prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from State import * def trajectory2df(t_list, state_list, alpha_list): x_list = [] vx_list = [] y_list = [] vy_list = [] theta_list = [] for state in state_list: x_list.append(state.x) vx_list.append(state.vx) y_list.append(state.y) vy_list.append(state.vy) theta_list.append(state.theta) return pd.DataFrame({'t' : x_list, 'x' : x_list, 'vx' : vx_list,'y' : y_list, 'vy' : vy_list, 'theta' : theta_list, 'alpha' : alpha_list}) def store_trajectory(t_list, state_list, alpha_list,file_path): trajectory2df(t_list, state_list, alpha_list).to_csv(file_path) def load_csv(file_path): df =
pd.read_csv(file_path)
pandas.read_csv
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.ensemble import GradientBoostingRegressor from sklearn.externals import joblib import warnings warnings.filterwarnings("ignore") # Choose GBDT Regression model as baseline # my_model = GradientBoostingRegressor() # Training Step def my_train_func(station): train_data = pd.read_csv('train-dataset/point_date_' + station + '.csv') train_data_Y = train_data['actualPowerGeneration'] # Drop some non-relative factors drop_columns = ['longitude', 'latitude', 'RadiationHorizontalPlane', 'Temperature', 'actualPowerGeneration', 'Humidity', 'atmosphericPressure', 'windDirection', 'scatteredRadiation'] train_data_X = train_data.drop(axis=1, columns=drop_columns) train_data_X['month'] = pd.to_datetime(train_data_X.Time).dt.month train_data_X['day'] = pd.to_datetime(train_data_X.Time).dt.day train_data_X['hour'] = pd.to_datetime(train_data_X.Time).dt.hour train_data_X = train_data_X.drop(axis=1, columns=['Time']) # Validation X_train, X_test, Y_train, Y_test = train_test_split(train_data_X, train_data_Y, test_size=0.2, random_state=40) myGBR = GradientBoostingRegressor(n_estimators=500,max_depth=7) myGBR.fit(X_train, Y_train) Y_pred = myGBR.predict(X_test) # Output model to global variation # my_model = myGBR _ = joblib.dump(myGBR, 'model/' + station + '_model.pkl', compress=9) print('Training completed. MSE on validation set is {}'.format(mean_squared_error(Y_test, Y_pred))) print('Factors below are used: \n{}'.format(list(X_train.columns))) def my_spredict_func(station, input_file, output_file): # Clean test data columns = 'Time,longitude,latitude,directRadiation,scatterdRadiation,windSpeed,airTransparency,airDensity' columns = list(columns.split(',')) test_data = pd.read_csv('test-dataset/' + input_file, names=columns) drop_columns = ['longitude', 'latitude', 'airTransparency', 'airDensity'] test_data = test_data.drop(axis=1, columns=drop_columns) test_data['month'] = pd.to_datetime(test_data.Time).dt.month test_data['day'] = pd.to_datetime(test_data.Time).dt.day test_data['hour'] = pd.to_datetime(test_data.Time).dt.hour test_data['min'] = pd.to_datetime(test_data.Time).dt.minute # Find the time point we need to start with test_data = test_data.sort_values(by='Time') # Find the latest time point time_point = test_data[test_data['hour'] == 0][test_data['min'] == 0].index.tolist()[0] start_point = test_data.loc[time_point]['Time'] observation_period =
pd.date_range(start=start_point, periods=96, freq='15T')
pandas.date_range
import pandas as pd import numpy as np import json from tqdm import tqdm from utils import odds, clean_sheet, time_decay, score_mtx, get_next_gw from ranked_probability_score import ranked_probability_score, match_outcome import pymc3 as pm import theano.tensor as tt class Bayesian: """ Model scored goals at home and away as Bayesian Random variables """ def __init__(self, games, performance='score', decay=True): """ Args: games (pd.DataFrame): Finished games to used for training. performance (string): Observed performance metric to use in model decay (boolean): Apply time decay """ teams = np.sort(np.unique(games["team1"])) league_size = len(teams) self.teams = ( games.loc[:, ["team1"]] .drop_duplicates() .sort_values("team1") .reset_index(drop=True) .assign(team_index=np.arange(league_size)) .rename(columns={"team1": "team"}) ) self.league_size = self.teams.shape[0] df = ( pd.merge(games, self.teams, left_on="team1", right_on="team") .rename(columns={"team_index": "hg"}) .drop(["team"], axis=1) .drop_duplicates() .merge(self.teams, left_on="team2", right_on="team") .rename(columns={"team_index": "ag"}) .drop(["team"], axis=1) .sort_values("date") ) df["date"] = pd.to_datetime(df["date"]) df["days_since"] = (df["date"].max() - df["date"]).dt.days df["weight"] = time_decay(0.00003, df["days_since"]) if decay else 1 self.decay = decay # Handle different data to infer assert performance == 'score' or performance == 'xg' self.performance = performance self.games = df.loc[:, [ f"{performance}1", f"{performance}2", "team1", "team2", "hg", "ag", "weight"]] self.games = self.games.dropna() if performance == 'xg': self.games = ( self.games .rename(columns={"xg1": "score1", "xg2": "score2"}) ) self.model = self._build_model() def _build_model(self): """ Build the model Returns: pymc3.Model: untrained model """ home_idx, teams = pd.factorize(self.games["team1"], sort=True) away_idx, _ = pd.factorize(self.games["team2"], sort=True) with pm.Model() as model: # constant data home_team = pm.Data("home_team", home_idx) away_team = pm.Data("away_team", away_idx) score1_obs = pm.Data("score1_obs", self.games["score1"]) score2_obs = pm.Data("score2_obs", self.games["score2"]) # global model parameters home = pm.Normal("home", mu=0, sigma=1) intercept = pm.Normal("intercept", mu=0, sigma=1) sd_att = pm.HalfNormal("sd_att", sigma=2) sd_def = pm.HalfNormal("sd_def", sigma=2) # team-specific model parameters atts_star = pm.Normal( "atts_star", mu=0, sigma=sd_att, shape=self.league_size) defs_star = pm.Normal( "defs_star", mu=0, sigma=sd_def, shape=self.league_size) # apply sum zero constraints atts = pm.Deterministic( "atts", atts_star - tt.mean(atts_star)) defs = pm.Deterministic( "defs", defs_star - tt.mean(defs_star)) # calulate theta home_theta = tt.exp( intercept + atts[home_team] + defs[away_team] + home) away_theta = tt.exp( intercept + atts[away_team] + defs[home_team]) # likelihood of observed data pm.Potential( 'home_goals', self.games["weight"].values * pm.Poisson.dist(mu=home_theta).logp( score1_obs) ) pm.Potential( 'away_goals', self.games["weight"].values * pm.Poisson.dist(mu=away_theta).logp( score2_obs) ) return model def fit(self): """Fit the model parameters""" with self.model: self.trace = pm.sample( 2000, tune=1000, cores=6, return_inferencedata=False, target_accept=0.85) def predict(self, games): """Predict the outcome of games Args: games (pd.DataFrame): Fixtures Returns: pd.DataFrame: Fixtures with game odds """ parameter_df = ( pd.DataFrame() .assign(attack=[ np.mean([x[team] for x in self.trace["atts"]]) for team in range(self.league_size)]) .assign(defence=[ np.mean([x[team] for x in self.trace["defs"]]) for team in range(self.league_size)]) .assign(team=np.array(self.teams.team_index.values)) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='hg', right_on='team') .rename(columns={"attack": "attack1", "defence": "defence1"}) .merge(parameter_df, left_on='ag', right_on='team') .rename(columns={"attack": "attack2", "defence": "defence2"}) .drop("team_y", axis=1) .drop("team_x", axis=1) .assign(home_adv=np.mean(self.trace["home"])) .assign(intercept=np.mean([x for x in self.trace["intercept"]])) ) fixtures_df["score1_infered"] = np.exp( fixtures_df['intercept'] + fixtures_df["home_adv"] + fixtures_df["attack1"] + fixtures_df["defence2"]) fixtures_df["score2_infered"] = np.exp( fixtures_df['intercept'] + fixtures_df["attack2"] + fixtures_df["defence1"]) def synthesize_odds(row): """ Lambda function that parses row by row to compute score matrix Args: row (array): Fixture Returns: (tuple): Home and Away winning and clean sheets odds """ m = score_mtx(row["score1_infered"], row["score2_infered"]) home_win_p, draw_p, away_win_p = odds(m) home_cs_p, away_cs_p = clean_sheet(m) return home_win_p, draw_p, away_win_p, home_cs_p, away_cs_p ( fixtures_df["home_win_p"], fixtures_df["draw_p"], fixtures_df["away_win_p"], fixtures_df["home_cs_p"], fixtures_df["away_cs_p"] ) = zip(*fixtures_df.apply( lambda row: synthesize_odds(row), axis=1)) return fixtures_df def predict_posterior(self, games): """Predict the outcome of games using posterior sampling Although I think this method is mathematically more sound, it gives worst results Args: games (pd.DataFrame): Fixtures Returns: pd.DataFrame: Fixtures with game odds """ with self.model: pm.set_data( { "home_team": games.hg.values, "away_team": games.ag.values, "score1_obs": np.repeat(0, games.ag.values.shape[0]), "score2_obs": np.repeat(0, games.ag.values.shape[0]), } ) post_pred = pm.sample_posterior_predictive(self.trace.posterior) parameter_df = ( pd.DataFrame() .assign(attack=[ np.mean([x[team] for x in self.trace.posterior["atts"]]) for team in range(self.league_size)]) .assign(defence=[ np.mean([x[team] for x in self.trace.posterior["defs"]]) for team in range(self.league_size)]) .assign(team=np.array(self.teams.team_index.values)) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='hg', right_on='team') .rename(columns={"attack": "attack1", "defence": "defence1"}) .merge(parameter_df, left_on='ag', right_on='team') .rename(columns={"attack": "attack2", "defence": "defence2"}) .drop("team_y", axis=1) .drop("team_x", axis=1) .assign(home_adv=np.mean([x for x in self.trace.posterior["home"]])) .assign(intercept=np.mean([x for x in self.trace.posterior["intercept"]])) ) fixtures_df["score1_infered"] = post_pred["home_goals"].mean(axis=0) fixtures_df["score2_infered"] = post_pred["away_goals"].mean(axis=0) fixtures_df["home_win_p"] = ( (post_pred["home_goals"] > post_pred["away_goals"]).mean(axis=0) ) fixtures_df["away_win_p"] = ( (post_pred["home_goals"] < post_pred["away_goals"]).mean(axis=0) ) fixtures_df["draw_p"] = ( (post_pred["home_goals"] == post_pred["away_goals"]).mean(axis=0) ) return fixtures_df def evaluate(self, games): """ Evaluate the model's prediction accuracy Args: games (pd.DataFrame): Fixtured to evaluate on Returns: pd.DataFrame: df with appended metrics """ fixtures_df = self.predict(games) fixtures_df["winner"] = match_outcome(fixtures_df) fixtures_df["rps"] = fixtures_df.apply( lambda row: ranked_probability_score([ row["home_win_p"], row["draw_p"], row["away_win_p"]], row["winner"]), axis=1) return fixtures_df def backtest(self, train_games, test_season, path='', save=True): """ Test the model's accuracy on past/finished games by iteratively training and testing on parts of the data. Args: train_games (pd.DataFrame): All the training samples test_season (int): Season to use a test set path (string): Path extension to adjust to ipynb use save (boolean): Save predictions to disk Returns: (float): Evaluation metric """ # Get training data self.train_games = train_games # Initialize model self.__init__( self.train_games[self.train_games['season'] != test_season], performance=self.performance, decay=self.decay) # Initial train self.fit() # Get test data # Separate testing based on per GW intervals fixtures = ( pd.read_csv( f"{path}data/fpl_official/vaastav/data/2021-22/fixtures.csv") .loc[:, ['event', 'kickoff_time']]) fixtures["kickoff_time"] = ( pd.to_datetime(fixtures["kickoff_time"]).dt.date) # Get only EPL games from the test season self.test_games = ( self.train_games .loc[self.train_games['league_id'] == 2411] .loc[self.train_games['season'] == test_season] .dropna() ) self.test_games["kickoff_time"] = ( pd.to_datetime(self.test_games["date"]).dt.date) # Merge on date self.test_games = pd.merge( self.test_games, fixtures, left_on='kickoff_time', right_on='kickoff_time') # Add the home team and away team index for running inference self.test_games = ( pd.merge( self.test_games, self.teams, left_on="team1", right_on="team") .rename(columns={"team_index": "hg"}) .drop(["team"], axis=1) .drop_duplicates() .merge(self.teams, left_on="team2", right_on="team") .rename(columns={"team_index": "ag"}) .drop(["team"], axis=1) .sort_values("date") ) predictions =
pd.DataFrame()
pandas.DataFrame
""" Research results class """ import os from collections import OrderedDict import glob import json import dill import pandas as pd class Results: """ Class for dealing with results of research Parameters ---------- path : str path to root folder of research names : str, list or None names of units (pipleines and functions) to load variables : str, list or None names of variables to load iterations : int, list or None iterations to load repetition : int index of repetition to load configs, aliases : dict, Config, Option, Domain or None configs to load use_alias : bool if True, use alias for model name, else use its full name. Defaults to True concat_config : bool if True, concatenate all config options into one string and store it in 'config' column, else use separate column for each option. Defaults to False drop_columns : bool used only if `concat_config=True`. Drop or not columns with options and leave only concatenated config. kwargs : dict kwargs will be interpreted as config paramter Returns ------- pandas.DataFrame or dict will have columns: iteration, name (of pipeline/function) and column for config. Also it will have column for each variable of pipeline and output of the function that was saved as a result of the research. **How to perform slicing** Method `load` with default parameters will create pandas.DataFrame with all dumped parameters. To specify subset of results one can define names of pipelines/functions, produced variables/outputs of them, iterations and configs. For example, we have the following research: ``` domain = Option('layout', ['cna', 'can', 'acn']) * Option('model', [VGG7, VGG16]) research = (Research() .add_pipeline(train_ppl, variables='loss', name='train') .add_pipeline(test_ppl, name='test', execute=100, run=True, import_from='train') .add_callable(accuracy, returns='accuracy', name='test_accuracy', execute=100, pipeline='test') .add_domain(domain)) research.run(n_iters=10000) ``` The code ``` Results(research=research).load(iterations=np.arange(5000, 10000), variables='accuracy', names='test_accuracy', configs=Option('layout', ['cna', 'can'])) ``` will load output of ``accuracy`` function for configs that contain layout 'cna' or 'can' for iterations starting with 5000. The resulting dataframe will have columns 'iteration', 'name', 'accuracy', 'layout', 'model'. One can get the same in the follwing way: ``` results = Results(research=research).load() results = results[(results.iterations >= 5000) & (results.name == 'test_accuracy') & results.layout.isin(['cna', 'can'])] ``` """ def __init__(self, path, *args, **kwargs): self.path = path self.description = self._get_description() self.configs = None self.df = self._load(*args, **kwargs) def _get_list(self, value): if not isinstance(value, list): value = [value] return value def _sort_files(self, files, iterations): files = {file: int(file.split('_')[-1]) for file in files} files = OrderedDict(sorted(files.items(), key=lambda x: x[1])) result = [] start = 0 iterations = [item for item in iterations if item is not None] for name, end in files.items(): if len(iterations) == 0: intersection = pd.np.arange(start, end) else: intersection = pd.np.intersect1d(iterations, pd.np.arange(start, end)) if len(intersection) > 0: result.append((name, intersection)) start = end return OrderedDict(result) def _slice_file(self, dumped_file, iterations_to_load, variables): iterations = dumped_file['iteration'] if len(iterations) > 0: elements_to_load = pd.np.array([pd.np.isin(it, iterations_to_load) for it in iterations]) res = OrderedDict() for variable in ['iteration', 'sample_index', *variables]: if variable in dumped_file: res[variable] = pd.np.array(dumped_file[variable])[elements_to_load] else: res = None return res def _concat(self, results, variables): res = {key: [] for key in [*variables, 'iteration', 'sample_index']} for chunk in results: if chunk is not None: for key, values in res.items(): if key in chunk: values.extend(chunk[key]) return res def _fix_length(self, chunk): max_len = max([len(value) for value in chunk.values()]) for value in chunk.values(): if len(value) < max_len: value.extend([pd.np.nan] * (max_len - len(value))) def _filter_configs(self, config=None, alias=None, repetition=None): result = None if config is None and alias is None and repetition is None: raise ValueError('At least one of parameters config, alias and repetition must be not None') result = [] if repetition is not None: repetition = {'repetition': repetition} else: repetition = dict() if config is None and alias is None: config = dict() for supconfig in self.configs: if config is not None: config.update(repetition) _config = supconfig.config() if all(item in _config.items() for item in config.items()): result.append(supconfig) else: _config = supconfig.alias() alias.update(repetition) if all(item in _config.items() for item in alias.items()): result.append(supconfig) self.configs = result def _get_description(self): with open(os.path.join(self.path, 'description', 'research.json'), 'r') as file: return json.load(file) def _load(self, names=None, variables=None, iterations=None, repetition=None, sample_index=None, configs=None, aliases=None, use_alias=True, concat_config=False, drop_columns=True, **kwargs): self.configs = [] for filename in glob.glob(os.path.join(self.path, 'configs', '*')): with open(filename, 'rb') as f: self.configs.append(dill.load(f)) if len(kwargs) > 0: if configs is None: configs = kwargs else: configs.update(kwargs) if configs is not None: self._filter_configs(config=configs, repetition=repetition) elif aliases is not None: self._filter_configs(alias=aliases, repetition=repetition) elif repetition is not None: self._filter_configs(repetition=repetition) if names is None: names = list(self.description['executables'].keys()) if variables is None: variables = [variable for unit in self.description['executables'].values() for variable in unit['variables'] ] names = self._get_list(names) variables = self._get_list(variables) iterations = self._get_list(iterations) all_results = [] for config_alias in self.configs: alias_str = config_alias.alias(as_string=True) _repetition = config_alias.pop_config('repetition') _update = config_alias.pop_config('update') path = os.path.join(self.path, 'results', alias_str) for unit in names: sample_folders = glob.glob(os.path.join(glob.escape(path), sample_index or '*')) for sample_folder in sample_folders: files = glob.glob(glob.escape(os.path.join(sample_folder, unit)) + '_[0-9]*') files = self._sort_files(files, iterations) if len(files) != 0: res = [] for filename, iterations_to_load in files.items(): with open(filename, 'rb') as file: res.append(self._slice_file(dill.load(file), iterations_to_load, variables)) res = self._concat(res, variables) self._fix_length(res) config_alias.pop_config('_dummy') if concat_config: res['config'] = config_alias.alias(as_string=True) if use_alias: if not concat_config or not drop_columns: res.update(config_alias.alias(as_string=False)) else: res.update(config_alias.config()) res.update({'repetition': _repetition.config()['repetition']}) res.update({'update': _update.config()['update']}) all_results.append( pd.DataFrame({ 'name': unit, **res }) ) return
pd.concat(all_results, sort=False)
pandas.concat
# This script runs expanded econometric models using both old and new data # Import required modules import pandas as pd import numpy as np import statsmodels.api as stats from ToTeX import restab # Reading in the data data =
pd.read_csv('C:/Users/User/Documents/Data/demoforestation_differenced_spatial.csv', encoding = 'cp1252')
pandas.read_csv
''' Esta clase permite automatizar el proceso de exportacion de datos de un CSV a base de datos ''' import pandas as pd from pathlib import Path import re import numpy as np class DataExportManager: @staticmethod def exportAttributes(MyConnection): base_path = Path(__file__).parent file_path = (base_path / "data_csv/datosAtributosCsv.csv").resolve() header=['TAGS','IDAG','ATRIBUTO GENERAL','IDAE','ATRIBUTO ESPECIFICO'] dfAttributes = pd.read_csv(file_path, header=0, names=header, encoding='utf-8') for index, row in dfAttributes.iterrows(): if(not MyConnection.addAtribute(row[2],row[4])): print('Error') break print('atributo: ',index,' ok') dfAttributes.to_csv(file_path, encoding="utf-8", index=False) print('::ok::Atributos exportados...') return "ok" @staticmethod def exportAutos(MyConnection): base_path = Path(__file__).parent file_path = (base_path / "data_csv/autos_data_mod_csv.csv").resolve() dfAutos =
pd.read_csv(file_path,encoding='utf-8')
pandas.read_csv
#!/usr/bin/env python3 import pytest import os import pathlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import logging import math import torch from neuralprophet import NeuralProphet, set_random_seed from neuralprophet import df_utils log = logging.getLogger("NP.test") log.setLevel("WARNING") log.parent.setLevel("WARNING") DIR = pathlib.Path(__file__).parent.parent.absolute() DATA_DIR = os.path.join(DIR, "tests", "test-data") PEYTON_FILE = os.path.join(DATA_DIR, "wp_log_peyton_manning.csv") AIR_FILE = os.path.join(DATA_DIR, "air_passengers.csv") YOS_FILE = os.path.join(DATA_DIR, "yosemite_temps.csv") NROWS = 256 EPOCHS = 2 BATCH_SIZE = 64 LR = 1.0 PLOT = False def test_names(): log.info("testing: names") m = NeuralProphet() m._validate_column_name("hello_friend") def test_train_eval_test(): log.info("testing: Train Eval Test") m = NeuralProphet( n_lags=10, n_forecasts=3, ar_sparsity=0.1, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df = pd.read_csv(PEYTON_FILE, nrows=95) df = df_utils.check_dataframe(df, check_y=False) df = m._handle_missing_data(df, freq="D", predicting=False) df_train, df_test = m.split_df(df, freq="D", valid_p=0.1) metrics = m.fit(df_train, freq="D", validation_df=df_test) val_metrics = m.test(df_test) log.debug("Metrics: train/eval: \n {}".format(metrics.to_string(float_format=lambda x: "{:6.3f}".format(x)))) log.debug("Metrics: test: \n {}".format(val_metrics.to_string(float_format=lambda x: "{:6.3f}".format(x)))) def test_df_utils_func(): log.info("testing: df_utils Test") df = pd.read_csv(PEYTON_FILE, nrows=95) df = df_utils.check_dataframe(df, check_y=False) # test find_time_threshold df_dict, _ = df_utils.prep_copy_df_dict(df) time_threshold = df_utils.find_time_threshold(df_dict, n_lags=2, valid_p=0.2, inputs_overbleed=True) df_train, df_val = df_utils.split_considering_timestamp( df_dict, n_lags=2, n_forecasts=2, inputs_overbleed=True, threshold_time_stamp=time_threshold ) # init data params with a list global_data_params = df_utils.init_data_params(df_dict, normalize="soft") global_data_params = df_utils.init_data_params(df_dict, normalize="soft1") global_data_params = df_utils.init_data_params(df_dict, normalize="standardize") log.debug("Time Threshold: \n {}".format(time_threshold)) log.debug("Df_train: \n {}".format(type(df_train))) log.debug("Df_val: \n {}".format(type(df_val))) def test_trend(): log.info("testing: Trend") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( growth="linear", n_changepoints=10, changepoints_range=0.9, trend_reg=1, trend_reg_threshold=False, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # print(m.config_trend) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=60, n_historic_predictions=60) forecast = m.predict(df=future) if PLOT: m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_custom_changepoints(): log.info("testing: Custom Changepoints") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) dates = df["ds"][range(1, len(df) - 1, int(len(df) / 5.0))] dates_list = [str(d) for d in dates] dates_array = pd.to_datetime(dates_list).values log.debug("dates: {}".format(dates)) log.debug("dates_list: {}".format(dates_list)) log.debug("dates_array: {} {}".format(dates_array.dtype, dates_array)) for cp in [dates_list, dates_array]: m = NeuralProphet( changepoints=cp, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # print(m.config_trend) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=60, n_historic_predictions=60) forecast = m.predict(df=future) if PLOT: # m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_no_trend(): log.info("testing: No-Trend") df = pd.read_csv(PEYTON_FILE, nrows=512) m = NeuralProphet( growth="off", yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, periods=60, n_historic_predictions=60) forecast = m.predict(df=future) if PLOT: m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_seasons(): log.info("testing: Seasonality: additive") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( yearly_seasonality=8, weekly_seasonality=4, seasonality_mode="additive", seasonality_reg=1, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=365, periods=365) forecast = m.predict(df=future) log.debug("SUM of yearly season params: {}".format(sum(abs(m.model.season_params["yearly"].data.numpy())))) log.debug("SUM of weekly season params: {}".format(sum(abs(m.model.season_params["weekly"].data.numpy())))) log.debug("season params: {}".format(m.model.season_params.items())) if PLOT: m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() log.info("testing: Seasonality: multiplicative") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) # m = NeuralProphet(n_lags=60, n_changepoints=10, n_forecasts=30, verbose=True) m = NeuralProphet( yearly_seasonality=8, weekly_seasonality=4, seasonality_mode="multiplicative", epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=365, periods=365) forecast = m.predict(df=future) def test_custom_seasons(): log.info("testing: Custom Seasonality") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) other_seasons = False m = NeuralProphet( yearly_seasonality=other_seasons, weekly_seasonality=other_seasons, daily_seasonality=other_seasons, seasonality_mode="additive", # seasonality_mode="multiplicative", seasonality_reg=1, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m = m.add_seasonality(name="quarterly", period=90, fourier_order=5) log.debug("seasonalities: {}".format(m.season_config.periods)) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=365, periods=365) forecast = m.predict(df=future) log.debug("season params: {}".format(m.model.season_params.items())) if PLOT: m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_ar(): log.info("testing: AR") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=7, n_lags=7, yearly_seasonality=False, epochs=EPOCHS, # batch_size=BATCH_SIZE, learning_rate=LR, ) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=90) forecast = m.predict(df=future) if PLOT: m.plot_last_forecast(forecast, include_previous_forecasts=3) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_ar_sparse(): log.info("testing: AR (sparse") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=3, n_lags=14, ar_sparsity=0.5, yearly_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=90) forecast = m.predict(df=future) if PLOT: m.plot_last_forecast(forecast, include_previous_forecasts=3) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_ar_deep(): log.info("testing: AR-Net (deep)") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=7, n_lags=14, num_hidden_layers=2, d_hidden=32, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=90) forecast = m.predict(df=future) if PLOT: m.plot_last_forecast(forecast, include_previous_forecasts=3) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_lag_reg(): log.info("testing: Lagged Regressors") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=2, n_lags=3, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df["A"] = df["y"].rolling(7, min_periods=1).mean() df["B"] = df["y"].rolling(30, min_periods=1).mean() m = m.add_lagged_regressor(names="A") m = m.add_lagged_regressor(names="B", only_last_value=True) metrics_df = m.fit(df, freq="D") future = m.make_future_dataframe(df, n_historic_predictions=10) forecast = m.predict(future) if PLOT: print(forecast.to_string()) m.plot_last_forecast(forecast, include_previous_forecasts=5) m.plot(forecast) m.plot_components(forecast) m.plot_parameters() plt.show() def test_lag_reg_deep(): log.info("testing: List of Lagged Regressors (deep)") df = pd.read_csv(PEYTON_FILE, nrows=NROWS) m = NeuralProphet( n_forecasts=1, n_lags=14, num_hidden_layers=2, d_hidden=32, weekly_seasonality=False, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) df["A"] = df["y"].rolling(7, min_periods=1).mean() df["B"] = df["y"].rolling(15, min_periods=1).mean() df["C"] = df["y"].rolling(30, min_periods=1).mean() cols = [col for col in df.columns if col not in ["ds", "y"]] m = m.add_lagged_regressor(names=cols) m.highlight_nth_step_ahead_of_each_forecast(m.n_forecasts) metrics_df = m.fit(df, freq="D") forecast = m.predict(df) if PLOT: # print(forecast.to_string()) # m.plot_last_forecast(forecast, include_previous_forecasts=10) # m.plot(forecast) # m.plot_components(forecast) m.plot_parameters() plt.show() def test_events(): log.info("testing: Events") df = pd.read_csv(PEYTON_FILE)[-NROWS:] playoffs = pd.DataFrame( { "event": "playoff", "ds": pd.to_datetime( [ "2008-01-13", "2009-01-03", "2010-01-16", "2010-01-24", "2010-02-07", "2011-01-08", "2013-01-12", "2014-01-12", "2014-01-19", "2014-02-02", "2015-01-11", "2016-01-17", "2016-01-24", "2016-02-07", ] ), } ) superbowls = pd.DataFrame( { "event": "superbowl", "ds": pd.to_datetime(["2010-02-07", "2014-02-02", "2016-02-07"]), } ) events_df = pd.concat((playoffs, superbowls)) m = NeuralProphet( n_lags=2, n_forecasts=30, daily_seasonality=False, epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR, ) # set event windows m = m.add_events( ["superbowl", "playoff"], lower_window=-1, upper_window=1, mode="multiplicative", regularization=0.5 ) # add the country specific holidays m = m.add_country_holidays("US", mode="additive", regularization=0.5) m.add_country_holidays("Indonesia") m.add_country_holidays("Thailand") m.add_country_holidays("Philippines") m.add_country_holidays("Pakistan") m.add_country_holidays("Belarus") history_df = m.create_df_with_events(df, events_df) metrics_df = m.fit(history_df, freq="D") future = m.make_future_dataframe(df=history_df, events_df=events_df, periods=30, n_historic_predictions=90) forecast = m.predict(df=future) log.debug("Event Parameters:: {}".format(m.model.event_params)) if PLOT: m.plot_components(forecast) m.plot(forecast) m.plot_parameters() plt.show() def test_future_reg(): log.info("testing: Future Regressors") df =
pd.read_csv(PEYTON_FILE, nrows=NROWS + 50)
pandas.read_csv
from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import numpy as np import torch import pandas as pd def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, cmap=plt.cm.YlOrBr): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. (Adapted from scikit-learn docs). """ # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', origin='lower', cmap=cmap) ax.figure.colorbar(im, ax=ax) # Show all ticks ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # Label with respective list entries xticklabels=classes, yticklabels=classes, ylabel='True label', xlabel='Predicted label') # Set alignment of tick labels plt.setp(ax.get_xticklabels(), rotation=0, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") return fig, ax # visualize accuracy and loss graph def visualize_graph(train_losses, train_acc, test_losses, test_acc): fig, axs = plt.subplots(2,2,figsize=(15,10)) axs[0, 0].plot(train_losses) axs[0, 0].set_title("Training Loss") axs[1, 0].plot(train_acc) axs[1, 0].set_title("Training Accuracy") axs[0, 1].plot(test_losses) axs[0, 1].set_title("Test Loss") axs[1, 1].plot(test_acc) axs[1, 1].set_title("Test Accuracy") def visualize_save_train_vs_test_graph(EPOCHS, dict_list, title, xlabel, ylabel, PATH, name="fig"): plt.figure(figsize=(20,10)) #epochs = range(1,EPOCHS+1) for label, item in dict_list.items(): x = np.linspace(1, EPOCHS+1, len(item)) plt.plot(x, item, label=label) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend() plt.savefig(PATH+"/"+name+".png") def evaluation_pred(model, iterator, itos=None, tokenizer=None): # deactivating dropout layers model.eval() if itos is not None: eval_df = pd.DataFrame(columns=['src','trg','pred']) else: eval_df = pd.DataFrame(columns=['trg','pred']) # deactivates autograd with torch.no_grad(): for batch in iterator: # retrieve text and no. of words text, text_lengths = batch.src label = batch.trg.cpu().numpy() # convert to 1D tensor predictions = model(text, text_lengths) top_pred = predictions.argmax(1, keepdim = True).cpu().numpy() batch_df =
pd.DataFrame(top_pred, columns=['pred'])
pandas.DataFrame
import argparse import numpy as np import pandas as pd import os import sys import time from lightgbm import LGBMClassifier from sklearn.preprocessing import LabelEncoder import cleanlab from cleanlab.pruning import get_noise_indices model = 'clean_embed_all-mpnet-base-v2.csv' df = pd.read_csv('/global/project/hpcg1614_shared/ca/data/banking77/{}'.format(model)) df_orig =
pd.read_csv('clean.csv')
pandas.read_csv
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2019 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. try: import talib except: print('PLEASE install TALIB to call these methods') import pandas as pd def CMO(Series, timeperiod=14): res = talib.CMO(Series.values, timeperiod) return pd.Series(res, index=Series.index) def BBANDS(Series, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0): up, middle, low = talib.BBANDS( Series.values, timeperiod, nbdevup, nbdevdn, matype) return pd.Series(up, index=Series.index), pd.Series(middle, index=Series.index), pd.Series(low, index=Series.index) def BETA(SeriesA, SeriesB, timeperiod=5): res = talib.BETA(SeriesA.values, SeriesB.values, timeperiod) return
pd.Series(res, index=SeriesA.index)
pandas.Series
import os, re, getopt, sys import numpy as np import pandas as pd from matplotlib import pyplot from pathlib import Path ##################################################################################### ## small utils from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) def shortenGraphName(arg): if not isinstance(arg, str): return arg name = basename(arg) return re.sub("___symmetrized-sorted", "", name) def basename(arg): """Try to extract a basename from the provided argument.""" if not isinstance(arg, str): return arg try: name = os.path.basename(arg) except: name = arg fileExtensions = ['el', 'txt', 'dat', 'csv', 'exe', 'out'] for ext in fileExtensions: name = re.sub(r'\.'+'{}$'.format(ext), '', name) name = re.sub(r'\.', '_', name) return name def readData(path, extractBasenames=True, shortenGraphNames=True): data = pd.read_csv(path, sep=" ", header=None) if extractBasenames: data = data.applymap(basename) if shortenGraphNames: data = data.applymap(shortenGraphName) return data def savefig(fig, path): dirc = os.path.dirname(path) if not (os.path.exists(dirc) and os.path.isdir(dirc)): os.makedirs(dirc) fig.savefig(path) ##################################################################################### ## plotting stuff def SetPueschelStyle(axes): """Set a graph style like prof. pueschel. Style includes a grey backgroud, a horizontal grid with white lines.""" if isinstance(axes, pyplot.Figure): axes = axes.gca() if not isinstance(axes, pyplot.Axes): raise ValueError("axes must be pyplot.Figure or pyplot.Axes") axes.set_facecolor('xkcd:light grey') for spine in ['top', 'right', 'bottom', 'left']: axes.spines[spine].set_visible(False) axes.grid(which='major', axis='y', color='w', linestyle='-', linewidth=2) axes.tick_params(axis='y', length=0) def PlotRuntime(threads, time, figure=None, title_suffix=None, pltkwargs=dict(), **kwargs): data = pd.DataFrame() data['threads'] = threads data['trial_time'] = time if figure == None: figure = pyplot.figure() ax = figure.gca() pooling = 'mean' if "pooling" in kwargs: pooling = kwargs["pooling"] if pooling == 'mean': algTime = data.groupby(['threads']).mean() elif pooling == 'median': algTime = data.groupby(['threads']).median() else: raise ValueError("unknown pooling strategy") ax.plot(algTime.index, algTime['trial_time'], **pltkwargs) ax.set_xlabel('# threads') ax.set_ylabel('Runtime [s]') if title_suffix == None: ax.set_title('Runtime') else: ax.set_title('Runtime [{}]'.format(title_suffix)) return figure, ax def PlotSpeedup(threads, time, figure=None, title_suffix=None, pltkwargs=dict(), **kwargs): data = pd.DataFrame() data['threads'] = threads data['trial_time'] = time if figure == None: figure = pyplot.figure() ax = figure.gca() pooling = 'mean' if "pooling" in kwargs: pooling = kwargs["pooling"] if pooling == 'mean': algTime = data.groupby(['threads']).mean() elif pooling == 'median': algTime = data.groupby(['threads']).median() else: raise ValueError("unknown pooling strategy") baseline = algTime.iloc[0]['trial_time'] algTime['speedup'] = baseline/algTime['trial_time'] ax.plot(algTime.index, algTime['speedup'], **pltkwargs) ax.set_xlabel('# threads') ax.set_ylabel('Speedup [1]') if title_suffix == None: ax.set_title('Speedup') else: ax.set_title('Speedup [{}]'.format(title_suffix)) return figure, ax def PlotPreprocessingInfo(pp_method, pp_time, time, no_pp_method, threads=None, title_suffix = None, pltkwargs=dict(), **kwargs): data =
pd.DataFrame()
pandas.DataFrame
# Copyright 2021 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software. """This module contains utilities for loading and saving SampleSet data files.""" import copy import logging import os import pathlib import pickle import re import warnings import pandas as pd from riid import DATA_PATH, DataDirectoryNotFoundError from riid.sampleset import SampleSet def _check_data_path(): if not os.path.exists(DATA_PATH): raise DataDirectoryNotFoundError() def check_iso_name(name: str): """ Validates whether or not the given string contains a properly formatted radioisotope name. Note that this function does NOT look up a string to determine if the string corresponds to a radioisotope that actually exists, it just checks the format. The regular expression used by this function looks for the following (in order): - 1 capital letter - 0 to 1 lowercase letters - 1 to 3 numbers - an optional "m" for metastable Examples of properly formatted isotope names: - Y88 - Ba133 - Ho166m Args: name: the string to be checked Returns: True if the string has a valid format, otherwise False. """ validator = re.compile(r"^[A-Z]{1}[a-z]{0,1}[0-9]{1,3}m?$") other_valid_names = ["fiestaware"] match = validator.match(name) is_valid = match is not None or \ name.lower() in other_valid_names return is_valid def load_samples_from_file(file_path: str, verbose=1) -> SampleSet: """Load samples from the given file_path.""" ss = None if os.path.isfile(file_path): message = "Found samples, loading '{}'.".format(file_path) if verbose: logging.info(message) try: raw_ss = read_hdf(file_path) except OSError: with open(file_path, "rb") as fin: raw_ss = pickle.load(fin) kwargs = raw_ss.__dict__ # Make instance of most recent SampleSet using data from loaded file. ss = SampleSet(**kwargs) else: message = "No samples were found for the given parameters." if verbose: logging.info(message) ss = None return ss def load_samples(detector: str, measured_or_synthetic: str, train_or_test: str, file_name: str, verbose=1) -> SampleSet: """Load samples for a given detector, type, and file name. """ file_path = os.path.join(DATA_PATH, detector, measured_or_synthetic, train_or_test, file_name) file_path = os.path.expanduser(file_path) ss = load_samples_from_file(file_path, verbose=verbose) return ss def save_samples_to_file(ss: SampleSet, file_path: str, verbose=1): """Writes out the given sampleset to disk at the given path.""" try: write_hdf(ss, file_path) except OSError: with open(file_path, "wb") as fout: pickle.dump(ss, fout) if verbose: logging.info(f"Saved SampleSet to '{file_path}'") def save_samples(ss: SampleSet, file_name: str, detector: str = None, measured_or_synthetic: str = None, purpose: str = None, verbose=1): """Save the given samples to the appropriate data directory location.""" _check_data_path() if not ss: raise EmptySampleSetError("No samples were provided") if detector: ss.detector = detector if measured_or_synthetic: ss.measured_or_synthetic = measured_or_synthetic if purpose: ss.purpose = purpose output_dir = os.path.join( DATA_PATH, ss.detector, ss.measured_or_synthetic, ss.purpose ) output_dir = os.path.expanduser(output_dir) pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True) output_path = os.path.join( DATA_PATH, ss.detector, ss.measured_or_synthetic, ss.purpose, file_name ) save_samples_to_file(ss, output_path, verbose) def save_detector_model(model_contents: str, model_hash: str, detector_name: str): """Save detector model """ output_fn = os.path.join( DATA_PATH, detector_name, f"{model_hash}.dat" ) with open(output_fn, "w") as fout: fout.write(model_contents) def load_seeds(detector: str, measured_or_synthetic: str, file_name: str, verbose=1) -> SampleSet: """Load seeds for a given detector, type, and file_name. """ _check_data_path() load_path = os.path.join(DATA_PATH, detector, measured_or_synthetic, "seed", file_name) load_path = os.path.abspath(os.path.expanduser(load_path)) if not os.path.isfile(load_path): message = "No seeds were found for the given configuration at path {}".format(load_path) raise NoSeedsFoundError(message) if verbose: message = "Found seeds, loading '{}'.".format(load_path) logging.info(message) try: raw_seeds = read_hdf(load_path) except OSError: raw_seeds = pickle.load(open(load_path, "rb")) ss = SampleSet(**raw_seeds.__dict__) return ss def save_seeds(ss: SampleSet, file_name: str, detector: str = None, measured_or_synthetic: str = None, verbose=1): """Load seeds for a given detector, type, and file_name.""" _check_data_path() if not ss: raise EmptySampleSetError("No seeds were provided.") if detector: ss.detector = detector if measured_or_synthetic: ss.measured_or_synthetic = measured_or_synthetic save_samples(ss, file_name, verbose=verbose) def read_hdf(file_name: str) -> SampleSet: """ Reads sampleset class from hdf binary format.""" spectra = pd.read_hdf(file_name, "spectra") try: collection_information = pd.read_hdf(file_name, "collection_information") except: collection_information = pd.read_hdf(file_name, "info") sources = pd.read_hdf(file_name, "sources") sources.columns = [i.split("___")[0] for i in sources.columns] features =
pd.read_hdf(file_name, "features")
pandas.read_hdf
import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import glob import os import sys import datetime import urllib.request import sys from sklearn import datasets, linear_model import csv from scipy import stats import pylab Calculated_GDD=[] df = pd.DataFrame() df2 =
pd.DataFrame()
pandas.DataFrame
from sklearn.ensemble import RandomForestClassifier import numpy as np from sklearn.metrics import classification_report, accuracy_score # calculating measures for accuracy assessment from osgeo import gdal import joblib import sys # sys.path.append(r"F:\Work\Maptor\venv\Model") from ReportModule import ReportModule import pandas as pd import matplotlib.pyplot as plt class ClassificationModel(): Trees=500 def set_trees(self,trees): self.Trees = trees def get_trees(self): return self.Trees def rf_classifier(self,img,img_ds,roi,trees): try: #rt = ReportModule() n_samples = (roi > 0).sum() #print('We have {n} training samples'.format(n=n_samples)) # What are our classification labels? labels = np.unique(roi[roi > 0]) #print('The training data include {n} classes: {classes}'.format(n=labels.size, # classes=labels)) X = img[roi > 0, :] y = roi[roi > 0] # print('Our X matrix is sized: {sz}'.format(sz=X.shape)) # # print('Our y array is sized: {sz}'.format(sz=y.shape)) # Train Random Forest rf = RandomForestClassifier(n_estimators=trees, oob_score=True,verbose=2, n_jobs=-1 ) X = np.nan_to_num(X) rf = rf.fit(X, y) ob_score = round(rf.oob_score_ * 100, 2) importance = {} bands = range(1, img_ds.RasterCount + 1) for b, imp in zip(bands, rf.feature_importances_): importance[b] = round(imp * 100, 2) #print('Band {b} importance: {imp} %'.format(b=b, imp=round(imp * 100, 2))) # Let's look at a crosstabulation to see the class confusion. # To do so, we will import the Pandas library for some help: # Setup a dataframe -- just like R # Exception Handling because of possible Memory Error try: df =
pd.DataFrame()
pandas.DataFrame
#%%%%%%%%%%%%%%%%%%%%%%% Prepare for testing %%%%%%%%%%%%%% import os import backtest_pkg.backtest_portfolio as bt import pandas as pd from IPython.display import display import importlib os.chdir(r'M:\Share\Colleagues\Andy\Python Project\Backtest Module') price_data = pd.read_csv('pkg_test/Adjusted_Price.csv', index_col=0, parse_dates=True) ######################################################################### ######## Portfolio construction ############### ######################################################################### #%%%%%%%%%%%%%%%%%%%%%%% Portfolio from weight %%%%%%%%%%%%%%% importlib.reload(bt) # Small testing date: small_price_data = price_data.iloc[:10, :5] small_weight = pd.DataFrame(data=[[1, 2, 3]], index=[price_data.index[0]], columns=price_data.columns[:3]) small_share = pd.DataFrame(data=1, index=[price_data.index[0]], columns=price_data.columns[:3]) # Initiate a portfolio by weight: small_port = bt.portfolio(small_weight, name='Small Portfolio') # Better way to initialize a portfolio: # small_port = bt.portfolio(weight = small_weight, name='Small Portfolio') small_port.set_price(small_price_data) display(small_port.weight) ##### Check some properties: # End date: small_port.end_date = None # Default: last date of price data print(f'End date (default): {small_port.end_date:%Y-%m-%d}') small_port.end_date = pd.datetime(2013, 1, 10) # Manually set print(f'End date (set): {small_port.end_date:%Y-%m-%d}') # Trading_status: small_port.trading_status = None # Default: TRUE if price is available display(f'Trading Status (default):') display(small_port.trading_status) trading_status = small_price_data.notna() trading_status.loc[:'2013-01-10', 'ALB SQ Equity'] = False small_port.trading_status = trading_status # Set for specific requirement display(f'Trading Status (set):') display(small_port.trading_status) # Daily return: calculate from price, the first available date has return 1. display(f'Daily Return:') display(small_port.daily_ret) #%%%%%%%%%%%%%%%%%% Portfolio from share %%%%%%%%%%%%%%%%%%%%% # Initiate a portfolio by share: small_port = bt.portfolio(share = small_share, name='Small share Portfolio') small_port.set_price(small_price_data) display(small_port.weight) ##### Check some properties: # End date: small_port.end_date = None # Default: last date of price data print(f'End date (default): {small_port.end_date:%Y-%m-%d}') small_port.end_date = pd.datetime(2013, 1, 10) # Manually set print(f'End date (set): {small_port.end_date:%Y-%m-%d}') # Trading_status: small_port.trading_status = None # Default: TRUE if price is available display(f'Trading Status (default):') display(small_port.trading_status) trading_status = small_price_data.notna() trading_status.loc[:'2013-01-10', 'ALB SQ Equity'] = False small_port.trading_status = trading_status # Set for specific requirement display(f'Trading Status (set):') display(small_port.trading_status) # Daily return: calculate from price, the first available date has return 1. display(f'Daily Return:') display(small_port.daily_ret) ##################### Error handling ############################## importlib.reload(bt) #%%%%%%%%%%%%%%%%%%%% Weight in untradable security %%%%%%%%%%%%%%%%% small_weight = pd.DataFrame(data=[[1, 2, 3]], index=[small_price_data.index[0]], columns= small_price_data.columns[-3:]) small_share = pd.DataFrame(data=1, index=[small_price_data.index[0]], columns=small_price_data.columns[-3:]) small_port = bt.portfolio(small_weight, name='Small error Portfolio') small_port.set_price(small_price_data) display(small_weight) display(small_port.weight) #%%%%%%%%%%%%%%%%%%% Share in untradable security %%%%%%%%%%%%%%%%%%%%% small_port = bt.portfolio(share=small_share, name='Small error Portfolio from share') small_port.set_price(small_price_data) display(small_share) display(small_port.weight) #%%%%%%%%%%%%%%%%%%%%%% Unknown tickers %%%%%%%%%%%%%%%%% small_weight = pd.DataFrame(data=[[1, 2, 3]], index=[small_price_data.index[0]], columns= small_price_data.columns[:3]) small_weight['Strange Equity']=1 small_port = bt.portfolio(small_weight, name='Small Portfolio with unknown ticker') small_port.set_price(small_price_data) display('Input weight:') display(small_weight) display('Output weight:') display(small_port.weight) #%%%%%%%%%%%%%%%%%%%%%%% Outrange date %%%%%%%%%%%%%%%%%%%%%%%% small_weight = pd.DataFrame(data=[[1, 2, 3]], index=[small_price_data.index[0]], columns= small_price_data.columns[:3]) small_weight.loc[pd.to_datetime('2019-01-01'), :] = 1 small_port = bt.portfolio(small_weight, name='Small Portfolio with unknown ticker') small_port.set_price(small_price_data) display('Input weight:') display(small_weight) display('Final weight:') display(small_port.weight) #%%%%%%%%%%%%%%%%%%%%%% Unknown tickers in share %%%%%%%%%%%%%%%%% small_share = pd.DataFrame(data=1, index=[small_price_data.index[0]], columns= small_price_data.columns[:3]) small_share['Strange Equity']=1 small_port = bt.portfolio(share = small_share, name='Small Portfolio with unknown ticker') small_port.set_price(small_price_data) display('Input weight:') display(small_share) display('Final weight:') display(small_port.weight) #%%%%%%%%%%%%%%%%%%%%%% Outrange date in share %%%%%%%%%%%%%%%%% small_share = pd.DataFrame(data=1, index=[small_price_data.index[0]], columns= small_price_data.columns[:3]) small_share.loc[pd.to_datetime('2019-01-01'), :]=1 small_port = bt.portfolio(share = small_share, name='Small Portfolio with unknown ticker') small_port.set_price(small_price_data) display('Input weight:') display(small_share) display('Final weight:') display(small_port.weight) ######################################################################## ################## Backtesting ############### ######################################################################## #%%%%%%%%%%%%%% Construct a small portfolio %%%%%%%%%%%%%% importlib.reload(bt) small_price_data = price_data.iloc[:10, :5] # Initiate an equal weight portfolio by weight: small_weight = pd.DataFrame(data=1, index=[small_price_data.index[0]], columns=small_price_data.columns) small_port = bt.portfolio(small_weight, name='Small Portfolio') small_port.set_price(small_price_data) #%%%%%%%%%%%%%%%%%%%%% Simple drift %%%%%%%%%%%%%%%%%%%% drifting_weight = small_port._drift_weight(small_port.weight) display('Simple drift') display(drifting_weight) #%%%%%%%%%%%%%%%%%%%% Rebalanced drift %%%%%%%%%%%%%%%%% rebalance_date = pd.datetime(2013, 1, 10) rebalanced_weight =
pd.DataFrame(data=1, index=[rebalance_date], columns=small_price_data.columns)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s =
pd.Series(['1.0', 2, -3, '2.0'])
pandas.Series
import pandas as pd def create_script(func_str, output_script_file_path=r"./machine_induced_script.py"): output_script = \ """import sys input_file_path = sys.argv[1] output_file_path = sys.argv[2] log_lines = open(input_file_path, "r").readlines() {} open(output_file_path, "w").write("\\n".join(output_list)) print(\"done writing\", output_file_path)""".format(func_str) open(output_script_file_path, "w").write(output_script) def get_all_substrings(input_string): length = len(input_string) return set([input_string[i:j+1] for i in range(length) for j in range(i,length)]) def get_intersection_of_list_of_sets(list_of_sets): set_0 = list_of_sets[0] for a_set in list_of_sets[1:]: set_0 = set_0.intersection(a_set) return set_0 def get_max_length_common_string(string_1, string_2): union_list = [substring for substring in get_all_substrings(string_1) if substring in string_2] common_string = union_list[
