn_store += (f' {final_sheet[:,3][temp_i]} (line {temp_i}),') warnings.append(temp_warn_store) all_muts_in_sentence = data[np.logical_and(data[:, 0] == paper_id, data[:,-1] == sentence)][:,-2] all_muts_in_sentence = all_muts_in_sentence[0][1:-1].split("', '") all_matched_muts_in_sentence = final_sheet[np.logical_and(final_sheet[:, 0] == paper_id, final_sheet[:,-1] == sentence)][:,3] all_matched_muts_in_sentence = list(set(all_matched_muts_in_sentence)) unmatched_muts_in_sentence = [m for m in all_muts_in_sentence if m not in all_matched_muts_in_sentence] if len(unmatched_muts_in_sentence) >= 2: temp_warn_store = f'Sentence has multiple mutations which did not match:' for m in unmatched_muts_in_sentence: temp_warn_store += (f' {m},') warnings.append(temp_warn_store) all_genes_with_this_mut = final_sheet[np.logical_and(final_sheet[:, 0] == paper_id, final_sheet[:, 3] == mut)][:, 1] all_genes_with_this_mut = list(set(all_genes_with_this_mut)) if len(all_genes_with_this_mut) > 3: temp_warn_store = f'{mut} was matched with {len(all_genes_with_this_mut)} genes:' for g in all_genes_with_this_mut: temp_warn_store += (f' {g},') warnings.append(temp_warn_store) if warnings: warnings = " || ".join(warnings) else: warnings = "" updated_sheet.append(np.insert(row, -1, warnings).tolist()) # In[29]: # saving things updated_sheet = pd.DataFrame(updated_sheet[:], columns=['WBPaper ID', 'WBGene', 'Gene', 'Mutation', 'Gene-Var combo', 'Transcript', 'Warnings', 'Sentence']) updated_sheet.to_csv("data/model_output/processed/snippets_4.csv", index=False, encoding='utf-8') updated_sheet = None # # 6 Additional details # ### 6.1 Strains # In[30]: data = pd.read_csv("data/model_output/processed/snippets_4.csv").to_numpy() # In[31]: strains = Path('data/gsoc/Strains.txt').read_text().split('\n') strains = [r.split('\t') for r in strains][:-1] all_wb_strains = dict() for row in strains: if row[0] not in all_wb_strains.keys(): all_wb_strains[row[0]] = [] for strain in row[1:]: if len(strain) and strain.lower() not in all_wb_strains[row[0]]: all_wb_strains[row[0]].append(strain.lower()) strains = [s for row in strains for s in row[1:] if len(s) and not s.isdigit()] # In[32]: OPENING_CLOSING_REGEXES = [r'(?:^|[^0-9A-Za-z])(', r')(?:^|[^0-9A-Za-z])'] all_strain = OPENING_CLOSING_REGEXES[0] + '|'.join(strains) + OPENING_CLOSING_REGEXES[1] all_strain = [re.compile(r,re.IGNORECASE) for r in [all_strain]] # 'WBPaper ID', 'WBGene', 'Gene', 'Mutation', 'Gene-Var combo', 'Transcript', 'Warnings', 'Sentence' updated_data = [] total = len(data) print('Total sentences: {}, processed count: '.format(total), end=' ') for i, sent in enumerate(data[:, -1]): if (i+1) % 100 == 0: print(f"{i+1}", end = " ") paper_strains = [] for regex in all_strain: for m in regex.finditer(sent): span = (m.start(0), m.end(0)) raw = (sent[span[0]:span[1]]).strip() raw = raw[1:] if not raw[0].isalnum() else raw raw = raw[:-1] if not raw[-1].isalnum() else raw if len(raw.strip()) > 1 and not raw.strip().isdigit(): paper_strains.append(raw.strip()) if paper_strains: paper_strains = list(set(paper_strains)) col_wbid = [] for strain in paper_strains: for key, value in all_wb_strains.items(): if strain.lower() in value: col_wbid.append(key) break paper_strains = "'" + "', '".join(paper_strains) + "'" if col_wbid: col_wbid = list(set(col_wbid)) col_wbid = ", ".join(col_wbid) else: col_wbid = '' # lazy way to deal with bad snippets due to special characters in the Strains.txt file # which are caught in regex paper_strains = '' else: paper_strains = '' col_wbid = '' updated_data.append([data[i,0], data[i,1], data[i,2], col_wbid, paper_strains, data[i,3], data[i,-4], data[i,-3], data[i,-2], data[i,-1]]) data = np.array(updated_data) # 'WBPaper ID', 'WBGene', 'Gene', 'WBStrain', 'Strains', 'Mutation', 'Gene-Var combo', 'Transcript', 'Warnings', 'Sentence' updated_data = None # ### 6.2 Variants # In[33]: OPENING_CLOSING_REGEXES = [r'(?:^|[^0-9A-Za-z])(', r')(?:^|[^0-9A-Za-z])'] # the allele regex and db idea was stolen from wbtools allele_designations = np.load('data/gsoc/wbtools/wb_allele_designations.npy').astype('U6') alleles_variations = np.load('data/gsoc/wbtools/wb_alleles_variations.npy').astype('U6') DB_VAR_REGEX = r'({designations}|m|p|ts|gf|lf|d|sd|am|cs)([0-9]+)' var_regex_1 = OPENING_CLOSING_REGEXES[0] + DB_VAR_REGEX.format(designations="|".join(allele_designations)) + OPENING_CLOSING_REGEXES[1] all_var = OPENING_CLOSING_REGEXES[0] + '|'.join(alleles_variations) + '|' + var_regex_1 + OPENING_CLOSING_REGEXES[1] all_var = [re.compile(r,re.IGNORECASE) for r in [all_var]] # 'WBPaper ID', 'WBGene', 'Gene', 'WBStrain', 'Strains', 'Mutation', 'Transcript', 'Warnings', 'Sentence' updated_data = [] total = len(data) print('Total sentences: {}, processed count: '.format(total), end=' ') for i, sent in enumerate(data[:, -1]): if (i+1) % 100 == 0: print(f"{i+1}", end = " ") variants = [] for regex in all_var: for m in regex.finditer(sent): span = (m.start(0), m.end(0)) raw = (sent[span[0]:span[1]]).strip() raw = raw[1:] if not raw[0].isalnum() else raw raw = raw[:-1] if not raw[-1].isalnum() else raw if len(raw.strip()) > 1: variants.append(raw.strip()) if variants: variants = list(set(variants)) variants = "'" + "', '".join(variants) + "'" else: variants = '' updated_data.append([data[i,0], data[i,1], data[i,2], data[i,3], data[i,4], variants, data[i,-5], data[i,-4], data[i,-3], data[i,-2], data[i,-1]]) data = np.array(updated_data) # 'WBPaper ID', 'WBGene', 'Gene', 'WBStrain', 'Strains', 'Variants', 'Mutation', 'Gene-Var combo', 'Transcript', 'Warnings', 'Sentence' updated_data = None # ### 6.3 Variation type # Extraction rate would be very low as most snippets from notebook 2 are discarded due to limitation in the mutation normalization block above. # In[34]: Variation_type = pd.read_csv("data/gsoc/Variation_type.csv").to_numpy() Variation_type = [t.replace("_", " ") for t in Variation_type[:,2] if type(t)!=float] # In[35]: updated_sheet = [] # 'WBPaper ID', 'WBGene', 'Gene', 'WBStrain', 'Strains', 'Variants', 'Mutation', 'Gene-Var combo', 'Transcript', 'Warnings', 'Sentence' for i, row in enumerate(data): sent = row[-1] col_var_type = [] for sub in Variation_type: if re.search(sub, sent, re.IGNORECASE): col_var_type.append(sub) if col_var_type: col_var_type = list(set(col_var_type)) col_var_type = ", ".join(col_var_type) else: col_var_type = '' updated_sheet.append(np.insert(row, -3, col_var_type).tolist()) # In[36]: data = np.array(updated_sheet) updated_sheet = None # ### 6.3 Functional effect & Generation method # These type of data were in a few subset of papers tested during dev - expect these columns to be mostly empty. # In[37]: functional_effect = ['function uncertain', 'transcript function', 'translational product function', 'decreased transcript level', 'increased transcript level', 'decreased transcript stability', 'gain of function', 'dominant negative', 'dominant negativ', 'antimorphic', 'hypermorphic', 'neomorphic', 'conditional activity', 'hypomorphic', 'amorphic', 'repressible', 'misexpressed'] # In[38]: common_gen_methods = ['CRISPR', 'ENU', 'EMS'] # In[39]: updated_sheet = [] # 'WBPaper ID', 'WBGene', 'Gene', 'WBStrain', 'Strains', 'Variants', 'Mutation', 'Gene-Var combo', 'Variation type', 'Transcript', 'Warnings', 'Sentence' for i, row in enumerate(data): sent = row[-1] col_functional_effect = [] col_gen_method = [] for sub in functional_effect: if re.search(sub, sent, re.IGNORECASE): col_functional_effect.append(sub) for sub in common_gen_methods: if re.search(sub, sent): col_gen_method.append(sub) if col_functional_effect: col_functional_effect = list(set(col_functional_effect)) col_functional_effect = ", ".join(col_functional_effect) else: col_functional_effect = '' if col_gen_method: col_gen_method = list(set(col_gen_method)) col_gen_method = ", ".join(col_gen_method) else: col_gen_method = '' row = np.insert(row, -3, col_functional_effect) row = np.insert(row, -3, col_gen_method) updated_sheet.append(row.tolist()) data = np.array(updated_sheet) updated_sheet = None # In[40]: # saving things updated_sheet = pd.DataFrame(data[:], columns=['WBPaper ID', 'WBGene', 'Gene', 'WBStrain', 'Strains', 'Variants', 'Mutation', 'Gene-Var combo', 'Variation type', 'Functional effect', 'Generation method', 'Transcript', 'Warnings', 'Sentence']) updated_sheet.to_csv("data/model_output/processed/final.csv", index=False, encoding='utf-8') updated_sheet = None # # 7 Verification # Finding precision by cross-checking with the manually curated data. # In[41]: data =
pd.read_csv("data/model_output/processed/final.csv")
pandas.read_csv
import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras tf.random.set_seed(2021) from models import DNMC, NMC, NSurv, MLP, train_model, evaluate_model FILL_VALUES = { 'alb': 3.5, 'pafi': 333.3, 'bili': 1.01, 'crea': 1.01, 'bun': 6.51, 'wblc': 9., 'urine': 2502. } TO_DROP = ['aps', 'sps', 'surv2m', 'surv6m', 'prg2m', 'prg6m', 'dnr', 'dnrday'] TO_DROP = TO_DROP + ['sfdm2', 'hospdead'] # load, drop columns, fill using specified fill values df = pd.read_csv('../datasets/support2.csv').drop(TO_DROP,axis=1).fillna(value=FILL_VALUES) # get dummies for categorical vars df = pd.get_dummies(df, dummy_na=True) # fill remaining values to the median df = df.fillna(df.median()) # standardize numeric columns numrc_cols = df.dtypes == 'float64' df.loc[:, numrc_cols] = (df.loc[:, numrc_cols] - df.loc[:, numrc_cols].mean()) / df.loc[:, numrc_cols].std() OUTCOMES = ['death', 'd.time'] X = df.drop(OUTCOMES, axis=1).sample(frac=1, random_state=2021) X = X.values print('There are', X.shape[1], 'features') from generate_data import generate_semi_synthetic, generate_synth_censoring, onehot ### BEGIN COLLECTING RESULTS HERE ### all_results = [] all_weight_results = [] LEARNING_RATE = 1e-3 BATCH_SIZE = 100 N_BINS = 10 MAX_EPOCHS = 500 lr = 0.03 DATATYPE = 'synthetic' RESULTS_NAME = '../results/SUPPORT_' + DATATYPE + '.csv' assert DATATYPE in ['synth_censoring', 'synthetic', 'real'] # NOTE that we are skipping importance weights here. for random_state in [2020, 2016, 2013]: for num_distinct in [4, 8, 12, 16]: num_shared = 20 - num_distinct print('') print('Starting runs with random state', random_state, 'and %i distinct features' % num_distinct) print('') if DATATYPE == 'synthetic': synth = generate_semi_synthetic( X, num_distinct, num_shared, N_BINS, random_state, e_prob_spread=2.) elif DATATYPE == 'synth_censoring': synth = generate_synth_censoring( X, df['d.time'].values, df['death'].values, num_distinct, N_BINS, random_state, e_prob_spread=2.) x_train, x_val, x_test = X[:6000], X[6000:7500], X[7500:] y = onehot(synth['y_disc'], ncategories=10) y_train, y_val, y_test = y[:6000], y[6000:7500], y[7500:] s_train, s_val, s_test = synth['s'][:6000], synth['s'][6000:7500], synth['s'][7500:] e_train, e_val, e_test = synth['e'][:6000], synth['e'][6000:7500], synth['e'][7500:] #for lr in np.logspace(-2, -1, 6): # Run NMC print('Running NMC with lr =', lr) model = NMC(n_bins=N_BINS, lr=lr) try: train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) except: print('Run Failed') # Run NSurv print('Running NSurv with lr =', lr) model = NSurv(n_bins=N_BINS, lr=lr) try: train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) except: print('Run Failed') # Run MLP print('Running MLP with lr =', lr) model = MLP(lr=lr) try: train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) except: print('Run Failed') # Run DNMC for ld in [1., 10.]: print('Running DNMC (with Psi) with lr =', lr, 'and ld =', ld) model = DNMC(n_bins=N_BINS, lr=lr, ld=ld) try: train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) except: print('Run Failed') print('Running DNMC (NO Psi) with lr =', lr, 'and ld =', ld) model = DNMC(n_bins=N_BINS, lr=lr, ld=ld, include_psi=False) try: train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) results = evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state) results['model'] = 'DNMC_noPsi' all_results.append(results) except: print('Run Failed')
pd.DataFrame(all_results)
pandas.DataFrame
# third-party libraries import pandas as pd import pytest # local imports from .. import lstm_preprocessing class TestSpatialGrouping: """Tests the output of a single location for the record""" def test_selection_1(self): """Select the default, which is choosing the location from dataset 1""" data_list = [[11.22, 33.44, 55.66, 77.88], [99.00, 11.22, 33.44, 55.66]] target_list = [[11.22, 33.44], [99.00, 11.22]] data = pd.DataFrame(data_list, columns=['lat1', 'lon1', 'lat2', 'lon2']) target = pd.DataFrame(target_list, columns=['lat', 'lon']) test = lstm_preprocessing.spatial_grouping(data) assert test.equals(target) def test_selection_2(self): """Select the location from dataset 2""" data_list = [[11.22, 33.44, 55.66, 77.88], [99.00, 11.22, 33.44, 55.66]] target_list = [[55.66, 77.88], [33.44, 55.66]] data = pd.DataFrame(data_list, columns=['lat1', 'lon1', 'lat2', 'lon2']) target = pd.DataFrame(target_list, columns=['lat', 'lon']) test = lstm_preprocessing.spatial_grouping(data, location_selection='2') assert test.equals(target) def test_selection_osm(self): """Select the location by finding the nearest OSM node to the average""" data_list = [[44.594487, -123.262589, 44.562769, -123.267733], [44.594528, -123.261476, 44.563046, -123.268784]] target_list = [[36921149, 44.57822, -123.264745], [36921149, 44.57822, -123.264745]] data = pd.DataFrame(data_list, columns=['lat1', 'lon1', 'lat2', 'lon2']) target = pd.DataFrame(target_list, columns=['osm_id', 'lat', 'lon']) test = lstm_preprocessing.spatial_grouping(data, location_selection='osm') assert test.equals(target) class TestAssignOsm: """Find the nearest OSM node to the average of the two dataset locations""" def test_find_nearest(self): data_list = [[44.594487, -123.262589, 44.562769, -123.267733], [44.594528, -123.261476, 44.563046, -123.268784]] target_list = [[36921149, 44.57822, -123.264745], [36921149, 44.57822, -123.264745]] data = pd.DataFrame(data_list, columns=['lat1', 'lon1', 'lat2', 'lon2']) target = pd.DataFrame(target_list, columns=['osm_id', 'lat', 'lon']) test = lstm_preprocessing.assign_osm(data) assert test.equals(target) class TestOccupancyLevel: """Tests the output of occupancy levels for both grouped and single user data""" def test_both_individual(self): """Both datasets have individual identifiers""" data_list = [['bike1', 'scooter1']] target_list = [['bike1', 'scooter1', 1, 1]] data = pd.DataFrame(data_list, columns=['element_id1', 'element_id2']) target = pd.DataFrame(target_list, columns=['element_id1', 'element_id2', 'occupancy1', 'occupancy2']) test = lstm_preprocessing.occupancy_level(data) assert test.equals(target) def test_both_grouped(self): """Both datasets have grouped counts""" data_list = [['bike1', 'scooter1', 1519330080, 1519330081, 2, 1, 3, 1], ['bike1', 'scooter1', 1519330085, 1519330086, 3, 0, 2, 1], ['bike1', 'scooter1', 1519430080, 1519430081, 3, 1, 4, 2], ['bike1', 'scooter1', 1519430085, 1519430086, 1, 2, 0, 1]] target_list = [['bike1', 'scooter1', '2018-02-22 20:08:00', '2018-02-22 20:08:01', 1, 2], ['bike1', 'scooter1', '2018-02-22 20:08:05', '2018-02-22 20:08:06', 4, 3], ['bike1', 'scooter1', '2018-02-23 23:54:40', '2018-02-23 23:54:41', 2, 2], ['bike1', 'scooter1', '2018-02-23 23:54:45', '2018-02-23 23:54:46', 1, 1]] data = pd.DataFrame(data_list, columns=['element_id1', 'element_id2', 'timestamp1', 'timestamp2', 'boardings1', 'alightings1', 'boardings2', 'alightings2']) target = pd.DataFrame(target_list, columns=['element_id1', 'element_id2', 'timestamp1', 'timestamp2', 'occupancy1', 'occupancy2']) target['timestamp1'] = pd.to_datetime(target['timestamp1']) target['timestamp2'] = pd.to_datetime(target['timestamp2']) test = lstm_preprocessing.occupancy_level(data) assert test.equals(target) class TestDailyCumulative: """Test the cumulative sum of grouped data to derive occupancy""" def test_summing_1_timestamp(self): """Test cumulative sum for dataset 1 with timestamp""" data_list = [['bob1', 1519330080, 2, 1], ['bob1', 1519330085, 3, 0], ['bob1', 1519430080, 3, 1], ['bob1', 1519430085, 1, 2]] target_list = [['bob1', '2018-02-22 20:08:00', 1], ['bob1', '2018-02-22 20:08:05', 4], ['bob1', '2018-02-23 23:54:40', 2], ['bob1', '2018-02-23 23:54:45', 1]] data = pd.DataFrame(data_list, columns=['element_id1', 'timestamp1', 'boardings1', 'alightings1']) target = pd.DataFrame(target_list, columns=['element_id1', 'timestamp1', 'occupancy1']) target['timestamp1'] = pd.to_datetime(target['timestamp1']) test = lstm_preprocessing.daily_cumulative(data, '1') assert test.equals(target) def test_summing_2_timestamp(self): """Test cumulative sum for dataset 2 with timestamp""" data_list = [['bob2', 1519330080, 2, 1], ['bob2', 1519330085, 3, 0], ['bob2', 1519430080, 3, 1], ['bob2', 1519430085, 1, 2]] target_list = [['bob2', '2018-02-22 20:08:00', 1], ['bob2', '2018-02-22 20:08:05', 4], ['bob2', '2018-02-23 23:54:40', 2], ['bob2', '2018-02-23 23:54:45', 1]] data = pd.DataFrame(data_list, columns=['element_id2', 'timestamp2', 'boardings2', 'alightings2']) target = pd.DataFrame(target_list, columns=['element_id2', 'timestamp2', 'occupancy2']) target['timestamp2'] = pd.to_datetime(target['timestamp2']) test = lstm_preprocessing.daily_cumulative(data, '2') assert test.equals(target) def test_summing_1_session(self): """Test cumulative sum for dataset 1 with session times""" data_list = [['bob1', 1519330080, 1519330081, 2, 1], ['bob1', 1519330085, 1519330086, 3, 0], ['bob1', 1519430080, 1519430081, 3, 1], ['bob1', 1519430085, 1519430086, 1, 2]] target_list = [['bob1', '2018-02-22 20:08:00', '2018-02-22 20:08:01', 1], ['bob1', '2018-02-22 20:08:05', '2018-02-22 20:08:06', 4], ['bob1', '2018-02-23 23:54:40', '2018-02-23 23:54:41', 2], ['bob1', '2018-02-23 23:54:45', '2018-02-23 23:54:46', 1]] data = pd.DataFrame(data_list, columns=['element_id1', 'session_start1', 'session_end1', 'boardings1', 'alightings1']) target = pd.DataFrame(target_list, columns=['element_id1', 'session_start1', 'session_end1', 'occupancy1']) target['session_start1'] = pd.to_datetime(target['session_start1']) target['session_end1'] = pd.to_datetime(target['session_end1']) test = lstm_preprocessing.daily_cumulative(data, '1') assert test.equals(target) def test_summing_2_session(self): """Test cumulative sum for dataset 2 with session times""" data_list = [['bob2', 1519330080, 1519330081, 2, 1], ['bob2', 1519330085, 1519330086, 3, 0], ['bob2', 1519430080, 1519430081, 3, 1], ['bob2', 1519430085, 1519430086, 1, 2]] target_list = [['bob2', '2018-02-22 20:08:00', '2018-02-22 20:08:01', 1], ['bob2', '2018-02-22 20:08:05', '2018-02-22 20:08:06', 4], ['bob2', '2018-02-23 23:54:40', '2018-02-23 23:54:41', 2], ['bob2', '2018-02-23 23:54:45', '2018-02-23 23:54:46', 1]] data = pd.DataFrame(data_list, columns=['element_id2', 'session_start2', 'session_end2', 'boardings2', 'alightings2']) target = pd.DataFrame(target_list, columns=['element_id2', 'session_start2', 'session_end2', 'occupancy2']) target['session_start2'] = pd.to_datetime(target['session_start2']) target['session_end2'] = pd.to_datetime(target['session_end2']) test = lstm_preprocessing.daily_cumulative(data, '2') assert test.equals(target) def test_invalid_identifier(self): """Tests if exception is raised when identifier parameter is not valid""" data_list = [['bob2', 1519330080, 1519330081, 2, 1], ['bob2', 1519330085, 1519330086, 3, 0], ['bob2', 1519430080, 1519430081, 3, 1], ['bob2', 1519430085, 1519430086, 1, 2]] target_list = [['bob2', '2018-02-22 20:08:00', '2018-02-22 20:08:01', 1], ['bob2', '2018-02-22 20:08:05', '2018-02-22 20:08:06', 4], ['bob2', '2018-02-23 23:54:40', '2018-02-23 23:54:41', 2], ['bob2', '2018-02-23 23:54:45', '2018-02-23 23:54:46', 1]] data = pd.DataFrame(data_list, columns=['element_id2', 'session_start2', 'session_end2', 'boardings2', 'alightings2']) with pytest.raises(Exception): lstm_preprocessing.daily_cumulative(data, '3') class TestTimeGrouping: """Tests the grouping of records into specified time intervals""" def test_timestamp1_session2_interval15_selection1(self): data_list = [[1519330080, 1519330090, 44.44, 55.55, 2, 3], [1519330081, 1519330030, 44.44, 55.55, 1, 4], [1519430080, 1519430090, 44.44, 55.55, 3, 2], [1519430081, 1519430030, 44.44, 55.55, 2, 6]] target_list = [['2018-02-22 20:00:00', 44.44, 55.55, 3, 7], ['2018-02-23 23:45:00', 44.44, 55.55, 5, 8]] data = pd.DataFrame(data_list, columns=['timestamp1', 'session_start2', 'lat', 'lon', 'occupancy1', 'occupancy2']) target = pd.DataFrame(target_list, columns=['time', 'lat', 'lon', 'occupancy1', 'occupancy2']) target['time'] = pd.to_datetime(target['time']) target_multi = target.set_index(['time', 'lat', 'lon']) test = lstm_preprocessing.time_grouping(data, interval='15T', time_selection='1') assert test.equals(target_multi) def test_timestamp1_session2_interval15_selection2(self): data_list = [[1519330080, 1519330090, 44.44, 55.55, 2, 3], [1519330081, 1519330030, 44.44, 55.55, 1, 4], [1519430080, 1519430090, 44.44, 55.55, 3, 2], [1519430081, 1519430030, 44.44, 55.55, 2, 6]] target_list = [['2018-02-22 20:00:00', 44.44, 55.55, 3, 7], ['2018-02-23 23:45:00', 44.44, 55.55, 5, 8]] data = pd.DataFrame(data_list, columns=['timestamp1', 'session_start2', 'lat', 'lon', 'occupancy1', 'occupancy2']) target = pd.DataFrame(target_list, columns=['time', 'lat', 'lon', 'occupancy1', 'occupancy2']) target['time'] =
pd.to_datetime(target['time'])
pandas.to_datetime
import pandas as pd import datetime # create a variable with dates, and from that extract the weekday # I create a list of dates with 20 days difference from today # and then transform it into a dataframe df_base = datetime.datetime.today() df_date_list = [df_base - datetime.timedelta(days=x) for x in range(0, 20)] df =
pd.DataFrame(df_date_list)
pandas.DataFrame
""" Module: Build_csv_files ============================= A module for building the csv-files for GEOSeMOSYS https://github.com/KTH-dESA/GEOSeMOSYS to run that code In this module the logic around electrified and un-electrified cells are implemented for the 378 cells --------------------------------------------------------------------------------------------------------------------------------------------- Module author: <NAME> <<EMAIL>> """ import pandas as pd import geopandas as gpd import os import fnmatch pd.options.mode.chained_assignment = None def renewableninja(path, dest): """ This function organize the data to the required format of a matrix with the location name on the x axis and hourly data on the y axis so that it can be fed into https://github.com/KTH-dESA/GEOSeMOSYS code the data is saved as capacityfactor_wind.csv and capacityfactor_solar.csv :param path: :param dest: :return: """ files = os.listdir(path) outwind = [] outsolar = [] for file in files: if fnmatch.fnmatch(file, '*timezoneout_wind*'): file = os.path.join(path,file) wind = pd.read_csv(file, index_col='adjtime') outwind.append(wind) for file in files: if fnmatch.fnmatch(file, '*timezoneout_solar*'): file = os.path.join(path,file) solar = pd.read_csv(file, index_col='adjtime') outsolar.append(solar) try: solarbase = pd.concat(outsolar, axis=1) windbase =
pd.concat(outwind, axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # ### For futher info on BorutaPy package see: <br><br>https://github.com/scikit-learn-contrib/boruta_py # ##### Articles: # #### BorutaPy: <br> https://www.jstatsoft.org/article/view/v036i11 # #### Robustness of RF-based feature selection: <br> https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-8 <br> # # In[1]: import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt # In[2]: os.chdir("/home/pchabets/Dropbox/STRESS_INDEX/") # ### Load in transcriptomics data # In[3]: expr_train = pd.read_csv("data/blood_and_saliva_variables/W1/transcriptomics/transcriptomics_2ychronicity_TRAIN.csv") expr_test = pd.read_csv("data/blood_and_saliva_variables/W1/transcriptomics/transcriptomics_2ychronicity_TEST.csv") # ### Use Boruta for variabe selection # #### Turn labels into 0's and 1's # non-remitted = 0, remitted = 1 # In[4]: #not_remitted = 0, remitted = 1 from sklearn.preprocessing import LabelEncoder lbl = LabelEncoder() expr_train['Remitted_depression'] = lbl.fit_transform(expr_train['Remitted_depression']) # In[5]: # Base Boruta feature selection only on train set - X and y are from trainset only X = expr_train.drop(['Remitted_depression', 'pident'], inplace=False, axis=1) y = expr_train['Remitted_depression'] # #### initialize Boruta # In[6]: # set max depth and percentage max_depth = 1 percentage = 98 # In[7]: from boruta import BorutaPy from sklearn.ensemble import RandomForestClassifier # In[8]: rf = RandomForestClassifier( n_jobs=14, max_depth = max_depth, class_weight='balanced', verbose=1 ) # In[9]: feat_selector = BorutaPy( estimator = rf, n_estimators='auto', max_iter=1000, perc=percentage, # random_state=101, verbose=2 ) # #### fit Boruta # In[10]: feat_selector.fit(np.array(X), np.array(y)) # ### Check results # In[11]: # check selected features feat_selector.support_ # In[12]: # check ranking of features feat_selector.ranking_ # In[13]: strong = X.columns[feat_selector.support_].to_list() weak = X.columns[feat_selector.support_weak_].to_list() print('Selected features:', strong) print('Potentially irrelevant features:', weak) # ### Transform X to selected features X # In[14]: # only keep confirmed features, discard tentative features X_filtered = X.loc[:,feat_selector.support_] # In[15]: X_filtered.shape # ### Combine into new dataframe with labels and write to file # #### Train set # In[16]: # participant IDs of train set pid_train = expr_train['pident'] # In[17]: # concatenate into 1 df selected_set_TRAIN =
pd.concat([pid_train, y, X_filtered], axis=1)
pandas.concat
from python_back_end.utilities.custom_multiprocessing import DebuggablePool import numpy as np import pandas as pd from python_back_end.triangle_formatting.date_sorter import DateSorter from python_back_end.data_cleaning.date_col_identifier import DateColIdentifier from python_back_end.data_cleaning.type_col_extracter import TypeColExtracter from python_back_end.definitions import SheetTypeDefinitions from python_back_end.exceptions import NonpermissibleDateColumnDetected from python_back_end.program_settings import PROGRAM_STRINGS as ps, PROGRAM_PARAMETERS as pp from python_back_end.utilities.help_functions import strict_index, sum_unique from python_back_end.utilities.state_handling import DataHolder, DataStruct from functools import partial class TriangleFromTableBuilder: @staticmethod def build_triangle_from_table(dh): new_dh = DataHolder(dh.name) pool = DebuggablePool(pp.N_CORES) # First find all date cols and see if one of them has target structure. for dh_ind, ds in enumerate(dh.data_struct_list): id_col, hori_date_col, vert_date_col = TriangleFromTableBuilder.do_the_magic(ds, pool) # cut each id into one row cut_list = TriangleFromTableBuilder.make_cut_list(ds.df_data[id_col]) # use the cut_list to insert all elements tr_cols = pd.Series(ds.df_profiles.iloc[0, :] == SheetTypeDefinitions.TRIANGLE_ELEMENT, index=ds.df_profiles.columns) pad_header_mapping = TriangleFromTableBuilder.make_pad_header_mapping(ds, hori_date_col) vert_col_tup = (vert_date_col, ds.df_data[vert_date_col]) hori_col_tup = (hori_date_col, ds.df_data[hori_date_col]) id_col_tup = (id_col, ds.df_data[id_col]) func = partial(TriangleFromTableBuilder.apply_cuts, cut_list, vert_col_tup, hori_col_tup, id_col_tup, pad_header_mapping) tr_col_tup_list = [(col_name, ds.df_data[col_name]) for col_name in tr_cols.index[tr_cols]] out = pool.map(func, tr_col_tup_list) #for name, tr_col in ds.df_data[tr_cols.index[tr_cols]].iteritems(): for temp_df_data, temp_df_profiles, name in out: new_dh.add_sheet(name, temp_df_data, temp_df_profiles) #new_dh.add_sheet(name, temp_df_data, temp_df_profiles) pool.close() return new_dh @staticmethod def make_pad_header_mapping(ds, hori_date_col): start_pad = ds.df_data.columns[-1][:pp.N_DIGITS_HEADER_PADDING] start_pad = int(start_pad) temp = ds.df_data[hori_date_col].values temp_headers = sorted(np.unique(temp)) pad_header_mapping = {head: str(ind).zfill(pp.N_DIGITS_HEADER_PADDING) + ". " + str(head) for head, ind in zip(temp_headers, range(start_pad, len(temp_headers) + start_pad))} return pad_header_mapping @staticmethod def apply_cuts(cut_list, vert_col_tup, hori_col_tup, id_col_tup, pad_header_mapping, tr_col_tup): col_list = list() for cut in cut_list: # make unique column headers by summing temp_headers = hori_col_tup[1][cut].values temp_values = tr_col_tup[1][cut].values temp_headers, temp_values = sum_unique(temp_headers, temp_values) temp_headers = [pad_header_mapping[el] for el in temp_headers] col_df = pd.Series(temp_values, index=temp_headers) # add stuff to the series temp_num = vert_col_tup[1][cut[0]] temp_id = id_col_tup[1][cut[0]] col_df.loc[vert_col_tup[0]] = temp_num col_df.loc[id_col_tup[0]] = temp_id col_list.append(col_df) temp_df_data = pd.concat(col_list, axis=1, sort=True) temp_df_data = temp_df_data.transpose() temp_df_data = temp_df_data.fillna(0) # get the year column for sorting sorting_col = temp_df_data.loc[:, vert_col_tup[0]] temp_df_data = DateSorter.append_and_sort(temp_df_data, sorting_col) temp_df_profiles = pd.DataFrame(SheetTypeDefinitions.TRIANGLE_ELEMENT, columns=temp_df_data.columns, index=temp_df_data.index) temp_df_profiles.loc[:, vert_col_tup[0]] = SheetTypeDefinitions.STRING_DATE temp_df_profiles.loc[:, id_col_tup[0]] = SheetTypeDefinitions.ID_ELEMENT #temp_ds = DataStruct() return temp_df_data, temp_df_profiles, tr_col_tup[0] @staticmethod def make_cut_list(id_col): cut_list = [] uniques = id_col.unique() index_form = pd.Index(id_col) for id in uniques: idxs = id_col.index[index_form.get_loc(id)] if isinstance(idxs, pd.Index): idxs = idxs.tolist() else: idxs = [idxs] cut_list.append(idxs) return cut_list @staticmethod def do_the_magic(ds, pool): date_cols = DateColIdentifier.identify_marked_date_cols(ds) id_cols = pd.Series(ds.df_profiles.iloc[0, :] == SheetTypeDefinitions.ID_ELEMENT, index=ds.df_profiles.columns) horizontal_matches = pd.DataFrame(0, columns=date_cols.index[date_cols], index=id_cols.index[id_cols]) for date_name in date_cols.index[date_cols]: date_col = ds.df_data[date_name] id_date_match_part = partial(TriangleFromTableBuilder.id_date_match, date_col) id_col_list = [ds.df_data[col] for col in id_cols.index[id_cols]] temp = pool.map(id_date_match_part, id_col_list) temp_list = list(temp) horizontal_matches.loc[:, date_name] = temp_list #for id_name in id_cols.index[id_cols]: # horizontal_matches.loc[id_name, date_name] = TriangleFromTableBuilder.id_date_match(ds, id_name, date_name) id_col_name = horizontal_matches.max(axis=1).idxmax() hori_date_col = horizontal_matches.max(axis=0).idxmax() print(hori_date_col) # remove the chosen horizontal column date_cols[hori_date_col] = False id_col = ds.df_data[id_col_name] vert_col_match_part = partial(TriangleFromTableBuilder.verti_col_match, id_col) date_col_list = [ds.df_data[date_col_name] for date_col_name in date_cols.index[date_cols]] vert_scores = pool.map(vert_col_match_part, date_col_list) vertical_matches = pd.Series(vert_scores, index=date_cols.index[date_cols]) #for date_col_name in date_cols.index[date_cols]: # vertical_matches[date_col_name] = TriangleFromTableBuilder.verti_col_match(ds, id_col_name, date_col_name) vert_date_col = vertical_matches.idxmax() return id_col_name, hori_date_col, vert_date_col @staticmethod def verti_col_match(id_col, date_col): #id_col, date_col = ds.df_data[id_col_name], ds.df_data[date_col_name] # get number of unique items in date_col match = len(date_col.unique()) # now minus for each break within one id uniques = id_col.unique() index_form =
pd.Index(id_col)
pandas.Index
''' Project: WGU Data Management/Analytics Undergraduate Capstone <NAME> August 2021 GDELTbase.py Class for creating/maintaining data directory structure, bulk downloading of GDELT files with column reduction, parsing/cleaning to JSON format, and export of cleaned records to MongoDB. Basic use should be by import and implementation within an IDE, or by editing section # C00 and running this script directly. Primary member functions include descriptive docstrings for their intent and use. See license.txt for information related to each open-source library used. WARNING: project file operations are based on relative pathing from the 'scripts' directory this Python script is located in, given the creation of directories 'GDELTdata' and 'EDAlogs' parallel to 'scripts' upon first GDELTbase and GDELTeda class initializations. If those directories are not already present, a fallback method for string-literal directory reorientation may be found in GDELTbase shared class data at this tag: # A01a - backup path specification. Any given user's project directory must be specified there. See also GDELTeda.py, tag # A02b - Project directory path, as any given user's project directory must be specified for that os.chdir() call, also. Contents: A00 - GDELTbase A01 - shared class data (toolData, localDb) A01a - backup path specification Note: Specification at A01a should be changed to suit a user's desired directory structure, given their local filesystem. A02 - __init__ w/ instanced data (localFiles) B00 - class methods B01 - updateLocalFilesIndex B02 - clearLocalFilesIndex B03 - showLocalFiles B04 - wipeLocalFiles B05 - extensionToTableName B06 - isFileDownloaded B07 - downloadGDELTFile B08 - downloadGDELTDay B09 - cleanFile (includes the following field/subfield parser functions) B09a - themeSplitter B09b - locationsSplitter B09c - personsSplitter B09d - organizationsSplitter B09e - toneSplitter B09f - countSplitter B09g - One-liner date conversion function for post-read_csv use B09h - llConverter B10 - cleanTable B11 - mongoFile B12 - mongoTable C00 - main w/ testing ''' import pandas as pd import numpy as np import os import pymongo import wget import json from time import time from datetime import datetime, tzinfo from zipfile import ZipFile as zf from pprint import pprint as pp from urllib.error import HTTPError # A00 class GDELTbase: '''Base object for GDELT data acquisition, cleaning, and storage. Shared class data: ----------------- toolData - dict with these key - value pairs: URLbase - "http://data.gdeltproject.org/gdeltv2/" path - os.path path objects, 'raw' and 'clean', per-table names - lists of string column names, per-table, original and reduced extensions - dict mapping table names to file extensions, per-table columnTypes - dicts mapping table column names to appropriate types localDb - dict with these key - value pairs: client - pymongo.MongoClient() database - pymongo.MongoClient().capstone collections - dict mapping table names to suitable mongoDB collections Instanced class data: -------------------- localFiles - dict, per-table keys for lists of local 'raw' and 'clean' filenames Class methods: ------------- updateLocalFilesIndex() clearLocalFilesIndex() showLocalFiles() wipeLocalFiles() extensionToTableName() isFileDownloaded() downloadGDELTFile() downloadGDELTDay() cleanFile() cleanTable() mongoFile() mongoTable() ''' # A01 - shared class data toolData = {} # A01a - backup path specification # Failsafe path for local main project directory. Must be changed to suit # location of any given end-user's 'script' directory in case directory # 'GDELTdata' is not present one directory up. toolData['projectPath'] = 'C:\\Users\\urf\\Projects\\WGU capstone' # Controls generation of datafile download URLs in downloadGDELTDay()/File() toolData['URLbase'] = "http://data.gdeltproject.org/gdeltv2/" # Used in forming URLs for datafile download toolData['extensions'] = { 'events' : "export.CSV.zip", 'gkg' : "gkg.csv.zip", 'mentions' : "mentions.CSV.zip", } # These paths are set relative to the location of this script, one directory # up, in 'GDELTdata', parallel to the script directory. toolData['path'] = {} toolData['path']['base']= os.path.join(os.path.abspath(__file__), os.path.realpath('..'), 'GDELTdata') toolData['path']['events'] = { 'table': os.path.join(toolData['path']['base'], 'events'), 'raw': os.path.join(toolData['path']['base'], 'events', 'raw'), 'clean': os.path.join(toolData['path']['base'], 'events', 'clean'), 'realtimeR' : os.path.join(toolData['path']['base'], 'events', 'realtimeRaw'), 'realtimeC' : os.path.join(toolData['path']['base'], 'events', 'realtimeClean') } toolData['path']['gkg'] = { 'table': os.path.join(toolData['path']['base'], 'gkg'), 'raw': os.path.join(toolData['path']['base'], 'gkg', 'raw'), 'clean': os.path.join(toolData['path']['base'], 'gkg', 'clean'), 'realtimeR' : os.path.join(toolData['path']['base'], 'gkg', 'realtimeRaw'), 'realtimeC' : os.path.join(toolData['path']['base'], 'gkg', 'realtimeClean') } toolData['path']['mentions'] = { 'table': os.path.join(toolData['path']['base'], 'mentions'), 'raw': os.path.join(toolData['path']['base'], 'mentions', 'raw'), 'clean': os.path.join(toolData['path']['base'], 'mentions', 'clean'), 'realtimeR' : os.path.join(toolData['path']['base'], 'mentions', 'realtimeRaw'), 'realtimeC' : os.path.join(toolData['path']['base'], 'mentions', 'realtimeClean') } # These mappings and lists are for recognition of all possible # column names, and the specific discarding of a number of columns # which have been predetermined as unnecessary in the context of # simple EDA. toolData['names'] = {} toolData['names']['events'] = { 'original' : [ 'GLOBALEVENTID', 'Day', 'MonthYear', 'Year', 'FractionDate', 'Actor1Code', 'Actor1Name', 'Actor1CountryCode', 'Actor1KnownGroupCode', 'Actor1EthnicCode', 'Actor1Religion1Code', 'Actor1Religion2Code', 'Actor1Type1Code', 'Actor1Type2Code', 'Actor1Type3Code', 'Actor2Code', 'Actor2Name', 'Actor2CountryCode', 'Actor2KnownGroupCode', 'Actor2EthnicCode', 'Actor2Religion1Code', 'Actor2Religion2Code', 'Actor2Type1Code', 'Actor2Type2Code', 'Actor2Type3Code', 'IsRootEvent', 'EventCode', 'EventBaseCode', 'EventRootCode', 'QuadClass', 'GoldsteinScale', 'NumMentions', 'NumSources', 'NumArticles', 'AvgTone', 'Actor1Geo_Type', 'Actor1Geo_FullName', 'Actor1Geo_CountryCode', 'Actor1Geo_ADM1Code', 'Actor1Geo_ADM2Code', 'Actor1Geo_Lat', 'Actor1Geo_Long', 'Actor1Geo_FeatureID', 'Actor2Geo_Type', 'Actor2Geo_FullName', 'Actor2Geo_CountryCode', 'Actor2Geo_ADM1Code', 'Actor2Geo_ADM2Code', 'Actor2Geo_Lat', 'Actor2Geo_Long', 'Actor2Geo_FeatureID', 'ActionGeo_Type', 'ActionGeo_FullName', 'ActionGeo_CountryCode', 'ActionGeo_ADM1Code', 'ActionGeo_ADM2Code', 'ActionGeo_Lat', 'ActionGeo_Long', 'ActionGeo_FeatureID', 'DATEADDED', 'SOURCEURL', ], 'reduced' : [ 'GLOBALEVENTID', 'Actor1Code', 'Actor1Name', 'Actor1CountryCode', 'Actor1Type1Code', 'Actor1Type2Code', 'Actor1Type3Code', 'Actor2Code', 'Actor2Name', 'Actor2CountryCode', 'Actor2Type1Code', 'Actor2Type2Code', 'Actor2Type3Code', 'IsRootEvent', 'EventCode', 'EventBaseCode', 'EventRootCode', 'QuadClass', 'AvgTone', 'Actor1Geo_Type', 'Actor1Geo_FullName', 'Actor1Geo_Lat', 'Actor1Geo_Long', 'Actor2Geo_Type', 'Actor2Geo_FullName', 'Actor2Geo_Lat', 'Actor2Geo_Long', 'ActionGeo_Type', 'ActionGeo_FullName', 'ActionGeo_Lat', 'ActionGeo_Long', 'DATEADDED', 'SOURCEURL', ], } toolData['names']['gkg'] = { 'original' : [ 'GKGRECORDID', 'V21DATE', 'V2SourceCollectionIdentifier', 'V2SourceCommonName', 'V2DocumentIdentifier', 'V1Counts', 'V21Counts', 'V1Themes', 'V2EnhancedThemes', 'V1Locations', 'V2EnhancedLocations', 'V1Persons', 'V2EnhancedPersons', 'V1Organizations', 'V2EnhancedOrganizations', 'V15Tone', 'V21EnhancedDates', 'V2GCAM', 'V21SharingImage', 'V21RelatedImages', 'V21SocialImageEmbeds', 'V21SocialVideoEmbeds', 'V21Quotations', 'V21AllNames', 'V21Amounts', 'V21TranslationInfo', 'V2ExtrasXML', ], 'reduced' : [ 'GKGRECORDID', 'V21DATE', 'V2SourceCommonName', 'V2DocumentIdentifier', 'V1Counts', 'V1Themes', 'V1Locations', 'V1Persons', 'V1Organizations', 'V15Tone', ], } toolData['names']['mentions'] = { 'original' : [ 'GLOBALEVENTID', 'EventTimeDate', 'MentionTimeDate', 'MentionType', 'MentionSourceName', 'MentionIdentifier', 'SentenceID', # 'Actor1CharOffset',# 'Actor2CharOffset',# 'ActionCharOffset',# 'InRawText', 'Confidence', 'MentionDocLen', # 'MentionDocTone', 'MentionDocTranslationInfo', # 'Extras', # ], 'reduced' : [ 'GLOBALEVENTID', 'EventTimeDate', 'MentionTimeDate', 'MentionType', 'MentionSourceName', 'MentionIdentifier', 'InRawText', 'Confidence', 'MentionDocTone', ], } # These mappings are used in automated dtype application to Pandas # DataFrame collections of GDELT records, part of preprocessing. toolData['columnTypes'] = {} toolData['columnTypes']['events'] = { 'GLOBALEVENTID' : type(1), 'Actor1Code': pd.StringDtype(), 'Actor1Name': pd.StringDtype(), 'Actor1CountryCode': pd.StringDtype(), 'Actor1Type1Code' : pd.StringDtype(), 'Actor1Type2Code' : pd.StringDtype(), 'Actor1Type3Code' : pd.StringDtype(), 'Actor2Code': pd.StringDtype(), 'Actor2Name': pd.StringDtype(), 'Actor2CountryCode': pd.StringDtype(), 'Actor2Type1Code' : pd.StringDtype(), 'Actor2Type2Code' : pd.StringDtype(), 'Actor2Type3Code' : pd.StringDtype(), 'IsRootEvent': type(True), 'EventCode': pd.StringDtype(), 'EventBaseCode': pd.StringDtype(), 'EventRootCode': pd.StringDtype(), 'QuadClass': type(1), 'AvgTone': type(1.1), 'Actor1Geo_Type': type(1), 'Actor1Geo_FullName': pd.StringDtype(), 'Actor1Geo_Lat': pd.StringDtype(), 'Actor1Geo_Long': pd.StringDtype(), 'Actor2Geo_Type': type(1), 'Actor2Geo_FullName': pd.StringDtype(), 'Actor2Geo_Lat': pd.StringDtype(), 'Actor2Geo_Long': pd.StringDtype(), 'ActionGeo_Type': type(1), 'ActionGeo_FullName': pd.StringDtype(), 'ActionGeo_Lat': pd.StringDtype(), 'ActionGeo_Long': pd.StringDtype(), 'DATEADDED' : pd.StringDtype(), 'SOURCEURL': pd.StringDtype(), } toolData['columnTypes']['gkg'] = { 'GKGRECORDID' : pd.StringDtype(), 'V21DATE' : pd.StringDtype(), 'V2SourceCommonName' : pd.StringDtype(), 'V2DocumentIdentifier' : pd.StringDtype(), } toolData['columnTypes']['mentions'] = { 'GLOBALEVENTID' : type(1), 'EventTimeDate' : pd.StringDtype(), 'MentionTimeDate' : pd.StringDtype(), 'MentionType' : pd.StringDtype(), 'MentionSourceName' :
pd.StringDtype()
pandas.StringDtype
#!/usr/bin/env python #CITATION https://www.biorxiv.org/content/10.1101/540229v1 #####IMPORT ALL NECESSARY MODULES##### import sys, ast, json import os import argparse import itertools import ntpath import numbers import decimal import sys, os import pymol from pymol import cmd from pymol.cgo import * from pymol.vfont import plain import ntpath import pandas as pd #Windows users: I copy-paste the pandas,dateutil and pyltz folders from anaconda 2!! into the site-packages folder of pymol(only for temporary use, other wise it gets confused with the paths of the packages) import numpy as np from pandas import Series from math import isnan #Biopython from Bio.Alphabet import generic_protein from Bio import SeqRecord,Alphabet,SeqIO from Bio.SeqIO import SeqRecord from Bio.Seq import Seq from Bio import SeqIO import Bio.PDB as PDB from Bio.Seq import MutableSeq from Bio.PDB.Polypeptide import is_aa from Bio.SeqUtils import seq1 from Bio.SeqRecord import SeqRecord from Bio.pairwise2 import format_alignment #Readline try: import readline #Linux except ImportError: import pyreadline as readline #Windows import rlcompleter #Command Line Arguments parser = argparse.ArgumentParser() #COMPULSORY files: Give error if not present parser.add_argument("--PDB",required = True,help ='Path to Protein DataBank file (use "" if errors)') parser.add_argument('--Gene',required = True,help = 'Path to Single coding nucleotide/amino acid sequence or multiple alignment of coding nucleotide/amino acid sequences') parser.add_argument('--M8',required =True,help ='Path to Out file from the Codeml model M8') #parser.add_argument('--Full_PDB_sequence',help = 'Path to the Complete Fasta file of the PDB sequence (download from RCSB PDB as well), if we want to use the domain positions from here') #OPTIONAL arguments: parser.add_argument('--Full_PDB_sequence',help = 'Path to the Complete Fasta file of the PDB sequence (download from RCSB PDB as well), if we want to use the domain positions from here',default='no') parser.add_argument('--prosite',help = 'Use prosite to identify domain positions in the PDB file sequence, default=yes', default='yes') parser.add_argument('--domains',help = 'List of funcional domain positions retrieved from the PDB protein webpage starting in index 1 eg "[1,4,6]" or "list(range(1,30))+list(range(70,80))" (quotes are essential!), default=[]', default=[]) parser.add_argument('--file_list_domains',help = 'Path to file with functional domain positions in format 1\n1\n , default = []', default=[] ) parser.add_argument('--file_domains',help = 'Path to file with protein domains sequences (all in same format as the gene file), default = []', default=[] ) parser.add_argument('--format', help = 'Sequence or Multiple Alignment File Format (default fasta), do not write it with quotes',default = 'fasta') parser.add_argument("--prob", help = 'Choice of level of posterior probability on the sites, 95% or 99% from M8 Out file', default= int(99)) # prob : Posterior probability percentage of the positive sites , 99 or 95, default= 99 parser.add_argument("--missing_data", help = 'Decide if the missing data("N") should be removed from the nucleotide sequence, default = yes, recommended for the alignment', default='yes') # missing_data : remove or not missing data from the sequence alignment: yes or no, default=yes parser.add_argument("--sequence_number", help = 'Number of the sequence in the multiple alignment file', default=int(0)) # sequence_number : When using a multiple alignment file indicate with sequence number to use, if single sequence use 0, default = 0 parser.add_argument("--print_alignment",help= 'Choose to visualize the PDB file sequence aligned with the gene, default = no', default='no') parser.add_argument("--PDB_chains",help= 'Chain(s) to extract from the PDB sequence(s), write separated by spaces: A B C, default = all ',nargs = '*',default='all') args = parser.parse_args() PDB_file,Full_PDB_sequence, Gene, M8,domains,List_domains,File_domains,Gene_file_format,prob,missing_data,sequence_number,print_alignment,chains,prosite = [args.PDB, args.Full_PDB_sequence,args.Gene, args.M8,args.domains,args.file_list_domains,args.file_domains,args.format,args.prob,args.missing_data,args.sequence_number,args.print_alignment,args.PDB_chains,args.prosite] sequence_number = eval(sequence_number) try: sequence_number=eval(sequence_number) except: pass try: #LINUX USERS prob =eval(prob) except: pass #Check all the necessary files are present and the right arguments are given: File_formats = ['fasta','phylip_sequential','clustal','embl','genebank','gb','abi','ace','fastq-sanger','fastq','fastq-solexa','fastq-illumina','ig','imgt','pdb-seqres','pdb-atom','phd','phylip','pir','seqxml','sff','stockholm','swiss','tab','qual','uniprot-xml'] if not PDB_file or not Gene or not M8 : parser.error('Missing one of the 43required arguments: PDB file / Gene / Out file ') elif prob not in [95,99]: parser.error('Probability values can only be 95 or 99') elif missing_data not in ['no','yes']: parser.error('Choose to keep missing data: yes or to remove it: no') elif not isinstance(sequence_number, numbers.Number): parser.error('The number of the sequence in the alignment needs to be an integer') elif Gene_file_format not in File_formats: parser.error('Invalid Gene File Format.Check available SeqIO biopython file formats ') elif List_domains and File_domains: parser.error('Duplicated information, choose either --domains or --file_domains') else: if not List_domains and not File_domains: print('Not List of Domains or Path to Text file with domains specified, using Prosites') print('Building dataframe...') else: print('Building dataframe...') def Global_alignment(chain_A,chain_B): '''Global alignment between 2 given chains(str format)''' from Bio import pairwise2 from Bio.pairwise2 import format_alignment alignment_global = pairwise2.align.globalms(chain_A, chain_B, 2, -1, -5, -.1) #print(format_alignment(*alignment_global[0])) #print the alignment if desired alignment_info_global = alignment_global[0] Aligned_3u84, Aligned_ENST00000337652, score, begin, end = alignment_info_global return alignment_info_global,alignment_global def Local_alignment(chain_A,chain_B): '''Local alignment between 2 given chains''' from Bio import pairwise2 from Bio.pairwise2 import format_alignment alignment_local = pairwise2.align.localms(chain_A, chain_B, 2, -1, -5, -.1) ##0.5 points are deducted when opening a gap, and 0.1 points are deducted when extending it. #print(format_alignment(*alignment_global[0])) alignment_info_local = alignment_local[0] Aligned_A, Aligned_B, score, begin, end = alignment_info_local return alignment_info_local,alignment_local def fasta_to_sequence(Fasta_file,Format): '''Extract single sequence from file''' from Bio import SeqRecord, SeqIO fasta_sequences = SeqIO.parse(open(Fasta_file), Format) for fasta in fasta_sequences: name, sequence = fasta.id, str(fasta.seq) return sequence,name def fasta_to_sequences(Fasta_file,Format): '''Same as before, can be merged with previous function''' from Bio import SeqRecord, SeqIO List_of_sequences = [] List_of_names = [] fasta_sequences = SeqIO.parse(open(Fasta_file),Format) for fasta in fasta_sequences: name, sequence = fasta.id, str(fasta.seq) List_of_sequences.append(sequence) List_of_names.append(name) return List_of_sequences,List_of_names def validate(seq, alphabet='dna'): """ Check that a sequence only contains values from DNA alphabet """ import re alphabets = {'dna': re.compile('^[acgtn]*$', re.I), 'protein': re.compile('^[acdefghiklmnpqrstvwy]*$', re.I)} if alphabets[alphabet].search(seq) is not None: return True else: return False def Translate_sequence(Fasta_file,Format,sequence_number): #Only for coding nucleotide sequences!!!! from Bio.Alphabet import IUPAC,ProteinAlphabet if sequence_number != 0: #if is not the first sequence sequence = fasta_to_sequences(Fasta_file,Format)[0][sequence_number] if validate(sequence) == True: #Check if is a nucleotided sequence aa_seq = Seq(sequence).translate(stop_symbol="X") else: aa_seq=Seq(sequence) else: #first sequence in the alignment/file sequence= fasta_to_sequence(Fasta_file,Format)[0] if validate(sequence) == True: aa_seq = Seq(sequence).translate(stop_symbol="X") else: aa_seq = Seq(sequence) return aa_seq def Translate_and_Remove_missing_data(Fasta_file,Format,sequence_number): '''Remove the missing data ('X') from the sequences after being translated, otherwise the codons are affected''' if sequence_number != 0: sequence =fasta_to_sequences(Fasta_file,Format)[0][sequence_number] #clean_sequence = Seq(sequence).translate(stop_symbol="X") #clean_sequence = clean_sequence.ungap('X') if validate(sequence) == True: clean_sequence = Seq(sequence).translate(stop_symbol="X") clean_sequence = clean_sequence.ungap('X') else: clean_sequence = Seq(sequence).ungap('X') #maybe ungap else: sequence=fasta_to_sequence(Fasta_file,Format)[0] if validate(sequence) == True: clean_sequence = Seq(sequence).translate(stop_symbol="X") clean_sequence = clean_sequence.ungap('X') else: clean_sequence = Seq(sequence).ungap('X') #maybe ungap return clean_sequence def Extract_sequence_from_PDB(PDB_file,chains): ''' Returns both the sequence contained in the PDB file and the residues coordinates for the desired chains''' parser = PDB.PDBParser() Name = ntpath.basename(PDB_file).split('.')[0] #Name = PDB_file.split('/')[-1].split('.')[0] structure = parser.get_structure('%s' %(Name),PDB_file) ############## Iterating over residues to extract all of them even if there is more than 1 chain sequence = [] Residues_ID = [] if chains == 'all': for chain in structure.get_chains(): for residue in chain: if is_aa(residue.get_resname(), standard=True): sequence.append(residue.get_resname()) Residues_ID.append(residue.get_id()[1]) else : accumulated_residues = [] accumulated_ids = [] for letter in chains: try: #in case the chain requested does not exits for residue in structure[0][letter]: #print(letter) if is_aa(residue.get_resname(), standard=True): accumulated_residues.append(residue.get_resname()) accumulated_ids.append(residue.get_id()[1]) except: pass sequence.append(''.join(accumulated_residues)) Residues_ID.append(accumulated_ids) joined_sequence = ''.join(sequence) PDB_sequence = seq1(joined_sequence) #3 letter code into 1 letter code try: Residues_ID = list(itertools.chain.from_iterable(Residues_ID)) except: pass return Residues_ID,PDB_sequence def equivalent_positions(chain_A, chain_B,Aligned_A, Aligned_B,Residues_ID = None, Domain_Positions =None): #chainA = PDB #chainB=Transcript #Positions = List of Positive Selected sites (optional argument because we will use this function in 2 manners) ''' This function returns the corresponding coordinates of the gene residues in the PDB sequence, the domain positions in the PDB sequence or among the gene with missing data and without''' import numpy as np #OriginalA = np.array(range(1, len(chain_A))) #Array of positions of the first given sequence ##Equivalent positions List = [] #Will store the Positions where there are no gaps in the aligned sequences, these are still not the PDB positions !! for index,residue in enumerate(Aligned_A): if Aligned_A[index] != '-' and Aligned_B[index] != '-': #OriginalA[:index] += 1 List.append(index +1) #In index 1 for PDB file else: pass Final_Positions = ['nan']*len(chain_B) #should have the lenght of the gene. If equivalence is found nana will be replaced with the equivalent PDB positions #####Finding the equivalent PDB Position of the residues in the gene transcript ignoring the GAPS generated in the alignment####### Position_in_PDB =[] gaps_first_segment = ''.join(Aligned_A[0:List[0]]).count('-') Position_in_PDB.append(List[0] - gaps_first_segment) #Position_in_PDB.append(List[1] - gaps_first_segment - ''.join(Aligned_A[List[0]:List[1]]).count('-')) accumulated_number_gaps_in_this_segment = gaps_first_segment for i in range(0,len(List)): #we skip the first interval, already performed ! try: accumulated_number_gaps_in_this_segment += ''.join(Aligned_A[List[i]:List[i+1]]).count('-') Position_in_PDB.append(List[i+1] - accumulated_number_gaps_in_this_segment) except: pass #####Finding out the equivalent positions in the gene transcript of the PDB residues######: Same thing the other way round Position_in_Transcript = [] gaps_first_segment_Transcript = ''.join(Aligned_B[0:List[0]]).count('-') Position_in_Transcript.append(List[0] - gaps_first_segment_Transcript) #Position_in_Transcript.append(List[1] - gaps_first_segment_Transcript - ''.join(Aligned_B[List[0]:List[1]]).count('-')) accumulated_number_gaps_in_this_segment_transcript = gaps_first_segment_Transcript for i in range(0, len(List)): # we skip the first interval try: accumulated_number_gaps_in_this_segment_transcript += ''.join(Aligned_B[List[i]:List[i + 1]]).count('-') Position_in_Transcript.append(List[i+1] - accumulated_number_gaps_in_this_segment_transcript) # plus on otherwise negative numbers except: pass Equivalent_Domain_positions = [] if not Domain_Positions: for position_transcript,position_PDB in zip(Position_in_Transcript,Position_in_PDB): #this are lists of the correspondance on both sides if Residues_ID: #residues ID has the same length as the PDB crystallized sequence Final_Positions[position_transcript - 1] = Residues_ID[position_PDB - 1] else: Final_Positions[position_transcript-1] = position_PDB return Final_Positions else: for position_transcript, position_PDB in zip(Position_in_Transcript, Position_in_PDB): Final_Positions[position_transcript - 1] = position_PDB for residue_id, domain_position in zip( Residues_ID,Domain_Positions): #Finding the correspondant coordinates of the functional domains in the PDB file structure try: specific_corresponding_domain_position = Final_Positions[domain_position - 1] try: Equivalent_Domain_positions.append(Residues_ID[specific_corresponding_domain_position - 1]) except: pass except: pass return Equivalent_Domain_positions def List_of_positions_of_Positive_Sites(file,prob): # file = Out file from M8 #prob = 95 or 99 ''' Reads M8 from M7vsM8 Codeml test: Will return the Positions of the selected sites with regards to the ALIGNMENT, later use function to find the equivalent positions in the clean from missing data sequence''' length_alignment = [] with open(file, 'r') as f: data = f.read().split('\n') positions = [] line_start = [] line_stop = [] # Line number reference to stop collecting the info related to positive selected sites for number, line in enumerate(data, 1): if 'Bayes Empirical Bayes (BEB) analysis (Yang, Wong & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118)' in line: line_start = number if 'The grid' in line: line_stop = number if 'Bayes Empirical Bayes (BEB) analysis (Yang, Wong & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118)' in data: diff = line_stop - line_start - 3 for i in range(6, int(diff)): # Start at line 6 after match position = data[data.index( 'Bayes Empirical Bayes (BEB) analysis (<NAME> & Nielsen 2005. Mol. Biol. Evol. 22:1107-1118)') + i] if prob == 99 : if str(position.split()[2]).endswith('**'): # * > 95% confidence ** > 99 confidence # print(position) position = position.split()[0] positions.append(int(position)) # Needs to be an int for later comparison else: if str(position.split()[2]).endswith('*'): # * > 95% confidence ** > 99 confidence # print(position) position = position.split()[0] positions.append(int(position)) # Needs to be an int for later comparison return positions def Corresponding_positions_missing_notmissing_data(Missing_data,Clean): #Missing_data = WITH missing data ; Clean = NO missing data ''' Returns list of the equivalent positions among 2 sequences, in this case the same sequence with and without missing data''' alignment_info_global, alignment_global = Global_alignment(Missing_data,Clean) Aligned_A, Aligned_B, score, begin, end = alignment_info_global #A = Missing data ('N'); B = Not missing data #print(format_alignment(*alignment_global[0])) List = equivalent_positions(Missing_data,Clean, Aligned_A, Aligned_B) #All corresponding positions of the sequence with missing data to the sequence without missing data return List def Corresponding_functional_positions(PDB,Full_PDB_sequence,Residues_ID,functional_list): alignment_info_global, alignment_global = Global_alignment(PDB,Full_PDB_sequence) #CHECK THIS is in the right order and it should be the other way round Aligned_A, Aligned_B, score, begin, end = alignment_info_global # print(format_alignment(*alignment_global[0])) List = equivalent_positions(PDB,Full_PDB_sequence,Aligned_A,Aligned_B,Residues_ID=Residues_ID,Domain_Positions=functional_list) # All corresponding functional domain positions in the PDB return List def Corresponding_Coordinates_and_labels_PDB_Gene(PDB,Gene,Full_PDB_sequence,List_of_Positive_Positions,functional_list,Residues_ID,basepath,print_alignment,Clean_positions = None): '''Performs the alignments, retrieves the equivalent coordinates and labels among the PDB sequence and the gene for each of the PDB positions. Produces a dataframe with different labels for each position, where 'Not'refers to not being positively selected and not functional domain, 'Selected' stands for positive selected, 'Domain', states that it belongs to the functional domain or 'Selected_and_Domain' which stands for both''' alignment_info_global, alignment_global = Global_alignment(PDB, Gene) Aligned_A, Aligned_B, score, begin, end = alignment_info_global #A = PDB; B = Gene(with or without missing data) if print_alignment == 'yes': print(format_alignment(*alignment_global[0])) else: pass List_positions = list(range(1, len(Gene) + 1)) #Extract the corresponding positions of the positive selected sites in the clean of missing data gene sequence List_positive_positions = [] if Clean_positions: #If the gene sequence has been cleaned and we have the corresponding positions for element in List_of_Positive_Positions: try: List_positive_positions.append(Clean_positions.index(element)) #Append the index of the residue that has the same id as the one in positive selected sites List_positive_positions.append(Clean_positions.index(element)) #Append the index of the residue that has the same id as the one in positive selected sites except: pass else: #we don't do anything List_positive_positions = List_of_Positive_Positions #For the dataframe we can label the positions from 1 to length of gene sequence (with or without missing data) positions_dataframe = pd.DataFrame(pd.Series(List_positions)) positions_dataframe.rename(columns={positions_dataframe.columns[0]: "Gene_Position"}, inplace=True) List = equivalent_positions(PDB, Gene, Aligned_A, Aligned_B,Residues_ID = Residues_ID) #List of equivalent positions of each of the gene residues into the PDB structure(residues ID!) ###The functional domains require also processing to find their equivalent residues in the PDB if prosite=='yes' or Full_PDB_sequence == 'no': functional_list = [Residues_ID[index - 1] for index in functional_list] else: alignment_info_global, alignment_global = Global_alignment(PDB, Full_PDB_sequence) Aligned_A, Aligned_B, score, begin, end = alignment_info_global # A = PDB; B = Gene(with or without missing data) functional_list = equivalent_positions(PDB,Full_PDB_sequence, Aligned_A, Aligned_B, Residues_ID=Residues_ID,Domain_Positions=functional_list) #Add the positions to the dataframe positions_dataframe['PDB_Position'] = List Label_1 = positions_dataframe['Gene_Position'].isin(List_positive_positions) #Check if the position in the gene sequence is + selected Label_2 = positions_dataframe['PDB_Position'].isin(functional_list) #Check if the PDB position is a functional domain positions_dataframe['Label_1'] = Label_1 # Create a Column were the positive positions have a label True positions_dataframe['Label_2'] = Label_2 #Create a column were the functional domain positions recieve the label True positions_dataframe['Label_1'] = positions_dataframe['Label_1'].replace(True, 'Selected') positions_dataframe['Label_1'] = positions_dataframe['Label_1'].replace(False, 'Not') positions_dataframe['Label_2'] = positions_dataframe['Label_2'].replace(True, 'Domain') positions_dataframe['Label_2'] = positions_dataframe['Label_2'].replace(False, 'Not') positions_dataframe['Label'] = pd.Series(List_positions) for index, row in positions_dataframe.iterrows(): if positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label_1')] == 'Selected' and positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label_2')] == 'Domain': positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label')] = 'Selected_and_Domain' elif positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label_1')] == 'Selected': positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label')] = 'Selected' elif positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label_2')] == 'Domain': positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label')] = 'Domain' else: positions_dataframe.iloc[index, positions_dataframe.columns.get_loc('Label')] = 'Not' positions_dataframe.drop(['Label_1', 'Label_2'], 1, inplace=True) Directory = os.path.dirname(basepath) # Obtain absolute path from the gene file, to create the dataframe there #Gene_name = ntpath.basename(Gene) PDB_name = ntpath.basename(basepath) positions_dataframe.to_csv(Directory + "/%s_Positions" % (PDB_name), index=False, sep='\t') print('Dataframe Ready at %s!' % (Directory)) return positions_dataframe def Read_List_of_domains(List_domains,domains,File_domains,prosite): """Handles 3 possible types of input of the residues that conform the protein domain and returns their positions with regards to the Full sequence of the protein provided in the PDB website""" if prosite == 'yes': PDB_sequence = Extract_sequence_from_PDB(PDB_file,chains)[1] "Returns positions in index 1" import itertools from Bio.ExPASy import ScanProsite handle = ScanProsite.scan(seq=PDB_sequence) # can use a sequence (seq=) or a pdbID result = ScanProsite.read(handle) domains = [] for index, segment in enumerate(result, 1): #print(segment) #if 'score' in segment: domains.append(list(range(segment['start'], segment['stop']))) #else: #pass List_of_domains= list(itertools.chain.from_iterable(domains)) elif not File_domains: if not domains: if not List_domains: List_of_domains = [] else: List_of_domains = [line.rstrip('\n') for line in open(List_domains)] List_of_domains = list(map(int, List_of_domains)) else: # Convert the input list in string format to a string by 'executing' it List_of_domains = eval(domains) else:#If there is a file with the domain sequences we get the equivalent positions with regards to the complete PDB sequence, not the one in the PDB file yet Full_PDB = ''.join(fasta_to_sequences(Full_PDB_sequence, 'fasta')[0]) Sequences_domains = ''.join(fasta_to_sequences(File_domains,Gene_file_format)[0]) ###GLOBAL AlIGNMENT: Worse performance # alignment_info_global, alignment_global = Global_alignment(Full_PDB,Sequences_domains) # Aligned_Full, Aligned_Domain, score, begin, end = alignment_info_global # A = PDB; B = Gene(with or without missing data) ###LOCAL ALIGNMENT: Better results, since the domains are usually small sequences alignment_info_local, alignment_local = Local_alignment(Full_PDB,Sequences_domains) Aligned_Full, Aligned_Domain, score, begin, end = alignment_info_local # A = PDB; B = Gene(with or without missing data) List_of_domains = equivalent_positions(Full_PDB_sequence,Sequences_domains,Aligned_Full,Aligned_Domain) return List_of_domains List_domains = Read_List_of_domains(List_domains,domains,File_domains,prosite) #Choose upon the 3 options to get the domain positions def Wrapper_of_all_functions(PDB_file,Gene,Full_PDB_sequence,M8,List_Domains,Format,prob,Sequence_number,missing_data,print_alignment,chains): '''Calling all the functions in the corresponding order/combination according to the optional arguments''' Residues_ID,PDB_sequence = Extract_sequence_from_PDB(PDB_file,chains) List_of_Positive_Positions =List_of_positions_of_Positive_Sites(M8,prob) # Extract sequence no matter if single sequence or multiple alignment Gene_missing_data = fasta_to_sequences(Gene, Format)[0][Sequence_number] if Full_PDB_sequence == 'no' or prosite == 'yes': #Using Prosite for domains, no need of Full_PDB_sequence if missing_data == 'no': Clean_protein_sequence = Translate_and_Remove_missing_data(Gene, Format,Sequence_number) # Translate and remove missing data from the gene Protein_missing_data = Translate_sequence(Gene, Format, Sequence_number) # Translate gene Clean_positions = Corresponding_positions_missing_notmissing_data(Protein_missing_data,Clean_protein_sequence) # Find the equivalent positions among the protein with and without missing data Dataframe = Corresponding_Coordinates_and_labels_PDB_Gene(PDB_sequence, Clean_protein_sequence, Full_PDB_sequence, List_of_Positive_Positions, List_domains, Residues_ID, PDB_file, print_alignment, Clean_positions) else: # Gene_missing_data is our sequence Protein_missing_data = Translate_sequence(Gene, Format, Sequence_number) # Translate Dataframe = Corresponding_Coordinates_and_labels_PDB_Gene(PDB_sequence, Protein_missing_data, Full_PDB_sequence, List_of_Positive_Positions, List_domains, Residues_ID, PDB_file, print_alignment) else: Full_PDB_sequence = ''.join(fasta_to_sequences(Full_PDB_sequence, 'fasta')[0]) # We use all the chains in the file in this case, can be changed easily #Checking if the user wants to perform the alignment with or without missing data in the gene if missing_data == 'no': Clean_protein_sequence = Translate_and_Remove_missing_data(Gene,Format,Sequence_number) #Translate and remove missing data from the gene Protein_missing_data = Translate_sequence(Gene, Format, Sequence_number) # Translate gene Clean_positions = Corresponding_positions_missing_notmissing_data(Protein_missing_data,Clean_protein_sequence) #Find the equivalent positions among the protein with and without missing data Dataframe =Corresponding_Coordinates_and_labels_PDB_Gene(PDB_sequence,Clean_protein_sequence,Full_PDB_sequence, List_of_Positive_Positions,List_domains,Residues_ID,PDB_file,print_alignment, Clean_positions) else: #Gene_missing_data is our sequence Protein_missing_data = Translate_sequence(Gene,Format,Sequence_number) #Translate Dataframe =Corresponding_Coordinates_and_labels_PDB_Gene(PDB_sequence,Protein_missing_data,Full_PDB_sequence,List_of_Positive_Positions,List_domains,Residues_ID,PDB_file,print_alignment) return Dataframe def Pymol(): '''Visualization program''' #LAUNCH PYMOL readline.parse_and_bind('tab: complete') # Set up path to pymol environment (in case is not installed) # pymol launching: quiet (-q), without GUI (-c) and with arguments from command line pymol.pymol_argv = ['pymol', '-q'] + sys.argv[1:] pymol.finish_launching() # Read User Input sname = ntpath.basename(PDB_file) # Extract the filename without the path # Dataframe_path = os.path.abspath(sys.argv[2]) # Dataframe generated by LYS.py # Load Structures pymol.cmd.load(PDB_file, sname) pymol.cmd.disable("all") # toggles off the display of all currently visible representations of an object. It is the equivalent of deselecting the object pymol.cmd.enable(sname) def Colour_by_Selection(selection="all", Selected="orange", Not='grey50', Domain='lime', Selected_and_Domain='magenta', ): colors = { 'Selected': Selected, 'Not': Not, 'Domain': Domain, 'Selected_and_Domain': Selected_and_Domain } #BACKGROUND & SHAPES cmd.bg_color('white') cmd.show_as('cartoon', 'all') cmd.color('gray', 'all') #ROTATION cmd.rotate([0,1,0], angle = 210,selection = "all") # Commands to rotate the structures to visualize some specific side of the protein [x,y,z] cmd.rotate([1, 0, 0], angle=-50, selection="all") #-20 for HRT2B #ELIMINATING CHAINS # Eliminating chains in the structure if desired # cmd.select('chainA', 'chain A') # cmd.remove('chain A') #LEGEND ###The text that appears in the image, change placement accordingly cgo = [] axes = [[5.0, 0.0, 0.0], [0.0, 5.0, 0.0],[0.0, 0.0, 5.0]] # Change the values if the protein does not quite fall into place cyl_text(cgo, plain, [70.0, 50.0, 80.0], '%s' % (sname.split('.')