pd.Series(union_list)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_FP_S1 Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 #parameters for timber plantation. Source: Khasanah et al. (2015) tf = 201 a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') #df2 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL.xlsx', 'RIL_S2') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') t = range(0,tf,1) c_firewood_energy_S1 = df1['Firewood_other_energy_use'].values #c_loss_S2 = df2['C_loss'].values c_firewood_energy_E = dfE['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') c_pellets_E = dfE['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition #S1 df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') tf = 201 t = np.arange(tf) def decomp_S1(t,remainAGB_S1): return (1-(1-np.exp(-a*t))**b)*remainAGB_S1 #set zero matrix output_decomp_S1 = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S1 in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S1[i:,i] = decomp_S1(t[:len(t)-i],remain_part_S1) print(output_decomp_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S1 = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S1[:,i] = np.diff(output_decomp_S1[:,i]) i = i + 1 print(subs_matrix_S1[:,:4]) print(len(subs_matrix_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S1 = subs_matrix_S1.clip(max=0) print(subs_matrix_S1[:,:4]) #make the results as absolute values subs_matrix_S1 = abs(subs_matrix_S1) print(subs_matrix_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S1 = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S1) subs_matrix_S1 = np.vstack((zero_matrix_S1, subs_matrix_S1)) print(subs_matrix_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S1 = (tf,1) decomp_tot_S1 = np.zeros(matrix_tot_S1) i = 0 while i < tf: decomp_tot_S1[:,0] = decomp_tot_S1[:,0] + subs_matrix_S1[:,i] i = i + 1 print(decomp_tot_S1[:,0]) #S1_C df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_C_S1') tf = 201 t = np.arange(tf) def decomp_S1_C(t,remainAGB_S1_C): return (1-(1-np.exp(-a*t))**b)*remainAGB_S1_C #set zero matrix output_decomp_S1_C = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S1_C in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S1_C[i:,i] = decomp_S1_C(t[:len(t)-i],remain_part_S1_C) print(output_decomp_S1_C[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S1_C = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S1_C[:,i] = np.diff(output_decomp_S1_C[:,i]) i = i + 1 print(subs_matrix_S1_C[:,:4]) print(len(subs_matrix_S1_C)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S1_C = subs_matrix_S1_C.clip(max=0) print(subs_matrix_S1_C[:,:4]) #make the results as absolute values subs_matrix_S1_C = abs(subs_matrix_S1_C) print(subs_matrix_S1_C[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S1_C = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S1_C) subs_matrix_S1_C = np.vstack((zero_matrix_S1_C, subs_matrix_S1_C)) print(subs_matrix_S1_C[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S1_C = (tf,1) decomp_tot_S1_C = np.zeros(matrix_tot_S1_C) i = 0 while i < tf: decomp_tot_S1_C[:,0] = decomp_tot_S1_C[:,0] + subs_matrix_S1_C[:,i] i = i + 1 print(decomp_tot_S1_C[:,0]) #E df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') tf = 201 t = np.arange(tf) def decomp_E(t,remainAGB_E): return (1-(1-np.exp(-a*t))**b)*remainAGB_E #set zero matrix output_decomp_E = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_E in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_E[i:,i] = decomp_E(t[:len(t)-i],remain_part_E) print(output_decomp_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_E = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_E[:,i] = np.diff(output_decomp_E[:,i]) i = i + 1 print(subs_matrix_E[:,:4]) print(len(subs_matrix_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_E = subs_matrix_E.clip(max=0) print(subs_matrix_E[:,:4]) #make the results as absolute values subs_matrix_E = abs(subs_matrix_E) print(subs_matrix_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_E = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_E) subs_matrix_E = np.vstack((zero_matrix_E, subs_matrix_E)) print(subs_matrix_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_E = (tf,1) decomp_tot_E = np.zeros(matrix_tot_E) i = 0 while i < tf: decomp_tot_E[:,0] = decomp_tot_E[:,0] + subs_matrix_E[:,i] i = i + 1 print(decomp_tot_E[:,0]) #E df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_C_E') tf = 201 t = np.arange(tf) def decomp_E_C(t,remainAGB_E_C): return (1-(1-np.exp(-a*t))**b)*remainAGB_E_C #set zero matrix output_decomp_E_C = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_E_C in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_E_C[i:,i] = decomp_E_C(t[:len(t)-i],remain_part_E_C) print(output_decomp_E_C[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_E_C = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_E_C[:,i] = np.diff(output_decomp_E_C[:,i]) i = i + 1 print(subs_matrix_E_C[:,:4]) print(len(subs_matrix_E_C)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_E_C = subs_matrix_E_C.clip(max=0) print(subs_matrix_E_C[:,:4]) #make the results as absolute values subs_matrix_E_C = abs(subs_matrix_E_C) print(subs_matrix_E_C[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_E_C = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_E_C) subs_matrix_E_C = np.vstack((zero_matrix_E_C, subs_matrix_E_C)) print(subs_matrix_E_C[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_E_C = (tf,1) decomp_tot_E_C = np.zeros(matrix_tot_E_C) i = 0 while i < tf: decomp_tot_E_C[:,0] = decomp_tot_E_C[:,0] + subs_matrix_E_C[:,i] i = i + 1 print(decomp_tot_E_C[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_S1,label='S1') #plt.plot(t,decomp_tot_S2,label='S2') plt.plot(t,decomp_tot_E,label='E') plt.xlim(0,200) plt.legend(loc='best', frameon=False) plt.show() #%% #Step (4): Dynamic stock model of in-use wood materials from dynamic_stock_model import DynamicStockModel df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') #product lifetime #building materials B = 35 TestDSM1 = DynamicStockModel(t = df1['Year'].values, i = df1['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSME = DynamicStockModel(t = dfE['Year'].values, i = dfE['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) CheckStr1, ExitFlag1 = TestDSM1.dimension_check() CheckStrE, ExitFlagE = TestDSME.dimension_check() Stock_by_cohort1, ExitFlag1 = TestDSM1.compute_s_c_inflow_driven() Stock_by_cohortE, ExitFlagE = TestDSME.compute_s_c_inflow_driven() S1, ExitFlag1 = TestDSM1.compute_stock_total() SE, ExitFlagE = TestDSME.compute_stock_total() O_C1, ExitFlag1 = TestDSM1.compute_o_c_from_s_c() O_CE, ExitFlagE = TestDSME.compute_o_c_from_s_c() O1, ExitFlag1 = TestDSM1.compute_outflow_total() OE, ExitFlagE = TestDSME.compute_outflow_total() DS1, ExitFlag1 = TestDSM1.compute_stock_change() DSE, ExitFlagE = TestDSME.compute_stock_change() Bal1, ExitFlag1 = TestDSM1.check_stock_balance() BalE, ExitFlagE = TestDSME.check_stock_balance() #print output flow print(TestDSM1.o) #print(TestDSM2.o) print(TestDSME.o) plt.plot(t, TestDSM1.o) plt.xlim(0,100) plt.show() #%% #Step (5): Biomass growth # RIL_Scenario biomass growth, following RIL disturbance #recovery time, follow the one by Alice-guier #H = [M, E, C_M, C_E] #LD0 = [M, E, C_M, C_E] H = [2.89, 4.34, 2.89, 4.34] LD0 = [53.46-2.89, 53.46-4.34, 29.29-2.89, 29.29-4.34] s = 1.106 #RIL RT = ((H[0] + LD0[0])*100/initAGB)**s print(RT) #growth per year (Mg C/ha.yr) gpy = (H[0] + LD0[0])/RT print(gpy) tf_RIL_S1 = 36 A1 = range(0,tf_RIL_S1,1) #caculate the disturbed natural forest recovery carbon regrowth over time following RIL def Y_RIL_S1(A1): return 44/12*1000*gpy*A1 seq_RIL = np.array([Y_RIL_S1(A1i) for A1i in A1]) print(len(seq_RIL)) print(seq_RIL) ##3 times 35-year cycle of new AGB following logging (RIL) counter_35y = range(0,6,1) y_RIL = [] for i in counter_35y: y_RIL.append(seq_RIL) flat_list_RIL = [] for sublist in y_RIL: for item in sublist: flat_list_RIL.append(item) #the length of the list is now 216, so we remove the last 15 elements of the list to make the len=tf flat_list_RIL = flat_list_RIL[:len(flat_list_RIL)-15] print(flat_list_RIL) #plotting t = np.arange(0,tf,1) plt.xlim([0, 200]) plt.plot(t, flat_list_RIL, color='darkviolet') #yearly sequestration ## RIL (35-year cycle) #find the yearly sequestration by calculating the differences between elements in list 'flat_list_RIL (https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_RIL = [p - q for q, p in zip(flat_list_RIL, flat_list_RIL[1:])] #since there is no sequestration between the replanting year (e.g., year 35 to 36), we have to replace negative numbers in 'flat_list_RIL' with 0 values flat_list_RIL = [0 if i < 0 else i for i in flat_list_RIL] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_RIL.insert(0,var) #make 'flat_list_RIL' elements negative numbers to denote sequestration flat_list_RIL = [ -x for x in flat_list_RIL] print(flat_list_RIL) #RIL_C RT_C = ((H[2] + LD0[2])*100/initAGB)**s print(RT_C) #growth per year (Mg C/ha.yr) gpy_C = (H[2] + LD0[2])/RT_C print(gpy_C) tf_RIL_C = 36 A1 = range(0,tf_RIL_C,1) #caculate the disturbed natural forest recovery carbon regrowth over time following RIL def Y_RIL_C(A1): return 44/12*1000*gpy_C*A1 seq_RIL_C = np.array([Y_RIL_C(A1i) for A1i in A1]) print(len(seq_RIL_C)) print(seq_RIL_C) ##3 times 35-year cycle of new AGB following logging (RIL) counter_35y = range(0,6,1) y_RIL_C = [] for i in counter_35y: y_RIL_C.append(seq_RIL_C) flat_list_RIL_C = [] for sublist_C in y_RIL_C: for item in sublist_C: flat_list_RIL_C.append(item) #the length of the list is now 216, so we remove the last 15 elements of the list to make the len=tf flat_list_RIL_C = flat_list_RIL_C[:len(flat_list_RIL_C)-15] #plotting t = np.arange(0,tf,1) plt.xlim([0, 200]) plt.plot(t, flat_list_RIL_C, color='darkviolet') #yearly sequestration ## RIL (35-year cycle) #find the yearly sequestration by calculating the differences between elements in list 'flat_list_RIL (https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_RIL_C = [p - q for q, p in zip(flat_list_RIL_C, flat_list_RIL_C[1:])] #since there is no sequestration between the replanting year (e.g., year 35 to 36), we have to replace negative numbers in 'flat_list_RIL' with 0 values flat_list_RIL_C = [0 if i < 0 else i for i in flat_list_RIL_C] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_RIL_C.insert(0,var) #make 'flat_list_RIL' elements negative numbers to denote sequestration flat_list_RIL_C = [ -x for x in flat_list_RIL_C] print(flat_list_RIL_C) #%% #Step (5_1): Biomass C sequestration of the remaining unharvested block df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') df1_C = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_C_S1') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') dfE_C = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_C_E') t = range(0,tf,1) RIL_seq_S1= df1['RIL_seq'].values RIL_seq_C_S1 = df1_C['RIL_seq'].values RIL_seq_E = dfE['RIL_seq'].values RIL_seq_C_E = dfE_C['RIL_seq'].values #%% #Step (6): post-harvest processing of wood #post-harvest wood processing df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') t = range(0,tf,1) PH_Emissions_HWP1 = df1['PH_Emissions_HWP'].values PH_Emissions_HWPE = dfE ['PH_Emissions_HWP'].values #%% #Step (7_1): landfill gas decomposition (CH4) #CH4 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1 df1_CH4 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') tf = 201 t = np.arange(tf) def decomp_CH4_S1(t,Landfill_decomp_CH4_S1): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CH4_S1 #set zero matrix output_decomp_CH4_S1 = np.zeros((len(t),len(df1_CH4['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S1 in enumerate(df1_CH4['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S1[i:,i] = decomp_CH4_S1(t[:len(t)-i],remain_part_CH4_S1) print(output_decomp_CH4_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S1 = np.zeros((len(t)-1,len(df1_CH4['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S1[:,i] = np.diff(output_decomp_CH4_S1[:,i]) i = i + 1 print(subs_matrix_CH4_S1[:,:4]) print(len(subs_matrix_CH4_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S1 = subs_matrix_CH4_S1.clip(max=0) print(subs_matrix_CH4_S1[:,:4]) #make the results as absolute values subs_matrix_CH4_S1 = abs(subs_matrix_CH4_S1) print(subs_matrix_CH4_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S1 = np.zeros((len(t)-200,len(df1_CH4['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S1) subs_matrix_CH4_S1 = np.vstack((zero_matrix_CH4_S1, subs_matrix_CH4_S1)) print(subs_matrix_CH4_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S1 = (tf,1) decomp_tot_CH4_S1 = np.zeros(matrix_tot_CH4_S1) i = 0 while i < tf: decomp_tot_CH4_S1[:,0] = decomp_tot_CH4_S1[:,0] + subs_matrix_CH4_S1[:,i] i = i + 1 print(decomp_tot_CH4_S1[:,0]) #E dfE_CH4 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') tf = 201 t = np.arange(tf) def decomp_CH4_E(t,Landfill_decomp_CH4_E): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CH4_E #set zero matrix output_decomp_CH4_E = np.zeros((len(t),len(dfE_CH4['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_E in enumerate(dfE_CH4['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_E[i:,i] = decomp_CH4_E(t[:len(t)-i],remain_part_CH4_E) print(output_decomp_CH4_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_E = np.zeros((len(t)-1,len(dfE_CH4['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_E[:,i] = np.diff(output_decomp_CH4_E[:,i]) i = i + 1 print(subs_matrix_CH4_E[:,:4]) print(len(subs_matrix_CH4_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_E = subs_matrix_CH4_E.clip(max=0) print(subs_matrix_CH4_E[:,:4]) #make the results as absolute values subs_matrix_CH4_E = abs(subs_matrix_CH4_E) print(subs_matrix_CH4_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_E = np.zeros((len(t)-200,len(dfE_CH4['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_E) subs_matrix_CH4_E = np.vstack((zero_matrix_CH4_E, subs_matrix_CH4_E)) print(subs_matrix_CH4_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_E = (tf,1) decomp_tot_CH4_E = np.zeros(matrix_tot_CH4_E) i = 0 while i < tf: decomp_tot_CH4_E[:,0] = decomp_tot_CH4_E[:,0] + subs_matrix_CH4_E[:,i] i = i + 1 print(decomp_tot_CH4_E[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CH4_S1,label='S1') #plt.plot(t,decomp_tot_CH4_S2,label='S2') plt.plot(t,decomp_tot_CH4_E,label='E') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() type(decomp_tot_CH4_S1[:,0]) #%% #Step (7_2): landfill gas decomposition (CO2) #CO2 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1 df1_CO2 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') tf = 201 t = np.arange(tf) def decomp_CO2_S1(t,Landfill_decomp_CO2_S1): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CO2_S1 #set zero matrix output_decomp_CO2_S1 = np.zeros((len(t),len(df1_CO2['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S1 in enumerate(df1_CO2['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S1[i:,i] = decomp_CO2_S1(t[:len(t)-i],remain_part_CO2_S1) print(output_decomp_CO2_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S1 = np.zeros((len(t)-1,len(df1_CO2['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S1[:,i] = np.diff(output_decomp_CO2_S1[:,i]) i = i + 1 print(subs_matrix_CO2_S1[:,:4]) print(len(subs_matrix_CO2_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S1 = subs_matrix_CO2_S1.clip(max=0) print(subs_matrix_CO2_S1[:,:4]) #make the results as absolute values subs_matrix_CO2_S1 = abs(subs_matrix_CO2_S1) print(subs_matrix_CO2_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S1 = np.zeros((len(t)-200,len(df1_CO2['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S1) subs_matrix_CO2_S1 = np.vstack((zero_matrix_CO2_S1, subs_matrix_CO2_S1)) print(subs_matrix_CO2_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S1 = (tf,1) decomp_tot_CO2_S1 = np.zeros(matrix_tot_CO2_S1) i = 0 while i < tf: decomp_tot_CO2_S1[:,0] = decomp_tot_CO2_S1[:,0] + subs_matrix_CO2_S1[:,i] i = i + 1 print(decomp_tot_CO2_S1[:,0]) #E dfE_CO2 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') tf = 201 t = np.arange(tf) def decomp_CO2_E(t,Landfill_decomp_CO2_E): return (1-(1-np.exp(-k*t)))*Landfill_decomp_CO2_E #set zero matrix output_decomp_CO2_E = np.zeros((len(t),len(dfE_CO2['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_E in enumerate(dfE_CO2['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_E[i:,i] = decomp_CO2_E(t[:len(t)-i],remain_part_CO2_E) print(output_decomp_CO2_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_E = np.zeros((len(t)-1,len(dfE_CO2['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_E[:,i] = np.diff(output_decomp_CO2_E[:,i]) i = i + 1 print(subs_matrix_CO2_E[:,:4]) print(len(subs_matrix_CO2_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_E = subs_matrix_CO2_E.clip(max=0) print(subs_matrix_CO2_E[:,:4]) #make the results as absolute values subs_matrix_CO2_E = abs(subs_matrix_CO2_E) print(subs_matrix_CO2_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_E = np.zeros((len(t)-200,len(dfE_CO2['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_E) subs_matrix_CO2_E = np.vstack((zero_matrix_CO2_E, subs_matrix_CO2_E)) print(subs_matrix_CO2_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_E = (tf,1) decomp_tot_CO2_E = np.zeros(matrix_tot_CO2_E) i = 0 while i < tf: decomp_tot_CO2_E[:,0] = decomp_tot_CO2_E[:,0] + subs_matrix_CO2_E[:,i] i = i + 1 print(decomp_tot_CO2_E[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CO2_S1,label='S1') #plt.plot(t,decomp_tot_CO2_S2,label='S2') plt.plot(t,decomp_tot_CO2_E,label='E') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() type(decomp_tot_CO2_S1[:,0]) #%% #Step (8): Sum the emissions and sequestration (net carbon balance), CO2 and CH4 are separated #https://stackoverflow.com/questions/52703442/python-sum-values-from-multiple-lists-more-than-two #C_loss + C_remainAGB + C_remainHWP + PH_Emissions_PO Emissions_S1 = [c_firewood_energy_S1, decomp_tot_S1[:,0], TestDSM1.o, PH_Emissions_HWP1, decomp_tot_CO2_S1[:,0]] Emissions_E = [c_firewood_energy_E, c_pellets_E, decomp_tot_E[:,0], TestDSME.o, PH_Emissions_HWPE, decomp_tot_CO2_E[:,0]] Emissions_S1_C = [c_firewood_energy_S1, decomp_tot_S1_C[:,0], TestDSM1.o, PH_Emissions_HWP1, decomp_tot_CO2_S1[:,0]] Emissions_E_C = [c_firewood_energy_E, c_pellets_E, decomp_tot_E_C[:,0], TestDSME.o, PH_Emissions_HWPE, decomp_tot_CO2_E[:,0]] Emissions_RIL_S1 = [sum(x) for x in zip(*Emissions_S1)] Emissions_RIL_E = [sum(x) for x in zip(*Emissions_E)] Emissions_RIL_S1_C = [sum(x) for x in zip(*Emissions_S1_C)] Emissions_RIL_E_C = [sum(x) for x in zip(*Emissions_E_C)] #CH4_S1 Emissions_CH4_RIL_S1 = decomp_tot_CH4_S1[:,0] #CH4_E Emissions_CH4_RIL_E = decomp_tot_CH4_E[:,0] #%% #Step (9): Generate the excel file (emissions_seq_scenarios.xlsx) from Step (8) calculation #print year column year = [] for x in range (0, tf): year.append(x) print (year) #print CH4 emission column import itertools lst = [0] Emissions_CH4 = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst)) print(Emissions_CH4) #print emission ref lst1 = [0] Emission_ref = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst1)) print(Emission_ref) #replace the first element with 1 to denote the emission reference as year 0 (for dynGWP calculation) Emission_ref[0] = 1 print(Emission_ref) Col1 = year Col2_S1 = Emissions_RIL_S1 #Col2_S2 = Emissions_RIL_S2 Col2_E = Emissions_RIL_E Col2_S1_C = Emissions_RIL_S1_C Col2_E_C = Emissions_RIL_E_C Col3_1 = Emissions_CH4_RIL_S1 #Col3_2 = Emissions_CH4_RIL_S2 Col3_E = Emissions_CH4_RIL_E Col4 = Emission_ref Col5_1 = [x + y for x, y in zip(flat_list_RIL, RIL_seq_S1)] Col5_E = [x + y for x, y in zip(flat_list_RIL, RIL_seq_E)] Col5_C_1 = [x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_S1)] Col5_C_E = [x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_E)] df1 = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S1,'kg_CH4':Col3_1,'kg_CO2_seq':Col5_1,'emission_ref':Col4}) #df2 = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S2,'kg_CH4':Col3_2,'kg_CO2_seq':Col5,'emission_ref':Col4}) dfE = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_E,'kg_CH4':Col3_E,'kg_CO2_seq':Col5_E,'emission_ref':Col4}) df1_C = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S1_C,'kg_CH4':Col3_1,'kg_CO2_seq':Col5_C_1,'emission_ref':Col4}) dfE_C = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_E_C,'kg_CH4':Col3_E,'kg_CO2_seq':Col5_C_E,'emission_ref':Col4}) writer = pd.ExcelWriter('emissions_seq_RIL_EC.xlsx', engine = 'xlsxwriter') df1.to_excel(writer, sheet_name = 'RIL_S1', header=True, index=False ) #df2.to_excel(writer, sheet_name = 'RIL_S2', header=True, index=False) dfE.to_excel(writer, sheet_name = 'RIL_E', header=True, index=False) df1_C.to_excel(writer, sheet_name = 'RIL_C_S1', header=True, index=False ) dfE_C.to_excel(writer, sheet_name = 'RIL_C_E', header=True, index=False) writer.save() writer.close() #%% ## DYNAMIC LCA (wood-based scenarios) # Step (10): Set General Parameters for Dynamic LCA calculation # General Parameters aCH4 = 0.129957e-12; # methane - instantaneous radiative forcing per unit mass [W/m2 /kgCH4] TauCH4 = 12; # methane - lifetime (years) aCO2 = 0.0018088e-12; # CO2 - instantaneous radiative forcing per unit mass [W/m2 /kgCO2] TauCO2 = [172.9, 18.51, 1.186]; # CO2 parameters according to Bern carbon cycle-climate model aBern = [0.259, 0.338, 0.186]; # CO2 parameters according to Bern carbon cycle-climate model a0Bern = 0.217; # CO2 parameters according to Bern carbon cycle-climate model tf = 202 #until 202 because we want to get the DCF(t-i) until DCF(201) to determine the impact from the emission from the year 200 (There is no DCF(0)) #%% #Step (11): Bern 2.5 CC Model, determine atmospheric load (C(t)) for GHG (CO2 and CH4) t = range(0,tf,1) ## CO2 calculation formula # time dependant atmospheric load for CO2, Bern model def C_CO2(t): return a0Bern + aBern[0]*np.exp(-t/TauCO2[0]) + aBern[1]*np.exp(-t/TauCO2[1]) + aBern[2]*np.exp(-t/TauCO2[2]) output_CO2 = np.array([C_CO2(ti) for ti in t]) print(output_CO2) ## CH4 calculation formula # time dependant atmospheric load for non-CO2 GHGs (Methane) def C_CH4(t): return np.exp(-t/TauCH4) output_CH4 = np.array([C_CH4(ti) for ti in t]) plt.xlim([0, 200]) plt.ylim([0,1.1]) plt.plot(t, output_CO2, output_CH4) plt.xlabel('Time (year)') plt.ylabel('Fraction of CO$_2$') plt.show() output_CH4.size #%% #determine the C(t) for CO2 s = [] t = np.arange(0,tf,1) for i in t: s.append(quad(C_CO2,i-1,i)) res_list_CO2 = [x[0] for x in s] len(res_list_CO2) #%% #determine the C(t) for CH4 s = [] for i in t: s.append(quad(C_CH4,i-1,i)) res_list_CH4 = [p[0] for p in s] #plot plt.xlim([0, 200]) plt.ylim([0,1.5]) plt.plot(t, res_list_CO2, res_list_CH4) plt.show() #%% #Step (12): Determine dynamic characterization factors (DCF) for CO2 and CH4 DCF_inst_CO2 = aCO2 * np.array(res_list_CO2) print(DCF_inst_CO2) DCF_inst_CH4 = aCH4 * np.array(res_list_CH4) plt.xlim([0, 200]) plt.ylim([0,4e-15]) plt.plot(t, DCF_inst_CO2, DCF_inst_CH4) plt.xlabel('Time (year)') plt.ylabel('DCF_inst (10$^{-15}$ W/m$^2$.kg CO$_2$)') plt.show() len(DCF_inst_CO2) #%% #Step (13): import emission data from emissions_seq_scenarios.xlsx (Step (9)) ##wood-based #read S1 df = pd.read_excel('emissions_seq_RIL_EC.xlsx', 'RIL_S1') # can also index sheet by name or fetch all sheets emission_CO2_S1 = df['kg_CO2'].tolist() emission_CH4_S1 = df['kg_CH4'].tolist() emission_CO2_seq_S1 = df['kg_CO2_seq'].tolist() #read S2_C df = pd.read_excel('emissions_seq_RIL_EC.xlsx', 'RIL_C_S1') # can also index sheet by name or fetch all sheets emission_CO2_S1_C = df['kg_CO2'].tolist() emission_CH4_S1_C = df['kg_CH4'].tolist() emission_CO2_seq_S1_C = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read E df = pd.read_excel('emissions_seq_RIL_EC.xlsx', 'RIL_E') # can also index sheet by name or fetch all sheets emission_CO2_E = df['kg_CO2'].tolist() emission_CH4_E = df['kg_CH4'].tolist() emission_CO2_seq_E = df['kg_CO2_seq'].tolist() #read E_EC df = pd.read_excel('emissions_seq_RIL_EC.xlsx', 'RIL_C_E') # can also index sheet by name or fetch all sheets emission_CO2_E_C = df['kg_CO2'].tolist() emission_CH4_E_C = df['kg_CH4'].tolist() emission_CO2_seq_E_C = df['kg_CO2_seq'].tolist() #%% #Step (14): import emission data from the counter-use of non-renewable materials/energy scenarios (NR) #read S1 df = pd.read_excel('RIL_EC.xlsx', 'NonRW_RIL_S1') # can also index sheet by name or fetch all sheets emission_NonRW_RIL_S1 = df['NonRW_emissions'].tolist() emission_NonRW_RIL_S1_seq = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read E df = pd.read_excel('RIL_EC.xlsx', 'NonRW_RIL_E') # can also index sheet by name or fetch all sheets emission_NonRW_RIL_E = df['NonRW_emissions'].tolist() emission_NonRW_RIL_E_seq = df['kg_CO2_seq'].tolist() #%% #Step (15): Determine the time elapsed dynamic characterization factors, DCF(t-ti), for CO2 and CH4 #DCF(t-i) CO2 matrix = (tf-1,tf-1) DCF_CO2_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CO2_ti[i+1,t] = DCF_inst_CO2[t-i] i = i + 1 print(DCF_CO2_ti) #sns.heatmap(DCF_CO2_ti) DCF_CO2_ti.shape #DCF(t-i) CH4 matrix = (tf-1,tf-1) DCF_CH4_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CH4_ti[i+1,t] = DCF_inst_CH4[t-i] i = i + 1 print(DCF_CH4_ti) #sns.heatmap(DCF_CH4_ti) DCF_CH4_ti.shape #%% # Step (16): Calculate instantaneous global warming impact (GWI) #Wood-based #S1 t = np.arange(0,tf-1,1) matrix_GWI_S1 = (tf-1,3) GWI_inst_S1 = np.zeros(matrix_GWI_S1) for t in range(0,tf-1): GWI_inst_S1[t,0] = np.sum(np.multiply(emission_CO2_S1,DCF_CO2_ti[:,t])) GWI_inst_S1[t,1] = np.sum(np.multiply(emission_CH4_S1,DCF_CH4_ti[:,t])) GWI_inst_S1[t,2] = np.sum(np.multiply(emission_CO2_seq_S1,DCF_CO2_ti[:,t])) matrix_GWI_tot_S1 = (tf-1,1) GWI_inst_tot_S1 = np.zeros(matrix_GWI_tot_S1) GWI_inst_tot_S1[:,0] = np.array(GWI_inst_S1[:,0] + GWI_inst_S1[:,1] + GWI_inst_S1[:,2]) print(GWI_inst_tot_S1[:,0]) t = np.arange(0,tf-1,1) #S1_C t = np.arange(0,tf-1,1) matrix_GWI_S1_C = (tf-1,3) GWI_inst_S1_C = np.zeros(matrix_GWI_S1_C) for t in range(0,tf-1): GWI_inst_S1_C[t,0] = np.sum(np.multiply(emission_CO2_S1_C,DCF_CO2_ti[:,t])) GWI_inst_S1_C[t,1] = np.sum(np.multiply(emission_CH4_S1_C,DCF_CH4_ti[:,t])) GWI_inst_S1_C[t,2] = np.sum(np.multiply(emission_CO2_seq_S1_C,DCF_CO2_ti[:,t])) matrix_GWI_tot_S1_C = (tf-1,1) GWI_inst_tot_S1_C = np.zeros(matrix_GWI_tot_S1_C) GWI_inst_tot_S1_C[:,0] = np.array(GWI_inst_S1_C[:,0] + GWI_inst_S1_C[:,1] + GWI_inst_S1_C[:,2]) print(GWI_inst_tot_S1_C[:,0]) t = np.arange(0,tf-1,1) #E t = np.arange(0,tf-1,1) matrix_GWI_E = (tf-1,3) GWI_inst_E = np.zeros(matrix_GWI_E) for t in range(0,tf-1): GWI_inst_E[t,0] = np.sum(np.multiply(emission_CO2_E,DCF_CO2_ti[:,t])) GWI_inst_E[t,1] = np.sum(np.multiply(emission_CH4_E,DCF_CH4_ti[:,t])) GWI_inst_E[t,2] = np.sum(np.multiply(emission_CO2_seq_E,DCF_CO2_ti[:,t])) matrix_GWI_tot_E = (tf-1,1) GWI_inst_tot_E = np.zeros(matrix_GWI_tot_E) GWI_inst_tot_E[:,0] = np.array(GWI_inst_E[:,0] + GWI_inst_E[:,1] + GWI_inst_E[:,2]) print(GWI_inst_tot_E[:,0]) #E_C t = np.arange(0,tf-1,1) matrix_GWI_E_C = (tf-1,3) GWI_inst_E_C = np.zeros(matrix_GWI_E_C) for t in range(0,tf-1): GWI_inst_E_C[t,0] = np.sum(np.multiply(emission_CO2_E_C,DCF_CO2_ti[:,t])) GWI_inst_E_C[t,1] = np.sum(np.multiply(emission_CH4_E_C,DCF_CH4_ti[:,t])) GWI_inst_E_C[t,2] = np.sum(np.multiply(emission_CO2_seq_E_C,DCF_CO2_ti[:,t])) matrix_GWI_tot_E_C = (tf-1,1) GWI_inst_tot_E_C = np.zeros(matrix_GWI_tot_E_C) GWI_inst_tot_E_C[:,0] = np.array(GWI_inst_E_C[:,0] + GWI_inst_E_C[:,1] + GWI_inst_E_C[:,2]) print(GWI_inst_tot_E_C[:,0]) #GWI_inst for all gases ##NonRW #S1 t = np.arange(0,tf-1,1) matrix_GWI_NonRW_RIL_S1 = (tf-1,2) GWI_inst_NonRW_RIL_S1 = np.zeros(matrix_GWI_NonRW_RIL_S1) for t in range(0,tf-1): GWI_inst_NonRW_RIL_S1[t,0] = np.sum(np.multiply(emission_NonRW_RIL_S1,DCF_CO2_ti[:,t])) GWI_inst_NonRW_RIL_S1[t,1] = np.sum(np.multiply(emission_NonRW_RIL_S1_seq,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_RIL_S1 = (tf-1,1) GWI_inst_tot_NonRW_RIL_S1 = np.zeros(matrix_GWI_tot_NonRW_RIL_S1) GWI_inst_tot_NonRW_RIL_S1[:,0] = np.array(GWI_inst_NonRW_RIL_S1[:,0] + GWI_inst_NonRW_RIL_S1[:,1]) print(GWI_inst_tot_NonRW_RIL_S1[:,0]) t = np.arange(0,tf-1,1) #E t = np.arange(0,tf-1,1) matrix_GWI_NonRW_RIL_E = (tf-1,2) GWI_inst_NonRW_RIL_E = np.zeros(matrix_GWI_NonRW_RIL_E) for t in range(0,tf-1): GWI_inst_NonRW_RIL_E[t,0] = np.sum(np.multiply(emission_NonRW_RIL_E,DCF_CO2_ti[:,t])) GWI_inst_NonRW_RIL_E[t,1] = np.sum(np.multiply(emission_NonRW_RIL_E_seq,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_RIL_E = (tf-1,1) GWI_inst_tot_NonRW_RIL_E = np.zeros(matrix_GWI_tot_NonRW_RIL_E) GWI_inst_tot_NonRW_RIL_E[:,0] = np.array(GWI_inst_NonRW_RIL_E[:,0] + GWI_inst_NonRW_RIL_E[:,1]) print(GWI_inst_tot_NonRW_RIL_E[:,0]) #plotting t = np.arange(0,tf-1,1) #create zero list to highlight the horizontal line for 0 def zerolistmaker(n): listofzeros = [0] * (n) return listofzeros #convert to flat list GWI_inst_tot_NonRW_RIL_S1 = np.array([item for sublist in GWI_inst_tot_NonRW_RIL_S1 for item in sublist]) GWI_inst_tot_NonRW_RIL_E = np.array([item for sublist in GWI_inst_tot_NonRW_RIL_E for item in sublist]) GWI_inst_tot_S1 = np.array([item for sublist in GWI_inst_tot_S1 for item in sublist]) GWI_inst_tot_E = np.array([item for sublist in GWI_inst_tot_E for item in sublist]) GWI_inst_tot_S1_C = np.array([item for sublist in GWI_inst_tot_S1_C for item in sublist]) GWI_inst_tot_E_C = np.array([item for sublist in GWI_inst_tot_E_C for item in sublist]) plt.plot(t, GWI_inst_tot_NonRW_RIL_S1, color='forestgreen', label='NR_RIL_M_EC', ls='--', alpha=0.55) plt.plot(t, GWI_inst_tot_NonRW_RIL_E, color='lightcoral', label='NR_RIL_E', ls='--', alpha=0.55) plt.plot(t, GWI_inst_tot_S1, color='forestgreen', label='RIL_M_EC') plt.plot(t, GWI_inst_tot_E, color='lightcoral', label='RIL_E_EC') plt.plot(t, GWI_inst_tot_S1_C, color='turquoise', label='RIL_C_M_EC') plt.plot(t, GWI_inst_tot_E_C, color='cornflowerblue', label='RIL_C_E_EC') plt.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWI_inst_tot_NonRW_RIL_E, GWI_inst_tot_NonRW_RIL_S1, color='lightcoral', alpha=0.3) #plt.fill_between(t, GWI_inst_tot_NonRW_RIL_S2, GWI_inst_tot_NonRW_RIL_E, color='lightcoral', alpha=0.3) plt.grid(True) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.xlim(0,200) #plt.ylim(-5e-10,1e-10) plt.title('Instantaneous GWI, RIL_EC') plt.xlabel('Time (year)') #plt.ylabel('GWI_inst (10$^{-13}$ W/m$^2$)') plt.ylabel('GWI_inst (W/m$^2$)') plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWI_inst_NonRW_RIL_EC', dpi=300) plt.show() len(GWI_inst_tot_S1) #%% #Step (17): Calculate cumulative global warming impact (GWI) #wood-based GWI_cum_S1 = np.cumsum(GWI_inst_tot_S1) GWI_cum_E = np.cumsum(GWI_inst_tot_E) GWI_cum_S1_C = np.cumsum(GWI_inst_tot_S1_C) GWI_cum_E_C = np.cumsum(GWI_inst_tot_E_C) #NonRW GWI_cum_NonRW_RIL_S1 = np.cumsum(GWI_inst_tot_NonRW_RIL_S1) GWI_cum_NonRW_RIL_E = np.cumsum(GWI_inst_tot_NonRW_RIL_E) #print(GWI_cum_S1) t = np.arange(0,tf-1,1) plt.xlabel('Time (year)') #plt.ylabel('GWI_cum (10$^{-11}$ W/m$^2$)') plt.ylabel('GWI_cum (W/m$^2$)') plt.xlim(0,200) #plt.ylim(-6e-8,0.5e-8) plt.title('Cumulative GWI, RIL_EC') plt.plot(t, GWI_cum_NonRW_RIL_S1, color='forestgreen', label='NR_RIL_M_EC', ls='--', alpha=0.55) plt.plot(t, GWI_cum_NonRW_RIL_E, color='lightcoral', label='NR_RIL_E_EC', ls='--', alpha=0.55) plt.plot(t, GWI_cum_S1, color='forestgreen', label='RIL_M_EC') plt.plot(t, GWI_cum_E, color='lightcoral', label='RIL_E_EC') plt.plot(t, GWI_cum_S1_C, color='turquoise', label='RIL_C_M_EC') plt.plot(t, GWI_cum_E_C, color='cornflowerblue', label='RIL_C_E_EC') plt.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) plt.grid(True) #plt.fill_between(t, GWI_cum_NonRW_RIL_E, GWI_cum_NonRW_RIL_S1, color='lightcoral', alpha=0.3) #plt.fill_between(t, GWI_cum_NonRW_RIL_S2, GWI_cum_NonRW_RIL_E, color='lightcoral', alpha=0.3) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWI_cum_Non_RW_RIL_EC', dpi=300) plt.show() len(GWI_cum_S1) #%% #Step (18): Determine the Instantenous and Cumulative GWI for the emission reference (1 kg CO2 emission at time zero) before performing dynamic GWP calculation t = np.arange(0,tf-1,1) matrix_GWI_ref = (tf-1,1) GWI_inst_ref = np.zeros(matrix_GWI_S1) for t in range(0,tf-1): GWI_inst_ref[t,0] = np.sum(np.multiply(emission_CO2_ref,DCF_CO2_ti[:,t])) #print(GWI_inst_ref[:,0]) len(GWI_inst_ref) #determine the GWI cumulative for the emission reference t = np.arange(0,tf-1,1) GWI_cum_ref = np.cumsum(GWI_inst_ref[:,0]) #print(GWI_cum_ref) plt.xlabel('Time (year)') plt.ylabel('GWI_cum_ref (10$^{-13}$ W/m$^2$.kgCO$_2$)') plt.plot(t, GWI_cum_ref) len(GWI_cum_ref) #%% #Step (19): Calculate dynamic global warming potential (GWPdyn) #Wood-based GWP_dyn_cum_S1 = [x/(y*1000) for x,y in zip(GWI_cum_S1, GWI_cum_ref)] GWP_dyn_cum_E = [x/(y*1000) for x,y in zip(GWI_cum_E, GWI_cum_ref)] GWP_dyn_cum_S1_C = [x/(y*1000) for x,y in zip(GWI_cum_S1_C, GWI_cum_ref)] GWP_dyn_cum_E_C = [x/(y*1000) for x,y in zip(GWI_cum_E_C, GWI_cum_ref)] #NonRW GWP_dyn_cum_NonRW_RIL_S1 = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_RIL_S1, GWI_cum_ref)] GWP_dyn_cum_NonRW_RIL_E = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_RIL_E, GWI_cum_ref)] t = np.arange(0,tf-1,1) fig=plt.figure() fig.show() ax=fig.add_subplot(111) ax.plot(t, GWP_dyn_cum_NonRW_RIL_S1, color='forestgreen',label='NR_RIL_M_EC', ls='--', alpha=0.55) ax.plot(t, GWP_dyn_cum_NonRW_RIL_E, color='lightcoral', label='NR_RIL_E', ls='--', alpha=0.55) ax.plot(t, GWP_dyn_cum_S1, color='forestgreen',label='RIL_M_EC') ax.plot(t, GWP_dyn_cum_E, color='lightcoral', label='RIL_E') ax.plot(t, GWP_dyn_cum_S1_C, color='turquoise',label='RIL_C_M_EC') ax.plot(t, GWP_dyn_cum_E_C, color='cornflowerblue', label='RIL_C_E') ax.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWP_dyn_cum_NonRW_RIL_E, GWP_dyn_cum_NonRW_RIL_S1, color='lightcoral', alpha=0.3) #plt.fill_between(t, GWP_dyn_cum_NonRW_RIL_S2, GWP_dyn_cum_NonRW_RIL_E, color='lightcoral', alpha=0.3) plt.grid(True) ax.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax.set_xlim(0,200) #ax.set_ylim(-400,50) ax.set_xlabel('Time (year)') ax.set_ylabel('GWP$_{dyn}$ (t-CO$_2$-eq)') ax.set_title('Dynamic GWP, RIL_EC') plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_cum_NonRW_RIL_EC', dpi=300) plt.draw() len(GWP_dyn_cum_S1) #%% #Step (20): Exporting the data behind result graphs to Excel year = [] for x in range (0, 201): year.append(x) ### Create Column Col1 = year ##GWI_Inst #GWI_inst from wood-based scenarios Col_GI_1 = GWI_inst_tot_S1 Col_GI_3 = GWI_inst_tot_E Col_GI_1_C = GWI_inst_tot_S1_C Col_GI_3_C = GWI_inst_tot_E_C #print(Col_GI_1) #print(np.shape(Col_GI_1)) #GWI_inst from counter use scenarios Col_GI_4 = GWI_inst_tot_NonRW_RIL_S1 Col_GI_6 = GWI_inst_tot_NonRW_RIL_E #print(Col_GI_7) #print(np.shape(Col_GI_7)) #create column results ##GWI_cumulative #GWI_cumulative from wood-based scenarios Col_GC_1 = GWI_cum_S1 Col_GC_3 = GWI_cum_E Col_GC_1_C = GWI_cum_S1_C Col_GC_3_C = GWI_cum_E_C #GWI_cumulative from counter use scenarios Col_GC_4 = GWI_cum_NonRW_RIL_S1 Col_GC_6 = GWI_cum_NonRW_RIL_E #create column results ##GWPdyn #GWPdyn from wood-based scenarios Col_GWP_1 = GWP_dyn_cum_S1 Col_GWP_3 = GWP_dyn_cum_E Col_GWP_1_C = GWP_dyn_cum_S1_C Col_GWP_3_C = GWP_dyn_cum_E_C #GWPdyn from counter use scenarios Col_GWP_4 = GWP_dyn_cum_NonRW_RIL_S1 Col_GWP_6 = GWP_dyn_cum_NonRW_RIL_E #Create colum results dfM_EC_GI = pd.DataFrame.from_dict({'Year':Col1,'RIL_M_EC (W/m2)':Col_GI_1, 'RIL_C_M_EC (W/m2)':Col_GI_1_C, 'RIL_E_EC (W/m2)':Col_GI_3, 'RIL_C_E_EC (W/m2)':Col_GI_3_C, 'NR_RIL_M_EC (W/m2)':Col_GI_4, 'NR_RIL_E_EC (W/m2)':Col_GI_6}) dfM_EC_GC = pd.DataFrame.from_dict({'Year':Col1,'RIL_M_EC (W/m2)':Col_GC_1, 'RIL_C_M_EC (W/m2)':Col_GC_1_C, 'RIL_E_EC (W/m2)':Col_GC_3, 'RIL_C_E_EC (W/m2)':Col_GC_3_C, 'NR_RIL_M_EC (W/m2)':Col_GC_4, 'NR_RIL_E_EC (W/m2)':Col_GC_6}) dfM_EC_GWPdyn = pd.DataFrame.from_dict({'Year':Col1,'RIL_M_EC (t-CO2-eq)':Col_GWP_1, 'RIL_C_M_EC (t-CO2-eq)':Col_GWP_1_C, 'RIL_E_EC (t-CO2-eq)':Col_GWP_3, 'RIL_C_E_EC (t-CO2-eq)':Col_GWP_3_C, 'NR_RIL_M_EC (t-CO2-eq)':Col_GWP_4, 'NR_RIL_E_EC (t-CO2-eq)':Col_GWP_6}) #Export to excel writer = pd.ExcelWriter('GraphResults_RIL_EC.xlsx', engine = 'xlsxwriter') dfM_EC_GI.to_excel(writer, sheet_name = 'GWI_Inst_RIL_EC', header=True, index=False) dfM_EC_GC.to_excel(writer, sheet_name = 'Cumulative GWI_RIL_EC', header=True, index=False) dfM_EC_GWPdyn.to_excel(writer, sheet_name = 'GWPdyn_RIL_EC', header=True, index=False) writer.save() writer.close() #%% #Step (21): Generate the excel file for the individual carbon emission and sequestration flows #print year column year = [] for x in range (0, 201): year.append(x) print (year) division = 1000*44/12 division_CH4 = 1000*16/12 flat_list_RIL = [x/division for x in flat_list_RIL] flat_list_RIL_C = [x/division for x in flat_list_RIL_C] #RIL_M_existing c_firewood_energy_S1 = [x/division for x in c_firewood_energy_S1] decomp_tot_S1[:,0] = [x/division for x in decomp_tot_S1[:,0]] RIL_seq_S1 = [x/division for x in RIL_seq_S1] TestDSM1.o = [x/division for x in TestDSM1.o] PH_Emissions_HWP1 = [x/division for x in PH_Emissions_HWP1] #OC_storage_RIL_S1 = [x/division for x in OC_storage_RIL_S1] decomp_tot_CO2_S1[:,0] = [x/division for x in decomp_tot_CO2_S1[:,0]] decomp_tot_CH4_S1[:,0] = [x/division_CH4 for x in decomp_tot_CH4_S1[:,0]] #RIL_C_M_existing decomp_tot_S1_C[:,0] = [x/division for x in decomp_tot_S1_C[:,0]] RIL_seq_C_S1 = [x/division for x in RIL_seq_C_S1] #RIL_E c_firewood_energy_E = [x/division for x in c_firewood_energy_E] RIL_seq_E = [x/division for x in RIL_seq_E] c_pellets_E = [x/division for x in c_pellets_E] decomp_tot_E[:,0] = [x/division for x in decomp_tot_E[:,0]] TestDSME.o = [x/division for x in TestDSME.o] PH_Emissions_HWPE = [x/division for x in PH_Emissions_HWPE] #OC_storage_RIL_E = [x/division for x in OC_storage_RIL_E] decomp_tot_CO2_E[:,0] = [x/division for x in decomp_tot_CO2_E] decomp_tot_CH4_E[:,0] = [x/division_CH4 for x in decomp_tot_CH4_E] #RIL_C_E decomp_tot_E_C[:,0] = [x/division for x in decomp_tot_E_C[:,0]] RIL_seq_C_E = [x/division for x in RIL_seq_C_E] #landfill aggregate flows Landfill_decomp_S1 = decomp_tot_CH4_S1, decomp_tot_CO2_S1 Landfill_decomp_E = decomp_tot_CH4_E, decomp_tot_CO2_E Landfill_decomp_S1 = [sum(x) for x in zip(*Landfill_decomp_S1)] Landfill_decomp_E = [sum(x) for x in zip(*Landfill_decomp_E)] Landfill_decomp_S1 = [item for sublist in Landfill_decomp_S1 for item in sublist] Landfill_decomp_E = [item for sublist in Landfill_decomp_E for item in sublist] Column1 = year Column7 = flat_list_RIL #RIL_E_EC Column8 = c_firewood_energy_E Column8_1 = c_pellets_E Column9 = decomp_tot_E[:,0] Column9_C = decomp_tot_E_C[:,0] Column10 = TestDSME.o Column11 = PH_Emissions_HWPE #Column12_1 = OC_storage_RIL_E Column12 = Landfill_decomp_E #RIL_C_M_EC Column13 = c_firewood_energy_S1 Column14 = decomp_tot_S1[:,0] Column14_C = decomp_tot_S1_C[:,0] Column15 = TestDSM1.o Column16 = PH_Emissions_HWP1 #Column17_1 = OC_storage_RIL_S1 Column17 = Landfill_decomp_S1 dfM_exst = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':[x + y for x, y in zip(flat_list_RIL, RIL_seq_S1)], # '9: Landfill storage (t-C)': Column17_1, 'F1-0: Residue decomposition (t-C)':Column14, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column13, 'F8-0: Operational stage/processing emissions (t-C)':Column16, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column15, 'F7-0: Landfill gas decomposition (t-C)':Column17}) dfM_exst_C = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':[x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_S1)], # '9: Landfill storage (t-C)': Column17_1, 'F1-0: Residue decomposition (t-C)':Column14_C, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column13, 'F8-0: Operational stage/processing emissions (t-C)':Column16, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column15, 'F7-0: Landfill gas decomposition (t-C)':Column17}) dfE = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':[x + y for x, y in zip(flat_list_RIL, RIL_seq_E)], #'9: Landfill storage (t-C)': Column12_1, 'F1-0: Residue decomposition (t-C)':Column9, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column8, 'F8-0: Operational stage/processing emissions (t-C)':Column11, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column10, 'F7-0: Landfill gas decomposition (t-C)':Column12, 'F4-0: Emissions from wood pellets use (t-C)': Column8_1}) dfE_C = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':[x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_E)], #'9: Landfill storage (t-C)': Column12_1, 'F1-0: Residue decomposition (t-C)':Column9_C, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column8, 'F8-0: Operational stage/processing emissions (t-C)':Column11, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column10, 'F7-0: Landfill gas decomposition (t-C)':Column12, 'F4-0: Emissions from wood pellets use (t-C)': Column8_1}) writer = pd.ExcelWriter('C_flows_RIL_EC.xlsx', engine = 'xlsxwriter') dfM_exst.to_excel(writer, sheet_name = 'RIL_M_EC', header=True, index=False) dfE.to_excel(writer, sheet_name = 'RIL_E_EC', header=True, index=False) dfM_exst_C.to_excel(writer, sheet_name = 'RIL_C_M_EC', header=True, index=False) dfE_C.to_excel(writer, sheet_name = 'RIL_C_E_EC', header=True, index=False) writer.save() writer.close() #%% #Step (22): Plot of the individual carbon emission and sequestration flows for normal and symlog-scale graphs #RIL_M_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax1_s=fig.add_subplot(111) ax1_s.plot(t, [x + y for x, y in zip(flat_list_RIL, RIL_seq_S1)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax1_s.plot(t, OC_storage_RIL_S1, color='darkturquoise', label='9: Landfill storage') ax1_s.plot(t, decomp_tot_S1[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax1_s.plot(t, c_firewood_energy_S1, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax1_s.plot(t, PH_Emissions_HWP1, color = 'orange', label='F8-0: Operational stage/processing emissions') ax1_s.plot(t, TestDSM1.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax1_s.plot(t, Landfill_decomp_S1, color='yellow', label= 'F7-0: Landfill gas decomposition') ax1_s.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax1_s.set_xlim(-1,200) ax1_s.set_yscale('symlog') ax1_s.set_xlabel('Time (year)') ax1_s.set_ylabel('C flows(t-C) (symlog)') ax1_s.set_title('Carbon flow, RIL_M_EC (symlog-scale)') plt.draw() #%% #RIL_M_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax1=fig.add_subplot(111) ax1.plot(t, [x + y for x, y in zip(flat_list_RIL, RIL_seq_S1)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax1.plot(t, OC_storage_RIL_S1, color='darkturquoise', label='9: Landfill storage') ax1.plot(t, decomp_tot_S1[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax1.plot(t, c_firewood_energy_S1, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax1.plot(t, PH_Emissions_HWP1, color = 'orange', label='F8-0: Operational stage/processing emissions') ax1.plot(t, TestDSM1.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax1.plot(t, Landfill_decomp_S1, color='yellow', label= 'F7-0: Landfill gas decomposition') ax1.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax1.set_xlim(-1,200) ax1.set_ylim(-3,10) ax1.set_xlabel('Time (year)') ax1.set_ylabel('C flows(t-C)') ax1.set_title('Carbon flow, RIL_M_EC') #plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_1_RIL_M') plt.draw() #%% #RIL_C_M_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax1_C_s=fig.add_subplot(111) ax1_C_s.plot(t, [x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_S1)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax1_s.plot(t, OC_storage_RIL_S1, color='darkturquoise', label='9: Landfill storage') ax1_C_s.plot(t, decomp_tot_S1_C[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax1_C_s.plot(t, c_firewood_energy_S1, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax1_C_s.plot(t, PH_Emissions_HWP1, color = 'orange', label='F8-0: Operational stage/processing emissions') ax1_C_s.plot(t, TestDSM1.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax1_C_s.plot(t, Landfill_decomp_S1, color='yellow', label= 'F7-0: Landfill gas decomposition') ax1_C_s.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax1_C_s.set_xlim(-1,200) ax1_C_s.set_yscale('symlog') ax1_C_s.set_xlabel('Time (year)') ax1_C_s.set_ylabel('C flows(t-C) (symlog)') ax1_C_s.set_title('Carbon flow, RIL_M_EC (symlog-scale)') plt.draw() #%% #RIL_M_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax1_C=fig.add_subplot(111) ax1_C.plot(t, [x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_S1)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax1.plot(t, OC_storage_RIL_S1, color='darkturquoise', label='9: Landfill storage') ax1_C.plot(t, decomp_tot_S1_C[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax1_C.plot(t, c_firewood_energy_S1, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax1_C.plot(t, PH_Emissions_HWP1, color = 'orange', label='F8-0: Operational stage/processing emissions') ax1_C.plot(t, TestDSM1.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax1_C.plot(t, Landfill_decomp_S1, color='yellow', label= 'F7-0: Landfill gas decomposition') ax1_C.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax1_C.set_xlim(-1,200) ax1_C.set_ylim(-3,10) ax1_C.set_xlabel('Time (year)') ax1_C.set_ylabel('C flows(t-C)') ax1_C.set_title('Carbon flow, RIL_M_EC') #plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_1_RIL_M') plt.draw() #%% #plot for the individual carbon flows - test for symlog-scale graphs #RIL_E_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax2_s=fig.add_subplot(111) ax2_s.plot(t, [x + y for x, y in zip(flat_list_RIL, RIL_seq_E)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax2_s.plot(t, OC_storage_RIL_E, color='darkturquoise', label='9: Landfill storage') ax2_s.plot(t, decomp_tot_E[:,0], color='lightcoral', label='1F1-0: Residue decomposition') ax2_s.plot(t, c_firewood_energy_E, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax2_s.plot(t, PH_Emissions_HWPE, color = 'orange', label='F8-0: Operational stage/processing emissions') ax2_s.plot(t, Landfill_decomp_E, color='yellow', label= 'F7-0: Landfill gas decomposition') ax2_s.plot(t, c_pellets_E, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax2_s.plot(t, TestDSME.o, label='in-use stock output') ax2_s.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax2_s.set_xlim(-1,200) ax2_s.set_yscale('symlog') ax2_s.set_xlabel('Time (year)') ax2_s.set_ylabel('C flows(t-C) (symlog)') ax2_s.set_title('Carbon flow, RIL_E_EC (symlog-scale)') plt.draw() #%% #plot for the individual carbon flows #RIL_E_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax2=fig.add_subplot(111) ax2.plot(t, [x + y for x, y in zip(flat_list_RIL, RIL_seq_E)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax2.plot(t, OC_storage_RIL_E, color='darkturquoise', label='9: Landfill storage') ax2.plot(t, decomp_tot_E[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax2.plot(t, c_firewood_energy_E, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy usey') ax2.plot(t, PH_Emissions_HWPE, color = 'orange', label='F8-0: Operational stage/processing emissions') ax2.plot(t, Landfill_decomp_E, color='yellow', label= 'F7-0: Landfill gas decomposition') ax2.plot(t, c_pellets_E, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax2.plot(t, TestDSME.o, label='in-use stock output') ax2.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax2.set_xlim(-1,200) ax2.set_ylim(-3,10) ax2.set_xlabel('Time (year)') ax2.set_ylabel('C flows(t-C)') ax2.set_title('Carbon flow, RIL_E_EC') #plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_1_RIL_E') plt.draw() #%% #plot for the individual carbon flows - test for symlog-scale graphs #RIL_E_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax2_C_s=fig.add_subplot(111) ax2_C_s.plot(t, [x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_E)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax2_s.plot(t, OC_storage_RIL_E, color='darkturquoise', label='9: Landfill storage') ax2_C_s.plot(t, decomp_tot_E_C[:,0], color='lightcoral', label='1F1-0: Residue decomposition') ax2_C_s.plot(t, c_firewood_energy_E, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax2_C_s.plot(t, PH_Emissions_HWPE, color = 'orange', label='F8-0: Operational stage/processing emissions') ax2_C_s.plot(t, Landfill_decomp_E, color='yellow', label= 'F7-0: Landfill gas decomposition') ax2_C_s.plot(t, c_pellets_E, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax2_s.plot(t, TestDSME.o, label='in-use stock output') ax2_C_s.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax2_C_s.set_xlim(-1,200) ax2_C_s.set_yscale('symlog') ax2_C_s.set_xlabel('Time (year)') ax2_C_s.set_ylabel('C flows(t-C) (symlog)') ax2_C_s.set_title('Carbon flow, RIL_E_EC (symlog-scale)') plt.draw() #%% #plot for the individual carbon flows #RIL_E_EC (Existing conversion efficiency) fig=plt.figure() fig.show() ax2_C=fig.add_subplot(111) ax2_C.plot(t, [x + y for x, y in zip(flat_list_RIL_C, RIL_seq_C_E)], color='darkkhaki', label='F0-1: Biomass C sequestration') #ax2.plot(t, OC_storage_RIL_E, color='darkturquoise', label='9: Landfill storage') ax2_C.plot(t, decomp_tot_E_C[:,0], color='lightcoral', label='F1-0: Residue decomposition') ax2_C.plot(t, c_firewood_energy_E, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy usey') ax2_C.plot(t, PH_Emissions_HWPE, color = 'orange', label='F8-0: Operational stage/processing emissions') ax2_C.plot(t, Landfill_decomp_E, color='yellow', label= 'F7-0: Landfill gas decomposition') ax2_C.plot(t, c_pellets_E, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax2.plot(t, TestDSME.o, label='in-use stock output') ax2_C.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax2_C.set_xlim(-1,200) ax2_C.set_ylim(-3,10) ax2_C.set_xlabel('Time (year)') ax2_C.set_ylabel('C flows(t-C)') ax2_C.set_title('Carbon flow, RIL_E_EC') #plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_1_RIL_E') plt.draw() #%% #Step (23): Generate the excel file for the net carbon balance Agg_Cflow_S1 = [c_firewood_energy_S1, RIL_seq_S1, decomp_tot_S1[:,0], TestDSM1.o, PH_Emissions_HWP1, Landfill_decomp_S1, flat_list_RIL] Agg_Cflow_E = [c_firewood_energy_E, RIL_seq_E, c_pellets_E, decomp_tot_E[:,0], TestDSME.o, PH_Emissions_HWPE, Landfill_decomp_E, flat_list_RIL] Agg_Cflow_S1_C = [c_firewood_energy_S1, RIL_seq_C_S1, decomp_tot_S1_C[:,0], TestDSM1.o, PH_Emissions_HWP1, Landfill_decomp_S1, flat_list_RIL_C] Agg_Cflow_E_C = [c_firewood_energy_E, RIL_seq_C_E, c_pellets_E, decomp_tot_E_C[:,0], TestDSME.o, PH_Emissions_HWPE, Landfill_decomp_E, flat_list_RIL_C] Agg_Cflow_RIL_S1 = [sum(x) for x in zip(*Agg_Cflow_S1)] Agg_Cflow_RIL_E = [sum(x) for x in zip(*Agg_Cflow_E)] Agg_Cflow_RIL_S1_C = [sum(x) for x in zip(*Agg_Cflow_S1_C)] Agg_Cflow_RIL_E_C = [sum(x) for x in zip(*Agg_Cflow_E_C)] #create column year year = [] for x in range (0, 201): year.append(x) print (year) #Create colum results dfM_RIL_EC = pd.DataFrame.from_dict({'Year':year,'RIL_M_EC (t-C)':Agg_Cflow_RIL_S1, 'RIL_C_M_EC (t-C)':Agg_Cflow_RIL_S1_C, 'RIL_E_EC (t-C)':Agg_Cflow_RIL_E, 'RIL_C_E_EC (t-C)':Agg_Cflow_RIL_E_C}) #Export to excel writer = pd.ExcelWriter('AggCFlow_RIL_EC.xlsx', engine = 'xlsxwriter') dfM_RIL_EC.to_excel(writer, sheet_name = 'RIL_EC', header=True, index=False) writer.save() writer.close() #%% #Step (24): Plot the net carbon balance fig=plt.figure() fig.show() ax3=fig.add_subplot(111) # plot ax3.plot(t, Agg_Cflow_RIL_S1, color='forestgreen', label='RIL_M_EC') ax3.plot(t, Agg_Cflow_RIL_E, color='lightcoral', label='RIL_E_EC') ax3.plot(t, Agg_Cflow_RIL_S1_C, color='turquoise', label='RIL_M_EC') ax3.plot(t, Agg_Cflow_RIL_E_C, color='cornflowerblue', label='RIL_E_EC') ax3.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) ax3.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax3.set_xlim(-1,200) #ax3.set_yscale('symlog') ax3.set_xlabel('Time (year)') ax3.set_ylabel('C flows (t-C)') ax3.set_title('Net carbon balance, RIL_EC') plt.draw() #%% #Step (25): Generate the excel file for documentation of individual carbon flows in the system definition (Fig. 1) #print year column year = [] for x in range (0, 201): year.append(x) print (year) df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') Column1 = year division = 1000*44/12 division_CH4 = 1000*16/12 ##RIL_S1 ## define the input flow for the landfill (F5-7) OC_storage_S1 = df1['Other_C_storage'].values OC_storage_S1 = [x/division for x in OC_storage_S1] OC_storage_S1 = [abs(number) for number in OC_storage_S1] C_LF_S1 = [x*1/0.82 for x in OC_storage_S1] ## define the input flow from the logging/harvesting to wood materials/pellets processing (F2-3) HWP_S1 = [x/division for x in df1['Input_PF'].values] HWP_S1_energy = [x*1/3 for x in c_firewood_energy_S1] HWP_S1_landfill = [x*1/0.82 for x in OC_storage_S1] HWP_S1_sum = [HWP_S1, HWP_S1_energy, HWP_S1_landfill] HWP_S1_sum = [sum(x) for x in zip(*HWP_S1_sum )] #in-use stocks (S-4) TestDSM1.s = [x/division for x in TestDSM1.s] #TestDSM1.i = [x/division for x in TestDSM1.i] # calculate C stocks in landfill (S-7) tf = 201 zero_matrix_stocks_S1 = (tf,1) stocks_S1 = np.zeros(zero_matrix_stocks_S1) i = 0 stocks_S1[0] = C_LF_S1[0] - Landfill_decomp_S1[0] while i < tf-1: stocks_S1[i+1] = np.array(C_LF_S1[i+1] - Landfill_decomp_S1[i+1] + stocks_S1[i]) i = i + 1 ## calculate aggregate flow of logged wood (F1-2) HWP_logged_S1 = [x1+x2 for (x1,x2) in zip(HWP_S1_sum, [x*2/3 for x in c_firewood_energy_S1])] ##RIL_M_EC: calculate the stocks in the forest (AGB + undecomposed residue) (S-1a+S-1c) tf = 201 zero_matrix_ForCstocks_S1 = (tf,1) ForCstocks_S1 = np.zeros(zero_matrix_ForCstocks_S1) i = 0 ForCstocks_S1[0] = initAGB - flat_list_RIL[0] - decomp_tot_S1[0] - HWP_logged_S1[0] while i < tf-1: ForCstocks_S1[i+1] = np.array(ForCstocks_S1[i] - flat_list_RIL[i+1] - decomp_tot_S1[i+1] - HWP_logged_S1[i+1]) i = i + 1 ##RIL_C_M_EC: calculate the stocks in the forest (AGB + undecomposed residue) (S-1a+S-1c) tf = 201 zero_matrix_ForCstocks_S1_C = (tf,1) ForCstocks_S1_C = np.zeros(zero_matrix_ForCstocks_S1_C) i = 0 ForCstocks_S1_C[0] = initAGB - flat_list_RIL[0] - decomp_tot_S1_C[0] - HWP_logged_S1[0] while i < tf-1: ForCstocks_S1_C[i+1] = np.array(ForCstocks_S1_C[i] - flat_list_RIL[i+1] - decomp_tot_S1_C[i+1] - HWP_logged_S1[i+1]) i = i + 1 ##NonRW materials/energy amount (F9-0-1) df1_amount =
pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'NonRW_RIL_S1')
pandas.read_excel
import pandas as pd data =
pd.read_csv("data/2016.csv")
pandas.read_csv
# get all your fuckin imports import numpy as np import pandas as pd from pandas_datareader import data as wb import matplotlib.pyplot as plt #get your portfolio tickets # I am going to get my ticker for stock and mutual funds seperate to compare and see what is performing well stck_tickers = ['AAPL', 'ENB', 'MDT', 'NKE', 'BRK-B'] myPortfolio =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import numpy.random as nr import math import os from datetime import datetime from sklearn.linear_model import LinearRegression, SGDRegressor import sys import time import imp from sklearn.ensemble import ExtraTreesRegressor from sklearn.metrics import mean_squared_error from xgboost import XGBRegressor, plot_importance from sklearn.model_selection import train_test_split import lightgbm as lgb def drop_duplicate(data, sub_set): print('Before drop shape:', data.shape) before = data.shape[0] data.drop_duplicates(sub_set, keep='first', inplace=True) data.reset_index(drop=True, inplace=True) print('After drop shape:', data.shape) after = data.shape[0] print('Total Duplicate:', before - after) def rmse(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) class predict(object): def __init__(self,trainfile,testfile): self.trainfile = trainfile self.testfile = testfile self.__lr = LinearRegression() # self.__dtree = DecisionTreeClassifier() # self.__rforest = RandomForestClassifier() # self.__svm = SVC(kernel='rbf') self.lgb_params = { 'feature_fraction': 1, 'metric': 'rmse', 'min_data_in_leaf': 16, 'bagging_fraction': 0.85, 'learning_rate': 0.03, 'objective': 'mse', 'bagging_seed': 2 ** 7, 'num_leaves': 32, 'bagging_freq': 3, 'verbose': 0 } self.__tree_reg = ExtraTreesRegressor(n_estimators=600, max_depth=38,random_state=50) self._xgb = XGBRegressor(max_depth=8,n_estimators=1000,min_child_weight=300,colsample_bytree=0.9,subsample=0.9,eta=0.15,seed=42) self.train_data = None self.train_labels = None self.train_data1 = None self.train_labels1 = None self.val_data = None self.val_labels = None self.test_data = None self.predicted_labels = None self.x_train_val = None self.y_train_val = None def trainingdata(self): parser = lambda date: pd.to_datetime(date, format='%d.%m.%Y') df = pd.read_csv(self.trainfile,parse_dates=['date'],date_parser=parser) df = df.dropna() df = df.loc[df['item_cnt_day']>0] subset_train = ['date', 'date_block_num', 'shop_id', 'item_id', 'item_cnt_day'] drop_duplicate(df, sub_set=subset_train) median = df[(df.shop_id == 32) & (df.item_id == 2973) & (df.date_block_num == 4) & (df.item_price > 0)].item_price.median() df.loc[df.item_price < 0, 'item_price'] = median df['item_cnt_day'] = df['item_cnt_day'].clip(0, 1000) df['item_price'] = df['item_price'].clip(0, 300000) df.loc[df.shop_id == 0, 'shop_id'] = 57 df.loc[df.shop_id == 1, 'shop_id'] = 58 df.loc[df.shop_id == 10, 'shop_id'] = 11 df['day'] = df['date'].apply(lambda x: x.strftime('%d')) df['day'] = df['day'].astype('int64') df['month'] = df['date'].apply(lambda x: x.strftime('%m')) df['month'] = df['month'].astype('int64') df['year'] = df['date'].apply(lambda x: x.strftime('%Y')) df['year'] = df['year'].astype('int64') df = df[['day','month','year','item_id', 'shop_id','item_price','item_cnt_day']] df['item_id'] = np.log1p(df['item_id']) self.train_labels1 = df['item_cnt_day'] self.train_data1 = df.drop(columns='item_cnt_day') self.train_data,self.val_data,self.train_labels,self.val_labels=train_test_split(self.train_data1,self.train_labels1,test_size=0.3) self.x_train_val = self.train_data[-100:] self.y_train_val = self.train_labels[-100:] def testingdata(self): parser = lambda date: pd.to_datetime(date, format='%d.%m.%Y') df =
pd.read_csv(self.testfile,parse_dates=['date'],date_parser=parser)
pandas.read_csv
# coding: utf-8 # # Notebook to generate a dataframe that captures data reliability # Perform a series of tests/questions on each row and score the result based on 0 (missing), 1 (ambiguous), 2 (present) # - is the plot number recorded? If not, this makes it very difficult to identify the plot as unique vs others (2 if different from 1.2) # - is the type of property recorded? Very difficult to interpret the results if we don’t know this # - does the plot have a zone? (Other means ambiguous) # - does the plot have a zone section? # - does the plot have toilets (sum should not include disused) # - does the plot receive water? # - who is the respondent (2 for landlord, 1 for caretaker and tenant, 0 for unknown) # - was gps info captured?) # - does the number of users sum up to the initial value # - do they know where they dispose of solid wastes? # - do they know if the toilet has been upgraded- no not reliable if they haven’t been there 2 years # - Do they know they age of toilet? # - Do they give age of toilet if more than 1 # - Do they know if the toilet has been emptied? # - Do they know how much they spent? # - Do they know how often they empty it? # - Do they give a value for emptying it but have never actually emptied it # - Is the toilet accessible but has never been emptied? # - Is property recorded as not residential but a tenant answering questions # - Toilet is not feasible for emptying but they have # # ## List of possible inconsistencies that people have mentioned (excluding geospatial which are being dealt with separately # - visit information # - length of time of responder on plot - if units is not a number # - weird time of visit # - plot types # - no Record plot number # - record plot numbers are not equal # - zone and gps don't correspond # - number of families on the plot # - number of people on plot # - people living on the plot vs toilet users # - toilet types # - no toilets # In[2]: import pandas as pd # In[7]: pd.options.display.max_rows = 300 pd.options.display.max_columns = 300 pd.options.display.max_colwidth = 300 # In[289]: data_orig = pd.read_hdf('../data/wsup/tidy/data_tidied.h5', key='main') # In[290]: name_changes = dict([line.strip().split('\t') for line in open('../data/name_changes.txt')]) # In[291]: data = data_orig.rename(columns=name_changes) # In[292]: drops = [line.strip() for line in open('../data/drop2.txt')] drops = data.columns.intersection(drops) data.drop(drops, 1, inplace=True) # In[293]: data.shape # In[294]: drops = [d for d in data.columns if not (d.startswith('bool') or d.startswith('cat') or d.startswith('str') or d.startswith('num') or d.startswith('id') or d.startswith('date'))] drops data.drop(drops, 1, inplace=True) # In[295]: data.head(10).T # In[85]: results = pd.DataFrame(index = data.index) # ## Plot id # In[347]: data[['id_new_plot_id', 'id_plot', 'str_plot_id', 'bool_plot_id']].head() # In[87]: results['Plot_id'] = data[['id_new_plot_id', 'id_plot', 'str_plot_id']].apply( lambda x: 2 if x[0] != 'None' and x[1]==x[2] else 1 if (x[0]!= 'None') else 0, axis=1) # In[88]: results['Plot_id'].value_counts() # In[346]: data.loc[results.Plot_id == 2, ['id_new_plot_id', 'id_plot', 'str_plot_id']].head() # ## Property type # In[91]: p = 'Property_type' cols = ['cat_property','cat_property_other'] # In[96]: results[p] = data[cols].apply( lambda x: 2 if not ('Other' in str(x[0])) or pd.isnull(x[0]) else 1 if pd.notnull(x[1]) else 0, axis=1) # In[97]: results[p].value_counts() # In[100]: data.loc[results[p] == 2, cols] # In[102]: data.loc[results[p] == 2, cols[0]].value_counts() # ## Property zone # In[104]: p = 'Property_zone' cols = [ 'cat_zone', 'cat_zone_other', 'cat_zone_section', 'cat_zone_section_other', 'str_zone_name'] # In[105]: data[cols] # In[109]: results[p] = data[cols].apply( lambda x: 2 if not ('Other' in str(x[0])) or pd.isnull(x[0]) else 1 if x.notnull().sum()>1 else 0, axis=1) # In[110]: results[p].value_counts() # In[111]: data.loc[results[p] == 0, cols] # In[112]: data.loc[results[p] == 2, cols[0]].value_counts() # In[ ]: # ## Toilets # - only relevant for residential # - suspicious if more than 1 toilet per person or no toilets # - 0 if info unknown # In[296]: data['num_toilets_per_person'] = data['num_toilets_all'] / data['num_ppl'].map(lambda x: np.NaN if x==0 else x) # In[297]: p = 'Toilets_total' cols = [ 'num_toilets_all', 'num_toilets_per_person', 'cat_property'] # In[298]: data.loc[data['num_toilets_per_person'].notnull(), 'num_toilets_per_person'].hist(bins=50) # In[299]: data[cols] # In[300]: results[p] = data[cols].apply( lambda x: np.NaN if x[2] != 'Residential Plot' else 2 if x[0]>0 and x[1]>0 and x[1] <=1 else 1 if (x[0]==0) or (x[1]>1) else 0, axis=1) # In[301]: results[p].value_counts() # In[302]: data.loc[results[p] == 0, cols] # In[303]: data.loc[results[p] == 2, cols[0]].value_counts() # In[ ]: # ## Water # In[119]: p = 'Water_collection' cols = [ 'cat_water', 'cat_water_other'] # In[128]: data[cols] # In[130]: results[p] = data[cols].apply( lambda x: 2 if 'Other' not in str(x[0]) and pd.notnull(x[0]) else 1 if pd.notnull(x[1]) else 0, axis=1) # In[131]: results[p].value_counts() # In[132]: data.loc[results[p] == 0, cols] # In[133]: data.loc[results[p] == 2, cols[0]].value_counts() # ## Respondent # In[146]: p = 'Respondent_type' cols = [ 'cat_responder_type'] # In[147]: data[cols] # In[152]: results[p] = data[cols].apply( lambda x: 2 if x[0]=='Landlord' else 1 if x[0] in ['Caretaker', 'Tenant'] else 0, axis=1) # In[153]: results[p].value_counts() # In[154]: data.loc[results[p] == 0, cols] # In[155]: data.loc[results[p] == 2, cols[0]].value_counts() # # GPS information # In[159]: data.columns # In[161]: p = 'GPS_presence' cols = ['str_gps_lat'] # In[162]: data[cols] # In[163]: results[p] = data[cols].apply( lambda x: 2 if pd.notnull(x[0]) else 0, axis=1) # In[164]: results[p].value_counts() # In[165]: data.loc[results[p] == 0, cols] # In[166]: data.loc[results[p] == 2, cols[0]].value_counts() # # Number of users and num of ppl # In[168]: p = 'People_numbers_consistency' cols = ['num_ppl', 'num_c_m', 'num_c_f', 'num_a_m', 'num_a_f'] # In[169]: data[cols] # In[170]: results[p] = data[cols].apply( lambda x: 2 if x[1:].sum()==x[0] else 1 if abs(x[1:].sum()-x[0]) < 2 else 0, axis=1) # In[171]: results[p].value_counts() # In[172]: data.loc[results[p] == 0, cols] # In[173]: data.loc[results[p] == 2, cols[0]].value_counts() # ## People household - not relevant if not residential # In[304]: import numpy as np # In[305]: data['ppl_per_household'] = data['num_ppl'] / data['num_hhs'] # In[306]: p = 'People_household' cols = ['num_ppl', 'num_hhs', 'cat_property', 'ppl_per_household'] # In[307]: ax = data['ppl_per_household'].hist(bins=100) ax.set_yscale('log') ax.set_xscale('log') # In[308]: data.loc[(data.cat_property == 'Residential Plot') & (data.ppl_per_household > 20),cols] # In[309]: results[p] = data[cols].apply( lambda x: np.NaN if x[2] != 'Residential Plot' else 2 if x[0] > x[1] and x[3] <=20 else 1 if x.isnull().sum()==0 else 0, axis=1) # In[310]: data.columns # In[311]: data.loc[results[p] == 2, cols] # In[312]: results[p].value_counts() # In[180]: data.loc[results[p] == 2, cols] # ## Solid wastes # In[244]: p = 'Solid waste' cols = [ 'cat_waste', 'cat_waste_other'] # In[245]: data[cols].head() # In[246]: results[p] = data[cols].apply( lambda x: 2 if 'Other' not in str(x[0]) and
pd.notnull(x[0])
pandas.notnull
import pandas as pd import instances.dinamizators.dinamizators as din import math def simplest_test(): ''' Test if the dinamizators are running ''' df = ( pd.read_pickle('./instances/analysis/df_requests.zip') .reset_index() ) din.dinamize_as_berbeglia(df.pickup_location_x_coord, df.pickup_location_y_coord, df.delivery_location_x_coord, df.delivery_location_y_coord, df.pickup_upper_tw, df.delivery_upper_tw, df.pickup_service_time, 0.5, 60) din.dinamize_as_pureza_laporte(df.depot_location_x, df.depot_location_y, df.pickup_location_x_coord, df.pickup_location_y_coord, df.pickup_lower_tw, df.pickup_upper_tw, 0) din.dinamize_as_pankratz(df.depot_location_x, df.depot_location_y, df.pickup_location_x_coord, df.pickup_location_y_coord, df.delivery_location_x_coord, df.delivery_location_y_coord, df.pickup_upper_tw, df.delivery_upper_tw, df.pickup_service_time, 0.5) din.dinamize_as_fabri_recht(df.pickup_location_x_coord, df.pickup_location_y_coord, df.delivery_location_x_coord, df.delivery_location_y_coord, df.pickup_lower_tw, df.delivery_upper_tw) def test_calculate_travel_time(): pickup_location_x_coord = -1 pickup_location_y_coord = -1 delivery_location_x_coord = 1 delivery_location_y_coord = 1 expected_travel_time = math.ceil(math.sqrt(2) + math.sqrt(2)) calculated_travel_time = ( din.calculate_travel_time( pickup_location_x_coord, pickup_location_y_coord, delivery_location_x_coord, delivery_location_y_coord) ) assert (expected_travel_time == calculated_travel_time) def test_series_elementwise_max(): x = pd.Series([1, 2, 3]) y = pd.Series([3, 2, 1]) expected_max = pd.Series([3, 2, 3]) calculated_max = din.elementwise_max(x, y) assert (expected_max == calculated_max).all() def test_dataframe_elementwise_max(): x = pd.DataFrame([[1, 2, 3], [3, 2, 1]]) y = pd.DataFrame([[3, 2, 1], [1, 2, 3]]) expected_max = pd.DataFrame([[3, 2, 3], [3, 2, 3]]) calculated_max = din.elementwise_max(x, y) assert (expected_max == calculated_max).all().all() def test_series_elementwise_min(): x = pd.Series([1, 2, 3]) y = pd.Series([3, 2, 1]) expected_min = pd.Series([1, 2, 1]) calculated_min = din.elementwise_min(x, y) assert (expected_min == calculated_min).all() def test_dataframe_elementwise_min(): x = pd.DataFrame([[1, 2, 3], [3, 2, 1]]) y =
pd.DataFrame([[3, 2, 1], [1, 2, 3]])
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: utilities.ipynb (unless otherwise specified). __all__ = ['make_codes', 'make_data', 'get_rows', 'extract_codes', 'Info', 'memory', 'listify', 'reverse_dict', 'del_dot', 'del_zero', 'expand_hyphen', 'expand_star', 'expand_colon', 'expand_regex', 'expand_code', 'expand_columns', 'format_codes', 'insert_external', 'unique', 'count_codes', 'lookup_codes', 'get_codes'] # Cell import re import numpy as np import pandas as pd from functools import singledispatch # Cell def make_codes(n=100, letters=26, numbers=100, seed=False): """ Generate a dataframe with a column of random codes Args: letters (int): The number of different letters to use numbers (int): The number of different numbers to use Returns A dataframe with a column with one or more codes in the rows """ # each code is assumed to consist of a letter and a number alphabet = list('abcdefghigjklmnopqrstuvwxyz') letters=alphabet[:letters+1] # make random numbers same if seed is specified if seed: np.random.seed(0) # determine the number of codes to be drawn for each event n_codes=np.random.negative_binomial(1, p=0.3, size=n) # avoid zero (all events have to have at least one code) n_codes=n_codes+1 # for each event, randomly generate a the number of codes specified by n_codes codes=[] for i in n_codes: diag = [np.random.choice(letters).upper()+ str(int(np.random.uniform(low=1, high=numbers))) for num in range(i)] code_string=','.join(diag) codes.append(code_string) # create a dataframe based on the list df=pd.DataFrame(codes) df.columns=['code'] return df # Cell def make_data(n=100, letters=26, numbers=100, seed=False, expand=False, columns=['pid', 'gender', 'birth_date', 'date', 'region', 'codes']): """ Generate a dataframe with a column of random codes Args: letters (int): The number of different letters to use numbers (int): The number of different numbers to use Returns A dataframe with a column with one or more codes in the rows Examples >>>df = make_data(n=100, letters=5, numbers=5, seed=True) """ if seed: np.random.seed(seed=seed) pid = range(n) df_person=pd.DataFrame(index = pid) #female = np.random.binomial(1, 0.5, size =n) gender = np.random.choice(['male', 'female'], size=n) region = np.random.choice(['north', 'south', 'east', 'west'], size=n) birth_year = np.random.randint(1920, 2019, size=n) birth_month = np.random.randint(1,12, size=n) birth_day = np.random.randint(1,28, size=n) # ok, I know! events_per_year = np.random.poisson(1, size=n) years = 2020 - birth_year events = years * events_per_year events = np.where(events==0,1,events) events = events.astype(int) all_codes=[] codes = [all_codes.extend(make_codes(n=n, letters=letters, numbers=numbers, seed=seed)['code'].tolist()) for n in events] days_alive = (2020 - birth_year) *365 days_and_events = zip(days_alive.tolist(), events.tolist()) all_days=[] days_after_birth = [all_days.extend(np.random.randint(0, max_day, size=n)) for max_day, n in days_and_events] pid_and_events = zip(list(pid), events.tolist()) all_pids=[] pids = [all_pids.extend([p+1]*e) for p, e in pid_and_events] df_events = pd.DataFrame(index=all_pids) df_events['codes'] = all_codes df_events['days_after'] = all_days #df_person['female'] = female df_person['gender'] = gender df_person['region'] = region df_person['year'] = birth_year df_person['month'] = birth_month df_person['day'] = birth_day df = df_events.merge(df_person, left_index=True, right_index=True) df['birth_date'] = pd.to_datetime(df[['year', 'month', 'day']]) df['date'] = df['birth_date'] + pd.to_timedelta(df.days_after, unit='d') del df['month'] del df['day'] del df['days_after'] df['pid'] = df.index df.index_name = 'pid_index' df=df.sort_values(['pid', 'date']) df=df[columns] if expand: splitted = df.codes.str.split(',', expand=True).add_prefix('code_').fillna(np.nan) df = pd.concat([df,splitted], axis=1) del df['codes'] # include deaths too? return df # Cell # mark rows that contain certain codes in one or more colums def get_rows(df, codes, cols=None, sep=None, pid='pid', all_codes=None, fix=True, info=None): """ Make a boolean series that is true for all rows that contain the codes Args df (dataframe or series): The dataframe with codes codes (str, list, set, dict): codes to be counted cols (str or list): list of columns to search in sep (str): The symbol that seperates the codes if there are multiple codes in a cell pid (str): The name of the column with the personal identifier >>>get_rows(df=df, codes='F3', cols='codes', sep=',') """ # check if evaluated previously info, rows = memory(info=info, func = 'get_rows', expr=codes) if rows: return rows # check if codes and columns need to be expanded (needed if they use notation) if fix: # do this when if cols exist, but if it does not ... cols = expand_columns(cols, all_columns=list(df.columns), info=info) all_codes = sorted(unique(df=df, cols=cols, sep=sep)) codes = expand_code(codes, all_codes=all_codes) # codes and cols should be lists codes = listify(codes) cols = listify(cols) # approach depends on whether we have multi-value cells or not # if sep exist, then have multi-value cells if sep: # have multi-valued cells # note: this assumes the sep is a regex word delimiter codes = [rf'\b{code}\b' for code in codes] codes_regex = '|'.join(codes) # starting point: no codes have been found # needed since otherwise the function might return None if no codes exist rows = pd.Series(False*len(df),index=df.index) # loop over all columns and mark when a code exist for col in cols: rows=rows | df[col].str.contains(codes_regex, na=False) # if not multi valued cells else: mask = df[cols].isin(codes) rows = mask.any(axis=1) return rows # Cell def extract_codes(df, codes, cols=None, sep=None, new_sep=',', na_rep='', prefix=None, merge=False, out='bool', fix=True, series=True, group=False, all_codes=None, info=None): """ Produce one or more columns with only selected codes Args: df (dataframe): Dataframe with events codes (string, list or dict): The codes for the disease cols (string, list): Name of columns where codes are located sep (string, default: None): Separator between codes in same cell (if exist) (If None, the function will infer the separator) pid (str, default: 'pid'): Name of column with the personal identification number codebook (list): User specified list of all possible or allowed codes merge (bool): Content of all columns is merged to one series # only if out='text'? group (bool): Star an other notation remain a single group, not split into individual codes out (string, ['text', 'category', 'bool' or 'int']): Datatype of output column(s) Notes: Can produce a set of dummy columns for codes and code groups. Can also produce a merged column with only extracted codes. Accept star notation. Also accepts both single value columns and columns with compound codes and separators Repeat events in same rows are only extracted once Example: to create three dummy columns, based on codes in icdmain column: >>> extract_codes(df=df, >>> codes={'fracture' : 'S72*', 'cd': 'K50*', 'uc': 'K51*'}, >>> cols=['icdmain', 'icdbi'], >>> merge=False, >>> out='text') extract_codes(df=df, codes={'b':['A1','F3'], 'c':'c*'}, cols='codes', sep=',', merge = False) extract_codes(df=df, codes={'b':['A1','F3'], 'c':'C*'}, cols='codes', sep=',', merge = False) extract_codes(df=df, codes=['A1','F3', 'C*'], cols='codes', sep=',', merge = False) extract_codes(df=df, codes='C*', cols='codes', sep=',', merge = False) nb: problem with extract rows if dataframe is empty (none of the requested codes) """ if isinstance(df, pd.Series): df=df.to_frame() cols=[df.columns] if not cols: cols=[df.columns] if fix: cols=expand_columns(cols, all_columns=list(df.columns)) all_codes = unique(df=df, cols=cols, sep=sep) if isinstance(codes, str): codes=listify(codes) if (isinstance(codes, list)) and (not merge): codes = expand_code(codes, all_codes=all_codes, info=info) codes = {code:code for code in codes} if (isinstance(codes, list)) and (merge): codes = {str(tuple(codes)):codes} codes = expand_code(codes, all_codes=all_codes, info=info) print('after fix', cols, codes) subset = pd.DataFrame(index=df.index) for k, v in codes.items(): if v: rows = get_rows(df=df, codes=v, cols=cols, sep=sep, all_codes=all_codes, fix=False) else: rows=False if out == 'bool': subset[k] = rows elif out == 'int': subset[k] = rows.astype(int) elif out == 'category': subset.loc[rows, k] = k subset[k] = subset[k].astype('category') else: subset[k] = na_rep subset.loc[rows, k] = k if (merge) and (out == 'bool'): subset = subset.astype(int).astype(str) new_codes = list(subset.columns) if (merge) and (len(codes) > 1): headline = ', '.join(new_codes) merged = subset.iloc[:, 0].str.cat(subset.iloc[:, 1:].values, sep=new_sep, na_rep=na_rep) # strange .T.values seemed to work previouslyi but it should not have merged = merged.str.strip(',') subset = merged subset.name = headline if out == 'category': subset = subset.astype('category') # return a series if only one code is asked for (and also if merged?) if series and (len(codes) == 1): subset = subset.squeeze() return subset # Cell class Info(): """ A class to store information about the data and results from analysis """ def __init__(self): self.evaluated = {} # Cell def memory(info, func, expr): """ checks if the function has been called with the same argument previously and if so, returns the same results instead of running the function again args: - """ rows=None if info: if func in info.evaluated: if expr in info.evaluated[func]: rows = info.evaluated[func][expr] else: info.evaluated[func] = {} else: info = Info() info.evaluated[func] = {} return info, rows # Cell def listify(string_or_list): """ return a list if the input is a string, if not: returns the input as it was Args: string_or_list (str or any): Returns: A list if the input is a string, if not: returns the input as it was Note: - allows user to use a string as an argument instead of single lists - cols='icd10' is allowed instead of cols=['icd10'] - cols='icd10' is transformed to cols=['icd10'] by this function """ if isinstance(string_or_list, str): string_or_list = [string_or_list] return string_or_list # Cell def reverse_dict(dikt): new_dict = {} for name, codelist in dikt.items(): codelist = _listify(codelist) new_dict.update({code: name for code in codelist}) return new_dict # Cell def del_dot(code): if isinstance(code, str): return code.replace('.','') else: codes = [c.replace('.','') for c in code] return codes def del_zero(code, left=True, right=False): if isinstance(codes, str): codes=[code] if left: codes = [c.lstrip('0') for c in code] if right: codes = [c.rstrip('0') for c in code] if isinstance(code, str): codes=codes[0] return codes # Cell # function to expand a string like 'K51.2-K53.8' to a list of codes # Need regex to extract the number component of the input string # The singledispach decorator enables us to have the same name, but use # different functions depending on the datatype of the first argument. # # In our case we want one function to deal with a single string input, and # another to handle a list of strings. It could all be handled in a single # function using nested if, but singledispatch makes it less messy and more fun! # Here is the main function, it is just the name and an error message if the # argument does not fit any of the inputs that wil be allowed @singledispatch def expand_hyphen(expr): """ Expands codes expression(s) that have hyphens to list of all codes Args: code (str or list of str): String or list of strings to be expanded Returns: List of strings Examples: expand_hyphen('C00-C26') expand_hyphen('b01.1*-b09.9*') expand_hyphen('n02.2-n02.7') expand_hyphen('c00*-c260') expand_hyphen('b01-b09') expand_hyphen('b001.1*-b009.9*') expand_hyphen(['b001.1*-b009.9*', 'c11-c15']) Note: Unequal number of decimals in start and end code is problematic. Example: C26.0-C27.11 will not work since the meaning is not obvious: Is the step size 0.01? In which case C27.1 will not be included, while C27.10 will be (and traing zeros can be important in codes) """ raise ValueError('The argument must be a string or a list') # register the function to be used if the input is a string @expand_hyphen.register(str) def _(expr): # return immediately if nothing to expand if '-' not in expr: return [expr] lower, upper = expr.split('-') lower=lower.strip() # identify the numeric component of the code lower_str = re.search("\d*\.\d+|\d+", lower).group() upper_str = re.search("\d*\.\d+|\d+", upper).group() # note: what about european decimal notation? # also note: what if multiple groups K50.1J8.4-etc lower_num = int(lower_str.replace('.','')) upper_num = int(upper_str.replace('.','')) +1 if upper_num<lower_num: raise ValueError('The start code cannot have a higher number than the end code') # remember length in case of leading zeros length = len(lower_str) nums = range(lower_num, upper_num) # must use integers in a loop, not floats # which also means that we must multiply and divide to get decimal back # and take care of leading and trailing zeros that may disappear if '.' in lower_str: lower_decimals = len(lower_str.split('.')[1]) upper_decimals = len(upper_str.split('.')[1]) if lower_decimals==upper_decimals: multiplier = 10**lower_decimals codes = [lower.replace(lower_str, format(num /multiplier, f'.{lower_decimals}f').zfill(length)) for num in nums] # special case: allow k1.1-k1.123, but not k.1-k2.123 the last is ambigious: should it list k2.0 only 2.00? elif (lower_decimals<upper_decimals) & (upper_str.split('.')[0]==lower_str.split('.')[0]): from_decimal = int(lower_str.split('.')[1]) to_decimal = int(upper_str.split('.')[1]) +1 nums = range(from_decimal, to_decimal) decimal_str = '.'+lower.split('.')[1] codes = [lower.replace(decimal_str, '.'+str(num)) for num in nums] else: raise ValueError('The start code and the end code do not have the same number of decimals') else: codes = [lower.replace(lower_str, str(num).zfill(length)) for num in nums] return codes # register the function to be used if if the input is a list of strings @expand_hyphen.register(list) def _(expr): extended = [] for word in expr: extended.extend(expand_hyphen(word)) return extended # Cell # A function to expand a string with star notation (K50*) # to list of all codes starting with K50 @singledispatch def expand_star(code, all_codes=None): """ Expand expressions with star notation to a list of all values with the specified pattern Args: expr (str or list): Expression (or list of expressions) to be expanded all_codes (list) : A list of all codes Examples: expand_star('K50*', all_codes=icd9) expand_star('K*5', all_codes=icd9) expand_star('*5', all_codes=icd9) """ raise ValueError('The argument must be a string or a list') @expand_star.register(str) def _(code, all_codes=None): # return immediately if there is nothing to expand if '*' not in code: return [code] start_str, end_str = code.split('*') if start_str and end_str: codes = {code for code in all_codes if (code.startswith(start_str) & code.endswith(end_str))} if start_str: codes = {code for code in all_codes if code.startswith(start_str)} if end_str: codes = {code for code in all_codes if code.endswith(end_str)} return sorted(list(codes)) @expand_star.register(list) def _(code, all_codes=None): expanded=[] for star_code in code: new_codes = expand_star(star_code, all_codes=all_codes) expanded.extend(new_codes) # uniqify in case some overlap expanded = list(set(expanded)) return sorted(expanded) # Cell # function to get all codes in a list between the specified start and end code # Example: Get all codes between K40:L52 @singledispatch def expand_colon(code, all_codes=None): raise ValueError('The argument must be a string or a list') @expand_colon.register(str) def _(code, all_codes=None): """ Expand expressions with colon notation to a list of complete code names code (str or list): Expression (or list of expressions) to be expanded all_codes (list or array) : The list to slice from Examples K50:K52 K50.5:K52.19 A3.0:A9.3 Note: This is different from hyphen and star notation because it can handle different code lengths and different number of decimals """ if ':' not in code: return [code] startstr, endstr = code.split(':') # remove spaces startstr = startstr.strip() endstr =endstr.strip() # find start and end position startpos = all_codes.index(startstr) endpos = all_codes.index(endstr) + 1 # slice list expanded = all_codes[startpos:endpos+1] return expanded @expand_colon.register(list) def _(code, all_codes=None, regex=False): expanded=[] for cod in code: new_codes = expand_colon(cod, all_codes=all_codes) expanded.extend(new_codes) return expanded # Cell # Return all elements in a list that fits a regex pattern @singledispatch def expand_regex(code, all_codes): raise ValueError('The argument must be a string or a list of strings') @expand_regex.register(str) def _(code, all_codes=None): code_regex = re.compile(code) expanded = {code for code in all_codes if code_regex.match(code)} # uniqify expanded = list(set(expanded)) return expanded @expand_regex.register(list) def _(code, all_codes): expanded=[] for cod in code: new_codes = expand_regex(cod, all_codes=all_codes) expanded.extend(new_codes) # uniqify in case some overlap expanded = sorted(list(set(expanded))) return expanded # Cell @singledispatch def expand_code(code, all_codes=None, hyphen=True, star=True, colon=True, regex=False, drop_dot=False, drop_leading_zero=False, sort_unique=True, info=None): raise ValueError('The argument must be a string or a list of strings') @expand_code.register(str) def _(code, all_codes=None, hyphen=True, star=True, colon=True, regex=False, drop_dot=False, drop_leading_zero=False, sort_unique=True, info=None): #validating input if (not regex) and (':' in code) and (('-' in code) or ('*' in code)): raise ValueError('Notation using colon must start from and end in specific codes, not codes using star or hyphen') if regex: codes = expand_regex(code, all_codes=all_codes) return codes if drop_dot: code = del_dot(code) codes=[code] if hyphen: codes=expand_hyphen(code) if star: codes=expand_star(codes, all_codes=all_codes) if colon: codes=expand_colon(codes, all_codes=all_codes) if sort_unique: codes = sorted(list(set(codes))) return codes @expand_code.register(list) def _(code, all_codes=None, hyphen=True, star=True, colon=True, regex=False, drop_dot=False, drop_leading_zero=False, sort_unique=True, info=None): expanded=[] for cod in code: new_codes = expand_code(cod, all_codes=all_codes, hyphen=hyphen, star=star, colon=colon, regex=regex, drop_dot=drop_dot, drop_leading_zero=drop_leading_zero) expanded.extend(new_codes) # uniqify in case some overlap expanded = list(set(expanded)) return sorted(expanded) # a dict of names and codes (in a string or a list) @expand_code.register(dict) def _(code, all_codes=None, hyphen=True, star=True, colon=True, regex=False, drop_dot=False, drop_leading_zero=False, sort_unique=True, info=None): expanded={} for name, cod in code.items(): if isinstance(cod,str): cod = [cod] expanded_codes=[] for co in cod: new_codes = expand_code(co, all_codes=all_codes, hyphen=hyphen, star=star, colon=colon, regex=regex, drop_dot=drop_dot, drop_leading_zero=drop_leading_zero) expanded_codes.extend(new_codes) expanded[name] = list(set(expanded_codes)) return expanded # Cell @singledispatch def expand_columns(expr, all_columns=None, df=None, star=True, hyphen=True, colon=True, regex=None, info=None): """ Expand columns with special notation to their full column names """ raise ValueError('Must be str or list of str') @expand_columns.register(str) def _(expr, all_columns=None, df=None, star=True, hyphen=True, colon=True, regex=None, info=None): notations = '* - :'.split() # return immediately if not needed if not any(symbol in expr for symbol in notations): return [expr] # get a list of columns of it is only implicity defined by the df # warning: may depreciate this, require explicit all_columns if df & (not all_columns): all_columns=list(df.columns) if regex: cols = [col for col in all_columns if re.match(regex, expr)] else: if hyphen: cols = expand_hyphen(expr) if star: cols = expand_star(expr, all_codes=all_columns) if colon: cols = expand_colon(expr, all_codes=all_columns) return cols @expand_columns.register(list) def _(expr, all_columns=None, df=None, star=True, hyphen=True, colon=True, regex=None, info=None): all_columns=[] for col in expr: new_columns = expand_columns(col, all_columns=all_columns, df=df, star=star, hyphen=hyphen, colon=colon, regex=regex, info=info) all_columns.extend(new_columns) return all_columns # Cell def format_codes(codes, merge=True): """ Makes sure that the codes has the desired format: a dict with strings as keys (name) and a list of codes as values) Background: For several functions the user is allower to use strings when there is only one element in the list, and a list when there is no code replacement or aggregations, or a dict. To avoid (even more) mess the input is standardised as soon as possible in a function. Examples: codes = '4AB02' codes='4AB*' codes = ['4AB02', '4AB04', '4AC*'] codes = ['4AB02', '4AB04'] codes = {'tumor' : 'a4*', 'diabetes': ['d3*', 'd5-d9']} codes = 'S72*' codes = ['K50*', 'K51*'] _format_codes(codes, merge=False) TODO: test for correctness of input, not just reformat (is the key a str?) """ codes = _listify(codes) # treatment of pure lists depends on whether special classes should be treated as one merged group or separate codes # exmple xounting of Z51* could mean count the total number of codes with Z51 OR a shorthand for saying "count all codes starting with Z51 separately # The option "merged, enables the user to switch between these two interpretations if isinstance(codes, list): if merge: codes = {'_'.join(codes): codes} else: codes = {code: [code] for code in codes} elif isinstance(codes, dict): new_codes = {} for name, codelist in codes.items(): if isinstance(codelist, str): codelist = [codelist] new_codes[name] = codelist codes = new_codes return codes # Cell def _expand_regex(expr, full_list): exprs = _listify(expr) expanded = [] if isinstance(full_list, pd.Series): pass elif isinstance(full_list, list): unique_series = pd.Series(full_list) elif isinstance(full_list, set): unique_series = pd.Series(list(full_list)) for expr in exprs: match = unique_series.str.contains(expr) expanded.extend(unique_series[match]) return expanded # Cell def insert_external(expr): """ Replaces variables prefixed with @ in the expression with the value of the variable from the global namespace Example: x=['4AB02', '4AB04', '4AB06'] expr = '@x before 4AB02' insert_external(expr) """ externals = [word.strip('@') for word in expr.split() if word.startswith('@')] for external in externals: tmp = globals()[external] expr = expr.replace(f'@{external} ', f'{tmp} ') return expr # Cell # A function to identify all unique values in one or more columns # with one or multiple codes in each cell def unique(df, cols=None, sep=None, all_str=True, info=None): """ Lists unique values from one or more columns sep (str): separator if cells have multiple values all_str (bool): converts all values to strings unique(df=df, cols='inpatient', sep=',') """ # if no column(s) are specified, find unique values in whole dataframe if cols==None: cols=list(df.columns) cols = listify(cols) # multiple values with separator in cells if sep: all_unique=set() for col in cols: new_unique = set(df[col].str.cat(sep=',').split(',')) all_unique.update(new_unique) # single valued cells else: all_unique = pd.unique(df[cols].values.ravel('K')) # if need to make sure all elements are strings without surrounding spaces if all_str: all_unique=[str(value).strip() for value in all_unique] return all_unique # Cell def count_codes(df, codes=None, cols=None, sep=None, normalize=False, ascending=False, fix=True, merge=False, group=False, dropna=True, all_codes=None, info=None): """ Count frequency of values in multiple columns and columns with seperators Args: codes (str, list of str, dict): codes to be counted. If None, all codes will be counted cols (str or list of str): columns where codes are sep (str): separator if multiple codes in cells merge (bool): If False, each code wil be counted separately If True (default), each code with special notation will be counted together strip (bool): strip space before and after code before counting ignore_case (bool): determine if codes with same characters, but different cases should be the same normalize (bool): If True, outputs percentages and not absolute numbers dropna (bool): If True, codes not listed are not counted and ignored when calculating percentages allows - star notation in codes and columns - values in cells with multiple valules can be separated (if sep is defined) - replacement and aggregation to larger groups (when code is a dict) example To count the number of stereoid events (codes starting with H2) and use of antibiotics (codes starting with xx) in all columns where the column names starts with "atc": count_codes(df=df, codes={'stereoids' : 'H2*', 'antibiotics' : =['AI3*']}, cols='atc*', sep=',') more examples ------------- df.count_codes(codes='K51*', cols='icd', sep=',') count_codes(df, codes='K51*', cols='icdm', sep=',', group=True) count_codes(df, codes='Z51*', cols=['icd', 'icdbi'], sep=',') count_codes(df, codes='Z51*', cols=['icdmain', 'icdbi'], sep=',', group=True) count_codes(df, codes={'radiation': 'Z51*'}, cols=['icd'], sep=',') count_codes(df, codes={'radiation': 'Z51*'}, cols=['icdmain', 'icdbi'], sep=',') count_codes(df, codes={'crohns': 'K50*', 'uc':'K51*'}, cols=['icdmain', 'icdbi'], sep=',') count_codes(df, codes={'crohns': 'K50*', 'uc':'K51*'}, cols=['icdmain', 'icdbi'], sep=',', dropna=True) count_codes(df, codes={'crohns': 'K50*', 'uc':'K51*'}, cols=['icdmain', 'icdbi'], sep=',', dropna=False) count_codes(df, codes={'crohns': 'K50*', 'uc':'K51*'}, cols=['icdmain', 'icdbi'], sep=',', dropna=False, group=False) count_codes(df, codes=['K50*', 'K51*'], cols=['icd'], sep=',', dropna=False, group=True, merge=False) count_codes(df, codes=['K50*', 'K51*'], cols=['icdmain', 'icdbi'], sep=',', dropna=False, group=False, merge=False) count_codes(df, codes=['K50*', 'K51*'], cols=['icdmain', 'icdbi'], sep=',', dropna=False, group=False, merge=True) count_codes(df, codes=['K50*', 'K51*'], cols=['icdmain', 'icdbi'], sep=',', dropna=True, group=True, merge=True) #group fasle, merge true, for list = wrong ... count_codes(df, codes=['K50*', 'K51*'], cols=['icdmain', 'icdbi'], sep=',', dropna=True, group=False, merge=False) """ # preliminary formating if isinstance(df, pd.Series): df=df.to_frame() cols=list(df.columns) # maybe df[pid]=df.index if not codes: codes=unique(df=df, cols=cols, sep=sep, info=info) all_codes = list(set(codes)) cols=expand_columns(cols, all_columns=list(df.columns)) if not all_codes: all_codes = unique(df=df, cols=cols, sep=sep) old_codes=codes codes = expand_code(codes, all_codes=all_codes, info=info) if isinstance(old_codes, str) and (merge): codes = {old_codes:codes} elif isinstance(old_codes, str) and not (merge): codes = {code:code for code in codes} elif isinstance(old_codes, list) and (merge): codes = {str(old_codes): codes} elif isinstance(old_codes, list) and not (merge): codes = {code: code for code in codes} only_codes=[] for name, code in codes.items(): code=listify(code) only_codes.extend(code) # prevent duplicates only_codes=list(set(only_codes)) sub = df if dropna: rows = get_rows(df=sub, codes=only_codes, cols=cols, sep=sep, all_codes=all_codes) sub = sub[rows] if sep: count=Counter() for col in cols: codes_in_col = [code.strip() for code in sub[col].str.cat(sep=sep).split(sep)] count.update(codes_in_col) code_count=
pd.Series(count)
pandas.Series
import pandas as pd import numpy as np import sklearn.feature_selection import sklearn.preprocessing import sklearn.model_selection import mlr import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import statistics # sorting variables def sort_by_feature_name(df): df =df.T a = [] for i in df.T.columns: a.append(len(i)) df["len"] = a df_sorted = df.sort_values(["len"]) df_sorted = df_sorted.drop(["len"],axis=1) return df_sorted.T # Remove feature correlations, using Pearson correlation, based on the variable threshold def remove_correlation(dataset, threshold): col_corr = set() # Set of all the names of deleted columns corr_matrix = dataset.corr().abs() for i in range(len(corr_matrix.columns)): for j in range(i): if corr_matrix.iloc[i, j] >= threshold: colname = corr_matrix.columns[i] # getting the name of column col_corr.add(colname) if colname in dataset.columns: del dataset[colname] # deleting the column from the dataset return dataset # SEP is the standard error of prediction (test set). SEE is the error for training def sep(yt,yp): return np.sqrt(mean_squared_error(yt, yp)) def run_MLREM(df2, name, dependent_variable, up_to_beta=200, screen_variance=False): df=df2.copy() # Separating independent and dependent variables x and y y = df[dependent_variable].to_numpy().reshape(-1,1) x = df.drop(dependent_variable,axis=1) x_sorted=sort_by_feature_name(x) x_pastvar = x_sorted.copy() if screen_variance: selector = sklearn.feature_selection.VarianceThreshold(threshold=0.01) selector.fit(x_sorted) x_pastvar=x_sorted.T[selector.get_support()].T x_remcorr = remove_correlation(x_pastvar,0.9) y_scaller = sklearn.preprocessing.StandardScaler() x_scaller = sklearn.preprocessing.StandardScaler() ys_scalled = y_scaller.fit_transform(y) xs_scalled = x_scaller.fit_transform(x_remcorr) ind = x_remcorr.columns X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(xs_scalled, ys_scalled, test_size=0.3) df_X_test =
pd.DataFrame(X_test, columns=ind)
pandas.DataFrame
# --- # jupyter: # jupytext: # cell_metadata_filter: -all # comment_magics: true # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.11.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # %% [markdown] # ## Comparing the whole TextKernel dataset to the sample from which skills are extracted # # Compare the sample of TK job adverts used in the skills with all the TK data. # %% # cd ../../.. # %% from skills_taxonomy_v2.getters.s3_data import load_s3_data, get_s3_data_paths from collections import Counter from datetime import datetime from tqdm import tqdm import pandas as pd import boto3 import matplotlib.pyplot as plt bucket_name = "skills-taxonomy-v2" s3 = boto3.resource("s3") # %% [markdown] # ## Load all TK counts # %% all_tk_year_month_counts = pd.read_csv( "outputs/tk_analysis/all_tk_year_month_counts.csv" ) all_tk_count_region_df = pd.read_csv("outputs/tk_analysis/all_tk_regions_counts.csv") all_tk_count_subregion_df = pd.read_csv( "outputs/tk_analysis/all_tk_subregions_counts.csv" ) # %% [markdown] # ## Load sentences that went into skills # %% file_name_date = "2021.08.31" sentence_clusters = load_s3_data( s3, bucket_name, f"outputs/skills_extraction/extracted_skills/{file_name_date}_sentences_data.json", ) sentence_clusters = pd.DataFrame(sentence_clusters) sentence_clusters.head(2) # %% skill_job_ads = set(sentence_clusters["job id"].unique()) # %% [markdown] # ## How many job adverts # %% total_number_jobadvs = 62892486 # Found in 'TextKernel Data.ipynb' # %% skill_num_jobadvs = len(skill_job_ads) # %% print(f"Sentences that make up skills are from {skill_num_jobadvs} job adverts") print( f"This is {round(skill_num_jobadvs*100/total_number_jobadvs,2)}% of all job adverts" ) # %% [markdown] # ## Dates # 'date', 'expiration_date' # %% tk_dates = [] for file_name in tqdm(range(0, 13)): file_date_dict = load_s3_data( s3, bucket_name, f"outputs/tk_data_analysis/metadata_date/{file_name}.json" ) tk_dates.extend( [f[0] for job_id, f in file_date_dict.items() if job_id in skill_job_ads] ) print(len(tk_dates)) # %% pd.DataFrame(tk_dates).to_csv("outputs/tk_analysis/tk_dates.csv") # %% skill_tk_dates = pd.DataFrame(tk_dates) skill_tk_dates["date"] = pd.to_datetime(skill_tk_dates[0], format="%Y-%m-%d") # %% num_dates_null = sum(pd.isnull(skill_tk_dates[0])) num_dates_null # %% print(len(skill_tk_dates)) skill_tk_dates = skill_tk_dates[pd.notnull(skill_tk_dates[0])] print(len(skill_tk_dates)) # %% skill_tk_dates["year"] = pd.DatetimeIndex(skill_tk_dates[0]).year skill_tk_dates["month"] = pd.DatetimeIndex(skill_tk_dates[0]).month # %% year_month_counts = skill_tk_dates.groupby(["year", "month"])[0].count() # %% year_month_counts = year_month_counts.sort_index().reset_index() year_month_counts["year/month"] = ( year_month_counts[["year", "month"]].astype(str).agg("/".join, axis=1) ) year_month_counts # %% # Add a row for the None date counts and save pd.concat( [ year_month_counts, pd.DataFrame( [{"year": None, "month": None, 0: num_dates_null, "year/month": None}] ), ], ignore_index=True, axis=0, ).to_csv("outputs/tk_analysis/skills_tk_year_month_counts.csv") # %% [markdown] # ### Get proportions for side by side comparison # Not using no-date data # %% year_month_counts["Proportion"] = year_month_counts[0] / (year_month_counts[0].sum()) # %% all_tk_year_month_counts_nonull = all_tk_year_month_counts[ pd.notnull(all_tk_year_month_counts["year"]) ] all_tk_year_month_counts_nonull["Proportion"] = all_tk_year_month_counts_nonull["0"] / ( all_tk_year_month_counts_nonull["0"].sum() ) # %% [markdown] # ### Plot dates with all TK dates # %% nesta_orange = [255 / 255, 90 / 255, 0] nesta_purple = [155 / 255, 0, 195 / 255] nesta_grey = [165 / 255, 148 / 255, 130 / 255] # %% ax = all_tk_year_month_counts_nonull.plot( x="year/month", y="Proportion", xlabel="Date of job advert", ylabel="Proportion of job adverts", c=nesta_grey, ) ax = year_month_counts.plot( x="year/month", y="Proportion", xlabel="Date of job advert", ylabel="Proportion of job adverts", c=nesta_orange, ax=ax, ) ax.legend(["All TK job adverts", "TK job adverts in sample"]) ax.figure.savefig( "outputs/tk_analysis/job_ad_date_sample_comparison.pdf", bbox_inches="tight" ) # %% all_tk_year_month_counts_nonull["year"] = all_tk_year_month_counts_nonull[ "year" ].astype(int) # %% fig = plt.figure(figsize=(7, 4)) # Create matplotlib figure ax = fig.add_subplot(111) # Create matplotlib axes width = 0.3 pd.DataFrame( all_tk_year_month_counts_nonull.groupby("year")["0"].sum() / sum(all_tk_year_month_counts_nonull["0"]) ).plot.bar(color=nesta_grey, ax=ax, width=width, position=1) pd.DataFrame( year_month_counts.groupby("year")[0].sum() / sum(year_month_counts[0]) ).plot.bar(color=nesta_orange, ax=ax, width=width, position=0) ax.set_ylabel("Proportion of job adverts") ax.set_xlabel("Year of job advert") ax.legend(["All TK job adverts", "TK job adverts in sample"], loc="upper right") ax.figure.savefig( "outputs/tk_analysis/job_ad_year_sample_comparison.pdf", bbox_inches="tight" ) # %% [markdown] # ## Location # %% tk_region = [] tk_subregion = [] for file_name in tqdm(range(0, 13)): file_dict = load_s3_data( s3, bucket_name, f"outputs/tk_data_analysis/metadata_location/{file_name}.json" ) tk_region.extend( [f[2] for job_id, f in file_dict.items() if f and job_id in skill_job_ads] ) tk_subregion.extend( [f[3] for job_id, f in file_dict.items() if f and job_id in skill_job_ads] ) print(len(tk_region)) print(len(tk_subregion)) # %% print(len(set(tk_region))) print(len(set(tk_subregion))) # %% count_region_df = pd.DataFrame.from_dict(Counter(tk_region), orient="index") count_region_df # %% count_region_df.to_csv("outputs/tk_analysis/skills_tk_regions_counts.csv") # %% print(count_region_df[0].sum()) count_region_df = count_region_df[pd.notnull(count_region_df.index)] print(count_region_df[0].sum()) # %% count_region_df # %% all_tk_count_region_df_nonull = all_tk_count_region_df[ pd.notnull(all_tk_count_region_df["Unnamed: 0"]) ] all_tk_count_region_df_nonull.index = all_tk_count_region_df_nonull["Unnamed: 0"] all_tk_count_region_df_nonull # %% fig = plt.figure(figsize=(7, 4)) # Create matplotlib figure ax = fig.add_subplot(111) # Create matplotlib axes width = 0.3 ax = ( pd.DataFrame( all_tk_count_region_df_nonull["0"] / sum(all_tk_count_region_df_nonull["0"]) ) .sort_values(by=["0"], ascending=False) .plot.bar(color=nesta_grey, legend=False, ax=ax, width=width, position=1) ) ax = pd.DataFrame(count_region_df[0] / sum(count_region_df[0])).plot.bar( color=nesta_orange, legend=False, ax=ax, width=width, position=0 ) ax.set_ylabel("Proportion of job adverts") ax.set_xlabel("Region of job advert") ax.legend(["All TK job adverts", "TK job adverts in sample"], loc="upper right") ax.figure.savefig( "outputs/tk_analysis/job_ad_region_sample_comparison.pdf", bbox_inches="tight" ) # %% count_subregion_df = pd.DataFrame.from_dict(Counter(tk_subregion), orient="index") # %% count_subregion_df.to_csv("outputs/tk_analysis/skills_tk_subregions_counts.csv") # %% print(count_subregion_df[0].sum()) count_subregion_df = count_subregion_df[
pd.notnull(count_subregion_df.index)
pandas.notnull
""" this is a mixture of the best #free twitter sentimentanalysis modules on github. i took the most usable codes and mixed them into one because all of them where for a linguistical search not usable and did not show a retweet or a full tweet no output as csv, only few informations of a tweet, switching language or even to compare linguistic features in tweets of two different langauges and etc. etc ... special and many many thanks to https://github.com/vprusso/youtube_tutorials who showed on his page a tutorial on how to do a sentimentanalysis with python i did this for users with not much skills and linguistical background to help them to get a corpus of twitterdata and to show them how to do a comparison between sentence based vs document based sentimentanalysis credits to all AVAILABLE FREE AND SIMPLE sentimentanalysis programms (dec. 2019) on github. many thanks to everybody and of course to github for making this exchange and usage possible! cemre koc (Goethe University, Frankfurt) Python3.7 """ from textblob import TextBlob #Sentimentlexikon FOR GERMAN (TEXTBLOB_DE import textblob_de import re #modul for regular expressions from tweepy import API #Twitter API modul for more info: look tweepy doc please! from tweepy import Cursor from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream import tweepy #usage of diffrent feautres of my programm import sys #only if wanted import csv ##only if wanted (see rest of programm) import pandas as pd #pandas for illustration import authentification #access to twitter import numpy as np #collection of tweets via numpy import matplotlib.pyplot as plt #if needed (see below for ploting) import numpy #output screen (if you use pycharm for full screen view) #only if needed pd.set_option('display.max_rows', 1000000000000) pd.set_option('display.max_columns', 1000000000)
pd.set_option('display.width', 100000000000)
pandas.set_option
# Downstream: crime prediction (also applicable to Fire calls prediction) # two modes: # --- No exogenous data # --- Oracle network # The model consists of a 3d cnn network that uses # historical ST data to predict next time step # users can choose not to use any features, or # to use arbitrary number of 1D or 2D features. import pandas as pd import numpy as np import sys import os import os.path dir_path = os.path.dirname(os.path.realpath(__file__)) parent_dir_path = os.path.abspath(os.path.join(dir_path, os.pardir)) sys.path.insert(0, parent_dir_path) from os import getcwd from os.path import join import matplotlib.pyplot as plt import argparse import time import datetime from datetime import timedelta from utils import datetime_utils import evaluation import crime_oracle from matplotlib import pyplot as plt HEIGHT = 32 WIDTH = 20 TIMESTEPS = 56 BIKE_CHANNEL = 1 # number of channels in historical ST NUM_2D_FEA = 15 NUM_1D_FEA = 3 BATCH_SIZE = 32 TRAINING_STEPS = 200 LEARNING_RATE = 0.005 fea_list = ['pop','normalized_pop', 'bi_caucasian','bi_age', 'bi_high_incm','bi_edu_univ', 'bi_nocar_hh', 'white_pop','age65_under', 'edu_uni'] class train: def __init__(self, raw_df, demo_raw, train_start_time = '2014-02-01',train_end_time = '2018-10-31', test_start_time = '2018-11-01 00:00:00', test_end_time = '2019-05-01 23:00:00' ): self.raw_df = raw_df self.demo_raw = demo_raw self.train_start_time = train_start_time self.train_end_time = train_end_time # set train/test set self.test_start_time = test_start_time self.test_end_time = test_end_time self.window = datetime.timedelta(hours=24 * 7) self.step = datetime.timedelta(hours=3) self.predict_start_time = datetime_utils.str_to_datetime(self.test_start_time) + self.window self.predict_end_time = datetime_utils.str_to_datetime(self.test_end_time) self.actual_end_time = self.predict_end_time - self.window self.train_df = raw_df[self.train_start_time: self.train_end_time] self.test_df = raw_df[self.test_start_time: self.test_end_time] self.grid_list = list(raw_df) def generate_binary_demo_attr(self, intersect_pos_set, bi_caucasian_th = 65.7384, age65_th = 13.01, hh_incm_hi_th = 41.76, edu_uni_th =53.48, no_car_hh_th = 16.94 ): self.demo_raw['bi_caucasian'] = [0]*len(self.demo_raw) self.demo_raw['bi_age'] = [0]*len(self.demo_raw) self.demo_raw['bi_high_incm'] = [0]*len(self.demo_raw) self.demo_raw['bi_edu_univ'] = [0]*len(self.demo_raw) self.demo_raw['bi_nocar_hh'] = [0]*len(self.demo_raw) self.demo_raw['mask'] = [0]*len(self.demo_raw) # should ignore cells that have no demo features for idx, row in self.demo_raw.iterrows(): if row['pos'] not in intersect_pos_set: continue self.demo_raw.loc[idx,'mask'] = 1 # caucasian = 1 if row['white_pop'] >= bi_caucasian_th: self.demo_raw.loc[idx,'bi_caucasian'] = 1 else: self.demo_raw.loc[idx,'bi_caucasian'] = -1 # young = 1 if row['age65'] < age65_th: self.demo_raw.loc[idx,'bi_age'] = 1 else: self.demo_raw.loc[idx,'bi_age'] = -1 # high_income = 1 if row['hh_incm_hi'] > hh_incm_hi_th: self.demo_raw.loc[idx,'bi_high_incm'] = 1 else: self.demo_raw.loc[idx,'bi_high_incm'] = -1 # edu_univ = 1 if row['edu_uni'] > edu_uni_th: self.demo_raw.loc[idx,'bi_edu_univ'] = 1 else: self.demo_raw.loc[idx,'bi_edu_univ'] = -1 # more car = 1 if row['no_car_hh'] < no_car_hh_th: self.demo_raw.loc[idx,'bi_nocar_hh'] = 1 else: self.demo_raw.loc[idx,'bi_nocar_hh'] = -1 self.demo_raw['normalized_pop'] = self.demo_raw['pop'] / self.demo_raw['pop'].sum() self.demo_raw['age65_under'] = 100- self.demo_raw['age65'] # make mask for demo data def demo_mask(self): rawdata_list = list() temp_image = [[0 for i in range(HEIGHT)] for j in range(WIDTH)] series = self.demo_raw['mask'] for i in range(len(self.demo_raw)): r = self.demo_raw['row'][i] c = self.demo_raw['col'][i] temp_image[r][c] = series[i] temp_arr = np.array(temp_image) temp_arr = np.rot90(temp_arr) rawdata_list.append(temp_arr) rawdata_arr = np.array(rawdata_list) rawdata_arr = np.moveaxis(rawdata_arr, 0, -1) return rawdata_arr # mask_arr def df_to_tensor(self): rawdata_list = list() for idx, dfrow in self.raw_df.iterrows(): temp_image = [[0 for i in range(HEIGHT)] for j in range(WIDTH)] for col in list(self.raw_df ): r = int(col.split('_')[0]) c = int(col.split('_')[1]) temp_image[r][c] = dfrow[col] temp_arr = np.array(temp_image) temp_arr = np.rot90(temp_arr) rawdata_list.append(temp_arr) rawdata_arr = np.array(rawdata_list) return rawdata_arr # demographic data to array: [32, 32, 14] def demodata_to_tensor(self, demo_arr = None): if demo_arr is None: raw_df = self.demo_raw.fillna(0) raw_df = demo_arr.fillna(0) rawdata_list = list() for fea in fea_list: temp_image = [[0 for i in range(HEIGHT)] for j in range(WIDTH)] series = raw_df[fea] for i in range(len(raw_df)): r = raw_df['row'][i] c = raw_df['col'][i] temp_image[r][c] = series[i] temp_arr = np.array(temp_image) temp_arr = np.rot90(temp_arr) rawdata_list.append(temp_arr) # [14, 32, 32] rawdata_arr = np.array(rawdata_list) rawdata_arr = np.moveaxis(rawdata_arr, 0, -1) return rawdata_arr def selected_demo_to_tensor(self): fea_to_include = fea_list.copy() fea_to_include.extend(['pos', 'row','col']) selected_demo_df = self.demo_raw[fea_to_include] demo_arr = self.demodata_to_tensor(selected_demo_df) return demo_arr def generate_fixlen_timeseries(self, rawdata_arr): raw_seq_list = list() arr_shape = rawdata_arr.shape for i in range(0, arr_shape[0] - (TIMESTEPS + 1)+1): start = i end = i+ (TIMESTEPS + 1) temp_seq = rawdata_arr[start: end] raw_seq_list.append(temp_seq) raw_seq_arr = np.array(raw_seq_list) raw_seq_arr = np.swapaxes(raw_seq_arr,0,1) return raw_seq_arr # split train/test according to predefined timestamps ''' return: train_arr: e.g.:[(169, # of training examples, 30, 30)] ''' def train_test_split(self,raw_seq_arr): train_hours = datetime_utils.get_total_3hour_range(self.train_start_time, self.train_end_time) train_arr = raw_seq_arr[:, :train_hours] test_arr = raw_seq_arr[:, train_hours:] return train_arr, test_arr def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-use_1d_fea', type=bool, default=False, action="store", help = 'whether to use 1d features. If use this option, set to True. Otherwise, default False') parser.add_argument('-use_2d_fea', type=bool, default=False, action="store", help = 'whether to use 2d features') parser.add_argument('-use_3d_fea', type=bool, default=False, action="store", help = 'whether to use 3d features') parser.add_argument('-s', '--suffix', action="store", help = 'save path suffix', default = '') parser.add_argument("-r","--resume_training", type=bool, default=False, help="A boolean value whether or not to resume training from checkpoint") parser.add_argument('-t', '--train_dir', action="store", help = 'training dir containing checkpoints', default = '') parser.add_argument('-c', '--checkpoint', action="store", help = 'checkpoint path (resume training)', default = None) parser.add_argument('-e', '--epoch', type=int, action="store", help = 'epochs to train', default = 200) parser.add_argument('-l', '--learning_rate', type=float, action="store", help = 'epochs to train', default = 0.005) return parser.parse_args() def main(): args = parse_args() use_1d_fea = bool(args.use_1d_fea) use_2d_fea = bool(args.use_2d_fea) use_3d_fea = bool(args.use_3d_fea) suffix = args.suffix # the following arguments for resuming training resume_training = args.resume_training train_dir = args.train_dir checkpoint = args.checkpoint epoch = args.epoch learning_rate= args.learning_rate if checkpoint is not None: checkpoint = train_dir + checkpoint print('pick up checkpoint: ', checkpoint) print('load data for Seattle...') globals()['TRAINING_STEPS'] = epoch globals()['LEARNING_RATE'] = learning_rate rawdata = pd.read_csv('../data_processing/3d_source_data/seattlecrime_grided_3-day_3-hour_20140101-20190505.csv', index_col = 0) rawdata.index = pd.to_datetime(rawdata.index) rawdata = rawdata.loc['2014-02-01 00:00:00': '2019-05-01 23:00:00'] # a set of region codes (e.g.: 10_10) that intersect with the city intersect_pos = pd.read_csv('../auxillary_data/intersect_pos_32_20.csv') intersect_pos_set = set(intersect_pos['0'].tolist()) # demographic data # should use 2018 data demo_raw =
pd.read_csv('../auxillary_data/whole_grid_32_20_demo_1000_intersect_geodf_2018_corrected.csv', index_col = 0)
pandas.read_csv
# coding: utf-8 # In[37]: import pandas as pd from sklearn import preprocessing import numpy as np import os import h5py import json import h5py # In[17]: distance_data_path = "data.csv" hnsw_result_path = "/home/lab4/code/HNSW/KNN-Evaluate/hnsw_result1111.h5py" test_file_path = "test_image_feature.csv" train_file_path = "vect_itemid130k.h5py" # ### Loading hnsw data # In[18]: f = h5py.File(hnsw_result_path) hnsw_ids_result = np.array(f["itemID"]) # ### Loading testing data and sort() test_ids to match to result_hnsw_ids # # In[19]: df =
pd.read_csv(test_file_path, sep="\t", converters={1: json.loads})
pandas.read_csv