[0]), radius=0.6, color=[0.0, 0.0, 0.0],axes=axes) # x=60 for RIOK2, x=40 and z=60 for ROS1 cyl_text(cgo, plain, [70.0, 40.0, 80.0], 'Positively Selected', radius=0.6, color=[1.0, 0.5, 0.0], axes=axes) cyl_text(cgo, plain, [70.0, 30.0, 80.0], 'Not selected', radius=0.6, color=[0.5, 0.5, 0.5], axes=axes) cyl_text(cgo, plain, [70.0, 20.0, 80.0], 'Functional Domain', radius=0.6, color=[0.5, 1.0, 0.5], axes=axes) cyl_text(cgo, plain, [70.0, 10.0, 80.0], 'Both', radius=0.6, color=[1.0, 0.0, 1.0], axes=axes) cmd.set("cgo_line_radius", 0.03) # 0.03 cmd.load_cgo(cgo, 'txt') #ZOOM cmd.zoom("all", -5.0) # Higher and positive values zoom out, it accepts negative values #READ PREVIOUSLY CREATED DATAFRAME: Data = Wrapper_of_all_functions(PDB_file, Gene, Full_PDB_sequence, M8, List_domains, Gene_file_format, prob,sequence_number, missing_data, print_alignment, chains) #Option A: best alternative Data['PDB_Position'] = Data['PDB_Position'].astype(np.float64) #Need to convert to float to use isfinite Data = Data[np.isfinite(Data['PDB_Position'])] # Remove the Residues that got 'nan' value in their equivalent positions position_phenotype_dict =
Series(Data.Label.values, index=Data.PDB_Position)
pandas.Series
''' CODE TO CLEAN AND STANDARDIZE ALL DATA ''' import glob import os import pandas as pd # filepath expressions for data data_path = 'data' #PATH_ALL_AGE = 'data/clean/*_age.csv' PATH_ALL_AGE = os.path.join(data_path, 'clean', '*_age.csv') #PATH_ALL_SEX = 'data/clean/*_sexrace.csv' PATH_ALL_SEX = os.path.join(data_path, 'clean', '*_sexrace.csv') #PATH_LAWS = 'data/clean/suppression.csv' PATH_LAWS = os.path.join(data_path, 'clean', 'suppression.csv') # useful constants for renaming and removing columns SEX_COLUMNS = [ 'STATE', 'Group', 'Population (18+)', 'Total Citizen', 'Percent Citizen', 'CI Citizen', 'Total Registered', 'Percent Registered (18+)', 'CI Registered', 'Total Voted', 'Percent Voted (18+)', 'CI Voted', 'Year' ] AGE_COLUMNS = [ 'STATE', 'Age', 'Total', 'Total Registered', 'Percent registered (18+)', 'CI Registered', 'Total Voted', 'Percent voted (18+)', 'CI Voted', 'Year' ] ORIGINAL_SEX_GROUPS = [ 'Total', 'Male', 'Female', 'N-H White', 'N-H Black', 'API', 'Hispanic', 'Non-Hispanic White', 'Non-Hispanic Black', 'Asian and Pacific Islander', 'White non-Hispanic alone', 'Black alone', 'Asian alone', 'Hispanic (of any race)' ] NEW_SEX_GROUPS = [ 'Total', 'Male', 'Female', 'White', 'Black', 'Asian & Pacific Islander', 'Hispanic', 'White', 'Black', 'Asian & Pacific Islander', 'White', 'Black', 'Asian & Pacific Islander', 'Hispanic' ] # useful constants for state names and IDs STATE_NAMES = [ 'ALABAMA', 'ALASKA', 'ARIZONA', 'ARKANSAS', 'CALIFORNIA', 'COLORADO', 'CONNECTICUT', 'DELAWARE', 'DISTRICT OF COLUMBIA', 'FLORIDA', 'GEORGIA', 'HAWAII', 'IDAHO', 'ILLINOIS', 'INDIANA', 'IOWA', 'KANSAS', 'KENTUCKY', 'LOUISIANA', 'MAINE', 'MARYLAND', 'MASSACHUSETTS', 'MICHIGAN', 'MINNESOTA', 'MISSISSIPPI', 'MISSOURI', 'MONTANA', 'NEBRASKA', 'NEVADA', 'NEW HAMPSHIRE', 'NEW JERSEY', 'NEW MEXICO', 'NEW YORK', 'NORTH CAROLINA', 'NORTH DAKOTA', 'OHIO', 'OKLAHOMA', 'OREGON', 'PENNSYLVANIA', 'RHODE ISLAND', 'SOUTH CAROLINA', 'SOUTH DAKOTA', 'TENNESSEE', 'TEXAS', 'UTAH', 'VERMONT', 'VIRGINIA', 'WASHINGTON', 'WEST VIRGINIA', 'WISCONSIN', 'WYOMING', 'NATIONAL' ] # note these integers come from US Census Bureau ordering STATE_NUMS = [ 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 0 ] STATES_TABLE = list(zip(STATE_NAMES, STATE_NUMS)) # punctuation symbols to handle in data cleaning COMMA_SYMBOL = ',' PERIOD_SYMBOL = '.' EMPTY_STR = '' def get_age_df(file_path): ''' Load age data by file name into pd.DataFrame and return DataFrame object with select columns and cleaned values. Note: NaN values are kept for possible use in viz. Args: file_path: str, designating file to retrieve for a given year Returns: pd.DataFrame, processed age data for that year ''' # load and subset data df_age = pd.read_csv(file_path, header=0, names=AGE_COLUMNS) # clean up format and unwanted punctuation df_age['STATE'] = df_age['STATE'].str.upper() df_age['Year'] = df_age['Year'].astype(str) df_age['Age'] = df_age['Age'].map(lambda x: x.lstrip(PERIOD_SYMBOL)) df_age['Total'] = df_age['Total'].replace( COMMA_SYMBOL, EMPTY_STR, regex=True ) df_age['Total Registered'] = df_age['Total Registered'].replace( COMMA_SYMBOL, EMPTY_STR, regex=True ) df_age['Total Voted'] = df_age['Total Voted'].replace( COMMA_SYMBOL, EMPTY_STR, regex=True ) # type cast numeric data df_age['Total'] = df_age['Total'].apply( pd.to_numeric, errors='coerce' ) df_age['Total Registered'] = df_age['Total Registered'].apply( pd.to_numeric, errors='coerce' ) df_age['Total Voted'] = df_age['Total Voted'].apply( pd.to_numeric, errors='coerce' ) # finish return df_age def get_sexrace_df(file_path): ''' Load sexrace data by file name into pd.DataFrame and return DataFrame object with select columns and cleaned values. Note: NaN values are kept for possible use in viz. Args: file_path: str, file for which to retrieve sexrace data Returns: pd.DataFrame, processed sexrace data for that year ''' # load and subset data df_sex =
pd.read_csv(file_path, header=0, names=SEX_COLUMNS)
pandas.read_csv
import os from pathlib import Path import sys from time import strptime import path_config import requests from bs4 import BeautifulSoup import pandas as pd class EspnTournament(): def __init__(self) -> None: self.tournament_info = { "tournament_id":"", "tournament_name":"", "tournament_date":"", "tournament_purse":"", "win_total":"", "tournament_size":"", "winner_name":"", "winner_id":"", "season_id":"", } def __getitem__(self, i): return self.tournament_info[i] def set_all_w(self, w_name, w_id, w_total): self.tournament_info["winner_name"] = w_name self.tournament_info["winner_id"] = w_id self.tournament_info["win_total"] = w_total def set_all_missing(self): self.tournament_info["win_total"] = None self.tournament_info["tournament_size"] = None self.tournament_info["winner_name"] = None self.tournament_info["winner_id"] = None def get_tournament_id(self): return self.tournament_info["tournament_id"] def set_tournament_id(self, url): """Set tournament id from a url. Parameters ---------- url : str ESPN tournament url. Examples -------- >>> espn_t = EspnTournament() >>> t_url = "https://www.espn.com/golf/leaderboard?tournamentId=3802" >>> espn_t.set_tournament_id(t_url) """ t_id = url[url.rfind("=") + 1:] self.tournament_info["tournament_id"] = t_id def get_tournament_name(self): return self.tournament_info["tournament_name"] def set_tournament_name(self, tourn_meta): """Set tournament name from a tournament meta. Parameters ---------- tournament_meta : element.Tag child of Leaderboard__Header class to find tournament name. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_tournament_id(tourn_meta) """ tourn_name = tourn_meta.find("h1").text self.tournament_info["tournament_name"] = tourn_name def parse_espn_dates(self, date, identifier, b_identifier=True): """Parse for subset date of the original date Parameters ---------- date : str ESPN tournament date to parse. identifier : str Identifier to be searched for. b_identifier : bool, optional Flag to tell where subset search begins. Returns ------- str Parsed ESPN date. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.parse_espn_dates("Oct 5-8 2018", "-") "Oct 5" """ if b_identifier: if date.find(identifier) != -1: b_idx = date.find(identifier) # Should return month n_date = date[:b_idx].rstrip() return n_date else: # special case of only one date in link b_idx = date.find(",") n_date = date[:b_idx] return n_date else: if date.find(identifier) != -1: a_idx = date.find(identifier) # Should return day return date[a_idx: ] else: print("Did not find identifier in string for: ", date) def date_parser(self, date): """Reformat ESPN tournament date. Parameters ---------- date : str Date to parse. Returns ------- str Reformatted ESPN date. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.date_parser("Oct 5-8 2018") "10/5/2018" """ year = date[date.rfind(" ")+1:] month_and_day = self.parse_espn_dates(date, "-") day = self.parse_espn_dates(month_and_day, " ", b_identifier=False) day = day.lstrip() month = self.parse_espn_dates(month_and_day, " ", b_identifier=True) month_abr = month[:3] month_number = strptime(month_abr, "%b").tm_mon date_str = str(month_number) + "/" + day + "/" + year return date_str def get_date(self): return self.tournament_info["tournament_date"] def set_date(self, tourn_meta): """Set tournament date from a tournament meta. Parameters ---------- tourn_meta : element.Tag child of Leaderboard__Header class. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_date(tourn_meta) """ tourn_date = tourn_meta.find("span").text t_date = self.date_parser(tourn_date) self.tournament_info["tournament_date"] = t_date def get_tournament_purse(self): return self.tournament_info["tournament_purse"] def set_tournament_purse(self, tourn_header): """Set tournament purse from a tournament header. Parameters ---------- tourn_header : element.Tag Leaderboard__Header class. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_tournament_purse(tourn_header) """ purse_class = tourn_header.find("div", class_="n7 clr-gray-04").text # string find method purse_start = purse_class.find("$") + 1 if purse_class.find("D") != -1: purse_end = purse_class.find("D") purse = purse_class[purse_start:purse_end] else: purse = purse_class[purse_start:] purse = purse.replace(",", "") self.tournament_info["tournament_purse"] = purse def get_winning_score(self): return self.tournament_info["win_total"] def set_winning_score(self, t_body): """Set winning score total from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_winning_score(t_body) """ # tournament winner's total's data tourn_totals = t_body.find("td", class_="Table__TD") if tourn_totals: totals = tourn_totals.find_next_siblings() if len(totals) == 9: # selects 4 round (72 hole) total total = totals[-3].text self.tournament_info["win_total"] = total else: total = totals[-3].text if len(total) == 0: self.tournament_info["win_total"] = None else: self.tournament_info["win_total"] = total def get_tournament_size(self): return self.tournament_info["tournament_size"] def set_tournament_size(self, t_body): """Set tournament size from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_tournament_size(t_body) """ players = t_body.find_all("tr", class_="Table__TR Table__even") if players is not None: num_players = len(players) self.tournament_info["tournament_size"] = num_players def get_winner_name(self): return self.tournament_info["winner_name"] def set_winner_name(self, t_body): """Set winner name from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_winner_name(t_body) """ winner = t_body.find("a") if winner: name = winner.text self.tournament_info["winner_name"] = name else: self.tournament_info["winner_name"] = None def get_winner_id(self): return self.tournament_info["winner_id"] def set_winner_id(self, t_body): """Set winner id from tournament body. Parameters ---------- t_body : element.Tag Child of ResponsiveTable. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_winner_id(t_body) """ winner = t_body.find("a") if winner: winner_id = winner["href"] # substring start and end indexes start_winner = winner_id.find("id/") + 3 end_winner = winner_id.rfind("/") id = winner_id[start_winner:end_winner] self.tournament_info["winner_id"] = id else: self.tournament_info["winner_id"] = None def get_season_id(self): return self.tournament_info["season_id"] def set_season_id(self, s_id): """Set season identifier from s_id. Parameters ---------- s_id : int Season identifier to set. Examples -------- >>> espn_t = EspnTournament() >>> espn_t.set_season_id(2018) """ self.tournament_info["season_id"] = s_id class EspnSeason(): def __init__(self, start, end=None) -> None: b_url = "https://www.espn.com/golf/schedule/_/season/" if end is not None: season_urls = [b_url + str(season) for season in range(start, end+1)] self.end = end else: season_urls = [f"{b_url}{start}"] self.end = None self.start = start self.season_urls = season_urls self.season_data = [] def retrieve_tournament_info(self, t_url, s_id): """Retrieve tournament information from tournament url and season id. Parameters ---------- t_url : str Tournament url to extract information. s_id : int Season identifier. Examples -------- >>> tournament_url = "https://www.espn.com/golf/leaderboard?tournamentId=3802" >>> espn_t.retrieve_tournament_info(tournament_url, 2017) """ espn_t = EspnTournament() with requests.Session() as session: page = session.get(t_url) if page.status_code == 200: soup = BeautifulSoup(page.content, "html.parser") header = soup.find("div", class_="Leaderboard__Header") mt4 = header.find_all("div", class_="mt4") tourn_meta = mt4[-1] espn_t.set_tournament_id(t_url) espn_t.set_tournament_name(tourn_meta) espn_t.set_date(tourn_meta) espn_t.set_tournament_purse(header) # Table's on webpage. index with -1 in case of playoff table tourn_tables = soup.select("div.ResponsiveTable") if tourn_tables: # win_total, tournamnet_size, winner_name, winner_id tourn_table = tourn_tables[-1] tourn_body = tourn_table.find("tbody", class_="Table__TBODY") espn_t.set_winning_score(tourn_body) espn_t.set_tournament_size(tourn_body) espn_t.set_winner_name(tourn_body) espn_t.set_winner_id(tourn_body) espn_t.set_season_id(s_id) if espn_t.get_tournament_id() == "2277": espn_t.set_all_w("<NAME>", "1037", "265") else: print(f"No div.ResponsiveTable, (Tournament {espn_t.get_tournament_id()} Cancelled)") espn_t.set_all_missing() espn_t.set_season_id(s_id) self.season_data.append(espn_t) def retrieve_season(self, season_url): """Retrieve season from season url. Parameters ---------- season_url : str Season url to extract information. Examples -------- >>> espn_s = EspnSeason(2018) >>> season_url = "https://www.espn.com/golf/schedule/_/season/2018" >>> espn_s.retrieve_season(season_url) """ with requests.Session() as session: page = session.get(season_url) if page.status_code == 200: soup = BeautifulSoup(page.content, "html.parser") season_table = soup.select("div.ResponsiveTable") if season_table is not None: season_body = season_table[0].find("tbody", class_="Table__TBODY") tournaments = season_body.find_all("div", class_="eventAndLocation__innerCell") if tournaments is not None: for tournament in tournaments: tournament_url = tournament.find("a") if tournament_url: t_url = tournament_url["href"] print(f"Fetching {t_url} data") season_id = season_url[season_url.rfind("/")+1 :] self.retrieve_tournament_info(t_url, season_id) else: print(f"Error retrieving page. page status code: {page.status_code}") def retrieve_all_seasons(self): """Retrieve all seasons set from constructor. Examples -------- >>> espn_s = EspnSeason(2018) >>> espn_s.retrieve_all_seasons() """ for season in self.season_urls: self.retrieve_season(season) def feed_season_data(self): """Feed all season data held. Returns ------- pd.DataFrame Season data in dataframe. Examples -------- >>> e_season = EspnSeason(2018) >>> e_season.retrieve_all_seasons() >>> df = e_season.feed_season_data() """ if self.season_data is not None: data = [tournament.tournament_info for tournament in self.season_data] df = pd.DataFrame(data) df["tournament_purse"] = pd.to_numeric(df["tournament_purse"], downcast="integer") df["win_total"] =
pd.to_numeric(df["win_total"], downcast="integer")
pandas.to_numeric
""" This script uses geopandas to place all addresses into CSDs. This uses the digital boundary files, which extend into the water. This is deliberate so that addresses on coastlines are not accidentally dropped. """ import pandas as pd import geopandas as gpd from hashlib import blake2b import sys name_in = sys.argv[1] name_out = sys.argv[2] print(name_in) prefix="/home/jovyan/data-vol-1/ODA/processing/temporary_files/" df = pd.read_csv("{}{}".format(prefix,name_in), low_memory=False, dtype='str') N1=len(df) gdf = gpd.GeoDataFrame( df, geometry=gpd.points_from_xy(df.LON.astype(float), df.LAT.astype(float))) gdf.crs="EPSG:4326" #read in Statcan boundary file CSD = gpd.read_file("/home/jovyan/data-vol-1/ODA/processing/3-Spatial_Group/CSD/fixed_CSD.shp") CSD=CSD[['CSDUID', 'CSDNAME','PRUID', 'geometry']] #convert geometry of addresses to statcan geometry gdf=gdf.to_crs(CSD.crs) #perform spatial merge gdf_csd=gpd.sjoin(gdf,CSD, op='within', how='left') df=
pd.DataFrame(gdf_csd)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: ######################################################################################### # Name: <NAME> # Student ID: 64180008 # Department: Computer Engineering # Assignment ID: A3 ######################################################################################### # In[2]: import pandas as pd import random import numpy as np # In[3]: ######################################################################################### # QUESTION I # Description: The parts of question are solved with using pd.Series and pd.DataFrame functions. ######################################################################################### print("\n") print("SOLUTION OF QUESTION I:Perform the following tasks with pandas Series") # In[4]: print("1.a") a = pd.Series([7,11,13,17]) print(a,"\n") # In[5]: print("1.b") a = pd.Series([100 for i in range(5)]) print(a,"\n") # In[6]: print("1.c") a = pd.Series([random.randint(0,100) for i in range(20)]) print(a,"\n") # In[7]: print("1.d") temperatures = pd.Series([98.6,98.9,100.2,97.9],index=['Julie','Charlie','Sam','Andrea']) print(temperatures,"\n") # In[8]: print("1.e") dictionary = {'Julie':98.6, 'Charlie':98.9, 'Sam':100.2, 'Andrea':97.9} a = pd.Series(dictionary) print(a,"\n") # In[9]: ######################################################################################### # QUESTION II # Description: Parts of this question are solved with index information of pandas library. ######################################################################################### print("\n") print("SOLUTION OF QUESTION II:Perform the following tasks with pandas DataFrames") # In[10]: print("2.a") temp = {'Maxine':37.5,'James':37.3,'Amanda':39.9} temperatures =
pd.DataFrame({'temp':temp})
pandas.DataFrame
from bookcut.mirror_checker import main as mirror_checker from bookcut.downloader import filename_refubrished from bookcut.settings import path_checker from bs4 import BeautifulSoup as Soup import mechanize import pandas as pd import os import requests from tqdm import tqdm RESULT_ERROR = "\nNo results found or bad Internet connection." def search_downloader(file, href): # search_downloader downloads the book response = requests.get(href, stream=True) total_size = int(response.headers.get("content-length")) inMb = total_size / 1000000 inMb = round(inMb, 2) filename = file print("\nDownloading...\n", "Total file size:", inMb, "MB") path = path_checker() filename = os.path.join(path, filename) # progress bar buffer_size = 1024 progress = tqdm( response.iter_content(buffer_size), f"{file}", total=total_size, unit="B", unit_scale=True, unit_divisor=1024, ) with open(filename, "wb") as f: for data in progress: # write data read to the file f.write(data) # update the progress bar manually progress.update(len(data)) print("================================\nFile saved as:", filename) def link_finder(link, mirror_used): # link_ finder is searching Libgen for download link and filename page = requests.get(link) soup = Soup(page.content, "html.parser") searcher = [a["href"] for a in soup.find_all(href=True) if a.text] try: filename = soup.find("input")["value"] except TypeError: filename = None if searcher[0].startswith("http") is False: searcher[0] = mirror_used + searcher[0] results = [filename, searcher[0]] return results def search(term): # This function is used when searching to LibGen with the command # bookcut search -t "keyword" url = mirror_checker() if url is not None: br = mechanize.Browser() br.set_handle_robots(False) # ignore robots br.set_handle_refresh(False) # br.addheaders = [("User-agent", "Firefox")] br.open(url) br.select_form("libgen") input_form = term br.form["req"] = input_form ac = br.submit() html_from_page = ac soup = Soup(html_from_page, "html.parser") table = soup.find_all("table")[2] table_data = [] mirrors = [] extensions = [] for i in table: j = 0 try: td = i.find_all("td") for tr in td: # scrape mirror links if j == 9: temp = tr.find("a", href=True) mirrors.append(temp["href"]) j = j + 1 row = [tr.text for tr in td] table_data.append(row) extensions.append(row[8]) except: pass # Clean result page for j in table_data: j.pop(0) del j[8:15] headers = [ "Author(s)", "Title", "Publisher", "Year", "Pages", "Language", "Size", "Extension", ] try: tabular = pd.DataFrame(table_data) tabular.index += 1 tabular.columns = headers print(tabular) choices = [] temp = len(mirrors) + 1 for i in range(1, temp): choices.append(str(i)) choices.append("C") choices.append("c") while True: tell_me = str( input( "\n\nPlease enter a number from 1 to {number}" ' to download a book or press "C" to abort' " search: ".format(number=len(extensions)) ) ) if tell_me in choices: if tell_me == "C" or tell_me == "c": print("Aborted!") return None else: c = int(tell_me) - 1 results = [mirrors[c], extensions[c]] return results except ValueError: print("\nNo results found or bad Internet connection.") print("Please,try again.") return None else: print("\nNo results found or bad Internet connection.") print("Please,try again.") def single_search(): def search(term): # This function is used when searching to LibGen with the command # bookcut search -t "keyword" url = mirror_checker() if url is not None: br = mechanize.Browser() br.set_handle_robots(False) # ignore robots br.set_handle_refresh(False) # br.addheaders = [("User-agent", "Firefox")] br.open(url) br.select_form("libgen") input_form = term br.form["req"] = input_form ac = br.submit() html_from_page = ac soup = Soup(html_from_page, "html.parser") table = soup.find_all("table")[2] table_data = [] mirrors = [] extensions = [] for i in table: j = 0 try: td = i.find_all("td") for tr in td: # scrape mirror links if j == 9: temp = tr.find("a", href=True) mirrors.append(temp["href"]) j = j + 1 row = [tr.text for tr in td] table_data.append(row) extensions.append(row[8]) except: pass # Clean result page for j in table_data: j.pop(0) del j[8:15] headers = [ "Author(s)", "Title", "Publisher", "Year", "Pages", "Language", "Size", "Extension", ] try: tabular =
pd.DataFrame(table_data)
pandas.DataFrame
import util import pandas as pd import re import pygsheets import hashlib import datetime class SheetCreator: # refactor! its sheet creator """ Pandas Form with init Try to solve problem with add formula Now call add_objects and object come with default formula (what of protected range?/) """ def __init__(self, title: object, header: object = None, formulas: object = None, folder_id: object = None) -> object: self.title = title self.header = header # - top row in sheet self.formulas = formulas self.folder_id = folder_id self.df = pd.DataFrame(columns=header) def check_shet_in_folder(self, pg, sheet_name): # TODO shet -> sheet title ->tittle for exist in pg.list_ssheets(parent_id=self.folder_id): if exist['name'] == sheet_name: return True return False def sync_update_sheet(self, pg): """ find same key and apdate values or add new key :param pg: :return: """ # TODO open by key wks = pg.open(self.title) def create_or_update(self, pg): if self.check_in_folder(self.title): return self.update_sheet(pg) else: return self.create_sheet(pg) def create_sheet(self, pg): # TODO to GDrive #if c.list_ssheets(parent_id=self.folder_id) sh = pg.create(title=self.title, parent_id=self.folder_id) sh.sheet1.set_dataframe(df=self.df, start='A1') return sh.sheet1 def update_sheet(self, wks): # TODO to GDrive wks.set_dataframe(df=self.df, start='A1') def init_from(self, wks_df): self.df = wks_df self.header = self.df.columns def load_from_template(self): """ Init from frame contain header, formulas.. :param wks_df: :return: """ pass def create_df(self, header=None): #&&??????? self.header = header self.df = pd.DataFrame(columns=header) def add_objects(self, key_col, key_val): """ Paste value and default formulas :param key_col: [1,2,3] :param key_val: [[1,2,3]] :return: """ last_row = self.df.shape[0] for i, val in enumerate(key_val): formula = self.put_ind_to_formuls(self.formulas.copy(), i + last_row + 2) new_row =
pd.DataFrame(data=[formula], columns=self.header)
pandas.DataFrame
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1., np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32')) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0., 2.], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match='NA'): arr.astype('Sparse[i8]') def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False)) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize('array, dtype, expected', [ (SparseArray([0, 1]), 'float', SparseArray([0., 1.], dtype=SparseDtype(float, 0.0))), (SparseArray([0, 1]), bool, SparseArray([False, True])), (SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True))), pytest.param( SparseArray([0, 1]), 'datetime64[ns]', SparseArray(np.array([0, 1], dtype='datetime64[ns]'), dtype=SparseDtype('datetime64[ns]', pd.Timestamp('1970'))), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), (SparseArray([0, 1, 10]), str, SparseArray(['0', '1', '10'], dtype=SparseDtype(str, '0'))), (SparseArray(['10', '20']), float, SparseArray([10.0, 20.0])), (SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0))), ]) def test_astype_more(self, array, dtype, expected): result = array.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match='Cannot convert non-finite'): arr.astype(int) def test_set_fill_value(self): arr = SparseArray([1., np.nan, 2.], fill_value=np.nan) arr.fill_value = 2 assert arr.fill_value == 2 arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64) arr.fill_value = 2 assert arr.fill_value == 2 # XXX: this seems fine? You can construct an integer # sparsearray with NaN fill value, why not update one? # coerces to int # msg = "unable to set fill_value 3\\.1 to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 3.1 assert arr.fill_value == 3.1 # msg = "unable to set fill_value nan to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) arr.fill_value = True assert arr.fill_value # coerces to bool # msg = "unable to set fill_value 0 to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 0 assert arr.fill_value == 0 # msg = "unable to set fill_value nan to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) @pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)]) def test_set_fill_invalid_non_scalar(self, val): arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) msg = "fill_value must be a scalar" with pytest.raises(ValueError, match=msg): arr.fill_value = val def test_copy(self): arr2 = self.arr.copy() assert arr2.sp_values is not self.arr.sp_values assert arr2.sp_index is self.arr.sp_index def test_values_asarray(self): assert_almost_equal(self.arr.to_dense(), self.arr_data) @pytest.mark.parametrize('data,shape,dtype', [ ([0, 0, 0, 0, 0], (5,), None), ([], (0,), None), ([0], (1,), None), (['A', 'A', np.nan, 'B'], (4,), np.object) ]) def test_shape(self, data, shape, dtype): # GH 21126 out = SparseArray(data, dtype=dtype) assert out.shape == shape @pytest.mark.parametrize("vals", [ [np.nan, np.nan, np.nan, np.nan, np.nan], [1, np.nan, np.nan, 3, np.nan], [1, np.nan, 0, 3, 0], ]) @pytest.mark.parametrize("fill_value", [None, 0]) def test_dense_repr(self, vals, fill_value): vals = np.array(vals) arr = SparseArray(vals, fill_value=fill_value) res = arr.to_dense() tm.assert_numpy_array_equal(res, vals) with tm.assert_produces_warning(FutureWarning): res2 = arr.get_values() tm.assert_numpy_array_equal(res2, vals) def test_getitem(self): def _checkit(i): assert_almost_equal(self.arr[i], self.arr.to_dense()[i]) for i in range(len(self.arr)): _checkit(i) _checkit(-i) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) def test_getslice(self): result = self.arr[:-3] exp = SparseArray(self.arr.to_dense()[:-3]) tm.assert_sp_array_equal(result, exp) result = self.arr[-4:] exp = SparseArray(self.arr.to_dense()[-4:]) tm.assert_sp_array_equal(result, exp) # two corner cases from Series result = self.arr[-12:] exp = SparseArray(self.arr) tm.assert_sp_array_equal(result, exp) result = self.arr[:-12] exp = SparseArray(self.arr.to_dense()[:0]) tm.assert_sp_array_equal(result, exp) def test_getslice_tuple(self): dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0]) sparse = SparseArray(dense) res = sparse[4:, ] exp = SparseArray(dense[4:, ]) tm.assert_sp_array_equal(res, exp) sparse = SparseArray(dense, fill_value=0) res = sparse[4:, ] exp = SparseArray(dense[4:, ], fill_value=0) tm.assert_sp_array_equal(res, exp) with pytest.raises(IndexError): sparse[4:, :] with pytest.raises(IndexError): # check numpy compat dense[4:, :] def test_boolean_slice_empty(self): arr = pd.SparseArray([0, 1, 2]) res = arr[[False, False, False]] assert res.dtype == arr.dtype @pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"]) def test_binary_operators(self, op): op = getattr(operator, op) data1 = np.random.randn(20) data2 = np.random.randn(20) data1[::2] = np.nan data2[::3] = np.nan arr1 = SparseArray(data1) arr2 = SparseArray(data2) data1[::2] = 3 data2[::3] = 3 farr1 = SparseArray(data1, fill_value=3) farr2 = SparseArray(data2, fill_value=3) def _check_op(op, first, second): res = op(first, second) exp = SparseArray(op(first.to_dense(), second.to_dense()), fill_value=first.fill_value) assert isinstance(res, SparseArray) assert_almost_equal(res.to_dense(), exp.to_dense()) res2 = op(first, second.to_dense()) assert isinstance(res2, SparseArray) tm.assert_sp_array_equal(res, res2) res3 = op(first.to_dense(), second) assert isinstance(res3, SparseArray) tm.assert_sp_array_equal(res, res3) res4 = op(first, 4) assert isinstance(res4, SparseArray) # Ignore this if the actual op raises (e.g. pow). try: exp = op(first.to_dense(), 4) exp_fv = op(first.fill_value, 4) except ValueError: pass else: assert_almost_equal(res4.fill_value, exp_fv) assert_almost_equal(res4.to_dense(), exp) with np.errstate(all="ignore"): for first_arr, second_arr in [(arr1, arr2), (farr1, farr2)]: _check_op(op, first_arr, second_arr) def test_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) tm.assert_sp_array_equal(unpickled, obj) _check_roundtrip(self.arr) _check_roundtrip(self.zarr) def test_generator_warnings(self): sp_arr = SparseArray([1, 2, 3]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings(action='always', category=DeprecationWarning) warnings.filterwarnings(action='always', category=PendingDeprecationWarning) for _ in sp_arr: pass assert len(w) == 0 def test_fillna(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0]) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan]) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) # float dtype's fill_value is np.nan, replaced by -1 s = SparseArray([0., 0., 0., 0.]) res = s.fillna(-1) exp = SparseArray([0., 0., 0., 0.], fill_value=-1) tm.assert_sp_array_equal(res, exp) # int dtype shouldn't have missing. No changes. s = SparseArray([0, 0, 0, 0]) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) tm.assert_sp_array_equal(res, s) s = SparseArray([0, 0, 0, 0], fill_value=0) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=0) tm.assert_sp_array_equal(res, exp) # fill_value can be nan if there is no missing hole. # only fill_value will be changed s = SparseArray([0, 0, 0, 0], fill_value=np.nan) assert s.dtype == SparseDtype(np.int64, fill_value=np.nan) assert np.isnan(s.fill_value) res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=-1) tm.assert_sp_array_equal(res, exp) def test_fillna_overlap(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) # filling with existing value doesn't replace existing value with # fill_value, i.e. existing 3 remains in sp_values res = s.fillna(3) exp = np.array([1, 3, 3, 3, 3], dtype=np.float64) tm.assert_numpy_array_equal(res.to_dense(), exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(3) exp = SparseArray([1, 3, 3, 3, 3], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) def test_nonzero(self): # Tests regression #21172. sa = pd.SparseArray([ float('nan'), float('nan'), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0 ]) expected = np.array([2, 5, 9], dtype=np.int32) result, = sa.nonzero() tm.assert_numpy_array_equal(expected, result) sa = pd.SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) result, = sa.nonzero() tm.assert_numpy_array_equal(expected, result) class TestSparseArrayAnalytics: @pytest.mark.parametrize('data,pos,neg', [ ([True, True, True], True, False), ([1, 2, 1], 1, 0), ([1.0, 2.0, 1.0], 1.0, 0.0) ]) def test_all(self, data, pos, neg): # GH 17570 out = SparseArray(data).all() assert out out = SparseArray(data, fill_value=pos).all() assert out data[1] = neg out = SparseArray(data).all() assert not out out = SparseArray(data, fill_value=pos).all() assert not out @pytest.mark.parametrize('data,pos,neg', [ ([True, True, True], True, False), ([1, 2, 1], 1, 0), ([1.0, 2.0, 1.0], 1.0, 0.0) ]) @td.skip_if_np_lt("1.15") # prior didn't dispatch def test_numpy_all(self, data, pos, neg): # GH 17570 out = np.all(SparseArray(data)) assert out out = np.all(SparseArray(data, fill_value=pos)) assert out data[1] = neg out = np.all(SparseArray(data)) assert not out out = np.all(SparseArray(data, fill_value=pos)) assert not out # raises with a different message on py2. msg = "the \'out\' parameter is not supported" with pytest.raises(ValueError, match=msg): np.all(SparseArray(data), out=np.array([])) @pytest.mark.parametrize('data,pos,neg', [ ([False, True, False], True, False), ([0, 2, 0], 2, 0), ([0.0, 2.0, 0.0], 2.0, 0.0) ]) def test_any(self, data, pos, neg): # GH 17570 out = SparseArray(data).any() assert out out = SparseArray(data, fill_value=pos).any() assert out data[1] = neg out = SparseArray(data).any() assert not out out = SparseArray(data, fill_value=pos).any() assert not out @pytest.mark.parametrize('data,pos,neg', [ ([False, True, False], True, False), ([0, 2, 0], 2, 0), ([0.0, 2.0, 0.0], 2.0, 0.0) ]) @td.skip_if_np_lt("1.15") # prior didn't dispatch def test_numpy_any(self, data, pos, neg): # GH 17570 out = np.any(SparseArray(data)) assert out out = np.any(SparseArray(data, fill_value=pos)) assert out data[1] = neg out = np.any(SparseArray(data)) assert not out out = np.any(SparseArray(data, fill_value=pos)) assert not out msg = "the \'out\' parameter is not supported" with pytest.raises(ValueError, match=msg): np.any(SparseArray(data), out=out) def test_sum(self): data = np.arange(10).astype(float) out = SparseArray(data).sum() assert out == 45.0 data[5] = np.nan out = SparseArray(data, fill_value=2).sum() assert out == 40.0 out = SparseArray(data, fill_value=np.nan).sum() assert out == 40.0 def test_numpy_sum(self): data = np.arange(10).astype(float) out = np.sum(SparseArray(data)) assert out == 45.0 data[5] = np.nan out = np.sum(SparseArray(data, fill_value=2)) assert out == 40.0 out = np.sum(SparseArray(data, fill_value=np.nan)) assert out == 40.0 msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.sum(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.sum(SparseArray(data), out=out) @pytest.mark.parametrize("data,expected", [ (np.array([1, 2, 3, 4, 5], dtype=float), # non-null data SparseArray(np.array([1.0, 3.0, 6.0, 10.0, 15.0]))), (np.array([1, 2, np.nan, 4, 5], dtype=float), # null data SparseArray(np.array([1.0, 3.0, np.nan, 7.0, 12.0]))) ]) @pytest.mark.parametrize("numpy", [True, False]) def test_cumsum(self, data, expected, numpy): cumsum = np.cumsum if numpy else lambda s: s.cumsum() out = cumsum(SparseArray(data)) tm.assert_sp_array_equal(out, expected) out = cumsum(SparseArray(data, fill_value=np.nan)) tm.assert_sp_array_equal(out, expected) out = cumsum(SparseArray(data, fill_value=2)) tm.assert_sp_array_equal(out, expected) if numpy: # numpy compatibility checks. msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(SparseArray(data), out=out) else: axis = 1 # SparseArray currently 1-D, so only axis = 0 is valid. msg = "axis\\(={axis}\\) out of bounds".format(axis=axis) with pytest.raises(ValueError, match=msg): SparseArray(data).cumsum(axis=axis) def test_mean(self): data = np.arange(10).astype(float) out = SparseArray(data).mean() assert out == 4.5 data[5] = np.nan out = SparseArray(data).mean() assert out == 40.0 / 9 def test_numpy_mean(self): data = np.arange(10).astype(float) out = np.mean(SparseArray(data)) assert out == 4.5 data[5] = np.nan out = np.mean(SparseArray(data)) assert out == 40.0 / 9 msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.mean(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.mean(SparseArray(data), out=out) def test_ufunc(self): # GH 13853 make sure ufunc is applied to fill_value sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray([1, np.nan, 2, np.nan, 2]) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=-1) result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray(np.sin([1, np.nan, 2, np.nan, -2])) tm.assert_sp_array_equal(np.sin(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray(np.sin([1, -1, 2, -2]), fill_value=np.sin(1)) tm.assert_sp_array_equal(np.sin(sparse), result) sparse = SparseArray([1, -1, 0, -2], fill_value=0) result = SparseArray(np.sin([1, -1, 0, -2]), fill_value=np.sin(0)) tm.assert_sp_array_equal(np.sin(sparse), result) def test_ufunc_args(self): # GH 13853 make sure ufunc is applied to fill_value, including its arg sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray([2, np.nan, 3, np.nan, -1]) tm.assert_sp_array_equal(np.add(sparse, 1), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray([2, 0, 3, -1], fill_value=2) tm.assert_sp_array_equal(np.add(sparse, 1), result) sparse = SparseArray([1, -1, 0, -2], fill_value=0) result = SparseArray([2, 0, 1, -1], fill_value=1) tm.assert_sp_array_equal(np.add(sparse, 1), result) @pytest.mark.parametrize('fill_value', [0.0, np.nan]) def test_modf(self, fill_value): # https://github.com/pandas-dev/pandas/issues/26946 sparse = pd.SparseArray([fill_value] * 10 + [1.1, 2.2], fill_value=fill_value) r1, r2 = np.modf(sparse) e1, e2 = np.modf(np.asarray(sparse)) tm.assert_sp_array_equal(r1, pd.SparseArray(e1, fill_value=fill_value)) tm.assert_sp_array_equal(r2, pd.SparseArray(e2, fill_value=fill_value)) def test_nbytes_integer(self): arr = SparseArray([1, 0, 0, 0, 2], kind='integer') result = arr.nbytes # (2 * 8) + 2 * 4 assert result == 24 def test_nbytes_block(self): arr = SparseArray([1, 2, 0, 0, 0], kind='block') result = arr.nbytes # (2 * 8) + 4 + 4 # sp_values, blocs, blenghts assert result == 24 def test_asarray_datetime64(self): s = pd.SparseArray( pd.to_datetime(['2012', None, None, '2013']) ) np.asarray(s) def test_density(self): arr = SparseArray([0, 1]) assert arr.density == 0.5 def test_npoints(self): arr = SparseArray([0, 1]) assert arr.npoints == 1 @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestAccessor: @pytest.mark.parametrize('attr', [ 'npoints', 'density', 'fill_value', 'sp_values', ]) def test_get_attributes(self, attr): arr = SparseArray([0, 1]) ser = pd.Series(arr) result = getattr(ser.sparse, attr) expected = getattr(arr, attr) assert result == expected @td.skip_if_no_scipy def test_from_coo(self): import scipy.sparse row = [0, 3, 1, 0] col = [0, 3, 1, 2] data = [4, 5, 7, 9] sp_array = scipy.sparse.coo_matrix((data, (row, col))) result = pd.Series.sparse.from_coo(sp_array) index = pd.MultiIndex.from_arrays([[0, 0, 1, 3], [0, 2, 1, 3]]) expected = pd.Series([4, 9, 7, 5], index=index, dtype='Sparse[int]') tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_to_coo(self): import scipy.sparse ser = pd.Series([1, 2, 3], index=pd.MultiIndex.from_product([[0], [1, 2, 3]], names=['a', 'b']), dtype='Sparse[int]') A, _, _ = ser.sparse.to_coo() assert isinstance(A, scipy.sparse.coo.coo_matrix) def test_non_sparse_raises(self): ser = pd.Series([1, 2, 3]) with pytest.raises(AttributeError, match='.sparse'): ser.sparse.density def test_setting_fill_value_fillna_still_works(): # This is why letting users update fill_value / dtype is bad # astype has the same problem. arr = SparseArray([1., np.nan, 1.0], fill_value=0.0) arr.fill_value = np.nan result = arr.isna() # Can't do direct comparison, since the sp_index will be different # So let's convert to ndarray and check there. result = np.asarray(result) expected = np.array([False, True, False]) tm.assert_numpy_array_equal(result, expected) def test_setting_fill_value_updates(): arr = SparseArray([0.0, np.nan], fill_value=0) arr.fill_value = np.nan # use private constructor to get the index right # otherwise both nans would be un-stored. expected = SparseArray._simple_new( sparse_array=np.array([np.nan]), sparse_index=IntIndex(2, [1]), dtype=SparseDtype(float, np.nan), ) tm.assert_sp_array_equal(arr, expected) @pytest.mark.parametrize("arr, loc", [ ([None, 1, 2], 0), ([0, None, 2], 1), ([0, 1, None], 2), ([0, 1, 1, None, None], 3), ([1, 1, 1, 2], -1), ([], -1), ]) def test_first_fill_value_loc(arr, loc): result = SparseArray(arr)._first_fill_value_loc() assert result == loc @pytest.mark.parametrize('arr', [ [1, 2, np.nan, np.nan], [1, np.nan, 2, np.nan], [1, 2, np.nan], ]) @pytest.mark.parametrize("fill_value", [ np.nan, 0, 1 ]) def test_unique_na_fill(arr, fill_value): a = pd.SparseArray(arr, fill_value=fill_value).unique() b = pd.Series(arr).unique() assert isinstance(a, SparseArray) a = np.asarray(a) tm.assert_numpy_array_equal(a, b) def test_unique_all_sparse(): # https://github.com/pandas-dev/pandas/issues/23168 arr = SparseArray([0, 0]) result = arr.unique() expected = SparseArray([0]) tm.assert_sp_array_equal(result, expected) def test_map(): arr = SparseArray([0, 1, 2]) expected = SparseArray([10, 11, 12], fill_value=10) # dict result = arr.map({0: 10, 1: 11, 2: 12}) tm.assert_sp_array_equal(result, expected) # series result = arr.map(pd.Series({0: 10, 1: 11, 2: 12})) tm.assert_sp_array_equal(result, expected) # function result = arr.map(pd.Series({0: 10, 1: 11, 2: 12})) expected = SparseArray([10, 11, 12], fill_value=10) tm.assert_sp_array_equal(result, expected) def test_map_missing(): arr = SparseArray([0, 1, 2]) expected = SparseArray([10, 11, None], fill_value=10) result = arr.map({0: 10, 1: 11}) tm.assert_sp_array_equal(result, expected) def test_deprecated_values(): arr = SparseArray([0, 1, 2]) with
tm.assert_produces_warning(FutureWarning)
pandas.util.testing.assert_produces_warning
from contextlib import contextmanager from unittest.mock import patch from zipfile import ZipFile from pandas import DataFrame, read_csv from pandas.util.testing import assert_frame_equal from pytest import raises, fixture, warns, mark from IPython import get_ipython from data_vault import Vault, parse_arguments, VaultMagics from data_vault.frames import frame_manager @contextmanager def file_from_storage(archive_path, file_path, pwd: str = None, mode='r'): if pwd: pwd = pwd.encode() with ZipFile(archive_path) as archive: yield archive.open( file_path, mode=mode, pwd=pwd ) ipython = get_ipython() EXAMPLE_DATA_FRAME = DataFrame([{'a': 1, 'b': 1}, {'a': 1, 'b': 2}]) def patch_ipython_globals(dummy_globals): return patch.object(frame_manager, 'get_ipython_globals', return_value=dummy_globals) @fixture def mock_key(monkeypatch): monkeypatch.setenv('KEY', 'a_strong_password') def test_open_vault_message(): with raises(Exception, match='Please setup the storage with %open_vault first'): ipython.magic('vault del x') def test_vault_security_alert(tmpdir): # should warn if not encryption key provided with warns(UserWarning, match='Encryption variable not set - no encryption will be used..*'): ipython.magic(f'open_vault --path {tmpdir}/archive.zip') # should not warn if secure explicitly toggled off with warns(None) as record: ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') assert not record.list # should not warn if encryption key provided with warns(None) as record: ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e SOME_KEY') assert not record.list def test_usage_help(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): with raises(ValueError, match='No command matched. Did you mean:\n\t - store .*?'): ipython.magic('vault store x') def test_variable_not_defined(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') with patch_ipython_globals(locals()): with raises(ValueError, match=".*variable 'x' is not defined in the global namespace.*"): ipython.magic('vault store x') def test_function_not_defined(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): with raises(NameError, match="function 'pipe_delimited' is not defined in the global namespace"): ipython.magic('vault store x in my_frames with pipe_delimited') def test_store(tmpdir): ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): ipython.magic('vault store x in my_frames') with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/x') as f: data = read_csv(f, sep='\t', index_col=0) assert x.equals(data) def test_store_with_encryption(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): ipython.magic('vault store x in my_frames') with raises(RuntimeError, match="File 'my_frames/x' is encrypted, password required for extraction"): with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/x') as f: data = read_csv(f, sep='\t', index_col=0) def test_store_import_del_using_path(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): ipython.magic('vault store x in "my_frames/custom_path.tsv"') with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/custom_path.tsv') as f: data = read_csv(f, sep='\t', index_col=0) assert x.equals(data) with patch_ipython_globals(globals()): ipython.magic('vault import "my_frames/custom_path.tsv" as y') assert_frame_equal(x, y, check_dtype=False) # TODO: fails on Windows, paths thing # ipython.magic('vault del "my_frames/custom_path.tsv"') # with raises(KeyError, match="There is no item named 'my_frames/custom_path.tsv' in the archive"): # ipython.magic('vault import "my_frames/custom_path.tsv" as z') def test_store_with_exporter(tmpdir): ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') x = EXAMPLE_DATA_FRAME def pipe_delimited(df, path: str): df.to_csv(path, sep='|') with patch_ipython_globals(locals()): ipython.magic('vault store x in my_frames with pipe_delimited') with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/x') as f: data =
read_csv(f, sep='|', index_col=0)
pandas.read_csv