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt import settings from vectorbt.utils.random import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) settings.returns['year_freq'] = '252 days' # same as empyrical price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_process_order_nb(): # Errors, ignored and rejected orders log_record = np.empty(1, dtype=log_dt)[0] log_record[0] = 0 log_record[1] = 0 log_record[2] = 0 log_record[3] = 0 log_record[-1] = 0 cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=0)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=1)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( -100., 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.nan, 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.inf, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.nan, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., -100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=0), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=np.nan), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=2), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., np.nan, nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., -10., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., np.inf, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., -10., 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., np.nan, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 10., 10., 1100., nb.create_order_nb(size=0, price=10), log_record) assert cash_now == 100. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1., raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1.), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.All), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 180. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 909. assert shares_now == -100. assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 50. assert shares_now == 4.9 assert_same_tuple(order_result, OrderResult( size=4.9, price=10.0, fees=1., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 49. assert shares_now == 5. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=1., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 100., nb.create_order_nb(size=1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., -10., 10., 100., nb.create_order_nb(size=-1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == -20. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 150., -5., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=0., side=1, status=0, status_info=-1)) # Logging _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.nan, 0, 2, np.nan, 0., 0., 0., 0., np.inf, 0., True, False, True, 100., 0., np.nan, np.nan, np.nan, -1, 1, 0, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 0., 10., 10., 10., 0., 0, 0, -1, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., -np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 200., -10., 10., 10., 0., 1, 0, -1, 0 )) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_all(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='all', **kwargs) def from_signals_longonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='shortonly', **kwargs) class TestFromSignals: def test_one_column(self): record_arrays_close( from_signals_all().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_signals_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 200., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 100., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0), (2, 0, 1, 100., 1., 0., 1), (3, 3, 1, 50., 4., 0., 0), (4, 0, 2, 100., 1., 0., 1), (5, 3, 2, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size(self): record_arrays_close( from_signals_all(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 2.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 3, 2, 1.0, 4.0, 0.0, 0), (4, 0, 3, 100.0, 1.0, 0.0, 1), (5, 3, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception) as e_info: _ = from_signals_all(size=0.5, size_type='percent') record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True, accumulate=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 3, 0, 31.25, 4., 0., 1), (3, 4, 0, 15.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_signals_longonly( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 25., 1., 0., 0), (2, 0, 2, 12.5, 1., 0., 0), (3, 3, 0, 50., 4., 0., 1), (4, 3, 1, 25., 4., 0., 1), (5, 3, 2, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 3, 0, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 3, 0, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 3, 0, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_signals_all(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.8, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.4, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.4, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_all(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.1, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_all(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 2.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 1.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 0.9, 0.0, 1), (3, 3, 1, 1.0, 4.4, 0.0, 0), (4, 0, 2, 1.0, 0.0, 0.0, 1), (5, 3, 2, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_all(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_all(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 4, 0, 0.5, 5.0, 0.0, 1), (3, 0, 1, 1.0, 1.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 1), (6, 0, 2, 1.0, 1.0, 0.0, 0), (7, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1), (4, 0, 2, 1.0, 1.0, 0.0, 0), (5, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 3, 0, 0.5, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_all(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_close_first(self): record_arrays_close( from_signals_all(close_first=[[False, True]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1), (4, 4, 1, 80.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all( price=pd.Series(price.values[::-1], index=price.index), entries=pd.Series(entries.values[::-1], index=price.index), exits=pd.Series(exits.values[::-1], index=price.index), close_first=[[False, True]] ).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 3, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 20.0, 5.0, 0.0, 1), (3, 3, 1, 20.0, 2.0, 0.0, 0), (4, 4, 1, 160.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_all(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1), (2, 3, 1, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 3, 0, 275.0, 4.0, 0.0, 0), (2, 0, 1, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 3, 0, 50.0, 4.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_all(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_all(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_accumulate(self): record_arrays_close( from_signals_all(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_log(self): record_arrays_close( from_signals_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 3, 0, 0, 0.0, 100.0, 4.0, 400.0, -np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 800.0, -100.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_conflict_mode(self): kwargs = dict( price=price.iloc[:3], entries=pd.DataFrame([ [True, True, True, True, True], [True, True, True, True, False], [True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True], [False, False, False, False, True], [True, True, True, True, True] ]), size=1., conflict_mode=[[ 'ignore', 'entry', 'exit', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_all(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 1, 2, 2.0, 2.0, 0.0, 0), (4, 2, 2, 2.0, 3.0, 0.0, 1), (5, 1, 3, 1.0, 2.0, 0.0, 0), (6, 2, 3, 2.0, 3.0, 0.0, 1), (7, 1, 4, 1.0, 2.0, 0.0, 1), (8, 2, 4, 2.0, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 1, 2, 1.0, 2.0, 0.0, 0), (3, 2, 2, 1.0, 3.0, 0.0, 1), (4, 1, 3, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 1), (2, 1, 2, 1.0, 2.0, 0.0, 1), (3, 2, 2, 1.0, 3.0, 0.0, 0), (4, 1, 3, 1.0, 2.0, 0.0, 1), (5, 2, 3, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_all(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 3, 0, 1.0, 4.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 3, 1, 2.0, 4.0, 0.0, 1), (3, 0, 2, 1.0, 1.0, 0.0, 0), (4, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 1, 1.0, 1.0, 0.0, 0), (1, 3, 1, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 0.25, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 0.5, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_all(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_signals_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) portfolio = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_max_orders(self): _ = from_signals_all(price=price_wide) _ = from_signals_all(price=price_wide, max_orders=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_all(price=price_wide, log=True) _ = from_signals_all(price=price_wide, log=True, max_logs=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandom: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='rand_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples([(0.25, 0.25), (0.5, 0.5)], names=['rprob_entry_prob', 'rprob_exit_prob']) ) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_all(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='all', **kwargs) def from_orders_longonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='longonly', **kwargs) def from_orders_shortonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_all().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1), (8, 0, 2, 100.0, 1.0, 0.0, 0), (9, 1, 2, 100.0, 2.0, 0.0, 1), (10, 3, 2, 50.0, 4.0, 0.0, 0), (11, 4, 2, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 0, 2, 100.0, 1.0, 0.0, 1), (5, 1, 2, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_all(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 198.01980198019803, 2.02, 0.0, 1), (2, 3, 0, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 1), (2, 3, 0, 49.504950495049506, 4.04, 0.0, 0), (3, 4, 0, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 3, 1, 1.0, 4.0, 0.4, 1), (7, 4, 1, 1.0, 5.0, 0.5, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 2.0, 0), (10, 3, 2, 1.0, 4.0, 4.0, 1), (11, 4, 2, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 3, 1, 1.0, 4.0, 0.1, 1), (7, 4, 1, 1.0, 5.0, 0.1, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 1.0, 0), (10, 3, 2, 1.0, 4.0, 1.0, 1), (11, 4, 2, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_all(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 3, 1, 1.0, 3.6, 0.0, 1), (7, 4, 1, 1.0, 5.5, 0.0, 0), (8, 0, 2, 1.0, 0.0, 0.0, 1), (9, 1, 2, 1.0, 4.0, 0.0, 0), (10, 3, 2, 1.0, 0.0, 0.0, 1), (11, 4, 2, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_all(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_all(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 1, 0, 0.5, 2.0, 0.0, 0), (2, 3, 0, 0.5, 4.0, 0.0, 1), (3, 4, 0, 0.5, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0), (8, 0, 2, 1.0, 1.0, 0.0, 1), (9, 1, 2, 1.0, 2.0, 0.0, 0), (10, 3, 2, 1.0, 4.0, 0.0, 1), (11, 4, 2, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_all(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 3, 1, 1.0, 4.0, 0.0, 0), (6, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 3, 1, 1.0, 4.0, 0.0, 0), (5, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 4, 1, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0), (4, 0, 1, 1000.0, 1.0, 0.0, 1), (5, 3, 1, 1000.0, 4.0, 0.0, 1), (6, 4, 1, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_orders_all(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 1, 0, 0, 0.0, 100.0, 2.0, 200.0, -np.inf, 0, 2, 2.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 2, 0, 0, 400.0, -100.0, 3.0, 100.0, np.nan, 0, 2, 3.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 3, 0, 0, 400.0, -100.0, 4.0, 0.0, np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 4, 0, 0, 0.0, 0.0, 5.0, 0.0, -np.inf, 0, 2, 5.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 3, 1, 200.0, 4.0, 0.0, 0), (4, 4, 1, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 3, 1, 100.0, 4.0, 0.0, 0), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_orders_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_target_shares(self): record_arrays_close( from_orders_all(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=75., size_type='targetshares', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_all(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 2, 1, 8.333333333333332, 3.0, 0.0, 0), (8, 3, 1, 4.166666666666668, 4.0, 0.0, 0), (9, 4, 1, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 25.0, 2.0, 0.0, 0), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 0), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 0), (4, 4, 0, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0), (2, 1, 0, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 1, 2, 25.0, 2.0, 0.0, 0), (5, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (6, 2, 1, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (9, 3, 1, 4.166666666666668, 4.0, 0.0, 1), (10, 3, 2, 4.166666666666668, 4.0, 0.0, 1), (11, 4, 0, 2.5, 5.0, 0.0, 1), (12, 4, 1, 2.5, 5.0, 0.0, 1), (13, 4, 2, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 2, 1, 6.25, 3.0, 0.0, 0), (8, 3, 1, 2.34375, 4.0, 0.0, 0), (9, 4, 1, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 37.5, 2.0, 0.0, 0), (2, 2, 0, 6.25, 3.0, 0.0, 0), (3, 3, 0, 2.34375, 4.0, 0.0, 0), (4, 4, 0, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 0, 1, 2.50000000e+01, 1., 0., 0), (2, 0, 2, 1.25000000e+01, 1., 0., 0), (3, 1, 0, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 1, 2, 7.81250000e-01, 2., 0., 0), (6, 2, 0, 2.60416667e-01, 3., 0., 0), (7, 2, 1, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 3, 0, 2.44140625e-02, 4., 0., 0), (10, 3, 1, 1.22070312e-02, 4., 0., 0), (11, 3, 2, 6.10351562e-03, 4., 0., 0), (12, 4, 0, 2.44140625e-03, 5., 0., 0), (13, 4, 1, 1.22070312e-03, 5., 0., 0), (14, 4, 2, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_all(price=price_wide) _ = from_orders_all(price=price_wide, max_orders=9) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_all(price=price_wide, log=True) _ = from_orders_all(price=price_wide, log=True, max_logs=15) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, log=True, max_logs=14) # ############# from_order_func ############# # @njit def order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col]) @njit def log_order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col], log=True) class TestFromOrderFunc: @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_one_column(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price.tolist(), order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func(price, order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_multiple_columns(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price_wide, order_func_nb, np.inf, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (5, 0, 1, 100.0, 1.0, 0.0, 0), (6, 1, 1, 200.0, 2.0, 0.0, 1), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_shape(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5,), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise, keys=pd.Index(['first'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0, 1, 2], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise, keys=pd.Index(['first', 'second', 'third'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first', 'second', 'third'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_group_by(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (8, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_cash_sharing(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 2, 200.0, 2.0, 0.0, 1), (4, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (4, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (5, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def segment_prep_func_nb(sc, target_hold_value): order_size = np.copy(target_hold_value[sc.i, sc.from_col:sc.to_col]) order_size_type = np.full(sc.group_len, SizeType.TargetValue) direction = np.full(sc.group_len, Direction.All) order_value_out = np.empty(sc.group_len, dtype=np.float_) sc.last_val_price[sc.from_col:sc.to_col] = sc.close[sc.i, sc.from_col:sc.to_col] nb.sort_call_seq_nb(sc, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(oc, order_size, order_size_type, direction): col_i = oc.call_seq_now[oc.call_idx] return nb.create_order_nb( size=order_size[col_i], size_type=order_size_type[col_i], price=oc.close[oc.i, col_i], direction=direction[col_i] ) portfolio = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=False), target_hold_value ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_value(self, test_row_wise): @njit def target_val_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_val_order_func_nb(oc): return nb.create_order_nb(size=50., size_type=SizeType.TargetValue, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, segment_prep_func_nb=target_val_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_percent(self, test_row_wise): @njit def target_pct_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_pct_order_func_nb(oc): return nb.create_order_nb(size=0.5, size_type=SizeType.TargetPercent, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, segment_prep_func_nb=target_pct_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_init_cash(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=[1., 10., np.inf]) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 1.0, 0.0, 0), (2, 0, 2, 10.0, 1.0, 0.0, 0), (3, 1, 0, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 1, 2, 10.0, 2.0, 0.0, 1), (6, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 3, 0, 10.0, 4.0, 0.0, 1), (10, 3, 1, 10.0, 4.0, 0.0, 1), (11, 3, 2, 10.0, 4.0, 0.0, 1), (12, 4, 0, 8.0, 5.0, 0.0, 0), (13, 4, 1, 8.0, 5.0, 0.0, 0), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 2.0, 0.0, 1), (2, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (3, 3, 0, 10.0, 4.0, 0.0, 1), (4, 4, 0, 8.0, 5.0, 0.0, 0), (5, 0, 1, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 3, 1, 10.0, 4.0, 0.0, 1), (9, 4, 1, 8.0, 5.0, 0.0, 0), (10, 0, 2, 10.0, 1.0, 0.0, 0), (11, 1, 2, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 3, 2, 10.0, 4.0, 0.0, 1), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(portfolio._init_cash) == np.ndarray base_portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=np.inf) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.Auto) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.Auto portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def group_prep_func_nb(gc, call_i, group_lst): call_i[0] += 1 group_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,) ) assert call_i[0] == 28 assert list(sim_lst) == [1] assert list(group_lst) == [2, 18] assert list(segment_lst) == [3, 6, 9, 12, 15, 19, 21, 23, 25, 27] assert list(order_lst) == [4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 22, 24, 26, 28] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, True], [False, False], [False, True], [False, False], [False, True], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask ) assert call_i[0] == 8 assert list(sim_lst) == [1] assert list(group_lst) == [2] assert list(segment_lst) == [3, 5, 7] assert list(order_lst) == [4, 6, 8] def test_func_calls_row_wise(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def row_prep_func_nb(gc, call_i, row_lst): call_i[0] += 1 row_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), row_wise=True ) assert call_i[0] == 31 assert list(sim_lst) == [1] assert list(row_lst) == [2, 8, 14, 20, 26] assert list(segment_lst) == [3, 6, 9, 12, 15, 18, 21, 24, 27, 30] assert list(order_lst) == [4, 5, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 28, 29, 31] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask, row_wise=True ) assert call_i[0] == 14 assert list(sim_lst) == [1] assert list(row_lst) == [2, 5, 9] assert list(segment_lst) == [3, 6, 10, 13] assert list(order_lst) == [4, 7, 8, 11, 12, 14] @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_orders(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=14) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_logs(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=14) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'all'] group_by = pd.Index(['first', 'first', 'second'], name='group') portfolio = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D' ) # independent portfolio_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D' ) # grouped portfolio_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D' ) # shared class TestPortfolio: def test_config(self, tmp_path): assert vbt.Portfolio.loads(portfolio['a'].dumps()) == portfolio['a'] assert vbt.Portfolio.loads(portfolio.dumps()) == portfolio portfolio.save(tmp_path / 'portfolio') assert vbt.Portfolio.load(tmp_path / 'portfolio') == portfolio def test_wrapper(self): pd.testing.assert_index_equal( portfolio.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio.wrapper.columns, price_na.columns ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.grouper.group_by is None assert portfolio.wrapper.grouper.allow_enable assert portfolio.wrapper.grouper.allow_disable assert portfolio.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_grouped.wrapper.columns, price_na.columns ) assert portfolio_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_grouped.wrapper.grouper.group_by, group_by ) assert portfolio_grouped.wrapper.grouper.allow_enable assert portfolio_grouped.wrapper.grouper.allow_disable assert portfolio_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_shared.wrapper.columns, price_na.columns ) assert portfolio_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_shared.wrapper.grouper.group_by, group_by ) assert not portfolio_shared.wrapper.grouper.allow_enable assert portfolio_shared.wrapper.grouper.allow_disable assert not portfolio_shared.wrapper.grouper.allow_modify def test_indexing(self): assert portfolio['a'].wrapper == portfolio.wrapper['a'] assert portfolio['a'].orders == portfolio.orders['a'] assert portfolio['a'].logs == portfolio.logs['a'] assert portfolio['a'].init_cash == portfolio.init_cash['a'] pd.testing.assert_series_equal(portfolio['a'].call_seq, portfolio.call_seq['a']) assert portfolio['c'].wrapper == portfolio.wrapper['c'] assert portfolio['c'].orders == portfolio.orders['c'] assert portfolio['c'].logs == portfolio.logs['c'] assert portfolio['c'].init_cash == portfolio.init_cash['c'] pd.testing.assert_series_equal(portfolio['c'].call_seq, portfolio.call_seq['c']) assert portfolio[['c']].wrapper == portfolio.wrapper[['c']] assert portfolio[['c']].orders == portfolio.orders[['c']] assert portfolio[['c']].logs == portfolio.logs[['c']] pd.testing.assert_series_equal(portfolio[['c']].init_cash, portfolio.init_cash[['c']]) pd.testing.assert_frame_equal(portfolio[['c']].call_seq, portfolio.call_seq[['c']]) assert portfolio_grouped['first'].wrapper == portfolio_grouped.wrapper['first'] assert portfolio_grouped['first'].orders == portfolio_grouped.orders['first'] assert portfolio_grouped['first'].logs == portfolio_grouped.logs['first'] assert portfolio_grouped['first'].init_cash == portfolio_grouped.init_cash['first'] pd.testing.assert_frame_equal(portfolio_grouped['first'].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped[['first']].wrapper == portfolio_grouped.wrapper[['first']] assert portfolio_grouped[['first']].orders == portfolio_grouped.orders[['first']] assert portfolio_grouped[['first']].logs == portfolio_grouped.logs[['first']] pd.testing.assert_series_equal( portfolio_grouped[['first']].init_cash, portfolio_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_grouped[['first']].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped['second'].wrapper == portfolio_grouped.wrapper['second'] assert portfolio_grouped['second'].orders == portfolio_grouped.orders['second'] assert portfolio_grouped['second'].logs == portfolio_grouped.logs['second'] assert portfolio_grouped['second'].init_cash == portfolio_grouped.init_cash['second'] pd.testing.assert_series_equal(portfolio_grouped['second'].call_seq, portfolio_grouped.call_seq['c']) assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].wrapper == portfolio_grouped.wrapper[['second']] assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].logs == portfolio_grouped.logs[['second']] pd.testing.assert_series_equal( portfolio_grouped[['second']].init_cash, portfolio_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_grouped[['second']].call_seq, portfolio_grouped.call_seq[['c']]) assert portfolio_shared['first'].wrapper == portfolio_shared.wrapper['first'] assert portfolio_shared['first'].orders == portfolio_shared.orders['first'] assert portfolio_shared['first'].logs == portfolio_shared.logs['first'] assert portfolio_shared['first'].init_cash == portfolio_shared.init_cash['first'] pd.testing.assert_frame_equal(portfolio_shared['first'].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].wrapper == portfolio_shared.wrapper[['first']] assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].logs == portfolio_shared.logs[['first']] pd.testing.assert_series_equal( portfolio_shared[['first']].init_cash, portfolio_shared.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_shared[['first']].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared['second'].wrapper == portfolio_shared.wrapper['second'] assert portfolio_shared['second'].orders == portfolio_shared.orders['second'] assert portfolio_shared['second'].logs == portfolio_shared.logs['second'] assert portfolio_shared['second'].init_cash == portfolio_shared.init_cash['second'] pd.testing.assert_series_equal(portfolio_shared['second'].call_seq, portfolio_shared.call_seq['c']) assert portfolio_shared[['second']].wrapper == portfolio_shared.wrapper[['second']] assert portfolio_shared[['second']].orders == portfolio_shared.orders[['second']] assert portfolio_shared[['second']].logs == portfolio_shared.logs[['second']] pd.testing.assert_series_equal( portfolio_shared[['second']].init_cash, portfolio_shared.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_shared[['second']].call_seq, portfolio_shared.call_seq[['c']]) def test_regroup(self): assert portfolio.regroup(None) == portfolio assert portfolio.regroup(False) == portfolio assert portfolio.regroup(group_by) != portfolio pd.testing.assert_index_equal(portfolio.regroup(group_by).wrapper.grouper.group_by, group_by) assert portfolio_grouped.regroup(None) == portfolio_grouped assert portfolio_grouped.regroup(False) != portfolio_grouped assert portfolio_grouped.regroup(False).wrapper.grouper.group_by is None assert portfolio_grouped.regroup(group_by) == portfolio_grouped assert portfolio_shared.regroup(None) == portfolio_shared with pytest.raises(Exception) as e_info: _ = portfolio_shared.regroup(False) assert portfolio_shared.regroup(group_by) == portfolio_shared def test_cash_sharing(self): assert not portfolio.cash_sharing assert not portfolio_grouped.cash_sharing assert portfolio_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( portfolio.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_incl_unrealized(self): assert not vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=False).incl_unrealized assert vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=True).incl_unrealized def test_orders(self): record_arrays_close( portfolio.orders.values, np.array([ (0, 1, 0, 0.1, 2.02, 0.10202, 0), (1, 2, 0, 0.1, 2.9699999999999998, 0.10297, 1), (2, 4, 0, 1.0, 5.05, 0.1505, 0), (3, 0, 1, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 3, 1, 0.1, 4.04, 0.10404000000000001, 0), (6, 4, 1, 1.0, 4.95, 0.14950000000000002, 1), (7, 0, 2, 1.0, 1.01, 0.1101, 0), (8, 1, 2, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 3, 2, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.orders.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.orders.count(), result ) pd.testing.assert_series_equal( portfolio_shared.orders.count(), result ) def test_logs(self): record_arrays_close( portfolio.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, np.nan, 100.0, 1.0, 0, 0, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.0, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 1, 0, 0, 100.0, 0.0, 2.0, 100.0, 0.1, 0, 0, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.69598, 0.1, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 2, 0, 0, 99.69598, 0.1, 3.0, 99.99598, -1.0, 0, 0, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 3, 0, 0, 99.89001, 0.0, 4.0, 99.89001, -0.1, 0, 0, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 4, 0, 0, 99.89001, 0.0, 5.0, 99.89001, 1.0, 0, 0, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 94.68951, 1.0, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 0, 1, 1, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 1, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.8801, -1.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 2.0, 98.8801, 0.1, 0, 1, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 2, 1, 1, 100.97612, -1.1, np.nan, np.nan, -1.0, 0, 1, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 3, 1, 1, 100.97612, -1.1, 4.0, 96.57611999999999, -0.1, 0, 1, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.46808, -1.0, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 4, 1, 1, 100.46808, -1.0, 5.0, 95.46808, 1.0, 0, 1, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 105.26858, -2.0, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 0, 2, 2, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 2, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.8799, 1.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 1, 2, 2, 98.8799, 1.0, 2.0, 100.8799, 0.1, 0, 2, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.57588000000001, 1.1, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 3.0, 101.87588000000001, -1.0, 0, 2, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.41618000000001, 0.10000000000000009, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 3, 2, 2, 101.41618000000001, 0.10000000000000009, 4.0, 101.81618000000002, -0.1, 0, 2, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 4, 2, 2, 101.70822000000001, 0.0, np.nan, 101.70822000000001, 1.0, 0, 2, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.logs.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.logs.count(), result ) pd.testing.assert_series_equal( portfolio_shared.logs.count(), result ) def test_trades(self): record_arrays_close( portfolio.trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.trades.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.trades.count(), result ) pd.testing.assert_series_equal( portfolio_shared.trades.count(), result ) def test_positions(self): record_arrays_close( portfolio.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1) ], dtype=position_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.positions.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.positions.count(), result ) pd.testing.assert_series_equal( portfolio_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( portfolio.drawdowns.values, np.array([ (0, 0, 0, 4, 4, 0), (1, 1, 0, 4, 4, 0), (2, 2, 2, 3, 4, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(portfolio.close, price_na) pd.testing.assert_frame_equal(portfolio_grouped.close, price_na) pd.testing.assert_frame_equal(portfolio_shared.close, price_na) def test_fill_close(self): pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=False), price_na ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=False), price_na.ffill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=True), price_na.bfill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=True), price_na.ffill().bfill() ) def test_share_flow(self): pd.testing.assert_frame_equal( portfolio.share_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.share_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.share_flow(), result ) def test_shares(self): pd.testing.assert_frame_equal( portfolio.shares(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.shares(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.shares(), result ) pd.testing.assert_frame_equal( portfolio_grouped.shares(), result ) pd.testing.assert_frame_equal( portfolio_shared.shares(), result ) def test_pos_mask(self): pd.testing.assert_frame_equal( portfolio.pos_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.pos_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.pos_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(), result ) def test_pos_coverage(self): pd.testing.assert_series_equal( portfolio.pos_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('pos_coverage') ) pd.testing.assert_series_equal( portfolio.pos_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('pos_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( portfolio.cash_flow(short_cash=False), pd.DataFrame( np.array([ [0., -1.0999, -1.1201], [-0.30402, -0.29998, -0.30402], [0.19403, 0., 2.8403], [0., 0.29996, 0.29204], [-5.2005, -5.0995, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( portfolio.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( portfolio.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.init_cash, result ) pd.testing.assert_series_equal( portfolio_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=None).init_cash, pd.Series( np.array([14000., 14000., 14000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) def test_cash(self): pd.testing.assert_frame_equal( portfolio.cash(short_cash=False), pd.DataFrame( np.array([ [100., 98.9001, 98.8799], [99.69598, 98.60012, 98.57588], [99.89001, 98.60012, 101.41618], [99.89001, 98.90008, 101.70822], [94.68951, 93.80058, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [100., 100.8801, 98.8799], [99.69598, 100.97612, 98.57588], [99.89001, 100.97612, 101.41618], [99.89001, 100.46808, 101.70822], [94.68951, 105.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash(group_by=False), pd.DataFrame( np.array([ [200., 200.8801, 98.8799], [199.69598, 200.97612, 98.57588], [199.89001, 200.97612, 101.41618], [199.89001, 200.46808, 101.70822], [194.68951, 205.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.cash(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [200.8801, 200.8801, 98.8799], [200.6721, 200.97612, 98.57588000000001], [200.86613, 200.6721, 101.41618000000001], [200.35809, 200.35809, 101.70822000000001], [199.95809, 205.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200.8801, 98.8799], [200.6721, 98.57588], [200.86613, 101.41618], [200.35809, 101.70822], [199.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash(), result ) def test_holding_value(self): pd.testing.assert_frame_equal( portfolio.holding_value(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.2, 0., 2.2], [0., 0., 0.3], [0., 0., 0.], [5., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.holding_value(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 2.2, 0.], [0., np.nan, 0.], [0., 4., 0.], [0., 10., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.2, -2.2, 2.2], [0., np.nan, 0.3], [0., -4., 0.], [5., -10., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.holding_value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.holding_value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.holding_value(group_by=False), result ) result = pd.DataFrame( np.array([ [-1., 1.], [-2., 2.2], [np.nan, 0.3], [-4., 0.], [-5., 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.holding_value(), result ) pd.testing.assert_frame_equal( portfolio_shared.holding_value(), result ) def test_gross_exposure(self): pd.testing.assert_frame_equal( portfolio.gross_exposure(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 0.01001202], [0.00200208, 0., 0.02183062], [0., 0., 0.00294938], [0., 0., 0.], [0.05015573, 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.gross_exposure(direction='shortonly'), pd.DataFrame( np.array([ [0., 0.01001, 0.], [0., 0.02182537, 0.], [0., np.nan, 0.], [0., 0.03887266, 0.], [0., 0.09633858, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -0.01021449, 0.01001202], [0.00200208, -0.02282155, 0.02183062], [0., np.nan, 0.00294938], [0., -0.0421496, 0.], [0.05015573, -0.11933092, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.gross_exposure(), result ) pd.testing.assert_frame_equal( portfolio_grouped.gross_exposure(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.gross_exposure(group_by=False), pd.DataFrame( np.array([ [0., -0.00505305, 0.01001202], [0.00100052, -0.01120162, 0.02183062], [0., np.nan, 0.00294938], [0., -0.02052334, 0.], [0.02503887, -0.05440679, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.005003, 0.01001202], [-0.01006684, 0.02183062], [np.nan, 0.00294938], [-0.02037095, 0.], [-0.02564654, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.gross_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.gross_exposure(), result ) pd.testing.assert_frame_equal( portfolio_shared.gross_exposure(), result ) def test_net_exposure(self): result = pd.DataFrame( np.array([ [0., -0.01001, 0.01001202], [0.00200208, -0.02182537, 0.02183062], [0., np.nan, 0.00294938], [0., -0.03887266, 0.], [0.05015573, -0.09633858, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.net_exposure(), result ) pd.testing.assert_frame_equal( portfolio_grouped.net_exposure(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.net_exposure(group_by=False), pd.DataFrame( np.array([ [0., -0.0050025, 0.01001202], [0.00100052, -0.01095617, 0.02183062], [0., np.nan, 0.00294938], [0., -0.01971414, 0.], [0.02503887, -0.04906757, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.00495344, 0.01001202], [-0.00984861, 0.02183062], [np.nan, 0.00294938], [-0.01957348, 0.], [-0.02323332, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.net_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.net_exposure(), result ) pd.testing.assert_frame_equal( portfolio_shared.net_exposure(), result ) def test_value(self): result = pd.DataFrame( np.array([ [100., 99.8801, 99.8799], [99.89598, 98.77612, 100.77588], [99.89001, np.nan, 101.71618], [99.89001, 96.46808, 101.70822], [99.68951, 95.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.value(group_by=False), pd.DataFrame( np.array([ [200., 199.8801, 99.8799], [199.89598, 198.77612, 100.77588], [199.89001, np.nan, 101.71618], [199.89001, 196.46808, 101.70822], [199.68951, 195.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.value(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [199.8801, 199.8801, 99.8799], [198.6721, 198.77612000000002, 100.77588000000002], [np.nan, np.nan, 101.71618000000001], [196.35809, 196.35809, 101.70822000000001], [194.95809, 195.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [199.8801, 99.8799], [198.6721, 100.77588], [np.nan, 101.71618], [196.35809, 101.70822], [194.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.value(), result ) pd.testing.assert_frame_equal( portfolio_shared.value(), result ) def test_total_profit(self): result = pd.Series( np.array([-0.31049, -4.73142, 1.70822]), index=price_na.columns ).rename('total_profit') pd.testing.assert_series_equal( portfolio.total_profit(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_profit(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_profit(group_by=False), result ) result = pd.Series( np.array([-5.04191, 1.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_profit') pd.testing.assert_series_equal( portfolio.total_profit(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_profit(), result ) pd.testing.assert_series_equal( portfolio_shared.total_profit(), result ) def test_final_value(self): result = pd.Series( np.array([99.68951, 95.26858, 101.70822]), index=price_na.columns ).rename('final_value') pd.testing.assert_series_equal( portfolio.final_value(), result ) pd.testing.assert_series_equal( portfolio_grouped.final_value(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.final_value(group_by=False), pd.Series( np.array([199.68951, 195.26858, 101.70822]), index=price_na.columns ).rename('final_value') ) result = pd.Series( np.array([194.95809, 101.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('final_value') pd.testing.assert_series_equal( portfolio.final_value(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.final_value(), result ) pd.testing.assert_series_equal( portfolio_shared.final_value(), result ) def test_total_return(self): result = pd.Series( np.array([-0.0031049, -0.0473142, 0.0170822]), index=price_na.columns ).rename('total_return') pd.testing.assert_series_equal( portfolio.total_return(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_return(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_return(group_by=False), pd.Series( np.array([-0.00155245, -0.0236571, 0.0170822]), index=price_na.columns ).rename('total_return') ) result = pd.Series( np.array([-0.02520955, 0.0170822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_return') pd.testing.assert_series_equal( portfolio.total_return(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_return(), result ) pd.testing.assert_series_equal( portfolio_shared.total_return(), result ) def test_returns(self): result = pd.DataFrame( np.array([ [0.00000000e+00, -1.19900000e-03, -1.20100000e-03], [-1.04020000e-03, -1.10530526e-02, 8.97057366e-03], [-5.97621646e-05, np.nan, 9.33060570e-03], [0.00000000e+00, np.nan, -7.82569695e-05], [-2.00720773e-03, -1.24341648e-02, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.returns(group_by=False), pd.DataFrame( np.array([ [0.00000000e+00, -5.99500000e-04, -1.20100000e-03], [-5.20100000e-04, -5.52321117e-03, 8.97057366e-03], [-2.98655331e-05, np.nan, 9.33060570e-03], [0.00000000e+00, np.nan, -7.82569695e-05], [-1.00305163e-03, -6.10531746e-03, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.returns(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [0.0, -0.0005995000000000062, -1.20100000e-03], [-0.0005233022960706736, -0.005523211165093367, 8.97057366e-03], [np.nan, np.nan, 9.33060570e-03], [0.0, np.nan, -7.82569695e-05], [-0.0010273695869600474, -0.0061087373583639994, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-5.99500000e-04, -1.20100000e-03], [-6.04362315e-03, 8.97057366e-03], [np.nan, 9.33060570e-03], [np.nan, -7.82569695e-05], [-7.12983101e-03, 0.00000000e+00] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.returns(), result ) def test_active_returns(self): result = pd.DataFrame( np.array([ [0., -np.inf, -np.inf], [-np.inf, -1.10398, 0.89598], [-0.02985, np.nan, 0.42740909], [0., np.nan, -0.02653333], [-np.inf, -0.299875, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.active_returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.active_returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.active_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [-np.inf, -np.inf], [-1.208, 0.89598], [np.nan, 0.42740909], [np.nan, -0.02653333], [-0.35, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.active_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.active_returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.active_returns(), result ) def test_market_value(self): result = pd.DataFrame( np.array([ [100., 100., 100.], [100., 200., 200.], [150., 200., 300.], [200., 400., 400.], [250., 500., 400.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.market_value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.market_value(group_by=False), pd.DataFrame( np.array([ [200., 200., 100.], [200., 400., 200.], [300., 400., 300.], [400., 800., 400.], [500., 1000., 400.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200., 100.], [300., 200.], [350., 300.], [600., 400.], [750., 400.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.market_value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_value(), result ) pd.testing.assert_frame_equal( portfolio_shared.market_value(), result ) def test_market_returns(self): result = pd.DataFrame( np.array([ [0., 0., 0.], [0., 1., 1.], [0.5, 0., 0.5], [0.33333333, 1., 0.33333333], [0.25, 0.25, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.market_returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.market_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [0., 0.], [0.5, 1.], [0.16666667, 0.5], [0.71428571, 0.33333333], [0.25, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.market_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.market_returns(), result ) def test_total_market_return(self): result = pd.Series( np.array([1.5, 4., 3.]), index=price_na.columns ).rename('total_market_return') pd.testing.assert_series_equal( portfolio.total_market_return(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_market_return(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_market_return(group_by=False), result ) result = pd.Series( np.array([2.75, 3.]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_market_return') pd.testing.assert_series_equal( portfolio.total_market_return(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_market_return(), result ) pd.testing.assert_series_equal( portfolio_shared.total_market_return(), result ) def test_return_method(self): pd.testing.assert_frame_equal( portfolio_shared.cumulative_returns(), pd.DataFrame( np.array([ [-0.0005995, -0.001201], [-0.0066395, 0.0077588], [-0.0066395, 0.0171618], [-0.0066395, 0.0170822], [-0.01372199, 0.0170822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) ) pd.testing.assert_frame_equal( portfolio_shared.cumulative_returns(group_by=False), pd.DataFrame( np.array([ [0., -0.0005995, -0.001201], [-0.0005201, -0.0061194, 0.0077588], [-0.00054995, -0.0061194, 0.0171618], [-0.00054995, -0.0061194, 0.0170822], [-0.00155245, -0.01218736, 0.0170822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(), pd.Series( np.array([-20.82791491, 10.2576347]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(risk_free=0.01), pd.Series( np.array([-66.19490297745766, -19.873024060759022]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(year_freq='365D'), pd.Series( np.array([-25.06639947, 12.34506527]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(group_by=False), pd.Series( np.array([-11.058998255347488, -21.39151322377427, 10.257634695847853]), index=price_na.columns ).rename('sharpe_ratio') ) def test_stats(self): pd.testing.assert_series_equal( portfolio.stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -1.1112299999999966, -1.1112299999999966, 283.3333333333333, 66.66666666666667, 1.6451238489727062, 1.6451238489727062, pd.Timedelta('3 days 08:00:00'), pd.Timedelta('3 days 08:00:00'), 1.3333333333333333, 33.333333333333336, -98.38058805880588, -100.8038553855386, -99.59222172217225, pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 04:00:00'), 0.10827272727272726, 1.2350921335789007, -0.01041305691622876, -7.373390156195147, 25.695952942372134, 5717.085878360386 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='stats_mean') ) pd.testing.assert_series_equal( portfolio['a'].stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 1, 0.0, -54.450495049504966, -54.450495049504966, -54.450495049504966, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), -0.10999000000000003, np.nan, 0.010431562217554364, -11.057783842772304, -9.75393669809172, -46.721467294341814 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio['a'].stats(required_return=0.1, risk_free=0.01), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 1, 0.0, -54.450495049504966, -54.450495049504966, -54.450495049504966, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), -0.10999000000000003, np.nan, 0.010431562217554364, -188.9975847831419, -15.874008737030774, -46.721467294341814 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio['a'].stats(active_returns=True), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 1, 0.0, -54.450495049504966, -54.450495049504966, -54.450495049504966, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), -0.10999000000000003, np.nan, 0.010431562217554364, np.nan, np.nan, np.nan ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio['a'].stats(incl_unrealized=True), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 2, 0.0, -3.9702970297029667, -54.450495049504966, -29.210396039603964,
pd.Timedelta('1 days 00:00:00')
pandas.Timedelta
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import os from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score from os.path import join as pjoin from cplvm import CPLVM import matplotlib font = {"size": 30} matplotlib.rc("font", **font) matplotlib.rcParams["text.usetex"] = True DATA_DIR = "../../data/mix_seq/data/nutlin/" if __name__ == "__main__": latent_dim_shared = 2 latent_dim_foreground = 2 X_fname = pjoin(DATA_DIR, "dmso_expt1.csv") Y_fname = pjoin(DATA_DIR, "nutlin_expt1.csv") X_mutation_fname = pjoin(DATA_DIR, "p53_mutations_dmso.csv") Y_mutation_fname = pjoin(DATA_DIR, "p53_mutations_nutlin.csv") p53_mutations_X = pd.read_csv(X_mutation_fname, index_col=0) p53_mutations_X.tp53_mutation[ p53_mutations_X.tp53_mutation == "Hotspot" ] = "Mutated" p53_mutations_X.tp53_mutation[ p53_mutations_X.tp53_mutation == "Other" ] = "Wild-type" p53_mutations_Y = pd.read_csv(Y_mutation_fname, index_col=0) p53_mutations_Y.tp53_mutation[ p53_mutations_Y.tp53_mutation == "Hotspot" ] = "Mutated" p53_mutations_Y.tp53_mutation[ p53_mutations_Y.tp53_mutation == "Other" ] = "Wild-type" # Read in data X = pd.read_csv(X_fname, index_col=0) Y =
pd.read_csv(Y_fname, index_col=0)
pandas.read_csv
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import tensorflow_datasets as tfds tfds.disable_progress_bar() def prepare_titanic(test_size=0.3, random_state=123): print('Download or read from disk.') ds = tfds.load('titanic', split='train') # Turn DataSet adapter into DataFrame print('Convert to pandas.DataFrame') X = [] y = [] for ex in tfds.as_numpy(ds): x_i, y_i = ex['features'], ex['survived'] X.append(x_i) y.append(y_i) df_X = pd.DataFrame(X) features = list(df_X.columns) y =
pd.Series(y, name='survived')
pandas.Series
''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see <https://www.gnu.org/licenses/>. ''' import pandas as pd import pytz from pm4py.util.constants import CASE_CONCEPT_NAME from pm4py.algo.filtering.common.timestamp.timestamp_common import get_dt_from_string from pm4py.util.xes_constants import DEFAULT_TIMESTAMP_KEY from pm4py.util.constants import PARAMETER_CONSTANT_TIMESTAMP_KEY, PARAMETER_CONSTANT_CASEID_KEY from enum import Enum from pm4py.util import exec_utils from copy import copy from typing import Optional, Dict, Any, Union, Tuple, List import pandas as pd import datetime class Parameters(Enum): TIMESTAMP_KEY = PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = PARAMETER_CONSTANT_CASEID_KEY def filter_traces_contained(df: pd.DataFrame, dt1: Union[str, datetime.datetime], dt2: Union[str, datetime.datetime], parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> pd.DataFrame: """ Get traces that are contained in the given interval Parameters ---------- df Pandas dataframe dt1 Lower bound to the interval (possibly expressed as string, but automatically converted) dt2 Upper bound to the interval (possibly expressed as string, but automatically converted) parameters Possible parameters of the algorithm, including: Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp Parameters.CASE_ID_KEY -> Column that contains the timestamp Returns ---------- df Filtered dataframe """ if parameters is None: parameters = {} timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY) case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) dt1 = get_dt_from_string(dt1) dt2 = get_dt_from_string(dt2) dt1 = dt1.replace(tzinfo=pytz.utc) dt2 = dt2.replace(tzinfo=pytz.utc) dt1 = pd.to_datetime(dt1, utc=True) dt2 = pd.to_datetime(dt2, utc=True) grouped_df = df[[case_id_glue, timestamp_key]].groupby(df[case_id_glue]) first = grouped_df.first() last = grouped_df.last() last.columns = [str(col) + '_2' for col in last.columns] stacked = pd.concat([first, last], axis=1) stacked = stacked[stacked[timestamp_key] >= dt1] stacked = stacked[stacked[timestamp_key + "_2"] <= dt2] i1 = df.set_index(case_id_glue).index i2 = stacked.set_index(case_id_glue).index ret = df[i1.isin(i2)] ret.attrs = copy(df.attrs) if hasattr(df, 'attrs') else {} return ret def filter_traces_intersecting(df: pd.DataFrame, dt1: Union[str, datetime.datetime], dt2: Union[str, datetime.datetime], parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> pd.DataFrame: """ Filter traces intersecting the given interval Parameters ---------- df Pandas dataframe dt1 Lower bound to the interval (possibly expressed as string, but automatically converted) dt2 Upper bound to the interval (possibly expressed as string, but automatically converted) parameters Possible parameters of the algorithm, including: Parameters.TIMESTAMP_KEY -> Attribute to use as timestamp Parameters.CASE_ID_KEY -> Column that contains the timestamp Returns ---------- df Filtered dataframe """ if parameters is None: parameters = {} timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY) case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) dt1 = get_dt_from_string(dt1) dt2 = get_dt_from_string(dt2) dt1 = dt1.replace(tzinfo=pytz.utc) dt2 = dt2.replace(tzinfo=pytz.utc) dt1 =
pd.to_datetime(dt1, utc=True)
pandas.to_datetime
import numpy as np import re as re from scipy import stats import gnc import netCDF4 as nc import copy as pcopy import pdb import pb import pandas as pa def Dic_DataFrame_to_Excel(excel_file,dic_df,multisheet=False,keyname=True,na_rep='', cols=None, header=True, index=True, index_label=None): """ Write a dictionary of pandas.DataFrame data to an excel file with keys as excel sheets. """ def _df_member(obj): """ check if this obj is DataFrame obj. """ if isinstance(obj,pa.core.frame.DataFrame): return True else: raise TypeError('this is not a DataFrame object') for key,dfm in dic_df.items(): _df_member(dfm) excel_wob=
pa.ExcelWriter(excel_file)
pandas.ExcelWriter
# coding: utf-8 # In[2]: #Spam filtering import numpy as np import pandas as pd import os import email from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cross_validation import StratifiedKFold from sklearn.naive_bayes import MultinomialNB from sklearn import datasets, linear_model from sklearn.metrics import confusion_matrix from bs4 import BeautifulSoup import re #removing extranous characters def data_from_file(): target = [] index = [] rows = [] #importing non-spam folder's file flist = os.listdir("spamassasin\\ham") for f in flist: ifile=open("spamassasin\\ham\\" + f, encoding = "ISO-8859-1") rawtext="" rawtext = file_read(ifile) msg = email.message_from_string(rawtext) subject = str(msg['Subject']) body = email_parse_subject_body(rawtext) subjectandbody=subject + "\n" + body rows.append({'text': subjectandbody, 'class': 0}) index.append(f) #importing spam folder's file flist = os.listdir("spamassasin\\spam") for f in flist: ifile=open("spamassasin\\spam\\" + f, encoding = "ISO-8859-1") rawtext="" rawtext = file_read(ifile) msg = email.message_from_string(rawtext) subject = str(msg['Subject']) body = email_parse_subject_body(rawtext) subjectandbody = subject + "\n" + body rows.append({'text': subjectandbody, 'class': 1}) index.append(f) data_frame_from_email_and_class =
pd.DataFrame(rows, index=index)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # PAQUETES PARA CORRER OP. import numpy as np import pandas as pd import datetime as dt import json import wmf.wmf as wmf import hydroeval import glob import SHop import hidrologia import os import seaborn as sns sns.set(style="whitegrid") sns.set_context('notebook', font_scale=1.13) #FORMATO # fuente import matplotlib matplotlib.use('Agg') import matplotlib.font_manager as fm import matplotlib.dates as mdates import matplotlib.font_manager as font_manager font_dirs = ['/home/socastillogi/jupyter/fuentes/AvenirLTStd-Book'] font_files = font_manager.findSystemFonts(fontpaths=font_dirs) font_list = font_manager.createFontList(font_files) font_manager.fontManager.ttflist.extend(font_list) matplotlib.rcParams['font.family'] = 'Avenir LT Std' matplotlib.rcParams['font.size']=11 import pylab as pl #axes # pl.rc('axes',labelcolor='#4f4f4f') # pl.rc('axes',linewidth=1.5) # pl.rc('axes',edgecolor='#bdb9b6') pl.rc('text',color= '#4f4f4f') #avoid warnings import warnings warnings.filterwarnings('ignore') ############################################################################################ FECHA date_ev = pd.to_datetime('2021-03-09 18:00') ############################################################################################ ARGUMENTOS print (dt.datetime.now()) ruta_proj = '/home/socastillogi/jupyter/SH_op/SHop_E260_90m_1d/SHop/project_files/' configfile=ruta_proj+'inputs/configfile_SHop_E260_90m_1d.md' save_hist = False #####################################################False for first times dateformat_starts = '%Y-%m-%d' date = pd.to_datetime(date_ev.strftime(dateformat_starts)) ConfigList= SHop.get_rutesList(configfile) ############################################################################################ EJECUCION ConfigList= SHop.get_rutesList(configfile) # abrir simubasin path_ncbasin = SHop.get_ruta(ConfigList,'ruta_proj')+SHop.get_ruta(ConfigList,'ruta_nc') cu = wmf.SimuBasin(rute=path_ncbasin) #sets para correr modelo. SHop.set_modelsettings(ConfigList) warming_steps = 0#pasos de simulacion, dependen del dt. warming_window ='%ss'%int(wmf.models.dt * warming_steps) #siempre en seg dateformat_starts = '%Y-%m-%d' starts = ['%ss'%(90*24*60*60)]#,'%ss'%(90*24*60*60)] #60d back starts_names = ['90d']#,'1d'] #starts y starts_names deben ser del mismo len. window_end = '0s' #none print ('######') print ('Start DAILY execution: %s'%dt.datetime.now()) #dates date = (pd.to_datetime(