import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import numpy as np from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 11 Oct 2018 # Function: batsman4s # This function plots the number of 4s vs the runs scored in the innings by the batsman # ########################################################################################### def batsman4s(file, name="A Hookshot"): ''' Plot the numbers of 4s against the runs scored by batsman Description This function plots the number of 4s against the total runs scored by batsman. A 2nd order polynomial regression curve is also plotted. The predicted number of 4s for 50 runs and 100 runs scored is also plotted Usage batsman4s(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsman6s Examples # Get or use the <batsman>.csv obtained with getPlayerData() tendulkar = getPlayerData(35320,dir="../",file="tendulkar.csv",type="batting") homeOrAway=[1,2],result=[1,2,4] batsman4s("tendulkar.csv", "<NAME>") ''' # Clean the batsman file and create a complete data frame df = clean(file) df['Runs'] = pd.to_numeric(df['Runs']) df['4s'] = pd.to_numeric(df['4s']) df1 = df[['Runs','4s']].sort_values(by=['Runs']) # Set figure size rcParams['figure.figsize'] = 10,6 # Get numnber of 4s and runs scored runs = pd.to_numeric(df1['Runs']) x4s = pd.to_numeric(df1['4s']) atitle = name + "-" + "Runs scored vs No of 4s" # Plot no of 4s and a 2nd order curve fit plt.scatter(runs, x4s, alpha=0.5) plt.xlabel('Runs') plt.ylabel('4s') plt.title(atitle) # Create a polynomial of degree 2 poly = PolynomialFeatures(degree=2) runsPoly = poly.fit_transform(runs.reshape(-1,1)) linreg = LinearRegression().fit(runsPoly,x4s) plt.plot(runs,linreg.predict(runsPoly),'-r') # Predict the number of 4s for 50 runs b=poly.fit_transform((np.array(50))) c=linreg.predict(b) plt.axhline(y=c, color='b', linestyle=':') plt.axvline(x=50, color='b', linestyle=':') # Predict the number of 4s for 100 runs b=poly.fit_transform((np.array(100))) c=linreg.predict(b) plt.axhline(y=c, color='b', linestyle=':') plt.axvline(x=100, color='b', linestyle=':') plt.text(180, 0.5,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsman6s # This function plots the number of 6s vs the runs scored in the innings by the batsman # ########################################################################################### def batsman6s(file, name="A Hookshot") : ''' Description Compute and plot the number of 6s in the total runs scored by batsman Usage batsman6s(file, name="A Hookshot") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Examples # Get or use the <batsman>.csv obtained with getPlayerData() # tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) # batsman6s("tendulkar.csv","<NAME>") ''' x6s = [] # Set figure size rcParams['figure.figsize'] = 10,6 # Clean the batsman file and create a complete data frame df = clean (file) # Remove all rows where 6s are 0 a= df['6s'] !=0 b= df[a] x6s=b['6s'].astype(int) runs=pd.to_numeric(b['Runs']) # Plot the 6s as a boxplot atitle =name + "-" + "Runs scored vs No of 6s" df1=pd.concat([runs,x6s],axis=1) fig = sns.boxplot(x="6s", y="Runs", data=df1) plt.title(atitle) plt.text(2.2, 10,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanAvgRunsGround # This function plots the average runs scored by batsman at the ground. The xlabels indicate # the number of innings at ground # ########################################################################################### def batsmanAvgRunsGround(file, name="A Latecut"): ''' Description This function computed the Average Runs scored on different pitches and also indicates the number of innings played at these venues Usage batsmanAvgRunsGround(file, name = "A Latecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() ##tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=[1,2],result=[1,2,4]) batsmanAvgRunsGround("tendulkar.csv","<NAME>") ''' batsman = clean(file) rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) # Aggregate as sum, mean and count df=batsman[['Runs','Ground']].groupby('Ground').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "'s Average Runs at Ground" plt.xticks(rotation="vertical",fontsize=8) plt.axhline(y=50, color='b', linestyle=':') plt.axhline(y=100, color='r', linestyle=':') ax=sns.barplot(x='Ground', y="Runs_mean", data=df1) plt.title(atitle) plt.text(30, 180,'Data source-Courtesy:ESPN Cricinfo',\ horizontalalignment='center',\ verticalalignment='center',\ ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 14 Oct 2018 # Function: batsmanAvgRunsOpposition # This function plots the average runs scored by batsman versus the opposition. The xlabels indicate # the Opposition and the number of innings at ground # ########################################################################################### def batsmanAvgRunsOpposition(file, name="A Latecut"): ''' This function computes and plots the Average runs against different opposition played by batsman Description This function computes the mean runs scored by batsman against different opposition Usage batsmanAvgRunsOpposition(file, name = "A Latecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist batsmanAvgRunsGround Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar = getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=[1,2],result=[1,2,4]) batsmanAvgRunsOpposition("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 batsman['Runs']=pd.to_numeric(batsman['Runs']) # Aggregate as sum, mean and count df=batsman[['Runs','Opposition']].groupby('Opposition').agg(['sum','mean','count']) #Flatten multi-levels to column names df.columns= ['_'.join(col).strip() for col in df.columns.values] # Reset index df1=df.reset_index(inplace=False) atitle = name + "'s Average Runs vs Opposition" plt.xticks(rotation="vertical",fontsize=8) ax=sns.barplot(x='Opposition', y="Runs_mean", data=df1) plt.axhline(y=50, color='b', linestyle=':') plt.title(atitle) plt.text(5, 50, 'Data source-Courtesy:ESPN Cricinfo',\ horizontalalignment='center',\ verticalalignment='center',\ ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 19 Oct 2018 # Function: batsmanContributionWonLost # This plots the batsman's contribution to won and lost matches # ########################################################################################### def batsmanContributionWonLost(file,name="A Hitter"): ''' Display the batsman's contribution in matches that were won and those that were lost Description Plot the comparative contribution of the batsman in matches that were won and lost as box plots Usage batsmanContributionWonLost(file, name = "A Hitter") Arguments file CSV file of batsman from ESPN Cricinfo obtained with getPlayerDataSp() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMovingAverage batsmanRunsPredict batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkarsp = getPlayerDataSp(35320,".","tendulkarsp.csv","batting") batsmanContributionWonLost("tendulkarsp.csv","<NAME>") ''' playersp = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 # Create a column based on result won = playersp[playersp['result'] == 1] lost = playersp[(playersp['result']==2) | (playersp['result']==4)] won['status']="won" lost['status']="lost" # Stack dataframes df= pd.concat([won,lost]) df['Runs']= pd.to_numeric(df['Runs']) ax = sns.boxplot(x='status',y='Runs',data=df) atitle = name + "-" + "- Runs in games won/lost-drawn" plt.title(atitle) plt.text(0.5, 200,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanCumulativeAverageRuns # This function computes and plots the cumulative average runs by a batsman # ########################################################################################### def batsmanCumulativeAverageRuns(file,name="A Leg Glance"): ''' Batsman's cumulative average runs Description This function computes and plots the cumulative average runs of a batsman Usage batsmanCumulativeAverageRuns(file,name= "A Leg Glance") Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeStrikeRate bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets Examples batsmanCumulativeAverageRuns("tendulkar.csv", "<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs=pd.to_numeric(batsman['Runs']) # Compute cumulative average cumAvg = runs.cumsum()/pd.Series(np.arange(1, len(runs)+1), runs.index) atitle = name + "- Cumulative Average vs No of innings" plt.plot(cumAvg) plt.xlabel('Innings') plt.ylabel('Cumulative average') plt.title(atitle) plt.text(200,20,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 17 Oct 2018 # Function: batsmanCumulativeStrikeRate # This function computes and plots the cumulative average strike rate of a batsman # ########################################################################################### def batsmanCumulativeStrikeRate(file,name="A Leg Glance"): ''' Batsman's cumulative average strike rate Description This function computes and plots the cumulative average strike rate of a batsman Usage batsmanCumulativeStrikeRate(file,name= "A Leg Glance") Arguments file Data frame name Name of batsman Value None Note Maintainer: <NAME> <EMAIL> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanCumulativeAverageRuns bowlerCumulativeAvgEconRate bowlerCumulativeAvgWickets Examples ## Not run: batsmanCumulativeStrikeRate("tendulkar.csv", "<NAME>") ''' batsman= clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 strikeRate=pd.to_numeric(batsman['SR']) # Compute cumulative strike rate cumStrikeRate = strikeRate.cumsum()/pd.Series(np.arange(1, len(strikeRate)+1), strikeRate.index) atitle = name + "- Cumulative Strike rate vs No of innings" plt.xlabel('Innings') plt.ylabel('Cumulative Strike Rate') plt.title(atitle) plt.plot(cumStrikeRate) plt.text(200,60,'Data source-Courtesy:ESPN Cricinfo', horizontalalignment='center', verticalalignment='center', ) plt.show() plt.gcf().clear() return import matplotlib.pyplot as plt import seaborn as sns from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 13 Oct 2018 # Function: batsman6s # This function plots the batsman dismissals # ########################################################################################### def batsmanDismissals(file, name="A Squarecut"): ''' Display a 3D Pie Chart of the dismissals of the batsman Description Display the dismissals of the batsman (caught, bowled, hit wicket etc) as percentages Usage batsmanDismissals(file, name="A Squarecut") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanMeanStrikeRate, batsmanMovingAverage, batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar= getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanDismissals("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 d = batsman['Dismissal'] # Convert to data frame df = pd.DataFrame(d) df1=df['Dismissal'].groupby(df['Dismissal']).count() df2 = pd.DataFrame(df1) df2.columns=['Count'] df3=df2.reset_index(inplace=False) # Plot a pie chart plt.pie(df3['Count'], labels=df3['Dismissal'],autopct='%.1f%%') atitle = name + "-Pie chart of dismissals" plt.suptitle(atitle, fontsize=16) plt.show() plt.gcf().clear() return import numpy as np import matplotlib.pyplot as plt from pylab import rcParams ########################################################################################## # Designed and developed by <NAME> # Date : 28 Aug 2019 # Function: batsmanMeanStrikeRate # This function plot the Mean Strike Rate of the batsman against Runs scored as a continous graph # ########################################################################################### def batsmanMeanStrikeRate(file, name="A Hitter"): ''' batsmanMeanStrikeRate {cricketr} R Documentation Calculate and plot the Mean Strike Rate of the batsman on total runs scored Description This function calculates the Mean Strike Rate of the batsman for each interval of runs scored Usage batsmanMeanStrikeRate(file, name = "A Hitter") Arguments file This is the <batsman>.csv file obtained with an initial getPlayerData() name Name of the batsman Details More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI Value None Note Maintainer: <NAME> <<EMAIL>> Author(s) <NAME> References http://www.espncricinfo.com/ci/content/stats/index.html https://gigadom.wordpress.com/ See Also batsmanDismissals, batsmanMovingAverage, batsmanPerfBoxHist batsmanPerfBoxHist Examples # Get or use the <batsman>.csv obtained with getPlayerData() #tendulkar <- getPlayerData(35320,file="tendulkar.csv",type="batting", homeOrAway=c(1,2),result=c(1,2,4)) batsmanMeanStrikeRate("tendulkar.csv","<NAME>") ''' batsman = clean(file) # Set figure size rcParams['figure.figsize'] = 10,6 runs= pd.to_numeric(batsman['Runs']) # Create the histogram hist, bins = np.histogram(runs, bins = 20) midBin=[] SR=[] # Loop through for i in range(1,len(bins)): # Find the mean of the bins (Runs) midBin.append(np.mean([bins[i-1],bins[i]])) # Filter runs that are are between 2 bins batsman['Runs']=
pd.to_numeric(batsman['Runs'])
pandas.to_numeric
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.center(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.center(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) result = values.str.split('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.split('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.split('_', expand=False) tm.assert_series_equal(result, exp) # regex split values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.split('[,_]') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) def test_rsplit(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.rsplit('__') tm.assert_series_equal(result, exp) result = values.str.rsplit('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.rsplit('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.rsplit('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.rsplit('_', expand=False) tm.assert_series_equal(result, exp) # regex split is not supported by rsplit values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.rsplit('[,_]') exp = Series([[u('a,b_c')], [u('c_d,e')], NA, [u('f,g,h')]]) tm.assert_series_equal(result, exp) # setting max number of splits, make sure it's from reverse values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_', n=1) exp = Series([['a_b', 'c'], ['c_d', 'e'], NA, ['f_g', 'h']]) tm.assert_series_equal(result, exp) def test_split_noargs(self): # #1859 s = Series(['<NAME>', '<NAME>']) result = s.str.split() expected = ['Travis', 'Oliphant'] assert result[1] == expected result = s.str.rsplit() assert result[1] == expected def test_split_maxsplit(self): # re.split 0, str.split -1 s = Series(['bd asdf jfg', 'kjasdflqw asdfnfk']) result = s.str.split(n=-1) xp = s.str.split() tm.assert_series_equal(result, xp) result = s.str.split(n=0) tm.assert_series_equal(result, xp) xp = s.str.split('asdf') result = s.str.split('asdf', n=0) tm.assert_series_equal(result, xp) result = s.str.split('asdf', n=-1) tm.assert_series_equal(result, xp) def test_split_no_pat_with_nonzero_n(self): s = Series(['split once', 'split once too!']) result = s.str.split(n=1) expected = Series({0: ['split', 'once'], 1: ['split', 'once too!']}) tm.assert_series_equal(expected, result, check_index_type=False) def test_split_to_dataframe(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.split('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_unequal_splits', 'one_of_these_things_is_not']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'one'], 1: ['unequal', 'of'], 2: ['splits', 'these'], 3: [NA, 'things'], 4: [NA, 'is'], 5: [NA, 'not']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) with tm.assert_raises_regex(ValueError, "expand must be"): s.str.split('_', expand="not_a_boolean") def test_split_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.split('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_unequal_splits', 'one_of_these_things_is_not']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'unequal', 'splits', NA, NA, NA ), ('one', 'of', 'these', 'things', 'is', 'not')]) tm.assert_index_equal(result, exp) assert result.nlevels == 6 with tm.assert_raises_regex(ValueError, "expand must be"): idx.str.split('_', expand="not_a_boolean") def test_rsplit_to_dataframe_expand(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=2) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=1) exp = DataFrame({0: ['some_equal', 'with_no'], 1: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) def test_rsplit_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.rsplit('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True, n=1) exp = MultiIndex.from_tuples([('some_equal', 'splits'), ('with_no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 2 def test_split_nan_expand(self): # gh-18450 s = Series(["foo,bar,baz", NA]) result = s.str.split(",", expand=True) exp = DataFrame([["foo", "bar", "baz"], [NA, NA, NA]]) tm.assert_frame_equal(result, exp) # check that these are actually np.nan and not None # TODO see GH 18463 # tm.assert_frame_equal does not differentiate assert all(np.isnan(x) for x in result.iloc[1]) def test_split_with_name(self): # GH 12617 # should preserve name s = Series(['a,b', 'c,d'], name='xxx') res = s.str.split(',') exp = Series([['a', 'b'], ['c', 'd']], name='xxx') tm.assert_series_equal(res, exp) res = s.str.split(',', expand=True) exp = DataFrame([['a', 'b'], ['c', 'd']]) tm.assert_frame_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.split(',') exp = Index([['a', 'b'], ['c', 'd']], name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) res = idx.str.split(',', expand=True) exp = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')]) assert res.nlevels == 2 tm.assert_index_equal(res, exp) def test_partition_series(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([('a', '_', 'b_c'), ('c', '_', 'd_e'), NA, ('f', '_', 'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('a_b', '_', 'c'), ('c_d', '_', 'e'), NA, ('f_g', '_', 'h')]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.partition('__', expand=False) exp = Series([('a', '__', 'b__c'), ('c', '__', 'd__e'), NA, ('f', '__', 'g__h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('__', expand=False) exp = Series([('a__b', '__', 'c'), ('c__d', '__', 'e'), NA, ('f__g', '__', 'h')]) tm.assert_series_equal(result, exp) # None values = Series(['a b c', 'c d e', NA, 'f g h']) result = values.str.partition(expand=False) exp = Series([('a', ' ', 'b c'), ('c', ' ', 'd e'), NA, ('f', ' ', 'g h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition(expand=False) exp = Series([('a b', ' ', 'c'), ('c d', ' ', 'e'), NA, ('f g', ' ', 'h')]) tm.assert_series_equal(result, exp) # Not splited values = Series(['abc', 'cde', NA, 'fgh']) result = values.str.partition('_', expand=False) exp = Series([('abc', '', ''), ('cde', '', ''), NA, ('fgh', '', '')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('', '', 'abc'), ('', '', 'cde'), NA, ('', '', 'fgh')]) tm.assert_series_equal(result, exp) # unicode values = Series([u'a_b_c', u'c_d_e', NA, u'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([(u'a', u'_', u'b_c'), (u'c', u'_', u'd_e'), NA, (u'f', u'_', u'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([(u'a_b', u'_', u'c'), (u'c_d', u'_', u'e'), NA, (u'f_g', u'_', u'h')]) tm.assert_series_equal(result, exp) # compare to standard lib values = Series(['A_B_C', 'B_C_D', 'E_F_G', 'EFGHEF']) result = values.str.partition('_', expand=False).tolist() assert result == [v.partition('_') for v in values] result = values.str.rpartition('_', expand=False).tolist() assert result == [v.rpartition('_') for v in values] def test_partition_index(self): values = Index(['a_b_c', 'c_d_e', 'f_g_h']) result = values.str.partition('_', expand=False) exp = Index(np.array([('a', '_', 'b_c'), ('c', '_', 'd_e'), ('f', '_', 'g_h')])) tm.assert_index_equal(result, exp) assert result.nlevels == 1 result = values.str.rpartition('_', expand=False) exp = Index(np.array([('a_b', '_', 'c'), ('c_d', '_', 'e'), ( 'f_g', '_', 'h')])) tm.assert_index_equal(result, exp) assert result.nlevels == 1 result = values.str.partition('_') exp = Index([('a', '_', 'b_c'), ('c', '_', 'd_e'), ('f', '_', 'g_h')]) tm.assert_index_equal(result, exp) assert isinstance(result, MultiIndex) assert result.nlevels == 3 result = values.str.rpartition('_') exp = Index([('a_b', '_', 'c'), ('c_d', '_', 'e'), ('f_g', '_', 'h')]) tm.assert_index_equal(result, exp) assert isinstance(result, MultiIndex) assert result.nlevels == 3 def test_partition_to_dataframe(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_') exp = DataFrame({0: ['a', 'c', np.nan, 'f'], 1: ['_', '_', np.nan, '_'], 2: ['b_c', 'd_e', np.nan, 'g_h']}) tm.assert_frame_equal(result, exp) result = values.str.rpartition('_') exp = DataFrame({0: ['a_b', 'c_d', np.nan, 'f_g'], 1: ['_', '_', np.nan, '_'], 2: ['c', 'e', np.nan, 'h']}) tm.assert_frame_equal(result, exp) values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=True) exp = DataFrame({0: ['a', 'c', np.nan, 'f'], 1: ['_', '_', np.nan, '_'], 2: ['b_c', 'd_e', np.nan, 'g_h']}) tm.assert_frame_equal(result, exp) result = values.str.rpartition('_', expand=True) exp = DataFrame({0: ['a_b', 'c_d', np.nan, 'f_g'], 1: ['_', '_', np.nan, '_'], 2: ['c', 'e', np.nan, 'h']}) tm.assert_frame_equal(result, exp) def test_partition_with_name(self): # GH 12617 s = Series(['a,b', 'c,d'], name='xxx') res = s.str.partition(',') exp = DataFrame({0: ['a', 'c'], 1: [',', ','], 2: ['b', 'd']}) tm.assert_frame_equal(res, exp) # should preserve name res = s.str.partition(',', expand=False) exp = Series([('a', ',', 'b'), ('c', ',', 'd')], name='xxx') tm.assert_series_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.partition(',') exp = MultiIndex.from_tuples([('a', ',', 'b'), ('c', ',', 'd')]) assert res.nlevels == 3 tm.assert_index_equal(res, exp) # should preserve name res = idx.str.partition(',', expand=False) exp = Index(np.array([('a', ',', 'b'), ('c', ',', 'd')]), name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) def test_pipe_failures(self): # #2119 s = Series(['A|B|C']) result = s.str.split('|') exp = Series([['A', 'B', 'C']]) tm.assert_series_equal(result, exp) result = s.str.replace('|', ' ') exp = Series(['A B C']) tm.assert_series_equal(result, exp) def test_slice(self): values = Series(['aafootwo', 'aabartwo', NA, 'aabazqux']) result = values.str.slice(2, 5) exp = Series(['foo', 'bar', NA, 'baz']) tm.assert_series_equal(result, exp) for start, stop, step in [(0, 3, -1), (None, None, -1), (3, 10, 2), (3, 0, -1)]: try: result = values.str.slice(start, stop, step) expected = Series([s[start:stop:step] if not isna(s) else NA for s in values]) tm.assert_series_equal(result, expected) except: print('failed on %s:%s:%s' % (start, stop, step)) raise # mixed mixed = Series(['aafootwo', NA, 'aabartwo', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.slice(2, 5) xp = Series(['foo', NA, 'bar', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.slice(2, 5, -1) xp = Series(['oof', NA, 'rab', NA, NA, NA, NA, NA]) # unicode values = Series([u('aafootwo'), u('aabartwo'), NA, u('aabazqux')]) result = values.str.slice(2, 5) exp = Series([u('foo'), u('bar'), NA, u('baz')]) tm.assert_series_equal(result, exp) result = values.str.slice(0, -1, 2) exp = Series([u('afow'), u('abrw'), NA, u('abzu')]) tm.assert_series_equal(result, exp) def test_slice_replace(self): values = Series(['short', 'a bit longer', 'evenlongerthanthat', '', NA ]) exp = Series(['shrt', 'a it longer', 'evnlongerthanthat', '', NA]) result = values.str.slice_replace(2, 3) tm.assert_series_equal(result, exp) exp = Series(['shzrt', 'a zit longer', 'evznlongerthanthat', 'z', NA]) result = values.str.slice_replace(2, 3, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA ]) result = values.str.slice_replace(2, 2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shzort', 'a zbit longer', 'evzenlongerthanthat', 'z', NA ]) result = values.str.slice_replace(2, 1, 'z') tm.assert_series_equal(result, exp) exp = Series(['shorz', 'a bit longez', 'evenlongerthanthaz', 'z', NA]) result = values.str.slice_replace(-1, None, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'zer', 'zat', 'z', NA]) result = values.str.slice_replace(None, -2, 'z') tm.assert_series_equal(result, exp) exp = Series(['shortz', 'a bit znger', 'evenlozerthanthat', 'z', NA]) result = values.str.slice_replace(6, 8, 'z') tm.assert_series_equal(result, exp) exp = Series(['zrt', 'a zit longer', 'evenlongzerthanthat', 'z', NA]) result = values.str.slice_replace(-10, 3, 'z') tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip(self): values = Series([' aa ', ' bb \n', NA, 'cc ']) result = values.str.strip() exp = Series(['aa', 'bb', NA, 'cc']) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series(['aa ', 'bb \n', NA, 'cc ']) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([' aa', ' bb', NA, 'cc']) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_mixed(self): # mixed mixed = Series([' aa ', NA, ' bb \t\n', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.strip() xp = Series(['aa', NA, 'bb', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.lstrip() xp = Series(['aa ', NA, 'bb \t\n', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rstrip() xp = Series([' aa', NA, ' bb', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) def test_strip_lstrip_rstrip_unicode(self): # unicode values = Series([u(' aa '), u(' bb \n'), NA, u('cc ')]) result = values.str.strip() exp = Series([u('aa'), u('bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) result = values.str.lstrip() exp = Series([u('aa '), u('bb \n'), NA, u('cc ')]) tm.assert_series_equal(result, exp) result = values.str.rstrip() exp = Series([u(' aa'), u(' bb'), NA, u('cc')]) tm.assert_series_equal(result, exp) def test_strip_lstrip_rstrip_args(self): values = Series(['xxABCxx', 'xx BNSD', 'LDFJH xx']) rs = values.str.strip('x') xp = Series(['ABC', ' BNSD', 'LDFJH ']) assert_series_equal(rs, xp) rs = values.str.lstrip('x') xp = Series(['ABCxx', ' BNSD', 'LDFJH xx']) assert_series_equal(rs, xp) rs = values.str.rstrip('x') xp = Series(['xxABC', 'xx BNSD', 'LDFJH ']) assert_series_equal(rs, xp) def test_strip_lstrip_rstrip_args_unicode(self): values = Series([u('xxABCxx'), u('xx BNSD'), u('LDFJH xx')]) rs = values.str.strip(u('x')) xp = Series(['ABC', ' BNSD', 'LDFJH ']) assert_series_equal(rs, xp) rs = values.str.lstrip(u('x')) xp = Series(['ABCxx', ' BNSD', 'LDFJH xx']) assert_series_equal(rs, xp) rs = values.str.rstrip(u('x')) xp = Series(['xxABC', 'xx BNSD', 'LDFJH ']) assert_series_equal(rs, xp) def test_wrap(self): # test values are: two words less than width, two words equal to width, # two words greater than width, one word less than width, one word # equal to width, one word greater than width, multiple tokens with # trailing whitespace equal to width values = Series([u('hello world'), u('hello world!'), u( 'hello world!!'), u('abcdefabcde'), u('abcdefabcdef'), u( 'abcdefabcdefa'), u('ab ab ab ab '), u('ab ab ab ab a'), u( '\t')]) # expected values xp = Series([u('hello world'), u('hello world!'), u('hello\nworld!!'), u('abcdefabcde'), u('abcdefabcdef'), u('abcdefabcdef\na'), u('ab ab ab ab'), u('ab ab ab ab\na'), u('')]) rs = values.str.wrap(12, break_long_words=True) assert_series_equal(rs, xp) # test with pre and post whitespace (non-unicode), NaN, and non-ascii # Unicode values = Series([' pre ', np.nan, u('\xac\u20ac\U00008000 abadcafe') ]) xp = Series([' pre', NA, u('\xac\u20ac\U00008000 ab\nadcafe')]) rs = values.str.wrap(6) assert_series_equal(rs, xp) def test_get(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.get(1) expected = Series(['b', 'd', np.nan, 'g']) tm.assert_series_equal(result, expected) # mixed mixed = Series(['a_b_c', NA, 'c_d_e', True, datetime.today(), None, 1, 2.]) rs = Series(mixed).str.split('_').str.get(1) xp = Series(['b', NA, 'd', NA, NA, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.get(1) expected = Series([u('b'), u('d'), np.nan, u('g')]) tm.assert_series_equal(result, expected) # bounds testing values = Series(['1_2_3_4_5', '6_7_8_9_10', '11_12']) # positive index result = values.str.split('_').str.get(2) expected = Series(['3', '8', np.nan]) tm.assert_series_equal(result, expected) # negative index result = values.str.split('_').str.get(-3) expected = Series(['3', '8', np.nan]) tm.assert_series_equal(result, expected) def test_more_contains(self): # PR #1179 s = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', NA, 'CABA', 'dog', 'cat']) result = s.str.contains('a') expected = Series([False, False, False, True, True, False, np.nan, False, False, True]) assert_series_equal(result, expected) result = s.str.contains('a', case=False) expected = Series([True, False, False, True, True, False, np.nan, True, False, True]) assert_series_equal(result, expected) result = s.str.contains('Aa') expected = Series([False, False, False, True, False, False, np.nan, False, False, False]) assert_series_equal(result, expected) result = s.str.contains('ba') expected = Series([False, False, False, True, False, False, np.nan, False, False, False]) assert_series_equal(result, expected) result = s.str.contains('ba', case=False) expected = Series([False, False, False, True, True, False, np.nan, True, False, False]) assert_series_equal(result, expected) def test_contains_nan(self): # PR #14171 s = Series([np.nan, np.nan, np.nan], dtype=np.object_) result = s.str.contains('foo', na=False) expected = Series([False, False, False], dtype=np.bool_) assert_series_equal(result, expected) result = s.str.contains('foo', na=True) expected = Series([True, True, True], dtype=np.bool_) assert_series_equal(result, expected) result = s.str.contains('foo', na="foo") expected = Series(["foo", "foo", "foo"], dtype=np.object_) assert_series_equal(result, expected) result = s.str.contains('foo') expected = Series([np.nan, np.nan, np.nan], dtype=np.object_) assert_series_equal(result, expected) def test_more_replace(self): # PR #1179 s = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', NA, 'CABA', 'dog', 'cat']) result = s.str.replace('A', 'YYY') expected = Series(['YYY', 'B', 'C', 'YYYaba', 'Baca', '', NA, 'CYYYBYYY', 'dog', 'cat']) assert_series_equal(result, expected) result = s.str.replace('A', 'YYY', case=False) expected = Series(['YYY', 'B', 'C', 'YYYYYYbYYY', 'BYYYcYYY', '', NA, 'CYYYBYYY', 'dog', 'cYYYt']) assert_series_equal(result, expected) result = s.str.replace('^.a|dog', 'XX-XX ', case=False) expected = Series(['A', 'B', 'C', 'XX-XX ba', 'XX-XX ca', '', NA, 'XX-XX BA', 'XX-XX ', 'XX-XX t']) assert_series_equal(result, expected) def test_string_slice_get_syntax(self): s = Series(['YYY', 'B', 'C', 'YYYYYYbYYY', 'BYYYcYYY', NA, 'CYYYBYYY', 'dog', 'cYYYt']) result = s.str[0] expected = s.str.get(0) assert_series_equal(result, expected) result = s.str[:3] expected = s.str.slice(stop=3) assert_series_equal(result, expected) result = s.str[2::-1] expected = s.str.slice(start=2, step=-1) assert_series_equal(result, expected) def test_string_slice_out_of_bounds(self): s = Series([(1, 2), (1, ), (3, 4, 5)]) result = s.str[1] expected = Series([2, np.nan, 4]) assert_series_equal(result, expected) s = Series(['foo', 'b', 'ba']) result = s.str[1] expected = Series(['o', np.nan, 'a']) assert_series_equal(result, expected) def test_match_findall_flags(self): data = {'Dave': '<EMAIL>', 'Steve': '<EMAIL>', 'Rob': '<EMAIL>', 'Wes': np.nan} data = Series(data) pat = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})' result = data.str.extract(pat, flags=re.IGNORECASE, expand=True) assert result.iloc[0].tolist() == ['dave', 'google', 'com'] result = data.str.match(pat, flags=re.IGNORECASE) assert result[0] result = data.str.findall(pat, flags=re.IGNORECASE) assert result[0][0] == ('dave', 'google', 'com') result = data.str.count(pat, flags=re.IGNORECASE) assert result[0] == 1 with tm.assert_produces_warning(UserWarning): result = data.str.contains(pat, flags=re.IGNORECASE) assert result[0] def test_encode_decode(self): base = Series([u('a'), u('b'), u('a\xe4')]) series = base.str.encode('utf-8') f = lambda x: x.decode('utf-8') result = series.str.decode('utf-8') exp = series.map(f) tm.assert_series_equal(result, exp) def test_encode_decode_errors(self): encodeBase = Series([u('a'), u('b'), u('a\x9d')]) pytest.raises(UnicodeEncodeError, encodeBase.str.encode, 'cp1252') f = lambda x: x.encode('cp1252', 'ignore') result = encodeBase.str.encode('cp1252', 'ignore') exp = encodeBase.map(f) tm.assert_series_equal(result, exp) decodeBase = Series([b'a', b'b', b'a\x9d']) pytest.raises(UnicodeDecodeError, decodeBase.str.decode, 'cp1252') f = lambda x: x.decode('cp1252', 'ignore') result = decodeBase.str.decode('cp1252', 'ignore') exp = decodeBase.map(f) tm.assert_series_equal(result, exp) def test_normalize(self): values = ['ABC', u'ABC', u'123', np.nan, u'アイエ'] s = Series(values, index=['a', 'b', 'c', 'd', 'e']) normed = [u'ABC', u'ABC', u'123', np.nan, u'アイエ'] expected = Series(normed, index=['a', 'b', 'c', 'd', 'e']) result = s.str.normalize('NFKC') tm.assert_series_equal(result, expected) expected = Series([u'ABC', u'ABC', u'123', np.nan, u'アイエ'], index=['a', 'b', 'c', 'd', 'e']) result = s.str.normalize('NFC') tm.assert_series_equal(result, expected) with tm.assert_raises_regex(ValueError, "invalid normalization form"): s.str.normalize('xxx') s = Index([u'ABC', u'123', u'アイエ']) expected = Index([u'ABC', u'123', u'アイエ']) result = s.str.normalize('NFKC') tm.assert_index_equal(result, expected) def test_cat_on_filtered_index(self): df = DataFrame(index=MultiIndex.from_product( [[2011, 2012], [1, 2, 3]], names=['year', 'month'])) df = df.reset_index() df = df[df.month > 1] str_year = df.year.astype('str') str_month = df.month.astype('str') str_both = str_year.str.cat(str_month, sep=' ') assert str_both.loc[1] == '2011 2' str_multiple = str_year.str.cat([str_month, str_month], sep=' ') assert str_multiple.loc[1] == '2011 2 2' def test_str_cat_raises_intuitive_error(self): # https://github.com/pandas-dev/pandas/issues/11334 s = Series(['a', 'b', 'c', 'd']) message = "Did you mean to supply a `sep` keyword?" with tm.assert_raises_regex(ValueError, message): s.str.cat('|') with tm.assert_raises_regex(ValueError, message): s.str.cat(' ') def test_index_str_accessor_visibility(self): from pandas.core.strings import StringMethods if not compat.PY3: cases = [(['a', 'b'], 'string'), (['a', u('b')], 'mixed'), ([u('a'), u('b')], 'unicode'), (['a', 'b', 1], 'mixed-integer'), (['a', 'b', 1.3], 'mixed'), (['a', 'b', 1.3, 1], 'mixed-integer'), (['aa', datetime(2011, 1, 1)], 'mixed')] else: cases = [(['a', 'b'], 'string'), (['a', u('b')], 'string'), ([u('a'), u('b')], 'string'), (['a', 'b', 1], 'mixed-integer'), (['a', 'b', 1.3], 'mixed'), (['a', 'b', 1.3, 1], 'mixed-integer'), (['aa', datetime(2011, 1, 1)], 'mixed')] for values, tp in cases: idx = Index(values) assert isinstance(Series(values).str, StringMethods) assert isinstance(idx.str, StringMethods) assert idx.inferred_type == tp for values, tp in cases: idx = Index(values) assert isinstance(Series(values).str, StringMethods) assert isinstance(idx.str, StringMethods) assert idx.inferred_type == tp cases = [([1, np.nan], 'floating'), ([datetime(2011, 1, 1)], 'datetime64'), ([timedelta(1)], 'timedelta64')] for values, tp in cases: idx = Index(values) message = 'Can only use .str accessor with string values' with tm.assert_raises_regex(AttributeError, message): Series(values).str with tm.assert_raises_regex(AttributeError, message): idx.str assert idx.inferred_type == tp # MultiIndex has mixed dtype, but not allow to use accessor idx = MultiIndex.from_tuples([('a', 'b'), ('a', 'b')]) assert idx.inferred_type == 'mixed' message = 'Can only use .str accessor with Index, not MultiIndex' with
tm.assert_raises_regex(AttributeError, message)
pandas.util.testing.assert_raises_regex
import matplotlib.pyplot as plt import numpy as np import pandas as pd from backtesting.backtester.BackTest.backtest import Strategy, Portfolio import backtesting.backtester.fuzzySystem.membership as fuzz import backtesting.backtester.fuzzySystem.control as ctrl from pandas import to_datetime class FuzzyMovingAverageCrossStrategy(Strategy): """ Requires: symbol - A stock symbol on which to form a strategy on. bars - A DataFrame of bars for the above symbol. short_window - Lookback period for short moving average. long_window - Lookback period for long moving average.""" def __init__(self, symbol, bars, short_window, long_window): self.symbol = symbol self.bars = bars self.short_window = int(short_window) self.long_window = int(long_window) def generate_signals(self): """Returns the DataFrame of symbols containing the signals to go long, short or hold (1, -1 or 0).""" signals =
pd.DataFrame(index=self.bars.index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Sep 14 14:55:21 2018 @author: <NAME> """ import pandas as pd import scipy.sparse import pytest from sklearn.base import clone from sklearn.exceptions import NotFittedError from tests.helpers.testing_help import rec_assert_equal from aikit.tools.data_structure_helper import convert_generic, get_type from aikit.enums import DataTypes def assert_raise_not_fitted(encoder, df): with pytest.raises(NotFittedError): encoder.transform(df) def assert_raise_value_error(encoder, df): with pytest.raises(ValueError): encoder.transform(df) def gen_slice(ob, sl): """ generic column slicer """ t = get_type(ob) if t in (DataTypes.DataFrame, DataTypes.SparseDataFrame): return ob.iloc[:, sl] elif t == DataTypes.SparseArray: if isinstance(ob, scipy.sparse.coo_matrix): ob = scipy.sparse.csc_matrix(ob.copy()) return ob[:, sl] else: return ob[:, sl] def verif_encoder_static(klass, enc_kwargs): """ does a bunch of static test on an encoder, ie: tests without any data, without fitting anything """ assert hasattr(klass, "fit") assert hasattr(klass, "transform") assert hasattr(klass, "fit_transform") encoder0 = klass(**enc_kwargs) # Create an object ... encoder1 = clone(encoder0) # then try to clone it encoder2 = klass() # Create an empty object and then set its params encoder2.set_params(**enc_kwargs) df1 =
pd.DataFrame()
pandas.DataFrame
"""unit test for loanpy.loanfinder.py (2.0 BETA) for pytest 7.1.1""" from inspect import ismethod from os import remove from pathlib import Path from unittest.mock import patch, call from pandas import DataFrame, RangeIndex, Series, read_csv from pandas.testing import (assert_frame_equal, assert_index_equal, assert_series_equal) from pytest import raises from loanpy.loanfinder import Search, gen, read_data, NoPhonMatch from loanpy import loanfinder as lf def test_read_data(): """test if data is being read correctly""" # setup expected outcome, path, input-dataframe, mock pandas.read_csv srsexp = Series(["a", "b", "c"], name="col1", index=[0, 1, 1]) path = Path(__file__).parent / "test_read_data.csv" dfin = DataFrame({"col1": ["a", "b, c", "wrong clusters", "wrong phonotactics"], "col2": [1, 2, 3, 4]}) with patch("loanpy.loanfinder.read_csv") as read_csv_mock: read_csv_mock.return_value = dfin # assert that the actual outcome equals the expected outcome assert_series_equal(read_data(path, "col1"), srsexp) # assert mock call to read_csv_mock was correct assert read_csv_mock.call_args_list[0] == call( path, encoding="utf-8", usecols=["col1"]) # test read recip # setup: overwrite expected outcome and input-dataframe, mock # pandas.read_csv srsexp = Series(["(a)?", "(b|c)"], name="col1", index=[1, 3]) dfin = DataFrame({"col1": ["wrong vowel harmony", "(a)?", "wrong phonotactics", "(b|c)"], "col2": [1, 2, 3, 4]}) with patch("loanpy.loanfinder.read_csv") as read_csv_mock: read_csv_mock.return_value = dfin # assert expected and actual outcome are the same pandas Series assert_series_equal(read_data(path, "col1"), srsexp) # assert mock was called with correct input assert read_csv_mock.call_args_list[0] == call( path, encoding="utf-8", usecols=["col1"]) # tear down del path, dfin, srsexp def test_gen(): """test if generator yields the right things""" # set up mock-tqdm (which is a progress bar) def tqdm_mock(iterable, prefix): """this just returns the input and remembers it""" tqdm_mock.called_with = (iterable, prefix) return iterable tqdm = lf.tqdm # remember the original tqdm to plug back in later lf.tqdm = tqdm_mock # overwrite real tqdm with mock-tqdm function # set up: create custom class class SomeMonkeyClass: def __init__(self): self.somefunc_called_with = [] def somefunc(self, *args): arglist = [*args] self.somefunc_called_with.append(arglist) return arglist[0] + arglist[1] # set up: create instance of mock class somemockclass = SomeMonkeyClass() # assert generator yields/returns the expected outcome assert list(gen([2, 3, 4], [4, 5, 6], somemockclass.somefunc, "lol", "rofl")) == [6, 8, 10] # assert 2 mock calls: tqdm and somefunc in SomeMonkeyClass assert tqdm_mock.called_with == ([2, 3, 4], "lol") assert somemockclass.somefunc_called_with == [ [2, 4, "rofl"], [3, 5, "rofl"], [4, 6, "rofl"]] # tear down lf.tqdm = tqdm # plug back in the original tqdm del tqdm, somemockclass, tqdm_mock, SomeMonkeyClass def test_init(): """test if class Search is initiated correctly""" # set up mock panphon class with mock edit distance class DistanceMonkey: def hamming_feature_edit_distance(): pass # set up mock Adrc class for get_nse class AdrcMonkey: def get_nse(self, *args): pass # set up mock function for semantic distance measure def mock_gensim_mw(): return "sthsth" # set up vars 4 exped outcome, set up mock instance of DistanceMonkey class srsad = Series(["a", "b", "c"], name="adapted", index=[0, 1, 1]) srsrc = Series(["a", "b", "c"], name="adapted", index=[0, 1, 1]) dist_mockinstance = DistanceMonkey() # set up: mock read_data, mock panphon.Distance mock loanpy.adrc.Adrc with patch("loanpy.loanfinder.read_data", side_effect=[ srsad, srsrc]) as read_data_mock: with patch("loanpy.loanfinder.Distance") as Distance_mock: Distance_mock.return_value = dist_mockinstance with patch("loanpy.loanfinder.Adrc") as Adrc_mock: Adrc_mock.return_value = AdrcMonkey # initiate Search() with mock parameters mocksearch = Search( path2donordf="got.csv", path2recipdf="hun.csv", donorcol="adapted", recipcol="reconstructed", scdictlist_ad="scad.txt", scdictlist_rc="scrc.txt", semsim_msr=mock_gensim_mw) # assert initiation went properly assert_series_equal(mocksearch.search_in, srsad) assert_series_equal(mocksearch.search_for, srsrc) assert mocksearch.phondist == 0 assert ismethod(mocksearch.phondist_msr) assert mocksearch.donpath == "got.csv" assert mocksearch.recpath == "hun.csv" assert mocksearch.doncol == "adapted" assert mocksearch.reccol == "reconstructed" assert mocksearch.semsim == 1 assert mocksearch.semsim_msr.__name__ == "mock_gensim_mw" assert mocksearch.get_nse_ad == AdrcMonkey.get_nse assert mocksearch.get_nse_rc == AdrcMonkey.get_nse # double check with __dict__ msdict = mocksearch.__dict__ assert len(msdict) == 12 for i in msdict: if i in zip(["search_in", "search_for"], [srsad, srsrc]): assert_series_equal(msdict[i], expsrs) if i == "doncol": assert msdict[i] == "adapted" if i == "donpath": assert msdict[i] == "got.csv" if i == "get_nse_ad": assert msdict[i ] == AdrcMonkey.get_nse if i == "get_nse_rc": assert msdict[i ] == AdrcMonkey.get_nse if i == "phondist": assert msdict[i] == 0 if i == "phondist_msr": hmng = dist_mockinstance.hamming_feature_edit_distance assert msdict[i] == hmng if i == "reccol" == "reconstructed": assert msdict[ i] == "reconstructed" if i == "recpath": assert msdict[i] == "hun.csv" if i == "semsim": assert msdict[i] == 1 if i == "semsim_msr": assert msdict[i] == mock_gensim_mw # assert calls read_data_mock.assert_has_calls( [call("got.csv", "adapted"), call("hun.csv", "reconstructed")]) Distance_mock.assert_called_with() Adrc_mock.assert_has_calls( [call(scdictlist="scad.txt", mode='adapt'), call(scdictlist="scrc.txt", mode='reconstruct')]) # assert init runs correctly without entering parameters as well # set up: mock read_data, mock panphon.Distance mock loanpy.adrc.Adrc with patch("loanpy.loanfinder.read_data", side_effect=[ srsad, srsrc]) as read_data_mock: with patch("loanpy.loanfinder.Distance") as Distance_mock: Distance_mock.return_value = dist_mockinstance with patch("loanpy.loanfinder.Adrc") as Adrc_mock: Adrc_mock.return_value = AdrcMonkey # initiate Search() without any parameters (default params) mocksearch = Search() # assert initiation went properly assert_series_equal(mocksearch.search_in, srsad) assert_series_equal(mocksearch.search_for, srsrc) assert mocksearch.phondist == 0 assert ismethod(mocksearch.phondist_msr) assert mocksearch.donpath is None assert mocksearch.recpath is None assert mocksearch.doncol == "ad" assert mocksearch.reccol == "rc" assert mocksearch.semsim == 1 # sic! assert mocksearch.semsim_msr.__name__ == "gensim_multiword" # not "mock_gensim_mw" even though mock func is plugged in! assert mocksearch.get_nse_ad == AdrcMonkey.get_nse assert mocksearch.get_nse_rc == AdrcMonkey.get_nse # double check with __dict__ msdict = mocksearch.__dict__ assert len(msdict) == 12 for i in msdict: if i in zip(["search_in", "search_for"], [srsad, srsrc]):
assert_series_equal(msdict[i], expsrs)
pandas.testing.assert_series_equal
import pandas as pd from sklearn import preprocessing from sklearn.svm import SVC import evaluateTask1 # import csv data data = pd.read_csv('insurance-train.csv') data_test =
pd.read_csv('insurance-test.csv')
pandas.read_csv
from __future__ import division import numpy as np import datetime import pandas as pd from os.path import join, basename, exists from os import makedirs import matplotlib.pyplot as plt from nilearn import input_data from nilearn import datasets import pandas as pd from nilearn import plotting from nilearn.image import concat_imgs from nilearn.input_data import NiftiLabelsMasker from nilearn.connectome import ConnectivityMeasure import bct anx_dir = '/home/data/nbc/physics-learning/anxiety-physics' #anx_dir = '/Users/Katie/Dropbox/Projects/physics-anxiety' labels = pd.read_csv(join(anx_dir, '17-networks-combo-ccn-5.14-regions-mni_labels.csv'), index_col=0, header=None, squeeze=True) laird_2011_icn_regns = join(anx_dir, '17-networks-combo-ccn-5.14-regions-mni.nii.gz') region_masker = input_data.NiftiLabelsMasker(laird_2011_icn_regns, standardize=True) subjects = ["101", "102", "103", "104", "106", "107", "108", "110", "212", "214", "215", "216", "217", "218", "219", "320", "321", "323", "324", "325", "327", "328", "330", "331", "333", "334", "336", "337", "338", "339", "340", "341", "342", "343", "345", "346", "347", "348", "349", "350", "451", "455", "458", "459", "460", "462", "463", "464", "467", "468", "469", "470", "502", "503", "571", "572", "573", "574", "577", "578", "581", "582", "584", "586", "588", "589", "591", "592", "593", "594", "595", "596", "597", "598", "604", "605", "606", "607", "608", "609", "610", "612", "613", "614", "615", "617", "618", "619", "620", "621", "622", "623", "624", "625", "626", "627", "629", "630", "631", "633", "634"] #subjects = ['102','103'] data_dir = '/home/data/nbc/physics-learning/data/pre-processed' pre_dir = '/home/data/nbc/physics-learning/anxiety-physics/pre' post_dir = '/home/data/nbc/physics-learning/anxiety-physics/post' sink_dir = '/home/data/nbc/physics-learning/anxiety-physics/output' #data_dir = '/Users/Katie/Dropbox/Data' #pre_dir = '/Users/Katie/Dropbox/Projects/physics-anxiety/test/pre' #post_dir = '/Users/Katie/Dropbox/Projects/physics-anxiety/test/post' #sink_dir = '/Users/Katie/Dropbox/Projects/physics-anxiety/test/output' lab_notebook_dir = '/home/kbott006/lab_notebook/' directories = [pre_dir, post_dir] sessions = ['pre', 'post'] lab_notebook = pd.DataFrame(index=subjects, columns=['start', 'end', 'errors']) intrantwk_conn = pd.DataFrame(index=subjects, columns=set(labels)) for i in np.arange(0, (len(sessions))): print(sessions[i]) for s in subjects: lab_notebook.at[s,'start'] = str(datetime.datetime.now()) try: if not exists(join(sink_dir, sessions[i], s)): makedirs(join(sink_dir, sessions[i], s)) fmri_file = join(directories[i], '{0}_filtered_func_data_mni.nii.gz'.format(s)) print(fmri_file) confounds = join(sink_dir, sessions[i], s, '{0}_confounds.txt'.format(s)) #print confounds #create correlation matrix from PRE resting state files region_time_series = region_masker.fit_transform(fmri_file, confounds) print(region_time_series.shape) np.savetxt(join(sink_dir, sessions[i], s, '{0}_laird2011_ts_regions.csv'.format(s)), region_time_series, delimiter=",") #region_time_series = region_masker.fit_transform (fmri_file, confounds) #connectivity = ConnectivityMeasure(kind='correlation') #network_correlation_matrix = connectivity.fit_transform([network_time_series])[0] region_correlation_matrix = np.corrcoef(region_time_series.T) corrmat =
pd.DataFrame(region_correlation_matrix, index=labels.index, columns=labels.index)
pandas.DataFrame
# Build default model and do permutation feature importance (PFI) import warnings import pandas as pd import numpy as np from sklearn import ensemble, model_selection, metrics, inspection from skopt import BayesSearchCV, space import shap import load_data import misc_util RANDOM_SEED = 11798 # A very repetitive BayesSearchCV warning I'd like to ignore warnings.filterwarnings('ignore', message='The objective has been evaluated at this point before.') print('Loading labels from original data') label_map = {p: pdf.label.iloc[0] for p, pdf in load_data.train_full().groupby('STUDENTID')} # Set up model training parameters m = ensemble.ExtraTreesClassifier(500, bootstrap=True, random_state=RANDOM_SEED) bayes_grid = { 'max_features': space.Real(.001, 1), 'max_samples': space.Real(.001, .999), # For bootstrapping 'ccp_alpha': space.Real(0, .004), # Range determined via ccp_alpha_explore.py } xval = model_selection.StratifiedKFold(4, shuffle=True, random_state=RANDOM_SEED) scoring = metrics.make_scorer(misc_util.adjusted_thresh_kappa, needs_proba=True) # Getting BayesSearchCV to work requires modifying site-packages/skopt/searchcv.py per: # https://github.com/scikit-optimize/scikit-optimize/issues/762 gs = BayesSearchCV(m, bayes_grid, n_iter=100, n_jobs=3, cv=xval, verbose=0, scoring=scoring, random_state=RANDOM_SEED, optimizer_kwargs={'n_initial_points': 20}) # Build model for 30m data as an example train_result = [] print('Loading data') feat_names = list(pd.read_csv('features_fe/filtered_features_30m.csv').feature) train_df = pd.read_csv('features_fe/train_30m.csv')[['STUDENTID'] + feat_names] holdout_df = pd.read_csv('features_fe/holdout_30m.csv')[['STUDENTID'] + feat_names] for fset in ['features_tsfresh', 'features_featuretools']: feat_names = list(pd.read_csv(fset + '/filtered_features_30m.csv').feature) tdf =
pd.read_csv(fset + '/train_30m.csv')
pandas.read_csv
from os import path import pandas as pd path = "../../data/processed/" accounts_features = pd.read_csv(path+"accounts_features_2021.txt") accounts_created_features = pd.read_csv(path+"Accounts2021_Created_Features.csv", nrows=37083) accounts_labels =
pd.read_csv(path+"accounts_labels_2021.txt", nrows=37083)
pandas.read_csv
# Copyright 2021 VicEdTools authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A class for storing reporting data exported from Compass. Aggregates data from Learning Tasks, Reports and Progress reports exports. """ from __future__ import annotations import re from typing import Callable import pandas as pd from pandas.errors import EmptyDataError def class_code_parser(class_code: str, pattern: str) -> str: """A default class code to subject code parser. Assumes that class codes contain their corresponding subject code. Args: class_code: The class code. pattern: A regex pattern that matches subject codes to a named group called 'code'. Returns: The subject code string. """ m = re.search(pattern, class_code) if m: subject_code = m.group('code') return subject_code else: print(class_code + " class code not found") return "" class Reports: '''A container class for reporting data from Compass.''' def __init__(self, data=None, class_details=None) -> Reports: columns = [ 'Time', 'ClassCode', 'StudentCode', 'ResultName', 'ResultGrade', 'ResultScore', 'Type', 'SubjectCode', 'SubjectName', 'LearningArea', 'TeacherCode' ] self.data = pd.DataFrame(columns=columns) if type(data) == pd.core.frame.DataFrame: self.data = pd.concat([self.data, data], ignore_index=True) columns = ['Time', 'ClassCode', 'TeacherCode'] self.class_details = pd.DataFrame(columns=columns).dropna( subset=["TeacherCode"]) if type(class_details) == pd.core.frame.DataFrame: self.class_details = pd.concat([ self.class_details, class_details.dropna(subset=["TeacherCode"]) ], ignore_index=True) @classmethod def fromReportsExport(cls, filename: str, year: str = None, semester: str = None, grade_score_mapper: Callable[[str], float] = None, grade_dtype: pd.api.types.CategoricalDtype = None, replace_values: dict[str, dict] = None) -> Reports: """Creates a new Reports instance from a Compass reports export.""" try: temp_df = pd.read_csv(filename, na_values=None, keep_default_na=False) except EmptyDataError: return Reports() temp_df = temp_df.loc[(temp_df["AssessmentType"] == "Work Habits"), :] if not year: # attempt to determine year from filename year_pattern = "(?P<year>2[0-9][0-9][0-9])" m = re.search(year_pattern, filename) if m: year = m.group('year') else: raise ValueError( "Could not determine year for reports export file.]n" "Try including the year in the filename.") if not semester: semester_pattern = "(?:[Ss][Ee][Mm][A-Za-z ]*)(?P<semester>[12]|[Oo]ne|[Tt]wo)" m = re.search(semester_pattern, filename) if m: semester = m.group('semester') else: raise ValueError( "Could not determine semester for reports export file.\n" "Try including Sem 1, Sem 2 in the filenames.") time = cls._semesterDateMapper(year, semester) temp_df["Time"] = time temp_df["Time"] = pd.to_datetime(temp_df["Time"]) if replace_values: temp_df.replace(replace_values, inplace=True) if grade_dtype: temp_df["Result"] = temp_df["Result"].astype(grade_dtype) temp_df.dropna(subset=["Result"], inplace=True) if grade_score_mapper: temp_df["ResultScore"] = temp_df["Result"].apply(grade_score_mapper) else: temp_df["ResultScore"] = None temp_df.rename(columns={ "Result": "ResultGrade", "AssessmentArea": "ResultName", "AssessmentType": "Type" }, inplace=True) temp_df["SubjectName"] = None temp_df["TeacherCode"] = None columns = [ 'Time', 'ClassCode', 'StudentCode', 'ResultName', 'ResultGrade', 'ResultScore', 'Type', 'SubjectName', 'TeacherCode' ] return cls(temp_df[columns]) @classmethod def fromLearningTasksExport( cls, filename: str, year: str = None, grade_score_mapper: Callable[[str], float] = None, grade_dtype: pd.api.types.CategoricalDtype = None, replace_values: dict[str, dict] = None) -> Reports: """Creates a new Reports instance from a Compass Learning Tasks export.""" try: temp_df = pd.read_csv(filename, na_values=None, keep_default_na=False) except EmptyDataError: return Reports() temp_df = temp_df.loc[temp_df["IsIncludedInReport"], :] temp_df = temp_df.loc[(temp_df["ComponentType"] != "Comment"), :] temp_df = temp_df.loc[temp_df["ReportCycleName"]. isin(["Semester One", "Semester Two"]), :] if (not year): # attempt to determine year from filename year_pattern = "(?P<year>2[0-9][0-9][0-9])" m = re.search(year_pattern, filename) if m: year = m.group('year') else: raise ValueError( "Could not determine year for Learning Tasks export file.") temp_df["Year"] = year temp_df["Time"] = temp_df.apply( lambda x: cls._semesterDateMapper(x["Year"], x["ReportCycleName"]), axis=1, result_type='reduce') temp_df['Time'] = pd.to_datetime(temp_df['Time']) temp_df["Type"] = "Academic" # differentiate from work habits if replace_values: temp_df.replace(replace_values, inplace=True) if grade_dtype: temp_df["Result"] = temp_df["Result"].astype(grade_dtype) temp_df.dropna(subset=["Result"], inplace=True) if grade_score_mapper: temp_df["ResultScore"] = temp_df["Result"].apply(grade_score_mapper) else: temp_df["ResultScore"] = None temp_df.rename(columns={ 'Code': 'ClassCode', 'TaskName': 'ResultName', 'Result': 'ResultGrade', "TeacherImportIdentifier": "TeacherCode" }, inplace=True) class_details_columns = ['Time', 'ClassCode', 'TeacherCode'] data_columns = [ 'Time', 'ClassCode', 'StudentCode', 'ResultName', 'ResultGrade', 'ResultScore', 'Type', 'SubjectName', 'TeacherCode' ] return cls(temp_df[data_columns], temp_df[class_details_columns]) @classmethod def fromProgressReportsExport( cls, filename: str, progress_report_items: list[str], year: str = None, term: str = None, grade_score_mapper: Callable[[str], float] = None, grade_dtype: pd.api.types.CategoricalDtype = None, replace_values: dict[str, dict] = None) -> Reports: """Creates a new Reports instance from a Compass progress reports export.""" try: temp_df = pd.read_csv(filename, na_values=None, keep_default_na=False) except EmptyDataError: return Reports() temp_df.rename(columns={ "Id": "StudentCode", "Subject": "ClassCode", "Teacher": "TeacherCode" }, inplace=True) # unpivot progress report items temp_df = temp_df.melt( id_vars=["StudentCode", "ClassCode", "TeacherCode"], value_vars=[ x for x in progress_report_items if x in temp_df.columns ], var_name="ResultName", value_name="ResultGrade") if not year: year_pattern = "(?P<year>2[0-9][0-9][0-9])" m = re.search(year_pattern, filename) if m: year = m.group('year') else: raise ValueError("Could not determine year from filename.") if not term: term_pattern = "(?:[Tt][Ee][Rr][A-Za-z ]*)(?P<term>[1234])" m = re.search(term_pattern, filename) if m: term = m.group('term') else: raise ValueError("Could not determine term from filename.") time = cls._termDateMapper(year, term) temp_df["Time"] = time temp_df['Time'] = pd.to_datetime(temp_df['Time']) temp_df["Type"] = "Work Habits" if replace_values: temp_df.replace(replace_values, inplace=True) if grade_dtype: temp_df["ResultGrade"] = temp_df["ResultGrade"].astype(grade_dtype) temp_df.dropna(subset=["ResultGrade"], inplace=True) if grade_score_mapper: temp_df["ResultScore"] = temp_df["ResultGrade"].apply( grade_score_mapper) else: temp_df["ResultScore"] = None temp_df["SubjectName"] = None class_details_columns = ['Time', 'ClassCode', 'TeacherCode'] data_columns = [ 'Time', 'ClassCode', 'StudentCode', 'ResultName', 'ResultGrade', 'ResultScore', 'Type', 'SubjectName', 'TeacherCode' ] return cls(temp_df[data_columns], temp_df[class_details_columns]) @classmethod def _semesterDateMapper(cls, year: str, semester: str) -> str: if semester in ["Semester One", "1", "One", "one"]: return str(year) + "-06-30" elif semester in ["Semester Two", "2", "Two", "two"]: return str(year) + "-12-31" else: return str(year) + "-12-31" @classmethod def _termDateMapper(cls, year: str, term: str) -> str: if term in ["1", "One", "one"]: return str(year) + "-03-31" elif term in ["2", "Two", "two"]: return str(year) + "-06-30" elif term in ["3", "Three", "three"]: return str(year) + "-09-30" elif term in ["4", "Four", "four"]: return str(year) + "-12-31" else: return None def addLearningTasksExport( self, filename: str, grade_score_mapper: Callable[[str], float] = None, grade_dtype: pd.api.types.CategoricalDtype = None, replace_values: dict[str, dict] = None) -> None: """Adds data from a Compass Learning Tasks export.""" temp = Reports.fromLearningTasksExport( filename, grade_score_mapper=grade_score_mapper, grade_dtype=grade_dtype, replace_values=replace_values) self.data = pd.concat([self.data, temp.data], ignore_index=True) self.data.drop_duplicates( subset=["Time", "StudentCode", "ClassCode", "ResultName"], inplace=True) self.class_details = pd.concat([ self.class_details, temp.class_details.dropna(subset=["TeacherCode"]) ], ignore_index=True) self.class_details.drop_duplicates(inplace=True) def addReportsExport(self, filename: str, grade_score_mapper: Callable[[str], float] = None, grade_dtype: pd.api.types.CategoricalDtype = None, replace_values: dict[str, dict] = None) -> None: """Adds data from a Compass reports export.""" temp = Reports.fromReportsExport(filename, grade_score_mapper=grade_score_mapper, grade_dtype=grade_dtype, replace_values=replace_values) self.data =
pd.concat([self.data, temp.data], ignore_index=True)
pandas.concat
""" test date_range, bdate_range construction from the convenience range functions """ from datetime import datetime, time, timedelta import numpy as np import pytest import pytz from pytz import timezone from pandas._libs.tslibs import timezones from pandas._libs.tslibs.offsets import BDay, CDay, DateOffset, MonthEnd, prefix_mapping from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td import pandas as pd from pandas import DatetimeIndex, Timestamp, bdate_range, date_range, offsets import pandas._testing as tm from pandas.core.arrays.datetimes import generate_range START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestTimestampEquivDateRange: # Older tests in TestTimeSeries constructed their `stamp` objects # using `date_range` instead of the `Timestamp` constructor. # TestTimestampEquivDateRange checks that these are equivalent in the # pertinent cases. def test_date_range_timestamp_equiv(self): rng = date_range("20090415", "20090519", tz="US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_dateutil(self): rng = date_range("20090415", "20090519", tz="dateutil/US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="dateutil/US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_explicit_pytz(self): rng = date_range("20090415", "20090519", tz=pytz.timezone("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=pytz.timezone("US/Eastern"), freq="D") assert ts == stamp @td.skip_if_windows_python_3 def test_date_range_timestamp_equiv_explicit_dateutil(self): from pandas._libs.tslibs.timezones import dateutil_gettz as gettz rng = date_range("20090415", "20090519", tz=gettz("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=gettz("US/Eastern"), freq="D") assert ts == stamp def test_date_range_timestamp_equiv_from_datetime_instance(self): datetime_instance = datetime(2014, 3, 4) # build a timestamp with a frequency, since then it supports # addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq="D")[0] ts = Timestamp(datetime_instance, freq="D") assert ts == timestamp_instance def test_date_range_timestamp_equiv_preserve_frequency(self): timestamp_instance = date_range("2014-03-05", periods=1, freq="D")[0] ts = Timestamp("2014-03-05", freq="D") assert timestamp_instance == ts class TestDateRanges: def test_date_range_nat(self): # GH#11587 msg = "Neither `start` nor `end` can be NaT" with pytest.raises(ValueError, match=msg): date_range(start="2016-01-01", end=pd.NaT, freq="D") with pytest.raises(ValueError, match=msg): date_range(start=pd.NaT, end="2016-01-01", freq="D") def test_date_range_multiplication_overflow(self): # GH#24255 # check that overflows in calculating `addend = periods * stride` # are caught with tm.assert_produces_warning(None): # we should _not_ be seeing a overflow RuntimeWarning dti = date_range(start="1677-09-22", periods=213503, freq="D") assert dti[0] == Timestamp("1677-09-22") assert len(dti) == 213503 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("1969-05-04", periods=200000000, freq="30000D") def test_date_range_unsigned_overflow_handling(self): # GH#24255 # case where `addend = periods * stride` overflows int64 bounds # but not uint64 bounds dti = date_range(start="1677-09-22", end="2262-04-11", freq="D") dti2 = date_range(start=dti[0], periods=len(dti), freq="D") assert dti2.equals(dti) dti3 = date_range(end=dti[-1], periods=len(dti), freq="D") assert dti3.equals(dti) def test_date_range_int64_overflow_non_recoverable(self): # GH#24255 # case with start later than 1970-01-01, overflow int64 but not uint64 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(start="1970-02-01", periods=106752 * 24, freq="H") # case with end before 1970-01-01, overflow int64 but not uint64 with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1969-11-14", periods=106752 * 24, freq="H") def test_date_range_int64_overflow_stride_endpoint_different_signs(self): # cases where stride * periods overflow int64 and stride/endpoint # have different signs start = Timestamp("2262-02-23") end = Timestamp("1969-11-14") expected = date_range(start=start, end=end, freq="-1H") assert expected[0] == start assert expected[-1] == end dti = date_range(end=end, periods=len(expected), freq="-1H") tm.assert_index_equal(dti, expected) start2 = Timestamp("1970-02-01") end2 = Timestamp("1677-10-22") expected2 = date_range(start=start2, end=end2, freq="-1H") assert expected2[0] == start2 assert expected2[-1] == end2 dti2 = date_range(start=start2, periods=len(expected2), freq="-1H") tm.assert_index_equal(dti2, expected2) def test_date_range_out_of_bounds(self): # GH#14187 msg = "Cannot generate range" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("2016-01-01", periods=100000, freq="D") with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1763-10-12", periods=100000, freq="D") def test_date_range_gen_error(self): rng = date_range("1/1/2000 00:00", "1/1/2000 00:18", freq="5min") assert len(rng) == 4 @pytest.mark.parametrize("freq", ["AS", "YS"]) def test_begin_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-01-01", "2014-01-01", "2015-01-01", "2016-01-01", "2017-01-01"], freq=freq, ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["A", "Y"]) def test_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-31"], freq=freq ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["BA", "BY"]) def test_business_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-30"], freq=freq ) tm.assert_index_equal(rng, exp) def test_date_range_negative_freq(self): # GH 11018 rng = date_range("2011-12-31", freq="-2A", periods=3) exp = DatetimeIndex(["2011-12-31", "2009-12-31", "2007-12-31"], freq="-2A") tm.assert_index_equal(rng, exp) assert rng.freq == "-2A" rng = date_range("2011-01-31", freq="-2M", periods=3) exp = DatetimeIndex(["2011-01-31", "2010-11-30", "2010-09-30"], freq="-2M") tm.assert_index_equal(rng, exp) assert rng.freq == "-2M" def test_date_range_bms_bug(self): # #1645 rng = date_range("1/1/2000", periods=10, freq="BMS") ex_first = Timestamp("2000-01-03") assert rng[0] == ex_first def test_date_range_normalize(self): snap = datetime.today() n = 50 rng = date_range(snap, periods=n, normalize=False, freq="2D") offset = timedelta(2) values = DatetimeIndex([snap + i * offset for i in range(n)], freq=offset) tm.assert_index_equal(rng, values) rng = date_range("1/1/2000 08:15", periods=n, normalize=False, freq="B") the_time = time(8, 15) for val in rng: assert val.time() == the_time def test_date_range_fy5252(self): dr = date_range( start="2013-01-01", periods=2, freq=offsets.FY5253(startingMonth=1, weekday=3, variation="nearest"), ) assert dr[0] == Timestamp("2013-01-31") assert dr[1] == Timestamp("2014-01-30") def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) msg = ( "Of the four parameters: start, end, periods, and " "freq, exactly three must be specified" ) with pytest.raises(ValueError, match=msg): date_range(start, end, periods=10, freq="s") def test_date_range_convenience_periods(self): # GH 20808 result = date_range("2018-04-24", "2018-04-27", periods=3) expected = DatetimeIndex( ["2018-04-24 00:00:00", "2018-04-25 12:00:00", "2018-04-27 00:00:00"], freq=None, ) tm.assert_index_equal(result, expected) # Test if spacing remains linear if tz changes to dst in range result = date_range( "2018-04-01 01:00:00", "2018-04-01 04:00:00", tz="Australia/Sydney", periods=3, ) expected = DatetimeIndex( [ Timestamp("2018-04-01 01:00:00+1100", tz="Australia/Sydney"), Timestamp("2018-04-01 02:00:00+1000", tz="Australia/Sydney"), Timestamp("2018-04-01 04:00:00+1000", tz="Australia/Sydney"), ] ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "start,end,result_tz", [ ["20180101", "20180103", "US/Eastern"], [datetime(2018, 1, 1), datetime(2018, 1, 3), "US/Eastern"], [Timestamp("20180101"), Timestamp("20180103"), "US/Eastern"], [ Timestamp("20180101", tz="US/Eastern"), Timestamp("20180103", tz="US/Eastern"), "US/Eastern", ], [ Timestamp("20180101", tz="US/Eastern"), Timestamp("20180103", tz="US/Eastern"), None, ], ], ) def test_date_range_linspacing_tz(self, start, end, result_tz): # GH 20983 result = date_range(start, end, periods=3, tz=result_tz) expected = date_range("20180101", periods=3, freq="D", tz="US/Eastern") tm.assert_index_equal(result, expected) def test_date_range_businesshour(self): idx = DatetimeIndex( [ "2014-07-04 09:00", "2014-07-04 10:00", "2014-07-04 11:00", "2014-07-04 12:00", "2014-07-04 13:00", "2014-07-04 14:00", "2014-07-04 15:00", "2014-07-04 16:00", ], freq="BH", ) rng = date_range("2014-07-04 09:00", "2014-07-04 16:00", freq="BH") tm.assert_index_equal(idx, rng) idx = DatetimeIndex(["2014-07-04 16:00", "2014-07-07 09:00"], freq="BH") rng = date_range("2014-07-04 16:00", "2014-07-07 09:00", freq="BH") tm.assert_index_equal(idx, rng) idx = DatetimeIndex( [ "2014-07-04 09:00", "2014-07-04 10:00", "2014-07-04 11:00", "2014-07-04 12:00", "2014-07-04 13:00", "2014-07-04 14:00", "2014-07-04 15:00", "2014-07-04 16:00", "2014-07-07 09:00", "2014-07-07 10:00", "2014-07-07 11:00", "2014-07-07 12:00", "2014-07-07 13:00", "2014-07-07 14:00", "2014-07-07 15:00", "2014-07-07 16:00", "2014-07-08 09:00", "2014-07-08 10:00", "2014-07-08 11:00", "2014-07-08 12:00", "2014-07-08 13:00", "2014-07-08 14:00", "2014-07-08 15:00", "2014-07-08 16:00", ], freq="BH", ) rng = date_range("2014-07-04 09:00", "2014-07-08 16:00", freq="BH") tm.assert_index_equal(idx, rng) def test_range_misspecified(self): # GH #1095 msg = ( "Of the four parameters: start, end, periods, and " "freq, exactly three must be specified" ) with pytest.raises(ValueError, match=msg): date_range(start="1/1/2000") with pytest.raises(ValueError, match=msg): date_range(end="1/1/2000") with pytest.raises(ValueError, match=msg): date_range(periods=10) with pytest.raises(ValueError, match=msg): date_range(start="1/1/2000", freq="H") with pytest.raises(ValueError, match=msg): date_range(end="1/1/2000", freq="H") with pytest.raises(ValueError, match=msg): date_range(periods=10, freq="H") with pytest.raises(ValueError, match=msg): date_range() def test_compat_replace(self): # https://github.com/statsmodels/statsmodels/issues/3349 # replace should take ints/longs for compat result = date_range( Timestamp("1960-04-01 00:00:00", freq="QS-JAN"), periods=76, freq="QS-JAN" ) assert len(result) == 76 def test_catch_infinite_loop(self): offset = offsets.DateOffset(minute=5) # blow up, don't loop forever msg = "Offset <DateOffset: minute=5> did not increment date" with pytest.raises(ValueError, match=msg): date_range(datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) @pytest.mark.parametrize("periods", (1, 2)) def test_wom_len(self, periods): # https://github.com/pandas-dev/pandas/issues/20517 res = date_range(start="20110101", periods=periods, freq="WOM-1MON") assert len(res) == periods def test_construct_over_dst(self): # GH 20854 pre_dst = Timestamp("2010-11-07 01:00:00").tz_localize( "US/Pacific", ambiguous=True ) pst_dst = Timestamp("2010-11-07 01:00:00").tz_localize( "US/Pacific", ambiguous=False ) expect_data = [ Timestamp("2010-11-07 00:00:00", tz="US/Pacific"), pre_dst, pst_dst, ] expected = DatetimeIndex(expect_data, freq="H") result = date_range(start="2010-11-7", periods=3, freq="H", tz="US/Pacific")
tm.assert_index_equal(result, expected)
pandas._testing.assert_index_equal
import os import pandas as pd from pandas import DataFrame from tqdm.autonotebook import tqdm def group_seeds(dirname): seeds = [] for f in os.listdir(dirname): num, _ = f.split('.csv') try: num = int(num) seeds.append(num) except Exception: pass out = None for seed in sorted(seeds): df =
pd.read_csv(f'{dirname}/{seed}.csv')
pandas.read_csv
import time import numpy as np import pandas as pd import geopandas as gpd import numpy as np from sqlalchemy import extract, select, func from sqlalchemy.sql import or_, and_ import datetime from shapely.geometry import Point from src.data.processing_func import (get_direction, extract_geo_sections) def extract_jps(meta, date_begin, date_end, periods=None, weekends=False, summary=False, skip=None, limit=20000, return_count=False): start = time.time() jps = meta.tables["JamPerSection"] jam = meta.tables["Jam"] sctn = meta.tables["Section"] mongo_record = meta.tables["MongoRecord"] query_count = select([func.count()]) query_all = select([mongo_record.c.MgrcDateStart, jps.c.JpsId, jps.c.SctnId, jam.c.JamId, jam.c.JamIndLevelOfTraffic, jam.c.JamQtdLengthMeters, jam.c.JamSpdMetersPerSecond, jam.c.JamTimeDelayInSeconds, jam.c.JamDscCoordinatesLonLat]) queries = [query_count, query_all] queries = [q.select_from(mongo_record.join(jam.join(jps), isouter=True)).\ where(mongo_record.c.MgrcDateStart.between(date_begin, date_end)) for q in queries] if not weekends: queries = [q.where(extract("isodow", mongo_record.c.MgrcDateStart).in_(list(range(1,6)))) for q in queries] if periods: or_list=[] for t in periods: or_list.append(and_(extract("hour", mongo_record.c.MgrcDateStart)>=t[0], extract("hour", mongo_record.c.MgrcDateStart)<t[1] ) ) queries = [q.where(or_(*or_list)) for q in queries] query_count, query_all = queries if return_count: size = query_count.execute().scalar() return size query_all = query_all.order_by(mongo_record.c.MgrcDateStart, jps.c.JpsId).offset(skip).limit(limit) df_jps =
pd.read_sql(query_all, meta.bind)
pandas.read_sql
#---------------------------------------------------------------------------------------------- #################### # IMPORT LIBRARIES # #################### import streamlit as st import pandas as pd import numpy as np import plotly as dd import plotly.express as px import seaborn as sns import matplotlib.pyplot as plt import matplotlib.font_manager import plotly.graph_objects as go import functions as fc import modelling as ml import os import altair as alt import altair import itertools import statsmodels.api as sm from scipy import stats import sys from streamlit import caching import SessionState import platform import base64 from io import BytesIO from pygam import LinearGAM, LogisticGAM, s from sklearn import decomposition from sklearn.preprocessing import StandardScaler from factor_analyzer import FactorAnalyzer from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity from factor_analyzer.factor_analyzer import calculate_kmo #---------------------------------------------------------------------------------------------- def app(): # Clear cache caching.clear_cache() # Hide traceback in error messages (comment out for de-bugging) #sys.tracebacklimit = 0 # Show altair tooltip when full screen st.markdown('<style>#vg-tooltip-element{z-index: 1000051}</style>',unsafe_allow_html=True) #Session state session_state = SessionState.get(id = 0) # Analysis type analysis_type = st.selectbox("What kind of analysis would you like to conduct?", ["Regression", "Multi-class classification", "Data decomposition"], key = session_state.id) st.header("**Multivariate data**") if analysis_type == "Regression": st.markdown("Get your data ready for powerfull methods: Artificial Neural Networks, Boosted Regression Trees, Random Forest, Generalized Additive Models, Multiple Linear Regression, and Logistic Regression! Let STATY do data cleaning, variable transformations, visualizations and deliver you the stats you need. Specify your data processing preferences and start exploring your data stories right below... ") if analysis_type == "Multi-class classification": st.markdown("Get your data ready for powerfull multi-class classification methods! Let STATY do data cleaning, variable transformations, visualizations and deliver you the stats you need. Specify your data processing preferences and start exploring your data stories right below... ") if analysis_type == "Data decomposition": st.markdown("Decompose your data with Principal Component Analysis or Factor Analysis! Let STATY do data cleaning, variable transformations, visualizations and deliver you the stats you need. Specify your data processing preferences and start exploring your data stories right below... ") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # DATA IMPORT # File upload section df_dec = st.sidebar.radio("Get data", ["Use example dataset", "Upload data"]) uploaded_data=None if df_dec == "Upload data": #st.subheader("Upload your data") #uploaded_data = st.sidebar.file_uploader("Make sure that dot (.) is a decimal separator!", type=["csv", "txt"]) separator_expander=st.sidebar.beta_expander('Upload settings') with separator_expander: a4,a5=st.beta_columns(2) with a4: dec_sep=a4.selectbox("Decimal sep.",['.',','], key = session_state.id) with a5: col_sep=a5.selectbox("Column sep.",[';', ',' , '|', '\s+', '\t','other'], key = session_state.id) if col_sep=='other': col_sep=st.text_input('Specify your column separator', key = session_state.id) a4,a5=st.beta_columns(2) with a4: thousands_sep=a4.selectbox("Thousands x sep.",[None,'.', ' ','\s+', 'other'], key = session_state.id) if thousands_sep=='other': thousands_sep=st.text_input('Specify your thousands separator', key = session_state.id) with a5: encoding_val=a5.selectbox("Encoding",[None,'utf_8','utf_8_sig','utf_16_le','cp1140','cp1250','cp1251','cp1252','cp1253','cp1254','other'], key = session_state.id) if encoding_val=='other': encoding_val=st.text_input('Specify your encoding', key = session_state.id) # Error handling for separator selection: if dec_sep==col_sep: st.sidebar.error("Decimal and column separators cannot be identical!") elif dec_sep==thousands_sep: st.sidebar.error("Decimal and thousands separators cannot be identical!") elif col_sep==thousands_sep: st.sidebar.error("Column and thousands separators cannot be identical!") uploaded_data = st.sidebar.file_uploader("Default separators: decimal '.' | column ';'", type=["csv", "txt"]) if uploaded_data is not None: df = pd.read_csv(uploaded_data, decimal=dec_sep, sep = col_sep,thousands=thousands_sep,encoding=encoding_val, engine='python') df_name=os.path.splitext(uploaded_data.name)[0] st.sidebar.success('Loading data... done!') elif uploaded_data is None: if analysis_type == "Regression" or analysis_type == "Data decomposition": df = pd.read_csv("default data/WHR_2021.csv", sep = ";|,|\t",engine='python') df_name="WHR_2021" if analysis_type == "Multi-class classification": df = pd.read_csv("default data/iris.csv", sep = ";|,|\t",engine='python') df_name="iris" else: if analysis_type == "Regression" or analysis_type == "Data decomposition": df = pd.read_csv("default data/WHR_2021.csv", sep = ";|,|\t",engine='python') df_name="WHR_2021" if analysis_type == "Multi-class classification": df = pd.read_csv("default data/iris.csv", sep = ";|,|\t",engine='python') df_name="iris" st.sidebar.markdown("") #Basic data info n_rows = df.shape[0] n_cols = df.shape[1] #++++++++++++++++++++++++++++++++++++++++++++ # SETTINGS settings_expander=st.sidebar.beta_expander('Settings') with settings_expander: st.caption("**Precision**") user_precision=st.number_input('Number of digits after the decimal point',min_value=0,max_value=10,step=1,value=4) st.caption("**Help**") sett_hints = st.checkbox('Show learning hints', value=False) st.caption("**Appearance**") sett_wide_mode = st.checkbox('Wide mode', value=False) sett_theme = st.selectbox('Theme', ["Light", "Dark"]) #sett_info = st.checkbox('Show methods info', value=False) #sett_prec = st.number_input('Set the number of diggits for the output', min_value=0, max_value=8, value=2) st.sidebar.markdown("") # Check if wide mode if sett_wide_mode: fc.wide_mode_func() # Check theme if sett_theme == "Dark": fc.theme_func_dark() if sett_theme == "Light": fc.theme_func_light() fc.theme_func_dl_button() #++++++++++++++++++++++++++++++++++++++++++++ # RESET INPUT reset_clicked = st.sidebar.button("Reset all your input") if reset_clicked: session_state.id = session_state.id + 1 st.sidebar.markdown("") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # DATA PREPROCESSING & VISUALIZATION # Check if enough data is available if n_rows > 0 and n_cols > 0: st.empty() else: st.error("ERROR: Not enough data!") return data_exploration_container = st.beta_container() with data_exploration_container: st.header("**Data screening and processing**") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # DATA SUMMARY # Main panel for data summary (pre) #---------------------------------- dev_expander_dsPre = st.beta_expander("Explore raw data info and stats ", expanded = False) with dev_expander_dsPre: # Default data description: if uploaded_data == None: if analysis_type == "Regression" or analysis_type == "Data decomposition": if st.checkbox("Show data description", value = False, key = session_state.id): st.markdown("**Data source:**") st.markdown("The data come from the Gallup World Poll surveys from 2018 to 2020. For more details see the [World Happiness Report 2021] (https://worldhappiness.report/).") st.markdown("**Citation:**") st.markdown("Helliwell, <NAME>., <NAME>, <NAME>, and <NAME>, eds. 2021. World Happiness Report 2021. New York: Sustainable Development Solutions Network.") st.markdown("**Variables in the dataset:**") col1,col2=st.beta_columns(2) col1.write("Country") col2.write("country name") col1,col2=st.beta_columns(2) col1.write("Year ") col2.write("year ranging from 2005 to 2020") col1,col2=st.beta_columns(2) col1.write("Ladder") col2.write("happiness score or subjective well-being with the best possible life being a 10, and the worst possible life being a 0") col1,col2=st.beta_columns(2) col1.write("Log GDP per capita") col2.write("in purchasing power parity at constant 2017 international dollar prices") col1,col2=st.beta_columns(2) col1.write("Social support") col2.write("the national average of the binary responses (either 0 or 1) to the question regarding relatives or friends to count on") col1,col2=st.beta_columns(2) col1.write("Healthy life expectancy at birth") col2.write("based on the data extracted from the World Health Organization’s Global Health Observatory data repository") col1,col2=st.beta_columns(2) col1.write("Freedom to make life choices") col2.write("national average of responses to the corresponding question") col1,col2=st.beta_columns(2) col1.write("Generosity") col2.write("residual of regressing national average of response to the question regarding money donations in the past month on GDP per capita") col1,col2=st.beta_columns(2) col1.write("Perceptions of corruption") col2.write("the national average of the survey responses to the corresponding question") col1,col2=st.beta_columns(2) col1.write("Positive affect") col2.write("the average of three positive affect measures (happiness, laugh and enjoyment)") col1,col2=st.beta_columns(2) col1.write("Negative affect (worry, sadness and anger)") col2.write("the average of three negative affect measures (worry, sadness and anger)") st.markdown("") if analysis_type == "Multi-class classification": if st.checkbox("Show data description", value = False, key = session_state.id): st.markdown("**Data source:**") st.markdown("The data come from Fisher's Iris data set. See [here] (https://archive.ics.uci.edu/ml/datasets/iris) for more information.") st.markdown("**Citation:**") st.markdown("<NAME>. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2): 179–188. doi: [10.1111/j.1469-1809.1936.tb02137.x] (https://doi.org/10.1111%2Fj.1469-1809.1936.tb02137.x)") st.markdown("**Variables in the dataset:**") col1,col2=st.beta_columns(2) col1.write("class_category") col2.write("Numerical category for 'class': Iris Setosa (0), Iris Versicolour (1), and Iris Virginica (2)") col1,col2=st.beta_columns(2) col1.write("class") col2.write("Iris Setosa, Iris Versicolour, and Iris Virginica") col1,col2=st.beta_columns(2) col1.write("sepal length") col2.write("sepal length in cm") col1,col2=st.beta_columns(2) col1.write("sepal width") col2.write("sepal width in cm") col1,col2=st.beta_columns(2) col1.write("petal length") col2.write("petal length in cm") col1,col2=st.beta_columns(2) col1.write("petal width") col2.write("petal width in cm") st.markdown("") # Show raw data & data info df_summary = fc.data_summary(df) if st.checkbox("Show raw data ", value = False, key = session_state.id): st.write(df) st.write("Data shape: ", n_rows, " rows and ", n_cols, " columns") if df[df.duplicated()].shape[0] > 0 or df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: check_nasAnddupl=st.checkbox("Show duplicates and NAs info ", value = False, key = session_state.id) if check_nasAnddupl: if df[df.duplicated()].shape[0] > 0: st.write("Number of duplicates: ", df[df.duplicated()].shape[0]) st.write("Duplicate row index: ", ', '.join(map(str,list(df.index[df.duplicated()])))) if df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: st.write("Number of rows with NAs: ", df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0]) st.write("Rows with NAs: ", ', '.join(map(str,list(pd.unique(np.where(df.isnull())[0]))))) # Show variable info if st.checkbox('Show variable info ', value = False, key = session_state.id): st.write(df_summary["Variable types"]) # Show summary statistics (raw data) if st.checkbox('Show summary statistics (raw data) ', value = False, key = session_state.id): st.write(df_summary["ALL"].style.set_precision(user_precision)) # Download link for summary statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_summary["Variable types"].to_excel(excel_file, sheet_name="variable_info") df_summary["ALL"].to_excel(excel_file, sheet_name="summary_statistics") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Summary statistics__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download summary statistics</a> """, unsafe_allow_html=True) st.write("") if fc.get_mode(df).loc["n_unique"].any(): st.caption("** Mode is not unique.") if sett_hints: st.info(str(fc.learning_hints("de_summary_statistics"))) #++++++++++++++++++++++ # DATA PROCESSING # Settings for data processing #------------------------------------- #st.subheader("Data processing") dev_expander_dm_sb = st.beta_expander("Specify data processing preferences", expanded = False) with dev_expander_dm_sb: n_rows_wNAs = df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] n_rows_wNAs_pre_processing = "No" if n_rows_wNAs > 0: n_rows_wNAs_pre_processing = "Yes" a1, a2, a3 = st.beta_columns(3) else: a1, a3 = st.beta_columns(2) sb_DM_dImp_num = None sb_DM_dImp_other = None sb_DM_delRows=None sb_DM_keepRows=None with a1: #-------------------------------------------------------------------------------------- # DATA CLEANING st.markdown("**Data cleaning**") # Delete rows delRows =st.selectbox('Delete rows with index ...', options=['-', 'greater', 'greater or equal', 'smaller', 'smaller or equal', 'equal', 'between'], key = session_state.id) if delRows!='-': if delRows=='between': row_1=st.number_input('Lower limit is', value=0, step=1, min_value= 0, max_value=len(df)-1, key = session_state.id) row_2=st.number_input('Upper limit is', value=2, step=1, min_value= 0, max_value=len(df)-1, key = session_state.id) if (row_1 + 1) < row_2 : sb_DM_delRows=df.index[(df.index > row_1) & (df.index < row_2)] elif (row_1 + 1) == row_2 : st.warning("WARNING: No row is deleted!") elif row_1 == row_2 : st.warning("WARNING: No row is deleted!") elif row_1 > row_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif delRows=='equal': sb_DM_delRows = st.multiselect("to...", df.index, key = session_state.id) else: row_1=st.number_input('than...', step=1, value=1, min_value = 0, max_value=len(df)-1, key = session_state.id) if delRows=='greater': sb_DM_delRows=df.index[df.index > row_1] if row_1 == len(df)-1: st.warning("WARNING: No row is deleted!") elif delRows=='greater or equal': sb_DM_delRows=df.index[df.index >= row_1] if row_1 == 0: st.error("ERROR: All rows are deleted!") return elif delRows=='smaller': sb_DM_delRows=df.index[df.index < row_1] if row_1 == 0: st.warning("WARNING: No row is deleted!") elif delRows=='smaller or equal': sb_DM_delRows=df.index[df.index <= row_1] if row_1 == len(df)-1: st.error("ERROR: All rows are deleted!") return if sb_DM_delRows is not None: df = df.loc[~df.index.isin(sb_DM_delRows)] no_delRows=n_rows-df.shape[0] # Keep rows keepRows =st.selectbox('Keep rows with index ...', options=['-', 'greater', 'greater or equal', 'smaller', 'smaller or equal', 'equal', 'between'], key = session_state.id) if keepRows!='-': if keepRows=='between': row_1=st.number_input('Lower limit is', value=0, step=1, min_value= 0, max_value=len(df)-1, key = session_state.id) row_2=st.number_input('Upper limit is', value=2, step=1, min_value= 0, max_value=len(df)-1, key = session_state.id) if (row_1 + 1) < row_2 : sb_DM_keepRows=df.index[(df.index > row_1) & (df.index < row_2)] elif (row_1 + 1) == row_2 : st.error("ERROR: No row is kept!") return elif row_1 == row_2 : st.error("ERROR: No row is kept!") return elif row_1 > row_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif keepRows=='equal': sb_DM_keepRows = st.multiselect("to...", df.index, key = session_state.id) else: row_1=st.number_input('than...', step=1, value=1, min_value = 0, max_value=len(df)-1, key = session_state.id) if keepRows=='greater': sb_DM_keepRows=df.index[df.index > row_1] if row_1 == len(df)-1: st.error("ERROR: No row is kept!") return elif keepRows=='greater or equal': sb_DM_keepRows=df.index[df.index >= row_1] if row_1 == 0: st.warning("WARNING: All rows are kept!") elif keepRows=='smaller': sb_DM_keepRows=df.index[df.index < row_1] if row_1 == 0: st.error("ERROR: No row is kept!") return elif keepRows=='smaller or equal': sb_DM_keepRows=df.index[df.index <= row_1] if sb_DM_keepRows is not None: df = df.loc[df.index.isin(sb_DM_keepRows)] no_keptRows=df.shape[0] # Delete columns sb_DM_delCols = st.multiselect("Select columns to delete ", df.columns, key = session_state.id) df = df.loc[:,~df.columns.isin(sb_DM_delCols)] # Keep columns sb_DM_keepCols = st.multiselect("Select columns to keep", df.columns, key = session_state.id) if len(sb_DM_keepCols) > 0: df = df.loc[:,df.columns.isin(sb_DM_keepCols)] # Delete duplicates if any exist if df[df.duplicated()].shape[0] > 0: sb_DM_delDup = st.selectbox("Delete duplicate rows ", ["No", "Yes"], key = session_state.id) if sb_DM_delDup == "Yes": n_rows_dup = df[df.duplicated()].shape[0] df = df.drop_duplicates() elif df[df.duplicated()].shape[0] == 0: sb_DM_delDup = "No" # Delete rows with NA if any exist n_rows_wNAs = df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] if n_rows_wNAs > 0: sb_DM_delRows_wNA = st.selectbox("Delete rows with NAs ", ["No", "Yes"], key = session_state.id) if sb_DM_delRows_wNA == "Yes": df = df.dropna() elif n_rows_wNAs == 0: sb_DM_delRows_wNA = "No" # Filter data st.markdown("**Data filtering**") filter_var = st.selectbox('Filter your data by a variable...', list('-')+ list(df.columns), key = session_state.id) if filter_var !='-': if df[filter_var].dtypes=="int64" or df[filter_var].dtypes=="float64": if df[filter_var].dtypes=="float64": filter_format="%.8f" else: filter_format=None user_filter=st.selectbox('Select values that are ...', options=['greater','greater or equal','smaller','smaller or equal', 'equal','between'], key = session_state.id) if user_filter=='between': filter_1=st.number_input('Lower limit is', format=filter_format, value=df[filter_var].min(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = session_state.id) filter_2=st.number_input('Upper limit is', format=filter_format, value=df[filter_var].max(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = session_state.id) #reclassify values: if filter_1 < filter_2 : df = df[(df[filter_var] > filter_1) & (df[filter_var] < filter_2)] if len(df) == 0: st.error("ERROR: No data available for the selected limits!") return elif filter_1 >= filter_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif user_filter=='equal': filter_1=st.multiselect('to... ', options=df[filter_var].values, key = session_state.id) if len(filter_1)>0: df = df.loc[df[filter_var].isin(filter_1)] else: filter_1=st.number_input('than... ',format=filter_format, value=df[filter_var].min(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = session_state.id) #reclassify values: if user_filter=='greater': df = df[df[filter_var] > filter_1] elif user_filter=='greater or equal': df = df[df[filter_var] >= filter_1] elif user_filter=='smaller': df= df[df[filter_var]< filter_1] elif user_filter=='smaller or equal': df = df[df[filter_var] <= filter_1] if len(df) == 0: st.error("ERROR: No data available for the selected value!") return elif len(df) == n_rows: st.warning("WARNING: Data are not filtered for this value!") else: filter_1=st.multiselect('Filter your data by a value...', (df[filter_var]).unique(), key = session_state.id) if len(filter_1)>0: df = df.loc[df[filter_var].isin(filter_1)] if n_rows_wNAs_pre_processing == "Yes": with a2: #-------------------------------------------------------------------------------------- # DATA IMPUTATION # Select data imputation method (only if rows with NA not deleted) if sb_DM_delRows_wNA == "No" and n_rows_wNAs > 0: st.markdown("**Data imputation**") sb_DM_dImp_choice = st.selectbox("Replace entries with NA ", ["No", "Yes"], key = session_state.id) if sb_DM_dImp_choice == "Yes": # Numeric variables sb_DM_dImp_num = st.selectbox("Imputation method for numeric variables ", ["Mean", "Median", "Random value"], key = session_state.id) # Other variables sb_DM_dImp_other = st.selectbox("Imputation method for other variables ", ["Mode", "Random value"], key = session_state.id) df = fc.data_impute(df, sb_DM_dImp_num, sb_DM_dImp_other) else: st.markdown("**Data imputation**") st.write("") st.info("No NAs in data set!") with a3: #-------------------------------------------------------------------------------------- # DATA TRANSFORMATION st.markdown("**Data transformation**") # Select columns for different transformation types transform_options = df.select_dtypes([np.number]).columns numCat_options = df.columns sb_DM_dTrans_log = st.multiselect("Select columns to transform with log ", transform_options, key = session_state.id) if sb_DM_dTrans_log is not None: df = fc.var_transform_log(df, sb_DM_dTrans_log) sb_DM_dTrans_sqrt = st.multiselect("Select columns to transform with sqrt ", transform_options, key = session_state.id) if sb_DM_dTrans_sqrt is not None: df = fc.var_transform_sqrt(df, sb_DM_dTrans_sqrt) sb_DM_dTrans_square = st.multiselect("Select columns for squaring ", transform_options, key = session_state.id) if sb_DM_dTrans_square is not None: df = fc.var_transform_square(df, sb_DM_dTrans_square) sb_DM_dTrans_cent = st.multiselect("Select columns for centering ", transform_options, key = session_state.id) if sb_DM_dTrans_cent is not None: df = fc.var_transform_cent(df, sb_DM_dTrans_cent) sb_DM_dTrans_stand = st.multiselect("Select columns for standardization ", transform_options, key = session_state.id) if sb_DM_dTrans_stand is not None: df = fc.var_transform_stand(df, sb_DM_dTrans_stand) sb_DM_dTrans_norm = st.multiselect("Select columns for normalization ", transform_options, key = session_state.id) if sb_DM_dTrans_norm is not None: df = fc.var_transform_norm(df, sb_DM_dTrans_norm) sb_DM_dTrans_numCat = st.multiselect("Select columns for numeric categorization ", numCat_options, key = session_state.id) if sb_DM_dTrans_numCat: if not df[sb_DM_dTrans_numCat].columns[df[sb_DM_dTrans_numCat].isna().any()].tolist(): sb_DM_dTrans_numCat_sel = st.multiselect("Select variables for manual categorization ", sb_DM_dTrans_numCat, key = session_state.id) if sb_DM_dTrans_numCat_sel: for var in sb_DM_dTrans_numCat_sel: if df[var].unique().size > 5: st.error("ERROR: Selected variable has too many categories (>5): " + str(var)) return else: manual_cats = pd.DataFrame(index = range(0, df[var].unique().size), columns=["Value", "Cat"]) text = "Category for " # Save manually selected categories for i in range(0, df[var].unique().size): text1 = text + str(var) + ": " + str(sorted(df[var].unique())[i]) man_cat = st.number_input(text1, value = 0, min_value=0, key = session_state.id) manual_cats.loc[i]["Value"] = sorted(df[var].unique())[i] manual_cats.loc[i]["Cat"] = man_cat new_var_name = "numCat_" + var new_var = pd.DataFrame(index = df.index, columns = [new_var_name]) for c in df[var].index: if pd.isnull(df[var][c]) == True: new_var.loc[c, new_var_name] = np.nan elif pd.isnull(df[var][c]) == False: new_var.loc[c, new_var_name] = int(manual_cats[manual_cats["Value"] == df[var][c]]["Cat"]) df[new_var_name] = new_var.astype('int64') # Exclude columns with manual categorization from standard categorization numCat_wo_manCat = [var for var in sb_DM_dTrans_numCat if var not in sb_DM_dTrans_numCat_sel] df = fc.var_transform_numCat(df, numCat_wo_manCat) else: df = fc.var_transform_numCat(df, sb_DM_dTrans_numCat) else: col_with_na = df[sb_DM_dTrans_numCat].columns[df[sb_DM_dTrans_numCat].isna().any()].tolist() st.error("ERROR: Please select columns without NAs: " + ', '.join(map(str,col_with_na))) return else: sb_DM_dTrans_numCat = None sb_DM_dTrans_mult = st.number_input("Number of variable multiplications ", value = 0, min_value=0, key = session_state.id) if sb_DM_dTrans_mult != 0: multiplication_pairs = pd.DataFrame(index = range(0, sb_DM_dTrans_mult), columns=["Var1", "Var2"]) text = "Multiplication pair" for i in range(0, sb_DM_dTrans_mult): text1 = text + " " + str(i+1) text2 = text + " " + str(i+1) + " " mult_var1 = st.selectbox(text1, transform_options, key = session_state.id) mult_var2 = st.selectbox(text2, transform_options, key = session_state.id) multiplication_pairs.loc[i]["Var1"] = mult_var1 multiplication_pairs.loc[i]["Var2"] = mult_var2 fc.var_transform_mult(df, mult_var1, mult_var2) sb_DM_dTrans_div = st.number_input("Number of variable divisions ", value = 0, min_value=0, key = session_state.id) if sb_DM_dTrans_div != 0: division_pairs = pd.DataFrame(index = range(0, sb_DM_dTrans_div), columns=["Var1", "Var2"]) text = "Division pair" for i in range(0, sb_DM_dTrans_div): text1 = text + " " + str(i+1) + " (numerator)" text2 = text + " " + str(i+1) + " (denominator)" div_var1 = st.selectbox(text1, transform_options, key = session_state.id) div_var2 = st.selectbox(text2, transform_options, key = session_state.id) division_pairs.loc[i]["Var1"] = div_var1 division_pairs.loc[i]["Var2"] = div_var2 fc.var_transform_div(df, div_var1, div_var2) data_transform=st.checkbox("Transform data in Excel?", value=False) if data_transform==True: st.info("Press the button to open your data in Excel. Don't forget to save your result as a csv or a txt file!") # Download link output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="data",index=False) excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Data_transformation__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Transform your data in Excel</a> """, unsafe_allow_html=True) st.write("") #-------------------------------------------------------------------------------------- # PROCESSING SUMMARY if st.checkbox('Show a summary of my data processing preferences ', value = False, key = session_state.id): st.markdown("Summary of data changes:") #-------------------------------------------------------------------------------------- # DATA CLEANING # Rows if sb_DM_delRows is not None and delRows!='-' : if no_delRows > 1: st.write("-", no_delRows, " rows were deleted!") elif no_delRows == 1: st.write("-",no_delRows, " row was deleted!") elif no_delRows == 0: st.write("- No row was deleted!") else: st.write("- No row was deleted!") if sb_DM_keepRows is not None and keepRows!='-' : if no_keptRows > 1: st.write("-", no_keptRows, " rows are kept!") elif no_keptRows == 1: st.write("-",no_keptRows, " row is kept!") elif no_keptRows == 0: st.write("- All rows are kept!") else: st.write("- All rows are kept!") # Columns if len(sb_DM_delCols) > 1: st.write("-", len(sb_DM_delCols), " columns were deleted:", ', '.join(sb_DM_delCols)) elif len(sb_DM_delCols) == 1: st.write("-",len(sb_DM_delCols), " column was deleted:", str(sb_DM_delCols[0])) elif len(sb_DM_delCols) == 0: st.write("- No column was deleted!") if len(sb_DM_keepCols) > 1: st.write("-", len(sb_DM_keepCols), " columns are kept:", ', '.join(sb_DM_keepCols)) elif len(sb_DM_keepCols) == 1: st.write("-",len(sb_DM_keepCols), " column is kept:", str(sb_DM_keepCols[0])) elif len(sb_DM_keepCols) == 0: st.write("- All columns are kept!") # Duplicates if sb_DM_delDup == "Yes": if n_rows_dup > 1: st.write("-", n_rows_dup, " duplicate rows were deleted!") elif n_rows_dup == 1: st.write("-", n_rows_dup, "duplicate row was deleted!") else: st.write("- No duplicate row was deleted!") # NAs if sb_DM_delRows_wNA == "Yes": if n_rows_wNAs > 1: st.write("-", n_rows_wNAs, "rows with NAs were deleted!") elif n_rows_wNAs == 1: st.write("-", n_rows - n_rows_wNAs, "row with NAs was deleted!") else: st.write("- No row with NAs was deleted!") # Filter if filter_var != "-": if df[filter_var].dtypes=="int64" or df[filter_var].dtypes=="float64": if isinstance(filter_1, list): if len(filter_1) == 0: st.write("-", " Data was not filtered!") elif len(filter_1) > 0: st.write("-", " Data filtered by:", str(filter_var)) elif filter_1 is not None: st.write("-", " Data filtered by:", str(filter_var)) else: st.write("-", " Data was not filtered!") elif len(filter_1)>0: st.write("-", " Data filtered by:", str(filter_var)) elif len(filter_1) == 0: st.write("-", " Data was not filtered!") else: st.write("-", " Data was not filtered!") #-------------------------------------------------------------------------------------- # DATA IMPUTATION if sb_DM_delRows_wNA == "No" and n_rows_wNAs > 0: st.write("- Data imputation method for numeric variables:", sb_DM_dImp_num) st.write("- Data imputation method for other variable types:", sb_DM_dImp_other) #-------------------------------------------------------------------------------------- # DATA TRANSFORMATION # log if len(sb_DM_dTrans_log) > 1: st.write("-", len(sb_DM_dTrans_log), " columns were log-transformed:", ', '.join(sb_DM_dTrans_log)) elif len(sb_DM_dTrans_log) == 1: st.write("-",len(sb_DM_dTrans_log), " column was log-transformed:", sb_DM_dTrans_log[0]) elif len(sb_DM_dTrans_log) == 0: st.write("- No column was log-transformed!") # sqrt if len(sb_DM_dTrans_sqrt) > 1: st.write("-", len(sb_DM_dTrans_sqrt), " columns were sqrt-transformed:", ', '.join(sb_DM_dTrans_sqrt)) elif len(sb_DM_dTrans_sqrt) == 1: st.write("-",len(sb_DM_dTrans_sqrt), " column was sqrt-transformed:", sb_DM_dTrans_sqrt[0]) elif len(sb_DM_dTrans_sqrt) == 0: st.write("- No column was sqrt-transformed!") # square if len(sb_DM_dTrans_square) > 1: st.write("-", len(sb_DM_dTrans_square), " columns were squared:", ', '.join(sb_DM_dTrans_square)) elif len(sb_DM_dTrans_square) == 1: st.write("-",len(sb_DM_dTrans_square), " column was squared:", sb_DM_dTrans_square[0]) elif len(sb_DM_dTrans_square) == 0: st.write("- No column was squared!") # centering if len(sb_DM_dTrans_cent) > 1: st.write("-", len(sb_DM_dTrans_cent), " columns were centered:", ', '.join(sb_DM_dTrans_cent)) elif len(sb_DM_dTrans_cent) == 1: st.write("-",len(sb_DM_dTrans_cent), " column was centered:", sb_DM_dTrans_cent[0]) elif len(sb_DM_dTrans_cent) == 0: st.write("- No column was centered!") # standardize if len(sb_DM_dTrans_stand) > 1: st.write("-", len(sb_DM_dTrans_stand), " columns were standardized:", ', '.join(sb_DM_dTrans_stand)) elif len(sb_DM_dTrans_stand) == 1: st.write("-",len(sb_DM_dTrans_stand), " column was standardized:", sb_DM_dTrans_stand[0]) elif len(sb_DM_dTrans_stand) == 0: st.write("- No column was standardized!") # normalize if len(sb_DM_dTrans_norm) > 1: st.write("-", len(sb_DM_dTrans_norm), " columns were normalized:", ', '.join(sb_DM_dTrans_norm)) elif len(sb_DM_dTrans_norm) == 1: st.write("-",len(sb_DM_dTrans_norm), " column was normalized:", sb_DM_dTrans_norm[0]) elif len(sb_DM_dTrans_norm) == 0: st.write("- No column was normalized!") # numeric category if sb_DM_dTrans_numCat is not None: if len(sb_DM_dTrans_numCat) > 1: st.write("-", len(sb_DM_dTrans_numCat), " columns were transformed to numeric categories:", ', '.join(sb_DM_dTrans_numCat)) elif len(sb_DM_dTrans_numCat) == 1: st.write("-",len(sb_DM_dTrans_numCat), " column was transformed to numeric categories:", sb_DM_dTrans_numCat[0]) elif sb_DM_dTrans_numCat is None: st.write("- No column was transformed to numeric categories!") # multiplication if sb_DM_dTrans_mult != 0: st.write("-", "Number of variable multiplications: ", sb_DM_dTrans_mult) elif sb_DM_dTrans_mult == 0: st.write("- No variables were multiplied!") # division if sb_DM_dTrans_div != 0: st.write("-", "Number of variable divisions: ", sb_DM_dTrans_div) elif sb_DM_dTrans_div == 0: st.write("- No variables were divided!") st.write("") st.write("") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # UPDATED DATA SUMMARY # Show only if changes were made if any(v for v in [sb_DM_delCols, sb_DM_dImp_num, sb_DM_dImp_other, sb_DM_dTrans_log, sb_DM_dTrans_sqrt, sb_DM_dTrans_square, sb_DM_dTrans_cent, sb_DM_dTrans_stand, sb_DM_dTrans_norm, sb_DM_dTrans_numCat ] if v is not None) or sb_DM_delDup == "Yes" or sb_DM_delRows_wNA == "Yes" or sb_DM_dTrans_mult != 0 or sb_DM_dTrans_div != 0 or filter_var != "-" or delRows!='-' or keepRows!='-' or len(sb_DM_keepCols) > 0: dev_expander_dsPost = st.beta_expander("Explore cleaned and transformed data info and stats ", expanded = False) with dev_expander_dsPost: if df.shape[1] > 0 and df.shape[0] > 0: # Show cleaned and transformed data & data info df_summary_post = fc.data_summary(df) if st.checkbox("Show cleaned and transformed data ", value = False, key = session_state.id): n_rows_post = df.shape[0] n_cols_post = df.shape[1] st.dataframe(df) st.write("Data shape: ", n_rows_post, "rows and ", n_cols_post, "columns") # Download transformed data: output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="Clean. and transf. data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "CleanedTransfData__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned and transformed data</a> """, unsafe_allow_html=True) st.write("") if df[df.duplicated()].shape[0] > 0 or df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: check_nasAnddupl2 = st.checkbox("Show duplicates and NAs info (processed) ", value = False, key = session_state.id) if check_nasAnddupl2: index_c = [] for c in df.columns: for r in df.index: if pd.isnull(df[c][r]): index_c.append(r) if df[df.duplicated()].shape[0] > 0: st.write("Number of duplicates: ", df[df.duplicated()].shape[0]) st.write("Duplicate row index: ", ', '.join(map(str,list(df.index[df.duplicated()])))) if df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: st.write("Number of rows with NAs: ", len(pd.unique(sorted(index_c)))) st.write("Rows with NAs: ", ', '.join(map(str,list(pd.unique(sorted(index_c)))))) # Show cleaned and transformed variable info if st.checkbox("Show cleaned and transformed variable info ", value = False, key = session_state.id): st.write(df_summary_post["Variable types"]) # Show summary statistics (cleaned and transformed data) if st.checkbox('Show summary statistics (cleaned and transformed data) ', value = False, key = session_state.id): st.write(df_summary_post["ALL"].style.set_precision(user_precision)) # Download link output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="cleaned_data") df_summary_post["Variable types"].to_excel(excel_file, sheet_name="cleaned_variable_info") df_summary_post["ALL"].to_excel(excel_file, sheet_name="cleaned_summary_statistics") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Cleaned data summary statistics_multi_" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned data summary statistics</a> """, unsafe_allow_html=True) st.write("") if fc.get_mode(df).loc["n_unique"].any(): st.caption("** Mode is not unique.") if sett_hints: st.info(str(fc.learning_hints("de_summary_statistics"))) else: st.error("ERROR: No data available for preprocessing!") return #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # DATA VISUALIZATION data_visualization_container = st.beta_container() with data_visualization_container: st.write("") st.write("") st.header("**Data visualization**") dev_expander_dv = st.beta_expander("Explore visualization types ", expanded = False) with dev_expander_dv: if df.shape[1] > 0 and df.shape[0] > 0: st.write('**Variable selection**') varl_sel_options = df.columns var_sel = st.selectbox('Select variable for visualizations', varl_sel_options, key = session_state.id) if df[var_sel].dtypes == "float64" or df[var_sel].dtypes == "float32" or df[var_sel].dtypes == "int64" or df[var_sel].dtypes == "int32": a4, a5 = st.beta_columns(2) with a4: st.write('**Scatterplot with LOESS line**') yy_options = df.columns yy = st.selectbox('Select variable for y-axis', yy_options, key = session_state.id) if df[yy].dtypes == "float64" or df[yy].dtypes == "float32" or df[yy].dtypes == "int64" or df[yy].dtypes == "int32": fig_data = pd.DataFrame() fig_data[yy] = df[yy] fig_data[var_sel] = df[var_sel] fig_data["Index"] = df.index fig = alt.Chart(fig_data).mark_circle().encode( x = alt.X(var_sel, scale = alt.Scale(domain = [min(fig_data[var_sel]), max(fig_data[var_sel])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y(yy, scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [yy, var_sel, "Index"] ) st.altair_chart(fig + fig.transform_loess(var_sel, yy).mark_line(size = 2, color = "darkred"), use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_scatterplot"))) else: st.error("ERROR: Please select a numeric variable for the y-axis!") with a5: st.write('**Histogram**') binNo = st.slider("Select maximum number of bins", 5, 100, 25, key = session_state.id) fig2 = alt.Chart(df).mark_bar().encode( x = alt.X(var_sel, title = var_sel + " (binned)", bin = alt.BinParams(maxbins = binNo), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip(var_sel, bin = alt.BinParams(maxbins = binNo))] ) st.altair_chart(fig2, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_histogram"))) a6, a7 = st.beta_columns(2) with a6: st.write('**Boxplot**') # Boxplot boxplot_data = pd.DataFrame() boxplot_data[var_sel] = df[var_sel] boxplot_data["Index"] = df.index boxplot = alt.Chart(boxplot_data).mark_boxplot(size = 100, color = "#1f77b4", median = dict(color = "darkred"),).encode( y = alt.Y(var_sel, scale = alt.Scale(zero = False)), tooltip = [var_sel, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(boxplot, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_boxplot"))) with a7: st.write("**QQ-plot**") var_values = df[var_sel] qqplot_data = pd.DataFrame() qqplot_data[var_sel] = var_values qqplot_data["Index"] = df.index qqplot_data = qqplot_data.sort_values(by = [var_sel]) qqplot_data["Theoretical quantiles"] = stats.probplot(var_values, dist="norm")[0][0] qqplot = alt.Chart(qqplot_data).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qqplot_data["Theoretical quantiles"]), max(qqplot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y(var_sel, title = str(var_sel), scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [var_sel, "Theoretical quantiles", "Index"] ) st.altair_chart(qqplot + qqplot.transform_regression('Theoretical quantiles', var_sel).mark_line(size = 2, color = "darkred"), use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("dv_qqplot"))) else: st.error("ERROR: Please select a numeric variable!") else: st.error("ERROR: No data available for Data Visualization!") # scatter matrix #Check If variables are numeric num_cols=[] for column in df: if df[column].dtypes in ('float', 'float64', 'int','int64'): num_cols.append(column) if len(num_cols)>1: show_scatter_matrix=st.checkbox('Show scatter matrix',value=False,key= session_state.id) if show_scatter_matrix==True: multi_var_sel = st.multiselect('Select variables for scatter matrix', num_cols, num_cols, key = session_state.id) if len(multi_var_sel)<2: st.error("ERROR: Please choose at least two variables fro a scatterplot") else: #Plot scatter matrix: scatter_matrix=alt.Chart(df[multi_var_sel]).mark_circle().encode( x=alt.X(alt.repeat("column"), type='quantitative'), y=alt.Y(alt.repeat("row"), type='quantitative') ).properties( width=150, height=150 ).repeat( row=multi_var_sel, column=multi_var_sel ).interactive() st.altair_chart(scatter_matrix, use_container_width=True) #------------------------------------------------------------------------------------------ # REGRESSION if analysis_type == "Regression": #++++++++++++++++++++++++++++++++++++++++++++ # MACHINE LEARNING (PREDICTIVE DATA ANALYSIS) st.write("") st.write("") data_machinelearning_container = st.beta_container() with data_machinelearning_container: st.header("**Multivariate data modelling**") st.markdown("Go for creating predictive models of your data using classical and machine learning techniques! STATY will take care of the modelling for you, so you can put your focus on results interpretation and communication! ") ml_settings = st.beta_expander("Specify models ", expanded = False) with ml_settings: # Initial status for running models run_models = False sb_ML_alg = "NA" do_hypTune = "No" do_modval = "No" do_hypTune_no = "No hyperparameter tuning" final_hyPara_values="None" model_val_results = None model_full_results = None gam_finalPara = None brt_finalPara = None brt_tuning_results = None rf_finalPara = None rf_tuning_results = None ann_finalPara = None ann_tuning_results = None MLR_intercept = None MLR_cov_type = None MLR_finalPara = None MLR_model = "OLS" LR_cov_type = None LR_finalPara = None LR_finalPara = None if df.shape[1] > 0 and df.shape[0] > 0: #-------------------------------------------------------------------------------------- # GENERAL SETTINGS st.markdown("**Variable selection**") # Variable categories df_summary_model = fc.data_summary(df) var_cat = df_summary_model["Variable types"].loc["category"] # Response variable response_var_options = df.columns response_var = st.selectbox("Select response variable", response_var_options, key = session_state.id) # Check if response variable is numeric and has no NAs response_var_message_num = False response_var_message_na = False response_var_message_cat = False if var_cat.loc[response_var] == "string/binary" or var_cat.loc[response_var] == "bool/binary": response_var_message_num = "ERROR: Please transform the binary response variable into a numeric binary categorization in data processing preferences!" elif var_cat.loc[response_var] == "string/categorical" or var_cat.loc[response_var] == "other" or var_cat.loc[response_var] == "string/single": response_var_message_num = "ERROR: Please select a numeric or binary response variable!" elif var_cat.loc[response_var] == "categorical": response_var_message_cat = "WARNING: Non-continuous variables are treated as continuous!" if response_var_message_num != False: st.error(response_var_message_num) if response_var_message_cat != False: st.warning(response_var_message_cat) # Continue if everything is clean for response variable if response_var_message_num == False and response_var_message_na == False: # Select explanatory variables expl_var_options = df.columns expl_var_options = expl_var_options[expl_var_options.isin(df.drop(response_var, axis = 1).columns)] expl_var = st.multiselect("Select explanatory variables", expl_var_options, key = session_state.id) var_list = list([response_var]) + list(expl_var) # Check if explanatory variables are numeric expl_var_message_num = False expl_var_message_na = False if any(a for a in df[expl_var].dtypes if a != "float64" and a != "float32" and a != "int64" and a != "int64"): expl_var_not_num = df[expl_var].select_dtypes(exclude=["int64", "int32", "float64", "float32"]).columns expl_var_message_num = "ERROR: Please exclude non-numeric variables: " + ', '.join(map(str,list(expl_var_not_num))) # Check if NAs are present and delete them automatically (delete before run models button) if np.where(df[var_list].isnull())[0].size > 0: st.warning("WARNING: Your modelling data set includes NAs. Rows with NAs are automatically deleted!") if expl_var_message_num != False: st.error(expl_var_message_num) elif expl_var_message_na != False: st.error(expl_var_message_na) # Continue if everything is clean for explanatory variables and at least one was selected elif expl_var_message_num == False and expl_var_message_na == False and len(expl_var) > 0: #-------------------------------------------------------------------------------------- # ALGORITHMS st.markdown("**Specify modelling algorithms**") # Select algorithms based on chosen response variable # Binary (has to be integer or float) if var_cat.loc[response_var] == "binary": algorithms = ["Multiple Linear Regression", "Logistic Regression", "Generalized Additive Models", "Random Forest", "Boosted Regression Trees", "Artificial Neural Networks"] response_var_type = "binary" # Multi-class (has to be integer, currently treated as continuous response) elif var_cat.loc[response_var] == "categorical": algorithms = ["Multiple Linear Regression", "Generalized Additive Models", "Random Forest", "Boosted Regression Trees", "Artificial Neural Networks"] response_var_type = "continuous" # Continuous elif var_cat.loc[response_var] == "numeric": algorithms = ["Multiple Linear Regression", "Generalized Additive Models", "Random Forest", "Boosted Regression Trees", "Artificial Neural Networks"] response_var_type = "continuous" alg_list = list(algorithms) sb_ML_alg = st.multiselect("Select modelling techniques", alg_list, alg_list) # MLR + binary info message if any(a for a in sb_ML_alg if a == "Multiple Linear Regression") and response_var_type == "binary": st.warning("WARNING: For Multiple Linear Regression only the full model output will be determined.") st.markdown("**Model-specific settings**") # Multiple Linear Regression settings if any(a for a in sb_ML_alg if a == "Multiple Linear Regression"): MLR_finalPara = pd.DataFrame(index = ["value"], columns = ["intercept", "covType"]) MLR_intercept = "Yes" MLR_cov_type = "non-robust" MLR_finalPara["intercept"] = MLR_intercept MLR_finalPara["covType"] = MLR_cov_type if st.checkbox("Adjust settings for Multiple Linear Regression"): col1, col2 = st.beta_columns(2) with col1: MLR_intercept = st.selectbox("Include intercept", ["Yes", "No"]) with col2: MLR_cov_type = st.selectbox("Covariance type", ["non-robust", "HC0", "HC1", "HC2", "HC3"]) MLR_finalPara["intercept"] = MLR_intercept MLR_finalPara["covType"] = MLR_cov_type st.write("") # Logistic Regression settings if any(a for a in sb_ML_alg if a == "Logistic Regression"): LR_finalPara = pd.DataFrame(index = ["value"], columns = ["intercept", "covType"]) LR_intercept = "Yes" LR_cov_type = "non-robust" LR_finalPara["intercept"] = LR_intercept LR_finalPara["covType"] = LR_cov_type if st.checkbox("Adjust settings for Logistic Regression"): col1, col2 = st.beta_columns(2) with col1: LR_intercept = st.selectbox("Include intercept ", ["Yes", "No"]) with col2: LR_cov_type = st.selectbox("Covariance type", ["non-robust", "HC0"]) LR_finalPara["intercept"] = LR_intercept LR_finalPara["covType"] = LR_cov_type st.write("") # Generalized Additive Models settings if any(a for a in sb_ML_alg if a == "Generalized Additive Models"): gam_finalPara = pd.DataFrame(index = ["value"], columns = ["intercept", "number of splines", "spline order", "lambda"]) gam_finalPara["intercept"] = "Yes" gam_finalPara["number of splines"] = 20 gam_finalPara["spline order"] = 3 gam_finalPara["lambda"] = 0.6 gam_lam_search = "No" if st.checkbox("Adjust settings for Generalized Additive Models"): gam_finalPara = pd.DataFrame(index = ["value"], columns = ["intercept", "number of splines", "spline order", "lambda"]) col1, col2 = st.beta_columns(2) with col1: gam_intercept = st.selectbox("Include intercept ", ["Yes", "No"]) gam_finalPara["intercept"] = gam_intercept with col2: gam_lam_search = st.selectbox("Search for lambda ", ["No", "Yes"]) if gam_lam_search == "Yes": ls_col1, ls_col2, ls_col3 = st.beta_columns(3) with ls_col1: ls_min = st.number_input("Minimum lambda value", value=0.001, step=1e-3, min_value=0.001, format="%.3f") with ls_col2: ls_max = st.number_input("Maximum lambda value", value=100.000, step=1e-3, min_value=0.002, format="%.3f") with ls_col3: ls_number = st.number_input("Lambda values per variable", value=50, min_value=2) if ls_number**len(expl_var) > 10000: st.warning("WARNING: Your grid has " + str(ls_number**len(expl_var)) + " combinations. Please note that searching for lambda will take a lot of time!") else: st.info("Your grid has " + str(ls_number**len(expl_var)) + " combinations.") if gam_lam_search == "No": gam_col1, gam_col2, gam_col3 = st.beta_columns(3) if gam_lam_search == "Yes": gam_col1, gam_col2= st.beta_columns(2) gam_nos_values = [] gam_so_values = [] gam_lam_values = [] for gset in range(0,len(expl_var)): var_name = expl_var[gset] with gam_col1: nos = st.number_input("Number of splines (" + var_name + ")", value = 20, min_value=1) gam_nos_values.append(nos) with gam_col2: so = st.number_input("Spline order (" + var_name + ")", value = 3, min_value=3) gam_so_values.append(so) if gam_lam_search == "No": with gam_col3: lam = st.number_input("Lambda (" + var_name + ")", value = 0.6, min_value=0.001, step=1e-3, format="%.3f") gam_lam_values.append(lam) if nos <= so: st.error("ERROR: Please make sure that the number of splines is greater than the spline order for "+ str(expl_var[gset]) + "!") return if gam_lam_search == "Yes": lam = np.round(np.linspace(ls_min, ls_max, ls_number),3) if len(expl_var) == 1: gam_lam_values = lam else: gam_lam_values = [lam] * len(expl_var) gam_finalPara.at["value", "number of splines"] = gam_nos_values gam_finalPara.at["value","spline order"] = gam_so_values gam_finalPara.at["value","lambda"] = gam_lam_values st.write("") # Save hyperparameter values for machine learning methods final_hyPara_values = {} # Random Forest settings if any(a for a in sb_ML_alg if a == "Random Forest"): rf_finalPara = pd.DataFrame(index = ["value"], columns = ["number of trees", "maximum tree depth", "maximum number of features", "sample rate"]) rf_finalPara["number of trees"] = [100] rf_finalPara["maximum tree depth"] = [None] rf_finalPara["maximum number of features"] = [len(expl_var)] rf_finalPara["sample rate"] = [0.99] final_hyPara_values["rf"] = rf_finalPara if st.checkbox("Adjust settings for Random Forest "): col1, col2 = st.beta_columns(2) col3, col4 = st.beta_columns(2) with col1: rf_finalPara["number of trees"] = st.number_input("Number of trees", value=100, step=1, min_value=1) with col3: rf_mtd_sel = st.selectbox("Specify maximum tree depth ", ["No", "Yes"]) if rf_mtd_sel == "No": rf_finalPara["maximum tree depth"] = [None] if rf_mtd_sel == "Yes": rf_finalPara["maximum tree depth"] = st.slider("Maximum tree depth ", value=20, step=1, min_value=1, max_value=50) if len(expl_var) >1: with col4: rf_finalPara["maximum number of features"] = st.slider("Maximum number of features ", value=len(expl_var), step=1, min_value=1, max_value=len(expl_var)) with col2: rf_finalPara["sample rate"] = st.slider("Sample rate ", value=0.99, step=0.01, min_value=0.5, max_value=0.99) else: with col2: rf_finalPara["sample rate"] = st.slider("Sample rate ", value=0.99, step=0.01, min_value=0.5, max_value=0.99) final_hyPara_values["rf"] = rf_finalPara st.write("") # Boosted Regression Trees settings if any(a for a in sb_ML_alg if a == "Boosted Regression Trees"): brt_finalPara = pd.DataFrame(index = ["value"], columns = ["number of trees", "learning rate", "maximum tree depth", "sample rate"]) brt_finalPara["number of trees"] = [100] brt_finalPara["learning rate"] = [0.1] brt_finalPara["maximum tree depth"] = [3] brt_finalPara["sample rate"] = [1] final_hyPara_values["brt"] = brt_finalPara if st.checkbox("Adjust settings for Boosted Regression Trees "): col1, col2 = st.beta_columns(2) col3, col4 = st.beta_columns(2) with col1: brt_finalPara["number of trees"] = st.number_input("Number of trees ", value=100, step=1, min_value=1) with col2: brt_finalPara["learning rate"] = st.slider("Learning rate ", value=0.1, min_value=0.001, max_value=0.1 , step=1e-3, format="%.3f") with col3: brt_finalPara["maximum tree depth"] = st.slider("Maximum tree depth ", value=3, step=1, min_value=1, max_value=30) with col4: brt_finalPara["sample rate"] = st.slider("Sample rate ", value=1.0, step=0.01, min_value=0.5, max_value=1.0) final_hyPara_values["brt"] = brt_finalPara st.write("") # Artificial Neural Networks settings if any(a for a in sb_ML_alg if a == "Artificial Neural Networks"): ann_finalPara = pd.DataFrame(index = ["value"], columns = ["weight optimization solver", "maximum number of iterations", "activation function", "hidden layer sizes", "learning rate", "L² regularization"]) ann_finalPara["weight optimization solver"] = ["adam"] ann_finalPara["maximum number of iterations"] = [200] ann_finalPara["activation function"] = ["relu"] ann_finalPara["hidden layer sizes"] = [(100,)] ann_finalPara["learning rate"] = [0.001] ann_finalPara["L² regularization"] = [0.0001] final_hyPara_values["ann"] = ann_finalPara if st.checkbox("Adjust settings for Artificial Neural Networks "): col1, col2 = st.beta_columns(2) col3, col4 = st.beta_columns(2) col5, col6 = st.beta_columns(2) with col1: ann_finalPara["weight optimization solver"] = st.selectbox("Weight optimization solver ", ["adam"]) with col2: ann_finalPara["activation function"] = st.selectbox("Activation function ", ["relu", "identity", "logistic", "tanh"]) with col3: ann_finalPara["maximum number of iterations"] = st.slider("Maximum number of iterations ", value=200, step=1, min_value=10, max_value=1000) with col4: ann_finalPara["learning rate"] = st.slider("Learning rate ", min_value=0.0001, max_value=0.01, value=0.001, step=1e-4, format="%.4f") with col5: number_hidden_layers = st.selectbox("Number of hidden layers", [1, 2, 3]) if number_hidden_layers == 1: number_nodes1 = st.slider("Number of nodes in hidden layer", 5, 500, 100) ann_finalPara["hidden layer sizes"] = [(number_nodes1,)] if number_hidden_layers == 2: number_nodes1 = st.slider("Number of neurons in first hidden layer", 5, 500, 100) number_nodes2 = st.slider("Number of neurons in second hidden layer", 5, 500, 100) ann_finalPara["hidden layer sizes"] = [(number_nodes1,number_nodes2,)] if number_hidden_layers == 3: number_nodes1 = st.slider("Number of neurons in first hidden layer", 5, 500, 100) number_nodes2 = st.slider("Number of neurons in second hidden layer", 5, 500, 100) number_nodes3 = st.slider("Number of neurons in third hidden layer", 5, 500, 100) ann_finalPara["hidden layer sizes"] = [(number_nodes1,number_nodes2,number_nodes3,)] with col6: ann_finalPara["L² regularization"] = st.slider("L² regularization ", min_value=0.00001, max_value=0.001, value=0.0001, step=1e-5, format="%.5f") #-------------------------------------------------------------------------------------- # HYPERPARAMETER TUNING SETTINGS if len(sb_ML_alg) >= 1: # Depending on algorithm selection different hyperparameter settings are shown if any(a for a in sb_ML_alg if a == "Random Forest") or any(a for a in sb_ML_alg if a == "Boosted Regression Trees") or any(a for a in sb_ML_alg if a == "Artificial Neural Networks"): # General settings st.markdown("**Hyperparameter-tuning settings**") do_hypTune = st.selectbox("Use hyperparameter-tuning", ["No", "Yes"]) # Save hyperparameter values for all algorithms hyPara_values = {} # No hyperparameter-tuning if do_hypTune == "No": do_hypTune_no = "Default hyperparameter values are used!" # Hyperparameter-tuning elif do_hypTune == "Yes": st.warning("WARNING: Hyperparameter-tuning can take a lot of time! For tips, please [contact us](mailto:<EMAIL>?subject=Staty-App).") # Further general settings hypTune_method = st.selectbox("Hyperparameter-search method", ["random grid-search", "grid-search", "Bayes optimization", "sequential model-based optimization"]) col1, col2 = st.beta_columns(2) with col1: hypTune_nCV = st.slider("Select number for n-fold cross-validation", 2, 10, 5) if hypTune_method == "random grid-search" or hypTune_method == "Bayes optimization" or hypTune_method == "sequential model-based optimization": with col2: hypTune_iter = st.slider("Select number of iterations for search", 20, 1000, 20) else: hypTune_iter = False st.markdown("**Model-specific tuning settings**") # Random Forest settings if any(a for a in sb_ML_alg if a == "Random Forest"): rf_tunePara = pd.DataFrame(index = ["min", "max"], columns = ["number of trees", "maximum tree depth", "maximum number of features", "sample rate"]) rf_tunePara["number of trees"] = [50, 500] rf_tunePara["maximum tree depth"] = [None, None] rf_tunePara["maximum number of