pd.to_datetime(date)
pandas.to_datetime
import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import itertools # def plot_confusion_matrix(cm, classes, # normalize=False, # title='Confusion matrix', # cmap=plt.cm.Blues): # """ # This function prints and plots the confusion matrix. # Normalization can be applied by setting `normalize=True`. # """ # if normalize: # cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # print("Normalized confusion matrix") # else: # print('Confusion matrix, without normalization') # print(cm) # plt.imshow(cm, interpolation='nearest', cmap=cmap) # plt.title(title) # plt.colorbar() # tick_marks = np.arange(len(classes)) # plt.xticks(tick_marks, classes, rotation=45) # plt.yticks(tick_marks, classes) # fmt = '.2f' if normalize else 'd' # thresh = cm.max() / 2. # for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): # plt.text(j, i, format(cm[i, j], fmt), # horizontalalignment="center", # color="white" if cm[i, j] > thresh else "black") # plt.tight_layout() # plt.ylabel('True label') # plt.xlabel('Predicted label') data = pd.read_csv("../data/output/test.csv") data["code"] =
pd.factorize(data['age'])
pandas.factorize
from keyword import kwlist import re from pandas import DataFrame, Series, Index, MultiIndex from typing import Union, List, Dict, Iterable def reindex_series(series: Series, target_series: Series, source_levels: List[int] = None, target_levels: List[int] = None, fill_value: Union[int, float] = None) -> Series: # Make shallow copies of the source and target series in case their indexes need to be changed series = series.copy(deep=False) target_series = target_series.copy(deep=False) if series.index.nlevels > 1 and source_levels is not None: arrays = [series.index.get_level_values(level) for level in source_levels] series.index =
MultiIndex.from_arrays(arrays)
pandas.MultiIndex.from_arrays
### Report Rebalance& Grid !!!!! #### # import neccessary package import ccxt import json import numpy as np import pandas as pd import time import decimal from datetime import datetime import pytz import csv import sys # Api and secret api_key = "" api_secret = "" subaccount = "" # Set your account name (ตั้งชื่อ Account ที่ต้องการให้แสดงผลในไฟล์ report) account_name = "Report_Rebalance" # Exchange Details exchange = ccxt.ftx({ 'apiKey': api_key, 'secret': api_secret, 'enableRateLimit': True} ) exchange.headers = {'FTX-SUBACCOUNT': subaccount,} post_only = True # Maker or Taker (วางโพซิชั่นเป็น MAKER เท่านั้นหรือไม่ True = ใช่) # Global Varibale Setting token_name_lst = ["SOL"] # --- change ----# Name of Token (ใส่ชื่อเหรียญที่ต้องการ) pair_lst = ["SOL/USD"] # --- change ----# Pair (ใส่ชื่อคู่ที่ต้องการ Rebalance เช่น XRP จะเป็น ["XRP/USD"]) pair = "SOL/USD" # --- change ----# Pair (ใส่ชื่อคู่ที่ต้องการ Rebalance เช่น XRP จะเป็น "XRP/USD") pair_dict = {token_name_lst[i]: pair_lst[i] for i in range(len(token_name_lst))} # file system tradelog_file = "{}_TradingLog.csv".format(account_name) trading_call_back = 1000 # --- change ----# จำนวนการดึง transaction ออกมาย้อนหลัง def get_time(): named_tuple = time.localtime() # get struct_time Time = time.strftime("%m/%d/%Y, %H:%M:%S", named_tuple) return Time def get_wallet_details(): wallet = exchange.privateGetWalletBalances()['result'] return wallet def get_minimum_size(): minimum_size = float(exchange.fetch_ticker(pair)['info']['minProvideSize']) return minimum_size def checkDB(): try: tradinglog = pd.read_csv("{}_tradinglog.csv".format(account_name)) print('DataBase Exist Loading DataBase....') except: tradinglog = pd.DataFrame(columns=['id', 'timestamp', 'date','time', 'pair', 'side', 'price', 'qty', 'cost', 'fee', 'liquidity', 'bot_name', 'subaccount']) tradinglog.to_csv("{}_tradinglog.csv".format(account_name),index=False) print("Database Created") return tradinglog def get_trade_history(pair): pair = pair trade_history = pd.DataFrame(exchange.fetchMyTrades(pair, limit = trading_call_back), columns=['id', 'timestamp', 'timestamp','datetime', 'symbol', 'side', 'price', 'amount', 'cost', 'fee', 'takerOrMaker']) cost=[] for i in range(len(trade_history)): fee = trade_history['fee'].iloc[i]['cost'] if trade_history['fee'].iloc[i]['currency'] == 'USD' else trade_history['fee'].iloc[i]['cost'] * trade_history['price'].iloc[i] cost.append(fee) # ใน fee เอาแค่ cost trade_history['fee'] = cost return trade_history def get_last_id(pair): pair = pair trade_history = get_trade_history(pair) last_trade_id = (trade_history.iloc[:trading_call_back]['id']) return last_trade_id def update_trade_log(): checkDB() tradinglog = pd.read_csv("{}_tradinglog.csv".format(account_name)) last_trade_id = get_last_id(pair) trade_history = get_trade_history(pair) for i in last_trade_id: tradinglog = pd.read_csv("{}_tradinglog.csv".format(account_name)) trade_history = get_trade_history(pair) #print(trade_history) if int(i) not in tradinglog.values: print(i not in tradinglog.values) last_trade = trade_history.loc[trade_history['id'] == i] list_last_trade = last_trade.values.tolist()[0] # แปลงวันที่ใน record d = datetime.strptime(list_last_trade[3], "%Y-%m-%dT%H:%M:%S.%fZ") d = pytz.timezone('Etc/GMT+7').localize(d) d = d.astimezone(pytz.utc) Date = d.strftime("%Y-%m-%d") Time = d.strftime("%H:%M:%S") # edit & append ข้อมูลก่อน add เข้า database list_last_trade[2] = Date list_last_trade[3] = Time list_last_trade.append(account_name) list_last_trade.append(subaccount) with open("{}_tradinglog.csv".format(account_name), "a+", newline='') as fp: wr = csv.writer(fp, dialect='excel') wr.writerow(list_last_trade) print('Recording Trade ID : {}'.format(i)) else: print('Trade Already record') print("Calculating.") # Create Buy and Sell dataframe separately def Buy_Sell_Dataframe(trade_history , pair): print("Calculating...") min_trade_size = get_minimum_size() trade_history_buy = pd.DataFrame(trade_history) trade_history_sell =
pd.DataFrame(trade_history)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 22 14:25:57 2019 @author: skoebric """ """ TODO: - confirm how net metering is read in - create agent csv with data we already have - move agent creation into dgen_model based on params in config? """ # --- Python Battery Imports --- import os import itertools import json from distutils.dir_util import copy_tree # --- External Library Imports --- import pandas as pd import geopandas as gpd import numpy as np from shapely.ops import nearest_points from shapely.geometry import Point, shape import shapely # --- Module Imports --- import agent_config as config import helper import agent_sampling as samp pd.options.mode.chained_assignment = None # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~ Functions ~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # --- read lookups --- state_id_lookup = pd.read_csv(os.path.join('reference_data', 'india_census','state_id_lookup.csv')) state_id_lookup = dict(zip(state_id_lookup['state_name'], state_id_lookup['state_id'])) def wholesale_rates(agent_df): """ Net Billing avoided cost. Creates 'wholesale_elec_usd_per_kwh'. Used if 'compensation_style' == 'Net Billing (Wholesale)' Columns ------- state_id (int) : lookup from census data 2014-2050 (float) : annual value """ reeds = pd.read_csv(os.path.join('reference_data','reeds_output_margcost_state.csv')) reeds.columns = ['state_name','year','scenario','variable','cost'] reeds = reeds.loc[reeds['scenario'] == 'Base'] reeds = reeds.loc[reeds['variable'] == 'mc.total'] # --- pivot to wide --- wholesale_rates = reeds.pivot_table(index=['state_name'], columns=['year'], values='cost') wholesale_rates = wholesale_rates.reset_index(drop=False) wholesale_rates['state_name'] = wholesale_rates['state_name'].replace('delhi', 'nct_of_delhi') wholesale_rates.loc[wholesale_rates['state_name'] != 'telangana'] # --- add in earlier years --- annual_diff = (wholesale_rates[2018] - wholesale_rates[2017]) / wholesale_rates[2018] for y_index, y in enumerate([2014,2015,2016]): wholesale_rates[y] = wholesale_rates[2017] * (1 - annual_diff)**(3-y_index) # --- add in later years --- annual_diff = (wholesale_rates[2047] - wholesale_rates[2046]) / wholesale_rates[2047] for y_index, y in enumerate([2048,2049,2050]): wholesale_rates[y] = wholesale_rates[2047] * (1 + annual_diff)**(y_index + 1) # --- fuzzy string matching --- clean_list = list(agent_df['state_name'].unique()) wholesale_rates['state_name'] = wholesale_rates['state_name'].apply(helper.sanitize_string) wholesale_rates['state_name'] = helper.fuzzy_address_matcher(wholesale_rates['state_name'], clean_list) # --- any missing states --- avg_wholesale_rates = wholesale_rates[list(range(2014,2051))].mean() for state in clean_list: if state not in set(wholesale_rates['state_name']): state_wholesale_rates = avg_wholesale_rates.copy() state_wholesale_rates['state_name'] = state wholesale_rates = wholesale_rates.append(state_wholesale_rates, ignore_index=True) # --- drop any duplicates --- wholesale_rates = wholesale_rates.drop_duplicates(subset=['state_name']) # --- map state id --- wholesale_rates['state_id'] = wholesale_rates['state_name'].map(state_id_lookup) wholesale_rates.drop(['state_name'], axis='columns', inplace=True) # --- currency conversion --- wholesale_rates[list(range(2014,2051))] = wholesale_rates[list(range(2014,2051))] / config.RUPPES_TO_USD # --- reorder columns --- wholesale_rates = wholesale_rates[['state_id'] + list(range(2014,2051))] wholesale_rates.to_csv(os.path.join('india_base','wholesale_rates.csv'), index=False) def financing_rates(agent_df): """ Create .csv with discount rates by sector/geography, scaled by a social indicator score. Columns ------- state_id (int) : integer representation of state sector_abbr (str) : the sector of the agent loan_rate (float) : the annual interest rate on a loan. real_discount (float) : the discount rate of the state/sector in percent down_payment (float) : percent of downpayment towards system (typically 0.2 to compare apples to apples in WACC) """ # --- Take dict of controlregions by social indicator --- state_social_df = agent_df[['state_id','social_indicator']].drop_duplicates() # --- Permute by sector --- social_dfs = [] for s in ['res','com','ind']: _state_social_df = state_social_df.copy() _state_social_df['sector_abbr'] = s social_dfs.append(_state_social_df) finance_df = pd.concat(social_dfs, axis='rows') finance_df = finance_df.reset_index(drop=True) social_max = finance_df['social_indicator'].max() social_min = finance_df['social_indicator'].min() #TODO: I'm guessing this will break when MAX_DP and MIN_DP are the same because of division by zero # --- inverse normalization of discount rate (i.e. lower social indicator has higher discount rate) --- finance_df.loc[finance_df['sector_abbr'] == 'res', 'discount_rate'] = ((config.RES_MAX_DR - config.RES_MIN_DR)/(social_max - social_min)) * (social_max - finance_df['social_indicator']) + config.RES_MIN_DR finance_df.loc[finance_df['sector_abbr'] == 'com', 'discount_rate'] = ((config.COM_MAX_DR - config.COM_MIN_DR)/(social_max - social_min)) * (social_max - finance_df['social_indicator']) + config.COM_MIN_DR finance_df.loc[finance_df['sector_abbr'] == 'ind', 'discount_rate'] = ((config.IND_MAX_DR - config.IND_MIN_DR)/(social_max - social_min)) * (social_max - finance_df['social_indicator']) + config.IND_MIN_DR # --- inverse normalization of loan rate(i.e. lower social indicator has higher loan rate --- finance_df.loc[finance_df['sector_abbr'] == 'res', 'loan_rate'] = ((config.RES_MAX_LR - config.RES_MIN_LR)/(social_max - social_min)) * (finance_df['social_indicator'] - social_max) + config.RES_MIN_LR finance_df.loc[finance_df['sector_abbr'] == 'com', 'loan_rate'] = ((config.COM_MAX_LR - config.COM_MIN_LR)/(social_max - social_min)) * (finance_df['social_indicator'] - social_max) + config.COM_MIN_LR finance_df.loc[finance_df['sector_abbr'] == 'ind', 'loan_rate'] = ((config.IND_MAX_LR - config.IND_MIN_LR)/(social_max - social_min)) * (finance_df['social_indicator'] - social_max) + config.IND_MIN_LR # --- normalization of down payment (i.e. lower social indicator has lower down payment --- finance_df.loc[finance_df['sector_abbr'] == 'res', 'down_payment'] = ((config.RES_MAX_DP - config.RES_MIN_DP)/(social_max - social_min)) * (finance_df['social_indicator'] - social_max) + config.RES_MIN_DP finance_df.loc[finance_df['sector_abbr'] == 'com', 'down_payment'] = ((config.COM_MAX_DP - config.COM_MIN_DP)/(social_max - social_min)) * (finance_df['social_indicator'] - social_max) + config.COM_MIN_DP finance_df.loc[finance_df['sector_abbr'] == 'ind', 'down_payment'] = ((config.IND_MAX_DP - config.IND_MIN_DP)/(social_max - social_min)) * (finance_df['social_indicator'] - social_max) + config.IND_MIN_DP # --- Write to csv --- finance_df.to_csv(os.path.join('india_base','financing_rates.csv'), index=False) def load_growth(agent_df): """ Create csv with annual load growth pct by geography. Columns ------- scenario (str) : matches the string from the input sheet year (int) : year of load growth relative to 2014 sector_abbr (str) : the sector of the agent load_multiplier (float) : load growth relative to 2014 Methodology ----------- Take ReEDS Load Time Slice Hourly Load by State, average by year Assumptions ----------- Currently assumes that all sectors have the same load growth. Could use 'CEA_historic_consumption_by_sector.csv' to normalize this by sector. """ reeds = pd.read_excel( os.path.join('reference_data','NREL_2020_load_forecast_2016-2037_KA.xlsx'), sheet_name='Growth_NREL_Baseline') reeds = reeds.loc[reeds['metric'] == 'Annual Energy'] reeds.drop('metric', inplace=True, axis='columns') reeds.set_index('BA', inplace=True) # --- scale back load before 2019 --- reeds_before = reeds[[2017,2018]] for y in [2014,2015,2016]: # add in previous years reeds_before[y] = np.nan reeds_before = reeds_before[[2014,2015,2016,2017,2018]] reeds_before = reeds_before.fillna(method='bfill', axis=1).fillna(method='ffill', axis=1) reeds_before = 1 - reeds_before #load expressed as multiplier from next year reeds_before = reeds_before[list(reeds_before.columns)[::-1]] #reverse list reeds_before = reeds_before.cumprod(axis=1) reeds_before = reeds_before[list(reeds_before.columns)[::-1]] #reverse back to chronological reeds_before[2019] = 1 #2019 EPS is baseline year reeds_after = reeds[[2021,2022,2023,2024,2025,2026,2031,2036]] missing_years = [2020]+list(range(2027,2031))+list(range(2032,2036))+list(range(2037,2051)) for y in missing_years: reeds_after[y] = np.nan reeds_after += 1 #express as percent increase from previous year reverse_cagr = lambda x: (x)**(1/5) #convert 5 year compund growth rate to annual reeds_after[2031] = reeds_after[2031].apply(reverse_cagr) reeds_after[2036] = reeds_after[2036].apply(reverse_cagr) reeds_after = reeds_after[list(range(2020,2051))] reeds_after = reeds_after.fillna(method='bfill', axis=1).fillna(method='ffill', axis=1) reeds_after = reeds_after.cumprod(axis=1) load_growth = pd.concat([reeds_before, reeds_after], axis='columns') load_growth.index.name = 'state_name' load_growth.reset_index(drop=False, inplace=True) load_growth = load_growth.melt( id_vars=['state_name'], var_name='year', value_name='load_multiplier' ) # --- fuzzy string matching --- clean_list = list(agent_df['state_name'].unique()) load_growth['state_name'] = load_growth['state_name'].apply(helper.sanitize_string) load_growth['state_name'] = helper.fuzzy_address_matcher(load_growth['state_name'], clean_list) # --- any missing states --- avg_load_growth = load_growth.groupby(['year'], as_index=False)['load_multiplier'].mean() for state in clean_list: if state not in set(load_growth['state_name']): state_load_growth = avg_load_growth.copy() state_load_growth['state_name'] = state load_growth = load_growth.append(state_load_growth) # --- map state id --- load_growth['state_id'] = load_growth['state_name'].map(state_id_lookup) load_growth.drop(['state_name'], axis='columns', inplace=True) # --- duplicate for sectors --- load_growths = [] for s in ['res','com','ind','agg']: df = load_growth.copy() df['sector_abbr'] = s load_growths.append(df) load_growth = pd.concat(load_growths, axis='rows') load_growth['scenario'] = 'Planning' load_growth = load_growth.drop_duplicates(subset=['state_id','sector_abbr','year']) load_growth.to_csv(os.path.join('india_base','load_growth_projections.csv'), index=False) def nem_settings(agent_df): """ Create nem_settings.csv based on config variables. Columns ------- sector_abbr (str) : the sector of the agent year (int) : year for policy details nem_system_size_limit_kw (int) : size limit for individual agent system size (kW) year_end_excess_sell_rate_usd_per_kwh (float) : payment for excess genration at end of year TODO how is this used? """ # --- Create Dataframe from permutations, as values are all similar --- nem_df = pd.DataFrame().from_records(itertools.product(['res','com','ind'], list(set(agent_df['state_id'])), range(2015,2051))) nem_df.columns = ['sector_abbr','state_id','year'] nem_df.loc[nem_df['sector_abbr']=='res', 'nem_system_size_limit_kw'] = config.RES_NEM_KW_LIMIT nem_df.loc[nem_df['sector_abbr']=='com', 'nem_system_size_limit_kw'] = config.COM_NEM_KW_LIMIT nem_df.loc[nem_df['sector_abbr']=='ind', 'nem_system_size_limit_kw'] = config.IND_NEM_KW_LIMIT # --- Define Compensation Style for each State --- nem_df['compensation_style'] = 'Net Metering' nem_df.to_csv(os.path.join('india_base','nem_settings.csv'), index = False) def rate_escalations(agent_df): """ Create rate_escalations.csv based on compound increase of config values. Columns ------- source (str) : rate growth planning scenario, from input sheet state_id (int) : integer representation of state sector_abbr (str) : the sector of the agent year (int) : year of rate escalation relative to 2014 escalation_factor (float) : multiplier of rate escalation relative to 2014 """ # --- Create Dataframe from permutations, as values are all similar --- rate_esc_df =
pd.DataFrame()
pandas.DataFrame
import io import copy import os from os.path import join as opj from PIL import Image from sqlalchemy import create_engine import matplotlib.pylab as plt from matplotlib import patches from matplotlib.colors import ListedColormap from pandas import read_sql_query from pandas import DataFrame, concat, Series import numpy as np from PIL import ImageDraw from collections import Counter from typing import Tuple, List, Dict, Any from histomicstk.annotations_and_masks.annotation_and_mask_utils import \ np_vec_no_jit_iou, get_scale_factor_and_appendStr, \ get_image_from_htk_response from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score from sklearn.preprocessing import label_binarize from copy import deepcopy from configs.nucleus_style_defaults import Interrater as ir, \ DefaultAnnotationStyles, NucleusCategories # noqa from interrater.constrained_agglomerative_clustering import \ ConstrainedAgglomerativeClustering # noqa from GeneralUtils import calculate_4x4_statistics def _maybe_mkdir(folder): os.makedirs(folder, exist_ok=True) def _get_color_from_rgbstr(rgbstr): return [int(j) / 255 for j in rgbstr[4:-1].split(',')] def _add_fovtype_to_eval_fov(fovinfo, dbcon): """Add fov type to fovinfo dict.""" # any subset and user will work evname = list(fovinfo.keys())[0] userfov = fovinfo[evname][list(fovinfo[evname].keys())[0]] contdf = read_sql_query(f""" SELECT "element_girder_id", "group", "xmin", "ymin", "xmax", "ymax" FROM "annotation_elements" WHERE "fov_id" = {userfov['fov_id']} ;""", dbcon) # get fov group and add grps = list(contdf.loc[:, "group"]) fovinfo['fov_type'] = [j for j in grps if "fov" in j.lower()][0] return fovinfo def get_fovinfos_for_interrater(dbcon): """Get fov ids for inter-rater analysis. Get dict which is indexed by the FOV name and contains five entries (EVAL_SET_1, EVAL_SET_2, EVAL_SET_3, EVAL_SET_3), containing the information about the annotations of THIS fov under different conditions: - U-control: the observers place bounding boxes around all nuclei and they are not biased by any pre-existing boundaries. - B-control: Existing nucleus bounds are obtained using "traditional" image processing algorithms (smoothing, thresholding, connected components etc). These are then corrected by the participants the study's protocol (dots inside correct polygon bounds having and bounding boxes around nuclei without correct bounds. - E: Main evaluation set. This is the same as B-control but the bounds are obtained from traditional methods are used to train mask-RCNN to obtain more accurate bounds and labels. This is also the method that is used for obtaining the core set. - BT-control: Same as E but instead of obtaining the labels to the nuclei used to train the mask-RCNN by assigning them the same label as the region labels manually annotated, here the region labels are obtained by quickly dialing knobs in the HSI space. - fov_type: See Roche patent. This has to do with how the FOV location itself was obtained. Each entry is also a dict indexed by the name of the observer and has the fov_id for the annotations by that user in that fov location. """ fovinfos = dict() for evalset in ir.EVALSET_NAMES: # alias = ir.REVERSE_ANNSETS[evalset]['alias'] alias = evalset # find fovs for this evaludation set fovs_thisset = read_sql_query(f""" SELECT "fov_id", "fovname", "QC_label", "slide_name", "sf", "maybe-xmin", "maybe-ymin", "maybe-xmax", "maybe-ymax", "XMIN", "YMIN" FROM "fov_meta" WHERE "slide_id" IN ( SELECT DISTINCT "itemId" FROM "annotation_docs" WHERE "subset" = "{evalset}" ) ;""", dbcon) for _, fov in fovs_thisset.iterrows(): fov = fov.to_dict() # don't include FOVs that are not done if fov['QC_label'] != 'COMPLETE': continue # Note that we CANNOT use the locations in the fov name # as these are slightly expanded beyond the FOV boundary to include # overflowing annotations. Instead we use the fov locations from # fov meta. Alternatively, we could have read the FOV contours csv # file and mapped it to slide coordinates observer, _, tmp = fov['fovname'].split('_#_') sldname, tmp = tmp.split("_id") standard_fovname = "%s_left-%d_top-%d_bottom-%d_right-%d" % ( sldname, fov['maybe-xmin'], fov['maybe-ymin'], fov['maybe-ymax'], fov['maybe-xmax'], ) if standard_fovname not in fovinfos.keys(): fovinfos[standard_fovname] = {alias: dict()} elif alias not in fovinfos[standard_fovname]: fovinfos[standard_fovname][alias] = dict() # assign fovinfos[standard_fovname][alias][observer] = fov for _, fovinfo in fovinfos.items(): _add_fovtype_to_eval_fov(fovinfo, dbcon=dbcon) return fovinfos def _convert_coordstr_to_absolute(coordstr: str, sf: float, minc: int) -> str: return ','.join([ str(int((int(c) / sf) + minc)) for c in coordstr.split(',')]) def _modify_bbox_coords_to_base_mag(contdf, userfov): """Modify bbox coordinates to be at base slide magnification.""" # bounding box for locstr in ['xmin', 'xmax']: contdf.loc[:, locstr] = np.int32( contdf.loc[:, locstr] / userfov['sf'] + userfov['XMIN']) for locstr in ['ymin', 'ymax']: contdf.loc[:, locstr] = np.int32( contdf.loc[:, locstr] / userfov['sf'] + userfov['YMIN']) # actual coordinates for c in ('x', 'y'): contdf.loc[:, f'coords_{c}'] = contdf.loc[:, f'coords_{c}'].apply( lambda cs: _convert_coordstr_to_absolute( cs, sf=userfov['sf'], minc=userfov[f'{c.upper()}MIN'])) return contdf def _get_all_contours_for_eval_fov(fovinfo, dbcon, max_bbox_side=100): """Get all contours for this FOV from various users.""" all_conts = DataFrame() fov_conts = DataFrame() for evalset in ir.EVALSET_NAMES: if evalset not in fovinfo.keys(): continue finfo = fovinfo[evalset] for user, userfov in finfo.items(): contdf = read_sql_query(f""" SELECT "element_girder_id", "group", "xmin", "ymin", "xmax", "ymax", "coords_x", "coords_y" FROM "annotation_elements" WHERE "fov_id" = {userfov['fov_id']} ;""", dbcon) # make sure its at base magnification and has no offset contdf = _modify_bbox_coords_to_base_mag( contdf=contdf, userfov=userfov) contdf.loc[:, "user"] = user contdf.loc[:, "evalset"] = evalset # get fov group and remove from dataframe grps = list(contdf.loc[:, "group"]) fovels = [ (i, j) for i, j in enumerate(grps) if "fov" in j.lower()] fovcont = contdf.loc[[j[0] for j in fovels], :] for elid, _ in fovels: contdf.drop(elid, axis=0, inplace=True) contdf.loc[:, "fov_type"] = fovels[0][1] # now we add to main dict all_conts = concat( (all_conts, contdf), axis=0, sort=False, ignore_index=True) fov_conts = concat( (fov_conts, fovcont), axis=0, sort=False, ignore_index=True) all_conts.index = all_conts.loc[:, "element_girder_id"] fov_conts.index = fov_conts.loc[:, "element_girder_id"] # get rid of "nuclei" which are really FOV annotations that were # mistakenly clicked by the observer and changed to a non-fov label right_width = ( all_conts.loc[:, "xmax"] - all_conts.loc[:, "xmin"]) < max_bbox_side right_height = ( all_conts.loc[:, "ymax"] - all_conts.loc[:, "ymin"]) < max_bbox_side all_conts = all_conts.loc[right_width, :] all_conts = all_conts.loc[right_height, :] return all_conts, fov_conts def _get_iou_for_fov(all_conts): """Get ious for all bboxes/bounds in fov. The target of the code below is to get a matrix comparing the IOU or each potential nucleus with all other potential nuclei. Note that a "potential" nucleus is defined as a bounding box created by one of the observers OR the bounding box of a polygon "approved" by one of the observers. We use the bounding box of approved polygons as opposed to the polygons themselves for two reasons: 1. To avoid bias caused by artificially low IOU values when a polygon is used versus a bounding box. We don't want an apple to oranges comparison! 2. Efficiency! Comparing bounding boxes is a vectorized operation that can be done for all bboxes in an FOV at once. """ # get iou of bounding boxes sliced = np.array( all_conts.loc[:, ["xmin", "ymin", "xmax", "ymax"]], dtype=int) iou = np_vec_no_jit_iou(bboxes1=sliced, bboxes2=sliced) iou = DataFrame(iou, index=all_conts.index, columns=all_conts.index) return iou def _get_clusters_for_fov(all_conts, iou, min_iou=0.5, constrained=True): """Agglomerative clustering of bounding boxes. Parameters ---------- all_conts iou min_iou constrained Returns ------- """ # if constrained, find annotation indices that cannot appear in the # same cluster. In this case, annotations from the same user (and FOV) # CANNOT map to the same anchor since the user's intention, by definition, # is to annotate two separate nuclei dontlink = _get_annlocs_for_same_user(all_conts) if constrained else None # Hierarchical agglomerative clustering model = ConstrainedAgglomerativeClustering( linkage_thresh=1 - min_iou, linkage='complete', affinity='precomputed', dontlink=dontlink, ) # now we fit the model model.run(cost=1 - np.array(iou.values, dtype=float)) return model def _get_relative_anchors(cluster_medoids, bounds): """Get medoid coords relative to fetched RGB.""" relative_medoids = cluster_medoids.copy() relative_medoids.loc[:, "xmin"] -= bounds["XMIN"] relative_medoids.loc[:, "ymin"] -= bounds["YMIN"] relative_medoids.loc[:, "xmax"] -= bounds["XMIN"] relative_medoids.loc[:, "ymax"] -= bounds["YMIN"] relative_medoids = relative_medoids * bounds['sf'] return relative_medoids.astype('int') def _get_coords_from_coordstr( coordstr_x: str, coordstr_y: str) -> List[List[int]]: return [ [int(j) for j in xy] for xy in zip(coordstr_x.split(','), coordstr_y.split(',')) ] def create_mask_from_coords( coords, min_x=None, min_y=None, max_x=None, max_y=None): """Create a binary mask from given vertices coordinates. Source: This is modified from code by <NAME> from David Gutman Lab. This version is modified from histomicstk.annotation_and_mask_utils Parameters ----------- coords : np arrray must be in the form (e.g. ([x1,y1],[x2,y2],[x3,y3],.....,[xn,yn])), where xn and yn corresponds to the nth vertix coordinate. Returns -------- np array binary mask """ polygon = coords.copy() if any([j is None for j in [min_x, min_y, max_x, max_y]]): # use the smallest bounding region, calculated from vertices min_x, min_y = np.min(polygon, axis=0) max_x, max_y = np.max(polygon, axis=0) # get the new width and height width = int(max_x - min_x) height = int(max_y - min_y) # shift all vertices to account for location of the smallest bounding box polygon[:, 0] = polygon[:, 0] - min_x polygon[:, 1] = polygon[:, 1] - min_y # convert to tuple form for masking function (nd array does not work) vertices_tuple = tuple(map(tuple, polygon)) # make the mask img = Image.new('L', (width, height), 0) ImageDraw.Draw(img).polygon(vertices_tuple, outline=1, fill=1) return np.array(img, dtype='int32') def _get_anchor_from_single_cluster( relevant_contours, cluster_iou, usrs, manualusr='Ehab_Hafiz', manualusrgrp='SPs'): """Get the true nucleus location (aka "anchor") for a single cluster. Parameters ---------- relevant_contours: DataFrame cluster_iou: DataFrame iou of elements that mapped to that cluster usrs: dict indexed by eval set name. Each entry is a dict, where keys are the names of participants, and the values are either "undetected" or "DidNotAnnotateFOV". This is used to initialize the anchor dict and to differentiate between those who annotated the FOV, and those who annotated it but did not detect the nucleus. manualusr: str Returns ------- """ manualusr = ir.PARTICIPANT_ALIASES[manualusr] def _get_anninfo_for_subgroup(evalset): """Get the info about annotations by participants in an evalset.""" evdf = relevant_contours.loc[ relevant_contours.loc[:, 'evalset'] == evalset, :] ev_anninfo = { who: {'annids': [], 'labels': [], 'users': [], 'polylines': []} for who in ir.who.keys()} for annid, row in evdf.iterrows(): # Add label from user. Note that if we did not do constrained # clustering, and we ended up with more than one annotation # from the same user, this would simply overwrite the label # BUT, no worries, the count will be increased and the grder ID # will still be saved to the matches so that we can later show # the effect of constraining usrs[evalset][row['user']] = row['group'] # Add girder ID and label from user to each relevant group for who, ppl in ir.who.items(): if row['user'] in ppl: ev_anninfo[who]['annids'].append(annid) ev_anninfo[who]['labels'].append(row['group']) ev_anninfo[who]['users'].append(row['user']) if (evalset != 'U-control') and ( row['type'] == 'polyline'): ev_anninfo[who]['polylines'].append(row['user']) return ev_anninfo def _get_medoid_using_iou(gids, justid=False): """Get medoid of a bunch of annotations using their girder id. NOTE: cluster "medoid" is defined as the element with maximum mean iou with all other elements in the cluster. In other words, it is most representative of this cluster. Note that the label for the medoid is irrelevant. """ iousubset = cluster_iou.loc[gids, :] contsubset = relevant_contours.loc[gids, :] medoid_id = iousubset.index[np.argmax(np.array(iousubset.mean(1)))] if justid: return medoid_id else: md = contsubset.loc[medoid_id, ['xmin', 'ymin', 'xmax', 'ymax']] return dict(md) def _get_anchor_bbox(anninfo): """Get the cluster anchor (i.e. representative element). Here's the order of preference: 1- If an unbiased manual segmentation boundary exists (by <NAME>), then we save it and use it for the anchor bounding box limits. 2- We use pathologist annotations from the unbiased control set, if they exists in the cluster, to get the "proper" anchor location. 3- We use NP annotations from the unbiased control set. 4- We uss the medoid of all matched elements, regardless of set """ # init anchor bbox location anchorbbox = {k: np.nan for k in ('xmin', 'ymin', 'xmax', 'ymax')} has_manual_bounary = manualusr in \ anninfo['U-control'][manualusrgrp]['users'] manual_boundary = None unbiased_pids = anninfo['U-control']['Ps']['annids'] unbiased_npids = anninfo['U-control']['NPs']['annids'] # First preference: Use manual boundary if has_manual_bounary: rows = relevant_contours.loc[anninfo['U-control'][manualusrgrp][ 'annids'], :] row = rows.loc[rows.loc[:, 'user'] == manualusr, :].iloc[0, :] manual_boundary = { 'coords_x': row['coords_x'], 'coords_y': row['coords_y']} # bbox of manual boundary take precedence anchorbbox.update({k: row[k] for k in (anchorbbox.keys())}) # Second preference: use pathologist annotations from the unbiased set elif len(unbiased_pids) > 0: anchorbbox.update(_get_medoid_using_iou(unbiased_pids)) # Third preference: use NP annotations from the unbiased set elif len(unbiased_npids) > 0: anchorbbox.update(_get_medoid_using_iou(unbiased_npids)) # Last preference: use all annotations else: anchorbbox.update(_get_medoid_using_iou(relevant_contours.index)) return anchorbbox, manual_boundary def _get_MV_inferred_label_for_who(evalset, who): labels = anninfo[evalset][who]['labels'] if len(labels) > 0: return Counter(labels).most_common()[0] return np.nan, np.nan def _get_algorithmic_boundary_for_evalset(evalset): """Get algorithmic boundary for nucleus. Remember that each eval set has its own algorithmic boundary, except of course the unbiased control set, which has none. """ polylines = relevant_contours.loc[relevant_contours.loc[ :, 'type'] == 'polyline', :] polylines = polylines.loc[polylines.loc[:, 'evalset'] == evalset, :] # unbiased controls don't have algorithmic boundaries if (polylines.shape[0] < 1) or (evalset == 'U-control'): return { f'algorithmic_coords_{c}': np.nan for c in ('x', 'y')} # find the medoid polyline. Note that even though everyone is presumed # to have clicked the same algorithmic bounday, it is possible that # multiple clicked algorithmic boundaries matched to the same cluster mid = _get_medoid_using_iou(polylines.index, justid=True) return { 'algorithmic_coords_x': polylines.loc[mid, 'coords_x'], 'algorithmic_coords_y': polylines.loc[mid, 'coords_y'], } def _get_anchor_dict(evalset): """Make sure all fields exist.""" anchor_id = ",".join([ str(anchorbbox[k]) for k in ('xmin', 'ymin', 'xmax', 'ymax')]) anch = { 'anchor_id': anchor_id, 'fovname': np.nan, 'min_iou': np.nan, 'evalset': evalset, } anch.update(anchorbbox) anch.update({f'{loc}_relative': np.nan for loc in anchorbbox.keys()}) anch.update({ 'has_manual_boundary': manual_boundary is not None, 'has_algorithmic_boundary': any([ len(anninfo[evalset][who]['polylines']) > 0 for who in ir.who.keys()]), 'algorithmic_vs_manual_intersect': np.nan, 'algorithmic_vs_manual_sums': np.nan, 'algorithmic_vs_manual_IOU': np.nan, 'algorithmic_vs_manual_DICE': np.nan, }) # no of matches per experience level anch.update({ f'n_matches_{who}': float(len(anninfo[evalset][who]['annids'])) for who in ir.who.keys()}) anch.update({ f'UNBIASED_n_matches_{who}': np.nan for who in ir.CONSENSUS_WHOS}) # tally and no of algorithmic boundary approvals per experience level anch.update({ f'algorithmic_clicks_{who}': ",".join(anninfo[evalset][who]['polylines']) for who in ir.who.keys()}) anch.update({ f'n_algorithmic_clicks_{who}': float(len( anninfo[evalset][who]['polylines'])) for who in ir.who.keys()}) # consensus label per experience level consensuses = dict() for who in ir.CONSENSUS_WHOS: # ir.who.keys() # majority voting consensuses[f'MV_inferred_label_{who}'], \ consensuses[f'MV_inferred_label_count_{who}'] = \ _get_MV_inferred_label_for_who(evalset, who) consensuses[f'UNBIASED_MV_inferred_label_{who}'] = np.nan consensuses[f'UNBIASED_MV_inferred_label_count_{who}'] = np.nan # expectation maximization consensuses[f'EM_decision_boundary_is_correct_{who}'] = 0 consensuses[f'EM_inferred_label_{who}'] = np.nan consensuses[f'EM_inferred_label_confidence_{who}'] = np.nan consensuses[f'EM_inferred_label_count_{who}'] = np.nan consensuses[f'UNBIASED_EM_inferred_label_{who}'] = np.nan consensuses[f'UNBIASED_EM_inferred_label_confidence_{who}'] = np.nan # noqa # number of Ps in THIS SET who agree with the unbiased label consensuses[f'UNBIASED_EM_inferred_label_count_{who}'] = np.nan # Soft EM probabilities for various classes (using THIS evalset) consensuses.update({ f'EM_prob_{cls}_{who}': np.nan for cls in ['undetected'] + ir.CLASSES }) anch.update(consensuses) # per-user and eval-set labels anch.update({f'{usr}': usrs[evalset][usr] for usr in ir.All}) # for convenience, add manual boundary coordinates if manual_boundary is not None: anch.update({f'manual_{k}': v for k, v in manual_boundary.items()}) else: anch.update({f'manual_coords_{c}': np.nan for c in ('x', 'y')}) # for convenience, add algorithmic boundary coordinates anch.update(_get_algorithmic_boundary_for_evalset(evalset)) # add information about algorithmic boundary DICE stats if anch['has_manual_boundary'] and anch['has_algorithmic_boundary']: # get coords list manual_coords = _get_coords_from_coordstr( anch['manual_coords_x'], anch['manual_coords_y']) algorithmic_coords = _get_coords_from_coordstr( anch['algorithmic_coords_x'], anch['algorithmic_coords_y']) # make sure sizes match all_coords = np.array(manual_coords + algorithmic_coords) bound = {} bound['min_x'], bound['min_y'] = np.min(all_coords, axis=0) bound['max_x'], bound['max_y'] = np.max(all_coords, axis=0) # create masks manual = create_mask_from_coords(np.int32(manual_coords), **bound) algorithmic = create_mask_from_coords( np.int32(algorithmic_coords), **bound) # now get intersection, union, etc intersect = np.sum((manual + algorithmic) == 2) sums = np.sum(manual) + np.sum(algorithmic) anch['algorithmic_vs_manual_intersect'] = intersect anch['algorithmic_vs_manual_sums'] = sums anch['algorithmic_vs_manual_IOU'] = intersect / (sums - intersect) anch['algorithmic_vs_manual_DICE'] = 2. * intersect / sums # for completeness, and to be able to access these later, we also # save a comma-separated list of the girder IDs of annotations # that matched to this medoid from this evaluation set keep = relevant_contours.loc[:, 'evalset'] == evalset anch['matches'] = ",".join(list(relevant_contours.loc[keep, :].index)) return anch # Get user label tally, as well as for each experience level. This also # updates the usr dict as an intentional side effect anninfo = { ev: _get_anninfo_for_subgroup(ev) for ev in ir.EVALSET_NAMES} # Get the anchor bounding box anchorbbox, manual_boundary = _get_anchor_bbox(anninfo) # Initialize the anchor, making sure all fields are there anchor = { evalset: _get_anchor_dict(evalset) for evalset in ir.EVALSET_NAMES} return anchor def _get_anchors_for_fov_by_clustering( all_conts, iou, participants, min_iou=0.5, constrained=True): """Get nucleus anchors for FOV. Parameters ---------- all_conts: DataFrame iou: DataFrame IOU for annotations against each other participants: dict each key is an eval set, and its value is a list of participants who annotated this FOV min_iou: float min_iou for clustering (1 - linkage threshold) constrained: bool constrained clustering? i.e. prevent annotations by the same participant from appearing in the same cluster? Returns ------- DataFrame """ # first we cluster model = _get_clusters_for_fov( all_conts=all_conts, iou=iou, min_iou=min_iou, constrained=constrained) # Differentiate those who didn't annotated FOV and those who did # this is an INITIALIZATION dict so a true copy must be passed usrs = { evalset: { usr: 'undetected' if usr in ppl else 'DidNotAnnotateFOV' for usr in ir.All } for evalset, ppl in participants.items() } cluster_anchors = {evalset: [] for evalset in ir.EVALSET_NAMES} # clid=4427; annlocs=model.clusters[clid] for clid, annlocs in model.clusters.items(): relevant_idxs = list(iou.index[annlocs]) anchor = _get_anchor_from_single_cluster( relevant_contours=all_conts.loc[relevant_idxs, :].copy(), cluster_iou=iou.iloc[annlocs, annlocs].copy(), usrs=copy.deepcopy(usrs), ) for evalset in anchor.keys(): cluster_anchors[evalset].append(anchor[evalset]) # convert to dfs for evalset in ir.EVALSET_NAMES: cluster_anchors[evalset] = DataFrame.from_records( cluster_anchors[evalset]) cluster_anchors[evalset].index = cluster_anchors[ evalset].loc[:, 'anchor_id'] cluster_anchors[evalset].loc[:, "min_iou"] = min_iou return cluster_anchors def _get_bounds_for_eval_fov(gc, dbcon, elementid, MPP, MAG, all_conts): # any copy of the slide will do obviously slide_id = read_sql_query(f""" SELECT "itemId" FROM "annotation_docs" WHERE "annotation_girder_id" IN ( SELECT "annotation_girder_id" FROM "annotation_elements" WHERE "element_girder_id" = "{elementid}" ) ;""", dbcon).iloc[0, 0] # calculate the scale factor sf, appendStr = get_scale_factor_and_appendStr( gc=gc, slide_id=slide_id, MPP=MPP, MAG=MAG) # get overall bounds for FOV bounds = { 'XMIN': np.min(all_conts.loc[:, "xmin"]), 'YMIN': np.min(all_conts.loc[:, "ymin"]), 'XMAX': np.max(all_conts.loc[:, "xmax"]), 'YMAX': np.max(all_conts.loc[:, "ymax"]), 'sf': sf, 'appendStr': appendStr, } return bounds, slide_id def _get_rgb_for_interrater(gc, bounds, slide_id): """""" getStr = \ "/item/%s/tiles/region?left=%d&right=%d&top=%d&bottom=%d" \ % (slide_id, bounds['XMIN'], bounds['XMAX'], bounds['YMIN'], bounds['YMAX']) getStr += bounds['appendStr'] resp = gc.get(getStr, jsonResp=False) rgb = get_image_from_htk_response(resp) return rgb def _visualize_bboxes_on_rgb( rgbim, xy_df, fovcont=None, totalcount=None, lblcount=None, lblcolors=None, bbox_linewidth=None, bbf=0.1, bbox_color='#525150', add_points=False, point_size=None, psmin=4, psf=0.3, point_color='#525150'): fov = copy.deepcopy(fovcont) # later on flipped by matplotlib for weird reason rgb = np.flipud(rgbim.copy()) # make sure also y coords are flipped for locstr in ("ymin", "ymax"): xy_df.loc[:, locstr] = rgb.shape[0] - xy_df.loc[:, locstr] + 1 if fovcont is not None: fov[locstr] = rgb.shape[0] - fovcont[locstr] + 1 if add_points: fig = plt.figure() dpi = 300 else: fig = plt.figure( figsize=(rgb.shape[1] / 1000, rgb.shape[0] / 1000), dpi=100) dpi = 1000 ax = plt.subplot(111) ax.imshow(rgb) plt.axis('off') ax = plt.gca() ax.set_xlim(0.0, rgb.shape[1]) ax.set_ylim(0.0, rgb.shape[0]) # single versus multiple bounding box linewidths if np.isscalar(bbox_linewidth): lw = [bbox_linewidth] * xy_df.shape[0] else: lw = bbf * totalcount # single versus multiple bounding box colors if np.isscalar(bbox_color): ec = [bbox_color] * xy_df.shape[0] else: ec = lblcolors # single versus multiple point sizes if add_points: if np.isscalar(point_size): ps1 = [point_size] * xy_df.shape[0] ps2 = None else: ps1 = psmin + totalcount * psf ps2 = psmin + lblcount * psf # now draw the bounding boxes & add points loc = 0 for _, me in xy_df.iterrows(): # add bounding box (detection) rect = patches.Rectangle( xy=(me['xmin'], me['ymin']), width=me['xmax'] - me['xmin'], height=me['ymax'] - me['ymin'], edgecolor=ec[loc], linewidth=lw[loc], facecolor='none', linestyle='-') ax.add_patch(rect) loc += 1 # Add the fov contour if given if fovcont is not None: rect = patches.Rectangle( xy=(fov['xmin'], fov['ymin']), width=fov['xmax'] - fov['xmin'], height=fov['ymax'] - fov['ymin'], edgecolor=fov['color'], linewidth=0.2 if add_points else 0.2, facecolor='none', linestyle='--') ax.add_patch(rect) # add point (classification) -- looks ugly (yikes!) if add_points: x = np.int32(xy_df.loc[:, "xmin"] + ( xy_df.loc[:, "xmax"] - xy_df.loc[:, "xmin"]) / 2) y = np.int32(xy_df.loc[:, "ymin"] + ( xy_df.loc[:, "ymax"] - xy_df.loc[:, "ymin"]) / 2) # main seed points (totals) ax.scatter( x, y, color=point_color, alpha=1., marker='.', edgecolor=None, s=ps1 ** 2, ) # most dominant label if ps2 is not None: ax.scatter( x, y, color=lblcolors, alpha=1.0, marker='.', edgecolor=None, s=ps2 ** 2, ) ax.axis('off') fig.subplots_adjust(bottom=0, top=1, left=0, right=1) buf = io.BytesIO() plt.savefig(buf, format='png', pad_inches=0, dpi=dpi) buf.seek(0) rgb_vis = np.uint8(Image.open(buf))[..., :3] plt.close() return rgb_vis def _restrict_to_user_subset(all_conts, who='NP'): keep = all_conts.loc[:, "user"].isin(ir.who[who]) return all_conts.loc[keep, :] def _get_annlocs_for_same_user(all_conts): """Find annotation indices that cannot appear in the same cluster. In this case, annotations from the same user and evaluation set CANNOT map to the same anchor since the user's intention, by definition, is to annotate two separate nuclei. """ dontlink = [] for evalset in ir.EVALSET_NAMES: evalconts = all_conts.loc[all_conts.loc[:, "evalset"] == evalset, :] for user in ir.All: user_elements = evalconts.loc[evalconts.loc[:, "user"] == user, :] if user_elements.shape[0] > 0: dontlink.append(np.argwhere(np.in1d( all_conts.index, user_elements.index))[:, 0]) return dontlink def get_anchors_for_iou_thresh( fovinfo, dbcon, who='All', min_iou=0.25, constrained=True, gc=None, add_relative_bounds=True, MPP=0.2, MAG=None): """Get all nucleus anchors for a range of clustering IOU thresholds. Note that there are two types of analyses we want to investigate: 1. Can we use concordance with SPs as proxy for core set performance 2. What would happen if we only use NP annotations for everything See ctme/nuclei/ideas for details ... Q1: Since the CORE_SET is based on the same methodology as EVAL_SET_3, how accurate are NP annotations compared to SPs/JPs on EVAL_SET_3. i.e. if SPs/JPs did the annotations under the exact same conditions? Q2: How accurate are the annotations made by SPs & NPs, in absolute terms, when compared against our "unbiased" approach (SPs/JPs on EVAL_SET_1)?? Parameters ---------- fovinfo: dict keys are names of participants who annotated the fov, each entry is also a dict constaining metadata about the fov by this particular participant dbcon: connected sqlalchemy database who: str participant experience level to keep min_iou: float min_iou to map annotations to same cluster constrained: bool gc: authenticated girder client add_relative_bounds: bool MPP: float or None MAG: float or None Returns ------- dict """ out = dict() # Read all contours. Since the masks are small and there's < 30 nuclei # this is OK and it save us IO cost all_conts, out['fov_conts'] = _get_all_contours_for_eval_fov( fovinfo=fovinfo, dbcon=dbcon) # we get the absolute bounds of the FOV, including all annotations # from all users and evaluation sets if add_relative_bounds: assert gc is not None, "You must provide girder client" out['bounds'], out['slide_id'] = _get_bounds_for_eval_fov( gc=gc, dbcon=dbcon, elementid=all_conts.index[0], MPP=MPP, MAG=MAG, all_conts=all_conts) # ** Restrict to subsets of users ** if who != 'All': all_conts = _restrict_to_user_subset(all_conts, who=who) # If empty FOV, return None if all_conts.shape[0] < 1: return # differentiate between bboxes and polygons all_conts.loc[:, 'type'] = all_conts.loc[:, 'coords_x'].apply( lambda x: 'polyline' if len(x.split(',')) > 5 else 'rectangle') # get ious for all potential nuclei bboxes iou = _get_iou_for_fov(all_conts) # init all_anchors = {evset: DataFrame() for evset in ir.EVALSET_NAMES} # This is a list of people who annotated the FOV for both the main # evaluation set as well as the controls participants = { k: list(fovinfo[k].keys()) if k in fovinfo.keys() else [] for k in ir.EVALSET_NAMES } # get absolute coordinates of medoids cluster_anchors = _get_anchors_for_fov_by_clustering( all_conts=all_conts, iou=iou, min_iou=min_iou, constrained=constrained, participants=participants) for evset in ir.EVALSET_NAMES: # relative to the fov at desired MPP if add_relative_bounds: relative_anchors = _get_relative_anchors( cluster_medoids=cluster_anchors[evset].loc[ :, ["xmin", "ymin", "xmax", "ymax"]], bounds=out['bounds']) for col in relative_anchors.columns: cluster_anchors[evset].loc[:, f'{col}_relative'] = \ relative_anchors.loc[:, col] all_anchors[evset] = concat( (all_anchors[evset], cluster_anchors[evset]), axis=0, sort=False, ignore_index=True) out['all_anchors'] = all_anchors return out def _get_fovnames_with_commonest_nobservers( fovmetas: DataFrame, who: str) -> Tuple[List[str], int]: """"Get the names of FOVs with commonest number of observers. Most of the time, this will be all observers (i.e. 6 of 6 pathologists), but there may be exceptions. It is important to only keep FOVs with the same number of observers so that the ease of detection of nuclei is not confounded by the number who actually annotated the FOV. i.e so that we know that a nucleus detected by only 4 pathologists is because it is a tough nucleus, not because only 4 pathologists happened to annotate this particular FOV. """ nperfov = { row['fovname']: len([ p for p in row['participants'].split(',') if p in ir.who[who] ]) for _, row in fovmetas.iterrows() } tally = Counter([v for _, v in nperfov.items()]) # the higher of the two most common n_observers per FOV maxn = max(tally.most_common()[0][0], tally.most_common()[1][0]) fovnames = [k for k, v in nperfov.items() if v == maxn] return fovnames, maxn def get_fovs_annotated_by_almost_everyone( dbcon_anchors, unbiased_is_truth: bool, whoistruth: str, evalset: str, who: str, get_anchors: bool = True) -> Dict[str, Any]: """Get FOVs with most observers. See docstring for _get_fovnames_with_commonest_nobservers(). """ # get fov metadata fovmetas =
read_sql_query(f""" SELECT "fovname", "participants_{evalset}" AS "participants" FROM "fov_meta" WHERE "participants_{evalset}" NOT NULL ;""", dbcon_anchors)
pandas.read_sql_query
""" This script analyzes Python imports. It accepts * path to csv file with FQ names. * path to the folder where to save the stats. * path to the csv file with labeled projects by python version. For each unique import name, the number of projects in which it occurs is counted. It is also possible to group statistics by language version of Python. This script is a wrapper over import_directives_analysis.py. """ import argparse import logging from pathlib import Path from typing import Optional, Tuple from analysis.dependencies.fq_names_tree import build_fq_name_tree_decomposition from analysis.dependencies.import_directives_analysis import ( fq_names_groups_to_stats, fq_names_to_dict, get_prefix_by_package, group_fq_names_by, ) from analysis.dependencies.python.imports_column import ImportsColumn import pandas as pd logging.basicConfig(level=logging.INFO) # These are the default Python arguments passed to import_directives_analysis.py MAX_PACKAGE_LEN = 3 MAX_SUBPACKAGES = 10000 MAX_LEAF_SUBPACKAGES = 0.8 MIN_OCCURRENCE = 100 MAX_OCCURRENCE = 1500 MAX_U_OCCURRENCE = 500 def configure_parser(parser: argparse.ArgumentParser): parser.add_argument( '--input', type=lambda value: Path(value).absolute(), help='path to csv file with fq names', required=True, ) parser.add_argument( '--output', type=lambda value: Path(value).absolute(), help='path to the folder where to save the stats', required=True, ) parser.add_argument( '--python-versions', type=lambda value: Path(value).absolute(), help='path to the csv file with labeled projects by python version', ) def collect_stats(imports: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]: total_stats = imports.value_counts([ImportsColumn.IMPORT.value]) total_stats = total_stats.reset_index(name=ImportsColumn.COUNT.value) total_stats.rename(columns={ImportsColumn.IMPORT.value: ImportsColumn.FQ_NAME.value}, inplace=True) fq_names = imports[ImportsColumn.IMPORT.value].tolist() fq_names_dict = fq_names_to_dict(fq_names) _, sub_roots = build_fq_name_tree_decomposition( fq_names_dict=fq_names_dict, max_subpackages=MAX_SUBPACKAGES, max_leaf_subpackages=MAX_LEAF_SUBPACKAGES, min_occurrence=MIN_OCCURRENCE, max_occurrence=MAX_OCCURRENCE, max_u_occurrence=MAX_U_OCCURRENCE, ) packages = [sub_root.full_name for sub_root in sub_roots] fq_names_by_package = group_fq_names_by( fq_names=fq_names, group_by_function=lambda fq_name: get_prefix_by_package(fq_name, packages, MAX_PACKAGE_LEN), ) fq_names_by_package_stats = fq_names_groups_to_stats(fq_names_by_package) package_stats = pd.DataFrame( fq_names_by_package_stats.items(), columns=[ImportsColumn.FQ_NAME.value, ImportsColumn.COUNT.value], ) logging.info(f'Processed {len(total_stats)} unique FQ names and {len(package_stats)} unique package names.') return total_stats, package_stats def main(): parser = argparse.ArgumentParser() configure_parser(parser) args = parser.parse_args() input_path: Path = args.input output_path: Path = args.output python_versions_path: Optional[Path] = args.python_versions output_path.mkdir(parents=True, exist_ok=True) imports =
pd.read_csv(input_path, keep_default_na=False)
pandas.read_csv
import pandas as pd import numpy as np import os from scipy.stats import skew from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.impute import SimpleImputer import warnings warnings.filterwarnings('ignore') class TitanicData: def __init__(self, file_path): self.data = pd.read_csv(os.path.join(file_path,'train.csv')) self.testset = pd.read_csv(os.path.join(file_path,'test.csv')) self.scaler = StandardScaler() self.num_features = ['Pclass','Age','SibSp','Parch','Fare'] def transform(self, **kwargs): # args scaling = False if 'scaling' not in kwargs.keys() else kwargs['scaling'] # pre-processing train = self.processing(self.data, **kwargs) x_train = train.drop('Survived', axis=1) y_train = train.Survived # scaling if scaling: x_train[self.num_features] = self.scaler.fit_transform(x_train[self.num_features]) # test set if isinstance(self.testset, pd.DataFrame): x_test = self.processing(self.testset, **kwargs) # scaling if scaling: x_test[self.num_features] = self.scaler.transform(x_test[self.num_features]) return (x_train.values, y_train.values), x_test.values return x_train.values, y_train.values def processing(self, raw_data, **kwargs): data = raw_data.copy() # args dummy_dropfirst = True if 'dummy_dropfirst' not in kwargs.keys() else kwargs['dummy_dropfirst'] # Sex은 0,1 로 변환 sex_dict = { 'male': 0, 'female': 1 } data['Sex'] = data.Sex.map(sex_dict) # Name은 Title을 추출하여 ['Mr','Mrs','Miss','Master','Other'] 로 분류 # Title에 대한 정보 : https://en.wikipedia.org/wiki/Honorific data.Name = data.Name.str.split('.', expand=True).iloc[:,0].str.split(',', expand=True).iloc[:,1].str.strip() major = data.Name.value_counts().iloc[:4] data.Name = data.Name.apply(lambda x : 'Other' if x not in major.index else x) # Age는 각 타이틀별 중앙값으로 대체 age_median = dict(data.groupby('Name').Age.median()) for k, v in age_median.items(): data.loc[data.Age.isnull() & (data.Name==k), 'Age'] = v # 왜인지 모르겠지만 age에 소수점이 있음 data['Age'] = data.Age.astype(int) # Embarked는 최빈값으로 대체 data.loc[data.Embarked.isnull(), 'Embarked'] = data.Embarked.mode().values # Fare는 큰 이상치가 있기때문에 log1p 변환 data.loc[data.Fare.isnull(), 'Fare'] = data.Fare.median() data['Fare'] = np.log1p(data.Fare) # Ticket과 Cabin은 사용안함 data = data.drop(['Ticket','Cabin'], axis=1) # PassengerId 제외 data = data.drop('PassengerId', axis=1) # dummy transform data = pd.get_dummies(data, drop_first=dummy_dropfirst) return data class HousePriceData: def __init__(self, file_path): self.data = pd.read_csv(os.path.join(file_path,'train.csv')) self.testset = pd.read_csv(os.path.join(file_path,'test.csv')) self.scaler = StandardScaler() self.imputer = SimpleImputer() self.encoder = OneHotEncoder() self.num_features = None self.missing_features = None self.skew_features = None self.remove_features = [] def transform(self, **kwargs): # args scaling = False if 'scaling' not in kwargs.keys() else kwargs['scaling'] # pre-processing train = self.processing(self.data, **kwargs) x_train = train.drop('SalePrice', axis=1) y_train = train.SalePrice # test set x_test = self.processing(self.testset, training=False, **kwargs) # dummy transform data =
pd.concat([x_train, x_test],axis=0)
pandas.concat
import argparse import os import pickle from pathlib import Path import gym import gym_chrome_dino import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch from network.pg import PG from utils.show_img import show_img class GameSession: def __init__( self, session_env, initial_epsilon=0.1, final_epsilon=0.0001, observe=False, steps_to_observe=100, frames_to_action=1, frames_to_anneal=100000, replay_memory_size=50000, minibatch_size=16, n_actions=3, gamma=0.99, steps_to_save=1000, loss_path='./models/prl/loss.csv', scores_path='./models/prl/scores.csv', actions_path='./models/prl/actions.csv', q_values_path='./models/prl/q_values.csv', ): self.session_env = session_env self.initial_epsilon = initial_epsilon self.final_epsilon = final_epsilon self.observe = observe self.steps_to_observe = steps_to_observe self.frames_to_action = frames_to_action self.frames_to_anneal = frames_to_anneal self.replay_memory_size = replay_memory_size self.minibatch_size = minibatch_size self.n_actions = n_actions self.gamma = gamma self.steps_to_save = steps_to_save self.loss_path = loss_path self.scores_path = scores_path self.actions_path = actions_path self.q_values_path = q_values_path # Display the processed image on screen using openCV, implemented using python coroutine self._display = show_img() # Initialize the display coroutine self._display.__next__() # Initialize the required files self.loss_df = pd \ .read_csv(loss_path) if os.path.isfile(loss_path) else pd.DataFrame(columns=['loss']) self.scores_df = pd \ .read_csv(scores_path) if os.path.isfile(scores_path) else
pd.DataFrame(columns=['scores'])
pandas.DataFrame
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import decimal from datetime import datetime from distutils.version import LooseVersion import inspect import sys import unittest from io import StringIO from typing import List import numpy as np import pandas as pd from pandas.tseries.offsets import DateOffset from pyspark import StorageLevel from pyspark.ml.linalg import SparseVector from pyspark.sql.types import StructType from pyspark import pandas as ps from pyspark.pandas.config import option_context from pyspark.pandas.exceptions import PandasNotImplementedError from pyspark.pandas.frame import CachedDataFrame from pyspark.pandas.missing.frame import _MissingPandasLikeDataFrame from pyspark.pandas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) from pyspark.testing.pandasutils import ( have_tabulate, PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED, tabulate_requirement_message, ) from pyspark.testing.sqlutils import SQLTestUtils from pyspark.pandas.utils import name_like_string class DataFrameTest(PandasOnSparkTestCase, SQLTestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=np.random.rand(9), ) @property def psdf(self): return ps.from_pandas(self.pdf) @property def df_pair(self): pdf = self.pdf psdf = ps.from_pandas(pdf) return pdf, psdf def test_dataframe(self): pdf, psdf = self.df_pair self.assert_eq(psdf["a"] + 1, pdf["a"] + 1) self.assert_eq(psdf.columns, pd.Index(["a", "b"])) self.assert_eq(psdf[psdf["b"] > 2], pdf[pdf["b"] > 2]) self.assert_eq(-psdf[psdf["b"] > 2], -pdf[pdf["b"] > 2]) self.assert_eq(psdf[["a", "b"]], pdf[["a", "b"]]) self.assert_eq(psdf.a, pdf.a) self.assert_eq(psdf.b.mean(), pdf.b.mean()) self.assert_eq(psdf.b.var(), pdf.b.var()) self.assert_eq(psdf.b.std(), pdf.b.std()) pdf, psdf = self.df_pair self.assert_eq(psdf[["a", "b"]], pdf[["a", "b"]]) self.assertEqual(psdf.a.notnull().rename("x").name, "x") # check ps.DataFrame(ps.Series) pser = pd.Series([1, 2, 3], name="x", index=np.random.rand(3)) psser = ps.from_pandas(pser) self.assert_eq(pd.DataFrame(pser), ps.DataFrame(psser)) # check psdf[pd.Index] pdf, psdf = self.df_pair column_mask = pdf.columns.isin(["a", "b"]) index_cols = pdf.columns[column_mask] self.assert_eq(psdf[index_cols], pdf[index_cols]) def _check_extension(self, psdf, pdf): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(psdf, pdf, check_exact=False) for dtype in psdf.dtypes: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assert_eq(psdf, pdf) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_extension_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series([1, 2, None, 4], dtype="Int8"), "b": pd.Series([1, None, None, 4], dtype="Int16"), "c": pd.Series([1, 2, None, None], dtype="Int32"), "d": pd.Series([None, 2, None, 4], dtype="Int64"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) self._check_extension(psdf + psdf, pdf + pdf) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_astype_extension_dtypes(self): pdf = pd.DataFrame( { "a": [1, 2, None, 4], "b": [1, None, None, 4], "c": [1, 2, None, None], "d": [None, 2, None, 4], } ) psdf = ps.from_pandas(pdf) astype = {"a": "Int8", "b": "Int16", "c": "Int32", "d": "Int64"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_extension_object_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series(["a", "b", None, "c"], dtype="string"), "b": pd.Series([True, None, False, True], dtype="boolean"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_astype_extension_object_dtypes(self): pdf = pd.DataFrame({"a": ["a", "b", None, "c"], "b": [True, None, False, True]}) psdf = ps.from_pandas(pdf) astype = {"a": "string", "b": "boolean"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_extension_float_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, None, 4.0], dtype="Float32"), "b": pd.Series([1.0, None, 3.0, 4.0], dtype="Float64"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) self._check_extension(psdf + 1, pdf + 1) self._check_extension(psdf + psdf, pdf + pdf) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_astype_extension_float_dtypes(self): pdf = pd.DataFrame({"a": [1.0, 2.0, None, 4.0], "b": [1.0, None, 3.0, 4.0]}) psdf = ps.from_pandas(pdf) astype = {"a": "Float32", "b": "Float64"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) def test_insert(self): # # Basic DataFrame # pdf = pd.DataFrame([1, 2, 3]) psdf = ps.from_pandas(pdf) psdf.insert(1, "b", 10) pdf.insert(1, "b", 10) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(2, "c", 0.1) pdf.insert(2, "c", 0.1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(3, "d", psdf.b + 1) pdf.insert(3, "d", pdf.b + 1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psser = ps.Series([4, 5, 6]) self.assertRaises(ValueError, lambda: psdf.insert(0, "y", psser)) self.assertRaisesRegex( ValueError, "cannot insert b, already exists", lambda: psdf.insert(1, "b", 10) ) self.assertRaisesRegex( TypeError, '"column" should be a scalar value or tuple that contains scalar values', lambda: psdf.insert(0, list("abc"), psser), ) self.assertRaisesRegex( TypeError, "loc must be int", lambda: psdf.insert((1,), "b", 10), ) self.assertRaisesRegex( NotImplementedError, "Assigning column name as tuple is only supported for MultiIndex columns for now.", lambda: psdf.insert(0, ("e",), 10), ) self.assertRaises(ValueError, lambda: psdf.insert(0, "e", [7, 8, 9, 10])) self.assertRaises(ValueError, lambda: psdf.insert(0, "f", ps.Series([7, 8]))) self.assertRaises(AssertionError, lambda: psdf.insert(100, "y", psser)) self.assertRaises(AssertionError, lambda: psdf.insert(1, "y", psser, allow_duplicates=True)) # # DataFrame with MultiIndex as columns # pdf = pd.DataFrame({("x", "a", "b"): [1, 2, 3]}) psdf = ps.from_pandas(pdf) psdf.insert(1, "b", 10) pdf.insert(1, "b", 10) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(2, "c", 0.1) pdf.insert(2, "c", 0.1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(3, "d", psdf.b + 1) pdf.insert(3, "d", pdf.b + 1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) self.assertRaisesRegex( ValueError, "cannot insert d, already exists", lambda: psdf.insert(4, "d", 11) ) self.assertRaisesRegex( ValueError, r"cannot insert \('x', 'a', 'b'\), already exists", lambda: psdf.insert(4, ("x", "a", "b"), 11), ) self.assertRaisesRegex( ValueError, '"column" must have length equal to number of column levels.', lambda: psdf.insert(4, ("e",), 11), ) def test_inplace(self): pdf, psdf = self.df_pair pser = pdf.a psser = psdf.a pdf["a"] = pdf["a"] + 10 psdf["a"] = psdf["a"] + 10 self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) def test_assign_list(self): pdf, psdf = self.df_pair pser = pdf.a psser = psdf.a pdf["x"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] psdf["x"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser, pser) with self.assertRaisesRegex(ValueError, "Length of values does not match length of index"): psdf["z"] = [10, 20, 30, 40, 50, 60, 70, 80] def test_dataframe_multiindex_columns(self): pdf = pd.DataFrame( { ("x", "a", "1"): [1, 2, 3], ("x", "b", "2"): [4, 5, 6], ("y.z", "c.d", "3"): [7, 8, 9], ("x", "b", "4"): [10, 11, 12], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf["x"], pdf["x"]) self.assert_eq(psdf["y.z"], pdf["y.z"]) self.assert_eq(psdf["x"]["b"], pdf["x"]["b"]) self.assert_eq(psdf["x"]["b"]["2"], pdf["x"]["b"]["2"]) self.assert_eq(psdf.x, pdf.x) self.assert_eq(psdf.x.b, pdf.x.b) self.assert_eq(psdf.x.b["2"], pdf.x.b["2"]) self.assertRaises(KeyError, lambda: psdf["z"]) self.assertRaises(AttributeError, lambda: psdf.z) self.assert_eq(psdf[("x",)], pdf[("x",)]) self.assert_eq(psdf[("x", "a")], pdf[("x", "a")]) self.assert_eq(psdf[("x", "a", "1")], pdf[("x", "a", "1")]) def test_dataframe_column_level_name(self): column = pd.Index(["A", "B", "C"], name="X") pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=column, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.columns.names, pdf.columns.names) self.assert_eq(psdf.to_pandas().columns.names, pdf.columns.names) def test_dataframe_multiindex_names_level(self): columns = pd.MultiIndex.from_tuples( [("X", "A", "Z"), ("X", "B", "Z"), ("Y", "C", "Z"), ("Y", "D", "Z")], names=["lvl_1", "lvl_2", "lv_3"], ) pdf = pd.DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20]], columns=columns, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.columns.names, pdf.columns.names) self.assert_eq(psdf.to_pandas().columns.names, pdf.columns.names) psdf1 = ps.from_pandas(pdf) self.assert_eq(psdf1.columns.names, pdf.columns.names) self.assertRaises( AssertionError, lambda: ps.DataFrame(psdf1._internal.copy(column_label_names=("level",))), ) self.assert_eq(psdf["X"], pdf["X"]) self.assert_eq(psdf["X"].columns.names, pdf["X"].columns.names) self.assert_eq(psdf["X"].to_pandas().columns.names, pdf["X"].columns.names) self.assert_eq(psdf["X"]["A"], pdf["X"]["A"]) self.assert_eq(psdf["X"]["A"].columns.names, pdf["X"]["A"].columns.names) self.assert_eq(psdf["X"]["A"].to_pandas().columns.names, pdf["X"]["A"].columns.names) self.assert_eq(psdf[("X", "A")], pdf[("X", "A")]) self.assert_eq(psdf[("X", "A")].columns.names, pdf[("X", "A")].columns.names) self.assert_eq(psdf[("X", "A")].to_pandas().columns.names, pdf[("X", "A")].columns.names) self.assert_eq(psdf[("X", "A", "Z")], pdf[("X", "A", "Z")]) def test_itertuples(self): pdf = pd.DataFrame({"num_legs": [4, 2], "num_wings": [0, 2]}, index=["dog", "hawk"]) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip( pdf.itertuples(index=False, name="Animal"), psdf.itertuples(index=False, name="Animal") ): self.assert_eq(ptuple, ktuple) for ptuple, ktuple in zip(pdf.itertuples(name=None), psdf.itertuples(name=None)): self.assert_eq(ptuple, ktuple) pdf.index = pd.MultiIndex.from_arrays( [[1, 2], ["black", "brown"]], names=("count", "color") ) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="Animal"), psdf.itertuples(name="Animal")): self.assert_eq(ptuple, ktuple) pdf.columns = pd.MultiIndex.from_arrays( [["CA", "WA"], ["age", "children"]], names=("origin", "info") ) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="Animal"), psdf.itertuples(name="Animal")): self.assert_eq(ptuple, ktuple) pdf = pd.DataFrame([1, 2, 3]) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip( (pdf + 1).itertuples(name="num"), (psdf + 1).itertuples(name="num") ): self.assert_eq(ptuple, ktuple) # DataFrames with a large number of columns (>254) pdf = pd.DataFrame(np.random.random((1, 255))) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="num"), psdf.itertuples(name="num")): self.assert_eq(ptuple, ktuple) def test_iterrows(self): pdf = pd.DataFrame( { ("x", "a", "1"): [1, 2, 3], ("x", "b", "2"): [4, 5, 6], ("y.z", "c.d", "3"): [7, 8, 9], ("x", "b", "4"): [10, 11, 12], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) for (pdf_k, pdf_v), (psdf_k, psdf_v) in zip(pdf.iterrows(), psdf.iterrows()): self.assert_eq(pdf_k, psdf_k) self.assert_eq(pdf_v, psdf_v) def test_reset_index(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index().index, pdf.reset_index().index) self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) pdf.index.name = "a" psdf.index.name = "a" with self.assertRaisesRegex(ValueError, "cannot insert a, already exists"): psdf.reset_index() self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) # inplace pser = pdf.a psser = psdf.a pdf.reset_index(drop=True, inplace=True) psdf.reset_index(drop=True, inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) pdf.columns = ["index", "b"] psdf.columns = ["index", "b"] self.assert_eq(psdf.reset_index(), pdf.reset_index()) def test_reset_index_with_default_index_types(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) with ps.option_context("compute.default_index_type", "sequence"): self.assert_eq(psdf.reset_index(), pdf.reset_index()) with ps.option_context("compute.default_index_type", "distributed-sequence"): self.assert_eq(psdf.reset_index(), pdf.reset_index()) with ps.option_context("compute.default_index_type", "distributed"): # the index is different. self.assert_eq(psdf.reset_index().to_pandas().reset_index(drop=True), pdf.reset_index()) def test_reset_index_with_multiindex_columns(self): index = pd.MultiIndex.from_tuples( [("bird", "falcon"), ("bird", "parrot"), ("mammal", "lion"), ("mammal", "monkey")], names=["class", "name"], ) columns = pd.MultiIndex.from_tuples([("speed", "max"), ("species", "type")]) pdf = pd.DataFrame( [(389.0, "fly"), (24.0, "fly"), (80.5, "run"), (np.nan, "jump")], index=index, columns=columns, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index(level="class"), pdf.reset_index(level="class")) self.assert_eq( psdf.reset_index(level="class", col_level=1), pdf.reset_index(level="class", col_level=1), ) self.assert_eq( psdf.reset_index(level="class", col_level=1, col_fill="species"), pdf.reset_index(level="class", col_level=1, col_fill="species"), ) self.assert_eq( psdf.reset_index(level="class", col_level=1, col_fill="genus"), pdf.reset_index(level="class", col_level=1, col_fill="genus"), ) with self.assertRaisesRegex(IndexError, "Index has only 2 levels, not 3"): psdf.reset_index(col_level=2) pdf.index.names = [("x", "class"), ("y", "name")] psdf.index.names = [("x", "class"), ("y", "name")] self.assert_eq(psdf.reset_index(), pdf.reset_index()) with self.assertRaisesRegex(ValueError, "Item must have length equal to number of levels."): psdf.reset_index(col_level=1) def test_index_to_frame_reset_index(self): def check(psdf, pdf): self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) pdf.reset_index(drop=True, inplace=True) psdf.reset_index(drop=True, inplace=True) self.assert_eq(psdf, pdf) pdf, psdf = self.df_pair check(psdf.index.to_frame(), pdf.index.to_frame()) check(psdf.index.to_frame(index=False), pdf.index.to_frame(index=False)) check(psdf.index.to_frame(name="a"), pdf.index.to_frame(name="a")) check(psdf.index.to_frame(index=False, name="a"), pdf.index.to_frame(index=False, name="a")) check(psdf.index.to_frame(name=("x", "a")), pdf.index.to_frame(name=("x", "a"))) check( psdf.index.to_frame(index=False, name=("x", "a")), pdf.index.to_frame(index=False, name=("x", "a")), ) def test_multiindex_column_access(self): columns = pd.MultiIndex.from_tuples( [ ("a", "", "", "b"), ("c", "", "d", ""), ("e", "", "f", ""), ("e", "g", "", ""), ("", "", "", "h"), ("i", "", "", ""), ] ) pdf = pd.DataFrame( [ (1, "a", "x", 10, 100, 1000), (2, "b", "y", 20, 200, 2000), (3, "c", "z", 30, 300, 3000), ], columns=columns, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf["a"], pdf["a"]) self.assert_eq(psdf["a"]["b"], pdf["a"]["b"]) self.assert_eq(psdf["c"], pdf["c"]) self.assert_eq(psdf["c"]["d"], pdf["c"]["d"]) self.assert_eq(psdf["e"], pdf["e"]) self.assert_eq(psdf["e"][""]["f"], pdf["e"][""]["f"]) self.assert_eq(psdf["e"]["g"], pdf["e"]["g"]) self.assert_eq(psdf[""], pdf[""]) self.assert_eq(psdf[""]["h"], pdf[""]["h"]) self.assert_eq(psdf["i"], pdf["i"]) self.assert_eq(psdf[["a", "e"]], pdf[["a", "e"]]) self.assert_eq(psdf[["e", "a"]], pdf[["e", "a"]]) self.assert_eq(psdf[("a",)], pdf[("a",)]) self.assert_eq(psdf[("e", "g")], pdf[("e", "g")]) # self.assert_eq(psdf[("i",)], pdf[("i",)]) self.assert_eq(psdf[("i", "")], pdf[("i", "")]) self.assertRaises(KeyError, lambda: psdf[("a", "b")]) def test_repr_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. df = ps.range(10) df.__repr__() df["a"] = df["id"] self.assertEqual(df.__repr__(), df.to_pandas().__repr__()) def test_repr_html_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. df = ps.range(10) df._repr_html_() df["a"] = df["id"] self.assertEqual(df._repr_html_(), df.to_pandas()._repr_html_()) def test_empty_dataframe(self): pdf = pd.DataFrame({"a": pd.Series([], dtype="i1"), "b": pd.Series([], dtype="str")}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_all_null_dataframe(self): pdf = pd.DataFrame( { "a": [None, None, None, "a"], "b": [None, None, None, 1], "c": [None, None, None] + list(np.arange(1, 2).astype("i1")), "d": [None, None, None, 1.0], "e": [None, None, None, True], "f": [None, None, None] + list(
pd.date_range("20130101", periods=1)
pandas.date_range
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_union(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = Int64Index(np.arange(10, 30, 2)) result = i1.union(i2) expected = Int64Index(np.arange(0, 30, 2)) self.assert_numpy_array_equal(result, expected) def test_union_with_DatetimeIndex(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = DatetimeIndex(start='2012-01-03 00:00:00', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_time(self): rng = pd.date_range('1/1/2000', freq='12min', periods=10) result = pd.Index(rng).time expected = [t.time() for t in rng] self.assertTrue((result == expected).all()) def test_date(self): rng = pd.date_range('1/1/2000', freq='12H', periods=10) result = pd.Index(rng).date expected = [t.date() for t in rng] self.assertTrue((result == expected).all()) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='dt') cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) assert_array_equal(cols.values, joined.values) def test_slice_keeps_name(self): # GH4226 st = pd.Timestamp('2013-07-01 00:00:00', tz='America/Los_Angeles') et = pd.Timestamp('2013-07-02 00:00:00', tz='America/Los_Angeles') dr = pd.date_range(st, et, freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = date_range('1/1/2000', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def assert_index_parameters(self, index): assert index.freq == '40960N' assert index.inferred_freq == '40960N' def test_ns_index(self): if _np_version_under1p7: raise nose.SkipTest nsamples = 400 ns = int(1e9 / 24414) dtstart = np.datetime64('2012-09-20T00:00:00') dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns') freq = ns * pd.datetools.Nano() index = pd.DatetimeIndex(dt, freq=freq, name='time') self.assert_index_parameters(index) new_index = pd.DatetimeIndex(start=index[0], end=index[-1], freq=index.freq) self.assert_index_parameters(new_index) def test_join_with_period_index(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:5, 0] joins = 'left', 'right', 'inner', 'outer' for join in joins: with tm.assertRaisesRegexp(ValueError, 'can only call with other ' 'PeriodIndex-ed objects'): df.columns.join(s.index, how=join) def test_factorize(self): idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # tz must be preserved idx1 = idx1.tz_localize('Asia/Tokyo') exp_idx = exp_idx.tz_localize('Asia/Tokyo') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01']) exp_arr = np.array([2, 2, 1, 0, 2, 0]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01']) arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestDatetime64(tm.TestCase): """ Also test support for datetime64[ns] in Series / DataFrame """ def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(rand(len(dti)), dti) def test_datetimeindex_accessors(self): dti = DatetimeIndex( freq='D', start=datetime(1998, 1, 1), periods=365) self.assertEqual(dti.year[0], 1998) self.assertEqual(dti.month[0], 1) self.assertEqual(dti.day[0], 1) self.assertEqual(dti.hour[0], 0) self.assertEqual(dti.minute[0], 0) self.assertEqual(dti.second[0], 0) self.assertEqual(dti.microsecond[0], 0) self.assertEqual(dti.dayofweek[0], 3) self.assertEqual(dti.dayofyear[0], 1) self.assertEqual(dti.dayofyear[120], 121) self.assertEqual(dti.weekofyear[0], 1) self.assertEqual(dti.weekofyear[120], 18) self.assertEqual(dti.quarter[0], 1) self.assertEqual(dti.quarter[120], 2) self.assertEqual(dti.is_month_start[0], True) self.assertEqual(dti.is_month_start[1], False) self.assertEqual(dti.is_month_start[31], True) self.assertEqual(dti.is_quarter_start[0], True) self.assertEqual(dti.is_quarter_start[90], True) self.assertEqual(dti.is_year_start[0], True) self.assertEqual(dti.is_year_start[364], False) self.assertEqual(dti.is_month_end[0], False) self.assertEqual(dti.is_month_end[30], True) self.assertEqual(dti.is_month_end[31], False) self.assertEqual(dti.is_month_end[364], True) self.assertEqual(dti.is_quarter_end[0], False) self.assertEqual(dti.is_quarter_end[30], False) self.assertEqual(dti.is_quarter_end[89], True) self.assertEqual(dti.is_quarter_end[364], True) self.assertEqual(dti.is_year_end[0], False) self.assertEqual(dti.is_year_end[364], True) self.assertEqual(len(dti.year), 365) self.assertEqual(len(dti.month), 365) self.assertEqual(len(dti.day), 365) self.assertEqual(len(dti.hour), 365) self.assertEqual(len(dti.minute), 365) self.assertEqual(len(dti.second), 365) self.assertEqual(len(dti.microsecond), 365) self.assertEqual(len(dti.dayofweek), 365) self.assertEqual(len(dti.dayofyear), 365) self.assertEqual(len(dti.weekofyear), 365) self.assertEqual(len(dti.quarter), 365) self.assertEqual(len(dti.is_month_start), 365) self.assertEqual(len(dti.is_month_end), 365) self.assertEqual(len(dti.is_quarter_start), 365) self.assertEqual(len(dti.is_quarter_end), 365) self.assertEqual(len(dti.is_year_start), 365) self.assertEqual(len(dti.is_year_end), 365) dti = DatetimeIndex( freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) self.assertEqual(sum(dti.is_quarter_start), 0) self.assertEqual(sum(dti.is_quarter_end), 4) self.assertEqual(sum(dti.is_year_start), 0) self.assertEqual(sum(dti.is_year_end), 1) # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, CBD requires np >= 1.7 if not _np_version_under1p7: bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) self.assertRaises(ValueError, lambda: dti.is_month_start) dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) self.assertEqual(dti.is_month_start[0], 1) tests = [ (Timestamp('2013-06-01', offset='M').is_month_start, 1), (Timestamp('2013-06-01', offset='BM').is_month_start, 0), (Timestamp('2013-06-03', offset='M').is_month_start, 0), (Timestamp('2013-06-03', offset='BM').is_month_start, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', offset='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', offset='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', offset='BQ').is_month_end, 0), (Timestamp('2013-06-30', offset='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQ').is_year_end, 0), (Timestamp('2013-06-28', offset='BQ').is_month_end, 1), (Timestamp('2013-06-28', offset='BQ').is_quarter_end, 1), (Timestamp('2013-06-28', offset='BQ').is_year_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_month_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_year_end, 0), (Timestamp('2013-06-28', offset='BQS-APR').is_month_end, 1), (Timestamp('2013-06-28', offset='BQS-APR').is_quarter_end, 1), (Timestamp('2013-03-29', offset='BQS-APR').is_year_end, 1), (Timestamp('2013-11-01', offset='AS-NOV').is_year_start, 1), (Timestamp('2013-10-31', offset='AS-NOV').is_year_end, 1)] for ts, value in tests: self.assertEqual(ts, value) def test_nanosecond_field(self): dti = DatetimeIndex(np.arange(10)) self.assert_numpy_array_equal(dti.nanosecond, np.arange(10)) def test_datetimeindex_diff(self): dti1 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=100) dti2 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=98) self.assertEqual(len(dti1.diff(dti2)), 2) def test_fancy_getitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(s[48], 48) self.assertEqual(s['1/2/2009'], 48) self.assertEqual(s['2009-1-2'], 48) self.assertEqual(s[datetime(2009, 1, 2)], 48) self.assertEqual(s[lib.Timestamp(datetime(2009, 1, 2))], 48) self.assertRaises(KeyError, s.__getitem__, '2009-1-3') assert_series_equal(s['3/6/2009':'2009-06-05'], s[datetime(2009, 3, 6):datetime(2009, 6, 5)]) def test_fancy_setitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 self.assertEqual(s[48], -1) s['1/2/2009'] = -2 self.assertEqual(s[48], -2) s['1/2/2009':'2009-06-05'] = -3 self.assertTrue((s[48:54] == -3).all()) def test_datetimeindex_constructor(self): arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04'] self.assertRaises(Exception, DatetimeIndex, arr) arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'] idx1 = DatetimeIndex(arr) arr = [datetime(2005, 1, 1), '1/2/2005', '1/3/2005', '2005-01-04'] idx2 = DatetimeIndex(arr) arr = [lib.Timestamp(datetime(2005, 1, 1)), '1/2/2005', '1/3/2005', '2005-01-04'] idx3 = DatetimeIndex(arr) arr = np.array(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'], dtype='O') idx4 = DatetimeIndex(arr) arr = to_datetime(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04']) idx5 = DatetimeIndex(arr) arr = to_datetime( ['1/1/2005', '1/2/2005', 'Jan 3, 2005', '2005-01-04']) idx6 = DatetimeIndex(arr) idx7 = DatetimeIndex(['12/05/2007', '25/01/2008'], dayfirst=True) idx8 = DatetimeIndex(['2007/05/12', '2008/01/25'], dayfirst=False, yearfirst=True) self.assertTrue(idx7.equals(idx8)) for other in [idx2, idx3, idx4, idx5, idx6]: self.assertTrue((idx1.values == other.values).all()) sdate = datetime(1999, 12, 25) edate = datetime(2000, 1, 1) idx = DatetimeIndex(start=sdate, freq='1B', periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[0], sdate + 0 * dt.bday) self.assertEqual(idx.freq, 'B') idx = DatetimeIndex(end=edate, freq=('D', 5), periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[-1], edate) self.assertEqual(idx.freq, '5D') idx1 = DatetimeIndex(start=sdate, end=edate, freq='W-SUN') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.Week(weekday=6)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='QS') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.QuarterBegin(startingMonth=1)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='BQ') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.BQuarterEnd(startingMonth=12)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) def test_dayfirst(self): # GH 5917 arr = ['10/02/2014', '11/02/2014', '12/02/2014'] expected = DatetimeIndex([datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)]) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True) idx4 = to_datetime(np.array(arr), dayfirst=True) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) self.assertTrue(expected.equals(idx1)) self.assertTrue(expected.equals(idx2)) self.assertTrue(expected.equals(idx3)) self.assertTrue(expected.equals(idx4)) self.assertTrue(expected.equals(idx5)) self.assertTrue(expected.equals(idx6)) def test_dti_snap(self): dti = DatetimeIndex(['1/1/2002', '1/2/2002', '1/3/2002', '1/4/2002', '1/5/2002', '1/6/2002', '1/7/2002'], freq='D') res = dti.snap(freq='W-MON') exp = date_range('12/31/2001', '1/7/2002', freq='w-mon') exp = exp.repeat([3, 4]) self.assertTrue((res == exp).all()) res = dti.snap(freq='B') exp = date_range('1/1/2002', '1/7/2002', freq='b') exp = exp.repeat([1, 1, 1, 2, 2]) self.assertTrue((res == exp).all()) def test_dti_reset_index_round_trip(self): dti = DatetimeIndex(start='1/1/2001', end='6/1/2001', freq='D') d1 = DataFrame({'v': np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() self.assertEqual(d2.dtypes[0], np.dtype('M8[ns]')) d3 = d2.set_index('index') assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=['Date', 'Value']) df = df.set_index('Date') self.assertEqual(df.index[0], stamp) self.assertEqual(df.reset_index()['Date'][0], stamp) def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range('2011/01/01', periods=6, freq='M', tz='US/Eastern') idx2 = date_range('2013', periods=6, freq='A', tz='Asia/Tokyo') df = df.set_index(idx1) self.assertTrue(df.index.equals(idx1)) df = df.reindex(idx2) self.assertTrue(df.index.equals(idx2)) def test_datetimeindex_union_join_empty(self): dti = DatetimeIndex(start='1/1/2001', end='2/1/2001', freq='D') empty = Index([]) result = dti.union(empty) tm.assert_isinstance(result, DatetimeIndex) self.assertIs(result, result) result = dti.join(empty) tm.assert_isinstance(result, DatetimeIndex) def test_series_set_value(self): # #1561 dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)] index = DatetimeIndex(dates) s = Series().set_value(dates[0], 1.) s2 = s.set_value(dates[1], np.nan) exp = Series([1., np.nan], index=index) assert_series_equal(s2, exp) # s = Series(index[:1], index[:1]) # s2 = s.set_value(dates[1], index[1]) # self.assertEqual(s2.values.dtype, 'M8[ns]') @slow def test_slice_locs_indexerror(self): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(lrange(100000), times) s.ix[datetime(1900, 1, 1):datetime(2100, 1, 1)] class TestSeriesDatetime64(tm.TestCase): def setUp(self): self.series = Series(date_range('1/1/2000', periods=10)) def test_auto_conversion(self): series = Series(list(date_range('1/1/2000', periods=10))) self.assertEqual(series.dtype, 'M8[ns]') def test_constructor_cant_cast_datetime64(self): self.assertRaises(TypeError, Series, date_range('1/1/2000', periods=10), dtype=float) def test_series_comparison_scalars(self): val = datetime(2000, 1, 4) result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) val = self.series[5] result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) def test_between(self): left, right = self.series[[2, 7]] result = self.series.between(left, right) expected = (self.series >= left) & (self.series <= right) assert_series_equal(result, expected) #---------------------------------------------------------------------- # NaT support def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') val = series[3] self.assertTrue(com.isnull(val)) series[2] = val self.assertTrue(com.isnull(series[2])) def test_set_none_nan(self): self.series[3] = None self.assertIs(self.series[3], NaT) self.series[3:5] = None self.assertIs(self.series[4], NaT) self.series[5] = np.nan self.assertIs(self.series[5], NaT) self.series[5:7] = np.nan self.assertIs(self.series[6], NaT) def test_intercept_astype_object(self): # this test no longer makes sense as series is by default already M8[ns] expected = self.series.astype('object') df = DataFrame({'a': self.series, 'b': np.random.randn(len(self.series))}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) df = DataFrame({'a': self.series, 'b': ['foo'] * len(self.series)}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) def test_union(self): rng1 = date_range('1/1/1999', '1/1/2012', freq='MS') s1 = Series(np.random.randn(len(rng1)), rng1) rng2 = date_range('1/1/1980', '12/1/2001', freq='MS') s2 = Series(np.random.randn(len(rng2)), rng2) df = DataFrame({'s1': s1, 's2': s2}) self.assertEqual(df.index.values.dtype, np.dtype('M8[ns]')) def test_intersection(self): rng = date_range('6/1/2000', '6/15/2000', freq='D') rng = rng.delete(5) rng2 = date_range('5/15/2000', '6/20/2000', freq='D') rng2 = DatetimeIndex(rng2.values) result = rng.intersection(rng2) self.assertTrue(result.equals(rng)) # empty same freq GH2129 rng = date_range('6/1/2000', '6/15/2000', freq='T') result = rng[0:0].intersection(rng) self.assertEqual(len(result), 0) result = rng.intersection(rng[0:0]) self.assertEqual(len(result), 0) def test_date_range_bms_bug(self): # #1645 rng = date_range('1/1/2000', periods=10, freq='BMS') ex_first = Timestamp('2000-01-03') self.assertEqual(rng[0], ex_first) def test_string_index_series_name_converted(self): # #1644 df = DataFrame(np.random.randn(10, 4), index=date_range('1/1/2000', periods=10)) result = df.ix['1/3/2000'] self.assertEqual(result.name, df.index[2]) result = df.T['1/3/2000'] self.assertEqual(result.name, df.index[2]) class TestTimestamp(tm.TestCase): def test_class_ops(self): _skip_if_no_pytz() import pytz def compare(x,y): self.assertEqual(int(Timestamp(x).value/1e9), int(Timestamp(y).value/1e9)) compare(Timestamp.now(),datetime.now()) compare(Timestamp.now('UTC'),datetime.now(pytz.timezone('UTC'))) compare(Timestamp.utcnow(),datetime.utcnow()) compare(Timestamp.today(),datetime.today()) def test_basics_nanos(self): val = np.int64(946684800000000000).view('M8[ns]') stamp = Timestamp(val.view('i8') + 500) self.assertEqual(stamp.year, 2000) self.assertEqual(stamp.month, 1) self.assertEqual(stamp.microsecond, 0) self.assertEqual(stamp.nanosecond, 500) def test_unit(self): def check(val,unit=None,h=1,s=1,us=0): stamp = Timestamp(val, unit=unit) self.assertEqual(stamp.year, 2000) self.assertEqual(stamp.month, 1) self.assertEqual(stamp.day, 1) self.assertEqual(stamp.hour, h) if unit != 'D': self.assertEqual(stamp.minute, 1) self.assertEqual(stamp.second, s) self.assertEqual(stamp.microsecond, us) else: self.assertEqual(stamp.minute, 0) self.assertEqual(stamp.second, 0) self.assertEqual(stamp.microsecond, 0) self.assertEqual(stamp.nanosecond, 0) ts = Timestamp('20000101 01:01:01') val = ts.value days = (ts - Timestamp('1970-01-01')).days check(val) check(val/long(1000),unit='us') check(val/long(1000000),unit='ms') check(val/long(1000000000),unit='s') check(days,unit='D',h=0) # using truediv, so these are like floats if compat.PY3: check((val+500000)/long(1000000000),unit='s',us=500) check((val+500000000)/long(1000000000),unit='s',us=500000) check((val+500000)/long(1000000),unit='ms',us=500) # get chopped in py2 else: check((val+500000)/long(1000000000),unit='s') check((val+500000000)/long(1000000000),unit='s') check((val+500000)/long(1000000),unit='ms') # ok check((val+500000)/long(1000),unit='us',us=500) check((val+500000000)/long(1000000),unit='ms',us=500000) # floats check(val/1000.0 + 5,unit='us',us=5) check(val/1000.0 + 5000,unit='us',us=5000) check(val/1000000.0 + 0.5,unit='ms',us=500) check(val/1000000.0 + 0.005,unit='ms',us=5) check(val/1000000000.0 + 0.5,unit='s',us=500000) check(days + 0.5,unit='D',h=12) # nan result = Timestamp(np.nan) self.assertIs(result, NaT) result = Timestamp(None) self.assertIs(result, NaT) result = Timestamp(iNaT) self.assertIs(result, NaT) result = Timestamp(NaT) self.assertIs(result, NaT) def test_comparison(self): # 5-18-2012 00:00:00.000 stamp = long(1337299200000000000) val = Timestamp(stamp) self.assertEqual(val, val) self.assertFalse(val != val) self.assertFalse(val < val) self.assertTrue(val <= val) self.assertFalse(val > val) self.assertTrue(val >= val) other = datetime(2012, 5, 18) self.assertEqual(val, other) self.assertFalse(val != other) self.assertFalse(val < other) self.assertTrue(val <= other) self.assertFalse(val > other) self.assertTrue(val >= other) other = Timestamp(stamp + 100) self.assertNotEqual(val, other) self.assertNotEqual(val, other) self.assertTrue(val < other) self.assertTrue(val <= other) self.assertTrue(other > val) self.assertTrue(other >= val) def test_cant_compare_tz_naive_w_aware(self): _skip_if_no_pytz() # #1404 a = Timestamp('3/12/2012') b = Timestamp('3/12/2012', tz='utc') self.assertRaises(Exception, a.__eq__, b) self.assertRaises(Exception, a.__ne__, b) self.assertRaises(Exception, a.__lt__, b) self.assertRaises(Exception, a.__gt__, b) self.assertRaises(Exception, b.__eq__, a) self.assertRaises(Exception, b.__ne__, a) self.assertRaises(Exception, b.__lt__, a) self.assertRaises(Exception, b.__gt__, a) if sys.version_info < (3, 3): self.assertRaises(Exception, a.__eq__, b.to_pydatetime()) self.assertRaises(Exception, a.to_pydatetime().__eq__, b) else: self.assertFalse(a == b.to_pydatetime()) self.assertFalse(a.to_pydatetime() == b) def test_delta_preserve_nanos(self): val = Timestamp(long(1337299200000000123)) result = val + timedelta(1) self.assertEqual(result.nanosecond, val.nanosecond) def test_frequency_misc(self): self.assertEqual(fmod.get_freq_group('T'), fmod.FreqGroup.FR_MIN) code, stride = fmod.get_freq_code(offsets.Hour()) self.assertEqual(code, fmod.FreqGroup.FR_HR) code, stride = fmod.get_freq_code((5, 'T')) self.assertEqual(code, fmod.FreqGroup.FR_MIN) self.assertEqual(stride, 5) offset = offsets.Hour() result = fmod.to_offset(offset) self.assertEqual(result, offset) result = fmod.to_offset((5, 'T')) expected = offsets.Minute(5) self.assertEqual(result, expected) self.assertRaises(ValueError, fmod.get_freq_code, (5, 'baz')) self.assertRaises(ValueError, fmod.to_offset, '100foo') self.assertRaises(ValueError, fmod.to_offset, ('', '')) result = fmod.get_standard_freq(offsets.Hour()) self.assertEqual(result, 'H') def test_hash_equivalent(self): d = {datetime(2011, 1, 1): 5} stamp = Timestamp(datetime(2011, 1, 1)) self.assertEqual(d[stamp], 5) def test_timestamp_compare_scalars(self): # case where ndim == 0 lhs = np.datetime64(datetime(2013, 12, 6)) rhs = Timestamp('now') nat = Timestamp('nat') ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) if pd._np_version_under1p7: # you have to convert to timestamp for this to work with numpy # scalars expected = left_f(Timestamp(lhs), rhs) # otherwise a TypeError is thrown if left not in ('eq', 'ne'): with tm.assertRaises(TypeError): left_f(lhs, rhs) else: expected = left_f(lhs, rhs) result = right_f(rhs, lhs) self.assertEqual(result, expected) expected = left_f(rhs, nat) result = right_f(nat, rhs) self.assertEqual(result, expected) def test_timestamp_compare_series(self): # make sure we can compare Timestamps on the right AND left hand side # GH4982 s = Series(date_range('20010101', periods=10), name='dates') s_nat = s.copy(deep=True) s[0] = pd.Timestamp('nat') s[3] = pd.Timestamp('nat') ops = {'lt': 'gt', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats expected = left_f(s, Timestamp('20010109')) result = right_f(Timestamp('20010109'), s) tm.assert_series_equal(result, expected) # nats expected = left_f(s, Timestamp('nat')) result = right_f(Timestamp('nat'), s) tm.assert_series_equal(result, expected) # compare to timestamp with series containing nats expected = left_f(s_nat, Timestamp('20010109')) result = right_f(Timestamp('20010109'), s_nat) tm.assert_series_equal(result, expected) # compare to nat with series containing nats expected = left_f(s_nat, Timestamp('nat')) result = right_f(Timestamp('nat'), s_nat) tm.assert_series_equal(result, expected) class TestSlicing(tm.TestCase): def test_slice_year(self): dti = DatetimeIndex(freq='B', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) result = s['2005'] expected = s[s.index.year == 2005] assert_series_equal(result, expected) df = DataFrame(np.random.rand(len(dti), 5), index=dti) result = df.ix['2005'] expected = df[df.index.year == 2005] assert_frame_equal(result, expected) rng =
date_range('1/1/2000', '1/1/2010')
pandas.date_range
import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from dl_for_env import call_model # Global variables # HMAX_NORMALIZE = 10 # INITIAL_ENERGY = 1000 PLANT_DIM = 1 EFF_PUMP = 0.9 EFF_ERD = 0.8 FLOW_FEED = 1000 lookback_size = 7 # transaction fee: 1/1000 reasonable percentage # TRANSACTION_FEE_PERCENT = 0.001 REWARD_SCALING = 1e-2 class BWTPEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, df, day=0): # super(StockEnv, self).__init__() # date increment self.day = day self.df = df # action_space normalization and the shape is PLANT_DIM self.action_space = spaces.Box(low=-1, high=1, shape=(PLANT_DIM,)) # Shape = 4: [Current Balance]+[prices]+[owned shares] +[macd] self.observation_space = spaces.Box(low=0, high=np.inf, shape=(4,)) # load data from a pandas dataframe self.data = self.df.loc[self.day, :] # termination self.terminal = False # save the total number of trades self.trades = 0 # initalize state self.state = [0.0] + \ [self.data.flowrate] + \ [self.data.Total] + \ [self.data.pressure] # [0] * PLANT_DIM + \ # initialize reward and cost self.reward = 0 self.cost = 0 self.energy_difference=0 self.total_energy_difference = 0 self.total_reward = 0 # self.total_actual_energy = 0 self.total_optimize_energy = 0 # memorize the total value, total rewards self.energy_memory = [] self.rewards_memory = [] self.energy_difference_memory = [] self.total_energy_difference_memory = [] self.action_container = [float(self.df['pressure'].mean()) for _ in range(lookback_size)] self.total_actual_energy = 0 # self.total_actual_energy = 1502.87059974546 # # def _increase_pressure(self, index, action): # # if self.state[index + PLANT_DIM + 1] > 0: # self.state[1] = call_model(action) # self.state[3] = action # # energy consumption calculation # self.state[0] += \ # (((self.state[1]*self.state[3])/EFF_PUMP)-(((self.state[3]-EFF_ERD*(self.state[3]-3))*(FLOW_FEED-self.state[1]))/EFF_PUMP))/self.state[3] # self.state[index + PLANT_DIM + 1] -= min(abs(action), self.state[index + PLANT_DIM + 1]) # self.trades += 1 # # # update transaction costs # self.cost += self.state[0]*1000 # # else: # pass # # def _decrease_pressure(self, index, action): # # available_amount = self.state[0] // self.state[index + 1] # # update balance # self.state[1] = call_model(action) # self.state[3] = action # # energy consuption calculation # self.state[0] += \ # (((self.state[1]*self.state[3])/EFF_PUMP)-(((self.state[3]-EFF_ERD*(self.state[3]-3))*(FLOW_FEED-self.state[1]))/EFF_PUMP))/self.state[3] # # update held shares # self.state[index + PLANT_DIM + 1] += min(available_amount, action) # # # update transaction costs # self.cost += self.state[0]*1000 # self.trades += 1 def change_pressure(self, action): # self.state[0] += \ # (((self.state[1] * self.state[3]) / EFF_PUMP) \ # - (((self.state[3] - EFF_ERD * (self.state[3] - 3)) * (FLOW_FEED - self.state[1])) / EFF_PUMP)) / \ # self.state[3] # initial_engergy = self.state[0] self.action_container = np.roll(self.action_container, -1) self.action_container[-1] = action actual_energy = self.state[2] # self.total_actual_energy += self.state[2] # update balance self.state[1] = call_model(self.action_container)*13 # self.state[3] = action[-1] # energy consuption calculation self.state[0] = \ (((self.state[1]*self.state[3])/EFF_PUMP)+(((self.state[3]-EFF_ERD*(self.state[3]-3))*(FLOW_FEED-self.state[1]))/EFF_PUMP))/(self.state[1]*36) # if action >0: # if 0 < self.state[0] < 1: # self.state[3] = action[-1] # optimize_energy = self.state[0] # self.total_optimize_energy += optimize_energy # self.total_actual_energy += actual_energy # # self.energy_difference = actual_energy- optimize_energy # # self.total_energy_difference = self.total_actual_energy - self.total_optimize_energy # # # update held shares # #self.state[index + PLANT_DIM + 1] += min(available_amount, action) # # # update transaction costs # self.cost += self.state[0]*10 # self.trades += 1 # # else: # self.action_container[-1] = self.state[3] # # optimize_energy = actual_energy # self.total_optimize_energy += optimize_energy # self.total_actual_energy += actual_energy # # self.energy_difference = 0 # # self.total_energy_difference = self.total_actual_energy - self.total_optimize_energy # # # update held shares # #self.state[index + PLANT_DIM + 1] += min(available_amount, action) # # # update transaction costs # self.cost += self.state[0]*10 # else: # self.action_container[-1] = self.state[3] # optimize_energy = actual_energy # self.total_optimize_energy += optimize_energy # self.total_actual_energy += actual_energy # self.energy_difference = 0 # # self.total_energy_difference = self.total_actual_energy - self.total_optimize_energy # # # update held shares # #self.state[index + PLANT_DIM + 1] += min(available_amount, action) # # # update transaction costs # self.cost += self.state[0]*10 self.state[3] = action[-1] optimize_energy = self.state[0] self.total_optimize_energy += optimize_energy self.total_actual_energy += actual_energy self.energy_difference = actual_energy - optimize_energy # self.total_energy_difference = self.total_actual_energy - self.total_optimize_energy # update held shares #self.state[index + PLANT_DIM + 1] += min(available_amount, action) # # update transaction costs self.cost += self.state[0]*10 self.trades += 1 def step(self, actions): # actions is a list of floats of length=1 self.terminal = self.day >= len(self.df.index.unique()) - 1 if self.terminal: #plt.plot(self.energy_memory, 'r') #plt.savefig('account_value.png') #plt.close() # end_total_energy = self.state[0] + \ # sum(np.array(self.state[1:(PLANT_DIM + 1)]) * np.array( # self.state[(PLANT_DIM + 1):(PLANT_DIM * 2 + 1)])) end_energy = self.state[0] self.total_energy_difference = self.total_actual_energy - self.total_optimize_energy print("previous_total_energy:{}".format(self.energy_memory[0])) print("end_energy:{}".format(end_energy)) print("total_actual_energy:{}".format(self.total_actual_energy)) print("total_optimize_energy:{}".format(self.total_optimize_energy)) print("total_energy_difference:{}".format(self.total_energy_difference)) df_total_value = pd.DataFrame(self.energy_difference_memory) df_total_value.to_csv('energy_difference_memory_2.csv') df_total_value = pd.DataFrame(self.energy_memory) df_total_value.to_csv('energy_memory_2.csv') df_total_value = pd.DataFrame(self.total_energy_difference_memory) df_total_value.to_csv('total_energy_difference_memory_2.csv') print("reward:{}".format(self.reward)) # print("total_reward:{}".format(self.total_reward)) # - INITIAL_ENERGY # print("total_reward:{}".format(self.state[0] + sum(np.array(self.state[1:(PLANT_DIM + 1)]) * np.array( # self.state[(PLANT_DIM + 1):(PLANT_DIM * 2 + 1)])))) # - INITIAL_ENERGY print("total_cost: ", self.cost) print("total trades: ", self.trades) # df_total_value.columns = ['account_value'] # df_total_value['daily_return'] = df_total_value.pct_change(1) # if df_total_value['daily_return'].std() != 0: # sharpe = (252 ** 0.5) * df_total_value['daily_return'].mean() / \ # df_total_value['daily_return'].std() # print("Sharpe: ", sharpe) df_rewards =
pd.DataFrame(self.rewards_memory)
pandas.DataFrame
import pandas as pd import numpy as np import random def generate_variants(seq): # generate a list of all possible variants of a sequence variants = [] variant_nt = [] variant_pos = [] nts = ['A', 'C', 'T', 'G'] for i, seq_nt in enumerate(seq): for N in nts: if seq_nt != N: new_seq = seq[:i] + N + seq[i+1:] variants.append(new_seq) variant_nt.append(N) variant_pos.append(i) variant_df = pd.DataFrame({'variant': variants, 'nt': variant_nt, 'pos': variant_pos}) return variant_df def mutagenize_seq(guide, model): variant_df = generate_variants(guide) variant_predictions = model.predict_seqs(variant_df.variant) variant_df['prediction'] = variant_predictions original_prediction = model.predict_seqs([guide]) variant_df['delta'] = variant_df.prediction - original_prediction summarized_df = variant_df.groupby('pos').agg({'delta': 'mean'}).reset_index() summarized_df['nt'] = list(guide) summarized_df['importance'] = np.absolute(summarized_df.delta) summarized_df['pos'] = summarized_df.pos + 1 summarized_df['context'] = guide return summarized_df def mutagenize_model(model, resamples): nts = ['A', 'C', 'T', 'G'] seq_len = model.enzyme['context_length'] mutation_list = [] sequence_list = [] sequence = ''.join(random.choice(nts) for i in range(seq_len)) mutation = {'sequence': sequence, 'reference': '', 'nt': '','position': float('nan')} mutation_list.append(mutation) sequence_list.append(sequence) mutation_list = [] for i in range(resamples): while sequence in sequence_list: last_sequence = sequence position = random.randint(0, seq_len - 1) nt = random.choice(nts) sequence = sequence[:position] + nt + sequence[(position + 1):] mutation = {'sequence': sequence, 'reference': last_sequence, 'nt': nt, 'position': position + 1} mutation_list.append(mutation) sequence_list.append(sequence) sequence_df = pd.DataFrame(mutation_list) sequence_predictions = model.predict_seqs(sequence_df.sequence) prediction_df =
pd.DataFrame({'sequence': sequence_df.sequence, 'prediction': sequence_predictions})
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64,
zip(args, intervals)
pandas.compat.zip
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo')
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """ This file contains utility functions for creating features for time series forecasting applications. All functions defined assume that there is no missing data. """ import calendar import itertools import pandas as pd import numpy as np from datetime import timedelta from sklearn.preprocessing import MinMaxScaler from fclib.feature_engineering.utils import is_datetime_like # 0: Monday, 2: T/W/TR, 4: F, 5:SA, 6: S WEEK_DAY_TYPE_MAP = {1: 2, 3: 2} # Map for converting Wednesday and # Thursday to have the same code as Tuesday HOLIDAY_CODE = 7 SEMI_HOLIDAY_CODE = 8 # days before and after a holiday DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" def day_type(datetime_col, holiday_col=None, semi_holiday_offset=timedelta(days=1)): """ Convert datetime_col to 7 day types 0: Monday 2: Tuesday, Wednesday, and Thursday 4: Friday 5: Saturday 6: Sunday 7: Holiday 8: Days before and after a holiday Args: datetime_col: Datetime column. holiday_col: Holiday code column. Default value None. semi_holiday_offset: Time difference between the date before (or after) the holiday and the holiday. Default value timedelta(days=1). Returns: A numpy array containing converted datatime_col into day types. """ datetype = pd.DataFrame({"DayType": datetime_col.dt.dayofweek}) datetype.replace({"DayType": WEEK_DAY_TYPE_MAP}, inplace=True) if holiday_col is not None: holiday_mask = holiday_col > 0 datetype.loc[holiday_mask, "DayType"] = HOLIDAY_CODE # Create a temporary Date column to calculate dates near the holidays datetype["Date"] = pd.to_datetime(datetime_col.dt.date, format=DATETIME_FORMAT) holiday_dates = set(datetype.loc[holiday_mask, "Date"]) semi_holiday_dates = [ pd.date_range(start=d - semi_holiday_offset, end=d + semi_holiday_offset, freq="D") for d in holiday_dates ] # Flatten the list of lists semi_holiday_dates = [d for dates in semi_holiday_dates for d in dates] semi_holiday_dates = set(semi_holiday_dates) semi_holiday_dates = semi_holiday_dates.difference(holiday_dates) datetype.loc[datetype["Date"].isin(semi_holiday_dates), "DayType"] = SEMI_HOLIDAY_CODE return datetype["DayType"].values def hour_of_day(datetime_col): """Returns the hour from a datetime column.""" return datetime_col.dt.hour def time_of_year(datetime_col): """ Time of year is a cyclic variable that indicates the annual position and repeats each year. It is each year linearly increasing over time going from 0 on January 1 at 00:00 to 1 on December 31st at 23:00. The values are normalized to be between [0; 1]. Args: datetime_col: Datetime column. Returns: A numpy array containing converted datatime_col into time of year. """ time_of_year = pd.DataFrame( {"DayOfYear": datetime_col.dt.dayofyear, "HourOfDay": datetime_col.dt.hour, "Year": datetime_col.dt.year} ) time_of_year["TimeOfYear"] = (time_of_year["DayOfYear"] - 1) * 24 + time_of_year["HourOfDay"] time_of_year["YearLength"] = time_of_year["Year"].apply(lambda y: 366 if calendar.isleap(y) else 365) time_of_year["TimeOfYear"] = time_of_year["TimeOfYear"] / (time_of_year["YearLength"] * 24 - 1) return time_of_year["TimeOfYear"].values def week_of_year(datetime_col): """Returns the week from a datetime column.""" return datetime_col.dt.week def week_of_month(date_time): """Returns the week of the month for a specified date. Args: dt (Datetime): Input date Returns: wom (Integer): Week of the month of the input date """ def _week_of_month(date_time): from math import ceil first_day = date_time.replace(day=1) dom = date_time.day adjusted_dom = dom + first_day.weekday() wom = int(ceil(adjusted_dom / 7.0)) return wom if isinstance(date_time, pd.Series): return date_time.apply(lambda x: _week_of_month(x)) else: return _week_of_month(date_time) def month_of_year(date_time_col): """Returns the month from a datetime column.""" return date_time_col.dt.month def day_of_week(date_time_col): """Returns the day of week from a datetime column.""" return date_time_col.dt.dayofweek def day_of_month(date_time_col): """Returns the day of month from a datetime column.""" return date_time_col.dt.day def day_of_year(date_time_col): """Returns the day of year from a datetime column.""" return date_time_col.dt.dayofyear def encoded_month_of_year(month_of_year): """ Create one hot encoding of month of year. """ month_of_year = pd.get_dummies(month_of_year, prefix="MonthOfYear") return month_of_year def encoded_day_of_week(day_of_week): """ Create one hot encoding of day_of_week. """ day_of_week = pd.get_dummies(day_of_week, prefix="DayOfWeek") return day_of_week def encoded_day_of_month(day_of_month): """ Create one hot encoding of day_of_month. """ day_of_month = pd.get_dummies(day_of_month, prefix="DayOfMonth") return day_of_month def encoded_day_of_year(day_of_year): """ Create one hot encoding of day_of_year. """ day_of_year = pd.get_dummies(day_of_year) return day_of_year def encoded_hour_of_day(hour_of_day): """ Create one hot encoding of hour_of_day. """ hour_of_day = pd.get_dummies(hour_of_day, prefix="HourOfDay") return hour_of_day def encoded_week_of_year(week_of_year): """ Create one hot encoding of week_of_year. """ week_of_year = pd.get_dummies(week_of_year, prefix="WeekOfYear") return week_of_year def normalized_current_year(datetime_col, min_year, max_year): """ Temporal feature indicating the position of the year of a record in the entire time period under consideration, normalized to be between 0 and 1. Args: datetime_col: Datetime column. min_year: minimum value of year. max_year: maximum value of year. Returns: float: the position of the current year in the min_year:max_year range """ year = datetime_col.dt.year if max_year != min_year: current_year = (year - min_year) / (max_year - min_year) elif max_year == min_year: current_year = 0 return current_year def normalized_current_date(datetime_col, min_date, max_date): """ Temporal feature indicating the position of the date of a record in the entire time period under consideration, normalized to be between 0 and 1. Args: datetime_col: Datetime column. min_date: minimum value of date. max_date: maximum value of date. Returns: float: the position of the current date in the min_date:max_date range """ date = datetime_col.dt.date current_date = (date - min_date).apply(lambda x: x.days) if max_date != min_date: current_date = current_date / (max_date - min_date).days elif max_date == min_date: current_date = 0 return current_date def normalized_current_datehour(datetime_col, min_datehour, max_datehour): """ Temporal feature indicating the position of the hour of a record in the entire time period under consideration, normalized to be between 0 and 1. Args: datetime_col: Datetime column. min_datehour: minimum value of datehour. max_datehour: maximum value of datehour. Returns: float: the position of the current datehour in the min_datehour:max_datehour range """ current_datehour = (datetime_col - min_datehour).apply(lambda x: x.days * 24 + x.seconds / 3600) max_min_diff = max_datehour - min_datehour if max_min_diff != 0: current_datehour = current_datehour / (max_min_diff.days * 24 + max_min_diff.seconds / 3600) elif max_min_diff == 0: current_datehour = 0 return current_datehour def normalized_columns(datetime_col, value_col, mode="log", output_colname="normalized_columns"): """ Creates columns normalized to be log of input columns devided by global average of each columns, or normalized using maximum and minimum. Args: datetime_col: Datetime column. value_col: Value column to be normalized. mode: Normalization mode, accepted values are 'log' and 'minmax'. Default value 'log'. Returns: Normalized value column. """ if not is_datetime_like(datetime_col): datetime_col = pd.to_datetime(datetime_col, format=DATETIME_FORMAT) df = pd.DataFrame({"Datetime": datetime_col, "value": value_col}) df.set_index("Datetime", inplace=True) if not df.index.is_monotonic: df.sort_index(inplace=True) if mode == "log": mean_value = df["value"].mean() if mean_value != 0: df[output_colname] = np.log(df["value"] / mean_value) elif mean_value == 0: df[output_colname] = 0 elif mode == "minmax": min_value = min(df["value"]) max_value = max(df["value"]) if min_value != max_value: df[output_colname] = (df["value"] - min_value) / (max_value - min_value) elif min_value == max_value: df[output_colname] = 0 else: raise ValueError("Valid values for mode are 'log' and 'minmax'") return df[[output_colname]] def fourier_approximation(t, n, period): """ Generic helper function to create Fourier Series at different harmonies (n) and periods. Args: t: Datetime column. n: Harmonies, n=0, 1, 2, 3,... period: Period of the datetime variable t. Returns: float: Sine component float: Cosine component """ x = n * 2 * np.pi * t / period x_sin = np.sin(x) x_cos = np.cos(x) return x_sin, x_cos def annual_fourier(datetime_col, n_harmonics): """ Creates Annual Fourier Series at different harmonies (n). Args: datetime_col: Datetime column. n_harmonics: Harmonies, n=0, 1, 2, 3,... Returns: dict: Output dictionary containing sine and cosine components of the Fourier series for all harmonies. """ day_of_year = datetime_col.dt.dayofyear output_dict = {} for n in range(1, n_harmonics + 1): sin, cos = fourier_approximation(day_of_year, n, 365.24) output_dict["annual_sin_" + str(n)] = sin output_dict["annual_cos_" + str(n)] = cos return output_dict def weekly_fourier(datetime_col, n_harmonics): """ Creates Weekly Fourier Series at different harmonies (n). Args: datetime_col: Datetime column. n_harmonics: Harmonies, n=0, 1, 2, 3,... Returns: dict: Output dictionary containing sine and cosine components of the Fourier series for all harmonies. """ day_of_week = datetime_col.dt.dayofweek + 1 output_dict = {} for n in range(1, n_harmonics + 1): sin, cos = fourier_approximation(day_of_week, n, 7) output_dict["weekly_sin_" + str(n)] = sin output_dict["weekly_cos_" + str(n)] = cos return output_dict def daily_fourier(datetime_col, n_harmonics): """ Creates Daily Fourier Series at different harmonies (n). Args: datetime_col: Datetime column. n_harmonics: Harmonies, n=0, 1, 2, 3,... Returns: dict: Output dictionary containing sine and cosine components of the Fourier series for all harmonies. """ hour_of_day = datetime_col.dt.hour + 1 output_dict = {} for n in range(1, n_harmonics + 1): sin, cos = fourier_approximation(hour_of_day, n, 24) output_dict["daily_sin_" + str(n)] = sin output_dict["daily_cos_" + str(n)] = cos return output_dict def same_week_day_hour_lag( datetime_col, value_col, n_years=3, week_window=1, agg_func="mean", q=None, output_colname="SameWeekHourLag" ): """ Creates a lag feature by calculating quantiles, mean and std of values of and around the same week, same day of week, and same hour of day, of previous years. Args: datetime_col: Datetime column. value_col: Feature value column to create lag feature from. n_years: Number of previous years data to use. Default value 3. week_window: Number of weeks before and after the same week to use, which should help reduce noise in the data. Default value 1. agg_func: Aggregation function to apply on multiple previous values, accepted values are 'mean', 'quantile', 'std'. Default value 'mean'. q: If agg_func is 'quantile', taking value between 0 and 1. output_colname: name of the output lag feature column. Default value 'SameWeekHourLag'. Returns: pd.DataFrame: data frame containing the newly created lag feature as a column. """ if not is_datetime_like(datetime_col): datetime_col = pd.to_datetime(datetime_col, format=DATETIME_FORMAT) min_time_stamp = min(datetime_col) max_time_stamp = max(datetime_col) df = pd.DataFrame({"Datetime": datetime_col, "value": value_col}) df.set_index("Datetime", inplace=True) week_lag_base = 52 week_lag_last_year = list(range(week_lag_base - week_window, week_lag_base + week_window + 1)) week_lag_all = [] for y in range(n_years): week_lag_all += [x + y * 52 for x in week_lag_last_year] week_lag_cols = [] for w in week_lag_all: if (max_time_stamp - timedelta(weeks=w)) >= min_time_stamp: col_name = "week_lag_" + str(w) week_lag_cols.append(col_name) lag_datetime = df.index.get_level_values(0) - timedelta(weeks=w) valid_lag_mask = lag_datetime >= min_time_stamp df[col_name] = np.nan df.loc[valid_lag_mask, col_name] = df.loc[lag_datetime[valid_lag_mask], "value"].values # Additional aggregation options will be added as needed if agg_func == "mean" and q is None: df[output_colname] = round(df[week_lag_cols].mean(axis=1)) elif agg_func == "quantile" and q is not None: df[output_colname] = round(df[week_lag_cols].quantile(q, axis=1)) elif agg_func == "std" and q is None: df[output_colname] = round(df[week_lag_cols].std(axis=1)) return df[[output_colname]] def same_day_hour_lag( datetime_col, value_col, n_years=3, day_window=1, agg_func="mean", q=None, output_colname="SameDayHourLag" ): """ Creates a lag feature by calculating quantiles, mean, and std of values of and around the same day of year, and same hour of day, of previous years. Args: datetime_col: Datetime column. value_col: Feature value column to create lag feature from. n_years: Number of previous years data to use. Default value 3. day_window: Number of days before and after the same day to use, which should help reduce noise in the data. Default value 1. agg_func: Aggregation function to apply on multiple previous values, accepted values are 'mean', 'quantile', 'std'. Default value 'mean'. q: If agg_func is 'quantile', taking value between 0 and 1. output_colname: name of the output lag feature column. Default value 'SameDayHourLag'. Returns: pd.DataFrame: data frame containing the newly created lag feature as a column. """ if not is_datetime_like(datetime_col): datetime_col = pd.to_datetime(datetime_col, format=DATETIME_FORMAT) min_time_stamp = min(datetime_col) max_time_stamp = max(datetime_col) df =