features"] = [1, len(expl_var)] rf_tunePara["sample rate"] = [0.8, 0.99] hyPara_values["rf"] = rf_tunePara if st.checkbox("Adjust tuning settings for Random Forest"): col1, col2 = st.beta_columns(2) col3, col4 = st.beta_columns(2) with col1: rf_tunePara["number of trees"] = st.slider("Range for number of trees ", 50, 1000, [50, 500]) with col3: rf_mtd_choice = st.selectbox("Specify maximum tree depth", ["No", "Yes"]) if rf_mtd_choice == "Yes": rf_tunePara["maximum tree depth"] = st.slider("Range for maximum tree depth ", 1, 50, [2, 10]) else: rf_tunePara["maximum tree depth"] = [None, None] with col4: if len(expl_var) > 1: rf_tunePara["maximum number of features"] = st.slider("Range for maximum number of features", 1, len(expl_var), [1, len(expl_var)]) else: rf_tunePara["maximum number of features"] = [1,1] with col2: rf_tunePara["sample rate"] = st.slider("Range for sample rate ", 0.5, 0.99, [0.8, 0.99]) hyPara_values["rf"] = rf_tunePara # Boosted Regression Trees settings if any(a for a in sb_ML_alg if a == "Boosted Regression Trees"): brt_tunePara = pd.DataFrame(index = ["min", "max"], columns = ["number of trees", "learning rate", "maximum tree depth", "sample rate"]) brt_tunePara["number of trees"] = [50, 500] brt_tunePara["learning rate"] = [0.001, 0.010] brt_tunePara["maximum tree depth"] = [2, 10] brt_tunePara["sample rate"] = [0.8, 1.0] hyPara_values["brt"] = brt_tunePara if st.checkbox("Adjust tuning settings for Boosted Regression Trees"): col1, col2 = st.beta_columns(2) col3, col4 = st.beta_columns(2) with col1: brt_tunePara["number of trees"] = st.slider("Range for number of trees", 50, 1000, [50, 500]) with col2: brt_tunePara["learning rate"] = st.slider("Range for learning rate", 0.001, 0.1, [0.001, 0.02], step=1e-3, format="%.3f") with col3: brt_tunePara["maximum tree depth"] = st.slider("Range for maximum tree depth", 1, 30, [2, 10]) with col4: brt_tunePara["sample rate"] = st.slider("Range for sample rate", 0.5, 1.0, [0.8, 1.0]) hyPara_values["brt"] = brt_tunePara # Artificial Neural Networks settings if any(a for a in sb_ML_alg if a == "Artificial Neural Networks"): ann_tunePara = pd.DataFrame(index = ["min", "max"], columns = ["weight optimization solver", "maximum number of iterations", "activation function", "number of hidden layers", "nodes per hidden layer", "learning rate","L² regularization"])# "learning rate schedule", "momentum", "epsilon"]) ann_tunePara["weight optimization solver"] = list([["adam"], "NA"]) ann_tunePara["maximum number of iterations"] = [100, 200] ann_tunePara["activation function"] = list([["relu"], "NA"]) ann_tunePara["number of hidden layers"] = list([1, "NA"]) ann_tunePara["nodes per hidden layer"] = [50, 100] ann_tunePara["learning rate"] = [0.0001, 0.002] ann_tunePara["L² regularization"] = [0.00001, 0.0002] hyPara_values["ann"] = ann_tunePara if st.checkbox("Adjust tuning settings for Artificial Neural Networks"): col1, col2 = st.beta_columns(2) col3, col4 = st.beta_columns(2) col5, col6 = st.beta_columns(2) with col1: weight_opt_list = st.selectbox("Weight optimization solver ", ["adam"]) if len(weight_opt_list) == 0: weight_opt_list = ["adam"] st.warning("WARNING: Default value used 'adam'") ann_tunePara["weight optimization solver"] = list([[weight_opt_list], "NA"]) with col2: ann_tunePara["maximum number of iterations"] = st.slider("Maximum number of iterations (epochs) ", 10, 1000, [100, 200]) with col3: act_func_list = st.multiselect("Activation function ", ["identity", "logistic", "tanh", "relu"], ["relu"]) if len(act_func_list) == 0: act_func_list = ["relu"] st.warning("WARNING: Default value used 'relu'") ann_tunePara["activation function"] = list([act_func_list, "NA"]) with col5: number_hidden_layers = st.selectbox("Number of hidden layers ", [1, 2, 3]) ann_tunePara["number of hidden layers"] = list([number_hidden_layers, "NA"]) # Cases for hidden layers if number_hidden_layers == 1: ann_tunePara["nodes per hidden layer"] = st.slider("Number of nodes in hidden layer ", 5, 500, [50, 100]) if number_hidden_layers == 2: number_nodes1 = st.slider("Number of neurons in first hidden layer ", 5, 500, [50, 100]) number_nodes2 = st.slider("Number of neurons in second hidden layer ", 5, 500, [50, 100]) min_nodes = list([number_nodes1[0], number_nodes2[0]]) max_nodes = list([number_nodes1[1], number_nodes2[1]]) ann_tunePara["nodes per hidden layer"] = list([min_nodes, max_nodes]) if number_hidden_layers == 3: number_nodes1 = st.slider("Number of neurons in first hidden layer ", 5, 500, [50, 100]) number_nodes2 = st.slider("Number of neurons in second hidden layer ", 5, 500, [50, 100]) number_nodes3 = st.slider("Number of neurons in third hidden layer ", 5, 500, [50, 100]) min_nodes = list([number_nodes1[0], number_nodes2[0], number_nodes3[0]]) max_nodes = list([number_nodes1[1], number_nodes2[1], number_nodes3[1]]) ann_tunePara["nodes per hidden layer"] = list([min_nodes, max_nodes]) with col6: if weight_opt_list == "adam": ann_tunePara["learning rate"] = st.slider("Range for learning rate ", 0.0001, 0.01, [0.0001, 0.002], step=1e-4, format="%.4f") with col4: ann_tunePara["L² regularization"] = st.slider("L² regularization parameter ", 0.0, 0.001, [0.00001, 0.0002], step=1e-5, format="%.5f") hyPara_values["ann"] = ann_tunePara #-------------------------------------------------------------------------------------- # VALIDATION SETTINGS st.markdown("**Validation settings**") do_modval= st.selectbox("Use model validation", ["No", "Yes"]) if do_modval == "Yes": col1, col2 = st.beta_columns(2) # Select training/ test ratio with col1: train_frac = st.slider("Select training data size", 0.5, 0.95, 0.8) # Select number for validation runs with col2: val_runs = st.slider("Select number for validation runs", 5, 100, 10) #-------------------------------------------------------------------------------------- # PREDICTION SETTINGS st.markdown("**Model predictions**") do_modprednew = st.selectbox("Use model prediction for new data", ["No", "Yes"]) if do_modprednew == "Yes": # Upload new data new_data_pred = st.file_uploader(" ", type=["csv", "txt"]) if new_data_pred is not None: # Read data if uploaded_data is not None: df_new = pd.read_csv(new_data_pred, decimal=dec_sep, sep = col_sep,thousands=thousands_sep,encoding=encoding_val, engine='python') else: df_new = pd.read_csv(new_data_pred, sep = ";|,|\t",engine='python') st.success('Loading data... done!') # Transform columns if any were transformed # Log-transformation if sb_DM_dTrans_log is not None: # List of log-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_log: if "log_"+tv in expl_var: tv_list.append(tv) # Check if log-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for log-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_log(df_new, tv_list) # Sqrt-transformation if sb_DM_dTrans_sqrt is not None: # List of sqrt-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_sqrt: if "sqrt_"+tv in expl_var: tv_list.append(tv) # Check if sqrt-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for sqrt-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_sqrt(df_new, tv_list) # Square-transformation if sb_DM_dTrans_square is not None: # List of square-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_square: if "square_"+tv in expl_var: tv_list.append(tv) # Check if square-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for square-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_square(df_new, tv_list) # Standardization if sb_DM_dTrans_stand is not None: # List of standardized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_stand: if "stand_"+tv in expl_var: tv_list.append(tv) # Check if standardized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for standardization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use mean and standard deviation of original data for standardization for tv in tv_list: if df_new[tv].dtypes == "float64" or df_new[tv].dtypes == "int64" or df_new[tv].dtypes == "float32" or df_new[tv].dtypes == "int32": if df[tv].std() != 0: new_var_name = "stand_" + tv new_var = (df_new[tv] - df[tv].mean())/df[tv].std() df_new[new_var_name] = new_var else: st.error("ERROR: " + str(tv) + " is not numerical and cannot be standardized!") return # Normalization if sb_DM_dTrans_norm is not None: # List of normalized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_norm: if "norm_"+tv in expl_var: tv_list.append(tv) # Check if normalized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for normalization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use min and max of original data for normalization for tv in tv_list: if df_new[tv].dtypes == "float64" or df_new[tv].dtypes == "int64" or df_new[tv].dtypes == "float32" or df_new[tv].dtypes == "int32": if (df[tv].max()-df[tv].min()) != 0: new_var_name = "norm_" + tv new_var = (df_new[tv] - df[tv].min())/(df[tv].max()-df[tv].min()) df_new[new_var_name] = new_var else: st.error("ERROR: " + str(tv) + " is not numerical and cannot be normalized!") return # Categorization if sb_DM_dTrans_numCat is not None: # List of categorized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_numCat: if "numCat_"+tv in expl_var: tv_list.append(tv) # Check if categorized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for categorization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use same categories as for original data for tv in tv_list: new_var_name = "numCat_" + tv new_var = pd.DataFrame(index = df_new.index, columns = [new_var_name]) for r in df_new.index: if df.loc[df[tv] == df_new[tv][r]].empty == False: new_var.loc[r, new_var_name] = df["numCat_" + tv][df.loc[df[tv] == df_new[tv][r]].index[0]] else: st.error("ERROR: Category is missing for the value in row: "+ str(r) + ", variable: " + str(tv)) return df_new[new_var_name] = new_var.astype('int64') # Multiplication if sb_DM_dTrans_mult != 0: # List of multiplied variables that are included as explanatory variables tv_list = [] for tv in range(0, sb_DM_dTrans_mult): mult_name = "mult_" + str(multiplication_pairs.loc[tv]["Var1"]) + "_" + str(multiplication_pairs.loc[tv]["Var2"]) if mult_name in expl_var: tv_list.append(str(multiplication_pairs.loc[tv]["Var1"])) tv_list.append(str(multiplication_pairs.loc[tv]["Var2"])) # Check if multiplied explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for multiplication in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data for var in range(0, sb_DM_dTrans_mult): df_new = fc.var_transform_mult(df_new, multiplication_pairs.loc[var]["Var1"], multiplication_pairs.loc[var]["Var2"]) # Division if sb_DM_dTrans_div != 0: # List of divided variables that are included as explanatory variables tv_list = [] for tv in range(0, sb_DM_dTrans_div): mult_name = "div_" + str(division_pairs.loc[tv]["Var1"]) + "_" + str(division_pairs.loc[tv]["Var2"]) if mult_name in expl_var: tv_list.append(str(division_pairs.loc[tv]["Var1"])) tv_list.append(str(division_pairs.loc[tv]["Var2"])) # Check if multiplied explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for division in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data for var in range(0, sb_DM_dTrans_div): df_new = fc.var_transform_div(df_new, division_pairs.loc[var]["Var1"], division_pairs.loc[var]["Var2"]) # Check if explanatory variables are available as columns expl_list = [] for expl_incl in expl_var: if expl_incl not in df_new.columns: expl_list.append(expl_incl) if expl_list: st.error("ERROR: Some variables are missing in new data: "+ ', '.join(expl_list)) return else: st.info("All variables are available for predictions!") # Check if NAs are present and delete them automatically if df_new.iloc[list(pd.unique(np.where(df_new.isnull())[0]))].shape[0] == 0: st.empty() else: df_new = df_new[expl_var].dropna() st.warning("WARNING: Your new data set includes NAs. Rows with NAs are automatically deleted!") df_new = df_new[expl_var] # Modelling data set df = df[var_list] # Check if NAs are present and delete them automatically if np.where(df[var_list].isnull())[0].size > 0: df = df.dropna() #-------------------------------------------------------------------------------------- # SETTINGS SUMMARY st.write("") # Show modelling data if st.checkbox("Show modelling data"): st.write(df) st.write("Data shape: ", df.shape[0], " rows and ", df.shape[1], " columns") # Download link for modelling data output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="modelling_data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "Modelling data__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download modelling data</a> """, unsafe_allow_html=True) st.write("") # Show prediction data if do_modprednew == "Yes": if new_data_pred is not None: if st.checkbox("Show new data for predictions"): st.write(df_new) st.write("Data shape: ", df_new.shape[0], " rows and ", df_new.shape[1], " columns") # Download link for forecast data output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_new.to_excel(excel_file, sheet_name="new_data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "New data for predictions__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download new data for predictions</a> """, unsafe_allow_html=True) st.write("") # Show machine learning summary if st.checkbox('Show a summary of machine learning settings', value = False): #-------------------------------------------------------------------------------------- # ALGORITHMS st.write("Algorithms summary:") st.write("- Models:", ', '.join(sb_ML_alg)) if any(a for a in sb_ML_alg if a == "Multiple Linear Regression"): # st.write("- Multiple Linear Regression model: ", MLR_model) st.write("- Multiple Linear Regression including intercept: ", MLR_intercept) st.write("- Multiple Linear Regression covariance type: ", MLR_cov_type) if any(a for a in sb_ML_alg if a == "Logistic Regression"): st.write("- Logistic Regression including intercept: ", LR_intercept) st.write("- Logistic Regression covariance type: ", LR_cov_type) if any(a for a in sb_ML_alg if a == "Generalized Additive Models"): st.write("- Generalized Additive Models parameters: ") st.write(gam_finalPara) if any(a for a in sb_ML_alg if a == "Random Forest") and do_hypTune == "No": st.write("- Random Forest parameters: ") st.write(rf_finalPara) if any(a for a in sb_ML_alg if a == "Boosted Regression Trees") and do_hypTune == "No": st.write("- Boosted Regression Trees parameters: ") st.write(brt_finalPara) if any(a for a in sb_ML_alg if a == "Artificial Neural Networks") and do_hypTune == "No": st.write("- Artificial Neural Networks parameters: ") st.write(ann_finalPara) st.write("") #-------------------------------------------------------------------------------------- # SETTINGS # Hyperparameter settings summary if any(a for a in sb_ML_alg if a == "Artificial Neural Networks" or a == "Boosted Regression Trees" or a == "Random Forest"): st.write("Hyperparameter-tuning settings summary:") if do_hypTune == "No": st.write("- ", do_hypTune_no) st.write("") if do_hypTune == "Yes": st.write("- Search method:", hypTune_method) st.write("- ", hypTune_nCV, "-fold cross-validation") if hypTune_method == "random grid-search" or hypTune_method == "Bayes optimization" or hypTune_method == "sequential model-based optimization": st.write("- ", hypTune_iter, "iterations in search") st.write("") # Random Forest summary if any(a for a in sb_ML_alg if a == "Random Forest"): st.write("Random Forest tuning settings summary:") st.write(rf_tunePara) # Boosted Regression Trees summary if any(a for a in sb_ML_alg if a == "Boosted Regression Trees"): st.write("Boosted Regression Trees tuning settings summary:") st.write(brt_tunePara) # Artificial Neural Networks summary if any(a for a in sb_ML_alg if a == "Artificial Neural Networks"): st.write("Artificial Neural Networks tuning settings summary:") st.write(ann_tunePara.style.format({"L² regularization": "{:.5}"})) #st.caption("** Learning rate is only used in adam") st.write("") # General settings summary st.write("General settings summary:") st.write("- Response variable type: ", response_var_type) # Modelling formula if expl_var != False: st.write("- Modelling formula:", response_var, "~", ' + '.join(expl_var)) if do_modval == "Yes": # Train/ test ratio if train_frac != False: st.write("- Train/ test ratio:", str(round(train_frac*100)), "% / ", str(round(100-train_frac*100)), "%") # Validation runs if val_runs != False: st.write("- Validation runs:", str(val_runs)) st.write("") #-------------------------------------------------------------------------------------- # RUN MODELS # Models are run on button click st.write("") run_models = st.button("Run models") st.write("") if run_models: # Check if new data available if do_modprednew == "Yes": if new_data_pred is None: st.error("ERROR: Please upload new data for additional model predictions or select 'No'!") return #Hyperparameter if do_hypTune == "Yes": # Tuning model_tuning_results = ml.model_tuning(df, sb_ML_alg, hypTune_method, hypTune_iter, hypTune_nCV, hyPara_values, response_var_type, response_var, expl_var) # Save final hyperparameters # Random Forest if any(a for a in sb_ML_alg if a == "Random Forest"): rf_tuning_results = model_tuning_results["rf tuning"] rf_finalPara = pd.DataFrame(index = ["value"], columns = ["number of trees", "maximum tree depth", "maximum number of features", "sample rate"]) rf_finalPara["number of trees"] = [rf_tuning_results.loc["value"]["number of trees"]] if [rf_tuning_results.loc["value"]["maximum tree depth"]][0] == "None": rf_finalPara["maximum tree depth"] = None else: rf_finalPara["maximum tree depth"] = [rf_tuning_results.loc["value"]["maximum tree depth"]] rf_finalPara["maximum number of features"] = [rf_tuning_results.loc["value"]["maximum number of features"]] rf_finalPara["sample rate"] = [rf_tuning_results.loc["value"]["sample rate"]] final_hyPara_values["rf"] = rf_finalPara # Boosted Regression Trees if any(a for a in sb_ML_alg if a == "Boosted Regression Trees"): brt_tuning_results = model_tuning_results["brt tuning"] brt_finalPara = pd.DataFrame(index = ["value"], columns = ["number of trees", "learning rate", "maximum tree depth", "sample rate"]) brt_finalPara["number of trees"] = [brt_tuning_results.loc["value"]["number of trees"]] brt_finalPara["learning rate"] = [brt_tuning_results.loc["value"]["learning rate"]] brt_finalPara["maximum tree depth"] = [brt_tuning_results.loc["value"]["maximum tree depth"]] brt_finalPara["sample rate"] = [brt_tuning_results.loc["value"]["sample rate"]] final_hyPara_values["brt"] = brt_finalPara # Artificial Neural Networks if any(a for a in sb_ML_alg if a == "Artificial Neural Networks"): ann_tuning_results = model_tuning_results["ann tuning"] ann_finalPara = pd.DataFrame(index = ["value"], columns = ["weight optimization solver", "maximum number of iterations", "activation function", "hidden layer sizes", "learning rate", "L² regularization"]) #"learning rate schedule", "momentum", "epsilon"]) ann_finalPara["weight optimization solver"] = [ann_tuning_results.loc["value"]["weight optimization solver"]] ann_finalPara["maximum number of iterations"] = [ann_tuning_results.loc["value"]["maximum number of iterations"]] ann_finalPara["activation function"] = [ann_tuning_results.loc["value"]["activation function"]] ann_finalPara["hidden layer sizes"] = [ann_tuning_results.loc["value"]["hidden layer sizes"]] ann_finalPara["learning rate"] = [ann_tuning_results.loc["value"]["learning rate"]] #ann_finalPara["learning rate schedule"] = [ann_tuning_results.loc["value"]["learning rate schedule"]] #ann_finalPara["momentum"] = [ann_tuning_results.loc["value"]["momentum"]] ann_finalPara["L² regularization"] = [ann_tuning_results.loc["value"]["L² regularization"]] #ann_finalPara["epsilon"] = [ann_tuning_results.loc["value"]["epsilon"]] final_hyPara_values["ann"] = ann_finalPara # Lambda search for GAM if any(a for a in sb_ML_alg if a == "Generalized Additive Models"): if gam_lam_search == "Yes": st.info("Lambda search") my_bar = st.progress(0.0) progress = 0 Y_data_gam = df[response_var] X_data_gam = df[expl_var] nos = gam_finalPara["number of splines"][0] so = gam_finalPara["spline order"][0] lams = gam_lam_values if response_var_type == "continuous": if gam_finalPara["intercept"][0] == "Yes": gam_grid = LinearGAM(n_splines = nos, spline_order = so, fit_intercept = True).gridsearch(X_data_gam.values, Y_data_gam.values, lam=lams) gam_finalPara.at["value", "lambda"] = gam_grid.lam if gam_finalPara["intercept"][0] == "No": gam_grid = LinearGAM(n_splines = nos, spline_order = so, fit_intercept = False).gridsearch(X_data_gam.values, Y_data_gam.values, lam=lams) gam_finalPara.at["value", "lambda"] = gam_grid.lam if response_var_type == "binary": if gam_finalPara["intercept"][0] == "Yes": gam_grid = LogisticGAM(n_splines = nos, spline_order = so, fit_intercept = True).gridsearch(X_data_gam.values, Y_data_gam.values, lam=lams) gam_finalPara.at["value", "lambda"] = gam_grid.lam if gam_finalPara["intercept"][0] == "No": gam_grid = LogisticGAM(n_splines = nos, spline_order = so, fit_intercept = False).gridsearch(X_data_gam.values, Y_data_gam.values, lam=lams) gam_finalPara.at["value", "lambda"] = gam_grid.lam progress += 1 my_bar.progress(progress/1) # Model validation if do_modval == "Yes": model_val_results = ml.model_val(df, sb_ML_alg, MLR_model, train_frac, val_runs, response_var_type, response_var, expl_var, final_hyPara_values, gam_finalPara, MLR_finalPara, LR_finalPara) # Full model (depending on prediction for new data) if do_modprednew == "Yes": if new_data_pred is not None: model_full_results = ml.model_full(df, df_new, sb_ML_alg, MLR_model, MLR_finalPara, LR_finalPara, response_var_type, response_var, expl_var, final_hyPara_values, gam_finalPara) if do_modprednew == "No": df_new = pd.DataFrame() model_full_results = ml.model_full(df, df_new, sb_ML_alg, MLR_model, MLR_finalPara, LR_finalPara, response_var_type, response_var, expl_var, final_hyPara_values, gam_finalPara) # Success message st.success('Models run successfully!') else: st.error("ERROR: No data available for Modelling!") #++++++++++++++++++++++ # ML OUTPUT # Show only if models were run (no further widgets after run models or the full page reloads) if run_models == True: st.write("") st.write("") st.header("**Model outputs**") #-------------------------------------------------------------------------------------- # FULL MODEL OUTPUT full_output = st.beta_expander("Full model output", expanded = False) with full_output: if model_full_results is not None: st.markdown("**Correlation Matrix & 2D-Histogram**") # Define variable selector var_sel_cor = alt.selection_single(fields=['variable', 'variable2'], clear=False, init={'variable': response_var, 'variable2': response_var}) # Calculate correlation data corr_data = df[[response_var] + expl_var].corr().stack().reset_index().rename(columns={0: "correlation", 'level_0': "variable", 'level_1': "variable2"}) corr_data["correlation_label"] = corr_data["correlation"].map('{:.2f}'.format) # Basic plot base = alt.Chart(corr_data).encode( x = alt.X('variable2:O', sort = None, axis = alt.Axis(title = None, labelFontSize = 12)), y = alt.Y('variable:O', sort = None, axis = alt.Axis(title = None, labelFontSize = 12)) ) # Correlation values to insert text = base.mark_text().encode( text='correlation_label', color = alt.condition( alt.datum.correlation > 0.5, alt.value('white'), alt.value('black') ) ) # Correlation plot corr_plot = base.mark_rect().encode( color = alt.condition(var_sel_cor, alt.value('#86c29c'), 'correlation:Q', legend = alt.Legend(title = "Bravais-Pearson correlation coefficient", orient = "top", gradientLength = 350), scale = alt.Scale(scheme='redblue', reverse = True, domain = [-1,1])) ).add_selection(var_sel_cor) # Calculate values for 2d histogram value_columns = df[[response_var] + expl_var] df_2dbinned = pd.concat([fc.compute_2d_histogram(var1, var2, df) for var1 in value_columns for var2 in value_columns]) # 2d binned histogram plot scat_plot = alt.Chart(df_2dbinned).transform_filter( var_sel_cor ).mark_rect().encode( alt.X('value2:N', sort = alt.EncodingSortField(field='raw_left_value2'), axis = alt.Axis(title = "Horizontal variable", labelFontSize = 12)), alt.Y('value:N', axis = alt.Axis(title = "Vertical variable", labelFontSize = 12), sort = alt.EncodingSortField(field='raw_left_value', order = 'descending')), alt.Color('count:Q', scale = alt.Scale(scheme='reds'), legend = alt.Legend(title = "Count", orient = "top", gradientLength = 350)) ) # Combine all plots correlation_plot = alt.vconcat((corr_plot + text).properties(width = 400, height = 400), scat_plot.properties(width = 400, height = 400)).resolve_scale(color = 'independent') corr_plot1 = (corr_plot + text).properties(width = 400, height = 400) correlation_plot = correlation_plot.properties(padding = {"left": 50, "top": 5, "right": 5, "bottom": 50}) # hist_2d_plot = scat_plot.properties(height = 350) if response_var_type == "continuous": st.altair_chart(correlation_plot, use_container_width = True) if response_var_type == "binary": st.altair_chart(correlation_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_cor"))) st.write("") #------------------------------------------------------------- # Continuous response variable if response_var_type == "continuous": # MLR specific output if any(a for a in sb_ML_alg if a == "Multiple Linear Regression"): st.markdown("**Multiple Linear Regression**") # Regression information fm_mlr_reg_col1, fm_mlr_reg_col2 = st.beta_columns(2) with fm_mlr_reg_col1: st.write("Regression information:") st.table(model_full_results["MLR information"].style.set_precision(user_precision)) # Regression statistics with fm_mlr_reg_col2: st.write("Regression statistics:") st.table(model_full_results["MLR statistics"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_regStat"))) st.write("") # Coefficients st.write("Coefficients:") st.table(model_full_results["MLR coefficients"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_coef"))) st.write("") # ANOVA st.write("ANOVA:") st.table(model_full_results["MLR ANOVA"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_ANOVA"))) st.write("") # Heteroskedasticity tests if MLR_intercept == "Yes": st.write("Heteroskedasticity tests:") st.table(model_full_results["MLR hetTest"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_hetTest"))) st.write("") # Variable importance (via permutation) fm_mlr_reg2_col1, fm_mlr_reg2_col2 = st.beta_columns(2) with fm_mlr_reg2_col1: st.write("Variable importance (via permutation):") mlr_varImp_table = model_full_results["MLR variable importance"] st.table(mlr_varImp_table.style.set_precision(user_precision)) st.write("") with fm_mlr_reg2_col2: st.write("") st.write("") st.write("") mlr_varImp_plot_data = model_full_results["MLR variable importance"] mlr_varImp_plot_data["Variable"] = mlr_varImp_plot_data.index mlr_varImp = alt.Chart(mlr_varImp_plot_data, height = 200).mark_bar().encode( x = alt.X("mean", title = "variable importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "mean"] ) st.altair_chart(mlr_varImp, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_varImp"))) st.write("") # Graphical output fm_mlr_figs_col1, fm_mlr_figs_col2 = st.beta_columns(2) with fm_mlr_figs_col1: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = model_full_results["MLR fitted"] observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with fm_mlr_figs_col2: st.write("Residuals vs Fitted:") residuals_fitted_data = pd.DataFrame() residuals_fitted_data["Residuals"] = model_full_results["residuals"]["Multiple Linear Regression"] residuals_fitted_data["Fitted"] = model_full_results["MLR fitted"] residuals_fitted_data["Index"] = df.index residuals_fitted = alt.Chart(residuals_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(residuals_fitted_data["Fitted"]), max(residuals_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Residuals", title = "residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Residuals", "Fitted", "Index"] ) residuals_fitted_plot = residuals_fitted + residuals_fitted.transform_loess("Fitted", "Residuals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_fitted_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_obsResVsFit"))) st.write("") fm_mlr_figs1_col1, fm_mlr_figs1_col2 = st.beta_columns(2) with fm_mlr_figs1_col1: st.write("Normal QQ-plot:") residuals = model_full_results["residuals"]["Multiple Linear Regression"] qq_plot_data = pd.DataFrame() qq_plot_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() qq_plot_data["Index"] = df.index qq_plot_data = qq_plot_data.sort_values(by = ["StandResiduals"]) qq_plot_data["Theoretical quantiles"] = stats.probplot(residuals, dist="norm")[0][0] qq_plot = alt.Chart(qq_plot_data, height = 200).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals", "Theoretical quantiles", "Index"] ) line = alt.Chart( pd.DataFrame({"Theoretical quantiles": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])], "StandResiduals": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]})).mark_line(size = 2, color = "darkred").encode( alt.X("Theoretical quantiles"), alt.Y("StandResiduals"), ) st.altair_chart(qq_plot + line, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_qqplot"))) with fm_mlr_figs1_col2: st.write("Scale-Location:") scale_location_data = pd.DataFrame() residuals = model_full_results["residuals"]["Multiple Linear Regression"] scale_location_data["SqrtStandResiduals"] = np.sqrt(abs((residuals - residuals.mean())/residuals.std())) scale_location_data["Fitted"] = model_full_results["MLR fitted"] scale_location_data["Index"] = df.index scale_location = alt.Chart(scale_location_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(scale_location_data["Fitted"]), max(scale_location_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("SqrtStandResiduals", title = "sqrt(|stand. residuals|)", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["SqrtStandResiduals", "Fitted", "Index"] ) scale_location_plot = scale_location + scale_location.transform_loess("Fitted", "SqrtStandResiduals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(scale_location_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_scaleLoc"))) st.write("") fm_mlr_figs2_col1, fm_mlr_figs2_col2 = st.beta_columns(2) with fm_mlr_figs2_col1: st.write("Residuals vs Leverage:") residuals_leverage_data = pd.DataFrame() residuals = model_full_results["residuals"]["Multiple Linear Regression"] residuals_leverage_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() residuals_leverage_data["Leverage"] = model_full_results["MLR leverage"] residuals_leverage_data["Index"] = df.index residuals_leverage = alt.Chart(residuals_leverage_data, height = 200).mark_circle(size=20).encode( x = alt.X("Leverage", title = "leverage", scale = alt.Scale(domain = [min(residuals_leverage_data["Leverage"]), max(residuals_leverage_data["Leverage"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals","Leverage", "Index"] ) residuals_leverage_plot = residuals_leverage + residuals_leverage.transform_loess("Leverage", "StandResiduals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_leverage_plot, use_container_width = True) with fm_mlr_figs2_col2: st.write("Cook's distance:") cooksD_data = pd.DataFrame() cooksD_data["CooksD"] = model_full_results["MLR Cooks distance"] cooksD_data["Index"] = df.index cooksD = alt.Chart(cooksD_data, height = 200).mark_bar(size = 2).encode( x = alt.X("Index", title = "index", scale = alt.Scale(domain = [-1, max(cooksD_data["Index"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("CooksD", title = "Cook's distance", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["CooksD", "Index"] ) st.altair_chart(cooksD, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_resVsLev_cooksD"))) # Download link for MLR output output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") model_full_results["MLR information"].to_excel(excel_file, sheet_name="regression_information") model_full_results["MLR statistics"].to_excel(excel_file, sheet_name="regression_statistics") model_full_results["MLR coefficients"].to_excel(excel_file, sheet_name="coefficients") model_full_results["MLR ANOVA"].to_excel(excel_file, sheet_name="ANOVA") model_full_results["MLR hetTest"].to_excel(excel_file, sheet_name="heteroskedasticity_tests") mlr_varImp_table.to_excel(excel_file, sheet_name="variable_importance") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "MLR full model output__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download Multiple Linear Regression full model output</a> """, unsafe_allow_html=True) st.write("") # GAM specific output if any(a for a in sb_ML_alg if a == "Generalized Additive Models"): st.markdown("**Generalized Additive Models**") fm_gam_reg_col1, fm_gam_reg_col2 = st.beta_columns(2) # Regression information with fm_gam_reg_col1: st.write("Regression information:") st.table(model_full_results["GAM information"].style.set_precision(user_precision)) # Regression statistics with fm_gam_reg_col2: st.write("Regression statistics:") st.table(model_full_results["GAM statistics"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_GAM_regStat"))) st.write("") # Feature significance st.write("Feature significance:") st.table(model_full_results["GAM feature significance"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_GAM_featSig"))) st.write("") # Variable importance (via permutation) fm_gam_figs1_col1, fm_gam_figs1_col2 = st.beta_columns(2) with fm_gam_figs1_col1: st.write("Variable importance (via permutation):") gam_varImp_table = model_full_results["GAM variable importance"] st.table(gam_varImp_table.style.set_precision(user_precision)) st.write("") with fm_gam_figs1_col2: st.write("") st.write("") st.write("") gam_varImp_plot_data = model_full_results["GAM variable importance"] gam_varImp_plot_data["Variable"] = gam_varImp_plot_data.index gam_varImp = alt.Chart(gam_varImp_plot_data, height = 200).mark_bar().encode( x = alt.X("mean", title = "variable importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "mean"] ) st.altair_chart(gam_varImp, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_GAM_varImp"))) st.write("") # Partial dependence plots st.write("Partial dependence plots:") fm_gam_figs3_col1, fm_gam_figs3_col2 = st.beta_columns(2) for pd_var in expl_var: pd_data_gam = pd.DataFrame(columns = [pd_var]) pd_data_gam[pd_var] = model_full_results["GAM partial dependence"][pd_var]["x_values"] pd_data_gam["Partial dependence"] = model_full_results["GAM partial dependence"][pd_var]["pd_values"] pd_data_gam["Lower 95%"] = model_full_results["GAM partial dependence"][pd_var]["lower_95"] pd_data_gam["Upper 95%"] = model_full_results["GAM partial dependence"][pd_var]["upper_95"] pd_chart_gam = alt.Chart(pd_data_gam, height = 200).mark_line(color = "darkred").encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Partial dependence", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["GAM partial dependence min/max"]["min"].min(), model_full_results["GAM partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Upper 95%", "Partial dependence", "Lower 95%"] + [pd_var] ) pd_data_ticks_gam = pd.DataFrame(columns = [pd_var]) pd_data_ticks_gam[pd_var] = df[pd_var] pd_data_ticks_gam["y"] = [model_full_results["GAM partial dependence min/max"]["min"].min()] * df.shape[0] pd_ticks_gam = alt.Chart(pd_data_ticks_gam, height = 200).mark_tick(size = 5, thickness = 1).encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), scale = alt.Scale(domain = [pd_data_ticks_gam[pd_var].min(), pd_data_ticks_gam[pd_var].max()])), y = alt.Y("y", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["GAM partial dependence min/max"]["min"].min(), model_full_results["GAM partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [pd_var] ) pd_data_gam_lower = pd.DataFrame(columns = [pd_var]) pd_data_gam_lower[pd_var] = model_full_results["GAM partial dependence"][pd_var]["x_values"] pd_data_gam_lower["Lower 95%"] = model_full_results["GAM partial dependence"][pd_var]["lower_95"] pd_chart_gam_lower = alt.Chart(pd_data_gam_lower, height = 200).mark_line(strokeDash=[1,1], color = "darkred").encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Lower 95%", title = "", scale = alt.Scale(domain = [model_full_results["GAM partial dependence min/max"]["min"].min(), model_full_results["GAM partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Lower 95%"] + [pd_var] ) pd_data_gam_upper = pd.DataFrame(columns = [pd_var]) pd_data_gam_upper[pd_var] = model_full_results["GAM partial dependence"][pd_var]["x_values"] pd_data_gam_upper["Upper 95%"] = model_full_results["GAM partial dependence"][pd_var]["upper_95"] pd_chart_gam_upper = alt.Chart(pd_data_gam_upper, height = 200).mark_line(strokeDash=[1,1], color = "darkred").encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Upper 95%", title = "", scale = alt.Scale(domain = [model_full_results["GAM partial dependence min/max"]["min"].min(), model_full_results["GAM partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Upper 95%"] + [pd_var] ) if expl_var.index(pd_var)%2 == 0: with fm_gam_figs3_col1: st.altair_chart(pd_ticks_gam + pd_chart_gam_lower + pd_chart_gam_upper + pd_chart_gam, use_container_width = True) if expl_var.index(pd_var)%2 == 1: with fm_gam_figs3_col2: st.altair_chart(pd_ticks_gam + pd_chart_gam_lower + pd_chart_gam_upper + pd_chart_gam, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_GAM_partDep"))) st.write("") # Further graphical output fm_gam_figs4_col1, fm_gam_figs4_col2 = st.beta_columns(2) with fm_gam_figs4_col1: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = model_full_results["GAM fitted"] observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with fm_gam_figs4_col2: st.write("Residuals vs Fitted:") residuals_fitted_data = pd.DataFrame() residuals_fitted_data["Residuals"] = model_full_results["residuals"]["Generalized Additive Models"] residuals_fitted_data["Fitted"] = model_full_results["GAM fitted"] residuals_fitted_data["Index"] = df.index residuals_fitted = alt.Chart(residuals_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(residuals_fitted_data["Fitted"]), max(residuals_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Residuals", title = "residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Residuals", "Fitted", "Index"] ) residuals_fitted_plot = residuals_fitted + residuals_fitted.transform_loess("Fitted", "Residuals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_fitted_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_GAM_obsResVsFit"))) # Download link for GAM output output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") model_full_results["GAM information"].to_excel(excel_file, sheet_name="regression_information") model_full_results["GAM statistics"].to_excel(excel_file, sheet_name="regression_statistics") model_full_results["GAM feature significance"].to_excel(excel_file, sheet_name="feature_significance") gam_varImp_table.to_excel(excel_file, sheet_name="variable_importance") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "GAM full model output__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download Generalized Additive Models full model output</a> """, unsafe_allow_html=True) st.write("") # RF specific output if any(a for a in sb_ML_alg if a == "Random Forest"): st.markdown("**Random Forest**") fm_rf_reg_col1, fm_rf_reg_col2 = st.beta_columns(2) # Regression information with fm_rf_reg_col1: st.write("Regression information:") st.table(model_full_results["RF information"].style.set_precision(user_precision)) # Regression statistics with fm_rf_reg_col2: st.write("Regression statistics:") rf_error_est = pd.DataFrame(index = ["MSE", "RMSE", "MAE", "Residual SE"], columns = ["Value"]) rf_error_est.loc["MSE"] = model_full_results["model comparison"].loc["MSE"]["Random Forest"] rf_error_est.loc["RMSE"] = model_full_results["model comparison"].loc["RMSE"]["Random Forest"] rf_error_est.loc["MAE"] = model_full_results["model comparison"].loc["MAE"]["Random Forest"] rf_error_est.loc["Residual SE"] = model_full_results["RF Residual SE"] st.table(rf_error_est.style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_RF_regStat"))) st.write("") # Variable importance (via permutation) fm_rf_figs1_col1, fm_rf_figs1_col2 = st.beta_columns(2) with fm_rf_figs1_col1: st.write("Variable importance (via permutation):") rf_varImp_table = model_full_results["RF variable importance"] st.table(rf_varImp_table.style.set_precision(user_precision)) st.write("") with fm_rf_figs1_col2: st.write("") st.write("") st.write("") rf_varImp_plot_data = model_full_results["RF variable importance"] rf_varImp_plot_data["Variable"] = rf_varImp_plot_data.index rf_varImp = alt.Chart(rf_varImp_plot_data, height = 200).mark_bar().encode( x = alt.X("mean", title = "variable importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "mean"] ) st.altair_chart(rf_varImp, use_container_width = True) st.write("") fm_rf_figs2_col1, fm_rf_figs2_col2 = st.beta_columns(2) # Feature importance with fm_rf_figs2_col1: st.write("Feature importance (impurity-based):") rf_featImp_table = model_full_results["RF feature importance"] st.table(rf_featImp_table.style.set_precision(user_precision)) st.write("") with fm_rf_figs2_col2: st.write("") st.write("") st.write("") rf_featImp_plot_data = model_full_results["RF feature importance"] rf_featImp_plot_data["Variable"] = rf_featImp_plot_data.index rf_featImp = alt.Chart(rf_featImp_plot_data, height = 200).mark_bar().encode( x = alt.X("Value", title = "feature importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "Value"] ) st.altair_chart(rf_featImp, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_RF_varImp"))) st.write("") # Partial dependence plots st.write("Partial dependence plots:") fm_rf_figs3_col1, fm_rf_figs3_col2 = st.beta_columns(2) for pd_var in expl_var: pd_data_rf = pd.DataFrame(columns = [pd_var]) pd_data_rf[pd_var] = model_full_results["RF partial dependence"][pd_var][1][0] pd_data_rf["Partial dependence"] = model_full_results["RF partial dependence"][pd_var][0][0] pd_chart_rf = alt.Chart(pd_data_rf, height = 200).mark_line(color = "darkred").encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Partial dependence", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["RF partial dependence min/max"]["min"].min(), model_full_results["RF partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Partial dependence"] + [pd_var] ) pd_data_ticks_rf = pd.DataFrame(columns = [pd_var]) pd_data_ticks_rf[pd_var] = df[pd_var] pd_data_ticks_rf["y"] = [model_full_results["RF partial dependence min/max"]["min"].min()] * df.shape[0] pd_ticks_rf = alt.Chart(pd_data_ticks_rf, height = 200).mark_tick(size = 5, thickness = 1).encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), scale = alt.Scale(domain = [pd_data_ticks_rf[pd_var].min(), pd_data_ticks_rf[pd_var].max()])), y = alt.Y("y", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["RF partial dependence min/max"]["min"].min(), model_full_results["RF partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [pd_var] ) if expl_var.index(pd_var)%2 == 0: with fm_rf_figs3_col1: st.altair_chart(pd_ticks_rf + pd_chart_rf, use_container_width = True) if expl_var.index(pd_var)%2 == 1: with fm_rf_figs3_col2: st.altair_chart(pd_ticks_rf + pd_chart_rf, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_RF_partDep"))) st.write("") # Further graphical output fm_rf_figs4_col1, fm_rf_figs4_col2 = st.beta_columns(2) with fm_rf_figs4_col1: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = model_full_results["RF fitted"] observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with fm_rf_figs4_col2: st.write("Residuals vs Fitted:") residuals_fitted_data = pd.DataFrame() residuals_fitted_data["Residuals"] = model_full_results["residuals"]["Random Forest"] residuals_fitted_data["Fitted"] = model_full_results["RF fitted"] residuals_fitted_data["Index"] = df.index residuals_fitted = alt.Chart(residuals_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(residuals_fitted_data["Fitted"]), max(residuals_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Residuals", title = "residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Residuals", "Fitted", "Index"] ) residuals_fitted_plot = residuals_fitted + residuals_fitted.transform_loess("Fitted", "Residuals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_fitted_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_RF_obsResVsFit"))) # Download link for RF output output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") model_full_results["RF information"].to_excel(excel_file, sheet_name="regression_information") rf_error_est.to_excel(excel_file, sheet_name="regression_statistics") rf_varImp_table.to_excel(excel_file, sheet_name="variable_importance") rf_featImp_table.to_excel(excel_file, sheet_name="feature_importance") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "RF full model output__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download Random Forest full model output</a> """, unsafe_allow_html=True) st.write("") # BRT specific output if any(a for a in sb_ML_alg if a == "Boosted Regression Trees"): st.markdown("**Boosted Regression Trees**") fm_brt_reg_col1, fm_brt_reg_col2 = st.beta_columns(2) # Regression information with fm_brt_reg_col1: st.write("Regression information:") st.table(model_full_results["BRT information"].style.set_precision(user_precision)) # Regression statistics with fm_brt_reg_col2: st.write("Regression statistics:") brt_error_est = pd.DataFrame(index = ["MSE", "RMSE", "MAE", "Residual SE"], columns = ["Value"]) brt_error_est.loc["MSE"] = model_full_results["model comparison"].loc["MSE"]["Boosted Regression Trees"] brt_error_est.loc["RMSE"] = model_full_results["model comparison"].loc["RMSE"]["Boosted Regression Trees"] brt_error_est.loc["MAE"] = model_full_results["model comparison"].loc["MAE"]["Boosted Regression Trees"] brt_error_est.loc["Residual SE"] = model_full_results["BRT Residual SE"] st.table(brt_error_est.style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_BRT_regStat"))) st.write("") # Training score (MSE vs. number of trees) st.write("Training score:") train_score = pd.DataFrame(index = range(model_full_results["BRT train score"].shape[0]), columns = ["Training MSE"]) train_score["Training MSE"] = model_full_results["BRT train score"] train_score["Trees"] = train_score.index+1 train_score_plot = alt.Chart(train_score, height = 200).mark_line(color = "darkred").encode( x = alt.X("Trees", title = "trees", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), scale = alt.Scale(domain = [train_score["Trees"].min(), train_score["Trees"].max()])), y = alt.Y("Training MSE", title = "training MSE", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Training MSE", "Trees"] ) st.altair_chart(train_score_plot, use_container_width = True) st.write("") # Variable importance (via permutation) fm_brt_figs1_col1, fm_brt_figs1_col2 = st.beta_columns(2) with fm_brt_figs1_col1: st.write("Variable importance (via permutation):") brt_varImp_table = model_full_results["BRT variable importance"] st.table(brt_varImp_table.style.set_precision(user_precision)) st.write("") with fm_brt_figs1_col2: st.write("") st.write("") st.write("") brt_varImp_plot_data = model_full_results["BRT variable importance"] brt_varImp_plot_data["Variable"] = brt_varImp_plot_data.index brt_varImp = alt.Chart(brt_varImp_plot_data, height = 200).mark_bar().encode( x = alt.X("mean", title = "variable importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "mean"] ) st.altair_chart(brt_varImp, use_container_width = True) st.write("") fm_brt_figs2_col1, fm_brt_figs2_col2 = st.beta_columns(2) # Feature importance with fm_brt_figs2_col1: st.write("Feature importance (impurity-based):") brt_featImp_table = model_full_results["BRT feature importance"] st.table(brt_featImp_table.style.set_precision(user_precision)) st.write("") with fm_brt_figs2_col2: st.write("") st.write("") st.write("") brt_featImp_plot_data = model_full_results["BRT feature importance"] brt_featImp_plot_data["Variable"] = brt_featImp_plot_data.index brt_featImp = alt.Chart(brt_featImp_plot_data, height = 200).mark_bar().encode( x = alt.X("Value", title = "feature importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "Value"] ) st.altair_chart(brt_featImp, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_BRT_varImp"))) st.write("") # Partial dependence plots st.write("Partial dependence plots:") fm_brt_figs3_col1, fm_brt_figs3_col2 = st.beta_columns(2) for pd_var in expl_var: pd_data_brt = pd.DataFrame(columns = [pd_var]) pd_data_brt[pd_var] = model_full_results["BRT partial dependence"][pd_var][1][0] pd_data_brt["Partial dependence"] = model_full_results["BRT partial dependence"][pd_var][0][0] pd_chart_brt = alt.Chart(pd_data_brt, height = 200).mark_line(color = "darkred").encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Partial dependence", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["BRT partial dependence min/max"]["min"].min(), model_full_results["BRT partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Partial dependence"] + [pd_var] ) pd_data_ticks_brt = pd.DataFrame(columns = [pd_var]) pd_data_ticks_brt[pd_var] = df[pd_var] pd_data_ticks_brt["y"] = [model_full_results["BRT partial dependence min/max"]["min"].min()] * df.shape[0] pd_ticks_brt = alt.Chart(pd_data_ticks_brt, height = 200).mark_tick(size = 5, thickness = 1).encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), scale = alt.Scale(domain = [pd_data_ticks_brt[pd_var].min(), pd_data_ticks_brt[pd_var].max()])), y = alt.Y("y", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["BRT partial dependence min/max"]["min"].min(), model_full_results["BRT partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [pd_var] ) if expl_var.index(pd_var)%2 == 0: with fm_brt_figs3_col1: st.altair_chart(pd_ticks_brt + pd_chart_brt, use_container_width = True) if expl_var.index(pd_var)%2 == 1: with fm_brt_figs3_col2: st.altair_chart(pd_ticks_brt + pd_chart_brt, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_BRT_partDep"))) st.write("") # Further graphical output fm_brt_figs4_col1, fm_brt_figs4_col2 = st.beta_columns(2) with fm_brt_figs4_col1: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = model_full_results["BRT fitted"] observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with fm_brt_figs4_col2: st.write("Residuals vs Fitted:") residuals_fitted_data = pd.DataFrame() residuals_fitted_data["Residuals"] = model_full_results["residuals"]["Boosted Regression Trees"] residuals_fitted_data["Fitted"] = model_full_results["BRT fitted"] residuals_fitted_data["Index"] = df.index residuals_fitted = alt.Chart(residuals_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(residuals_fitted_data["Fitted"]), max(residuals_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Residuals", title = "residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Residuals", "Fitted", "Index"] ) residuals_fitted_plot = residuals_fitted + residuals_fitted.transform_loess("Fitted", "Residuals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_fitted_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_BRT_obsResVsFit"))) # Download link for BRT output output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") model_full_results["BRT information"].to_excel(excel_file, sheet_name="regression_information") brt_error_est.to_excel(excel_file, sheet_name="regression_statistics") brt_varImp_table.to_excel(excel_file, sheet_name="variable_importance") brt_featImp_table.to_excel(excel_file, sheet_name="feature_importance") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "BRT full model output__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download Boosted Regression Trees full model output</a> """, unsafe_allow_html=True) st.write("") # ANN specific output if any(a for a in sb_ML_alg if a == "Artificial Neural Networks"): st.markdown("**Artificial Neural Networks**") fm_ann_reg_col1, fm_ann_reg_col2 = st.beta_columns(2) # Regression information with fm_ann_reg_col1: st.write("Regression information:") st.table(model_full_results["ANN information"].style.set_precision(user_precision)) # Regression statistics with fm_ann_reg_col2: st.write("Regression statistics:") ann_error_est = pd.DataFrame(index = ["MSE", "RMSE", "MAE", "Residual SE", "Best loss"], columns = ["Value"]) ann_error_est.loc["MSE"] = model_full_results["model comparison"].loc["MSE"]["Artificial Neural Networks"] ann_error_est.loc["RMSE"] = model_full_results["model comparison"].loc["RMSE"]["Artificial Neural Networks"] ann_error_est.loc["MAE"] = model_full_results["model comparison"].loc["MAE"]["Artificial Neural Networks"] ann_error_est.loc["Residual SE"] = model_full_results["ANN Residual SE"] if ann_finalPara["weight optimization solver"][0] != "lbfgs": ann_error_est.loc["Best loss"] = model_full_results["ANN loss"] st.table(ann_error_est.style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_ANN_regStat"))) st.write("") # Loss curve (loss vs. number of iterations (epochs)) if ann_finalPara["weight optimization solver"][0] != "lbfgs": st.write("Loss curve:") loss_curve = pd.DataFrame(index = range(len(model_full_results["ANN loss curve"])), columns = ["Loss"]) loss_curve["Loss"] = model_full_results["ANN loss curve"] loss_curve["Iterations"] = loss_curve.index+1 loss_curve_plot = alt.Chart(loss_curve, height = 200).mark_line(color = "darkred").encode( x = alt.X("Iterations", title = "iterations (epochs)", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), scale = alt.Scale(domain = [loss_curve["Iterations"].min(), loss_curve["Iterations"].max()])), y = alt.Y("Loss", title = "loss", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Loss", "Iterations"] ) st.altair_chart(loss_curve_plot, use_container_width = True) st.write("") fm_ann_figs1_col1, fm_ann_figs1_col2 = st.beta_columns(2) # Variable importance (via permutation) with fm_ann_figs1_col1: st.write("Variable importance (via permutation):") ann_varImp_table = model_full_results["ANN variable importance"] st.table(ann_varImp_table.style.set_precision(user_precision)) st.write("") with fm_ann_figs1_col2: st.write("") st.write("") st.write("") ann_varImp_plot_data = model_full_results["ANN variable importance"] ann_varImp_plot_data["Variable"] = ann_varImp_plot_data.index ann_varImp = alt.Chart(ann_varImp_plot_data, height = 200).mark_bar().encode( x = alt.X("mean", title = "variable importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "mean"] ) st.altair_chart(ann_varImp, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_ANN_varImp"))) st.write("") # Partial dependence plots st.write("Partial dependence plots:") fm_ann_figs2_col1, fm_ann_figs2_col2 = st.beta_columns(2) for pd_var in expl_var: pd_data_ann = pd.DataFrame(columns = [pd_var]) pd_data_ann[pd_var] = (model_full_results["ANN partial dependence"][pd_var][1][0]*(df[pd_var].std()))+df[pd_var].mean() pd_data_ann["Partial dependence"] = model_full_results["ANN partial dependence"][pd_var][0][0] pd_chart_ann = alt.Chart(pd_data_ann, height = 200).mark_line(color = "darkred").encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Partial dependence", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["ANN partial dependence min/max"]["min"].min(), model_full_results["ANN partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Partial dependence"] + [pd_var] ) pd_data_ticks_ann = pd.DataFrame(columns = [pd_var]) pd_data_ticks_ann[pd_var] = df[pd_var] pd_data_ticks_ann["y"] = [model_full_results["ANN partial dependence min/max"]["min"].min()] * df.shape[0] pd_ticks_ann = alt.Chart(pd_data_ticks_ann, height = 200).mark_tick(size = 5, thickness = 1).encode( x = alt.X(pd_var, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), scale = alt.Scale(domain = [pd_data_ticks_ann[pd_var].min(), pd_data_ticks_ann[pd_var].max()])), y = alt.Y("y", title = "partial dependence", scale = alt.Scale(domain = [model_full_results["ANN partial dependence min/max"]["min"].min(), model_full_results["ANN partial dependence min/max"]["max"].max()]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [pd_var] ) if expl_var.index(pd_var)%2 == 0: with fm_ann_figs2_col1: st.altair_chart(pd_ticks_ann + pd_chart_ann, use_container_width = True) if expl_var.index(pd_var)%2 == 1: with fm_ann_figs2_col2: st.altair_chart(pd_ticks_ann + pd_chart_ann, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_ANN_partDep"))) st.write("") # Further graphical output fm_ann_figs3_col1, fm_ann_figs3_col2 = st.beta_columns(2) with fm_ann_figs3_col1: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = model_full_results["ANN fitted"] observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with fm_ann_figs3_col2: st.write("Residuals vs Fitted:") residuals_fitted_data = pd.DataFrame() residuals_fitted_data["Residuals"] = model_full_results["residuals"]["Artificial Neural Networks"] residuals_fitted_data["Fitted"] = model_full_results["ANN fitted"] residuals_fitted_data["Index"] = df.index residuals_fitted = alt.Chart(residuals_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(residuals_fitted_data["Fitted"]), max(residuals_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Residuals", title = "residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Residuals", "Fitted", "Index"] ) residuals_fitted_plot = residuals_fitted + residuals_fitted.transform_loess("Fitted", "Residuals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_fitted_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_ANN_obsResVsFit"))) # Download link for ANN output output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") model_full_results["ANN information"].to_excel(excel_file, sheet_name="regression_information") ann_error_est.to_excel(excel_file, sheet_name="regression_statistics") ann_varImp_table.to_excel(excel_file, sheet_name="variable_importance") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "ANN full model output__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download Artificial Neural Networks full model output</a> """, unsafe_allow_html=True) st.write("") # Performance metrics across all models st.markdown("**Model comparison**") st.write("Performance metrics:") model_comp_sort_enable = (model_full_results["model comparison"]).transpose() st.write(model_comp_sort_enable.style.set_precision(user_precision)) if len(sb_ML_alg) > 1: if sett_hints: st.info(str(fc.learning_hints("mod_md_modCompPerf"))) st.write("") model_full_res = pd.DataFrame(index = ["min", "25%-Q", "median", "75%-Q", "max"], columns = sb_ML_alg) for m in sb_ML_alg: model_full_res.loc["min"][m] = model_full_results["residuals"][m].min() model_full_res.loc["25%-Q"][m] = model_full_results["residuals"][m].quantile(q = 0.25) model_full_res.loc["median"][m] = model_full_results["residuals"][m].quantile(q = 0.5) model_full_res.loc["75%-Q"][m] = model_full_results["residuals"][m].quantile(q = 0.75) model_full_res.loc["max"][m] = model_full_results["residuals"][m].max() st.write("Residuals distribution:") st.write((model_full_res).transpose().style.set_precision(user_precision)) if len(sb_ML_alg) > 1: if sett_hints: st.info(str(fc.learning_hints("mod_md_modCompRes"))) st.write("") # Download link for model comparison output output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") model_comp_sort_enable.to_excel(excel_file, sheet_name="performance_metrics") model_full_res.transpose().to_excel(excel_file, sheet_name="residuals_distribution") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Model comparison full model output__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download model comparison output</a> """, unsafe_allow_html=True) st.write("") #------------------------------------------------------------- # Binary response variable if response_var_type == "binary": # MLR specific output if any(a for a in sb_ML_alg if a == "Multiple Linear Regression"): st.markdown("**Multiple Linear Regression**") # Regression information fm_mlr_reg_col1, fm_mlr_reg_col2 = st.beta_columns(2) with fm_mlr_reg_col1: st.write("Regression information:") st.table(model_full_results["MLR information"].style.set_precision(user_precision)) # Regression statistics with fm_mlr_reg_col2: st.write("Regression statistics:") st.table(model_full_results["MLR statistics"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_regStat"))) st.write("") # Coefficients st.write("Coefficients:") st.table(model_full_results["MLR coefficients"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_coef"))) st.write("") # ANOVA st.write("ANOVA:") st.table(model_full_results["MLR ANOVA"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_ANOVA"))) st.write("") # Heteroskedasticity tests if MLR_intercept == "Yes": st.write("Heteroskedasticity tests:") st.table(model_full_results["MLR hetTest"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_hetTest"))) st.write("") # Variable importance (via permutation) fm_mlr_reg2_col1, fm_mlr_reg2_col2 = st.beta_columns(2) with fm_mlr_reg2_col1: st.write("Variable importance (via permutation):") mlr_varImp_table = model_full_results["MLR variable importance"] st.table(mlr_varImp_table.style.set_precision(user_precision)) st.write("") with fm_mlr_reg2_col2: st.write("") st.write("") st.write("") mlr_varImp_plot_data = model_full_results["MLR variable importance"] mlr_varImp_plot_data["Variable"] = mlr_varImp_plot_data.index mlr_varImp = alt.Chart(mlr_varImp_plot_data, height = 200).mark_bar().encode( x = alt.X("mean", title = "variable importance", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Variable", title = None, axis = alt.Axis(titleFontSize = 12, labelFontSize = 11), sort = None), tooltip = ["Variable", "mean"] ) st.altair_chart(mlr_varImp, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_varImp"))) st.write("") # Graphical output fm_mlr_figs_col1, fm_mlr_figs_col2 = st.beta_columns(2) with fm_mlr_figs_col1: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = model_full_results["MLR fitted"] observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with fm_mlr_figs_col2: st.write("Residuals vs Fitted:") residuals_fitted_data =
pd.DataFrame()
pandas.DataFrame
# Load libraries import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics import numpy as np from sklearn import tree from sklearn import preprocessing from sklearn.tree import export_graphviz import matplotlib.pyplot as plt #reading Data path = "house-votes-84.data" data=pd.read_csv(path,names=['Class Name','handicapped-infants','water-project-cost-sharing' ,'adoption-of-the-budget-resolution','physician-fee-freeze', 'el-salvador-aid','religious-groups-in-schools','anti-satellite-test-ban', 'aid-to-nicaraguan-contras','mx-missile','immigration','synfuels-corporation-cutback' ,'education-spending','superfund-right-to-sue','crime','duty-free-exports','export-administration-act-south-africa'], na_values=["?"]) colNames = list(data.columns) #replace missing vlue with most frequent value data.replace('?', np.NaN) for i in colNames: data[i] = data[i].fillna(data[i].mode()[0]) #Encoding Categorical data to numeric value data2 = data for i in colNames: #creating label encoder le = preprocessing.LabelEncoder() #convert string into numbers data2[i] = le.fit_transform(data2[i]) #fetarues X =data2.iloc[ : ,1:] #class y =data2.iloc[ : ,0:1] testSize = [0.6,0.5,0.4,0.3,0.2] maxAccuracy = 0 accuracyList = [] bestCLF = None iterationNumber = 0 testSizeIndex = 0 treeNodesCount=[] for ieration in range(1,4): List = [] nodes=[] for i in range(5): #split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testSize[i]) #create calssifier clf = tree.DecisionTreeClassifier() #fit the data clf = clf.fit(X_train,y_train) #predict test data y_predict = clf.predict(X_test) List.append(metrics.accuracy_score(y_test, y_predict)) nodes.append(clf.tree_.node_count) if List[i] > maxAccuracy: maxAccuracy = List[i] bestCLF = clf iterationNumber = ieration testSizeIndex = testSize[i] print("Accuracy with : ", testSize[i]," and run time number : ",ieration," = ",List[i]) print("Max Accuracy of ",ieration," st Time = ",max(List)) print("Min Accuracy of ",ieration," st Time = ",min(List)) print("Mean Accuracy of ",ieration,"'st Time = ",sum(List)/len(List)) print("Max Size of ",ieration,"'st Time = ",max(nodes)) print("Min Size of ",ieration,"'st Time = ",min(nodes)) print("Mean Size of ",ieration,"'st Time = ",int(sum(nodes)/len(nodes))) accuracyList.append(List) treeNodesCount.append(nodes) print("---------------------------------------------------------") print("The max accuracy of iteration:",iterationNumber," , testSize: ",testSizeIndex," = ",maxAccuracy) #plot Nodes number against Accuracy of final tree iteration SizesAndAccurcy = [] z = 0 for i in testSize: List = [] List.append(str(i)) for j in range(3): List.append(accuracyList[j][z]) z += 1 SizesAndAccurcy.append(List) fig,ax=plt.subplots(figsize=(7,5)) ax.plot(treeNodesCount[iterationNumber-1],accuracyList[iterationNumber-1]) ax.set_xlabel('Nodes Number') ax.set_ylabel('Accuracy') ax.set_title('Nodes Number vs Accuracy') plt.show() #plot Accuracy against test size of each iteration df =
pd.DataFrame(SizesAndAccurcy, columns=['Test Size', 'Itreation 1', 'Itreation 2', 'Itreation 3'])
pandas.DataFrame
from datetime import timedelta from math import ceil import pandas as pd from pyparsing import col import scipy.sparse from sklearn.decomposition import PCA from sklearn.feature_extraction import DictVectorizer from sklearn.neighbors import LocalOutlierFactor from sklearn.preprocessing import StandardScaler, MinMaxScaler from .lib import Lib from .vectorizer import Vectorizer from wordcloud import WordCloud, STOPWORDS from matplotlib import pyplot as plt from sklearn.preprocessing import minmax_scale from sklearn.compose import ColumnTransformer from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator as SG from sklearn.datasets import load_iris, load_boston from collections import Counter from .chart import Chart import numpy as np import nltk from nltk.tokenize import sent_tokenize, word_tokenize class DataFrame: """ """ __vectorizer = None __generator = None def __init__(self, data_link=None, columns_names_as_list=None, data_types_in_order=None, delimiter=',', data_type='csv', has_header=True, line_index=None, skip_empty_line=False, sheet_name='Sheet1'): if data_link is not None: if data_type == 'csv': if has_header is True: self.__dataframe = pd.read_csv(data_link, encoding='utf-8', delimiter=delimiter, low_memory=False, error_bad_lines=False, skip_blank_lines=False) else: self.__dataframe = pd.read_csv(data_link, encoding='utf-8', delimiter=delimiter, low_memory=False, error_bad_lines=False, skip_blank_lines=False, header=None) elif data_type == 'json': self.__dataframe =
pd.read_json(data_link, encoding='utf-8')
pandas.read_json
# -*- coding: utf-8 -*- """ Created on Sun May 22 10:30:01 2016 SC process signups functions @author: tkc """ #%% import pandas as pd import numpy as np from datetime import datetime, date import re, glob, math from openpyxl import load_workbook # writing to Excel from PIL import Image, ImageDraw, ImageFont import tkinter as tk import pkg.SC_config as cnf # _OUTPUT_DIR and _INPUT_DIR #%% def combinephrases(mylist): ''' Combine list of phrases using commas & and ''' if len(mylist)==1: return str(mylist[0]) elif len(mylist)==2: tempstr=str(mylist[0])+ ' and ' +str(mylist[1]) return tempstr else: rest=mylist[:-1] rest=[str(i) for i in rest] last=mylist[-1] tempstr=', '.join(rest) +' and ' + str(last) return tempstr#%% def writetoxls(df, sheetname, xlsfile): ''' Generic write of given df to specified tab of given xls file ''' book=load_workbook(xlsfile) writer=pd.ExcelWriter(xlsfile, engine='openpyxl', datetime_format='mm/dd/yy', date_format='mm/dd/yy') writer.book=book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) df.to_excel(writer,sheet_name=sheetname,index=False) # this overwrites existing file writer.save() # saves xls file with all modified data return def loadtransfers(df, signups): ''' Load transferred players and add to signups (then run player ID); transfers added as normal players but need fake billing entries ''' df=df.rename(columns={'Fname':'First','Lname':'Last','Street':'Address','Parish':'Parish of Registration'}) df=df.rename(columns={'Phone':'Phone1','Birthdate':'DOB','Sex':'Gender','Open/Closed':'Ocstatus'}) # Replace Girl, Boy with m f df.loc[:,'Gender']=df.Gender.replace('F','Girl') df.loc[:,'Gender']=df.Gender.replace('M','Boy') # Manually enter sport print('Enter sport for transferred players') sport=input() df.loc[:,'Sport']=sport df=df.dropna(subset=['First']) # remove blank rows if present mycols=[col for col in df if col in signups] df=df[mycols] df=formatnamesnumbers(df) # place date/transfer in timestamp mystamp=datetime.strftime(datetime.now(),'%m/%d/%y')+' transfer' df.loc[:,'Timestamp']=mystamp mycols=signups.columns signups=signups.append(df, ignore_index=True) signups=signups[mycols] return signups def packagetransfers(teams, Mastersignups, famcontact, players, season, year, acronyms, messfile): ''' Package roster and contact info by sport- school and save as separate xls files also generate customized e-mails in single log file (for cut and paste send to appropriate persons) args: teams - loaded team list mastersignups - signups w/ team assignment players -player DB famcontact - family contact db season - Fall, Winter or Spring year - starting sports year (i.e. 2019 for 2019-20 school year) acronyms - school/parish specific abbreviations messfile - e-mail message template w/ blanks returns: ''' teams=teams[pd.notnull(teams['Team'])] transferteams=np.ndarray.tolist(teams[teams['Team'].str.contains('#')].Team.unique()) transSU=Mastersignups[Mastersignups['Team'].isin(transferteams)] # ensure that these are from correct season/year sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) transSU=transSU.loc[(transSU['Sport'].isin(sportlist)) & (transSU['Year']==year)] # season is not in mastersignups... only individual sports # get family contact info from famcontacts transSU=pd.merge(transSU, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # get school from players.csv transSU=pd.merge(transSU, players, how='left', on=['Plakey'], suffixes=('','_r2')) # get division from Teams xls (for roster) transSU=pd.merge(transSU, teams, how='left', on=['Team'], suffixes=('','_r3')) # effectively adds other team info for roster toall players transSU.loc[:,'Role']='Player' # add column for role # transSU['Open/Closed']='Closed' # Sort by grade pre-split transSU.loc[:,'Grade']=transSU.Grade.replace('K',0) transSU.loc[:,'Grade']=transSU.Grade.apply(int) transSU=transSU.sort_values(['Grade'], ascending=True) transSU.loc[:,'Grade']=transSU.Grade.replace(0,'K') # replace K with zero to allow sorting # Column for sorting by transferred to school transSU.loc[:,'Transchool']=transSU['Team'].str.split('#').str[0] grouped=transSU.groupby(['Sport','Transchool']) for [sport, school], group in grouped: # prepare roster tab xlsname=cnf._OUTPUT_DIR+'\\Cabrini_to_'+school+'_'+sport+'_'+str(year)+'.xlsx' writer=pd.ExcelWriter(xlsname, engine='openpyxl') Transferroster=organizeroster(group) Transferroster=Transferroster.sort_values(['Team', 'Sex', 'Grade'], ascending=True) Transferroster=replaceacro(Transferroster,acronyms) Transferroster.to_excel(writer,sheet_name='roster',index=False) # prep contacts tab mycols=['First', 'Last', 'Grade', 'Gender', 'School', 'Phone1', 'Text1','Email1', 'Phone2', 'Text2', 'Email2', 'Pfirst1', 'Plast1', 'Pfirst2', 'Plast2', 'Team'] Transfercontacts=group[mycols] Transfercontacts.to_excel(writer, sheet_name='contacts', index=False) writer.save() # Now generate list of e-mails for all schools/directors logfile='transfers_director_emails_log.txt' with open(logfile,'w+') as emaillog: # Read generic file to sport director with open(messfile, 'r') as file: blankmessage=file.read() for [sport, school], group in grouped: plagroup=group.groupby(['Grade', 'Gender']) platypes=[] # list of # of players by grade, gender gradedict={'K':'K', 1:'1st', 2:'2nd',3:'3rd',4:'4th',5:'5th',6:'6th', 7:'7th',8:'8th'} genderdict={'f':'girls', 'F':'girls','m':'boys','M':'boys'} for [grade, gender], group in plagroup: numplays=str(int(group['Grade'].count())) grname=gradedict.get(grade) genname=genderdict.get(gender) platypes.append(numplays+' '+grname+' '+genname) plalist=combinephrases(platypes) thismess=blankmessage.replace('$SCHOOL', school) thismess=thismess.replace('$SPORT', sport) thismess=thismess.replace('$PLALIST', plalist) emaillog.write(thismess) emaillog.write('\n\n') return def findcards(): '''Search ID cards folder and return player # and file link cards resized to 450x290 pix jpg in photoshop (scripts-image processor) keys are either player number as string or coach CYC ID, vals are links to files''' cardlist=glob.glob('%s\\IDcards\\*.jpg' %cnf._OUTPUT_DIR, recursive=True) # construct list of [card #, filename] nums=[i.split('\\')[-1] for i in cardlist] nums=[i.split('_')[0] if '_' in i else i.split('--')[0] for i in nums ] cards={} # dict for card numbers/filenames for i,num in enumerate(nums): cards.update({num: cardlist[i]}) return cards def makethiscard(IDlist, team): ''' Passes link to ID card or player name (if missing) From team's list of player numbers (in alphabetical order), find/open card links, and create single image''' # make the master image and determine image array size margin=10 # pix on all sides if len(IDlist)<11: # use 2 x 5 array (horiz) wide=2 high=5 elif len(IDlist)<13: # 4w x 3 h (vert) wide=4 high=3 elif len(IDlist)<22: # 3x by 5-7 high (horiz); max 21 wide=3 high=math.ceil(len(IDlist)/3) else: # more than 21 ... yikes wide=3 high=math.ceil(len(IDlist)/3) cardimage = Image.new('RGB', (450*wide+2*margin, 300*high+2*margin), "white") # blank image of correct size draw=ImageDraw.Draw(cardimage) # single draw obj for adding missing card names ttfont=ImageFont.truetype('arial.ttf', size=36) for i,fname in enumerate(IDlist): row=i//high # remainder is row col=i%high # mod is correct column xpos=margin+row*450 ypos=margin+col*300 try: thiscard=Image.open(fname) thiscard=thiscard.resize((450, 300), Image.ANTIALIAS) cardimage.paste(im=thiscard, box=(xpos, ypos)) # paste w/ xpos,ypos as upper left except: # occurs when "first last" present instead of file name/path # blankcard=Image.new('RGB', (450, 300)) # make blank image as placeholder draw.text((xpos+50,ypos+100),fname,font=ttfont, fill="red") return cardimage ''' TESTING i=0 team=teamlist[i] ''' def makeCYCcards(df, players, teams, coaches, season, year, **kwargs): ''' From mastersignups and teams, output contact lists for all teams/all sports separately team assignments must be finished args: df -- mastersignups dataframe players - player info dataframe teams - this year's teams csv coaches - full coach CYC info list season - Fall, Winter or Spring kwargs: showmissing - True (shows missing player's name); False- skip missing player otherSchools - default False (also make card sheets for transferred teams/players) kwargs={'showmissing':False} missing = makeCYCcards(Mastersignups, players, teams, coaches, season, year, **{'showmissing':True} ) missing = makeCYCcards(Mastersignups, players, teams, coaches, season, year, **{'showmissing':False} ) ''' # Slice by sport: Basketball (null for winter?), Soccer, Volleyball, Baseball, T-ball, Softball, Track) cards=findcards() # dictionary with number: filename combo for existing CYC cards df=df[(df['Year']==year)] df=df.reset_index(drop=True) sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) df=df[df['Sport'].isin(sportlist)] # season is not in mastersignups... only individual sports # Make list of teams that need cards (all track and others >1st grade) def processGrade(val): if val=='K': return 0 else: return int(val) teams.loc[:,'Grade'] = teams['Grade'].apply(lambda x:processGrade(x)) if not kwargs.get('otherSchools', False): # all transfer teams with contain # (e.g. SMOS#3G) so remove these # dropped by default teams = teams[~teams['Team'].str.contains('#')] # need track teams or any team from grades 2+ cardTeamList= teams[ (teams['Grade']>1) | (teams['Sport']=='Track') ]['Team'].unique() df=df[ df['Team'].isin(cardTeamList) ] df=df.sort_values(['Last']) # plakeys as string will be easiest for below matching df.loc[:,'Plakey']=df['Plakey'].astype(int) df.loc[:,'Plakey']=df['Plakey'].astype(str) def getName(gr, pk): # get name from plakey as string match=gr[gr['Plakey']==pk] name=match.iloc[0]['First'] + ' ' + match.iloc[0]['Last'] return name teamgrouped = df.groupby(['Team']) missinglist=[] # list of plakeys with missing card for team, gr in teamgrouped: # keys in card dict are strings IDlist = [str(int(i)) for i in gr.Plakey.unique()] missinglist.extend([i for i in gr.Plakey.unique() if i not in cards.keys() ]) if not kwargs.get('showmissing', False): # Shows only valid cards, drops missing names IDlist = [ cards.get(i) for i in IDlist if i in cards.keys() ] filename='Cards_'+ team +'.jpg' else: # show cards and missing name when card image not in IDcards folder IDlist = [cards.get(i) if i in cards.keys() else getName(gr, i) for i in IDlist ] filename='Cards_'+ team +'_all.jpg' # get team's coaches IDlist.extend(getcoachIDs(team, teams, coaches, cards)) # add coach ID image file or first/last if missing cardimage =makethiscard(IDlist, team) # directly saved # save the card file cardimage.save(cnf._OUTPUT_DIR+'\\'+filename) missingcards=players[players['Plakey'].isin(missinglist)] missingcards=missingcards.sort_values(['Grade','Last']) return missingcards def getcoachIDs(team, teams, coaches, cards): ''' Returns CYC IDs for all team's coaches ''' thisteam=teams[teams['Team']==team] IDlist=[] if len(thisteam)!=1: print(team, 'not found in current teams list') return IDlist # blank list thisteam=thisteam.dropna(subset=['Coach ID']) if len(thisteam)!=1: print('Coach ID not found for', team) return IDlist # blank list if thisteam.iloc[0]['Coach ID']!='': # possibly blank thisID=thisteam.iloc[0]['Coach ID'].strip() if thisID in cards: IDlist.append(cards.get(thisID,'')) # file path to this coach's ID else: # get first/last thiscoach=coaches[coaches['Coach ID']==thisID] if len(thiscoach)==1: IDlist.append(thiscoach.iloc[0]['Fname']+' '+thiscoach.iloc[0]['Lname']) else: print("Couldn't find coach ", thisID) thisteam=thisteam.dropna(subset=['AssistantIDs']) if len(thisteam)==1: # grab asst IDs if they exist asstIDs=thisteam.iloc[0]['AssistantIDs'] asstIDs=[str(s).strip() for s in asstIDs.split(",")] for i, asstID in enumerate(asstIDs): if asstID in cards: IDlist.append(cards.get(asstID,'')) # found assistant coaches ID card image else: # can't find ... get assistant first last thisasst=coaches[coaches['Coach ID']==asstID] # matching asst coach row if len(thisasst)==1: IDlist.append(thisasst.iloc[0]['Fname']+' '+thisasst.iloc[0]['Lname']) else: print("Couldn't find coach ", asstID) return IDlist def autocsvbackup(df, filename, newback=True): ''' Pass df (i.e players for backup and basename (i.e. "family_contact" for file.. finds list of existing backups and keeps ones of certain ages based on targetdates list; can't remember why was newback=False was needed (always true here to make new backup) ''' # TODO fix this! pass return def parseDate(val): ''' Conversion of date string to datetime.date (always header line 2 40:60) Possible date formats: 20180316 (newer style) or 03/15/2018 (older style) For NGA files Date format changed from 03/15/2018 to 20180316 (on jday 75 in 2018) time format: 221100 or 22:11:00 (sometimes w/ UTC) not terribly concerned w/ time possible date formats: 0) 03/01/2018, 3/1/2018, 3/1/18 or 03/01/18 2) 1/1/19 2) 2019-1-1 3) 2019-01-01 ''' if not isinstance(val, str): return val else: if ' ' in val: # Remove time substring (but will fail for 3 Oct 2019) val=val.split(' ')[0] # strip time substring if present patterns=['\d{1,2}/\d{1,2}/\d{2,4}', '\d{4}-\d{1,2}-\d{1,2}', '\d{1,2}-\d{1,2}-\d{4}'] for i, patt in enumerate(patterns): match=re.search(r'%s' %patt, val) if match: if i==0: # Extract 03/16/2018 (or rarely 28/10/2019 style) try: (mo,dy,yr)=[int(i) for i in val.split('/')] if yr<100 and len(str(yr))==2: # handle 2 digit year yr=int('20'+str(yr)) if mo < 13: # normal US version (month first) return datetime(yr, mo, dy).date() # handle day month reversal elif dy<13: # possible month day reverse print('Month and day reverse for %s' %val) return datetime(yr, dy, mo).date() # Assume month/day switch except: print('Problem extracting date from ', val) return None if i==1: # extract 2017-01-01 style (year first) try: (yr,mo,dy)=[int(i) for i in val.split('-')] if mo < 13: # normal US version (month first) return datetime(yr, mo, dy).date() # handle day month reversal elif dy<13: # possible month day reverse print('Month and day reverse for %s' %val) return datetime(yr, dy, mo).date() # Assume month/day switch except: print('Problem extracting date from ', val) return val if i==2: # extract 01-01-2019 style (year last) try: (mo,dy,yr)=[int(i) for i in val.split('-')] if mo < 13: # normal US version (month first) return datetime(yr, mo, dy).date() # handle day month reversal elif dy<13: # possible month day reverse print('Month and day reverse for %s' %val) return datetime(yr, dy, mo).date() # Assume month/day switch except: print('Problem extracting date from ', val) return val def loadProcessPlayerInfo(): '''Loads and processes players & family contacts (but not signup file) args: gsignups -- google signups season - 'Fall', 'Winter', 'Spring year - 4 digit int (uses fall value all school year.. ie. 2018-19 year is always 2018) ''' players=pd.read_csv(cnf._INPUT_DIR + '\\players.csv', encoding='cp437') # load existing player data (need to find correct DOB format) players.loc[:,'Grade']=players.Grade.replace('K',0) players.loc[:,'Grade']=players.Grade.replace('pK',0) # just make them 0s for now players.loc[:,'Grade']=players.Grade.astype(int) # TODO use fixdates if players imports as string (various formats possible) # players['DOB']=players['DOB'].apply(lambda x: fixDates(x)) if not isinstance(players.DOB[0], pd.Timestamp):# sometimes direct import to pd timestamp works, other times not players.loc[:,'DOB']=players.DOB.apply(lambda x: parseDate(x)) famcontact=pd.read_csv(cnf._INPUT_DIR + '\\family_contact.csv', encoding='cp437') # load family contact info famcontact=formatnamesnumbers(famcontact) return players, famcontact def loadProcessGfiles(gsignups, season, year): '''Loads and processes players, family contacts and signup file, gets active season and year args: gsignups -- google signups season - 'Fall', 'Winter', 'Spring year - 4 digit int (uses fall value all school year.. ie. 2018-19 year is always 2018) ''' players=pd.read_csv(cnf._INPUT_DIR + '\\players.csv', encoding='cp437') # load existing player data (need to find correct DOB format) players.loc[:,'Grade']=players.Grade.replace('K',0) players.loc[:,'Grade']=players.Grade.replace('pK',0) # just make them 0s for now players.loc[:,'Grade']=players.Grade.astype(int) # TODO use fixdates if players imports as string (various formats possible) # players['DOB']=players['DOB'].apply(lambda x: fixDates(x)) if not isinstance(players.DOB[0], pd.Timestamp):# sometimes direct import to pd timestamp works, other times not players.loc[:,'DOB']=players.DOB.apply(lambda x: parseDate(x)) famcontact=pd.read_csv(cnf._INPUT_DIR + '\\family_contact.csv', encoding='cp437') # load family contact info if season=='Winter': gsignups['Sport']='Basketball' # TODO determine where multiple sports converted to separate lines duplicated=gsignups[gsignups.duplicated(subset=['First', 'Last','Grade','Sport'])] if len(duplicated)>0: print('Remove duplicate signups for %s' %", ".join(duplicated.Last.unique().tolist())) gsignups=gsignups.drop_duplicates(subset=['First', 'Last','Grade','Sport']) gsignups.loc[:,'Sport']=gsignups['Sport'].str.replace('Volleyball','VB') #gsignups.loc[:,'Sport']=gsignups.loc[:,'Sport'].str.replace('Volleyball','VB').copy() #gsignups.loc[:,'Sport']=gsignups['Sport'].replace({'Volleyball':'VB'}, regex=True).copy() missing=[i for i in ['Famkey','Plakey'] if i not in gsignups.columns] for col in missing: # add blank vals gsignups.loc[gsignups.index, col]=np.nan # convert assorted DOB strings to datetime.date if not isinstance(gsignups.DOB[0], pd.Timestamp):# sometimes direct import to pd timestamp works, other times not gsignups.loc[:,'DOB']=gsignups.DOB.apply(lambda x: parseDate(x)) # Get year from signup file name outputduplicates(gsignups) # quick check of duplicates output in console window (already removed from signups) gsignups=formatnamesnumbers(gsignups) # format phone numbers, names to title case, standardize schools, etc. famcontact=formatnamesnumbers(famcontact) def processGkey(val): ''' Some plakey/famkey copied to drive... must convert nan(float), whitespace or number as string to either nan or int ''' if isinstance(val, str): val=''.join(val.split(' ')) if val=='': return np.nan else: try: return int(val) except: return np.nan else: return np.nan # ensure gsignups has only int or nan (no whitespace) gsignups.loc[:,'Plakey']=gsignups['Plakey'].apply(lambda x: processGkey(x)) gsignups.loc[:,'Famkey']=gsignups['Famkey'].apply(lambda x: processGkey(x)) return players, famcontact, gsignups def loadprocessfiles(signupfile): '''Loads and processes players, family contacts and signup file, gets active season and year ''' players=pd.read_csv(cnf._INPUT_DIR + '\\players.csv', encoding='cp437') # load existing player data (need to find correct DOB format) players.loc[:,'Grade']=players.Grade.replace('K',0) players.loc[:,'Grade']=players.Grade.replace('pK',0) # just make them 0s for now players.loc[:,'Grade']=players.Grade.astype(int) # TODO use fixdates if players imports as string (various formats possible) # players['DOB']=players['DOB'].apply(lambda x: fixDates(x)) if type(players.DOB[0])!=pd.Timestamp: # sometimes direct import to pd timestamp works, other times not try: players.loc[:'DOB']=parseDate(players.DOB) # return properly converted date columns series except: print('Failure converting player DOB to datetime/timestamp') famcontact=pd.read_csv(cnf._INPUT_DIR + '\\family_contact.csv', encoding='cp437') # load family contact info # read this season's sports signup file and rename columns if signupfile.endswith('.csv'): SUraw=pd.read_csv(signupfile) elif 'xls' in signupfile: try: SUraw=pd.read_excel(signupfile, sheetname='Raw') # may or may not have plakey/famkey except: SUraw=pd.read_excel(signupfile) if SUraw.shape[1]==30 and 'Plakey' in SUraw.columns: SUraw.columns=['Timestamp','First','Last','DOB','Gender','School','Grade', 'Address','Zip','Parish','Sport','AltPlacement','Ocstatus','Pfirst1', 'Plast1','Phone1','Text1','Email','Othercontact','Coach','Pfirst2','Plast2', 'Phone2','Text2','Email2','Coach2','Unisize','Unineed','Plakey','Famkey'] elif SUraw.shape[1]==28 and 'Plakey' in SUraw.columns: SUraw.columns=['Timestamp','First','Last','DOB','Gender','School','Grade', 'Address','Zip','Parish','Sport','AltPlacement','Ocstatus','Pfirst1', 'Plast1','Phone1','Text1','Email','Othercontact','Coach','Pfirst2','Plast2', 'Phone2','Text2','Email2','Coach2','Plakey','Famkey'] elif SUraw.shape[1]==26 and 'Plakey' not in SUraw.columns: # Raw value without plakey and famkey SUraw.columns=['Timestamp','First','Last','DOB','Gender','School', 'Grade','Address','Zip','Parish','Sport','AltPlacement','Ocstatus', 'Pfirst1','Plast1','Phone1','Text1','Email','Othercontact','Coach', 'Pfirst2','Plast2','Phone2','Text2','Email2','Coach2'] elif SUraw.shape[1]==28 and 'Plakey' not in SUraw.columns: # Raw value without plakey and famkey SUraw.columns=['Timestamp','First','Last','DOB','Gender','School', 'Grade','Address','Zip','Parish','Sport','AltPlacement','Ocstatus', 'Pfirst1','Plast1','Phone1','Text1','Email','Othercontact','Coach', 'Pfirst2','Plast2','Phone2','Text2','Email2','Coach2','Unisize','Unineed'] SUraw.loc[SUraw.index,'Plakey']=np.nan # add if absent SUraw.loc[SUraw.index,'Famkey']=np.nan signups=SUraw.drop_duplicates(subset=['First', 'Last','Grade','Sport']) signups['Sport'].replace({'Volleyball':'VB'},inplace=True, regex=True) # Get year from signup file name season=re.match(r'(\D+)', signupfile).group(0) # season at string beginning followed by year (non-digit) if '\\' in season: # remove file path problem season=season.split('\\')[-1] year=int(re.search(r'(\d{4})', signupfile).group(0)) # full year should be only number string in signups file outputduplicates(SUraw) # quick check of duplicates output in console window (already removed from signups) signups=formatnamesnumbers(signups) # format phone numbers, names to title case, standardize schools, etc. famcontact=formatnamesnumbers(famcontact) return players, famcontact, signups, season, year def findavailablekeys(df, colname, numkeys): '''Pass df and colname, return a defined number of available keys list used for players, families, signups, etc. ''' # list comprehension allnums=[i for i in range(1,len(df))] usedkeys=df[colname].unique() usedkeys=np.ndarray.tolist(usedkeys) availkeys=[i for i in allnums if i not in usedkeys] if len(availkeys)<numkeys: # get more keys starting at max+1 needed=numkeys-len(availkeys) for i in range(0,needed): nextval=int(max(usedkeys)+1) # if no interior vals are available find next one availkeys.append(nextval+i) availkeys=availkeys[:numkeys] # truncate and only return the requested number of needed keys return availkeys def organizeroster(df): ''' Renaming, reorg, delete unnecessary columns for CYC roster output already split by sport and year''' df=df.rename(columns={'First':'Fname','Last':'Lname','Address':'Street','Parish_registration':'Parish of Registration'}) df=df.rename(columns={'Parish_residence':'Parish of Residence','Phone1':'Phone','DOB':'Birthdate','Gender':'Sex'}) df=df.rename(columns={'Email1':'Email'}) # replace Girl, Boy with m f df.loc[:,'Sex']=df.Sex.replace('Girl','F').replace('Boy','M') df.loc[:,'Sex']=df.Sex.str.upper() # ensure uppercase # Convert date format to 8/25/2010 string format mycols=['Fname', 'Lname', 'Street', 'City', 'State', 'Zip', 'Phone', 'Email', 'Birthdate', 'Sex', 'Role', 'Division', 'Grade', 'Team', 'School', 'Parish of Registration', 'Parish of Residence', 'Coach ID'] df=df[mycols] # put back in desired order df=df.sort_values(['Team']) return df '''TESTING row=tempplay.iloc[7] signups=signups[signups['Last']=='Elston'] ''' def processdatachanges(signups, players, famcontact, year): '''Pass SC signups subset from google drive, update address for more up-to-date contact information, new address, etc. must start here if troubleshooting args: signups -- online signups file (normally google drive) players - player DOB, grade, etc famcontact- family contact info year - sports year (int); e.g. 2019 for 2019-20 school year ''' # Using all entries from signups (manual and gdrive) # Updates from paper signups should be done directly to famcontact and players csv files (skip entirely) ''' signups.Timestamp=pd.to_datetime(signups.Timestamp, errors='coerce') # converts to naT or timestamp gdsignups=signups.dropna(subset=['Timestamp']) # drops manual entries (no google drive timestamp) ''' # merge w/ players and update grade, recalc grade adjustment, and school # must use left merge to keep correct indices from players df (inner causes reindexing) players=players.reset_index(drop=True) tempplay=pd.merge(players, signups, how='inner', on=['Plakey'], suffixes=('','_n')) tempplay=tempplay.dropna(subset=['Gender_n']) # this drops all without a google drive entry for index, row in tempplay.iterrows(): upkwargs={} # Skip approval for grade updates if row.Grade!=row.Grade_n: # grade discrepancy between players.csv and current signup match=players[players['Plakey']==row.Plakey] if len(match)==1: thisind=match.index[0] # update player grade (no approval) players.loc[thisind,'Grade']=row.Grade_n # set to new value from current signup file print (row.First," ",row.Last," grade changed to ", row.Grade_n) if row.School!=row.School_n and str(row.School_n)!='nan': upkwargs.update({'school':True}) # Check for DOB inconsistency between google drive and players.csv if row.DOB!=row.DOB_n: # don't change grade adjustment if DOB discrepancy if row.DOB_n.year!=year: # skip birthday instead of DOB error upkwargs.update({'DOB':True}) else: # recalculate grade adjustment # Direct adjustment to gradeadj in players (if indicated) players=updategradeadjust(row, players, year) if 'school' in upkwargs or 'DOB' in upkwargs: # Interactively approve school or DOB changes players=updateplayer_tk(row, players, **upkwargs) autocsvbackup(players,'players', newback=True) # run autobackup script outname=cnf._OUTPUT_DIR+'\\players.csv' players.to_csv(outname,index=False) # direct save of changes from google drive info # now update new info into family contacts # faminfo=gdsignups.drop_duplicates(subset=['Famkey']) # only process first kid from family faminfo=signups.drop_duplicates(subset=['Famkey']) famcontact=prepcontacts(famcontact) faminfo=prepcontacts(faminfo) tempfam=pd.merge(famcontact, faminfo, how='inner', on=['Famkey'], suffixes=('','_n')) # same indices as famcontact tempfam=tempfam.dropna(subset=['Zip_n']) # drops those without timestamped google drive entry for index,row in tempfam.iterrows(): # Update/reshuffle phone, email, parent list, parish of registration (direct to famcontact) famcontact=update_contact(row, famcontact) # update/reshuffle phone,text (list of lists) autocsvbackup(famcontact,'family_contact', newback=True) # run autobackup script outname=cnf._INPUT_DIR+'\\family_contact.csv' famcontact.to_csv(outname, index=False) return players, famcontact def updatefamcon_tk(row, famcontact, **upkwargs): ''' Interactive approval of family contact changes changes directly made to famcontacts (but not yet autosaved) upkwargs: phone, email, address ''' root = tk.Tk() root.title('Update family contact info') choice=tk.StringVar() # must be define outside of event called functions rownum=0 mytxt='Family: '+row.Family+' # '+str(row.Plakey) tk.Label(root, text=mytxt).grid(row=rownum, column=0) tk.Label(root, text='Deselect to remove').grid(row=rownum, column=1) rownum+=1 # Use listbox of common schools? if 'parlist' in upkwargs: # indicates new parent found colnum=0 parlist=upkwargs.get('parlist',[]) # Checkboxes to add new parent if 'newpar1' in upkwargs: addpar1=tk.BooleanVar() addpar1.set(True) try: mytext='Add parent: '+ (' '.join(upkwargs.get('newpar1',[]))+'?') except: print('Error adding parent 1', ) mytext='' tk.Checkbutton(root, variable=addpar1, text=mytext).grid(row=rownum, column=colnum) colnum+=1 if 'newpar2' in upkwargs: addpar2=tk.BooleanVar() addpar2.set(True) try: mytext='Add parent: '+ (' '.join(upkwargs.get('newpar2',[]))+'?') except: mytext='' tk.Checkbutton(root, variable=addpar2, text=mytext).grid(row=rownum, column=colnum) colnum+=1 # Checkbutton and boolvar for each parent (default true) pbools=[] # List of bools for parent inclusion for i in range(0,len(parlist)): pbools.append(tk.BooleanVar()) pbools[i].set(True) tempstr=parlist[i] tk.Checkbutton(root, variable=pbools[i], text=tempstr).grid(row=rownum, column=colnum) rownum+=1 rownum+=1 if 'emails' in upkwargs: # indicates new parent found emaillist=upkwargs.get('emails',[]) # Checkboxes to add new parent colnum=0 if 'email1' in upkwargs: addemail1=tk.BooleanVar() addemail1.set(True) email1=tk.StringVar() email1.set(upkwargs.get('email1','')) tk.Checkbutton(root, variable=addemail1, text='Add new email1').grid(row=rownum, column=colnum) rownum+=1 tk.Entry(root, textvariable=email1).grid(row=rownum, column=colnum) rownum+=1 if 'email2' in upkwargs: addemail2=tk.BooleanVar() addemail2.set(True) email2=tk.StringVar() email2.set(upkwargs.get('email2','')) tk.Checkbutton(root, variable=addemail2, text='Add new email2').grid(row=rownum, column=colnum) rownum+=1 tk.Entry(root, textvariable=email2).grid(row=rownum, column=colnum) colnum+=1 # Checkbutton and boolvar for each email (default true) ebools=[] # List of bools for parent inclusion for i in range(0,len(emaillist)): ebools.append(tk.BooleanVar()) tempstr=emaillist[i] ebools[i].set(True) tk.Checkbutton(root, variable=ebools[i], text=tempstr).grid(row=rownum, column=colnum) rownum+=1 rownum+=1 if 'phones' in upkwargs: # indicates new parent found phlist=upkwargs.get('phones',[]) # Checkboxes to add new parent colnum=0 if 'phone1' in upkwargs: addphone1=tk.BooleanVar() addphone1.set(True) try: mytext='Add phone/text: '+ upkwargs.get('phone1','') except: mytext='' tk.Checkbutton(root, variable=addphone1, text=mytext).grid(row=rownum, column=colnum) colnum+=1 if 'phone2' in upkwargs: addphone2=tk.BooleanVar() addphone2.set(True) try: mytext='Add phone/text: '+ ', '.join(upkwargs.get('phone2',[])) except: mytext='' tk.Checkbutton(root, variable=addphone2, text=mytext).grid(row=rownum, column=colnum) colnum+=1 # Checkbutton and boolvar for each email (default true) phbools=[] # List of bools for parent inclusion for i in range(0,len(phlist)): phbools.append(tk.BooleanVar()) tempstr=phlist[i] phbools[i].set(True) tk.Checkbutton(root, variable=phbools[i], text=tempstr).grid(row=rownum, column=colnum) rownum+=1 if 'address' in upkwargs: colnum=0 tk.Label(root, text='Possible change of address').grid(row=rownum, column=colnum) rownum+=1 newaddrbool=tk.BooleanVar() newaddr=tk.StringVar() newaddrbool.set(False) newaddr.set(row.Address_n) newzip=tk.StringVar() try: newzip.set(int(row.Zip_n)) except: print('Non-standard zip value',str(row.Zip_n)) tk.Checkbutton(root, variable=newaddrbool, text='Change address?').grid(row=rownum, column=colnum) colnum+=1 tk.Label(root, text='Current address').grid(row=rownum, column=colnum) colnum=0 rownum+=1 tk.Entry(root, textvariable=newaddr).grid(row=rownum, column=colnum) rownum+=1 tk.Entry(root, textvariable=newzip).grid(row=rownum, column=colnum) colnum+=1 tempstr=str(row.Address)+' '+str(row.Zip) tk.Label(root, text=tempstr).grid(row=rownum, column=colnum) rownum+=1 # Now set up select/close buttons def skip(event): choice.set('skip') root.destroy() def change(event): choice.set('change') root.destroy() f=tk.Button(root, text='Skip') f.bind('<Button-1>', skip) f.grid(row=rownum, column=0) g=tk.Button(root, text='Change') g.bind('<Button-1>', change) g.grid(row=rownum, column=1) root.mainloop() mychoice=choice.get() if mychoice=='change': # Find matching row for family (needed for all changes below) famkey=row.Famkey match=famcontact[famcontact['Famkey']==famkey] if len(match)==1: thisind=match.index[0] else: print('Problem finding unique entry for famkey', str(famkey)) return famcontact # return unaltered # Reconstruct parent list if 'parlist' in upkwargs: newparlist=[] # constructing entirely new parent list from checkbox choices if 'newpar1' in upkwargs: if addpar1.get(): newparlist.append(upkwargs.get('newpar1',[np.nan,np.nan])) #TODO fix nan error print('Added parent',' '.join(upkwargs.get('newpar1')),' to ',str(row.Family)) for i, val in enumerate(pbools): if pbools[i].get(): newparlist.append(parlist[i]) # [first, last] format if 'newpar2' in upkwargs: if addpar2.get(): newparlist.append(upkwargs.get('newpar2',[np.nan,np.nan])) print('Added parent 2',' '.join(upkwargs.get('newpar2')),' to ',str(row.Family)) # Now direct update of parents in this family's famcontact entry newparlist=newparlist[0:3] # limit to 3 entries while len(newparlist)<3: newparlist.append([np.nan,np.nan]) # pad with nan entries if necessary # now reset parent name entries for i in range(1,4): # reset 3 existing parents entries fname='Pfirst'+str(i) lname='Plast'+str(i) famcontact.loc[thisind, fname] = newparlist[i-1][0] famcontact.loc[thisind, lname] = newparlist[i-1][1] # Reconstruct email list if 'emails' in upkwargs: newemaillist=[] if 'email1' in upkwargs: if addemail1.get(): newemaillist.append(email1.get()) print('Added email1', email1.get(), ' to ', str(row.Family)) for i, val in enumerate(ebools): if ebools[i].get(): newemaillist.append(emaillist[i]) if 'email2' in upkwargs: if addemail2.get(): # insert in 2nd position newemaillist.insert(1, email2.get()) print('Added email2', email2.get(), ' to ', str(row.Family)) # Now update emails in famcontact entry # Direct update of parent list newemaillist=newemaillist[0:3] # limit to 3 entries while len(newemaillist)<3: newemaillist.append(np.nan) # pad with nan entries if necessary # now reset parent name entries for i in range(1,4): # reset 3 existing parents entries colname='Email'+str(i) famcontact.loc[thisind, colname]= newemaillist[i-1] # Reconstruct phone list if 'phones' in upkwargs: newphlist=[] if 'phone1' in upkwargs: if addphone1.get(): newphlist.append(upkwargs.get('phone1', [np.nan,np.nan])) print('Added phone1', ','.join(upkwargs.get('phone1',[])), ' to ', str(row.Family)) for i, val in enumerate(phbools): if phbools[i].get(): newphlist.append(phlist[i]) # added at end... probably should go if 'phone2' in upkwargs: if addphone2.get(): # insert in 2nd position newphlist.insert(1, upkwargs.get('phone2',[np.nan,np.nan])) print('Added phone2', ','.join(upkwargs.get('phone2',[])), ' to ', str(row.Family)) # Now update phone, text in famcontact entry newphlist=newphlist[0:4] # limit to 4 entries while len(newphlist)<4: newphlist.append([np.nan, np.nan]) # pad with nan entries if necessary # now reset parent name entries for i in range(1,5): # reset max 4 phone entries phname='Phone'+str(i) textname='Text'+str(i) famcontact.loc[thisind, phname] = newphlist[i-1][0] famcontact.loc[thisind, textname] = newphlist[i-1][1] # Handle change of address (direct change if approved) # Also change associated zip code and reset parish of residence if 'address' in upkwargs: if newaddrbool: print('Address changed for ', str(row.Family)) famcontact.loc[thisind, 'Address'] = newaddr.get() # Reset parish of residence to nan (manually find and replace) famcontact.loc[thisind, 'Parish_residence'] = np.nan try: famcontact.loc[thisind,'Zip']=int(newzip.get()) except: print('Problem converting zip code ', newzip.get()) # TODO ... handle parish of registration return famcontact def update_contact(row, famcontact): '''Update phone and textable list from google drive entries; google drive raw entries first processed in process_data_changes (then update contacts is called) row is a merge of existing famcontact info and new signup info existing entries from fam_contact listed first; pass/modify/return series for family; reorder/replace numbers has fairly long list of changes made w/o interactive approval: 1) changing order of email or phone numbers (e.g. swap phone1 and phone2) 2) add phone2 (or email2) if current phone2(email2) is nan 3) change order of parents (new parent1) All other changes done w/ interactive approval using update_famcon_tk ''' # [phone, text, order] thisfam=row.Family match=famcontact[famcontact['Famkey']==row.Famkey] if len(match)==1: thisind=match.index[0] # correct index for updating this family in famcontacts else: print(str(row.Family), " not found in famcontacts.. shouldn't happen") return famcontact upkwargs={} # empty dict for monitoring all changes # check for possible change in address (housenum as trigger) match1=re.search(r'\d+', row.Address) match2=re.search(r'\d+', row.Address_n) if match1 and match2: num1=match1.group(0) num2=match2.group(0) if num1!=num2: # change in address number strongly suggestive of actual change upkwargs.update({'address':True}) else: print('No address # found for', str(thisfam)) phonelist=[] # list of lists with number and textable Y/N for i in range(1,5): # get 4 existing phone entries (phone1, phone2, etc.) phname='Phone'+str(i) txtname='Text'+str(i) if str(row[phname])!='nan': phonelist.append([row[phname],row[txtname]]) # as phone and text y/N # New google drive entries will be Phone1_n.. look for phone/text pair in existing list if str(row.Phone1_n)!='nan' and [row.Phone1_n,row.Text1_n] in phonelist: # new ones phone is required entry # default move of phone1, text1 to top of list - no confirmation if [row.Phone1_n,row.Text1_n]!=phonelist[0]: # move if not in first position phonelist.insert(0,phonelist.pop(phonelist.index([row.Phone1_n,row.Text1_n]))) print('Phone 1 changed for ', str(thisfam)) upkwargs.update({'phchange':True}) if str(row.Phone1_n)!='nan' and [row.Phone1_n,row.Text1_n] not in phonelist: # new ones phone is required entry if [row.Phone1_n, np.nan] in phonelist: # remove if # present but w/o text indication (no confirm) phonelist.remove([row.Phone1_n,np.nan]) phonelist.insert(0,[row.Phone1_n,row.Text1_n]) # insert in first position print('Updated phone 1 to', row.Phone1_n,' for ',str(thisfam)) upkwargs.update({'phchange':True}) else: # phone1 change to be confirmed upkwargs.update({'phone1':[row.Phone1_n,row.Text1_n]}) upkwargs.update({'phones': phonelist}) if str(row.Phone2_n)!='nan': # check for phone2 entry (with _n suffix) if [row.Phone2_n,row.Text2_n] not in phonelist: # add second phone to 2nd position if not present if [row.Phone2_n,np.nan] in phonelist: # remove if # present but w/o text indication phonelist.remove([row.Phone2_n,np.nan]) phonelist.insert(1,[row.Phone2_n,row.Text2_n]) print ('Updated phone 2 to ', str(row.Phone2_n), 'for ', str(thisfam)) upkwargs.update({'phchange':True}) else: # get approval for phone 2 addition upkwargs.update({'phone2':[row.Phone2_n,row.Text2_n]}) upkwargs.update({'phones': phonelist}) # Construct existing list of known email addresses emaillist=[] for i in range(1,4): # get 3 existing email entries emailname='Email'+str(i) if str(row[emailname])!='nan': emaillist.append(row[emailname].lower()) # Find new email1 entry in google drive data if str(row.Email)!='nan' and '@' in row.Email: # real primary gd named email if row.Email.lower() in emaillist: # add in first position if not present (no confirmation) if row.Email.lower()!=emaillist[0]: # check if in first position already emaillist.insert(0,emaillist.pop(emaillist.index(row.Email))) upkwargs.update({'emchange':True}) print ('Updated email 1 ', str(row.Email.lower()), 'for family', str(thisfam)) else: # confirm email1 if not present upkwargs.update({'email1':row.Email}) upkwargs.update({'emails':emaillist}) # look for new email in email2 position and add if str(row.Email2_n)!='nan' and '@' in row.Email2_n: if row.Email2_n.lower() not in emaillist: # add second email to 2nd position if not present upkwargs.update({'email2':row.Email2_n}) upkwargs.update({'emails':emaillist}) # Update list of parent names (max 3 entries) parlist=[] # construct existing list from family contacts # skip if all nan for entered parents (non-gd entry) for i in range(1,4): # construct existing parents list fname='Pfirst'+str(i) lname='Plast'+str(i) if str(row[fname])!='nan': parlist.append([row[fname],row[lname]]) # list of lists [first, last] if str(row.Pfirst1_n)!='nan': # skip if parent name is nan if [row.Pfirst1_n,row.Plast1_n] in parlist: # reorder in list if [row.Pfirst1_n,row.Plast1_n]!=parlist[0]: # check if already in first # move to first position (everything else requires approval) parlist.insert(0,parlist.pop(parlist.index([row.Pfirst1_n,row.Plast1_n]))) parlist.insert(0,[row.Pfirst1_n, row.Plast1_n]) # insert in first position upkwargs.update({'parchange':True}) else: # parent not in list (confirm) upkwargs.update({'newpar1':[row.Pfirst1_n,row.Plast1_n]}) upkwargs.update({'parlist':parlist}) # inserts in first position while simultaneously removing other entry if str(row.Pfirst2_n)!='nan': # Check for parent 2 entry if [row.Pfirst2_n,row.Plast2_n] not in parlist: # add second phone to 2nd position if not present upkwargs.update({'newpar2':[row.Pfirst2_n,row.Plast2_n]}) upkwargs.update({'parlist':parlist}) # Save auto-changes in phone to family contacts if 'phchange' in upkwargs: # Record altered phonelist in famcontacts if 'phones' in upkwargs: # if present in upkwargs, update list upkwargs.update({'phones': phonelist}) # ensure most current copy phonelist=phonelist[0:3] # construct proper list while len(phonelist)<4: phonelist.append([np.nan,np.nan]) # pad with nan entries if necessary for i in range(1,5): # reset 4 existing phone entries phname='Phone'+str(i) txtname='Text'+str(i) famcontact.loc[thisind, phname] = phonelist[i-1][0] # first of tuple is phone famcontact.loc[thisind, txtname] = phonelist[i-1][1] # 2nd of tuple is text y/n del upkwargs['phchange'] print('automatic phone changes for', thisfam) # Save auto-changes in emails to family contacts if 'emchange' in upkwargs: # Record altered phonelist in famcontacts if 'emails' in upkwargs: # if present in upkwargs, update list upkwargs.update({'emails': emaillist}) # ensure most current copy emaillist=emaillist[0:2] # construct proper list while len(emaillist)<3: emaillist.append(np.nan) # pad with nan entries if necessary for i in range(1,4): # reset 4 existing phone entries emname='Email'+str(i) famcontact.loc[thisind, emname] =emaillist[i-1] del upkwargs['emchange'] print('automatic email changes for', thisfam) if 'parchange' in upkwargs: # Record altered parents list in famcontacts if 'parlist' in upkwargs: # if present in upkwargs, update list upkwargs.update({'parlist': parlist}) # ensure most current copy parlist=parlist[0:2] # construct proper list while len(parlist)<3: parlist.append(np.nan) # pad with nan entries if necessary (3 total) for i in range(1,4): # reset 4 existing phone entries fname='Pfirst'+str(i) lname='Plast'+str(i) try: famcontact.loc[thisind, fname] =parlist[i-1][0] famcontact.loc[thisind, lname] =parlist[i-1][1] except: print('Error updating parents for', thisfam) del upkwargs['parchange'] print('automatic parent changes for', thisfam) # now check for any changes needing interactive approval if len(upkwargs)>0: # something needs interactive approval famcontact=updatefamcon_tk(row, famcontact, **upkwargs) return famcontact def updateplayer_tk(row, players, **upkwargs): ''' Interactive approval of player info updates (except date) changes directly made to players (but not yet autosaved) called by processdatachanges ''' commonschools=['Cabrini','Soulard','SLPS','Charter','Private'] root = tk.Tk() root.title('Update player info') choice=tk.StringVar() # must be define outside of event called functions rownum=0 mytxt='Player:'+row.First+' '+row.Last+' # '+str(row.Plakey) tk.Label(root, text=mytxt).grid(row=rownum, column=0) rownum+=1 # Use listbox of common schools? if 'DOB' in upkwargs: # indicates discrepancy DOB1=date(row.DOB) DOB2=date(row.DOB_n) # create and display DOB variables def ChooseDOB1(event): DOB.set(datetime.strftime(DOB1,'%m/%d/%y')) def ChooseDOB2(event): DOB.set(datetime.strftime(DOB2,'%m/%d/%y')) DOB=tk.StringVar() DOB.set(datetime.strftime(DOB1,'%m/%d/%y')) # defaults to original tk.Label(root, text='Update date of birth?').grid(row=rownum, column=0) mytxt='current DOB:'+datetime.strftime(DOB1,'%m/%d/%y') b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', ChooseDOB1) b.grid(row=rownum, column=1) mytxt='New DOB:'+datetime.strftime(DOB2,'%m/%d/%y') b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', ChooseDOB2) b.grid(row=rownum, column=2) tk.Entry(master=root, textvariable=DOB).grid(row=rownum, column=3) rownum+=1 if 'school' in upkwargs: school=tk.StringVar() school.set(row.School) # default to existing value tk.Label(root, text='Update school?').grid(row=rownum, column=0) rownum+=1 def newschool(event): school.set(row.School_n) def oldschool(event): school.set(row.School) def pickschool(event): # double-click to pick standard school choice items=lb.curselection()[0] # gets selected position in list school.set(commonschools[items]) tk.Entry(root, textvariable=school).grid(row=rownum, column=2) mytxt='new school:'+str(row.School_n) b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', newschool) b.grid(row=rownum, column=1) mytxt='existing school:'+str(row.School) b=tk.Button(master=root, text=mytxt) b.bind('<Button-1>', oldschool) b.grid(row=rownum, column=0) # also include selectable listbox of common school choices lb=tk.Listbox(master=root, selectmode=tk.SINGLE) lb.bind("<Double-Button-1>", pickschool) lb.grid(row=rownum, column=3) for i,sch in enumerate(commonschools): lb.insert(tk.END, sch) rownum+=1 # Now set up select/close buttons def skip(event): choice.set('skip') root.destroy() def change(event): choice.set('change') root.destroy() f=tk.Button(root, text='Skip') f.bind('<Button-1>', skip) f.grid(row=rownum, column=0) g=tk.Button(root, text='Change') g.bind('<Button-1>', change) g.grid(row=rownum, column=1) root.mainloop() mychoice=choice.get() if mychoice=='change': try: # make changes directly to players after finding correct index using plakey plakey=row.Plakey match=players[players['Plakey']==plakey] thisind=match.index[0] if 'school' in upkwargs: players.loc[thisind,'School']= school.get() if 'DOB' in upkwargs: newDOB=datetime.strptime(DOB.get(),'%m/%d/%y') players.loc[thisind,'DOB']= newDOB except: print('Error updating info for', row.Plakey, row.First, row.Last) return players def prepcontacts(df): ''' Prepare for update contacts/ matching with google drive info avoids possible problems/spaces in manually entered info ''' mycols=['Pfirst1', 'Plast1','Pfirst2', 'Plast2', 'Pfirst3', 'Plast3', 'Phone1', 'Text1','Phone2', 'Text2', 'Phone3', 'Text3', 'Phone4', 'Text4', 'Email1','Email2', 'Email3'] for i, col in enumerate(mycols): try: df.loc[:,col]=df[col].str.strip() except: # maybe only nan or not present (i.e. in signups) pass mycols=['Text1','Text2','Text3'] for i, col in enumerate(mycols): try: df.loc[:,col]=df[col].str.replace('No','N', case=False) df.loc[:,col]=df[col].str.replace('Yes','Y', case=False) except: pass return df def findyearseason(df): ''' Pass raw signups and determine year and sports season ''' # get year from system clock and from google drive timestamp now=datetime.now() val=df.Timestamp[0] # grab first timestamp if val!=datetime: # if not a timestamp (i.e. manual string entry find one while type(val)!=datetime: for index, row in df.iterrows(): val=df.Timestamp[index] year=val.year # use year value from signup timestamps if now.year!=val.year: print ('Possible year discrepancy: Signups are from ',str(val.year)) # now find sports season mask = np.column_stack([df['Sport'].str.contains("occer", na=False)]) if len(df.loc[mask.any(axis=1)])>0: season='Fall' mask = np.column_stack([df['Sport'].str.contains("rack", na=False)]) if len(df.loc[mask.any(axis=1)])>0: season='Spring' mask = np.column_stack([df['Sport'].str.contains("asket", na=False)]) if len(df.loc[mask.any(axis=1)])>0: season='Winter' return season, year def outputduplicates(df): '''Prints out names of players with duplicated entries into console... can then delete from google drive signups ''' tempdf=df[df.duplicated(['First','Last','Sport'])] # series with 2nd of duplicated entries as True firsts=tempdf.First.tolist() lasts=tempdf.Last.tolist() for f,l in zip(firsts, lasts): print('Duplicated signup for player: {} {}'.format(f,l)) return def formatphone(df): ''' Convert all entered phone numbers in dfs phone columns to 314-xxx-xxxx string and standardize text field ''' def phoneFormat(val): # lambda function phone number reformatting if not isinstance(val, str): return val # replace/remove any white space val="".join(val.split(' ')) if val=='': # blank phone causes problems return np.nan if not re.search(r'(\d+-\d+-\d+)', val): val=re.sub("[^0-9]", "", val) # substitute blank for non-number if len(val)==7: return '314'+val elif len(val)==11 and val.startswith('1'): # remove starting 1 if present return val[1:11] elif len(val)!=10: # sometimes has --- # print('Bad number: ',val) return val else: return val[0:3]+'-'+val[3:6]+'-'+val[6:10] else: return val # already good # find phone columns (named phone, phone2, etc.) phlist=[str(s) for s in df.columns if 'Phone' in s] for col in phlist: df.loc[:,col]=df[col].apply(lambda x: phoneFormat(x)) # now change yes in any text field to Y txtlist=[str(s) for s in df.columns if 'Text' in s] for col in txtlist: df.loc[:,col]=df[col].replace('yes','Y') df.loc[:,col]=df[col].replace('Yes','Y') return df def standardizeschool(df): ''' can pass any frame with school column and standardize name as Cabrini and Soulard''' schstr='frances' + '|' + 'cabrini' + '|' + 'sfca' # multiple school matching string tempdf=df[df['School'].str.contains(schstr, na=False, case=False)] df.loc[tempdf.index,'School']='Cabrini' tempdf = df[df['School'].str.contains('soulard', na=False, case=False)] df.loc[tempdf.index,'School']='Soulard' tempdf = df[df['School'].str.contains('public', na=False, case=False)] df.loc[tempdf.index,'School']='Public' schstr='city garden' + '|' + 'citygarden' # multiple school matching string tempdf = df[df['School'].str.contains(schstr, na=False, case=False)] df.loc[tempdf.index,'School']='City Garden' return df def formatnamesnumbers(df): '''Switch names to title case, standardize gender, call phone/text reformat and standardize school name''' def titleStrip(val): try: return val.title().strip() except: return val processCols=['First','Last','Family','Pfirst1','Plast1','Pfirst2','Plast2','Email','Email2'] processCols=[i for i in processCols if i in df.columns] for col in processCols: df.loc[:, col]=df[col].apply(lambda x: titleStrip(x)) if 'Gender' in df: df.loc[:,'Gender']=df.Gender.replace('Girl','f') df.loc[:,'Gender']=df.Gender.replace('Boy','m') if 'Grade' in df: df.loc[:,'Grade']=df.Grade.replace('K',0) df.loc[:,'Grade']=df.Grade.replace('pK',0) try: df.loc[:,'Grade']=df.Grade.astype(int) except: print('Player grade likely missing from raw signup file... enter manually') df=formatphone(df) # call phone reformatting string if 'School' in df: df=standardizeschool(df) # use "Cabrini" and "Soulard" as school names return df def graduate_players(players, year): ''' Recalc grade based on grade adjustment, school year (run once per year in fall) and age. some player grades will already have been updated (generally google drive entries)... however recalc shouldn't change grade ''' players.loc[:,'Grade']=players.Grade.replace('K',0) for index,row in players.iterrows(): # replace K with zero grade=int(players.iloc[index]['Grade']) # get currently listed grade gradeadj=players.iloc[index]['Gradeadj'] dob=players.iloc[index]['DOB'] if str(gradeadj)=='nan' or str(dob)=='NaT': # skip grade update if info is missing continue dob=date(dob) # calculate current age at beginning of this school on 8/1 age=date(year,8,1)-dob age = (age.days + age.seconds/86400)/365.2425 # assign grade based on age (and grade adjustment) newgrade=int(age)+int(gradeadj)-5 if grade!=newgrade: first=players.iloc[index]['First'] last=players.iloc[index]['Last'] print('Grade changed from',grade,'to',newgrade,'for', first, last) players.loc[index, 'Grade'] = newgrade players.loc[:,'Grade']=players.Grade.replace(0,'K') return players def removeEmptyFams(players, famcontact): ''' Remove empty families (with no remaining players) ''' # Remove families with no active players plaset=[int(i) for i in list(players.Famkey.unique())] famset=[int(i) for i in list(famcontact.Famkey.unique())] # Empty families emptykey=[i for i in famset if i not in plaset] empty=famcontact[famcontact['Famkey'].isin(emptykey)] print('Remove empty families:') for ind, row in empty.iterrows(): print(row.Family, ':',row.Pfirst1, row.Plast1) choice=input("Remove empty families (Y,N)?\n") if choice.upper()=='Y': famcontact=famcontact[~famcontact['Famkey'].isin(emptykey)] outname=cnf._INPUT_DIR+'\\family_contact.csv' famcontact.to_csv(outname, index=False) return famcontact def removeHSkids(players): ''' Drop graduated players (9th graders) from list ''' grlist=[i for i in range(0,9)] grlist.append('K') Hs=players.loc[~(players.Grade.isin(grlist))] for ind, row in Hs.iterrows(): print(row.First, row.Last) choice=input('Remove above HS players (Y/N)?