pd.DataFrame({"Datetime": datetime_col, "value": value_col})
pandas.DataFrame
import requests import pandas as pd import numpy as np from tempfile import NamedTemporaryFile import os import subprocess from astropy.io import fits import matplotlib.pyplot as plt from . import spacegeometry def getChandraObs( obsID, fileList ): pass def getHeaderInfo( key, header ): catKeys = list(header.keys()) foundKey = False for index in range(len(header)): if key == header[index]: catKey = catKeys[index] unitKey = catKey.replace('TYPE', 'UNIT') if unitKey == catKey: unitKey = catKey.replace('TYP', 'UNIT') if unitKey in header: columnUnit = header[unitKey] else: columnUnit = None columnIndexDict = { 'index': index, 'key': catKey } if columnUnit: columnIndexDict['unit'] = columnUnit foundKey = True if not foundKey: raise ValueError('Did not find columns %s in local catalog.' %key) return columnIndexDict def plotLocalCatalog( catalogName='xmmsl2_clean.fits', dirpath='/home/joel/Documents/pythonDev/research/pulsarJPDAF/pulsarData/xray_catalogs/', fluxKey='FLUX_B8' ): hdulist = fits.open(dirpath + catalogName) catalogHeader = hdulist[1].header catalogData = hdulist[1].data hdulist.close() minFlux = np.min(catalogData[fluxKey]) scaledFlux = np.array(catalogData[fluxKey] - minFlux) maxFlux = np.max(scaledFlux) scaledFlux = scaledFlux/maxFlux plt.figure() for index in range(len(catalogData)): plt.scatter(catalogData[index]['RA'], catalogData[index]['DEC'], s=scaledFlux[index]) plt.show(block=False) return def localCatalog_coneSearch( RA, DEC, FOV, catalogName='xmmsl2_clean.fits', dirpath='/home/joel/Documents/pythonDev/research/pulsarJPDAF/pulsarData/xray_catalogs/', removeNaNs=True, fluxKey='FLUX_B8', extentKey='EXT_B8', raKey='RA', decKey='DEC', srcNameKey='UNIQUE_SRCNAME' ): hdulist = fits.open(dirpath + catalogName) catalogHeader = hdulist[1].header catalogData = hdulist[1].data hdulist.close() columns = [srcNameKey, raKey, decKey, fluxKey, extentKey] savedColumns = [] columnIndexDict = {} catKeys = list(catalogHeader.keys()) for index in range(len(catalogHeader)): for column in columns: if column == catalogHeader[index]: catKey = catKeys[index] unitKey = catKey.replace('TYPE', 'UNIT') if unitKey in catalogHeader: columnUnit = catalogHeader[unitKey] else: columnUnit = None columnIndexDict[column] = { 'index': index, 'key': catKey } if columnUnit: columnIndexDict[column]['unit'] = columnUnit columns.remove(column) savedColumns.append(column) if columns: raise ValueError('Did not find columns %s in local catalog.' %columns) if columnIndexDict[raKey]['unit'] == 'rad': raConversionFactor = 1 elif columnIndexDict[raKey]['unit'] == 'degrees' or columnIndexDict[raKey]['unit'] == 'degree': raConversionFactor = np.pi / 180.0 if columnIndexDict[decKey]['unit'] == 'rad': decConversionFactor = 1 elif columnIndexDict[decKey]['unit'] == 'degrees' or columnIndexDict[decKey]['unit'] == 'degree': decConversionFactor = np.pi/180.0 if RA['unit'] == 'rad': referenceRA = RA['value'] elif RA['unit'] == 'degrees': referenceRA = RA['value'] * np.pi / 180.0 else: raise ValueError('Unrecougnized RA units %s' % RA['unit']) if DEC['unit'] == 'rad': referenceDec = DEC['value'] elif DEC['unit'] == 'degrees': referenceDec = DEC['value'] * np.pi / 180.0 else: raise ValueError('Unrecougnized Dec units %s' % DEC['unit']) if FOV['unit'] == 'rad': FOVVal = FOV['value'] elif FOV['unit'] == 'degrees': FOVVal = FOV['value'] * np.pi / 180.0 else: raise ValueError('Unrecougnized FOV units %s' % FOV['unit']) referenceUnitVector = spacegeometry.sidUnitVec( referenceRA, referenceDec ) mySourceDF = pd.DataFrame(columns=savedColumns) for source in catalogData: sourceUnitVector = spacegeometry.sidUnitVec( source[raKey] * raConversionFactor, source[decKey] * decConversionFactor ) angularDiff = np.arccos(referenceUnitVector.dot(sourceUnitVector)) if angularDiff < (FOVVal/2): mySrcDict = {} skipVal = False for columnName, columnInfo in columnIndexDict.items(): if not skipVal: if 'unit' in columnInfo: mySrcDict[columnName] = { 'value': source[columnName], 'unit': columnInfo['unit'].replace('cm2', 'cm^2') } else: mySrcDict[columnName] = source[columnName] if removeNaNs: try: skipVal = np.isnan(source[columnName]) except: skipVal = False if not skipVal: mySourceDF = mySourceDF.append(mySrcDict, ignore_index=True) return mySourceDF def xamin_coneSearch( RA, DEC, FOV, angleUnits='degrees', catalog='xray', removeNullFlux=True, fluxKey='flux' ): if angleUnits == 'degrees': FOVArcmin = FOV * 60 elif angleUnits == 'radians': FOVArcmin = FOV * 3437.75 elif angleUnits == 'arc': FOVArcmin = FOV dirpath = '/home/joel/Documents/pythonDev/modules/ModularFilter/modest/utils' fieldCommand = 'fields=name,ra,dec,%s' % fluxKey myCommand = ['java', '-jar', dirpath + '/users.jar', 'table=%s' %catalog, 'position=\'%s, %s\'' % (RA, DEC), 'radius=%s' % FOVArcmin, fieldCommand] print(myCommand) # myQuery += ('table=%s' % catalog) # myQuery += ('position=\'%s, %s\'' % (RA, DEC)) # myQuery += ('radius=%s' % FOV) # subprocess.call(['java', '-jar', 'users.jar'], env=env) # process = subprocess.Popen(['java', '-jar', 'users.jar'], stdout=subprocess.PIPE) process = subprocess.Popen(myCommand, stdout=subprocess.PIPE) output = process.stdout print(output) outputDF = pd.read_csv(output, sep='|', comment='#').dropna(how='any') outputDF.columns = outputDF.columns.str.strip() outputDF = outputDF.rename(columns={str.lower(fluxKey):'flux'}) print(outputDF) for row in range(len(outputDF)): try: outputDF.set_value(row, 'flux', outputDF.loc[row]['flux']) except: if removeNullFlux is True: outputDF.drop(row, inplace=True) # print('Dropping row %i' %(row)) outputDF.reset_index() return(outputDF) def chandraPSC_coneSearch( RA, DEC, FOV, FOVUnits='degrees', minSignificance=0 ): if FOVUnits == 'degrees': FOVArcmin = FOV * 60 elif FOVUnits == 'radians': FOVArcmin = FOV * 3437.75 elif FOVUnits == 'arcmins': FOVArcmin = FOV else: raise ValueError('Unrecougnized unit for FOV. Use either degrees, radians, or arcmins.') baseQuery=( 'http://cda.cfa.harvard.edu/csccli/getProperties?query=' 'SELECT m.name, m.ra, m.dec, m.flux_aper_b, m.significance ' + 'FROM master_source m ' + 'WHERE (' + 'dbo.cone_distance(m.ra,m.dec,%s,%s)<=%s' %(RA, DEC, FOVArcmin) ) if minSignificance > 0: baseQuery = ( baseQuery + 'AND m.significance > %s)' %minSignificance ) else: baseQuery = baseQuery + ')' print(baseQuery) response=requests.get(baseQuery) # t = TemporaryFile() # with open('./tmp', 'wb') as f: # f.write(response.content) with NamedTemporaryFile(mode='wb', delete=False) as f: f.write(response.content) resultsDF =
pd.read_csv(f.name, sep='\t', comment='#')
pandas.read_csv
import logging from abc import ABCMeta, abstractmethod from contextlib import contextmanager, asynccontextmanager from typing import ( Union, Sequence, List, Tuple, Type, ContextManager, AsyncContextManager, Iterator, AsyncIterator, ) import pandas as pd import aioodbc import MySQLdb.connections logger = logging.getLogger(__name__) class Connection: def __init__(self, conn, cursor): self._conn = conn self._cursor = cursor if isinstance(conn, MySQLdb.connections.Connection): self._autocommit = conn.get_autocommit() else: self._autocommit = conn.autocommit def commit(self) -> None: assert not self._autocommit self._conn.commit() def rollback(self) -> None: assert not self._autocommit self._conn.rollback() def _execute_(self, sql, *args, **kwargs) -> None: logger.debug('executing SQL statement\n%s\nargs:\n%s\nkwargs:\n%s', sql, str(args), str(kwargs)) self._cursor.execute(sql, *args, **kwargs) def _execute(self, sql: str, *args, **kwargs) -> None: try: self._execute_(sql, *args, **kwargs) except: msg = f'Failed to execute SQL\n{sql}\nargs:\n{args}\nkwargs:\n{kwargs}' logger.exception(msg) raise def read(self, sql: str, *args, **kwargs) -> 'Connection': self._execute(sql, *args, **kwargs) return self def iterrows(self) -> Iterator[Tuple]: """ Iterate over rows in result after calling ``read``, one row at a time. """ return iter(self._cursor) def iterbatches(self, batch_size: int) -> Iterator[List[Tuple]]: """ This method is called after ``read`` to iter over results, one batch at a time. """ while True: rows = self.fetchmany(batch_size) if rows: yield rows else: break @property def headers(self) -> List[str]: """ Return column headers after calling ``read``. This can be used to augment the returns of `fetchone`, `fetchmany`, `fetchall`, which return values only, i.e. they do not return column headers. """ return [x[0] for x in self._cursor.description] def fetchone(self) -> Union[Tuple, None]: """ Fetch the next row of a query result set, returning a single sequence, or None when no more data is available. An Error (or subclass) exception is raised if the previous call to ``read`` did not produce any result set or no call to ``read`` was issued yet. """ return self._cursor.fetchone() def fetchone_pandas(self) -> pd.DataFrame: row = self.fetchone() if not row: return pd.DataFrame(columns=self.headers) return pd.DataFrame.from_records([row], columns=self.headers) def fetchmany(self, n: int) -> Sequence[Tuple]: """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. An Error (or subclass) exception is raised if the previous call to ``read`` did not produce any result set or no call to ``read`` was issued yet. """ return self._cursor.fetchmany(n) def fetchmany_pandas(self, n: int) -> pd.DataFrame: rows = self.fetchmany(n) if not rows: return pd.DataFrame(columns=self.headers) return pd.DataFrame.from_records(rows, columns=self.headers) def fetchall(self) -> List[Tuple]: """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a tuple of tuples). Note that the cursor's arraysize attribute can affect the performance of this operation. An Error (or subclass) exception is raised if the previous call to ``read`` did not produce any result set or no call to ``read`` was issued yet. """ return self._cursor.fetchall() def fetchall_pandas(self) -> pd.DataFrame: """ This method is called after ``read`` to fetch the results as a ``pandas.DataFrame``. Warning: do not use this if the result contains a large number of rows. """ rows = self.fetchall() if not rows: return pd.DataFrame(columns=self.headers) return pd.DataFrame.from_records(list(rows), columns=self.headers) def write(self, sql: str, *args, **kwargs) -> None: self._execute(sql, *args, **kwargs) class AsyncConnection: def __init__(self, conn: aioodbc.connection.Connection, cursor: aioodbc.cursor.Cursor): self._conn = conn self._cursor = cursor self._autocommit = conn.autocommit async def commit(self) -> None: assert not self._autocommit await self._conn.commit() async def rollback(self) -> None: assert not self._autocommit await self._conn.rollback() async def _execute_(self, sql, *args, **kwargs): logger.debug('executing SQL statement:\n%s\nargs:\n%s\nkwargs:\n%s', sql, args, kwargs) await self._cursor.execute(sql, *args, **kwargs) async def _execute(self, sql: str, *args, **kwargs) -> None: try: await self._execute_(sql, *args, **kwargs) except: msg = f'Failed to execute SQL:\n{sql}\nargs:\n{args}\nkwargs:\n{kwargs}' logger.exception(msg) raise async def read(self, sql: str, *args, **kwargs) -> 'AsyncConnection': await self._execute(sql, *args, **kwargs) return self async def iterrows(self) -> AsyncIterator[Tuple]: return iter(self._cursor) async def iterbatches(self, batch_size: int) -> AsyncIterator[List[Tuple]]: while True: rows = await self.fetchmany(batch_size) if rows: yield rows else: break @property def headers(self) -> List[str]: return [x[0] for x in self._cursor.description] async def fetchone(self) -> Union[Tuple, None]: return await self._cursor.fetchone() async def fetchone_pandas(self) -> pd.DataFrame: row = await self.fetchone() if not row: return
pd.DataFrame(columns=self.headers)
pandas.DataFrame
from kafka import KafkaConsumer from pathlib import Path from requests import post, exceptions, put from requests.auth import HTTPBasicAuth from logger import log import tensorflow as tf import pandas as pd import json import os HOME_SERVICE_AUTH = HTTPBasicAuth('model-builder', 'secret') MODELS_BASE_PATH = '/models' # './models' for local development class ModelBuilder: def __init__(self): self.categories_dict = {} self.consumer = KafkaConsumer( 'UserData', bootstrap_servers='kafka:9092', api_version=(0, 10, 0), value_deserializer=lambda m: json.loads(m.decode('utf-8')) ) log('Model builder initialized') def __get_category(self, category_id): return self.categories_dict[category_id] @staticmethod def __split_input_target(chunk): input_text = chunk[:-1] target_text = chunk[1:] return input_text, target_text @staticmethod def __build_model(vocab_size, embedding_dim, rnn_units, batch_size): model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size) ]) return model @staticmethod def __loss_function(labels, logits): return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True) def generate_and_save_model_from_csv(self, model_id, csv_file_path): log('Building files structure') model_dir = MODELS_BASE_PATH + '/' + model_id + '_model' os.makedirs(model_dir, exist_ok=True) header_list = ["timestamp", "sensor", "action"] sensors_df = pd.read_csv(csv_file_path, names=header_list) sensors_df['sensors_with_action'] = sensors_df['sensor'] + '_' + sensors_df['action'] sensors_df['sensors_with_action_code'] = pd.Categorical(sensors_df['sensors_with_action']) categories = pd.Categorical(sensors_df['sensors_with_action_code']) CATEGORIES_AMOUNT = len(categories.categories.values) log(f'There is {CATEGORIES_AMOUNT} unique categories') self.categories_dict = dict(enumerate(sensors_df['sensors_with_action_code'].cat.categories)) category_dict_file = Path(model_dir + '/category_dict.json') category_dict_file.write_text(json.dumps(self.categories_dict, indent=4) + '\n') sensors_df['sensors_with_action_code'] = sensors_df.sensors_with_action_code.cat.codes dataset_length = len(sensors_df) log(f'Event records amount {dataset_length}') Y_data = sensors_df.iloc[1:dataset_length] Y_data =
pd.concat([Y_data, sensors_df.iloc[0:1]], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Save atlases propagation results using registration with dense displacement fields predicted from networks. @author: <NAME> @version: 0.1 """ from __future__ import print_function, division, absolute_import, unicode_literals from core import model_ddf_mvmm_label_base as model from core import image_dataset as image_utils from core import utils, losses # import nibabel as nib import numpy as np import os import logging import tensorflow as tf import pandas as pd import argparse from datetime import datetime t = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' parser = argparse.ArgumentParser(description='Start atlas propagation on test dataset!') parser.add_argument('--time', default=t, type=str, help='The current time to save test predictions.') parser.add_argument('--space', type=str, default='commonspace2', choices=['commonspace1', 'commonspace2'], help='The commonspace type for test data.') parser.add_argument('--spacing', default='2mm', type=str, choices=['1mm', '2mm'], help='The spatial spacing of the network inputs and the dense displacement fields.') parser.add_argument('--dropout', default=0, type=float, help='The dropout probability for network prediction.') parser.add_argument('--dropout_type', default='regular', type=str, choices=['regular', 'spatial'], help='dropout type') parser.add_argument('--model_path', type=str, default=None, help='The model path to restore the network parameters for network prediction.') parser.add_argument('--latest_filename', default='best_checkpoint', type=str, help='latest filename to restore the model') parser.add_argument('--trial', default=0, type=int, help='which trial to load the model') parser.add_argument('--cuda_device', default=0, type=int, help='The cuda device for network prediction.') parser.add_argument('--atlas_search_path', default='../../../dataset/training_mr_20_commonspace2/*.nii.gz', type=str, help='The search pattern to find all training atlas images, labels and probabilities.') parser.add_argument('--atlas_modality', default='mr', choices=['mr', 'ct'], help="the modality of atlas image, either 'mr' or 'ct'") parser.add_argument('--a_min', default=None, type=float, help='min value for intensity clipping') parser.add_argument('--a_max', default=None, type=float, help='max value for intensity clipping') parser.add_argument('--image_suffix', default='image.nii.gz', type=str, help='suffix pattern for the images') parser.add_argument('--label_suffix', default='label.nii.gz', type=str, help='suffix pattern for the labels') parser.add_argument('--weight_suffix', default=None, type=None, help='suffix pattern for the weights') parser.add_argument('--crop_patch', default=True, type=bool, help='whether to crop patches of the test data') parser.add_argument('--patch_center', default=None, nargs='+', help='The customized patch center, default is None.') parser.add_argument('--patch_size', default=(80, 80, 80), type=int, nargs='+', help='The size of the cropped patch.') parser.add_argument('--original_size', default=(112, 96, 112), type=int, nargs=3, help='original size of the saved image') parser.add_argument('--num_blocks', default=(1, 1, 1), type=int, nargs='+', help='The number of blocks of input along each axis, default is (1, 1, 1).') parser.add_argument('--method', default='unet', choices=['ddf_label', 'ddf_label_v0', 'unet'], type=str, help='the method of network to infer the dense displacement fields') parser.add_argument('--num_down_blocks', default=4, type=int, help='the number of downside convolution blocks of the network') parser.add_argument('--ddf_levels', default=None, type=int, nargs='*', help='the network levels where to extract dense displacement fields') parser.add_argument('--features_root', default=32, type=int, help='number of features of the first convolution layer') parser.add_argument('--normalizer', default=None, type=str, choices=['batch', 'group', 'layer', 'instance', 'batch_instance'], help='type of network normalization method') parser.add_argument('--diffeomorphism', default=False, action='store_true', help='whether to use diffeomorphic transformations') parser.add_argument('--int_steps', default=4, type=int, help='number of integration steps on the velocity fields') parser.add_argument('--cost_function', default='label_consistency', choices=(['MvMM_negative_log-likelihood', 'label_consistency', 'multi_scale_label_consistency', 'dice', 'multi_scale_dice', 'cross_entropy', 'SSD']), help='the type of cost function for network optimization') parser.add_argument('--reg_stage', default='single', type=str, choices=['single', 'multi'], help="The registration stage, either 'single' or 'multi'.") parser.add_argument('--test_input_size', default=(112, 96, 112), type=int, nargs='+', help='The test input size.') parser.add_argument('--save_ddf', default=False, action='store_true', help='whether to save displacement field into nifty files') # parser.add_argument('--save_path', default='./', type=str, # help="Path where to save the test results.") args = parser.parse_args() # determine the prediction/metrics save path and the data search path if args.space == 'commonspace1': save_path = os.path.join(args.model_path, 'test_predictions_commonspace1_%s' % args.spacing) target_search_path = '../../../dataset/test_mr_40_commonspace1/*.nii.gz' metrics_path = os.path.join(args.model_path, 'metrics_test_pairwise_commonspace1_%s.xlsx' % args.spacing) scale_model = 1 elif args.space == 'commonspace2': save_path = os.path.join(args.model_path, 'test_predictions_commonspace2_%s' % args.spacing) target_search_path = '../../../dataset/test_mr_40_commonspace2/*.nii.gz' metrics_path = os.path.join(args.model_path, 'metrics_test_pairwise_commonspace2_%s.xlsx' % args.spacing) scale_model = 0 else: raise Exception("The space must be either 'commonspace1' or 'commonspace2'!") if __name__ == '__main__': # set cuda device os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) # set working directory print("Current working directory: %s" % os.getcwd()) os.chdir('../') print("Working directory changed to: %s" % os.path.abspath(os.getcwd())) if not os.path.exists(save_path): logging.info("Allocating '{:}'".format(save_path)) os.makedirs(save_path) if 'model_trained' in args.model_path and 'trial' in args.model_path: model_path = args.model_path else: model_dir = os.path.join(args.model_path, 'trial_%s' % args.trial, 'model_trained') ckpt = tf.train.get_checkpoint_state(model_dir, latest_filename=args.latest_filename) model_path = ckpt.model_checkpoint_path test_model_data_provider = image_utils.ImageDataProvider( target_search_path='../../../dataset/test_mr_40_commonspace2/*.nii.gz', atlas_search_path=args.atlas_search_path, atlas_modality=args.atlas_modality, a_min=args.a_min, a_max=args.a_max, image_suffix=args.image_suffix, label_suffix=args.label_suffix, train_phase=False, n_atlas=1, crop_patch=args.crop_patch, patch_center=args.patch_center, patch_size=args.patch_size, crop_roi=False, image_normalization=True, channels=1, n_class=8, label_intensity=(0, 205, 420, 500, 550, 600, 820, 850), scale=0, num_blocks=args.num_blocks, image_name_index_begin=-38, stage=args.reg_stage) test_data_provider = image_utils.ImageDataProvider(target_search_path=target_search_path, atlas_search_path=args.atlas_search_path, atlas_modality=args.atlas_modality, a_min=args.a_min, a_max=args.a_max, image_suffix=args.image_suffix, label_suffix=args.label_suffix, weight_suffix=args.weight_suffix, train_phase=False, n_atlas=1, crop_patch=False, # patch_center=[i*2**scale_model # for i in args.patch_center] # if args.patch_center else None, # patch_size=[i*2**scale_model # for i in args.patch_size], crop_roi=False, image_normalization=False, channels=1, n_class=8, label_intensity=(0, 205, 420, 500, 550, 600, 820, 850), scale=0, num_blocks=args.num_blocks, stage=args.reg_stage, image_name_index_begin=-38) logging.info("Number of target-atlas pairs: %s" % len(test_data_provider)) with tf.Graph().as_default(): net = model.NetForPrediction(n_blocks=args.num_blocks, test_input_size=args.test_input_size, input_scale=scale_model, input_size=args.patch_size, channels=1, n_class=2, test_n_class=8, n_atlas=1, n_subtypes=(2, 1), method=args.method, features_root=args.features_root, normalizer=args.normalizer, num_down_blocks=args.num_down_blocks, dropout_type=args.dropout_type, ddf_levels=args.ddf_levels, diffeomorphism=args.diffeomorphism, int_steps=args.int_steps, cost_kwargs={'cost_name': args.cost_function, 'regularizer': [None, 'bending_energy'], 'regularization_coefficient': [0., 1.]}) # add number of negative Jacobians BendingEnergy = losses.LocalDisplacementEnergy('bending') jacobian_det = BendingEnergy.compute_jacobian_determinant(net.ddf) num_neg_jacob = tf.math.count_nonzero(tf.less_equal(jacobian_det, 0), dtype=tf.float32, name='negative_jacobians_number') setattr(net, 'num_neg_jacob', num_neg_jacob) # remove duplication of names frame_index = utils.remove_duplicates([os.path.split(pair_names[0])[-1] for pair_names in test_data_provider.target_atlas_image_names]) frame_columns = utils.remove_duplicates([os.path.split(pair_names[1][0])[-1][-39:] for pair_names in test_data_provider.target_atlas_image_names]) # list the metrics that need saving metrics_to_save = {'Dice': np.empty([len(frame_index), len(frame_columns)]), 'Jaccard': np.empty([len(frame_index), len(frame_columns)]), 'Myocardial Dice': np.empty([len(frame_index), len(frame_columns)]), 'LA Dice': np.empty([len(frame_index), len(frame_columns)]), 'LV Dice': np.empty([len(frame_index), len(frame_columns)]), 'RA Dice': np.empty([len(frame_index), len(frame_columns)]), 'RV Dice': np.empty([len(frame_index), len(frame_columns)]), 'AO Dice': np.empty([len(frame_index), len(frame_columns)]), 'PA Dice': np.empty([len(frame_index), len(frame_columns)]), '# Negative Jacobians': np.empty([len(frame_index), len(frame_columns)]), } with tf.Session(config=config) as sess: # Initialize variables sess.run(tf.global_variables_initializer()) # Restore model parameters from previously saved model net.restore(sess, model_path, var_list=net.variables_to_restore) for idx, name in enumerate(test_data_provider.target_atlas_image_names): target_name = os.path.split(test_data_provider.target_atlas_image_names[idx][0])[-1] atlas_names = '-*-'.join([os.path.split(atlas_name)[-1] for atlas_name in test_data_provider.target_atlas_image_names[idx][1]]) if args.space == 'commonspace1': assert os.path.split( test_model_data_provider.target_atlas_image_names[idx][0])[-1] == target_name.replace( 'commonspace1', 'commonspace2') assert '-*-'.join( [os.path.split(atlas_name)[-1] for atlas_name in test_model_data_provider.target_atlas_image_names[idx][1]]) == atlas_names.replace( 'commonspace1', 'commonspace2') elif args.space == 'commonspace2': assert os.path.split(test_model_data_provider.target_atlas_image_names[idx][0])[-1] == target_name assert '-*-'.join( [os.path.split(atlas_name)[-1] for atlas_name in test_model_data_provider.target_atlas_image_names[idx][1]]) == atlas_names logging.info("Fixed image: Target {:}, " "Moving image: Atlas {:}".format(target_name, atlas_names)) # load data for network input model_data = test_model_data_provider[idx] # print(model_data['atlases_label'].shape, model_data['atlases_label'].dtype) # load data for label propagation and result evaluation test_data = test_data_provider[idx] # perform atlas transformation warped_atlas_image, warped_atlas_label, warped_atlas_weight,\ ddf, metrics = net.predict_scale(sess, model_data, test_data, args.dropout) # save metrics for the current target-atlas pair for k, v in metrics_to_save.items(): v[idx // len(frame_columns), idx % len(frame_columns)] = metrics[k] # save output into Nifty files # utils.save_prediction_nii(warped_atlas_image.squeeze(0), save_path, test_data_provider, # data_type='image', name_index=idx, # affine=test_data['target_affine'], header=test_data['target_header'], # save_suffix=args.image_suffix, stage=args.reg_stage, # # original_size=args.original_size # ) utils.save_prediction_nii(warped_atlas_label.squeeze(0), save_path, test_data_provider, data_type='label', name_index=idx, affine=test_data['target_affine'], header=test_data['target_header'], save_suffix=args.label_suffix, stage=args.reg_stage, # original_size=args.original_size ) if args.weight_suffix: utils.save_prediction_nii(warped_atlas_weight.squeeze(0), save_path, test_data_provider, data_type='image', name_index=idx, affine=test_data['target_affine'], header=test_data['target_header'], save_suffix=args.weight_suffix, save_dtype=np.float32, squeeze_channel=False, stage=args.reg_stage, # original_size=args.original_size ) if args.save_ddf: utils.save_prediction_nii(ddf.squeeze((0, -2)), save_path, test_data_provider, data_type='vector_fields', name_index=idx, affine=test_data['target_affine'], header=test_data['target_header'], stage=args.reg_stage, original_size=args.original_size) # save metrics into DataFrames metrics_DataFrames = {} for k, v in metrics_to_save.items(): metrics_DataFrames[k] = pd.DataFrame(v, index=frame_index, columns=frame_columns, dtype=np.float32) # save metrics into excel files with
pd.ExcelWriter(metrics_path)
pandas.ExcelWriter
import os import requests import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sqlalchemy from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import cross_val_predict from imblearn.combine import SMOTETomek import json class testing(): def __init__(self, original_data, webappdata): self.availdata = original_data self.webappdata = webappdata def get_data(self): # data from MySQL Database #https://dev.to/fpim/object-oriented-design-architecture-with-panda-me4 ### Reference for data cleaning and making perfect data ### Have an Connection to Database engine = sqlalchemy.create_engine('mysql+pymysql://root:idntknwpassword#404@localhost:3306/churnapp') avail_df = pd.read_sql_table(self.availdata, engine) app_df = pd.read_sql_table(self.webappdata, engine) raw_data = pd.concat([avail_df, app_df], axis=0) return raw_data def preprocess_input(self): raw_data = self.get_data() df =
pd.read_csv(raw_data)
pandas.read_csv
import argparse import numpy as np import pandas as pd from settings import experiments, lambdas, functions, TRANSIENT_VALUE, RESULT_DIR from statistics import response_time_blockchain, number_users_system, calculate_transient, mean_error, \ bar_plot_metrics, bar_plot_one_metric, plot_transient, new_plot, new_plot_transient from utility import read_csv, extract_data_function, filter_lambda_status, phase_path, experiment_path, \ filter_transient_time, filter_fn_lambda, exists_dir, join_paths def join_dataframe() -> pd.DataFrame: df_join =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 import json import math import sys import glob import argparse import os from collections import namedtuple, defaultdict import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.lines import Line2D from matplotlib.ticker import MaxNLocator import pandas RunConfig = namedtuple("RunConfig", "scheduler fec") RunInfo = namedtuple("RunInfo", "count total durations interrupted_segments interrupt_times bitrates segment_bitrates segment_download_times segment_filenames initial_buffering") PALETTE_5 = sns.color_palette("muted") PALETTE_9 = sns.color_palette("muted") PALETTE_9[4:9] = PALETTE_9[:5] class FIGSIZE(): BOX_M = (5, 5) WIDE_M = (12, 5) WIDE_L = (15, 8) def get_mean(l): return sum(l) / len(l) def get_stddev(l): mean = get_mean(l) return math.sqrt(sum([(x - mean)**2 for x in l]) / (len(l) - 1)) def get_median(l): return sorted(l)[len(l) // 2] def get_z_score(x, mean, stddev): return abs((x - mean) / stddev) def z_filter(l, cutoff = 2.5): mean = get_mean(l) stddev = get_stddev(l) return list(filter(lambda x: get_z_score(x, mean, stddev) < cutoff, l)) def fixname(name): name = name[:3].replace("IOD", "R-IOD") + name[3:] name = name.replace("XOR4-1", "XOR 4") name = name.replace("XOR16-1", "XOR 16") return name.replace("LL", "LowRTT") def get_population_stats(p): return ", ".join([ f"mean: {round(get_mean(p), 2)}", f"median: {round(get_median(p), 2)}", f"stddev: {round(get_stddev(p), 2)}", f"min: {round(min(p), 2)}", f"max: {round(max(p), 2)}", f"sum: {round(sum(p), 2)}", ]) def read_log(filename, slow_start_duration = 15): with open(filename, 'rb') as fo: log = json.load(fo) conf = RunConfig(log['scheduler'], log['fecConfig']) total = 0.0 start_time = log['playback_info']['start_time'] initial_buffering = float(log['playback_info']['initial_buffering_duration']) count = 0 durations = [] interrupted_segments = [] interrupt_times = [] for event in log['playback_info']['interruptions']['events']: seg_no = event['segment_number'] start = event['timeframe'][0] end = event['timeframe'][1] duration = end - start if start < start_time + slow_start_duration: # ignore first few seconds of stream continue # some interruptions are really short, ignore? if duration < 1e-4: continue # some, on the other hand, are unrealistically long. this points # towards a crash in the server and can be ignored if duration > 10: continue count += 1 durations.append(duration) total += duration interrupted_segments.append(seg_no) interrupt_times.append({ "start": start - start_time, "end": end - start_time, "duration": duration, }) segment_filenames = [x[0] for x in log['segment_info']] segment_bitrates = [int(x[1]) for x in log['segment_info']] segment_download_times = [float(x[3]) for x in log['segment_info']] bitrates = set(segment_bitrates) return conf, RunInfo(count, total, durations, interrupted_segments, interrupt_times, bitrates, segment_bitrates, segment_download_times, segment_filenames, initial_buffering) def print_stats(allInfos): for conf, infos in allInfos.items(): print(f"=== {conf.scheduler}, {conf.fec} ===") print("> population size") print(f" {len(infos)}") print("> count") counts = [x.count for x in infos] print(f" {get_population_stats(counts)}") print("> total") totals = [x.total for x in infos] print(f" {get_population_stats(totals)}") print("> bitrates") bitrates = [] for info in infos: bitrates += info.segment_bitrates print(f" {get_population_stats(bitrates)}") print("> bitrate switching (up)") bitrate_up = [] for info in infos: count = 0 for prev, current in zip(info.segment_bitrates[:-1], info.segment_bitrates[1:]): if prev < current: count += 1 bitrate_up.append(count) print(f" {get_population_stats(bitrate_up)}") print("> bitrate switching (down)") bitrate_down = [] for info in infos: count = 0 for prev, current in zip(info.segment_bitrates[:-1], info.segment_bitrates[1:]): if prev > current: count += 1 bitrate_down.append(count) print(f" {get_population_stats(bitrate_down)}") def visualize_boxplot(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = z_filter([x.count for x in infos]) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.set(ylim=(0, None)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.savefig("vis-boxplot." + FORMAT) def visualize_boxplot_split(allInfos): data_a = {} data_b = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data_a[key] = [] data_b[key] = [] for info in infos: count_a = 0 count_b = 0 for interrupt_time in info.interrupt_times: if interrupt_time["start"] < 100: count_a+=1 else: count_b+=1 data_a[key].append(count_a) data_b[key].append(count_b) # fill missing recordings with NaNs maxlen_a = max([len(data_a[k]) for k in data_a.keys()]) maxlen_b = max([len(data_b[k]) for k in data_b.keys()]) for k, v in data_a.items(): data_a[k] = v + [float('nan')] * (maxlen_a - (len(v))) for k, v in data_b.items(): data_b[k] = v + [float('nan')] * (maxlen_b - (len(v))) # draw A plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_a) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.set(ylim=(0, None)) plt.savefig("vis-boxplot-split-a." + FORMAT) # draw B plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_b) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.set(ylim=(0, None)) plt.savefig("vis-boxplot-split-b." + FORMAT) def visualize_distplot_interrupts(allInfos): plt.figure(figsize=(6,5)) sns.set(style="whitegrid", palette=PALETTE_9) data = { "config": [], "interrupted_segments": [], } configs = set() segments_count = 0 for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) configs.add(key) for info in infos: data["config"].extend([key]*len(info.interrupted_segments)) data["interrupted_segments"].extend(info.interrupted_segments) segments_count = max(segments_count, len(info.segment_bitrates)) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = plt.gca() pal = sns.cubehelix_palette(10, rot=-.25, light=.7) g = sns.FacetGrid(df, row="config", hue="config", aspect=10, height=1, palette=pal) g.map(sns.kdeplot, "interrupted_segments", clip_on=False, shade=True, alpha=1, lw=1.5, bw=.2, clip=(0, segments_count)) ##g.map(plt.axhline, y=0, lw=2, clip_on=False) # Set the subplots to overlap #g.fig.subplots_adjust(hspace=-.25) #g.set_titles("") g.set(yticks=[], xlabel='Segments') g.despine(bottom=True, left=True, right=True) plt.savefig("vis-dist-interrupts." + FORMAT) def visualize_distplot_interrupts_cumulative(allInfos): plt.figure(figsize=(10,6)) sns.set(style="ticks", palette=PALETTE_5) data = {} configs = set() for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) configs.add(key) data[key] = [x.count for x in infos] # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) kwargs = {"cumulative": True} patches = [] for i, config in enumerate(configs): ax = sns.distplot(data[config], hist=False, kde_kws=kwargs) patches.append(mpatches.Patch( color=sns.color_palette()[i], label=config )) ax.set(xlabel='# Interruptions', ylabel='') plt.legend(handles=patches) plt.savefig("vis-dist-amount-cumulative." + FORMAT) def visualize_boxplot_accumulated(allInfos, split=False): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [x.total for x in infos] # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='Accumulated Interruption Duration (s)') ax.set(ylim=(0, None)) plt.savefig("vis-boxplot2." + FORMAT) def visualize_boxplot_mean(allInfos, split=False): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette="pastel") data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [] for x in infos: data[key] += x.durations data[key] = z_filter(data[key]) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = sns.boxplot(palette=PALETTE_9, data=df, showfliers=False) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='Interruption Duration (s)') ax.set(ylim=(0, None)) plt.savefig("vis-boxplot3." + FORMAT) def visualize_boxplot_mean_split(allInfos, split=False): data_a = {} data_b = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data_a[key] = [] data_b[key] = [] for info in infos: durations_a = [] durations_b = [] for interrupt_time in info.interrupt_times: if interrupt_time["start"] < 100: durations_a.append(interrupt_time["duration"]) else: durations_b.append(interrupt_time["duration"]) data_a[key].extend(durations_a) data_b[key].extend(durations_b) # fill missing recordings with NaNs maxlen_a = max([len(data_a[k]) for k in data_a.keys()]) maxlen_b = max([len(data_b[k]) for k in data_b.keys()]) for k, v in data_a.items(): data_a[k] = v + [float('nan')] * (maxlen_a - (len(v))) for k, v in data_b.items(): data_b[k] = v + [float('nan')] * (maxlen_b - (len(v))) # draw A plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_a) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.savefig("vis-boxplot3-split-a." + FORMAT) # draw B plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) df = pandas.DataFrame.from_dict(data_b) ax = sns.boxplot(palette=PALETTE_9, data=df) #sns.swarmplot(size=2, color="0.3", linewidth=0, data=df) ax.set(xlabel='', ylabel='# Interruptions') ax.yaxis.set_major_locator(MaxNLocator(integer=True)) plt.savefig("vis-boxplot3-split-b." + FORMAT) def visualize_distplot_duration(allInfos): plt.figure(figsize=(10,10)) sns.set(style="ticks", palette="pastel") data = { "config": [], "duration": [], } configs = set() for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler} - {conf.fec}".upper()) configs.add(key) for info in infos: for duration in info.durations: data["config"].append(key) data["duration"].append(duration) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df = pandas.DataFrame.from_dict(data) ax = plt.gca() pal = sns.cubehelix_palette(10, rot=-.25, light=.7) g = sns.FacetGrid(df, row="config", hue="config", aspect=10, height=2, palette=pal) g.map(sns.kdeplot, "duration", clip_on=False, shade=True, alpha=1, lw=1.5, bw=.2, clip=(0, 0.2)) g.map(sns.kdeplot, "duration", clip_on=False, color="w", lw=2, bw=.2, clip=(0, 0.2)) g.map(plt.axhline, y=0, lw=2, clip_on=False) # Set the subplots to overlap #g.fig.subplots_adjust(hspace=-.25) g.despine(bottom=True, left=True) ax.set(xlabel='', ylabel='Interruption Duration (s)') ax.set(ylim=(0, None)) plt.savefig("vis-dist-duration." + FORMAT) def visualize_boxplot_initial_buffering(allInfos): plt.figure(figsize=FIGSIZE.WIDE_M) sns.set(style="whitegrid", palette=PALETTE_9) data = {} for conf, infos in allInfos.items(): key = fixname(f"{conf.scheduler}\n{conf.fec}".upper()) data[key] = [] for x in infos: data[key].append(x.initial_buffering) data[key] = z_filter(data[key]) # fill missing recordings with NaNs maxlen = max([len(data[k]) for k in data.keys()]) for k, v in data.items(): data[k] = v + [float('nan')] * (maxlen - (len(v))) df =
pandas.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
""" Functions for radiosonde related calculations. """ import warnings import numpy as np import pandas as pd import xarray as xr from act.utils.data_utils import convert_to_potential_temp try: from pkg_resources import DistributionNotFound import metpy.calc as mpcalc METPY_AVAILABLE = True except ImportError: METPY_AVAILABLE = False except (ModuleNotFoundError, DistributionNotFound): warnings.warn("MetPy is installed but could not be imported. " + "Please check your MetPy installation. Some features " + "will be disabled.", ImportWarning) METPY_AVAILABLE = False if METPY_AVAILABLE: from metpy.units import units def calculate_precipitable_water(ds, temp_name='tdry', rh_name='rh', pres_name='pres'): """ Function to calculate precipitable water vapor from ARM sondewnpn b1 data. Will first calculate saturation vapor pressure of all data using Arden-Buck equations, then calculate specific humidity and integrate over all pressure levels to give us a precipitable water value in centimeters. ds : ACT object Object as read in by the ACT netCDF reader. temp_name : str Name of temperature field to use. Defaults to 'tdry' for sondewnpn b1 level data. rh_name : str Name of relative humidity field to use. Defaults to 'rh' for sondewnpn b1 level data. pres_name : str Name of atmospheric pressure field to use. Defaults to 'pres' for sondewnpn b1 level data. """ temp = ds[temp_name].values rh = ds[rh_name].values pres = ds[pres_name].values # Get list of temperature values for saturation vapor pressure calc temperature = [] for t in np.nditer(temp): temperature.append(t) # Apply Arden-Buck equation to get saturation vapor pressure sat_vap_pres = [] for t in temperature: # Over liquid water, above freezing if t >= 0: sat_vap_pres.append(0.61121 * np.exp((18.678 - (t / 234.5)) * (t / (257.14 + t)))) # Over ice, below freezing else: sat_vap_pres.append(0.61115 * np.exp((23.036 - (t / 333.7)) * (t / (279.82 + t)))) # convert rh from % to decimal rel_hum = [] for r in np.nditer(rh): rel_hum.append(r / 100.) # get vapor pressure from rh and saturation vapor pressure vap_pres = [] for i in range(0, len(sat_vap_pres)): es = rel_hum[i] * sat_vap_pres[i] vap_pres.append(es) # Get list of pressure values for mixing ratio calc pressure = [] for p in np.nditer(pres): pressure.append(p) # Mixing ratio calc mix_rat = [] for i in range(0, len(vap_pres)): mix_rat.append(0.622 * vap_pres[i] / (pressure[i] - vap_pres[i])) # Specific humidity spec_hum = [] for rat in mix_rat: spec_hum.append(rat / (1 + rat)) # Integrate specific humidity pwv = 0.0 for i in range(1, len(pressure) - 1): pwv = pwv + 0.5 * (spec_hum[i] + spec_hum[i - 1]) * (pressure[i - 1] - pressure[i]) pwv = pwv / 0.098 return pwv def calculate_stability_indicies(ds, temp_name="temperature", td_name="dewpoint_temperature", p_name="pressure", rh_name='relative_humidity', moving_ave_window=0): """ Function for calculating stability indices from sounding data. Parameters ---------- ds : ACT dataset The dataset to compute the stability indicies of. Must have temperature, dewpoint, and pressure in vertical coordinates. temp_name : str The name of the temperature field. td_name : str The name of the dewpoint field. p_name : str The name of the pressure field. rh_name : str The name of the relative humidity field. moving_ave_window : int Number of points to do a moving average on sounding data to reduce noise. This is useful if noise in the sounding is preventing parcel ascent. Returns ------- ds : ACT dataset An ACT dataset with additional stability indicies added. """ if not METPY_AVAILABLE: raise ImportError("MetPy need to be installed on your system to " + "calculate stability indices") t = ds[temp_name] td = ds[td_name] p = ds[p_name] rh = ds[rh_name] if not hasattr(t, "units"): raise AttributeError("Temperature field must have units" + " for ACT to discern!") if not hasattr(td, "units"): raise AttributeError("Dewpoint field must have units" + " for ACT to discern!") if not hasattr(p, "units"): raise AttributeError("Pressure field must have units" + " for ACT to discern!") if t.units == "C": t_units = units.degC else: t_units = getattr(units, t.units) if td.units == "C": td_units = units.degC else: td_units = getattr(units, td.units) p_units = getattr(units, p.units) rh_units = getattr(units, rh.units) # Sort all values by decreasing pressure t_sorted = np.array(t.values) td_sorted = np.array(td.values) p_sorted = np.array(p.values) rh_sorted = np.array(rh.values) ind_sort = np.argsort(p_sorted) t_sorted = t_sorted[ind_sort[-1:0:-1]] td_sorted = td_sorted[ind_sort[-1:0:-1]] p_sorted = p_sorted[ind_sort[-1:0:-1]] rh_sorted = rh_sorted[ind_sort[-1:0:-1]] if moving_ave_window > 0: t_sorted = np.convolve( t_sorted, np.ones((moving_ave_window,)) / moving_ave_window) td_sorted = np.convolve( td_sorted, np.ones((moving_ave_window,)) / moving_ave_window) p_sorted = np.convolve( p_sorted, np.ones((moving_ave_window,)) / moving_ave_window) rh_sorted = np.convolve( rh_sorted, np.ones((moving_ave_window,)) / moving_ave_window) t_sorted = t_sorted * t_units td_sorted = td_sorted * td_units p_sorted = p_sorted * p_units rh_sorted = rh_sorted * rh_units # Calculate mixing ratio mr = mpcalc.mixing_ratio_from_relative_humidity( p_sorted, t_sorted, rh_sorted) # Discussion of issue #361 use virtual temperature. vt = mpcalc.virtual_temperature(t_sorted, mr) t_profile = mpcalc.parcel_profile( p_sorted, t_sorted[0], td_sorted[0]) # Calculate parcel trajectory ds["parcel_temperature"] = t_profile.magnitude ds["parcel_temperature"].attrs['units'] = t_profile.units # Calculate CAPE, CIN, LCL sbcape, sbcin = mpcalc.surface_based_cape_cin( p_sorted, vt, td_sorted) lcl = mpcalc.lcl( p_sorted[0], t_sorted[0], td_sorted[0]) try: lfc = mpcalc.lfc( p_sorted[0], t_sorted[0], td_sorted[0]) except IndexError: lfc = np.nan * p_sorted.units mucape, mucin = mpcalc.most_unstable_cape_cin( p_sorted, vt, td_sorted) where_500 = np.argmin(np.abs(p_sorted - 500 * units.hPa)) li = t_sorted[where_500] - t_profile[where_500] ds["surface_based_cape"] = sbcape.magnitude ds["surface_based_cape"].attrs['units'] = "J/kg" ds["surface_based_cape"].attrs['long_name'] = "Surface-based CAPE" ds["surface_based_cin"] = sbcin.magnitude ds["surface_based_cin"].attrs['units'] = "J/kg" ds["surface_based_cin"].attrs['long_name'] = "Surface-based CIN" ds["most_unstable_cape"] = mucape.magnitude ds["most_unstable_cape"].attrs['units'] = "J/kg" ds["most_unstable_cape"].attrs['long_name'] = "Most unstable CAPE" ds["most_unstable_cin"] = mucin.magnitude ds["most_unstable_cin"].attrs['units'] = "J/kg" ds["most_unstable_cin"].attrs['long_name'] = "Most unstable CIN" ds["lifted_index"] = li.magnitude ds["lifted_index"].attrs['units'] = t_profile.units ds["lifted_index"].attrs['long_name'] = "Lifted index" ds["level_of_free_convection"] = lfc.magnitude ds["level_of_free_convection"].attrs['units'] = lfc.units ds["level_of_free_convection"].attrs['long_name'] = "Level of free convection" ds["lifted_condensation_level_temperature"] = lcl[1].magnitude ds["lifted_condensation_level_temperature"].attrs['units'] = lcl[1].units ds["lifted_condensation_level_temperature"].attrs[ 'long_name'] = "Lifted condensation level temperature" ds["lifted_condensation_level_pressure"] = lcl[0].magnitude ds["lifted_condensation_level_pressure"].attrs['units'] = lcl[0].units ds["lifted_condensation_level_pressure"].attrs[ 'long_name'] = "Lifted condensation level pressure" return ds def calculate_pbl_liu_liang(ds, temperature='tdry', pressure='pres', windspeed='wspd', height='alt', smooth_height=3, land_parameter=True, llj_max_alt=1500., llj_max_wspd=2.): """ Function for calculating the PBL height from a radiosonde profile using the Liu-Liang 2010 technique. There are some slight descrepencies in the function from the ARM implementation 1.) it imposes a 1500m (keyword) height on the definition of the LLJ and 2.) the interpolation is slightly different using python functions Parameters ---------- ds : xarray Dataset Dataset housing radiosonde profile for calculations temperature : str The name of the temperature field. pressure : str The name of the pressure field. windspeed : str The name of the wind speed field. height : str The name of the height field smooth_height : int Number of points to do a moving average on sounding height data to reduce noise land_parameter : boolean Set to True if retrievals over land or false to retrievals over water llj_max_alt : float Maximum altitude the LLJ 2 m/s difference should be checked against llj_max_wspd : float Maximum wind speed threshold to use to define LLJ Returns ------- obj : xarray Dataset xarray dataset with results stored in pblht_liu_liang variable References ---------- Liu, Shuyan, and <NAME>. "Observed diurnal cycle climatology of planetary boundary layer height." Journal of Climate 23, no. 21 (2010): 5790-5809. <NAME>., <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. "Planetary boundary layer (PBL) height value added product (VAP): Radiosonde retrievals." Department of Energy Office of Science Atmospheric Radiation Measurement (ARM) Program (United States) (2013). """ time_0 = ds['time'].values temp_0 = ds[temperature].values ds[pressure] = ds[pressure].rolling(time=smooth_height, min_periods=1, center=True).mean() obj = ds.swap_dims(dims_dict={'time': pressure}) for var in obj: obj[var].attrs = ds[var].attrs base = 5 # 5 mb base starting_pres = base * np.ceil(float(obj[pressure].values[2]) / base) p_grid = np.flip(np.arange(100., starting_pres + base, base)) try: obj = obj.sel(pres=p_grid, method='nearest') except Exception: ds[pressure] = ds[pressure].rolling(time=smooth_height + 4, min_periods=2, center=True).mean() obj = ds.swap_dims(dims_dict={'time': pressure}) for var in obj: obj[var].attrs = ds[var].attrs try: obj = obj.sel(pres=p_grid, method='nearest') except Exception: raise ValueError('Sonde profile does not have unique pressures after smoothing') # Get Data Variables if smooth_height > 0: alt =
pd.Series(obj[height].values)
pandas.Series