\n') if choice.upper()=='Y': players=players.loc[(players.Grade.isin(grlist))] print('HS Players removed but not autosaved') return players def estimategrade(df, year): '''Estimate grade for this sports season based on DOB.. not commonly used ''' for index, row in df.iterrows(): grade=df.loc[index]['Grade'] if str(grade)=='nan': # skips any players who already have assigned grade dob=df.loc[index]['DOB'] dob=date(dob) # convert to datetime date from timestamp first=df.loc[index]['First'] last=df.loc[index]['Last'] if str(dob)=='nan': print ('DOB missing for ', first,' ', last) continue # skip to next if dob entry is missing currage=date(year,8,1) - dob currage = (currage.days + currage.seconds/86400)/365.2425 # age on first day of school/ sports season gradeest=int(currage-5) if gradeest==0: gradeest='K' print(first, last, 'probably in grade', gradeest) df.loc[index,'Grade']=gradeest return df def updateoldteams(teams, year): ''' Load old teams after copy to teams tab in teams_coaches, then auto-update year-grade must be manually saved with saveteams... then any adjustments made manually in Excel''' # check to ensure teams are not already updated if teams.iloc[0]['Year']==year: print('Teams already updated for ', year,' school year') return teams # pass back unaltered # temporarily make the K to 0 replacements teams.Grade=teams.Grade.replace('K',0) teams.loc[:'Graderange']=teams['Graderange'].astype(str) # convert all to string teams.loc[:,'Year']=year teams.loc[:,'Grade']+=1 for index, row in teams.iterrows(): grade=teams.loc[index]['Grade'] div=teams.loc[index]['Division'] # division must match grade div=div.replace('K','0') # replace any Ks in string newdiv=''.join([s if not s.isdigit() else str(grade) for s in div]) # find replace for unknown # w/ new grade teams.loc[index,'Division'] = newdiv cycname=teams.loc[index]['Team'] # update grade portion of team name if cycname.startswith('K'): newcycname='1'+ cycname[1:] teams.loc[index,'Team'] = newcycname elif cycname[0].isdigit(): # now update teams beginning w/ numbers newcycname=str(grade)+ cycname[1:] teams.loc[index,'Team']= newcycname # update grade ranges grrange=teams.loc[index]['Graderange'] # should be all numbers grrange=grrange.replace('K','0') newrange=''.join([str(int(i)+1) for i in grrange]) teams.loc[index,'Graderange'] = newrange # grade range stored as string, right? # no auto-save... save with saveteams after checking for proper changes return teams def splitcoaches(df): ''' Pass CYC teams list, split and duplicate rows with comma separated vals in colname for extra coaches''' df.loc[:,'Role']='Coach' # add col for head or asst (first entry for head coach) # df['Open/Closed']='Closed' assistants=df.dropna(subset=['AssistantIDs']) # drop teams w/ no asst coaches for index, rows in assistants.iterrows(): val=assistants.loc[index,'AssistantIDs'] asstcoaches=[str(s) for s in val.split(',')] #list of assistants for single team for i,asst in enumerate(asstcoaches): newrow=assistants.loc[index] # duplicate entry as series asst=asst.strip() # strip leading, trailing blanks newrow.loc['Coach ID'] = asst # set this asst coaches ID newrow.loc['Role'] = 'Assistant Coach' df=df.append(newrow) df=df.sort_values(['Team'],ascending=True) return df def addcoachestoroster(teams, coaches): '''Creates roster entries for coaches for each CYC team pass teams and coaches (with coach roster info) needed roster cols are all below (except sport used in output parsing) args: teams -- team table w/ head and asst coach CYC ids coaches - coaches table with CYC Id (key) and associated info returns: coachroster --separate df to be appended to main player roster ''' # Add team coaches (match by CYC-IDs) thismask = teams['Team'].str.contains('-', case=False, na=False) # finds this season's CYC level teams CYCcoach=teams.loc[thismask] # also has associated sport CYCcoach=splitcoaches(CYCcoach) # makes new row for all assistant coaches on CYC teams CYCcoach=pd.merge(CYCcoach, coaches, how='left', on=['Coach ID'], suffixes=('','_r')) mycols=['Sport','Fname', 'Lname', 'Street', 'City', 'State', 'Zip', 'Phone', 'Email', 'Birthdate', 'Sex', 'Role', 'Division', 'Grade', 'Team', 'School', 'Parish of Registration', 'Parish of Residence', 'Coach ID'] for col in [col for col in mycols if col not in CYCcoach.columns]: CYCcoach[col]='' # birthdate generally missing CYCcoach=CYCcoach[mycols] # put back in desired order # drop duplicates on CYC ID, team (sometimes occurs during merge) CYCcoach=CYCcoach.drop_duplicates(['Coach ID','Team']) return CYCcoach def countteamplayers(df, teams, season, year): ''' For each team, summarize number of players (subset those that are younger or older) and list of names passing mastersignups''' df=df[df['Year']==year] # removes possible naming ambiguity sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season,[]) df=df[df['Sport'].isin(sportlist)] # only this sports season df.Grade=df.Grade.replace('K',0) df.Grade=df.Grade.astype('int') teams.loc[:,'Grade']=teams.Grade.replace('K',0) teams.loc[:,'Grade']=teams.Grade.astype('int') teams.loc[:,'Playerlist']=teams.Playerlist.astype('str') for index, row in teams.iterrows(): teamname=teams.loc[index]['Team'] match=df[df['Team']==teamname] # all players on this team from master_signups teams.loc[index,'Number'] = len(match) # total number of players # compose player list (First L.) and add to teams playerlist=[] for ind, ro in match.iterrows(): first=match.loc[ind]['First'] last=match.loc[ind]['Last'] strname=first+' ' +last[0] playerlist.append(strname) players=", ".join(playerlist) teams.loc[index,'Playerlist'] = players # count players above or below grade level thisgrade=int(teams.loc[index]['Grade']) teams.loc[index,'Upper'] = (match.Grade > thisgrade).sum() teams.loc[index,'Lower'] = (match.Grade < thisgrade).sum() writetoxls(teams, 'Teams', 'Teams_coaches.xlsx') return teams def writecontacts(df, famcontact, players, season, year): ''' From mastersignups and teams, output contact lists for all teams/all sports separately ''' # Slice by sport: Basketball (null for winter?), Soccer, Volleyball, Baseball, T-ball, Softball, Track) sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) df=df.loc[(df['Sport'].isin(sportlist)) & (df['Year']==year)] # season is not in mastersignups... only individual sports '''# for transfers to same school (but different grades), combine all into single list for given school for index,row in df.iterrows(): if str(df.loc[index]['Team'])!='nan': # avoids nan team screwups if '#' in df.loc[index]['Team']: # this combines Ambrose#2B, Ambrose#3G to single tab df=df.set_value(index,'Team',df.loc[index]['Team'].split('#')[0]) ''' # get family contact info from famcontacts df=pd.merge(df, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # get school from players.csv df=pd.merge(df, players, how='left', on=['Plakey'], suffixes=('','_r3')) # Sort by grade pre-split df.loc[:,'Grade']=df.Grade.replace('K',0) df.loc[:,'Grade']=df.Grade.apply(int) df=df.sort_values(['Grade'], ascending=True) df.loc[:,'Grade']=df.Grade.replace(0,'K') # replace K with zero to allow sorting df.loc[:,'Team']=df.Team.replace(np.nan,'None') # still give contacts if team not yet assigned df.loc[:,'Team']=df.Team.replace('','None') # Standard sport contacts output for soccer, VB, basketball if season!='Spring': for i, sport in enumerate(sportlist): fname=cnf._OUTPUT_DIR+'\\'+sport+'_'+str(year)+'_contacts.xlsx' writer=pd.ExcelWriter(fname, engine='openpyxl') Thissport=df[df['Sport']==sport] teamlist= Thissport.Team.unique() teamlist=np.ndarray.tolist(teamlist) # Combine transfers to same school transchools=[s.split('#')[0] for s in teamlist if '#' in s] teamlist=[s for s in teamlist if '#' not in s] teamlist.extend(transchools) # all to same school as single "team" # now can organize contacts (and drop sport) mycols=['First', 'Last', 'Grade', 'Gender', 'School', 'Phone1', 'Text1','Email1', 'Phone2', 'Text2', 'Email2', 'Team', 'Pfirst1', 'Plast1', 'Pfirst2', 'Plast2', 'Plakey', 'Famkey', 'Family'] Thissport=Thissport[mycols] # drop columns and rearrange for i, team in enumerate(teamlist): thisteam=Thissport[Thissport['Team'].str.contains(team)] thisteam.to_excel(writer,sheet_name=team,index=False) # this overwrites existing file writer.save() else: # handle spring special case Balls=df[df['Sport']!='Track'] # all ball-bat sports together mycols=['First', 'Last', 'Grade', 'Gender', 'School', 'Phone1', 'Text1','Email1', 'Phone2', 'Text2', 'Email2', 'Team', 'Pfirst1', 'Plast1', 'Pfirst2', 'Plast2', 'Plakey', 'Famkey', 'Family'] Balls=Balls[mycols] teamlist= Balls.Team.unique() teamlist=np.ndarray.tolist(teamlist) # Combine transfers transchools=[s.split('#')[0] for s in teamlist if '#' in s] teamlist=[s for s in teamlist if '#' not in s] teamlist.extend(transchools) # all to same school as single "team" fname=cnf._OUTPUT_DIR+'\\'+'Batball'+'_'+str(year)+'_contacts.xlsx' writer=pd.ExcelWriter(fname, engine='openpyxl') # create a separate tab for each team and write the contacts for i, team in enumerate(teamlist): thisteam=Balls[Balls['Team'].str.contains(team)] thisteam.to_excel(writer,sheet_name=team,index=False) # this overwrites existing file writer.save() # overwrites existing # Entire track team as single file Track=df[df['Sport']=='Track'] Track=Track[mycols] # drop columns and rearrange fname=cnf._OUTPUT_DIR+'\\'+'Track'+'_'+str(year)+'_contacts.xlsx' writer=pd.ExcelWriter(fname, engine='openpyxl') Track.to_excel(writer,sheet_name='Track',index=False) writer.save() return def makegoogcont(df, famcontact, players, season, year): '''Create and save a google contacts file for all Cabrini teams save to csv ''' sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) df=df.loc[(df['Sport'].isin(sportlist)) & (df['Year']==year)] # season is not in mastersignups... only individual sports '''# for transfers to same school (but different grades), combine all into single list for given school for index,row in df.iterrows(): if str(df.loc[index]['Team'])!='nan': # avoids nan team screwups if '#' in df.loc[index]['Team']: # this combines Ambrose#2B, Ambrose#3G to single tab df=df.set_value(index,'Team',df.loc[index]['Team'].split('#')[0]) ''' # get family contact info from famcontacts df=pd.merge(df, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # get school from players.csv df=pd.merge(df, players, how='left', on=['Plakey'], suffixes=('','_r3')) # Drop any players not yet assigned df=df.dropna(subset=['Team']) # Full contacts list format for android/google for i, sport in enumerate(sportlist): Thissport=df[df['Sport']==sport] teamlist= Thissport.Team.unique() teamlist=np.ndarray.tolist(teamlist) # drop if team is not yet assigned teamlist=[s for s in teamlist if str(s) != 'nan'] # drop if team is 'drop' teamlist=[s for s in teamlist if str(s) != 'drop'] # Drop all non-Cabrini transferred teams (which must contain #) teamlist=[s for s in teamlist if '#' not in s] # Combine track subteams to single team teamlist=[s[0:5] if 'Track' in s else s for s in teamlist] teamlist=set(teamlist) teamlist=list(teamlist) # now create google contacts list for each Cabrini team and save for j, team in enumerate(teamlist): thisteam=Thissport[Thissport['Team'].str.contains(team)] # Drop duplicate from same family thisteam=thisteam.drop_duplicates('Phone1') thisteam.loc[:,'Name']=thisteam['First']+' '+thisteam['Last'] thisteam.loc[:,'Group']=sport+str(year) mycols=['Name','Pfirst1','Last','Phone1','Phone2','Email1','Email2','Group'] newcols=['Name','Additional Name','Family Name','Phone 1 - Value','Phone 2 - Value', 'E-mail 1 - Value','E-mail 2 - Value','Group Membership'] thisteam=thisteam[mycols] thisteam.columns=newcols thisteam=thisteam.replace(np.nan,'') fname=cnf._OUTPUT_DIR+'\\google'+team+'.csv' thisteam.to_csv(fname, index=False) return def createsignups(df, Mastersignups, season, year): ''' pass signups and add signups to master list, also returns list of current player keys by sport; typically use writesignupstoExcel instead args: df - signup (dataframe) Mastersignups - existing all signups db-like file season - ['Fall','Winter','Spring'] year- 4 digit year as int returns: Mastersignups - same with new unique entries ''' sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) # Use comma sep on multiple sport entries?? now=datetime.now() thisdate=date.strftime(now,'%m/%d/%Y') # for signup date df.loc[:,'SUdate']=thisdate # can do this globally although might also add to signups startlen=len(Mastersignups) # starting number of signups intcols=['SUkey','Year'] for i, col in enumerate(intcols): if col not in df: df.loc[df.index, col]=np.nan mycols=Mastersignups.columns.tolist() # desired column order for i, col in enumerate(mycols): if col not in df: df.loc[df.index,col]=np.nan # TODO one option here would be to clone comma-separated sport entries (i.e. track and softball) for i, sport in enumerate(sportlist): # Use caution here due to Tball in Softball string problem (currently set to T-ball) thissport=df.loc[df['Sport'].str.contains(sport, na=False, case=False)] # also handles multi-sports # Prepare necessary columns for index, row in thissport.iterrows(): thissport.loc[index,'Sport'] = sport # set individually to formal sport name thissport.loc[index,'Year'] = int(year) thissport.loc[index,'SUkey'] = 0 # assigned actual key below # Now organize signups and add year Mastersignups=pd.concat([thissport,Mastersignups], ignore_index=True) Mastersignups=Mastersignups[mycols] # put back in original order # drop duplicates and save master signups file (keep older signup if present... already assigned SUkey) Mastersignups=Mastersignups.sort_values(['Plakey', 'Sport','Year','SUkey'], ascending=False) # keeps oldest signup Mastersignups=Mastersignups.drop_duplicates(subset=['Plakey', 'Sport','Year']) # drop duplicates (for rerun with updated signups) newsignups=len(Mastersignups)-startlen # number of new signups added this pass print('Added ', str(newsignups),' new ', season, ' signups to master list.') # add unique SUkey (if not already assigned) neededkeys = Mastersignups[(Mastersignups['SUkey']==0)] # filter by year availSUkeys=findavailablekeys(Mastersignups, 'SUkey', len(neededkeys)) # get necessary # of unique SU keys keycounter=0 for index, row in neededkeys.iterrows(): Mastersignups.loc[index,'SUkey'] = availSUkeys[keycounter] # reassign SU key in source master list keycounter+=1 # move to next available key Mastersignups.loc[:,'Grade']=Mastersignups.Grade.replace('K',0) Mastersignups=Mastersignups.sort_values(['Year', 'Sport', 'Gender','Grade'], ascending=False) Mastersignups.loc[:,'Grade']=Mastersignups.Grade.replace(0,'K') # autocsvbackup(Mastersignups,'master_signups', newback=True) Mastersignups.to_csv(cnf._INPUT_DIR + '\\master_signups.csv', index=False, date_format='mm/dd/yy') # automatically saved return Mastersignups def replaceacro(df, acronyms): ''' Pass df column and return with acronyms replaced with full translations (parishes and schools currently used only for CYC rosters ''' for index, row in acronyms.iterrows(): acro=acronyms.loc[index]['acronym'] transl=acronyms.loc[index]['translation'] # TODO only for parish columns df.loc[:,'Parish of Registration']=df['Parish of Registration'].replace(acro, transl) df.loc[:,'Parish of Residence']=df['Parish of Residence'].replace(acro, transl) df.loc[:,'School']=df['School'].replace(acro, transl) return df def createrosters(df, season, year, players, teams, coaches, famcontact, acronyms): ''' From Mastersignups of this season creates Cabrini CYC roster and transfers (for separate sports) and all junior sports (calculates ages for Judge Dowd); pulls info merged from famcontact, players, teams, and coaches teams should already be assigned using teams xls and assigntoteams function returns: None ... direct save to OUTPUT_DIR ''' sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} specials=['Chess','Track'] sports=sportsdict.get(season) sportlist=[sport for sport in sports if sport not in specials] speciallist=[sport for sport in sports if sport in specials] # for track, chess, other oddballs Specials=df[(df['Year']==year) & (df['Sport'].isin(speciallist))] # deal with these at bottom # Proceed with all normal South Central sports df = df[(df['Year']==year) & (df['Sport'].isin(sportlist))] # filter by year # make duplicate entry row for double-rostered players (multiple team assignments) thismask = df['Team'].str.contains(',', na=False) # multiple teams are comma separated doubles=df.loc[thismask] for index, rows in doubles.iterrows(): team=doubles.loc[index,'Team'] team=team.split(',')[1] # grab 2nd of duplicate teams doubles.loc[index, 'Team'] = team df=pd.concat([df,doubles], ignore_index=True) # adds duplicate entry for double-rostered players with 2nd team thismask = df['Team'].str.contains(',', na=False) # multiple teams are comma separated for index, val in thismask.iteritems(): if val: team=df.loc[index]['Team'] team=team.split(',')[0] # grab 1st of duplicate teams df.loc[index, 'Team'] = team # removes 2nd team from first entry # now grab all extra info needed for CYC rosters # Street, City, State, Zip, Phone, email, Parishreg, parishres from fam-contact df=pd.merge(df, famcontact, how='left', on=['Famkey'], suffixes=('','_r')) # Get division from Teams xls df=pd.merge(df, teams, how='left', on=['Team'], suffixes=('','_r2')) # effectively adds other team info for roster toall players # DOB, School from players.csv df=pd.merge(df, players, how='left', on=['Plakey'], suffixes=('','_r3')) df.loc[:,'Role']='Player' # add column for role # df['Open/Closed']=np.nan df.loc[:,'Coach ID']='' def formatDOB(val): # Pat moore date format is 4/4/19.. reformat as string for csv output try: return datetime.strftime(val, "%m/%d/%y") except: # print('Problem converting %s of type %s to date string format' %(val, type(val)) ) return '' # Find Cabrini CYC names (containing hyphen) thismask = df['Team'].str.contains('-', case=False, na=False) CabriniCYC=df.loc[thismask] # all players on Cabrini CYC teams all sports this season # Finds info for CYC coaches (all sports) and generate roster entries coachroster=addcoachestoroster(teams, coaches) # coaches roster already in correct format + sport column if len(CabriniCYC)>1: # skip if all transfers or junior (i.e. in spring) # Split by sport for i, sport in enumerate(sportlist): Sportroster=CabriniCYC[CabriniCYC['Sport']==sport] # reformat this mess as single CYC roster Sportroster=organizeroster(Sportroster) # Add coaches from this sport to roster Rostercoaches=coachroster[coachroster['Sport']==sport] Rostercoaches=organizeroster(Rostercoaches) Sportroster=pd.concat([Sportroster,Rostercoaches], ignore_index=True) # adds coaches and players together Sportroster=Sportroster.sort_values(['Team','Role','Grade','Lname']) fname=cnf._OUTPUT_DIR+'\\Cabrini_'+sport+'roster'+str(year)+'.csv' Sportroster=replaceacro(Sportroster, acronyms) # replace abbreviations Sportroster.loc[:,'Birthdate']=Sportroster['Birthdate'].apply(lambda x: formatDOB(x)) Sportroster.to_csv(fname, index=False) # done with Cabrini CYC rosters # Break out all other types of teams (transfers, junior teams, Chess/Track) thismask = df['Team'].str.contains('-', case=False, na=False) Others=df.loc[~thismask] # no hyphen for all non Cabrini CYC level (Cabrini junior and transfers) # Cabrini transferred players to CYC teams with # (i.e. Ambrose#8B, OLS#3G) # Non-CYC cabrini junior teams start with number thismask = Others['Team'].str.contains('#', na=True) # flag nans and set to true (usually jr teams w/o assignment) # Transferred teams contain # such as OLS#3G Transfers=Others.loc[thismask] # transferred teams have # but no hyphen for i, sport in enumerate(sportlist): # output roster for all transfers (all grades in case of CYC) Transferroster=Transfers[Transfers['Sport']==sport] Transferroster=organizeroster(Transferroster) Transferroster=Transferroster.sort_values(['Team', 'Sex', 'Grade'], ascending=True) fname=cnf._OUTPUT_DIR+'\\CYC'+sport+'transfers.csv' Transferroster=replaceacro(Transferroster,acronyms) Transferroster.loc[:,'Birthdate']=Transferroster['Birthdate'].apply(lambda x: formatDOB(x)) Transferroster.to_csv(fname, index=False) # Now deal with junior cabrini (should be only thing left after Cabrini CYC< # transfers, special sports Juniorteams=Others.loc[~thismask] # remove transfers Juniorteams=Juniorteams[Juniorteams['Team']!='drop'] # remove dropped players # now output all junior teams in same format (sometimes needed by <NAME>) # also calculate current age if len(Juniorteams)>0: Juniorteams=organizeroster(Juniorteams) # put in standard South Central roster format # Calculate current age from DOBs (renamed to Birthdate for roster only) Juniorteams.loc[:,'Age']=calcage(Juniorteams['Birthdate']) fname=cnf._OUTPUT_DIR+'\\Cabrini_junior_teams_'+str(year)+'.csv' Juniorteams=replaceacro(Juniorteams, acronyms) Juniorteams.loc[:,'Birthdate']=Juniorteams['Birthdate'].apply(lambda x: formatDOB(x)) Juniorteams.to_csv(fname, index=False) # Deal with special cases -Track and Chess # Get DOB/school from players.. anything else needed by <NAME>? Specials=pd.merge(Specials, players, how='left', on='Plakey', suffixes=('','_r')) # needs address Specials=pd.merge(Specials, famcontact, how='left', on='Famkey', suffixes=('','_r2')) for i, sport in enumerate(speciallist): # output roster for all transfers (all grades in case of CYC) Specials=Specials[Specials['Sport']==sport] Specials=Specials.rename(columns={'DOB':'Birthdate'}) mycols=['First', 'Last','Gender','Team','Grade','Birthdate','School','Address','Zip'] Specials=Specials[mycols] Specials=Specials.sort_values(['Gender', 'Birthdate', 'Grade'], ascending=True) Specials.loc[:,'Birthdate']=Specials['Birthdate'].apply(lambda x: formatDOB(x)) fname= cnf._OUTPUT_DIR+'\\'+ sport+'_'+str(year)+'_rosters.csv' Specials.to_csv(fname, index=False) return def makemultiteam(df): '''Small utility called by assigntoteams to make temp teams df that has separate entry for each grade if team is mixed grade then merge to assign teams is straightforward twoteams- ''' # TODO annoying problem with combining teams due to K1 (string but not int) mycols=df.dtypes.index # Deal with K1, K2 and such teams kteams=[str(s) for s in np.ndarray.tolist(df.Graderange.unique()) if 'K' in str(s)] kteams=[s for s in kteams if len(s)>1] # combo teams only kteams=df[df['Graderange'].isin(kteams)] xtrateams=pd.DataFrame(index=np.arange(0,0),columns=mycols) # empty df # clones rows to match lower grades in range for index, row in kteams.iterrows(): tempstr= kteams.loc[index]['Graderange'] gr1=0 # 0 for grade K gr2=int(tempstr[1]) for gr in range(gr1,gr2): newrow=kteams.loc[index] # grabs row as series newrow.loc['Grade'] = gr # set to correct grade xtrateams=xtrateams.append(newrow) # add single row to temp df df.loc[:,'Grade']=df.Grade.replace('K','0', regex=True) # get rid of K string problem df.loc[:,'Graderange']=df.Graderange.replace('K','0', regex=True) df.loc[:,'Graderange']=df.Graderange.astype('int') # now handle numbered multiteams (e.g. 45 78 two digit ints) multiteams=df.loc[df['Graderange']>9] # subset of teams comprised of multiple grades for index, row in multiteams.iterrows(): # check for 3 or more grades # TODO make sure it's not 3 grades (i.e. K-2) tempstr= str(multiteams.loc[index]['Graderange']) gr1=int(tempstr[0]) gr2=int(tempstr[1]) for gr in range(gr1,gr2): newrow=multiteams.loc[index] # grabs row as series newrow.loc['Grade'] = gr # set to correct grade xtrateams=xtrateams.append(newrow) # add single row to temp df # Detect gender-grade-sport w/ two teams # now combine with original df df=pd.concat([df,xtrateams], ignore_index=True) # complete team set df=df[mycols] # back in original order df=df.sort_values(['Gender','Grade'], ascending=True) # After cloning by grade, look for two teams per grade options twoteams=df[df.duplicated(['Sport','Gender','Grade'])] return df, twoteams def detectrosterchange(PMroster, myroster): '''Compare submitted and returned rosters to look for unique rows (altered by <NAME>) first row is <NAME> version (presumably correct to match CYC database) and second row is my submitted version... make any corrections to appropriate source data files datetime format conversions can be problematic ''' # all columns by default, false drops both duplicates leaving unique rows bothrosters=pd.concat([PMroster,myroster]) mycols=bothrosters.columns nanrows=bothrosters[pd.isnull(bothrosters['Birthdate'])] nanrows=nanrows.drop_duplicates(keep=False) # ensure player rows are both in correct format myroster=myroster[pd.notnull(myroster['Birthdate'])] PMroster=PMroster[pd.notnull(PMroster['Birthdate'])] def removeLeadZero(val): if val.startswith('0'): return val[1:] else: return val myroster.loc[:,'Birthdate']=myroster['Birthdate'].apply(lambda x:pd.to_datetime(x).strftime('%m/%d/%Y')) PMroster.loc[:,'Birthdate']=PMroster['Birthdate'].apply(lambda x:pd.to_datetime(x).strftime('%m/%d/%Y')) myroster.loc[:,'Birthdate']=myroster['Birthdate'].apply(lambda x:removeLeadZero(x)) PMroster.loc[:,'Birthdate']=PMroster['Birthdate'].apply(lambda x:removeLeadZero(x)) bothrosters=pd.concat([PMroster,myroster]) bothrosters=bothrosters.sort_values(['Fname','Lname']) # Fix date string differences alteredrows=bothrosters.drop_duplicates(keep=False) alteredrows=alteredrows.append(nanrows) alteredrows=alteredrows[mycols] alteredrows=alteredrows.sort_values(['Lname','Fname']) return alteredrows def saveteams(teams): '''Save teams tab into teams_coaches.xlsx after changes have been made ''' book=load_workbook('Teams_coaches.xlsx') writer=pd.ExcelWriter('Teams_coaches.xlsx', engine='openpyxl') writer.book=book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) teams.to_excel(writer,sheet_name='Teams',index=False) # this overwrites existing file writer.save() # saves xls file with all modified data def assigntoteams(df, season, year, teams, overwrite=False): '''From mastersignups finds CYC team name based on year, grade, gender and sport from teams tab (which only contains names from this season/year to avoid screwing up old custom team assignments''' # teamsmult has multi grade range teams with duplicates for merge matching # twoteams is multiple teams for same grade Teamsmult, Twoteams =makemultiteam(teams) # makes duplicates team entries to match both grades # compare grades as ints with K=0 df.loc[:,'Grade']=df.Grade.replace('K','0', regex=True) # convert Ks to zeros df.loc[:,'Grade']=df['Grade'].astype('int') Teamsmult.loc[:,'Grade']=Teamsmult['Grade'].astype('int') # ensure these are ints # left merge keeps all master_signups oentries df=pd.merge(df, Teamsmult, how='left', on=['Year','Grade','Gender','Sport'], suffixes=('','_r')) # need to drop SUkey duplicates (keeping first)... occurs if >1 team per grade df=df.drop_duplicates(subset=['SUkey']) # drops any duplicates by unique SUkey # Consider all sports except Track (team assignment done separately by DOB) sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) # this is post-merge so no chance of getting indices screwed up # select current sports & year and subset with new team assignment CurrentSU=df.loc[(df['Sport'].isin(sportlist)) & (df['Year']==year) & (pd.notnull(df['Team_r']))] if overwrite==False: # if no overwrite, keep only those with nan for team CurrentSU=CurrentSU.loc[pd.isnull(CurrentSU['Team'])] # Never overwrite team assignment for known drops CurrentSU=CurrentSU[CurrentSU['Team']!='drop'] counter=0 for index, row in CurrentSU.iterrows(): # all remaining can be overwritted (those w/ existing team dropped above) match=df[df['SUkey']==CurrentSU.loc[index]['SUkey']] if len(match)==1: thisind=match.index[0] # add new team assignment to correct index in original master signups df.loc[thisind, 'Team'] = CurrentSU.loc[index]['Team_r'] counter+=1 print(str(counter),' player(s) newly assigned to teams') # now drop extra columns and sort mycols=['SUkey','First', 'Last', 'Grade', 'Gender', 'Sport', 'Year', 'Team', 'Plakey','Famkey', 'Family', 'SUdate', 'Issue date', 'Uniform#','UniReturnDate'] df.loc[:,'Grade']=df.Grade.replace('K',0) df=df.sort_values(['Year','Sport', 'Gender', 'Grade'], ascending=True) df.loc[:,'Grade']=df.Grade.replace('0','K', regex=True) # make sure any 0 grades are again replaced with K df=df[mycols] autocsvbackup(df,'master_signups', newback=True) # autobackup of master signups df.to_csv(cnf._INPUT_DIR + '\\master_signups.csv', index=False) # save/overwrite existing csv return df def assigntrackgroup(df, year, players): '''Assign to different track team based on age on May 31 of this year (school year+1) ''' Track=df[(df['Sport']=='Track') & (df['Year']==year)] Track=pd.merge(Track,players, how='left', on=['Plakey'], suffixes=('','2')) numunassigned=len(Track[pd.isnull(Track['Team'])]) for index, row in Track.iterrows(): DOB=Track.loc[index]['DOB'] # merged from players.csv if isinstance(DOB,str): DOB=datetime.strptime(DOB,"%m/%d/%Y").date() # convert string to datetime elif isinstance(DOB, pd.tslib.Timestamp): DOB=DOB.date() # convert timestamp to datetime trackage=date(year+1,5,31)-DOB # age on prior year's May 31st (same as school year in current convention) trackage=(trackage.days + trackage.seconds/86400)/365.2425 # as decimal trackage=math.floor(trackage) if trackage <=7: team='Track7' elif 8 <= trackage <=9: team='Track89' elif 10 <= trackage <=11: team='Track1011' elif 12 <= trackage <=13: team='Track1213' elif 14 <= trackage <=15: team='Track1415' else: # probably some entry error mystr=Track.loc[index]['First']+' '+Track.loc[index]['Last']+' Grade:'+Track.loc[index]['Grade'] print('Suspected DOB error for',mystr, 'DOB:', datetime.strftime(DOB, "%m/%d/%y") ) team='' # Now write back altered subset to mastersignups (index is lost so use SUkey) SUkey=int(Track.loc[index]['SUkey']) match=df[df['SUkey']==SUkey] # This gives correct index df.loc[match.index[0], 'Team'] = team # alter/assign team for this signup newlyassigned=numunassigned-len(Track[pd.isnull(Track['Team'])]) print(newlyassigned,' players assigned to track age group.') return df def readbackevents(trackevents): ''' Reads back choices of track events from summary sheet and prep for copy to Pat Moore spreadsheet in 4x100, 4x200, 4x400 col enter start order 1,2,3,4,1A,2A ''' regcols=['Last', 'First', 'Middle', 'Gender', 'DOB', 'Team Code','Event#1', 'Event#2', 'Event#3', 'Event#4'] # Manually enter order of runners and alternates for relays events=['50M', '100M', '200M', '400M', '800M', '1600M', 'SoftThrow', 'ShotPut','StdLongJump', 'RunLongJump'] regfile=pd.DataFrame(columns=regcols) regfile.loc[:,'Team Code']=='SFC' for index, row in trackevents.iterrows(): # get events for which player is signed up playerevents=[] for i, event in enumerate(events): if str(row[event])!='nan': playerevents.append(event) print(event,' for ',row.First, row.Last) # Check for relay type separately if row['Relay'] in ['4x100', '4x200','4x400']: playerevents.append(row['Relay']) print(row['Relay'],' for ',row.First, row.Last) if len(playerevents)>4: print('Too many events for ', row.First, row.Last) # Now construct player's entry in regfile thisentry=row thisentry['Middle']='' thisentry['Team Code']='SFC' # Gender is upper case M or F thisentry['Gender']=thisentry['Gender'].upper() for i, event in enumerate(playerevents): colname='Event#'+str(i+1) thisentry[colname]=event regfile=regfile.append(thisentry, ignore_index=True) regfile=regfile[regcols] return regfile def maketracksummary(df, year, players): '''Assign to different track team based on age on May 31 of this year (school year+1) ''' Track=df[(df['Sport']=='Track') & (df['Year']==year)] Track=pd.merge(Track,players, how='left', on=['Plakey'], suffixes=('','2')) Track.loc[Track.index,'Trackage']=np.nan for index, row in Track.iterrows(): DOB=Track.loc[index]['DOB'] # merged from players.csv if isinstance(DOB,str): DOB=datetime.strptime(DOB,"%m/%d/%Y").date() # convert string to datetime elif isinstance(DOB, pd.tslib.Timestamp): DOB=DOB.date() # convert timestamp to datetime trackage=date(year+1,5,31)-DOB # age on prior year's May 31st (same as school year in current convention) trackage=(trackage.days + trackage.seconds/86400)/365.2425 # as decimal Track.loc[index,'Trackage'] = trackage trackage=math.floor(trackage) if trackage <=7: team='Track7' elif 8 <= trackage <=9: team='Track89' elif 10 <= trackage <=11: team='Track1011' elif 12 <= trackage <=13: team='Track1213' elif 14 <= trackage <=15: team='Track1415' else: # probably some entry error mystr=Track.loc[index]['First']+' '+Track.loc[index]['Last']+' Grade:'+Track.loc[index]['Grade'] print('Suspected DOB error for',mystr, 'DOB:', datetime.date.strftime(DOB, "%m/%d/%y") ) team='' Track.loc[index,'Team'] = team Track=Track.sort_values(['Trackage']) mycols=['First', 'Last', 'Grade', 'Gender','DOB','Team','Trackage'] Track=Track[mycols] return Track def findrecruits(df, players, famcontact, season, year, signupfile): '''Read list of signed-up player keys from xls file; compare with last year's set of players from master Signups log 7/2018 mod... grab DOB to allow easier manual additions to signups ''' mycols=df.columns.tolist() # Same columns as mastersignups sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} sportlist=sportsdict.get(season) Recruits=pd.DataFrame(columns=mycols) # empty frame for recruits for i, sport in enumerate(sportlist): thissport=df[df['Sport']==sport] thissport=thissport.sort_values(['Year'], ascending=False) # most current signups at top plakeylist=thissport.Plakey.unique() # ndarray with list of unique soccer players keylist=plakeylist.tolist() for i, key in enumerate(keylist): match=thissport[thissport['Plakey']==key] # recruits ... played in year -1 but not in year if year-1 in match.Year.unique() and year not in match.Year.unique(): match=match[0:1] # take only last season's signup Recruits=pd.concat([Recruits,match], ignore_index=True) # plakey, famkey, first, last, grade, gender, Recruits.loc[:,'Grade']=Recruits.Grade.replace('K',0) # replace K with zero to allow sorting Recruits.loc[:,'Grade']=Recruits.Grade.astype(int) Recruits.loc[:,'Grade']=Recruits.Grade+1 # adjust to correct grade for this year # Drop if graduated Recruits=Recruits[Recruits['Grade']<=8] # adjust grade such that players current grade is in list # join with famcontact on famkey to get contact info (emails, phones, etc.) # Inner join on famkey adds the necessary info Recruits=
pd.merge(Recruits, famcontact,how='inner', on='Famkey', suffixes=('','_r'))
pandas.merge
import pandas as pd import numpy as np import talib class Indicators(object): """ Input: Price DataFrame, Moving average/lookback period and standard deviation multiplier This function returns a dataframe with 5 columns Output: Prices, Moving Average, Upper BB, Lower BB and BB Val """ def bb(self, l_sym, df_price, time_period, st_dev_u, st_dev_l): df_bb_u = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_m = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_l = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_bb_u[sym], df_bb_m[sym], df_bb_l[sym] = talib.BBANDS(np.asarray(df_price[sym]), timeperiod=time_period, nbdevup=st_dev_u, nbdevdn=st_dev_l) except: pass return df_bb_u, df_bb_m, df_bb_l def ema(self, l_sym, df_price, time_period): df_ema = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ema[sym] = talib.EMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ema def ma(self, l_sym, df_price, time_period): df_ma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ma[sym] = talib.MA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ma def sma(self, l_sym, df_price, time_period): df_sma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_sma[sym] = talib.SMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_sma def adx(self, l_sym, df_high, df_low, df_close, time_period): df_adx = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_adx[sym] = talib.ADX(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod = time_period) except: pass return df_adx def mom(self, l_sym, df_price, time_period): df_mom = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_mom[sym] = talib.MOM(np.asarray(df_price[sym]), timeperiod = time_period) except: pass return df_mom def atr(self, l_sym, df_high, df_low, df_close, time_period): df_atr = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_atr[sym] = talib.ATR(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod=time_period) except: pass return df_atr def macd(self, l_sym, df_price, fast_period, slow_period, signal_period): df_macd = pd.DataFrame(columns=l_sym, index=df_price.index) df_macdsignal = pd.DataFrame(columns=l_sym, index=df_price.index) df_macdhist = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_macd[sym], df_macdsignal[sym], df_macdhist[sym] = talib.MACD(np.asarray(df_price[sym]), fastperiod=fast_period, slowperiod=slow_period, signalperiod=signal_period) except: pass return df_macd, df_macdsignal, df_macdhist def wavec(self, l_sym, df_three, df_four, df_five): df_ca = pd.DataFrame(columns=l_sym, index=df_three.index) df_cb = pd.DataFrame(columns=l_sym, index=df_three.index) for sym in l_sym: df_ca[sym] = df_four[sym] - df_five[sym] df_cb[sym] = df_three[sym] - df_four[sym] return df_ca, df_cb def waveb(self, l_sym, df_two, df_three, df_four): df_ba = pd.DataFrame(columns=l_sym, index=df_two.index) df_bb = pd.DataFrame(columns=l_sym, index=df_two.index) for sym in l_sym: df_ba[sym] = df_three[sym] - df_four[sym] df_bb[sym] = df_two[sym] - df_three[sym] return df_ba, df_bb def wavea(self, l_sym, df_one, df_two, df_three): df_aa = pd.DataFrame(columns=l_sym, index=df_one.index) df_ab = pd.DataFrame(columns=l_sym, index=df_one.index) for sym in l_sym: df_aa[sym] = df_two[sym] - df_three[sym] df_ab[sym] = df_one[sym] - df_two[sym] return df_aa, df_ab def keltner(self, l_sym, df_high, df_low, df_close, ema_period, atr_period, multiplier): df_kch_u = pd.DataFrame(columns=l_sym, index=df_high.index) df_kch_l = pd.DataFrame(columns=l_sym, index=df_high.index) df_kch_m = self.ema(l_sym, df_close, time_period=ema_period) df_atr = self.atr(l_sym, df_high, df_low, df_close, time_period=atr_period) for sym in l_sym: df_kch_u[sym] = df_kch_m[sym] + (multiplier * df_atr[sym]) df_kch_l[sym] = df_kch_m[sym] - (multiplier * df_atr[sym]) return df_kch_u, df_kch_m, df_kch_l def ichimoku(self, l_sym, df_high, df_low): df_ichimoku_tenkan_u =
pd.DataFrame(columns=l_sym, index=df_high.index)
pandas.DataFrame
# Databricks notebook source import pandas as pd import numpy as np import networkx as nx from nodevectors import Node2Vec as NVVV from sklearn.decomposition import PCA import os import itertools import pickle spark.conf.set("spark.databricks.delta.properties.defaults.autoOptimize.optimizeWrite", "true") spark.conf.set("spark.databricks.delta.properties.defaults.autoOptimize.autoCompact", "true") # COMMAND ---------- def load_data(save_path, file_name): df = (spark.read.format("delta") .option("header", "true") .option("inferSchema", "true") .load(os.path.join(save_path, file_name)) ) return df.toPandas() def filter_non_esg(df): return df[(df['E']==True) | (df['S'] == True) | (df['G'] == True)] # COMMAND ---------- class graph_creator: def __init__(self, df): self.df = df def create_graph(self): # Find Edges df_edge = pd.DataFrame(self.df.groupby("URL").Organization.apply(list) ).reset_index() get_tpls = lambda r: (list(itertools.combinations(r, 2)) if len(r) > 1 else None) df_edge["SourceDest"] = df_edge.Organization.apply(get_tpls) df_edge = df_edge.explode("SourceDest").dropna(subset=["SourceDest"]) # Get Weights source_dest = pd.DataFrame(df_edge.SourceDest.tolist(), columns=["Source", "Dest"]) sd_mapping = source_dest.groupby(["Source", "Dest"]).size() get_weight = lambda r: sd_mapping[r.Source, r.Dest] source_dest["weight"] = source_dest.apply(get_weight, axis=1) # Get self.organizations = set(source_dest.Source.unique()).union( set(source_dest.Dest.unique())) self.G = nx.from_pandas_edgelist(source_dest, source="Source", target="Dest", edge_attr="weight", create_using=nx.Graph) return self.G # COMMAND ---------- def get_embeddings(G, organizations): # Fit graph g2v = NVVV() g2v.fit(G) # Embeddings print("NVVVstart") embeddings = g2v.model.wv.vectors print("NVVVend") pca = PCA(n_components=3) principalComponents = pca.fit_transform(embeddings) d_e =
pd.DataFrame(principalComponents)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data=pd.read_table("GSE5583.txt",header=0,index_col=0) print("Previous 5:\n",data.head()) number_of_genes=len(data.index) print("Gene Number:",number_of_genes) # normalization data2=np.log2(data+0.0001) print("Previous 5:\n",data2.head()) # diff P from scipy import stats pvalue=[] for i in range(0,number_of_genes): ttest=stats.ttest_ind(data2.iloc[i,0:3],data2.iloc[i,3:6]) pvalue.append(ttest[1]) # draw P values graph wt=data2.loc[:,'WT.GSM130365':'WT.GSM130367'].mean(axis=1) ko=data2.loc[:,'KO.GSM130368':'KO.GSM130370'].mean(axis=1) fold=ko-wt plt.hist(-np.log(pvalue)) plt.title("Histogram of P-value") plt.show() # draw diff analysis graph gene_array=np.asarray(pvalue) result=
pd.DataFrame({'pvalue':gene_array,'FoldChange':fold})
pandas.DataFrame
import seaborn as sns import matplotlib.pyplot as plt import numpy as np import re from math import ceil import pandas as pd from sklearn.metrics import classification_report from scipy.stats import shapiro, boxcox, yeojohnson from scipy.stats import probplot from sklearn.preprocessing import LabelEncoder, PowerTransformer from category_encoders.target_encoder import TargetEncoder from sklearn.impute import SimpleImputer, MissingIndicator from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.linear_model import LinearRegression, LogisticRegression # from .charts.classification_visualization import classification_visualization # from .charts.charts import Plot, ScatterChart from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.utils.multiclass import unique_labels from sklearn.manifold import TSNE from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor import json from pyod.models.hbos import HBOS from statsmodels.api import ProbPlot # from .charts.charts_extras import ( # feature_importances_plot, # regression_viz, # classification_viz, # ) from sklearn.ensemble import ( RandomForestClassifier, GradientBoostingClassifier, RandomForestRegressor, GradientBoostingRegressor, ) from sklearn.svm import LinearSVC import warnings warnings.filterwarnings("ignore") sns.set_palette("colorblind") class CrawtoDS: def __init__( self, data, target, test_data=None, time_dependent=False, features="infer", problem="infer", ): self.input_data = data self.target = target self.features = features self.problem = problem self.test_data = test_data self.timedependent = time_dependent if self.problem == "binary classification": self.train_data, self.valid_data = train_test_split( self.input_data, shuffle=True, stratify=self.input_data[self.target], ) elif self.problem == "regression": self.train_data, self.valid_data = train_test_split( self.input_data, shuffle=True, ) def nan_features(input_data): """a little complicated. map creates a %nan values and returns the feature if greater than the threshold. filter simply filters out the false values """ f = input_data.columns.values len_df = len(input_data) nan_features = list( filter( lambda x: x is not False, map( lambda x: x if self.input_data[x].isna().sum() / len_df > 0.25 else False, f, ), ) ) return nan_features def problematic_features(self): f = self.input_data.columns.values problematic_features = [] for i in f: if "Id" in i: problematic_features.append(i) elif "ID" in i: problematic_features.append(i) return problematic_features def undefined_features(self): if self.features == "infer": undefined_features = list(self.input_data.columns) undefined_features.remove(self.target) for i in self.nan_features: undefined_features.remove(i) for i in self.problematic_features: undefined_features.remove(i) return undefined_features def numeric_features(self): numeric_features = [] l = self.undefined_features for i in l: if self.input_data[i].dtype in ["float64", "float", "int", "int64"]: if len(self.input_data[i].value_counts()) / len(self.input_data) < 0.1: pass else: numeric_features.append(i) return numeric_features def categorical_features(self, threshold=10): self.undefined_features categorical_features = [] to_remove = [] l = self.undefined_features for i in l: if len(self.input_data[i].value_counts()) / len(self.input_data[i]) < 0.10: categorical_features.append(i) return categorical_features def indicator(self): indicator = MissingIndicator(features="all") indicator.fit(self.train_data[self.undefined_features]) return indicator def train_missing_indicator_df(self): x = self.indicator.transform(self.train_data[self.undefined_features]) x_labels = ["missing_" + i for i in self.undefined_features] missing_indicator_df =
pd.DataFrame(x, columns=x_labels)
pandas.DataFrame
import pandas as pd def subm_to_df(subm): data = [] for key in sorted(subm.keys()): top_imgs = subm[key] for img_id, score in top_imgs.items(): row = [key, img_id, score] data.append(row) return
pd.DataFrame(columns=["topic_id", "image_id", "confidence_score"], data=data)
pandas.DataFrame
""" 2 - Jan - 2018 / <NAME> / <EMAIL> datred.py is a module created as part of the FUSS package to help with the data reduction of spectropolarimetric data (at the present time only used with FORS2 data) Pre-requisites -------------- os, astropy.io, numpy, math, matplotlib.pyplot, pysynphot, scipy.special, pandas Variable -------- zero_angles : string Path to the text file containing the chromatic zero angles for FORS2 (needs updating for you own system). Can be found at: http://www.eso.org/sci/facilities/paranal/instruments/fors/inst/pola.html Functions --------- sort_red rebin pol_deg pol_ang F_from_oeray Classes ------- Meta SpecPol LinearSpecPol CircularSpecPol """ from __future__ import division from __future__ import print_function import os from astropy.io import fits import numpy as np import math as m import matplotlib.pyplot as plt import pysynphot as S from scipy import special as special from astropy.utils.data import get_pkg_data_filename import re import pandas as pd import sys if sys.version_info.major < 3: range = xrange input = raw_input # ###### LOCATION OF FILE CONTAINING CHROMATIC ZERO ANGLES ######### # zero_angles = get_pkg_data_filename('data/theta_fors2.txt') # ################################################################## # def sort_red(): """ Creates back-up of the compressed files, uncompresses them, sorts them and re-names them. Notes ----- For the .cl files to work properly, the naming convention used by sort_red is essential. """ # Creating backups of the original uncompressed files os.system('mkdir backup') os.system('cp * backup') os.system('mkdir txt') os.system('mv *.txt txt') os.system('mkdir FITS') os.system('mv *.fits* FITS') os.chdir('FITS') os.system('uncompress *.Z') os.system('rm -f *.Z') filename_list = sorted([filename for filename in os.listdir(".")]) os.system('mkdir Data_reduction') os.system('mkdir Other') bias = 0 arc = 0 flat = 0 sky = 0 sci = 0 slit = 0 os.system('mkdir CHIP2') # We don't use CHIP 2 with FORS2 so I put all those in a separate folder for filename in filename_list: if "fits" in filename: try: hdulist = fits.open(filename) chip = hdulist[0].header['EXTNAME'] if chip == 'CHIP2': os.system('mv ' + filename + ' CHIP2') hdulist.close() except: print("Not CHIP2 " + filename) for filename in filename_list: # Here we are renaming the files. The naming convention used here is assumed # throughout the rest of the datred sub-module. if "fits" in filename: try: hdulist = fits.open(filename) head = hdulist[0].header['HIERARCH ESO DPR TYPE'] if head == 'BIAS': bias = bias + 1 new_name = 'BIAS_' + str(bias).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Data_reduction') if head == 'FLAT,LAMP': flat = flat + 1 new_name = 'FLAT_' + str(flat).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Data_reduction') if head == 'WAVE,LAMP': arc = arc + 1 new_name = 'ARC_' + str(arc).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Data_reduction') if head == 'OBJECT': sci = sci + 1 new_name = 'SCIENCE_' + str(sci).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Data_reduction') if head == 'STD': sci = sci + 1 new_name = 'SCIENCE_' + str(sci).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Data_reduction') if head == 'SKY': sky = sky + 1 new_name = 'SKY_' + str(sky).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Other') if head == 'SLIT': slit = slit + 1 new_name = 'SLIT_' + str(slit).zfill(3) + ".fits" os.rename(filename, new_name) os.system('mv ' + new_name + ' Other') hdulist.close() except: print("Could not sort this file (type?) " + filename) os.chdir('Data_reduction') # If the images have 4096 pixels in x direction they're defo not our science images and if they are calibration # images they can't calibrate our science because it's the wrong size. os.system('mkdir wrong_size') for filename in os.listdir("."): if "fits" in filename: try: hdulist = fits.open(filename) size_x = hdulist[0].header['HIERARCH ESO DET OUT1 NX'] if size_x == 4096: os.system('mv ' + filename + ' wrong_size') except: print("Could not sort this file (size?) " + filename) hdulist.close() print('\nAll Done! :D \n') def rebin(wl, f, r, bin_siz=15): """ To rebin my flux spectra Parameters ---------- wl : array 1D array containing the wavelengths to be rebinned f : array 1D array containing the fluxes to be rebinned r : array 1D array containing the errors on the fluxes to be rebinned bin_siz : int Size of the new bins in Angstrom. Returns ------- tuple of 1D arrays: wl, f, err all rebinned to the new bin size if bin_siz is None: print "No binning" return wl, f, r """ wl = np.array(wl) f = np.array(f) r = np.array(r) small_bin_sizes = [] bins_f = np.zeros(int((max(wl) - min(wl)) / bin_siz) + 1) # new flux bins, empty for now bins_w = np.zeros(int((max(wl) - min(wl)) / bin_siz) + 1) # new error bins, empty for now weights = 1 / (r ** 2) for i in range(len(wl) - 1): # n = int((wl[i]-min(wl))/bin_siz) # n is the number of the new bin small_bin_sizes.append((wl[i + 1] - wl[i])) # filling list of small bin sizes bin_centers = [(min(wl) + bin_siz / 2) + bin_siz * n for n in range(len(bins_f))] # finding the new bin centers bin_edges = [bin_centers[0] - bin_siz / 2] + [bin1 + bin_siz / 2 for bin1 in bin_centers] # finding the new bin edges ind_edge = [] # in this list I'll put the index of the array wl corresponding to the wavelength values # that are close to the bin edges. for edge in bin_edges: i_wl_at_edge = min(range(len(wl[:-1])), key=lambda i: abs(edge - wl[i])) # this is to find the small bin that is closest to the edge of the new bin # print wl[i_wl_at_edge], small_bin_sizes[i_wl_at_edge] ind_edge.append(i_wl_at_edge) for i in range(len(wl)): n = int((wl[i] - min(wl)) / bin_siz) if i in ind_edge: j = ind_edge.index(i) # finding index j of the wavelength index i I am interested in edge = bin_edges[j] # the edge to compare to wl[i] will then be at bin_edges[j] if wl[i] < edge: frac_overlap = (wl[i] + small_bin_sizes[i] / 2 - edge) / (small_bin_sizes[i]) try: bins_f[n] += f[i] * weights[i] * (1 - frac_overlap) bins_w[n] += weights[i] * (1 - frac_overlap) bins_f[n + 1] += f[i] * weights[i] * frac_overlap bins_w[n + 1] += weights[i] * frac_overlap except IndexError: print("Index Error at ", wl[i]) pass elif wl[i] > edge: frac_overlap = (wl[i] + small_bin_sizes[i] / 2 - edge) / (small_bin_sizes[i]) try: bins_f[n] += f[i] * weights[i] * frac_overlap bins_w[n] += weights[i] * frac_overlap bins_f[n + 1] += f[i] * weights[i] * (1 - frac_overlap) bins_w[n + 1] += weights[i] * (1 - frac_overlap) except IndexError: print("Index Error at ", wl[i]) pass else: try: bins_f[n] += f[i] * weights[i] bins_w[n] += weights[i] except IndexError: print("Index Error at ", wl[i]) pass for i in range(len(bin_centers)): if bins_w[i] == 0.0: print(bin_centers[i], bins_w[i], "\nCAREFUL! BIN WLGTH == 0!") bins_f[:-1] /= bins_w[:-1] # normalise weighted values by sum of weights to get weighted average bins_err = np.sqrt(1 / bins_w[:-1]) return bin_centers[:-1], bins_f[:-1], bins_err def pol_deg(q, u, q_r=None, u_r=None): """ Finds the degree of polarisation p from Stokes parameters q and u. Does debiasing using step function. Notes ----- q, u, q_r and u_r must have the same dimension Parameters ---------- q : float or 1D numpy.array Stokes q. u : float or 1D numpy.array Stokes u. q_r : float or 1D numpy.array Errors on Stokes q. u_r : float or 1D numpy.array Errors on Stokes u. Returns ------- tuple (p, error on p) if errors on q and u are given. Only p if errors are not given. """ p = np.sqrt(q * q + u * u) if q_r is not None and u_r is not None: p_r = (1 / p) * np.sqrt((q * q_r) ** 2 + (u * u_r) ** 2) # Here we are debiasing using a step function. See Wang et al. (1997) # (Polarimetry of the Type IA Supernova SN 1996X -- their equation 3) try: for i in range(len(p)): if p[i] - p_r[i] > 0: p[i] -= (p_r[i]**2)/p[i] except TypeError: if p - p_r > 0: p -= (p_r**2)/p return p, p_r else: return p def pol_ang(q, u, q_r=None, u_r=None): """ Calculates the polarisation angle Parameters ---------- q : float or 1D numpy.array Stokes q. u : float or 1D numpy.array Stokes u. q_r : float or 1D numpy.array Errors on Stokes q. u_r : float or 1D numpy.array Errors on Stokes u. Returns ------- tuple (theta, error on theta) if errors on q and u are given. Only theta if errors are not given. 4 """ if isinstance(q, float): theta = 0.5 * m.atan2(u, q) theta = (theta * 180.0) / m.pi if theta < 0: theta += 180 # Making sure P.A is within limit 0<theta<180 deg if q_r is not None and u_r is not None: theta_r = 0.5 * np.sqrt(((u_r / u) ** 2 + (q_r / q) ** 2) * (1 / (1 + (u / q) ** 2)) ** 2) theta_r = (theta_r * 180.0) / m.pi if theta_r > 180: theta_r = 180 return theta, theta_r else: return theta else: theta = np.array([]) theta_r = np.array([]) for t in range(len(q)): theta_t = 0.5 * m.atan2(u[t], q[t]) theta_t = (theta_t * 180.0) / m.pi if theta_t < 0: theta_t += 180 # Making sure P.A is within limit 0<theta<180 deg theta = np.append(theta, theta_t) if q_r is not None and u_r is not None: theta_tr = 0.5 * np.sqrt( ((u_r[t] / u[t]) ** 2 + (q_r[t] / q[t]) ** 2) * (1 / (1 + (u[t] / q[t]) ** 2)) ** 2) theta_tr = (theta_tr * 180.0) / m.pi if theta_tr > 180: theta_tr = 180 theta_r = np.append(theta_r, theta_tr) if q_r is not None and u_r is not None: return theta, theta_r else: return theta def F_from_oeray(fo, fe, fo_r, fe_r): """ Normalised flux (F) from ordinary and extra-ordinary rays Notes ----- All the arrays should be the same length. Parameters ---------- fo : 1D numpy.array flux of the ordinary ray fe : 1D numpy.array flux of the extra-ordinary ray fo_r : 1D numpy.array error on the flux of the ordinary ray fe_r : 1D numpy.array error on the flux of the extra-ordinary ray Returns ------- Normalised flux : np.array """ F = (fo - fe) / (fo + fe) F_r = abs(F) * np.sqrt( ((fo_r ** 2) + (fe_r ** 2)) * ( (1 / (fo - fe) ** 2) + (1 / (fo + fe) ** 2)) ) return F, F_r class Meta(object): """ To find the meta data of the images we are working on, create a data frame and save it to a tab separated file. Examples -------- >> import FUSS.datred as r >> path = "/home/heloise/Data/11hs/88.D-0761/2011-12-23/FITS/Data_reduction/bad_binning/" >> metadataframe = r.Meta(path=path).dataThe Meta Data file metadata already exists. Would you like to replace it? (Y/n)N File not replaced >> metadataframe.iloc[-5:-1] Flag Filename ESO label Angle Pol. Type Exp. Time Airmass \ 24 polstd SCIENCE_84.fits PMOS_NGC2024 0 lin 19.9985 1.095 25 polstd SCIENCE_85.fits PMOS_NGC2024 22.5 lin 19.9922 1.0945 26 polstd SCIENCE_86.fits PMOS_NGC2024 45 lin 19.9986 1.094 27 polstd SCIENCE_87.fits PMOS_NGC2024 67.5 lin 20.0026 1.093 1/gain RON Grism Bin Date 24 0.7 2.9 GRIS_300V 2x2 2011-12-23T03:44:59.590 25 0.7 2.9 GRIS_300V 2x2 2011-12-23T03:46:04.915 26 0.7 2.9 GRIS_300V 2x2 2011-12-23T03:47:09.870 27 0.7 2.9 GRIS_300V 2x2 2011-12-23T03:48:15.905 >> metadataframe.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 29 entries, 0 to 28 Data columns (total 12 columns): Flag 8 non-null object Filename 29 non-null object ESO label 29 non-null object Angle 29 non-null object Pol. Type 23 non-null object Exp. Time 29 non-null object Airmass 29 non-null object 1/gain 29 non-null object RON 29 non-null object Grism 29 non-null object Bin 29 non-null object Date 29 non-null object dtypes: object(12) memory usage: 2.9+ KB Notes ----- The files whose headers we will look at must have ".fits" in the name, cannot be "dSCIENCE" or "cal_" files. (This is to do with the notation used throughout the FUSS package both in the IRAF and python scripts) Attributes ---------- clobber_flag : bool or None Whether or not to clobber the output_file if it exists. Initiated as "None". output : str Name of the output file path : str Path to the location of the images the metadata should be read from. Default: "./". target_flag : str String present in ESO labels that uniquely identifies the target. zeropol_flag : str String present in ESO labels that uniquely identifies the zero polarisation standard. polstd_flag : str String present in ESO labels that uniquely identifies the polarised standard. sorted_files : list of str Sorted list containing the names of the files whose headers we want to look at. data : pandas.core.frame.DataFrame Data frame containing the meta data. Columns: ['Flag', 'Filename', 'ESO label', 'Angle', 'Pol. Type', 'Exp. Time', 'Airmass', '1/gain', 'RON', 'Grism', 'Bin', 'Date'] Methods ------- _write_out() Writes to file _clobber_flag() Sets the clobber file to True or False if it has not been set on initiation. _flag() Writes the corresponding flags to each rows. Either 'tar', 'zpol' or 'polstd' _read_headers() Reads the fits headers and fills the info attribute data frame. """ def __init__(self, path = "./", output_file = 'metadata', target_flag='CCSN', zpol_flag='Zero_', polstd_flag='NGC2024', clobber = None, make_file = True): """ Initiates MetaData object Parameters ---------- path : str, optional path to the location of the images the metadata should be read from. Default: "./". output_file : str, optional path to the output file where the data frame containing metadata will be written. Default: 'metadata'. target_flag : str, optional String present in ESO labels that uniquely identifies the target. zpol_flag : str, optional String present in ESO labels that uniquely identifies the zero polarisation standard. polstd_flag : str, optional String present in ESO labels that uniquely identifies the polarised standard. clobber : bool, optional If a file "output_file" already exists, whether to replace it or not. Default: False. Returns ------- None """ self.clobber_flag = clobber self.output = output_file self.path = path self.target_flag = target_flag self.zeropol_flag = zpol_flag self.polstd_flag = polstd_flag # We want to make sure that python reads the images in the right order, we also only need to look at the headers # of the original images with name format SCIENCE_##.fits where ## is a 2 or 3 digit number. self.sorted_files = sorted([filename for filename in os.listdir(self.path) if 'fits' in filename and 'ms' not in filename and 'dSCIENCE' not in filename and 'cal' not in filename]) self.data = pd.DataFrame(columns = ['Flag', 'Filename', 'ESO label', 'Angle', 'Pol. Type', 'Exp. Time', 'Airmass', '1/gain', 'RON', 'Grism', 'Bin', 'Date']) self._read_headers() # read headers and fills the dataframce self._flag() # to flag targets and pol standards if make_file is False: return self._write_out() # writes it out to a file return def _write_out(self): """ Writes to file """ if not os.path.isfile(self.output): self.data.to_csv(self.output, sep='\t', index=False) print("File Created") return else: self._clobber_flag() if self.clobber_flag is True: os.remove(self.output) self.data.to_csv(self.output, sep='\t', index=False) print("File replaced") if self.clobber_flag is False: print("File not replaced") def _clobber_flag(self): """ Sets the clobber file to True or False if it has not been set on initiation. """ while self.clobber_flag is None: clobber = input("The Meta Data file "+self.output+" already exists. Would you like to replace it? (Y/n)") if clobber in ['n', 'N', 'no', 'no']: self.clobber_flag = False elif clobber in ['', ' ', 'Y', 'y', 'yes', 'Yes', 'ye', 'Ye']: self.clobber_flag = True def _flag(self): """ Writes the corresponding flags to each rows. Either 'tar', 'zpol' or 'polstd' """ for i in range(len(self.data['ESO label'])): if self.target_flag in self.data.loc[i,'ESO label']: self.data.loc[i, 'Flag'] = 'tar' elif self.zeropol_flag in self.data.loc[i,'ESO label']: self.data.loc[i, 'Flag'] = 'zpol' elif self.polstd_flag in self.data.loc[i,'ESO label']: self.data.loc[i, 'Flag'] = 'polstd' def _read_headers(self): """ Reads the fits headers and fills the info attribute data frame. """ for i in range(len(self.sorted_files)): filename = self.sorted_files[i] self.data.loc[i, 'Filename'] = filename # Here we go through the headers and take out the information that we need to create the fits files. # I think the header names and variable names are explicit enough hdulist = fits.open(self.path+filename) exptime = hdulist[0].header['EXPTIME'] self.data.loc[i,'Exp. Time'] = exptime binx = hdulist[0].header['HIERARCH ESO DET WIN1 BINX'] biny = hdulist[0].header['HIERARCH ESO DET WIN1 BINY'] binning = str(binx) + "x" + str(biny) self.data.loc[i,'Bin'] = binning #size_x = hdulist[0].header['HIERARCH ESO DET OUT1 NX'] one_over_gain = hdulist[0].header['HIERARCH ESO DET OUT1 CONAD'] self.data.loc[i,'1/gain'] = one_over_gain ron = hdulist[0].header['HIERARCH ESO DET OUT1 RON'] # Read Out Noise self.data.loc[i,'RON'] = ron try: grism = hdulist[0].header['HIERARCH ESO INS GRIS1 NAME'] except KeyError: grism = 'None' self.data.loc[i,'Grism'] = grism poltype = None try: angle = hdulist[0].header['HIERARCH ESO INS RETA2 ROT'] poltype = 'lin' except KeyError: try: angle = hdulist[0].header['HIERARCH ESO INS RETA2 POSANG'] poltype = 'lin' except KeyError: try: angle = str(hdulist[0].header['HIERARCH ESO INS RETA4 ROT']) poltype = 'circ' except KeyError: angle = 'None' self.data.loc[i,'Angle'] = angle self.data.loc[i,'Pol. Type'] = poltype date = hdulist[0].header['DATE-OBS'] self.data.loc[i,'Date'] = date try: esoname = hdulist[0].header['HIERARCH ESO OBS NAME'] except KeyError: esoname = 'None' self.data.loc[i,'ESO label'] = esoname if "fits" and "SCIENCE" in filename: head = hdulist[0].header['HIERARCH ESO DPR TYPE'] if head == 'OBJECT' or head == 'STD': airm_i = float(hdulist[0].header['HIERARCH ESO TEL AIRM START']) airm_f = float(hdulist[0].header['HIERARCH ESO TEL AIRM END']) airm = (airm_i + airm_f) / 2 else: airm = 'None' else: airm = 'None' self.data.loc[i,'Airmass'] = airm # ################# LINEAR SPECPOL ####################### # class SpecPol(object): """ Base class for LinearSpecPol and CircularSpecPol. Notes ----- SpecPol is not particularly useful on its own, it is simply a basic framework of methods and attributes we need for both linear and circular polarimetry calculations. Attributes --------- metadata : pandas.core.frame.DataFrame Data frame containing the metadata as built by MetaData. Can be initiated from tab separated file containing the data frame or from the data frame directly. oray : str Which aperture flag that corresponds to the ordinary ray files. In our naming convention the flag can be either 'ap1' or 'ap2'. eray : str Which aperture flag that corresponds to the extra-ordinary ray files. In our naming convention the flag can be either 'ap1' or 'ap2'. bin_size : int or None Size of the bins in Angstrom if rebinning. Otherwise None. snrplot : bool Whether or not to plot the signal to noise ratio plots (expectd and calculated -- to check how well a job the binning did). Default is False. pol_file : Initiated as None Name of the output polarisation file. Will be defined through user input. flag : Initiated as None Flag to focus on in the metadata: 'tar', 'zpol' or 'polstd'. Defined in the calculate() method of LinearSpecPol and CircularSpecPol """ def __init__(self, oray='ap2', metadata = 'metadata', bin_size=None, snrplot=False): if oray == 'ap2': self.oray, self.eray = 'ap2', 'ap1' elif oray == 'ap1': self.oray, self.eray = 'ap1', 'ap2' if isinstance(metadata, str): assert os.path.isfile(metadata), metadata+" is not a valid file path." self.metadata = pd.read_csv(metadata, sep='\t') elif isinstance(metadata, pd.core.frame.DataFrame): self.metadata = metadata self.bin_size=bin_size self.snrplot = snrplot self.pol_file = None self.flag = None def _flux_diff_from_file(self, files, check_bin=False): """ Calculates the normalised flux differences from files. Parameters ---------- files : list of str list of files check_bin : bool Whether to check the binning with snr plots. """ # Extracting polarised fluxes of o and e ray and their errors according to filenames for filename in files: if self.oray in filename: if 'err' not in filename: self.wl, fo = np.loadtxt(filename, unpack=True, usecols=(0, 1)) else: self.wl, fo_r = np.loadtxt(filename, unpack=True, usecols=(0, 1)) if self.eray in filename: if 'err' not in filename: self.wl, fe = np.loadtxt(filename, unpack=True, usecols=(0, 1)) else: self.wl, fe_r = np.loadtxt(filename, unpack=True, usecols=(0, 1)) # BINNING if self.bin_size is None: self.wl_bin, fo_bin, fo_bin_r, fe_bin, fe_bin_r = self.wl, fo, fo_r, fe, fe_r else: print("Binning to ", self.bin_size, "Angstrom") self.wl_bin, fo_bin, fo_bin_r = rebin(self.wl, fo, fo_r, bin_siz=self.bin_size) self.wl_bin, fe_bin, fe_bin_r = rebin(self.wl, fe, fe_r, bin_siz=self.bin_size) # To perform a few checks on the binning (in particular the SNR yielded by binning) if check_bin is True: self._check_binning(fo, fe, fo_r, fe_r, fo_bin, fe_bin, fo_bin_r, fe_bin_r) # Finding flux difference F, F_r = F_from_oeray(fo_bin, fe_bin, fo_bin_r, fe_bin_r) return self.wl_bin, F, F_r def _list_files(self, angle, linpol = True, fileloc='.'): """ Creates list of files of interest. Parameters ---------- angle : float Which HWRP angle we are interested in. linpol : bool, optional Whether we are doing linear (True) or circular (False) polarisation. Default is True. fileloc : str Path to location of files. Usually will be '.' so this is the default. """ if linpol is True: poltype = 'lin' else: poltype = 'circ' angle = float(angle) root_list = [str(self.metadata.loc[i,"Filename"])[:-5]\ for i in range(len(self.metadata["Filename"])) \ if self.metadata.loc[i, 'Flag'] == self.flag \ if float(self.metadata.loc[i, 'Angle']) == angle \ if self.metadata.loc[i, 'Pol. Type'] == poltype] mylist = [] sorted_files = sorted([filename for filename in os.listdir(fileloc) if '.txt' in filename and '1D' in filename]) for filename in sorted_files: for root in root_list: if root in filename: mylist.append(filename) return mylist def _check_binning(self, fo, fe, fo_r, fe_r, bin_fo, bin_fe, bin_fo_r, bin_fe_r): """ This performs a few checks on the binning: Calculates expected values of SNR and compares to the values of SNR after binning: does the median and the values at central wavelength. Also produces a plot of whole spectrum """ snr_not_binned = np.array((fo + fe) / np.sqrt(fo_r ** 2 + fe_r ** 2)) snr_expected = snr_not_binned * np.sqrt(self.bin_size / (self.wl[1] - self.wl[0])) ind_not_binned_central_wl = int(np.argwhere(self.wl == min(self.wl, key=lambda x: abs(x - 6204)))[0]) snr_not_binned_central_wl = snr_not_binned[ind_not_binned_central_wl] snr_central_expected = snr_not_binned_central_wl * np.sqrt(self.bin_size / (self.wl[1] - self.wl[0])) snr_binned = np.array((bin_fo + bin_fe) / np.sqrt(bin_fo_r ** 2 + bin_fe_r ** 2)) ind_central_wl = int(np.argwhere(self.wl_bin == min(self.wl_bin, key=lambda x: abs(x - 6204)))[0]) snr_central_wl = (bin_fo[ind_central_wl] + bin_fe[ind_central_wl]) / \ np.sqrt(bin_fo_r[ind_central_wl] ** 2 + bin_fe_r[ind_central_wl] ** 2) print("\n======== BEFORE BINNING ======") print("MEDIAN SNR ") print(np.median(snr_not_binned)) print("CENTRAL SNR at (", self.wl[ind_not_binned_central_wl], " A)") print(snr_not_binned_central_wl) print("======== AFTER BINNING ======") print("MEDIAN SNR / EXPECTED ") print(np.median(snr_binned), np.median(snr_expected)) print("CENTRAL SNR / EXPECTED (at ", self.wl[ind_not_binned_central_wl], " A)") print(snr_central_wl, snr_central_expected) print("\n") if self.snrplot is True: plt.plot(self.wl, snr_expected, marker='o', label='Expected') plt.plot(self.wl_bin, snr_binned, marker='x', label='Calculated after binning') plt.legend() plt.title("SNR") plt.show() return class LinearSpecPol(SpecPol): """ class for Linear sepctropolarimetry reduction. Inherits from SpecPol Examples -------- >> import FUSS.datred as r >> import pandas as pd >> metadataframe = pd.read_csv('metadata', sep='\t') # or can just feed a freshly created Meta.data data frame >> pol = r.LinearSpecPol(metadata = metadataframe, bin_size = 15) >> poldataframe = pol.calculate() # One full set of specpol data (4 images and 4 files to rebin per image) Binning to 15 Angstrom Index Error at 9316.2 # This can happen on the last bin and isn't a problem. If it is in the middle of the spcetrum Index Error at 9326.1 # then you should look into it. Index Error at 9316.2 Index Error at 9326.1 ======== BEFORE BINNING ====== MEDIAN SNR 86.6505323611 CENTRAL SNR at ( 6204.3 A) 117.809391701 ======== AFTER BINNING ====== MEDIAN SNR / EXPECTED 185.294052885 184.73955572 CENTRAL SNR / EXPECTED (at 6204.3 A) 250.397252588 251.17046704 Binning to 15 Angstrom Index Error at 9316.2 Index Error at 9326.1 Index Error at 9316.2 Index Error at 9326.1 Binning to 15 Angstrom Index Error at 9316.2 Index Error at 9326.1 Index Error at 9316.2 Index Error at 9326.1 Binning to 15 Angstrom Index Error at 9316.2 Index Error at 9326.1 Index Error at 9316.2 Index Error at 9326.1 What do you want to name the polarisation file? [filename] # the file created will be filename.pol >> poldataframe.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 421 entries, 0 to 420 Data columns (total 10 columns): wl 421 non-null float64 p 421 non-null float64 p_r 421 non-null float64 q 421 non-null float64 q_r 421 non-null float64 u 421 non-null float64 u_r 421 non-null float64 theta 421 non-null float64 theta_r 421 non-null float64 delta_eps0 421 non-null float64 dtypes: float64(10) memory usage: 33.0 KB Attributes ---------- wl : 1D np.array Initiated as None. Will contains original wavelength bins wl_bin : 1D np.array Initiated as None. Will contain the binned wavelength. If bin_size is None then wl_bin will == wl. poldata : pandas.core.frame.DataFrame Initiated with columns: 'wl', 'p', 'p_r', 'q', 'q_r', 'u', 'u_r', 'theta', 'theta_r' and dtype='float64' delta_epsilon# (# being a number) will be added for delta epsilon spectra corresponding to each set of 4 Half Wave Retarder Plate Angles. flag : str Flag corresponding to object of interest in the metadata data frame column "Flag". Initiated as None and defined in the method calculate() to specify which object to do the specpol on (the target, the zero polarisation standard or the polarisation standard -- usually 'tar', 'zpol', 'polstd', respectively) Methods ------- calculate() Calculates the Stokes parameters, degree and angle polarisation from ordinary and extra-ordinary ray fluxes. Creates an output file containing the poldata data frame (filled by this method) plot() Plots the Stokes parameters, degree and angle of polarisation calculated. _get_data() _linspecpol() + inherited from SpecPol """ def __init__(self, oray='ap2', metadata = 'metadata', bin_size=None, snrplot=False): SpecPol.__init__(self, oray, metadata,bin_size, snrplot) self.wl= None self.wl_bin = None self.poldata = pd.DataFrame(columns = ['wl', 'p', 'p_r', 'q', 'q_r', 'u', 'u_r', 'theta', 'theta_r'], dtype='float64') self.flag = None def calculate(self, flag='tar'): """ Calculates the Stokes parameters, degree and angle polarisation, their errors and delta_epsilon for each set from the ordinary and extra-ordinary ray fluxes. Notes ----- Creates an output file containing the poldata data frame (filled by this method) Parameters ---------- flag : str Which flag to look for in the "Flag" column of metadata. Default is 'tar' which identifies target data. 'zpol' can be used for zero pol. standard and 'polstd' for the polarisation standard. Custom flags can be input if you have written your own in the "Flag" column of the metadata Data Frame Returns ------- poldata : pandas.core.frame.DataFrame Contains the polarisation data frame. columns = ['wl', 'p', 'p_r', 'q', 'q_r', 'u', 'u_r', 'theta', 'theta_r'], dtype='float64' """ self.flag = flag # Now getting the data from the files in lists that will be used by the specpol() function. ls_F0, ls_F0_r, ls_F1, ls_F1_r, ls_F2, ls_F2_r, ls_F3, ls_F3_r = self._get_data() self.poldata["wl"] = self.wl_bin # even if have not rebinned since in that case we do self.wl_bin = self.wl q_ls = [] q_r_ls = [] u_ls = [] u_r_ls = [] for i in range(len(ls_F0)): p, pr, q, q_r, u, u_r, theta, theta_r, delta_e= self._linspecpol(ls_F0[i], ls_F0_r[i], ls_F1[i], ls_F1_r[i], ls_F2[i], ls_F2_r[i], ls_F3[i], ls_F3_r[i]) q_ls.append(q) q_r_ls.append(q_r) u_ls.append(u) u_r_ls.append(u_r) self.poldata["delta_eps"+str(i)] = delta_e for num in range(len(q_ls[0])): # num indexes the bins each list of Stokes parameters values q_to_avg = [] u_to_avg = [] q_r_to_sum = np.array([]) u_r_to_sum = np.array([]) for s in range(len(q_ls)): # s indexes the data set from which we are taking a particular Stoke parameter # We want to average values fo all data sets at each wavelength bins. For example say I have # 3 data sets, at 5000 A say, I am gonna take the 3 values of q in each data set at 5000 A and # average them. Do the same accross the whole spectrum and with each Stoke parameter to get final results. q_to_avg.append(q_ls[s][num]) u_to_avg.append(u_ls[s][num]) # For the next 4 lines I am calculating the error on the mean and putting it in final list of errors on # Stokes parameters q_r_to_sum = np.append(q_r_to_sum, 1 / ((q_r_ls[s][num]) ** 2)) u_r_to_sum = np.append(u_r_to_sum, 1 / ((u_r_ls[s][num]) ** 2)) self.poldata.loc[num, 'q'] = np.average(q_to_avg, weights=q_r_to_sum) self.poldata.loc[num, 'u'] = np.average(u_to_avg, weights=u_r_to_sum) self.poldata.loc[num, 'q_r'] = np.sqrt(1 / np.sum(q_r_to_sum)) self.poldata.loc[num, 'u_r'] = np.sqrt(1 / np.sum(u_r_to_sum)) # Once I have my final Stokes parameters I can calculate the final debiases degree of polarisation (and error). self.poldata['p'], self.poldata['p_r'] = pol_deg(self.poldata['q'].values, self.poldata['u'].values, self.poldata['q_r'].values, self.poldata['u_r'].values) # And finally the P.A ! self.poldata['theta'], self.poldata['theta_r'] = pol_ang(self.poldata['q'].values, self.poldata['u'].values, self.poldata['q_r'].values, self.poldata['u_r'].values) # ###### CREATING THE TEXT FILE ###### # self.pol_file = input('What do you want to name the polarisation file? ') try: os.remove(self.pol_file + ".pol") except OSError: pass self.poldata.to_csv(self.pol_file+".pol", index=False, sep="\t") return self.poldata def plot(self): if self.poldata is None: return "You should run the `calculate`method before trying to make plots " wavelength = self.poldata['wl'].values p = self.poldata['p'].values p_r = self.poldata['p_r'].values q = self.poldata['q'].values q_r = self.poldata['q_r'].values u = self.poldata['u'].values u_r = self.poldata['u_r'].values theta = self.poldata['theta'].values theta_r = self.poldata['theta_r'].values f, axarr = plt.subplots(5, 1, figsize=(8, 8), sharex=True) plt.subplots_adjust(hspace=0) # First axis is p axarr[0].errorbar(wavelength, p,yerr=p_r, c='#D92F2F') axarr[0].axhline(0, 0, ls='--', c='k') pmax = -1000 for i in range(len(wavelength)): if wavelength[i] > 4500 and p[i] > pmax: pmax = p[i] axarr[0].set_ylim([-0.1, pmax + 0.4]) axarr[0].set_ylabel('p(%)', fontsize=14) # Then q axarr[1].errorbar(wavelength, q, yerr=q_r, c='#D92F2F') axarr[1].axhline(0, 0, ls='--', c='k') qmax = -1000 qmin = 1000 for i in range(len(wavelength)): if wavelength[i] > 4500 and q[i] > qmax: qmax = q[i] if wavelength[i] > 4500 and q[i] < qmin: qmin = q[i] axarr[1].set_ylim([qmin - 0.3, qmax + 0.3]) axarr[1].set_ylabel('q(%)', fontsize=14) # And u axarr[2].errorbar(wavelength, u, yerr=u_r, c='#D92F2F') axarr[2].axhline(0, 0, ls='--', c='k') umax = -1000 umin = 1000 for i in range(len(wavelength)): if wavelength[i] > 4500 and u[i] > umax: umax = u[i] if wavelength[i] > 4500 and u[i] < umin: umin = u[i] axarr[2].set_ylim([umin - 0.3, umax + 0.3]) axarr[2].set_ylabel('u(%)', fontsize=14) # P.A axarr[3].errorbar(wavelength, theta, yerr=theta_r, c='#D92F2F') axarr[3].axhline(0, 0, ls='--', c='k') axarr[3].set_ylim([-0, 180]) axarr[3].set_ylabel('theta', fontsize=14) # And finally the Delta epsilons of each data set. delta_cols = [col for col in self.poldata.columns if 'delta' in col] for column in delta_cols: axarr[4].plot(wavelength, self.poldata[column], alpha=0.8) print("MEAN Delta epsilon =", self.poldata[column].values.mean(), "STDV =", self.poldata[column].values.std() ) axarr[4].set_ylabel(r"$\Delta \epsilon$", fontsize=16) axarr[4].set_ylim([-4.0, 4.0]) plt.xlim([3500, 10000]) save_cond = input("do you want to save the plot?(Y/n): ") if save_cond == "y" or save_cond == "Y" or save_cond == "": plt.savefig(self.pol_file + ".png") print("Plot saved") else: print("Plot not saved") plt.show() def _get_data(self): """ This takes the flux data from the text files given by IRAF and sorts them in lists for later use. Returns ------- tuple of 8 lists Each list corresponds to the normalised flux difference for a given HWRP angle or its error. Each lsit contains N 1D numpy arrays containing N noral;ised flux differences spectra (or error), one for each set of spectropolarimetric data. """ # Need to do this because python doesn't read files in alphabetical order but in order they # are written on the disc #sorted_files = sorted([filename for filename in os.listdir(".") # if 'dSCIENCE' in filename and 'fits' not in filename and 'c_' not in filename]) files_0_deg = SpecPol._list_files(self, 0.0) files_22_deg = SpecPol._list_files(self, 22.5) files_45_deg = SpecPol._list_files(self, 45.0) files_67_deg = SpecPol._list_files(self, 67.5) errormessage = "It seems you don't have the same number of images for each retarder plate angle. " \ "This may not be code breaking but only complete sets of retarder plate angles can be used." assert len(files_0_deg) == len(files_22_deg) == len(files_45_deg) == len(files_67_deg), errormessage ls_F0 = [] ls_F0_r = [] ls_F1 = [] ls_F1_r = [] ls_F2 = [] ls_F2_r = [] ls_F3 = [] ls_F3_r = [] for file_list in [files_0_deg, files_22_deg, files_45_deg, files_67_deg]: nbre_sets = len(file_list) / 4 nbre_sets_remainder = len(file_list) % 4 assert nbre_sets_remainder == 0, "There should be 4 data files for each image (2 apertures x (flux + err))" print("4 Files per images... All good here") for i in range(int(nbre_sets)): step = i * 4 files_0_deg_subset = files_0_deg[0 + step:4 + step] files_22_deg_subset = files_22_deg[0 + step:4 + step] files_45_deg_subset = files_45_deg[0 + step:4 + step] files_67_deg_subset = files_67_deg[0 + step:4 + step] if i == 0: check = True wl0, F0, F0_r = SpecPol._flux_diff_from_file(self, files_0_deg_subset, check_bin=check) ls_F0.append(F0) ls_F0_r.append(F0_r) wl1, F1, F1_r = SpecPol._flux_diff_from_file(self, files_22_deg_subset) ls_F1.append(F1) ls_F1_r.append(F1_r) wl2, F2, F2_r = SpecPol._flux_diff_from_file(self, files_45_deg_subset) ls_F2.append(F2) ls_F2_r.append(F2_r) wl3, F3, F3_r = SpecPol._flux_diff_from_file(self, files_67_deg_subset) ls_F3.append(F3) ls_F3_r.append(F3_r) assert len(wl0) == len(wl1) == len(wl2) == len(wl3), "Wavelength bins not homogeneous. This will be an issue." return ls_F0, ls_F0_r, ls_F1, ls_F1_r, ls_F2, ls_F2_r, ls_F3, ls_F3_r def _linspecpol(self, F0, F0_r, F1, F1_r, F2, F2_r, F3, F3_r): """ Calculates the spectropolarimetric data from the normalised flux differences. Parameters ---------- Eight 1D numpy arrays The normalised flux differences (and errors) for each HWRP angle. Returns ------- arrays p, q, and u in percent, with associated errors, as well as theta in degrees ( 0 < theta < 180) and its errors, and delta epsilon (see Maund 2008) """ # Now Stokes parameters and degree of pol. q = 0.5 * (F0 - F2) u = 0.5 * (F1 - F3) q_r = 0.5 * np.sqrt(F0_r ** 2 + F2_r ** 2) u_r = 0.5 * np.sqrt(F1_r ** 2 + F3_r ** 2) p, p_r = pol_deg(q, u, q_r, u_r) # Arrays where we're going to store the values of p and Stokes parameters and P.A # after we've applied corrections. pf = np.array([]) qf = np.array([]) uf = np.array([]) theta = np.array([]) # We take our chromatic zero-angles and interpolate them to match the wavlength bins of our data. wl2, thetaz = np.loadtxt(zero_angles, unpack=True, usecols=(0, 1)) theta0 = np.interp(self.wl_bin, wl2, thetaz) # Now we apply corrections to the P.A for t in range(len(q)): theta_t = 0.5 * m.atan2(u[t], q[t]) theta_r = 0.5 * np.sqrt(((u_r[t] / u[t]) ** 2 + (q_r[t] / q[t]) ** 2) * (1 / (1 + (u[t] / q[t]) ** 2)) ** 2) theta_t = (theta_t * 180.0) / m.pi theta_r = (theta_r * 180.0) / m.pi if theta_t < 0: theta_t += 180 # Making sure P.A is within limit 0<theta<180 deg theta_cor = theta_t - theta0[t] theta_cor_rad = (theta_cor / 180.0) * m.pi theta = np.append(theta, theta_cor) q_t = p[t] * m.cos(2 * theta_cor_rad) # Re-calculating Stokes parameters u_t = p[t] * m.sin(2 * theta_cor_rad) qf = np.append(qf, q_t * 100) # Filling our arrays of final Stokes parameters and p. uf = np.append(uf, u_t * 100) pf = np.append(pf, np.sqrt(q_t ** 2 + u_t ** 2) * 100) # Now calculating epsilon q and epsilon u and Delta epsilon. eq = (0.5 * F0 + 0.5 * F2) * 100 # in percent eu = (0.5 * F1 + 0.5 * F3) * 100 delta_e = eq - eu return pf, p_r * 100, qf, q_r * 100, uf, u_r * 100, theta, theta_r, delta_e class CircularSpecPol(SpecPol): """ class for Circular sepctropolarimetry reduction. Inherits from SpecPol Examples -------- Similar to LinearSpecpol examples. Attributes ---------- wl : 1D np.array Initiated as None. Will contains original wavelength bins wl_bin : 1D np.array Initiated as None. Will contain the binned wavelength. If bin_size is None then wl_bin will == wl. poldata : pandas.core.frame.DataFrame Initiated with columns: 'wl', 'p', 'p_r', 'q', 'q_r', 'u', 'u_r', 'theta', 'theta_r' and dtype='float64' delta_epsilon# (# being a number) will be added for delta epsilon spectra corresponding to each set of 4 Half Wave Retarder Plate Angles. flag : str Flag corresponding to object of interest in the metadata data frame column "Flag". Initiated as None and defined in the method calculate() to specify which object to do the specpol on (the target, the zero polarisation standard or the polarisation standard -- usually 'tar', 'zpol', 'polstd', respectively) Methods ------- calculate() Calculates the Stokes parameters, degree and angle polarisation from ordinary and extra-ordinary ray fluxes. Creates an output file containing the poldata data frame (filled by this method) plot() Plots the Stokes parameters, degree and angle of polarisation calculated. _get_data() _circspecpol() + inherited from SpecPol """ def __init__(self, oray='ap2', metadata = 'metadata', bin_size=None, snrplot=False): SpecPol.__init__(self, oray, metadata, bin_size, snrplot) self.wl= None self.wl_bin = None self.poldata = pd.DataFrame(columns = ['wl', 'v', 'v_r'], dtype='float64') def calculate(self, flag='tar'): """ Calculates the Stokes v, its error and epsilon from the ordinary and extra-ordinary ray fluxes. Notes ----- Creates an output file containing the poldata data frame (filled by this method) Parameters ---------- flag : str Which flag to look for in the "Flag" column of metadata. Default is 'tar' which identifies target data. 'zpol' can be used for zero pol. standard and 'polstd' for the polarisation standard. Custom flags can be input if you have written your own in the "Flag" column of the metadata Data Frame Returns ------- poldata : pandas.core.frame.DataFrame Contains the polarisation data frame. columns = ['wl', 'v', 'v_r'], dtype='float64' """ self.flag = flag # Now getting the data from the files in lists that will be used by the specpol() function. ls_F0, ls_F0_r, ls_F1, ls_F1_r = self._get_data() self.poldata["wl"] = self.wl_bin # even if have not rebinned since in that case we do self.wl_bin = self.wl v_ls = [] v_r_ls = [] for i in range(len(ls_F0)): v, v_r, epsilon = self._circspecpol(ls_F0[i], ls_F0_r[i], ls_F1[i], ls_F1_r[i]) v_ls.append(v) v_r_ls.append(v_r) self.poldata["epsilon"+str(i)] = epsilon for num in range(len(v_ls[0])): # num indexes the bins each list of Stokes parameters values v_to_avg = [] v_r_to_sum = np.array([]) for s in range(len(v_ls)): v_to_avg.append(v_ls[s][num]) v_r_to_sum = np.append(v_r_to_sum, (1 / ((v_r_ls[s][num]) ** 2))) self.poldata.loc[num, 'v'] = np.average(v_to_avg, weights = v_r_to_sum) self.poldata.loc[num, 'v_r'] = np.sqrt(1 / np.sum(v_r_to_sum)) # ###### CREATING THE TEXT FILE ###### # self.pol_file = input('What do you want to name the polarisation file? ') try: os.remove(self.pol_file + ".pol") except OSError: pass self.poldata.to_csv(self.pol_file+".pol", index=False, sep="\t") return self.poldata def _get_data(self): """ This takes the flux data from the text files given by IRAF and sorts them in lists for later use. Returns ------- tuple of 4 lists Each list corresponds to the normalised flux difference for a given HWRP angle or its error. Each lsit contains N 1D numpy arrays containing N noral;ised flux differences spectra (or error), one for each set of spectropolarimetric data. """ files_45_deg = SpecPol._list_files(self, 45.0, linpol=False) files_315_deg = SpecPol._list_files(self, 315, linpol=False) errormessage = "It seems you don't have the same number of images for each retarder plate angle. " \ "This may not be code breaking but only complete sets of retarder plate angles can be used." assert len(files_45_deg) == len(files_315_deg), errormessage ls_F0 = [] ls_F0_r = [] ls_F1 = [] ls_F1_r = [] for file_list in [files_45_deg, files_315_deg]: nbre_sets = len(file_list) / 4 nbre_sets_remainder = len(file_list) % 4 assert nbre_sets_remainder == 0, "There should be 4 data files for each image (2 apertures x (flux + err))" print("4 Files per images... All good here") for i in range(int(nbre_sets)): step = i * 4 files_45_deg_subset = files_45_deg[0 + step:4 + step] files_315_deg_subset = files_315_deg[0 + step:4 + step] if i == 0: check = True wl0, F0, F0_r = SpecPol._flux_diff_from_file(self, files_45_deg_subset, check_bin=check) ls_F0.append(F0) ls_F0_r.append(F0_r) wl1, F1, F1_r = SpecPol._flux_diff_from_file(self, files_315_deg_subset) ls_F1.append(F1) ls_F1_r.append(F1_r) assert len(wl0) == len(wl1), "Wavelength bins not homogeneous. This will be an issue." return ls_F0, ls_F0_r, ls_F1, ls_F1_r def _circspecpol(self, F0, F0_r, F1, F1_r): """ Calulates the circular polarisation from the normalised flux differences Parameters ---------- Four 1D numpy arrays The normalised flux differences (and errors) for each HWRP angle. Returns ------- v, v_r and epsilon """ # Now Stokes parameters and degree of pol. v = 0.5 * (F0 - F1) v_r = 0.5*np.sqrt(F0_r**2 + F1_r**2) # Now calculating epsilon q and epsilon u and Delta epsilon. epsilon = 0.5 * (F0 + F1) return v*100, v_r * 100, epsilon*100 def plot(self): f, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True) plt.subplots_adjust(hspace=0) # First axis is v wl = self.poldata["wl"] v = self.poldata["v"] v_r = self.poldata['v_r'] axarr[0].errorbar(wl, v, yerr=v_r, c='#D92F2F') axarr[0].axhline(0, 0, ls='--', c='k') vmax = -1000 vmin = 10000 for i in range(len(wl)): if wl[i] > 4500 and v[i] > vmax: vmax = v[i] if wl[i] > 4500 and v[i] < vmin: vmin = v[i] axarr[0].set_ylim([vmin - 0.4, vmax + 0.4]) axarr[0].set_ylabel('v(%)', fontsize=14) # And then the Delta epsilons of each data set. delta_cols = [col for col in self.poldata.columns if 'epsilon' in col] for column in delta_cols: axarr[1].plot(wl, self.poldata[column], alpha=0.8) print("MEAN Delta epsilon =", self.poldata[column].values.mean(), "STDV =", self.poldata[column].values.std() ) axarr[1].set_ylabel(r"$\Delta \epsilon$", fontsize=16) axarr[1].set_ylim([-6, 6]) plt.xlim([3500, 10000]) save_cond = input("do you want to save the plot?(Y/n): ") if save_cond == "y" or save_cond == "Y" or save_cond == "": plt.savefig(self.pol_file+ ".png") print("Plot saved") else: print("Plot not saved") plt.show() def mk_flx_spctr(metadata = 'metadata', fileloc='.', flag = 'tar', output = None, header = True, front="1D_c_d"): """ Combines all the flux calibrated apertures to create the flux spectrum. Notes ----- Creates a text file with 3 columns columns: wavelength flux errors """ if isinstance(metadata, str): metadataframe = pd.read_csv(metadata, sep='\t') assert "Filename" in list(metadataframe), "Are you sure "+metadata+" is a (or location to a) Meta Data frame? " fluxdata =
pd.DataFrame(columns=['wl', 'f', 'f_r'], dtype='float64')
pandas.DataFrame
# -*- coding: utf-8 -*- import click import logging from pathlib import Path # from dotenv import find_dotenv, load_dotenv import requests from bs4 import BeautifulSoup import numpy as np import pandas as pd import datetime import yfinance as yf from pandas_datareader import data as pdr from flask import current_app from stk_predictor.extensions import db @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') def get_ticker_from_yahoo(ticker, start_date, end_date): yf.pdr_override() try: new_trading_df = pdr.get_data_yahoo( ticker, start_date, end_date, interval='1d') new_trading_df = new_trading_df.drop( ['Open', 'High', 'Low', 'Adj Close'], axis=1) new_trading_df = new_trading_df.dropna('index') new_trading_df = new_trading_df.reset_index() new_trading_df.columns = ['trading_date', 'intraday_close', 'intraday_volumes'] his_trading_df = pd.read_sql('aapl', db.engine, index_col='id') df = pd.concat([his_trading_df, new_trading_df] ).drop_duplicates('trading_date') df = df.sort_values(by='trading_date') df = df.reset_index(drop=True) if len(df) > 0: df.to_sql("aapl", db.engine, if_exists='replace', index_label='id') return df else: # t = pd.read_sql('aapl', db.engine, index_col='id') return None except Exception as ex: raise RuntimeError( "Catch Excetion when retrieve data from Yahoo...", ex) return None def get_news_from_finviz(ticker): """Request news headline from finviz, according to company ticker's name Parameters ----------- ticker: str the stock ticker name Return ---------- df : pd.DataFrame return the latest 2 days news healines. """ current_app.logger.info("Job >> Enter Finviz news scrape step...") base_url = 'https://finviz.com/quote.ashx?t={}'.format(ticker) headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/50.0.2661.102 Safari/537.36' } parsed_news = [] try: res = requests.get(base_url, headers=headers) if res.status_code == 200: texts = res.text soup = BeautifulSoup(texts) news_tables = soup.find(id="news-table") for x in news_tables.findAll('tr'): text = x.a.get_text() date_scrape = x.td.text.split() if len(date_scrape) == 1: time = date_scrape[0] else: date = date_scrape[0] time = date_scrape[1] parsed_news.append([date, time, text]) # filter the recent day news df = pd.DataFrame(parsed_news, columns=['date', 'time', 'texts']) df['date'] = pd.to_datetime(df.date).dt.date one_day_period = (datetime.datetime.today() - datetime.timedelta(days=1)).date() df_sub = df[df.date >= one_day_period] return df_sub else: raise RuntimeError("HTTP response Error {}".format( res.status_code)) from None except Exception as ex: current_app.logger.info("Exception in scrape Finviz.", ex) raise RuntimeError("Exception in scrape Finviz.") from ex def prepare_trading_dataset(df): """Prepare the trading data set. Time series analysis incoporate previous data for future prediction, We need to retrieve historical data to generate features. Parameters ----------- df: DataFrame the stock ticker trading data, including trading-date, close-price, volumes window: int, default = 400 feature engineer windows size. Using at most 400 trading days to construct features. Return ---------- array_lstm : np.array return the array with 3 dimensions shape -> [samples, 1, features] """ if len(df) == 0: raise RuntimeError( "Encounter Error in >>make_dataset.prepare_trading_dataset<<... \ Did not catch any news.") from None else: df['log_ret_1d'] = np.log(df['intraday_close'] / df['intraday_close'].shift(1)) df['log_ret_1w'] = pd.Series(df['log_ret_1d']).rolling(window=5).sum() df['log_ret_2w'] = pd.Series(df['log_ret_1d']).rolling(window=10).sum() df['log_ret_3w'] = pd.Series(df['log_ret_1d']).rolling(window=15).sum() df['log_ret_4w'] = pd.Series(df['log_ret_1d']).rolling(window=20).sum() df['log_ret_8w'] = pd.Series(df['log_ret_1d']).rolling(window=40).sum() df['log_ret_12w'] = pd.Series(df['log_ret_1d']).rolling(window=60).sum() df['log_ret_16w'] = pd.Series(df['log_ret_1d']).rolling(window=80).sum() df['log_ret_20w'] = pd.Series(df['log_ret_1d']).rolling(window=100).sum() df['log_ret_24w'] = pd.Series(df['log_ret_1d']).rolling(window=120).sum() df['log_ret_28w'] = pd.Series(df['log_ret_1d']).rolling(window=140).sum() df['log_ret_32w'] = pd.Series(df['log_ret_1d']).rolling(window=160).sum() df['log_ret_36w'] = pd.Series(df['log_ret_1d']).rolling(window=180).sum() df['log_ret_40w'] = pd.Series(df['log_ret_1d']).rolling(window=200).sum() df['log_ret_44w'] = pd.Series(df['log_ret_1d']).rolling(window=220).sum() df['log_ret_48w'] = pd.Series(df['log_ret_1d']).rolling(window=240).sum() df['log_ret_52w'] = pd.Series(df['log_ret_1d']).rolling(window=260).sum() df['log_ret_56w'] = pd.Series(df['log_ret_1d']).rolling(window=280).sum() df['log_ret_60w'] = pd.Series(df['log_ret_1d']).rolling(window=300).sum() df['log_ret_64w'] = pd.Series(df['log_ret_1d']).rolling(window=320).sum() df['log_ret_68w'] = pd.Series(df['log_ret_1d']).rolling(window=340).sum() df['log_ret_72w'] = pd.Series(df['log_ret_1d']).rolling(window=360).sum() df['log_ret_76w'] = pd.Series(df['log_ret_1d']).rolling(window=380).sum() df['log_ret_80w'] = pd.Series(df['log_ret_1d']).rolling(window=400).sum() df['vol_1w'] = pd.Series(df['log_ret_1d']).rolling(window=5).std()*np.sqrt(5) df['vol_2w'] = pd.Series(df['log_ret_1d']).rolling(window=10).std()*np.sqrt(10) df['vol_3w'] = pd.Series(df['log_ret_1d']).rolling(window=15).std()*np.sqrt(15) df['vol_4w'] = pd.Series(df['log_ret_1d']).rolling(window=20).std()*np.sqrt(20) df['vol_8w'] = pd.Series(df['log_ret_1d']).rolling(window=40).std()*np.sqrt(40) df['vol_12w'] = pd.Series(df['log_ret_1d']).rolling(window=60).std()*np.sqrt(60) df['vol_16w'] = pd.Series(df['log_ret_1d']).rolling(window=80).std()*np.sqrt(80) df['vol_20w'] = pd.Series(df['log_ret_1d']).rolling(window=100).std()*np.sqrt(100) df['vol_24w'] = pd.Series(df['log_ret_1d']).rolling(window=120).std()*np.sqrt(120) df['vol_28w'] = pd.Series(df['log_ret_1d']).rolling(window=140).std()*np.sqrt(140) df['vol_32w'] = pd.Series(df['log_ret_1d']).rolling(window=160).std()*np.sqrt(160) df['vol_36w'] = pd.Series(df['log_ret_1d']).rolling(window=180).std()*np.sqrt(180) df['vol_40w'] = pd.Series(df['log_ret_1d']).rolling(window=200).std()*np.sqrt(200) df['vol_44w'] = pd.Series(df['log_ret_1d']).rolling(window=220).std()*np.sqrt(220) df['vol_48w'] = pd.Series(df['log_ret_1d']).rolling(window=240).std()*np.sqrt(240) df['vol_52w'] = pd.Series(df['log_ret_1d']).rolling(window=260).std()*np.sqrt(260) df['vol_56w'] = pd.Series(df['log_ret_1d']).rolling(window=280).std()*np.sqrt(280) df['vol_60w'] = pd.Series(df['log_ret_1d']).rolling(window=300).std()*np.sqrt(300) df['vol_64w'] = pd.Series(df['log_ret_1d']).rolling(window=320).std()*np.sqrt(320) df['vol_68w'] = pd.Series(df['log_ret_1d']).rolling(window=340).std()*np.sqrt(340) df['vol_72w'] = pd.Series(df['log_ret_1d']).rolling(window=360).std()*np.sqrt(360) df['vol_76w'] = pd.Series(df['log_ret_1d']).rolling(window=380).std()*np.sqrt(380) df['vol_80w'] = pd.Series(df['log_ret_1d']).rolling(window=400).std()*np.sqrt(400) df['volume_1w'] = pd.Series(df['intraday_volumes']).rolling(window=5).mean() df['volume_2w'] = pd.Series(df['intraday_volumes']).rolling(window=10).mean() df['volume_3w'] = pd.Series(df['intraday_volumes']).rolling(window=15).mean() df['volume_4w'] = pd.Series(df['intraday_volumes']).rolling(window=20).mean() df['volume_8w'] = pd.Series(df['intraday_volumes']).rolling(window=40).mean() df['volume_12w'] = pd.Series(df['intraday_volumes']).rolling(window=60).mean() df['volume_16w'] = pd.Series(df['intraday_volumes']).rolling(window=80).mean() df['volume_20w'] = pd.Series(df['intraday_volumes']).rolling(window=100).mean() df['volume_24w'] =
pd.Series(df['intraday_volumes'])
pandas.Series
import json import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.normalization import BatchNormalization from keras.optimizers import SGD from scipy.optimize import basinhopping N_EPISODES = 10 TRAINING_SIZE = 0.5 VALIDATION_SIZE = 0.1 LEARNING_RATE = 0.01 #TD_LAMBDA = 0.9 DISCOUNT = 0.95 class Environment: def __init__(self, data, initial_btc = 1.0): self.data = data self.btc = initial_btc self.eth = 0 self.time_step = 0 def done(self): return self.time_step == len(self.data) - 1 def agent_state(self): state = self.data.iloc[[self.time_step]].squeeze() state['btc'] = self.btc state['eth'] = self.eth return state def score(self): state = self.agent_state() return state['btc'] + state['eth'] * state['close'] def step(self, action): self.time_step += 1 state = self.agent_state() reward = 0 next_btc = self.btc next_eth = self.eth #print(state) #print(action) if action['btc_amt'] > 0 and action['btc_amt'] <= state['btc'] and action['btc_price'] >= state['low']: amt = action['btc_amt'] price = action['btc_price'] next_btc -= amt next_eth += amt / price reward -= amt if action['eth_amt'] > 0 and action['eth_amt'] <= state['eth'] and action['eth_price'] <= state['high'] and action['eth_price'] >= 0: amt = action['eth_amt'] price = action['eth_price'] next_btc += amt * price next_eth -= amt reward += amt * price self.btc = next_btc self.eth = next_eth next_state = self.agent_state() #print(next_state) #print(reward) return next_state, reward state_vector = ['btc', 'eth', 'high', 'low', 'open', 'close', 'volume', 'weightedAverage'] action_vector = ['btc_amt', 'btc_price', 'eth_amt', 'eth_price'] class History: def __init__(self, max_size): self.max_size = max_size self.idx = 0 self.queue = np.zeros((max_size, 2), dtype = object) def size(self): return min(self.idx, self.max_size) def sample(self, size): size = min(size, self.size()) sample_indices = np.random.choice(range(self.size()), replace = True) x = np.atleast_2d(self.queue[sample_indices, 0]) y = np.atleast_1d(self.queue[sample_indices, 1]) return x, y def append(self, sample, target): idx = self.idx % self.max_size self.queue[idx, 0] = sample self.queue[idx, 1] = target self.idx += 1 class QEstimator: def __init__(self, n_hidden_layers = 2, batch_size = 32): self.train_step = 0 self.batch_size = batch_size self.n_hidden_layers = n_hidden_layers self.history = History(self.batch_size * self.batch_size) self.model = self._build_model() self.frozen_model = self._build_model() self._update_model() def _update_model(self): for i in range(len(self.model.layers)): weights = self.model.layers[i].get_weights() self.frozen_model.layers[i].set_weights(weights) def _build_model(self): model = Sequential() dim = len(state_vector) + len(action_vector) model.add(Dense(dim, input_dim = len(state_vector) + len(action_vector), init = 'he_normal')) model.add(BatchNormalization(axis = 1)) model.add(Activation('relu')) for i in range(1, self.n_hidden_layers): model.add(Dense(model.output_shape[1], init = 'he_normal')) if i == self.n_hidden_layers - 1: model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(1, init = 'he_normal')) model.add(Activation('linear')) model.compile(loss = 'mean_squared_error', optimizer = SGD(lr = LEARNING_RATE, momentum = 0.9, nesterov = True)) return model def _get_input_vector(self, state, action): x = [] for s in state_vector: x.append(state[s]) for a in action_vector: x.append(action[a]) return np.array(x) def train(self, state, action, target): sample = self._get_input_vector(state, action) self.history.append(sample, target) x, y = self.history.sample(self.batch_size) self.model.train_on_batch(x, y) self.train_step += 1 if self.train_step % (self.batch_size * self.batch_size) == 0: self._update_model() def predict(self, state, action): x = self._get_input_vector(state, action) return self.frozen_model.predict(np.atleast_2d(x), batch_size = 1) def best_action(self, state): def objective(action_values): action = {} for i, a in enumerate(action_vector): action[a] = action_values[i] value = np.asscalar(self.predict(state, action)) return value start_action_values = np.random.rand(len(action_vector)) res = basinhopping(objective, start_action_values, niter = 25, niter_success = 5) action = {} for i, a in enumerate(action_vector): action[a] = res.x[i] value = -res.fun return action, value def random_action(self, state): lo_price = max(0, 2 * state['low'] - state['weightedAverage']) hi_price = 2 * state['high'] - state['weightedAverage'] action = { 'btc_amt': np.random.rand() * state['btc'], 'btc_price': np.random.rand() * (hi_price - lo_price) + lo_price, 'eth_amt': np.random.rand() * state['eth'], 'eth_price': np.random.rand() * (hi_price - lo_price) + lo_price } return action, self.predict(state, action) class Agent: def __init__(self, q_estimator, discount = 0.95, epsilon = 0.5): self.Q = q_estimator self.discount = discount self.epsilon = epsilon def policy(self, state): return self.Q.best_action(state) def epsilon_policy(self, state): if np.random.rand() < self.epsilon: return self.Q.random_action(state) return self.policy(state) def train(self, env): state = env.agent_state() action, value = self.epsilon_policy(state) next_state, reward = env.step(action) next_action, next_value = self.policy(next_state) target = reward + self.discount * next_value self.Q.train(state, action, target) def act(self, env): state = env.agent_state() action, value = self.policy(state) env.step(action) def main(): np.random.seed(0) data = [] with open('data/btc_eth.json') as data_file: data = json.load(data_file) n_samples = len(data) n_train_samples = int(TRAINING_SIZE * n_samples) n_validation_samples = int(VALIDATION_SIZE * n_samples) n_test_samples = n_samples - n_train_samples - n_validation_samples df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import math from functools import reduce from scipy.stats.stats import pearsonr from matplotlib import pyplot as plt data_path=r'./SWI closing price.xlsx' #columns_list=['801040.SWI','801180.SWI','801710.SWI'] data=pd.read_excel(data_path) columns_list=list(data.head(0))[1:] data_question1=data[columns_list] for industry in list(data_question1.head(0)): data_question1[industry+'_Lag1'] = data_question1[industry].shift(periods=-1,axis=0) data_question1[industry+'_rate'] = data_question1[industry]/data_question1[industry+'_Lag1'] data_question1[industry+'_lograte'] = np.log(data_question1[industry+'_rate']) data_question1.dropna(inplace=True) data_question1_rate=data_question1[[x+'_rate' for x in columns_list]] out=[] columns_list_rate=[x+'_lograte' for x in list(data.head(0))[1:]] for pair_one in columns_list_rate: for pair_two in columns_list_rate: pair_one_l = list(data_question1[pair_one]) pair_two_l = list(data_question1[pair_two]) start_one = 0 for i in range(10): start_two =0 for j in range(10): if start_one < start_two: sli_one = pair_one_l[start_one: start_one+300] sli_two=pair_two_l[start_two: start_two+300] corr = pearsonr(sli_one,sli_two)[0] if corr >0.1 and corr <1.0: out.append([pair_one,pair_two,start_one,start_two,corr]) start_two+=30 start_one+=30 autocorr = [item for item in out if item[0]==item[1]] cross = [item for item in out if item[0]!=item[1]] data_score = pd.DataFrame() data_score[columns_list] = data_question1[[x+'_lograte' for x in columns_list]] for field in columns_list: data_score[field+'_score'] = 0 data_score.dropna(inplace=True) for i in range(len(cross)): field1 = cross[i][0][:-8] field2 = cross[i][1][:-8] lag1 = cross[i][2] lag2 = cross[i][3] coef = cross[i][4] for t in range(1,301): if data_score.loc[t+lag1,field1] > 0: data_score.loc[t+lag2,field2+'_score'] += coef elif data_score.loc[t+lag1,field1] < 0: data_score.loc[t+lag2,field2+'_score'] -= coef score_list=[x+'_score' for x in columns_list] data_score_n=data_score[score_list] def Score_rank(t,score_list,data_score_n,data_score): total=1 for i in range(len(score_list)): total+=math.exp(np.array(data_score_n[score_list])[t][i]) weight = [math.exp(np.array(data_score_n[score_list])[t][i])/total for i in range(len(score_list))] weight = weight+[1/total] value_rate = np.dot(np.array(data_question1_rate)[t],np.array(weight)[:-1])+np.array(weight)[-1] return weight,value_rate value_total=[1] weight_total=[[0]*27+[1]] for t in range(len(np.array(data_score))): weight_total.append(Score_rank(t,score_list,data_score_n,data_score)[0]) value_total.append(Score_rank(t,score_list,data_score_n,data_score)[1]) value_day=[1] for i in range(1,len(value_total)): value_day.append(reduce(lambda x,y:x*y, value_total[:i])) plt.plot(value_day[:500]) Annual_rate=(value_day[500])**(250/500)-1 def max_withdrawal(data): mw=((
pd.DataFrame(data)
pandas.DataFrame
import logging import os from pathlib import Path import click import pandas as pd from scipy import stats from tqdm import tqdm logging.basicConfig(level=logging.INFO) CORRECT_NER_ENTAILS = "Entails" CORRECT_NER_NOT_ENTAILS = "Not Entails/Error" CORRECT_NER_VALS = [CORRECT_NER_ENTAILS, CORRECT_NER_NOT_ENTAILS] AGG_BY_SAFE_FIRST = [ "pmid", "input", "premise", "gold_label", "hypothesis", "proba_entails", "hypothesis_food", "proba_ambiguity", "proba_not_entails", "hypothesis_chemical", "foodb_food_name", "foodb_food_id", "foodb_chemical_name", "foodb_chemical_id", ] def calculate_annotator_agreement_matrix(df: pd.DataFrame): pass # TODO def first(x): # return x.values[0] return None def safe_first(x): if not (len(x.unique()) == 1 or x.isna().all()): print(x) raise ValueError return x.values[0] def match_food_by_name(hypothesis_food: str, foods: pd.DataFrame): food_match = foods[ foods.name.str.lower() == hypothesis_food.lower() ] # try exact match by lowercase name if len(food_match) > 0: food_match = food_match.iloc[0, :] return food_match["name"], food_match.id return None, None def match_food_by_taxid(hypothesis_food_id: str, foods: pd.DataFrame): if hypothesis_food_id is not None and str(hypothesis_food_id) != "nan": food_match = foods[ foods.ncbi_taxonomy_id.astype(str) == str(int(hypothesis_food_id)) ] if len(food_match) > 0: food_match = food_match.iloc[0, :] return food_match["name"], food_match.id return None, None def match_food(row, foods): hypothesis_food = row["hypothesis_food"] hypothesis_food_id = row["hypothesis_food_id"] # we prefer id-based matches first food_name, food_id = match_food_by_taxid(hypothesis_food_id, foods) if food_name is not None: return food_name, food_id, "id" else: # if we can't match by id, match by name food_name, food_id = match_food_by_name(hypothesis_food, foods) if food_name is not None: return food_name, food_id, "name" return None, None, None def find_compound_synonym(hypothesis_chemical, compound_synonyms): synonym_match = compound_synonyms[ compound_synonyms.synonym.str.lower() == hypothesis_chemical.lower() ] if len(synonym_match) > 0: synonym_match = synonym_match.iloc[0, :] return ( synonym_match.synonym, synonym_match.source_id, synonym_match.source_type, ) else: return None, None, None def match_chemical( row, compounds, nutrients, compound_synonyms, synonym_matching: bool ): hypothesis_chemical = row["hypothesis_chemical"] def _match_chemical_inner(hypothesis_chemical): chemical_match = compounds[ compounds.name.str.lower() == hypothesis_chemical.lower() ] # exact match compound name if len(chemical_match) > 0: chemical_match = chemical_match.iloc[0, :] return ( chemical_match["name"], chemical_match.id, "name", "compound", ) return None, None, None, None def match_nutrient(hypothesis_chemical): chemical_match = nutrients[ nutrients.name.str.lower() == hypothesis_chemical.lower() ] # exact match compound name if len(chemical_match) > 0: chemical_match = chemical_match.iloc[0, :] return ( chemical_match["name"], chemical_match.id, "name", "nutrient", ) return None, None, None, None res = _match_chemical_inner(hypothesis_chemical) if res[0] is not None: return res else: # if that doesn't work, exact match nutrients res = match_nutrient(hypothesis_chemical) if res[0] is not None: return res elif synonym_matching: # if that doesn't work, try matching by synonym syn_name, syn_source_id, syn_source_type = find_compound_synonym( hypothesis_chemical, compound_synonyms ) chemical_match = [] if syn_source_type == "Compound": chemical_match = compounds[compounds.id == syn_source_id] elif syn_source_type == "Nutrient": chemical_match = nutrients[nutrients.id == syn_source_id] if len(chemical_match) > 0: chemical_match = chemical_match.iloc[0, :] return ( chemical_match["name"], chemical_match.id, "synonym", syn_source_type.lower(), ) return None, None, None, None def match_row( row, foods, compounds, nutrients, compound_synonyms, synonym_matching: bool ): food_match_name, food_match_id, food_match_type = match_food(row, foods) ( chemical_match_name, chemical_match_id, chemical_match_type, chemical_foodb_compound_status, ) = match_chemical( row, compounds, nutrients, compound_synonyms, synonym_matching ) return ( food_match_name, food_match_id, food_match_type, chemical_match_name, chemical_match_id, chemical_match_type, chemical_foodb_compound_status, ) def get_citation_info(content_row): if len(content_row) > 0: if len(content_row) > 1: return ( content_row.citation.unique(), content_row.citation_type.unique(), ) else: return content_row.citation, content_row.citation_type return None, None def match_df( data, foods, compounds, nutrients, compound_synonyms, contents, synonym_matching: bool, ): newrows = [] for idx, row in tqdm(data.iterrows(), total=len(data)): ( food_match_name, food_match_id, food_match_type, chemical_match_name, chemical_match_id, chemical_match_type, chemical_foodb_compound_status, ) = match_row( row, foods, compounds, nutrients, compound_synonyms, synonym_matching, ) newrow = row.copy() ( newrow["foodb_food_name"], newrow["foodb_food_id"], newrow["foodb_food_match_type"], newrow["foodb_chemical_name"], newrow["foodb_chemical_id"], newrow["foodb_chemical_match_type"], newrow["foodb_compound_status"], ) = ( food_match_name, food_match_id, food_match_type, chemical_match_name, chemical_match_id, chemical_match_type, chemical_foodb_compound_status, ) if food_match_id is not None and chemical_match_id is not None: content_row = contents[ (contents.food_id == food_match_id) & (contents.source_id == chemical_match_id) ] ( newrow["foodb_citation"], newrow["foodb_citation_type"], ) = get_citation_info(content_row) newrows.append(newrow) results =
pd.DataFrame(newrows)
pandas.DataFrame
import numpy as np import pandas as pd # 1. load dataset ratings = pd.read_csv('chapter02/data/movie_rating.csv') movie_ratings = pd.pivot_table( ratings, values='rating', index='title', columns='critic' ) # 2. calculate similarity def calcualte_norm(u): norm_u = 0.0 for ui in u: if np.isnan(ui): continue norm_u += (ui ** 2) return np.sqrt(norm_u) def calculate_cosine_similarity(u, v): norm_u = calcualte_norm(u) norm_v = calcualte_norm(v) denominator = norm_u * norm_v numerator = 0.0 for ui, vi in zip(u, v): if np.isnan(ui) or np.isnan(vi): continue numerator += (ui * vi) similarity = numerator / denominator return similarity titles = movie_ratings.index sim_items = pd.DataFrame(0, columns=titles, index=titles, dtype=float) for src in titles: for dst in titles: src_vec = movie_ratings.loc[src, :].values dst_vec = movie_ratings.loc[dst, :].values similarity = calculate_cosine_similarity(src_vec, dst_vec) sim_items.loc[src, dst] = similarity print(sim_items) # 3. Make Prediction & Recommendation user_id = 5 ratings_critic = movie_ratings.loc[:, [movie_ratings.columns[user_id]]] ratings_critic.columns = ['rating'] titles_na_critic = ratings_critic[
pd.isna(ratings_critic.rating)
pandas.isna
import os import warnings import itertools import pandas import time class SlurmJobArray(): """ Selects a single condition from an array of parameters using the SLURM_ARRAY_TASK_ID environment variable. The parameters need to be supplied as a dictionary. if the task is not in a slurm environment, the test parameters will supersede the parameters, and the job_id would be taken as 0. Example: parameters={"epsilon":[100], "aligned":[True,False], "actinLen":[20,40,60,80,100,120,140,160,180,200,220,240,260,280,300], "repetition":range(5), "temperature":[300], "system2D":[False], "simulation_platform":["OpenCL"]} test_parameters={"simulation_platform":"CPU"} sjob=SlurmJobArray("ActinSimv6", parameters, test_parameters) :var test_run: Boolean: This simulation is a test :var job_id: SLURM_ARRAY_TASK_ID :var all_parameters: Parameters used to initialize the job :var parameters: Parameters for this particular job :var name: The name (and relative path) of the output """ def __init__(self, name, parameters, test_parameters={}, test_id=0): self.all_parameters = parameters self.test_parameters = test_parameters # Parse the slurm variables self.slurm_variables = {} for key in os.environ: if len(key.split("_")) > 1 and key.split("_")[0] == 'SLURM': self.slurm_variables.update({key: os.environ[key]}) # Check if there is a job id self.test_run = False try: self.job_id = int(self.slurm_variables["SLURM_ARRAY_TASK_ID"]) except KeyError: self.test_run = True warnings.warn("Test Run: SLURM_ARRAY_TASK_ID not in environment variables") self.job_id = test_id keys = parameters.keys() self.all_conditions = list(itertools.product(*[parameters[k] for k in keys])) self.parameter = dict(zip(keys, self.all_conditions[self.job_id])) # The name only includes enough information to differentiate the simulations. self.name = f"{name}_{self.job_id:03d}_" + '_'.join( [f"{a[0]}_{self[a]}" for a in self.parameter if len(self.all_parameters[a]) > 1]) def __getitem__(self, name): if self.test_run: try: return self.test_parameters[name] except KeyError: return self.parameter[name] else: return self.parameter[name] def __getattr__(self, name: str): """ The keys of the parameters can be called as attributes """ if name in self.__dict__: return object.__getattribute__(self, name) elif name in self.parameter: return self[name] else: return object.__getattribute__(self, name) def __repr__(self): return str(self.parameter) def keys(self): return str(self.parameters.keys()) def print_parameters(self): print(f"Number of conditions: {len(self.all_conditions)}") print("Running Conditions") for k in self.parameter.keys(): print(f"{k} :", f"{self[k]}") print() def print_slurm_variables(self): print("Slurm Variables") for key in self.slurm_variables: print(key, ":", self.slurm_variables[key]) print() def write_csv(self, out=""): s = pandas.concat([pandas.Series(self.parameter),
pandas.Series(self.slurm_variables)
pandas.Series
### import used modules first from TPM.localization import select_folder from glob import glob import random import string import numpy as np import os import datetime import pandas as pd import scipy.linalg as la from sklearn.decomposition import PCA import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D from numpy import unique from numpy import where from sklearn.datasets import make_classification from sklearn.mixture import GaussianMixture from sklearn.metrics import silhouette_score ### get analyzed sheet names ## path_dat:list of path; sheet_names:list of string, axis=0(add vertically) def get_df_dict(path_data, sheet_names, axis): df_dict = dict() for i, path in enumerate(path_data): for sheet_name in sheet_names: if i==0: ## initiate df_dict df = pd.read_excel(path, sheet_name=sheet_name) df_dict[f'{sheet_name}'] = df else: ## append df_dict df =
pd.read_excel(path, sheet_name=sheet_name)
pandas.read_excel
# -*- coding: utf-8 -*- import numpy as np from numpy.linalg import cholesky import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import tensorflow as tf from random import choice, shuffle from numpy import array ############<NAME>的基于tensorflow写的一个kmeans模板############### def KMeansCluster(vectors, noofclusters): """ K-Means Clustering using TensorFlow. `vertors`应该是一个n*k的二维的NumPy的数组,其中n代表着K维向量的数目 'noofclusters' 代表了待分的集群的数目,是一个整型值 """ noofclusters = int(noofclusters) assert noofclusters < len(vectors) #找出每个向量的维度 dim = len(vectors[0]) #辅助随机地从可得的向量中选取中心点 vector_indices = list(range(len(vectors))) shuffle(vector_indices) #计算图 #我们创建了一个默认的计算流的图用于整个算法中,这样就保证了当函数被多次调用 #时,默认的图并不会被从上一次调用时留下的未使用的OPS或者Variables挤满 graph = tf.Graph() with graph.as_default(): #计算的会话 sess = tf.Session() ##构建基本的计算的元素 ##首先我们需要保证每个中心点都会存在一个Variable矩阵 ##从现有的点集合中抽取出一部分作为默认的中心点 centroids = [tf.Variable((vectors[vector_indices[i]])) for i in range(noofclusters)] ##创建一个placeholder用于存放各个中心点可能的分类的情况 centroid_value = tf.placeholder("float64", [dim]) cent_assigns = [] for centroid in centroids: cent_assigns.append(tf.assign(centroid, centroid_value)) ##对于每个独立向量的分属的类别设置为默认值0 assignments = [tf.Variable(0) for i in range(len(vectors))] ##这些节点在后续的操作中会被分配到合适的值 assignment_value = tf.placeholder("int32") cluster_assigns = [] for assignment in assignments: cluster_assigns.append(tf.assign(assignment, assignment_value)) ##下面创建用于计算平均值的操作节点 #输入的placeholder mean_input = tf.placeholder("float", [None, dim]) #节点/OP接受输入,并且计算0维度的平均值,譬如输入的向量列表 mean_op = tf.reduce_mean(mean_input, 0) ##用于计算欧几里得距离的节点 v1 = tf.placeholder("float", [dim]) v2 = tf.placeholder("float", [dim]) euclid_dist = tf.sqrt(tf.reduce_sum(tf.pow(tf.subtract( v1, v2), 2))) ##这个OP会决定应该将向量归属到哪个节点 ##基于向量到中心点的欧几里得距离 #Placeholder for input centroid_distances = tf.placeholder("float", [noofclusters]) cluster_assignment = tf.argmin(centroid_distances, 0) ##初始化所有的状态值 ##这会帮助初始化图中定义的所有Variables。Variable-initializer应该定 ##义在所有的Variables被构造之后,这样所有的Variables才会被纳入初始化 init_op = tf.global_variables_initializer() #初始化所有的变量 sess.run(init_op) ##集群遍历 #接下来在K-Means聚类迭代中使用最大期望算法。为了简单起见,只让它执行固 #定的次数,而不设置一个终止条件 noofiterations = 20 for iteration_n in range(noofiterations): ##期望步骤 ##基于上次迭代后算出的中心点的未知 ##the _expected_ centroid assignments. #首先遍历所有的向量 for vector_n in range(len(vectors)): vect = vectors[vector_n] #计算给定向量与分配的中心节点之间的欧几里得距离 distances = [sess.run(euclid_dist, feed_dict={ v1: vect, v2: sess.run(centroid)}) for centroid in centroids] #下面可以使用集群分配操作,将上述的距离当做输入 assignment = sess.run(cluster_assignment, feed_dict = { centroid_distances: distances}) #接下来为每个向量分配合适的值 sess.run(cluster_assigns[vector_n], feed_dict={ assignment_value: assignment}) ##最大化的步骤 #基于上述的期望步骤,计算每个新的中心点的距离从而使集群内的平方和最小 for cluster_n in range(noofclusters): #收集所有分配给该集群的向量 assigned_vects = [vectors[i] for i in range(len(vectors)) if sess.run(assignments[i]) == cluster_n] #计算新的集群中心点 new_location = sess.run(mean_op, feed_dict={ mean_input: array(assigned_vects)}) #为每个向量分配合适的中心点 sess.run(cent_assigns[cluster_n], feed_dict={ centroid_value: new_location}) #返回中心节点和分组 centroids = sess.run(centroids) assignments = sess.run(assignments) return centroids, assignments ############生成测试数据############### sampleNo = 100 #数据数量 mu =3 # 二维正态分布 mu = np.array([[1, 5]]) Sigma = np.array([[1, 0.5], [1.5, 3]]) R = cholesky(Sigma) srcdata= np.dot(np.random.randn(sampleNo, 2), R) + mu plt.plot(srcdata[:,0],srcdata[:,1],'bo') ############kmeans算法计算############### k=4 center,result=KMeansCluster(srcdata,k) print(center) ############利用seaborn画图############### res={"x":[],"y":[],"kmeans_res":[]} for i in range(len(result)): res["x"].append(srcdata[i][0]) res["y"].append(srcdata[i][1]) res["kmeans_res"].append(result[i]) pd_res=
pd.DataFrame(res)
pandas.DataFrame
""" Copyright (c) 2020 <NAME> This software is released under the MIT License. https://opensource.org/licenses/MIT """ import pandas as pd import json import os class Fhirndjson(object): def __init__(self): self._df =
pd.DataFrame(columns=[])
pandas.DataFrame
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result =
concat([s1, df, s2], axis=1)
pandas.concat
import dotenv import os from pyairtable import Table import pandas as pd def load_airtable(key, base_id, table_name): at = Table(key, base_id, table_name) return at def get_info(airtable_tab): yt_links, emails = [], [] for record in range(len(airtable_tab.all())): talk = airtable_tab.all()[record] yt_link = talk.get('fields').get('youtube_url') email = talk.get('fields').get('email') yt_links.append(yt_link) emails.append(email) return yt_links, emails def save_to_df(yt_links, emails): df = pd.DataFrame({'emails': emails, 'youtube_url': yt_links}) # people can submit multiple times and with different videos - keep the # last one only df.drop_duplicates(keep='last', inplace=True) df.to_csv('videos/data.csv', index=False) def update_df(yt_links, emails): file_path = 'videos/data.csv' df = pd.read_csv(file_path) df_new = pd.DataFrame({'emails': emails, 'youtube_url': yt_links}) df_new.drop_duplicates(keep='last', inplace=True) df =
pd.merge(df, df_new, how='right')
pandas.merge
""" A simple library of functions that provide scikit-learn-esque feature engineering and pre-processing tools. MIT License <NAME>, https://www.linkedin.com/in/tjpell Target encoding inspired by the following Kaggle kernel: https://www.kaggle.com/tnarik/likelihood-encoding-of-categorical-features """ import numpy as np import pandas as pd from collections import defaultdict from sklearn.model_selection import KFold __all__ = ["TargetEncoder"] class TargetEncoder: """ Encode validation data with a preset "unknown value" for observations that were not in the test set. Attributes ---------- method : which statistical method to apply to target variable data : categorical variable used as a predictor values_dict : k : what order of cross validation to use for regularization fill_na : whether or not to fill NA's with global method (such as mean) """ def __init__(self): self.method = np.mean() self.data = None self.values_dict = None self.k = None self.fill_na = True self.fill_val = None def fit(self, x, y): """ Fit target encoder. Builds dictionary mapping {category: list(target values)} Parameters ---------- :param x: array-like of shape (n_samples,) Categorical predictor values. :param y: array-like of shape (n_samples,) Target values. :param method : which statistical method to apply to input data. Recommended uses include np.mean, max, variance k : which order of regularization to apply. fill_na : whether or not to apply global method (such as mean) when filling in NA values Returns ------- self : returns an instance of self. """ if len(x) != len(y): print("Size mismatch") # put all values associated with each variable in a list values_dict = defaultdict(list) [values_dict[key].append(val) for key, val in zip(x,y)] self.values_dict = values_dict self.data = y return self def transform(self, x, method=np.mean(), k=None, fill_na=True): """ Replace categorical data with target encoded version Parameters ---------- :param x: array-like of shape (n_samples,) Categorical predictor values. :param method: which statistical method to apply to input data. Recommended uses include np.mean, max, variance :param k: which order of regularization to apply. :param fill_na: whether or not to apply global method (such as mean) when filling in NA values Returns ------- :return: an instance of self """ self.method = method self.k = k self.fill_na = fill_na if fill_na: self.fill_val = self.method(self.data) return self.regularized_encode(x) if k else self.encode(x) def encode(self, x): """ Apply standard target encoding, using the stored method. Best used on new data. For Training data, use fit_transform. :param x: Data that we are going to encode :return: Transformed data """ apply_dict = dict() applied_method = [apply_dict.update({key, self.method(self.values_dict[key])}) for key in self.values_dict.keys()] return [applied_method[val] if applied_method.get(val) else self.fill_val for val in x] def regularized_encode(self, x): """ Not yet implemented :param x: Data to be transformed :return: Message """ # Todo: prepare the regularized encoding functionality, or verify that it doesn't make sense print("Not yet implemented, for now, please use fit_transform") def fit_transform(self, x, y, method="mean", k=5, fill_na=True): """ For a given pair of categorical and response data, create a column of target encoded data. Default behavior expects that we are going to fit transform training data, with k fold regularization. For test data, it is recommended that you fit on training data and transform the new data. :param x: Categorical variable to apply the encoding for :param y: Target variable, either label encoded categories or continuous values :param method: Numpy method that we wish to apply to target data :param k: Order of k-fold cross validation that we wish to apply :param fill_na: Whether or not to fill Nones in x with the result of applying method to all target data :return: """ if k > 1: df =
pd.DataFrame([x, y], columns=["x", "y"])
pandas.DataFrame