import pytest import collections from pathlib import Path import pandas as pd from mbf_genomics import DelayedDataFrame from mbf_genomics.annotator import Constant, Annotator import pypipegraph as ppg from pypipegraph.testing import run_pipegraph, force_load from pandas.testing import assert_frame_equal from mbf_genomics.util import find_annos_from_column class LenAnno(Annotator): def __init__(self, name): self.columns = [name] def calc(self, df): return pd.DataFrame( {self.columns[0]: ["%s%i" % (self.columns[0], len(df))] * len(df)} ) @pytest.mark.usefixtures("no_pipegraph") @pytest.mark.usefixtures("clear_annotators") class Test_DelayedDataFrameDirect: def test_create(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load) assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" def test_create_from_df(self): test_df = pd.DataFrame({"A": [1, 2]}) a = DelayedDataFrame("shu", test_df) assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" def test_write(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") assert Path("sha").exists() assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" fn = a.write()[1] assert "/sha" in str(fn.parent.absolute()) assert fn.exists() assert_frame_equal(pd.read_csv(fn, sep="\t"), test_df) def test_write_excel(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") assert Path("sha").exists() assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" fn = a.write("sha.xls")[1] assert fn.exists() assert_frame_equal(pd.read_excel(fn), test_df) def test_write_excel2(self): data = {} for i in range(0, 257): c = "A%i" % i d = [1, 1] data[c] = d test_df = pd.DataFrame(data) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") fn = a.write("sha.xls")[1] assert fn.exists() assert_frame_equal(pd.read_excel(fn), test_df) def test_write_mangle(self): test_df = pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) def load(): return test_df a = DelayedDataFrame("shu", load) assert_frame_equal(a.df, test_df) assert (a.non_annotator_columns == ["A", "B"]).all() def mangle(df): df = df.drop("A", axis=1) df = df[df.B == "c"] return df fn = a.write("test.csv", mangle)[1] assert fn.exists() assert_frame_equal(pd.read_csv(fn, sep="\t"), mangle(test_df)) def test_magic(self): test_df = pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) a = DelayedDataFrame("shu", lambda: test_df) assert hash(a) assert a.name in str(a) assert a.name in repr(a) def test_annotator(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) a += Constant("column", "value") a.annotate() assert "column" in a.df.columns assert (a.df["column"] == "value").all() def test_add_non_anno(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) with pytest.raises(TypeError): a += 5 def test_annotator_wrong_columns(self): class WrongConstant(Annotator): def __init__(self, column_name, value): self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({"shu": self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) with pytest.raises(ValueError): a += WrongConstant("column", "value") def test_annotator_minimum_columns(self): a = DelayedDataFrame( "shu", lambda:
pd.DataFrame({"A": [1, 2], "B": ["c", "d"]})
pandas.DataFrame
from email import header import select from bs4 import BeautifulSoup from selenium import webdriver import pandas as pd from selenium.common.exceptions import NoSuchElementException import pickle from connect_to_db import DatabaseConnection from selenium.webdriver.support.ui import Select # from cleaning_pickle import update_tables def is_num_or_float(value): try: float(value) return True except ValueError: return False class Scraper: def __init__(self) -> None: self.status = 0 self.scrape_url = None def set_url(self,url: str,name: str): self.scrape_url = url self.name = name print("URL Changed to:",self.scrape_url," Status:",self.status) def get_url(self) -> str: return self.scrape_url def get_status(self) -> int: return self.status def create_driver(self): fireFoxOptions = webdriver.FirefoxOptions() fireFoxOptions.set_headless() self.driver = webdriver.Firefox(firefox_options=fireFoxOptions) def close_driver(self): self.driver.quit() def parse_url(self) -> None: # html = driver.page_source # self.source = urllib.request.urlopen(self.scrape_url) # r = requests.get(self.scrape_url) # print(r.text) self.driver.get(self.scrape_url) self.soup = BeautifulSoup(self.driver.page_source,"html.parser") # print(self.soup)a # print(self.soup) def parse_html(self) -> None: self.rows=list() self.header = None # html_table = self.soup.find("table",{"class":"table graph-table W(100%) Ta(start) Bdcl(c) Mb(56px) Ov(h)"}) html_table = self.driver.find_element_by_xpath("//table[@class='table graph-table W(100%) Ta(start) Bdcl(c) Mb(56px) Ov(h)']") is_header = True for row in html_table.find_elements_by_tag_name("tr"): if is_header: self.header = row is_header = False else: self.rows.append(row) # for row in html_table.findAll("tr"): # if is_header: # self.header = row # is_header = False # else: # self.rows.append(row) self.status += 1 def parse_stats(self, data: 'PlayerStatistics', append=False): headers_list = list() stats_list = list() for col in self.header.find_elements_by_tag_name("th"): headers_list.append(col.get_attribute('title')) for row in self.rows: ind_stats = list() for col in row.find_elements_by_tag_name("th"): ind_stats.append(col.text) for col in row.find_elements_by_tag_name("td"): if is_num_or_float(col.text): ind_stats.append(float(col.text)) else: if(col.text == '-'): ind_stats.append(0.0) else: ind_stats.append(col.text) #Add row stats_list.append(ind_stats) # for col in self.header.findAll("th"): # headers_list.append(col["title"]) # for row in self.rows: # ind_stats = list() # for col in row.findAll("th"): # ind_stats.append(col.text) # for col in row.findAll("td"): # if is_num_or_float(col.text): # ind_stats.append(float(col.text)) # else: # if(col.text == '-'): # ind_stats.append(0.0) # else: # ind_stats.append(col.text) # #Add row # stats_list.append(ind_stats) # fill dataframe df_stats = pd.DataFrame(stats_list, columns=headers_list) if append == False: data.add_table(self.name,df_stats) else: data.tables[self.name] =
pd.concat([data.tables[self.name], df_stats], ignore_index=True)
pandas.concat
"""Tests for the sdv.constraints.tabular module.""" import uuid import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False assert instance._high_is_scalar is None assert instance._low_is_scalar is None assert instance._drop is None def test___init___all_parameters_passed(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' - strict = True - drop = 'high' - high_is_scalar = True - low_is_scalar = False Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True - instance._drop = 'high' - instance._high_is_scalar = True - instance._low_is_scalar = False """ # Run instance = GreaterThan(low='a', high='b', strict=True, drop='high', high_is_scalar=True, low_is_scalar=False) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True assert instance._high_is_scalar is True assert instance._low_is_scalar is False assert instance._drop == 'high' def test_fit__low_is_scalar_is_none_determined_as_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if low is a scalar if ``_low_is_scalar`` is None. Input: - Table without ``low`` in columns. Side Effect: - ``_low_is_scalar`` should be set to ``True``. """ # Setup instance = GreaterThan(low=3, high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._low_is_scalar is True def test_fit__low_is_scalar_is_none_determined_as_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if low is a column name if ``_low_is_scalar`` is None. Input: - Table with ``low`` in columns. Side Effect: - ``_low_is_scalar`` should be set to ``False``. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._low_is_scalar is False def test_fit__high_is_scalar_is_none_determined_as_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if high is a scalar if ``_high_is_scalar`` is None. Input: - Table without ``high`` in columns. Side Effect: - ``_high_is_scalar`` should be set to ``True``. """ # Setup instance = GreaterThan(low='a', high=3) # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._high_is_scalar is True def test_fit__high_is_scalar_is_none_determined_as_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if high is a column name if ``_high_is_scalar`` is None. Input: - Table with ``high`` in columns. Side Effect: - ``_high_is_scalar`` should be set to ``False``. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._high_is_scalar is False def test_fit__high_is_scalar__low_is_scalar_raises_error(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should raise an error if `_low_is_scalar` and `_high_is_scalar` are true. Input: - Table with one column. Side Effect: - ``TypeError`` is raised. """ # Setup instance = GreaterThan(low=1, high=2) # Run / Asserts table_data = pd.DataFrame({'a': [1, 2, 3]}) with pytest.raises(TypeError): instance.fit(table_data) def test_fit__column_to_reconstruct_drop_high(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'b' def test_fit__column_to_reconstruct_drop_low(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'a' def test_fit__column_to_reconstruct_default(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'b' def test_fit__column_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to `low` if ``instance._high_is_scalar`` is ``True``. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'a' def test_fit__diff_column_one_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_diff_column`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, high_is_scalar=True) # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance.fit(table_data) # Asserts assert instance._diff_column == 'a#' def test_fit__diff_column_multiple_columns(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_diff_column`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._diff_column == 'a#b' def test_fit_int(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'i' def test_fit_float(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_datetime(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'M' def test_fit_type__high_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_high_is_scalar`` is ``True``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3) # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_type__low_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` is ``True``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False], name='b') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False], name='a') pd.testing.assert_series_equal(expected_out, out) def test_transform_int_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_high(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_low(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_float_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type float. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_datetime_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type datetime. If the columns are of type datetime, ``transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_transform_high_is_scalar(self): """Test the ``GreaterThan.transform`` method with high as scalar. The ``GreaterThan.transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_high_is_scalar`` is ``True``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, high_is_scalar=True) instance._diff_column = 'a#b' instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_low_is_scalar(self): """Test the ``GreaterThan.transform`` method with high as scalar. The ``GreaterThan.transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_high_is_scalar`` is ``True``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, low_is_scalar=True) instance._diff_column = 'a#b' instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = np.dtype('float') instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = np.dtype('<M8[ns]') instance._diff_column = 'a#b' instance._is_datetime = True instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'a' # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = np.dtype('<M8[ns]') instance._diff_column = 'a#b' instance._is_datetime = True instance._column_to_reconstruct = 'a' # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = np.dtype('<M8[ns]') instance._diff_column = 'a#b' instance._is_datetime = True instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_low_is_scalar`` is ``True``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, low_is_scalar=True) instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_high_is_scalar`` is ``True``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, high_is_scalar=True) instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'a' # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) class TestPositive(): def test__init__(self): """ Test the ``Positive.__init__`` method. The method is expected to set the ``_low`` instance variable to 0, the ``_low_is_scalar`` variable to ``True`` and the ``_high_is_scalar`` variable to ``False``. The rest of the parameters should be passed. Input: - strict = True - high = 'a' - drop = None Side effects: - instance._low == 0 - instance._high == 'a' - instance._strict == True - instance._high_is_scalar = False - instance._low_is_scalar = True - instance._drop = None """ # Run instance = Positive(high='a', strict=True, drop=None) # Asserts assert instance._low == 0 assert instance._high == 'a' assert instance._strict is True assert instance._high_is_scalar is False assert instance._low_is_scalar is True assert instance._drop is None class TestNegative(): def test__init__(self): """ Test the ``Negative.__init__`` method. The method is expected to set the ``_high`` instance variable to 0, the ``_high_is_scalar`` variable to ``True`` and the ``_low_is_scalar`` variable to ``False``. The rest of the parameters should be passed. Input: - strict = True - low = 'a' - drop = None Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._high_is_scalar = True - instance._low_is_scalar = False - instance._drop = None """ # Run instance = Negative(low='a', strict=True, drop=None) # Asserts assert instance._low == 'a' assert instance._high == 0 assert instance._strict is True assert instance._high_is_scalar is True assert instance._low_is_scalar is False assert instance._drop is None def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance and import the formula to use for the computation. Input: - column = 'c' - formula = new_column """ # Setup column = 'c' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``ColumnFormula.transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform(self): """Test the ``ColumnFormula.reverse_transform`` method. It is expected to compute the indicated column by applying the given formula. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 1, 1] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] })
pd.testing.assert_frame_equal(expected_out, out)
pandas.testing.assert_frame_equal
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy from bt.core import FixedIncomeStrategy, HedgeSecurity, FixedIncomeSecurity from bt.core import CouponPayingSecurity, CouponPayingHedgeSecurity from bt.core import is_zero import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree1(): # Create a regular strategy c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c1 assert p['c1'] != c2 c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root # Create a new parent strategy with a child sub-strategy m = Node('m', children=[p, c1]) p = m['p'] mc1 = m['c1'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 2 assert 'p' in m.children assert 'c1' in m.children assert mc1 != c1 assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent assert m == p.root assert m == c1.root assert m == c2.root # Add a new node into the strategy c0 = Node('c0', parent=p) c0 = p['c0'] assert 'c0' in p.children assert p == c0.parent assert m == c0.root assert len(p.children) == 3 # Add a new sub-strategy into the parent strategy p2 = Node( 'p2', children = [c0, c1], parent=m ) p2 = m['p2'] c0 = p2['c0'] c1 = p2['c1'] assert 'p2' in m.children assert p2.parent == m assert len(p2.children) == 2 assert 'c0' in p2.children assert 'c1' in p2.children assert c0 != p['c0'] assert c1 != p['c1'] assert p2 == c0.parent assert p2 == c1.parent assert m == p2.root assert m == c0.root assert m == c1.root def test_node_tree2(): # Just like test_node_tree1, but using the dictionary constructor c = Node('template') p = Node('p', children={'c1':c, 'c2':c, 'c3':'', 'c4':''}) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c assert p['c1'] != c c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert c1.name == 'c1' assert c2.name == 'c2' assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root def test_node_tree3(): c1 = Node('c1') c2 = Node('c1') # Same name! raised = False try: p = Node('p', children=[c1, c2, 'c3', 'c4']) except ValueError: raised = True assert raised raised = False try: p = Node('p', children=['c1', 'c1']) except ValueError: raised = True assert raised c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) raised = False try: Node('c1', parent = p ) except ValueError: raised = True assert raised # This does not raise, as it's just providing an implementation of 'c3', # which had been declared earlier c3 = Node('c3', parent = p ) assert 'c3' in p.children def test_integer_positions(): c1 = Node('c1') c2 = Node('c2') c1.integer_positions = False p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert p.integer_positions assert c1.integer_positions assert c2.integer_positions p.use_integer_positions(False) assert not p.integer_positions assert not c1.integer_positions assert not c2.integer_positions c3 = Node('c3', parent=p) c3 = p['c3'] assert not c3.integer_positions p2 = Node( 'p2', children = [p] ) p = p2['p'] c1 = p['c1'] c2 = p['c2'] assert p2.integer_positions assert p.integer_positions assert c1.integer_positions assert c2.integer_positions def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 s.update(dts[0]) assert s.flows[ dts[0] ] == 1000 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert c2.price == 95 i = 2 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.loc[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.loc[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.loc[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_lazy(): # A mix of test_strategybase_universe and test_strategybase_allocate # to make sure that assets with lazy_add work correctly. c1 = SecurityBase('c1', multiplier=2, lazy_add=True, ) c2 = FixedIncomeSecurity('c2', lazy_add=True) s = StrategyBase('s', [c1, c2]) dts =
pd.date_range('2010-01-01', periods=3)
pandas.date_range
import pandas as pd import BeautifulSoup as bs import requests import pickle import os import os.path import datetime import time def promt_time_stamp(): return str(datetime.datetime.fromtimestamp(time.time()).strftime('[%H:%M:%S] ')) def get_index_tickers(list_indexes=list(), load_all=False): tickers_all = [] path = 'indexes/' if not os.path.exists(path): os.mkdir(path) if load_all: list_indexes = ['dowjones', 'sp500', 'dax', 'sptsxc', 'bovespa', 'ftse100', 'cac40', 'ibex35', 'eustoxx50', 'sensex', 'smi', 'straitstimes', 'rts', 'nikkei', 'ssec', 'hangseng', 'spasx200', 'mdax', 'sdax', 'tecdax'] for index in list_indexes: tickers = [] implemented = True if os.path.isfile(path + index + '.pic'): print(promt_time_stamp() + 'load ' + index + ' tickers from db ..') with open(path + index + '.pic', "rb") as input_file: for ticker in pickle.load(input_file): tickers.append(ticker) elif index == 'dowjones': print(promt_time_stamp() + 'load dowjones tickers ..') r = pd.read_html('https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average') for ticker in r[1][2][1:].tolist(): tickers.append(ticker) elif index == 'sp500': print(promt_time_stamp() + 'load sp500 tickers ..') r = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies') for ticker in r[0][0][1:].tolist(): tickers.append(ticker) elif index == 'dax': print(promt_time_stamp() + 'load dax tickers ..') r = pd.read_html('https://it.wikipedia.org/wiki/DAX_30')[1] for ticker in pd.DataFrame(r)[1][1:].tolist(): tickers.append(ticker) elif index == 'sptsxc': print(promt_time_stamp() + 'load sptsxc tickers ..') r = pd.read_html('https://en.wikipedia.org/wiki/S%26P/TSX_Composite_Index') for ticker in r[0][0][1:].tolist(): tickers.append(ticker) elif index == 'bovespa': print(promt_time_stamp() + 'load bovespa tickers ..') r = pd.read_html('https://id.wikipedia.org/wiki/Indeks_Bovespa') for ticker in r[0][1][1:].tolist(): tickers.append(ticker) elif index == 'ftse100': print(promt_time_stamp() + 'load ftse100 tickers ..') r =
pd.read_html('https://en.wikipedia.org/wiki/FTSE_100_Index')
pandas.read_html
import datetime import fileinput import glob import gzip import multiprocessing import os import random # for log file names import re import shutil import subprocess import sys import time import urllib as ul # for removing url style encoding from gff text notes from pathlib import Path import configargparse import pandas as pd import pandasql as ps import pysam # sequence format specific module fastq/bam/sam... import gffpandas.gffpandas as gffpd # annotation format specific module gff3 from fuzzysearch import find_near_matches pimms_mssg = """ =========================================================================================================== Pragmatic Insertional Mutation Mapping system (PIMMS) mapping pipeline v2 =========================================================================================================== o o o o // // // // |_||_| |_||_| @@@@@ @@@@@@ @@ @@ @@ @@ @@@@@@ @@@@@@ |@||@| |@||@| @@ @@ @@ @@@@ @@@@ @@@@ @@@@ @@ @@ @@ |@||@| |@||@| @@@@@ @@ @@ @@@ @@ @@ @@@ @@ @@@ @@ |@||@| |@||@| @@ @@ @@ @ @@ @@ @ @@ @@@ @@ |@@@@| |@@@@| @@ @@ @@ @@ @@ @@ @@ @@ |@@@@| |@@@@| @@ @@@@@@ @@ @@ @@ @@ @@@@@@@ @@@@@@@@ =========================================================================================================== PIMMS2 """ pimms_mssg2 = """ mode =========================================================================================================== """ class Range(object): def __init__(self, start, end): self.start = start self.end = end def __eq__(self, other): return self.start <= other <= self.end def create_folder(directory): try: if not os.path.exists(directory): os.makedirs(directory) except OSError: print('Error: Creating directory. ' + directory) def make_results_dirs_in_sam_dir(samfile_path, run_label): samdirname = os.path.dirname(samfile_path) results_dir_db = os.path.join(samdirname, run_label + '_out_dashboard') results_dir_info = os.path.join(samdirname, run_label + '_out_info') # results_dir_kept = os.path.join(samdirname, run_label + '_out_kept') if not os.path.exists(results_dir_db): try: os.makedirs(results_dir_db) os.makedirs(results_dir_info) except OSError: print("Error while creating result dirs in {samdirname}") else: results_dir_db = os.path.join(samdirname, run_label + time.strftime("_%d%m%y_%H%M%S") + '_results_dashboard') results_dir_info = os.path.join(samdirname, run_label + time.strftime("_%d%m%y_%H%M%S") + '_results_info') try: os.makedirs(results_dir_db) os.makedirs(results_dir_info) except OSError: print("Error while creating incremented result dirs in {samdirname}") return samdirname, results_dir_db, results_dir_info def delete_file_list(file_list): for file_path in file_list: try: os.remove(file_path) except OSError: print("Error while deleting file {filePath}") def extant_file(x): """ 'Type' for argparse - checks that file exists but does not open. """ if not os.path.exists(x): # Argparse uses the ArgumentTypeError to give a rejection message like: # error: argument input: x does not exist raise configargparse.ArgumentTypeError("{0} does not exist".format(x)) return x def prog_in_path_check(prog_to_check): if shutil.which(prog_to_check): print('required mapper is in the path : ' + prog_to_check) else: sys.exit('\nERROR: ' + prog_to_check + ' cannot be found in the path. \nSYS.EXIT: Please check your environment and ensure ' + prog_to_check + ' is installed and available before trying again.\n\n') def concat_fastq_raw(flanking_fastq_list, label, fq_file_suffix, concat_out_dir): concat_fastq_result_filename = os.path.join(concat_out_dir, label + '_RX_concat' + fq_file_suffix + '.gz') print(concat_fastq_result_filename) print(" ".join(flanking_fastq_list)) with gzip.open(concat_fastq_result_filename, "wt", compresslevel=6) as big_file: with fileinput.input(files=flanking_fastq_list) as inputs: for line in inputs: big_file.write(line) if not parsed_args[0].keep: print('Removing intermediate fastq flanking reads files') # print(flanking_fastq_list) delete_file_list(flanking_fastq_list) return concat_fastq_result_filename ############################ # FIND_FLANK FUNCTIONS: ############################ def find_read_files_with_glob(indir, wildcards): for suffix_wc in wildcards: read_files = glob.glob(indir + suffix_wc) if len(read_files): return read_files sys.exit("SYS EXIT: unable to find read files, check file suffixes match permissible: " + wildcards + '\n') def merge_logs(log_path): log_files = glob.glob(os.path.join(log_path, "log_*txt")) df_from_each_log = (pd.read_table(f) for f in log_files) merged_logs_df = pd.concat(df_from_each_log, ignore_index=True) merged_logs_df = merged_logs_df.sort_values(by=['fq_filename']) log_sums = merged_logs_df.sum(numeric_only=True) log_sums['fq_filename'] = 'COMBINED' merged_logs_df = merged_logs_df.append(log_sums, ignore_index=True) merged_logs_df.to_csv(os.path.join(log_path, "..", 'result_summary.txt'), sep='\t', index=False) print(merged_logs_df.to_string(index=False)) return merged_logs_df def run_minimap2(flanking_fastq_concat_result, sam_output_result, genome_fasta): stream = os.popen('minimap2 --version') output = stream.read() print('calling minimap version: ' + output) # process = subprocess.Popen(['minimap2', '--version'], print(' '.join(['minimap2', '-x', 'sr', '-a', '-y', # -y adds fastq comment to sam? '-o', sam_output_result, genome_fasta, flanking_fastq_concat_result, '--secondary=no', '--sam-hit-only'])) if parsed_args[0].nano: mm_mode = 'map-ont' else: mm_mode = 'sr' process = subprocess.Popen( ['minimap2', '-x', mm_mode, '-a', '-y', # -y adds fastq comment to sam '-o', sam_output_result, genome_fasta, flanking_fastq_concat_result, '--secondary=no', '--sam-hit-only'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() print(stdout.decode('utf-8')) print(stderr.decode('utf-8')) def run_bwa(flanking_fastq_concat_result, sam_output_result, genome_fasta, ncpus): bwa_index_dir = Path(genome_fasta).stem + '_index' if not os.path.exists(os.path.join(bwa_index_dir, Path(genome_fasta).name + '.sa')): print('Creating BWA index...') create_folder(bwa_index_dir) fasta_to_index = os.path.join(bwa_index_dir, Path(genome_fasta).name) shutil.copyfile(genome_fasta, fasta_to_index) process = subprocess.Popen( ['bwa', 'index', fasta_to_index], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() print(stdout.decode('utf-8')) print(stderr.decode('utf-8')) else: print('Using existing BWA index...') print(' '.join(['bwa', 'mem', genome_fasta, flanking_fastq_concat_result, sam_output_result])) # with open(sam_output_result, 'w') as f: process = subprocess.Popen( ['bwa', 'mem', '-t', str(ncpus), "-C", '-o', sam_output_result, os.path.join(bwa_index_dir, Path(genome_fasta).name), flanking_fastq_concat_result], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() print(stdout.decode('utf-8')) print(stderr.decode('utf-8')) def py_sam_to_bam(sam_output_result): bam_output_result = re.sub('.sam', '.bam', sam_output_result) # add?? line to remove unmapped readsbased on: | samtools view -F 4 -o onlyMapped.bam ?? # noinspection PyUnresolvedReferences pysam.sort('-O' 'BAM', "-o", bam_output_result, sam_output_result) # noinspection PyUnresolvedReferences pysam.index(bam_output_result) print('\nMapping stats (flagstat):\n') # noinspection PyUnresolvedReferences for fsline in pysam.flagstat(bam_output_result).splitlines()[:5]: print(fsline) print('\n\n') # if parsed_args[0].rmfiles: if not parsed_args[0].keep: delete_file_list([sam_output_result]) return bam_output_result def pimms_fastq(fq_filename, fqout_filename, out_dir_logs, nano): trans = str.maketrans('ATGCN', 'TACGN') # complement DNA lookup qry1 = parsed_args[0].motif1[0].strip("'\"") qry2 = parsed_args[0].motif2[0].strip("'\"") # print(str(qry1)) # print(str(qry2)) # revcomp using maketrans lookup and a string reverse qry1rc = qry1.translate(trans)[::-1] # reverse complement transposon motif1 ([::-1] -> reverse) qry2rc = qry2.translate(trans)[::-1] # reverse complement transposon motif2 # print(str(qry1rc)) # print(str(qry2rc)) # if parsed_args[0].nano: # nano == True if nano: # nano == True # parsed_args[0].noreps = True # print('nano == True\n') fuzzy_levenshtein = True l_dist = parsed_args[0].lev[0] # maximum Levenshtein Distance # min_length = 50 # max_length = 200 min_length = parsed_args[0].min[0] max_length = parsed_args[0].max[0] qual_char = parsed_args[0].qual_char print('Nanopore appropriate settings: Levenshtein distance of ' + str(l_dist) + ' + sequence length min = ' + str(min_length) + ', max = ' + str(max_length)) else: # print('nano == False\n') # fuzzy_levenshtein = False subs = parsed_args[0].sub[0] l_dist = parsed_args[0].lev[0] # maximum Levenstein Distance fuzzy_levenshtein = bool(l_dist) insrt = parsed_args[0].insert[0] dels = parsed_args[0].deletion[0] min_length = parsed_args[0].min[0] max_length = parsed_args[0].max[0] # print('standard settings\n') print('illumina settings: Levenshtein distance of ' + str(l_dist) + ' + sequence length min = ' + str(min_length) + ', max = ' + str(max_length)) count = 0 countq1 = 0 countq2 = 0 countq1q2 = 0 countq1rc = 0 countq2rc = 0 # countq1rcq2rc = 0 hit_but_short_q1_q2 = 0 hit_q1_q2 = 0 countq2rcq1rc = 0 hit_but_short_q2rc_q1rc = 0 hit_q2rc_q1rc = 0 wrongq2q1 = 0 wrongq1rcq2rc = 0 countqqrc = 0 countqmulti = 0 hit_but_short_q1_only = 0 hit_q1_only = 0 hit_but_short_q1rc_only = 0 hit_q1rc_only = 0 hit_but_short_q2_only = 0 hit_q2_only = 0 hit_but_short_q2rc_only = 0 hit_q2rc_only = 0 # is_contam = 0 # reject_reads_list = [] # reject_reads_dict = dict() # To resolve/reharmonise: diferent processing code for nanopore and Illumina input files if nano: with pysam.FastxFile(fq_filename, persist=False) as fin, open(fqout_filename, mode='wt') as fout: print(fq_filename, ' ==>\n\t##\t##\t', fqout_filename, '\n') for entry in fin: count += 1 # print(str(count) + '\n') if not fuzzy_levenshtein: # print('find_near_matches \n') matchesq1 = find_near_matches(qry1, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) matchesq2 = find_near_matches(qry2, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) matchesq1rc = find_near_matches(qry1rc, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) matchesq2rc = find_near_matches(qry2rc, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) else: # print('find_near_matches lev\n') matchesq1 = find_near_matches(qry1, entry.sequence, max_l_dist=l_dist) matchesq2 = find_near_matches(qry2, entry.sequence, max_l_dist=l_dist) matchesq1rc = find_near_matches(qry1rc, entry.sequence, max_l_dist=l_dist) matchesq2rc = find_near_matches(qry2rc, entry.sequence, max_l_dist=l_dist) if not bool(matchesq1 + matchesq2 + matchesq1rc + matchesq2rc): # print(matchesq1 + matchesq2 + matchesq1rc + matchesq1rc) # reject_reads_dict.update({entry.name: 'nomatch'}) continue # skip fastq entry if multiple matches to same motif query seq if len(matchesq1) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue if len(matchesq2) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue if len(matchesq1rc) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue if len(matchesq2rc) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue # skip fastq entry if multiple matches to same motif query direct and reverse complement if (len(matchesq1) == 1) and (len(matchesq1rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue if (len(matchesq2) == 1) and (len(matchesq2rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue # or matches to two incompatible motifs if (len(matchesq1) == 1) and (len(matchesq2rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue if (len(matchesq2) == 1) and (len(matchesq1rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue # process motif match pairs to extract target sequences if (len(matchesq1) == 1) and (len(matchesq2) == 1): countq1q2 += 1 captured_seqstring = str(entry.sequence)[matchesq1[0].end:matchesq2[0].start] captured_qualstring = str(entry.quality)[matchesq1[0].end:matchesq2[0].start] if len(captured_qualstring) < 5: captured_qualstring = qual_char * len(captured_seqstring) if matchesq2[0].start <= matchesq1[0].end: wrongq2q1 += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'ooorder'}) continue if len(captured_seqstring) >= min_length: hit_q1_q2 += 1 # print('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q1_q2 += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue # break if (len(matchesq1rc) == 1) and (len(matchesq2rc) == 1): countq2rcq1rc += 1 captured_seqstring = str(entry.sequence)[matchesq2rc[0].end:matchesq1rc[0].start] captured_qualstring = str(entry.quality)[matchesq2rc[0].end:matchesq1rc[0].start] if len(captured_qualstring) < 5: captured_qualstring = qual_char * len(captured_seqstring) if matchesq1rc[0].start <= matchesq2rc[0].end: wrongq1rcq2rc += 1 # reject_reads_dict.update({entry.name: 'ooorder'}) if len(captured_seqstring) >= min_length: hit_q2rc_q1rc += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q2rc_q1rc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue # process single motif matches to extract target sequences if len(matchesq1) == 1: countq1 += 1 captured_seqstring = str(entry.sequence)[ matchesq1[0].end:] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ matchesq1[0].end:] if len(captured_qualstring) < 5: captured_qualstring = qual_char * len(captured_seqstring) if len(captured_seqstring) >= min_length: hit_q1_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q1_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue if len(matchesq2rc) == 1: countq2rc += 1 captured_seqstring = str(entry.sequence)[ matchesq2rc[0].end:] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ matchesq2rc[0].end:] if len(captured_qualstring) < 5: captured_qualstring = qual_char * len(captured_seqstring) if len(captured_seqstring) >= min_length: hit_q2rc_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q2rc_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue if len(matchesq1rc) == 1: countq1rc += 1 captured_seqstring = str(entry.sequence)[ 0:matchesq1rc[0].start] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ 0:matchesq1rc[0].start] if len(captured_qualstring) < 5: captured_qualstring = qual_char * len(captured_seqstring) if len(captured_seqstring) >= min_length: hit_q1rc_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[-max_length:].translate(trans)[::-1] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[-max_length:][::-1] + '\n') continue else: hit_but_short_q1rc_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue if len(matchesq2) == 1: countq2 += 1 captured_seqstring = str(entry.sequence)[ 0:matchesq2[0].start] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ 0:matchesq2[0].start] if len(captured_qualstring) < 5: captured_qualstring = qual_char * len(captured_seqstring) if len(captured_seqstring) >= min_length: hit_q2_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[-max_length:].translate(trans)[::-1] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[-max_length:][::-1] + '\n') continue else: hit_but_short_q2_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue else: with pysam.FastxFile(fq_filename, persist=False) as fin, open(fqout_filename, mode='wt') as fout: print(fq_filename, ' ==>\n\t\t\t', fqout_filename, '\n') for entry in fin: count += 1 if not fuzzy_levenshtein: # print('find_near_matches \n') matchesq1 = find_near_matches(qry1, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) matchesq2 = find_near_matches(qry2, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) matchesq1rc = find_near_matches(qry1rc, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) matchesq2rc = find_near_matches(qry2rc, entry.sequence, max_substitutions=subs, max_deletions=dels, max_insertions=insrt) else: # print('find_near_matches lev\n') matchesq1 = find_near_matches(qry1, entry.sequence, max_l_dist=l_dist) matchesq2 = find_near_matches(qry2, entry.sequence, max_l_dist=l_dist) matchesq1rc = find_near_matches(qry1rc, entry.sequence, max_l_dist=l_dist) matchesq2rc = find_near_matches(qry2rc, entry.sequence, max_l_dist=l_dist) if not bool(matchesq1 + matchesq2 + matchesq1rc + matchesq2rc): # print(matchesq1 + matchesq2 + matchesq1rc + matchesq1rc) # reject_reads_dict.update({entry.name: 'nomatch'}) continue # skip fastq entry if multiple matches to same motif query seq if len(matchesq1) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue if len(matchesq2) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue if len(matchesq1rc) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue if len(matchesq2rc) > 1: countqmulti += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multi'}) continue # skip fastq entry if multiple matches to same motif query direct and reverse complement if (len(matchesq1) == 1) and (len(matchesq1rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue if (len(matchesq2) == 1) and (len(matchesq2rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue # or matches to two incompatible motifs if (len(matchesq1) == 1) and (len(matchesq2rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue if (len(matchesq2) == 1) and (len(matchesq1rc) == 1): countqqrc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'multicomp'}) continue # process motif match pairs to extract target sequences if (len(matchesq1) == 1) and (len(matchesq2) == 1): countq1q2 += 1 captured_seqstring = str(entry.sequence)[matchesq1[0].end:matchesq2[0].start] captured_qualstring = str(entry.quality)[matchesq1[0].end:matchesq2[0].start] if matchesq2[0].start <= matchesq1[0].end: wrongq2q1 += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'ooorder'}) continue if len(captured_seqstring) >= min_length: hit_q1_q2 += 1 # print('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q1_q2 += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue # break if (len(matchesq1rc) == 1) and (len(matchesq2rc) == 1): countq2rcq1rc += 1 captured_seqstring = str(entry.sequence)[matchesq2rc[0].end:matchesq1rc[0].start] captured_qualstring = str(entry.quality)[matchesq2rc[0].end:matchesq1rc[0].start] if matchesq1rc[0].start <= matchesq2rc[0].end: wrongq1rcq2rc += 1 # reject_reads_dict.update({entry.name: 'ooorder'}) if len(captured_seqstring) >= min_length: hit_q2rc_q1rc += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q2rc_q1rc += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue # process single motif matches to extract target sequences if len(matchesq1) == 1: countq1 += 1 captured_seqstring = str(entry.sequence)[ matchesq1[0].end:] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ matchesq1[0].end:] if len(captured_seqstring) >= min_length: hit_q1_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q1_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue if len(matchesq2rc) == 1: countq2rc += 1 captured_seqstring = str(entry.sequence)[ matchesq2rc[0].end:] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ matchesq2rc[0].end:] if len(captured_seqstring) >= min_length: hit_q2rc_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[0:max_length] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[0:max_length] + '\n') continue else: hit_but_short_q2rc_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue if len(matchesq1rc) == 1: countq1rc += 1 captured_seqstring = str(entry.sequence)[ 0:matchesq1rc[0].start] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ 0:matchesq1rc[0].start] if len(captured_seqstring) >= min_length: hit_q1rc_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[-max_length:].translate(trans)[::-1] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[-max_length:][::-1] + '\n') continue else: hit_but_short_q1rc_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue if len(matchesq2) == 1: countq2 += 1 captured_seqstring = str(entry.sequence)[ 0:matchesq2[0].start] # nothing after colon indicates end of string captured_qualstring = str(entry.quality)[ 0:matchesq2[0].start] if len(captured_seqstring) >= min_length: hit_q2_only += 1 # fout.write('@' + str(entry.name) + ' ' + str(entry.comment) + '\n') fout.write('@' + str(entry.name) + ' ' + 'CO:Z:' + str( entry.comment) + '\n') # make comment bam compatible fout.write(captured_seqstring[-max_length:].translate(trans)[::-1] + '\n') fout.write('+' + '\n') fout.write(captured_qualstring[-max_length:][::-1] + '\n') continue else: hit_but_short_q2_only += 1 # reject_reads_list.append(entry.name) # reject_reads_dict.update({entry.name: 'short'}) continue # print("\n" + fq_filename + " ->>\n" + fqout_filename + "#####################@@@@@@@@@@@@@@@@@@@@\n") # print('#######################################################~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~log1\n') # very cryptic logging needs reorganising and fixing to work with multiprocessing # note added random int to get almost unique log file names need to find fix log_file = open( f'{out_dir_logs}/log_{os.getppid()}_{multiprocessing.current_process().pid}_{random.randint(1000, 9999)}.txt', 'w' ) try: # print(fq_filename, fqout_filename, 'logfail2\n') log_file.write( f'fq_filename\tread count:\tmultiple copies of a motif:\tmismatched motifs:\tboth motifs (fwd|revcomp):\t' 'both motifs (fwd|revcomp) >= {min_length}:\tsingle motif >= {min_length}:\ttotal passed\n') log_file.write(f'{os.path.basename(fq_filename)}\t') log_file.write(f'{count}\t') log_file.write(f'{countqmulti}\t') log_file.write(f'{countqqrc}\t') log_file.write( f'{hit_q1_q2 + hit_q2rc_q1rc + hit_but_short_q1_q2 + hit_but_short_q2rc_q1rc}\t') log_file.write(f'{hit_q1_q2 + hit_q2rc_q1rc}\t') log_file.write(f'{hit_q1_only + hit_q2_only + hit_q1rc_only + hit_q2rc_only}\t') log_file.write(f'{hit_q1_only + hit_q2_only + hit_q1rc_only + hit_q2rc_only + hit_q1_q2 + hit_q2rc_q1rc}\n') except Exception as e: # Write problems to the error file log_file.write(f'ERROR: {e} problem with motif matching to {fq_filename}!\n') finally: # Close the files! log_file.close() # def survey_fastq(resultx_reads_list, resultx_reads_dict, fqout): def survey_fastq(resultx_reads_list, fqout): with pysam.FastxFile(fqout, persist=False) as fh: for entry in fh: resultx_reads_list.append(entry.name) # resultx_reads_dict[entry.name] = len(str(entry.sequence)) ############################ # FIND_FLANK FUNCTIONS end ############################ ############################ # SAM_COORDS FUNCTIONS: ############################ def process_gff(gff_file, gff_feat_type, gff_extra, rdir): annotation = gffpd.read_gff3(gff_file) annotation = annotation.filter_feature_of_type(gff_feat_type) gff_stem, gff_ext = os.path.splitext(os.path.basename(gff_file)) if gff_feat_type[0] == "pseudogene": annotation.to_gff3(os.path.join(rdir, gff_stem + '_pimms_features_pseudogene.gff')) else: annotation.to_gff3(os.path.join(rdir, gff_stem + '_pimms_features.gff')) # break 9th gff column key=value pairs down to make additional columns attr_to_columns = annotation.attributes_to_columns() if attr_to_columns.empty: # return empty dataframes if no rows of required type are found print('attr_to_columns is empty!') return attr_to_columns, attr_to_columns attr_to_columns = attr_to_columns.assign( feat_length=(attr_to_columns.end - attr_to_columns.start + 1)).dropna(axis=1, how='all').drop(columns=['attributes']) data_top = attr_to_columns.head() print(data_top) # remove RFC 3986 % encoding from product (gff3 attribute) # attr_to_columns = attr_to_columns.assign(product_nopc=attr_to_columns['product'].apply(ul.parse.unquote)).drop( # columns=['product']).rename(columns={'product_nopc': 'product'}) # attr_to_columns['product'] = attr_to_columns['product'].apply(ul.parse.unquote) if 'product' not in attr_to_columns: attr_to_columns['product'] = '-' else: attr_to_columns['product'] = attr_to_columns['product'].fillna('').astype(str).apply(ul.parse.unquote) # added fix for None datatype # fix to skip requested extra gff annotation field if not present in GFF drop_gff_extra = [] for field in gff_extra: if field not in attr_to_columns: print("Warning: Unable to find '" + field + "' in " + str(gff_file) + ' file, continuing...') drop_gff_extra.append(field) gff_extra = [item for item in gff_extra if item not in drop_gff_extra] # Remove URL character encoding from columns (skipping translation if present as this breaks the decoding for field in gff_extra: if field == 'translation': continue else: attr_to_columns[field] = attr_to_columns[field].fillna('').astype(str).apply(ul.parse.unquote) # added fix for None datatype gff_columns_addback = attr_to_columns[['seq_id', 'ID', # additional hopefully unique feature ID 'locus_tag', 'type', 'gene', 'start', 'end', 'feat_length', 'product'] + gff_extra].copy() # add extra fields from gff # fix to remove na values and allow joining with processed data also processed with fillna to allow group_by usage # note .copy on previous line gff_columns_addback.fillna('', inplace=True) data_top = gff_columns_addback.head() print(data_top) data_top2 = attr_to_columns.head() print(data_top2) return gff_columns_addback, attr_to_columns # end process_gff() def modify_sam_stem(sam_file, min_depth_cutoff, fraction_mismatch): sam_stem, sam_ext = os.path.splitext(os.path.basename(sam_file)) sam_stem: str = sam_stem + '_md' + str(min_depth_cutoff) + '_mm' + str(fraction_mismatch or '0') return sam_stem def process_sam(sam_file, min_depth_cutoff, fraction_mismatch): sam_stem = modify_sam_stem(sam_file, min_depth_cutoff, fraction_mismatch) samfile = pysam.AlignmentFile(sam_file) # without , "rb" should auto detect sam or bams open(sam_stem + ".bed", 'w').close() f = open(sam_stem + ".bed", "a") strand = ["+", "-"] for read in samfile.fetch(): if read.is_unmapped: continue read_str = strand[int(read.is_reverse)] read_bed = [read.reference_name, read.pos, read.reference_end, ".", read.mapping_quality, read_str, '# ' + read.query_name] # read group added f.write('\t'.join([str(i) for i in read_bed])) f.write('\n') f.close() print('#BED') samfile.close() samfile = pysam.AlignmentFile(sam_file) open(sam_stem + "_insert_coords.txt", 'w').close() f2 = open(sam_stem + "_insert_coords.txt", "a") f2.write('\t'.join([str(i) for i in ['ref_name', 'coord', 'strand', 'read_name', 'read_grp', 'read_comment']])) # f2.write('\t'.join([str(i) for i in ['ref_name', 'coord', 'strand', 'read_name', 'read_grp']])) f2.write('\n') strand = ["+", "-"] for read in samfile.fetch(): if read.is_unmapped: continue # print(read.query_name + '.') # continue nm_value = read.get_tag('NM') if fraction_mismatch: # and NM_value > 0: if (read.query_alignment_length * fraction_mismatch[0]) > nm_value: continue read_str = strand[int(read.is_reverse)] # coverts is_reverse boolean into + or - strings # print(STR) # continue if read_str == '+': read_coords = [read.reference_name, (read.reference_start + 4), read_str, '# ' + read.query_name, ':'.join(read.query_name.split(':', 4)[:4]), read.get_tag("CO").split(":")[-1]] # add fq comment sample id number # ':'.join(read.query_name.split(':', 4)[:4])] f2.write('\t'.join([str(i) for i in read_coords])) f2.write('\n') if read_str == '-': read_coords = [read.reference_name, (read.reference_end - 4), read_str, '# ' + read.query_name, ':'.join(read.query_name.split(':', 4)[:4]), read.get_tag("CO").split(":")[-1]] # add fq comment sample id number # ':'.join(read.query_name.split(':', 4)[:4])] f2.write('\t'.join([str(i) for i in read_coords])) f2.write('\n') f2.close() samfile.close() print('#COORDS') # end process_sam() def seqid_consistancy_check(mygffcolumns, my_sam): af = pysam.AlignmentFile(my_sam) sam_seq_id_list = [name['SN'] for name in af.header['SQ']] gff_seq_id_list = mygffcolumns.seq_id.unique().tolist() sam_seq_id_list.sort() gff_seq_id_list.sort() if sam_seq_id_list == gff_seq_id_list: print('GFF & mapping reference sequence IDs match') elif parsed_args[0].gff_force: print('\nWARNING: GFF & mapping reference sequence IDs are inconsistent. \n' + 'sequence ID mismatch overridden by --gff_force\ngff:\n' + str(gff_seq_id_list) + '\nsam/bam:\n' + str(sam_seq_id_list) + '\n') else: sys.exit( '\nERROR: GFF & mapping reference sequence IDs are inconsistent. \n' + 'SYS.EXIT: Please check and update the sequence IDs in your sequence and gff files so they match up before running again.\ngff:\n' + str(gff_seq_id_list) + '\nsam/bam:\n' + str(sam_seq_id_list) + '\n' + 'NOTE: If the sequence ID mismatch is benign e.g. an extra plasmid/contig, override by using --gff_force with bam_extract/full_process\n') print(type(sam_seq_id_list)) print(type(gff_seq_id_list)) print(sam_seq_id_list) print(gff_seq_id_list) def coordinates_to_features_reps(sam_stem, attr_to_columns, condition_label): coord_reps_df = pd.read_csv(sam_stem + "_insert_coords.txt", sep='\t', dtype={'ref_name': "str", 'coord': "int64", 'read_comment': "str", # adding miseq support 'read_grp': "str"}) read_grps = sorted(coord_reps_df.read_grp.unique()) read_comments = sorted(coord_reps_df.read_comment.unique()) if (len(read_comments) > 20): print( "Warning: Unable to resolve different samples in fastq/sam/bam data (apparently too many?), continuing without replicate insertion counts" + "\nNote: This may be due to old style Illumina header lines" + "\n if this is an error the software will need updating to recognise different fastq header formatting conventions\n") # returning an empty dataframe return pd.DataFrame() print(str(len(read_grps)) + ' readgroups found:') print('\n'.join(read_grps)) print(str(len(read_comments)) + ' sample comments found:') print(', '.join(read_comments)) if (len(read_grps) < len(read_comments)) & (len(read_comments) >= 3): coord_counts_reps_df = coord_reps_df.drop('read_grp', 1).rename(columns={"read_comment": 'sample_info'}, inplace=False).groupby(["ref_name", "coord", 'sample_info']).size().reset_index( name=condition_label + '_') # adding miseq support print(str(len(read_comments)) + " sample replicates/mutant pools established") # print(coord_counts_reps_df.head()) elif (len(read_grps) >= 3) & (len(read_comments) < len(read_grps)): coord_counts_reps_df = coord_reps_df.drop('read_comment', 1).rename(columns={"read_grp": 'sample_info'}, inplace=False).groupby(["ref_name", "coord", "sample_info"]).size().reset_index( name=condition_label + '_') # adding miseq support print(str(len(read_grps)) + " sample replicates/mutant pools established") # print(coord_counts_reps_df.head()) # if max(len(read_grps), len(read_comments)) < 3: else: print( "Warning: Unable to resolve >= 3 samples in fastq/sam/bam data, continuing without replicate insertion counts" + "\nN.B: If this is an error the software may need updating to recognise novel fastq naming conventions") # returning an empty dataframe return pd.DataFrame() coord_df_pivot = coord_counts_reps_df.copy(deep=False).pivot_table(index=["ref_name", "coord"], columns=['sample_info'], values=[condition_label + '_'], fill_value=0).reset_index() coord_df_pivot.columns = [''.join(col).strip() for col in coord_df_pivot.columns.values] sample_grps = sorted(coord_counts_reps_df.sample_info.unique()) old_rep_names = [condition_label + '_' + str(x) for x in sample_grps] new_rep_names = [condition_label + '_' + "MP" + str(x) for x in range(1, len(sample_grps) + 1)] coord_df_pivot.rename(columns=dict(zip(old_rep_names, new_rep_names)), inplace=True) attr_to_columns_short = attr_to_columns[["seq_id", "start", "end"]] sqlcode = ''' select coord_df_pivot.* ,attr_to_columns_short.* from attr_to_columns_short left join coord_df_pivot on coord_df_pivot.coord between attr_to_columns_short.start and attr_to_columns_short.end where coord_df_pivot.ref_name like '%' || attr_to_columns_short.seq_id || '%' ''' # wierd sqlite concatenation + >> || , '%' == wildcard double check effect of this # this line should allow multi contig files mp_coords_join_gff = ps.sqldf(sqlcode, locals()) # remove first 2 columns ref_name, coord sums the rest according to the feature coordinate groups mp_reps_feature_counts = mp_coords_join_gff.drop(mp_coords_join_gff.columns[[0, 1]], axis=1).groupby( ['seq_id', 'start', 'end']).agg(["sum"]).reset_index() mp_reps_feature_counts.columns = mp_reps_feature_counts.columns.get_level_values(0) return mp_reps_feature_counts def coordinates_to_features(sam_stem, attr_to_columns, gff_columns_addback, condition_label, min_depth_cutoff, gff_extra, db_rdir): coord_df = pd.read_csv(sam_stem + "_insert_coords.txt", sep='\t', dtype={'ref_name': "str", 'coord': "int64"}) coord_counts_df = coord_df.groupby(['ref_name', 'coord']).size().reset_index(name='counts') # print(coord_counts_df.head()) number_of_insertion_sites = len(coord_counts_df) number_of_reads_mapped = coord_counts_df['counts'].sum() min_reads_at_site = coord_counts_df['counts'].min() max_reads_at_site = coord_counts_df['counts'].max() median_reads_at_site = round(coord_counts_df['counts'].median(), 2) mean_insertion_site_depth = round(number_of_reads_mapped / number_of_insertion_sites, 2) coord_counts_df = coord_counts_df[coord_counts_df['counts'] >= min_depth_cutoff] # format insertion site info as a GFF coord_counts_df_pimms2_gff = coord_counts_df.reset_index() coord_counts_df_pimms2_gff['source'] = 'pimms2' coord_counts_df_pimms2_gff['feature_type'] = 'misc_feature' coord_counts_df_pimms2_gff['strand'] = '.' coord_counts_df_pimms2_gff['phase'] = '.' coord_counts_df_pimms2_gff['stop'] = coord_counts_df_pimms2_gff['coord'] coord_counts_df_pimms2_gff = coord_counts_df_pimms2_gff.rename(columns={'counts': 'score', 'coord': 'start'}) coord_counts_df_pimms2_gff['info'] = 'note=insertion;' coord_counts_df_pimms2_gff = coord_counts_df_pimms2_gff[ ['ref_name', 'source', 'feature_type', 'start', 'stop', 'score', 'strand', 'phase', 'info']] print(coord_counts_df_pimms2_gff.head()) coord_counts_df_pimms2_gff.to_csv(os.path.join(db_rdir, condition_label + "_pimms_insert_coordinates" + ".gff"), index=False, sep='\t', header=False) # added .loc to fix warning # SettingWithCopyWarning: # A value is trying to be set on a copy of a slice from a DataFrame. # Try using .loc[row_indexer,col_indexer] = value instead # coord_counts_df = \ coord_counts_df.loc[:, 'between_insertion_gap'] = coord_counts_df.groupby(['ref_name'])['coord'].diff() # coord_counts_df = coord_counts_df.loc[:, 'between_insertion_gap'] = coord_counts_df['coord'].diff() # coord_counts_gt1_df = coord_counts_gt1_df({'between_insertion_gap': 0}) min_between_insertion_gap = coord_counts_df['between_insertion_gap'].min() max_between_insertion_gap = coord_counts_df['between_insertion_gap'].max() median_between_insertion_gap = coord_counts_df['between_insertion_gap'].median() mean_between_insertion_gap = round(coord_counts_df['between_insertion_gap'].mean(), 2) # attr_to_columns.to_csv("attr_to_columns" + ".txt", index=False, sep='\t', header=True) sqlcode = ''' select coord_counts_df.* ,attr_to_columns.* from attr_to_columns left join coord_counts_df on coord_counts_df.coord between attr_to_columns.start and attr_to_columns.end where coord_counts_df.ref_name like '%' || attr_to_columns.seq_id || '%' ''' # wierd sqlite concatenation + >> || , '%' == wildcard double check effect of this # this line should allow multi contig files coords_join_gff = ps.sqldf(sqlcode, locals()) # debugging save of intermediate data # coords_join_gff.to_csv("pimms_coords_join_gffstuff" + condition_label + ".txt", index=False, sep='\t', header=False) # quick dataframe summary # coords_join_gff.count # add position as percentile (needs manual confirmation) coords_join_gff = coords_join_gff.assign( # python/pandas implementation of PIMMS.pl code to derive insert position as percentile of gene length # sprintf("%.1f", ((($in-$in_start)+1) / ($in_length/100))); # sprintf("%.1f", ((($in_stop-$ in) + 1) / ($in_length / 100))); posn_as_percentile=(((coords_join_gff.coord - coords_join_gff.start) + 1) / ( coords_join_gff.feat_length / 100)).where( coords_join_gff.strand == '+', ((coords_join_gff.end - coords_join_gff.coord) + 1) / ( coords_join_gff.feat_length / 100))).round({"posn_as_percentile": 1}) print(list(attr_to_columns.columns.values)) # Important fix group by doesn't work -- any rows with nan values get dropped *yikes very bad!!!!* coords_join_gff.fillna('', inplace=True) pimms_result_table = coords_join_gff.groupby( ['seq_id', 'ID', # added ID field as unique identifier 'locus_tag', 'type', 'gene', 'start', 'end', 'feat_length', 'product'] + gff_extra).agg( num_insertions_mapped_per_feat=('counts', 'sum'), num_insert_sites_per_feat=('counts', 'count'), first_insert_posn_as_percentile=('posn_as_percentile', 'min'), last_insert_posn_as_percentile=('posn_as_percentile', 'max') ).reset_index() # test diagnostic files #pimms_result_table.to_csv("pimms_coords_join_prt1_" + condition_label + ".txt", index=False, sep='\t', header=True) pimms_result_table = pimms_result_table.assign(num_insert_sites_per_feat_per_kb=( (pimms_result_table.num_insert_sites_per_feat / pimms_result_table.feat_length) * 1000), NRM_score=((pimms_result_table.num_insertions_mapped_per_feat / ( pimms_result_table.feat_length / 1000)) / ( number_of_reads_mapped / 1e6)), NIM_score=((pimms_result_table.num_insert_sites_per_feat / ( pimms_result_table.feat_length / 1000)) / ( number_of_reads_mapped / 1e6)) ).round({'num_insert_sites_per_feat_per_kb': 2, 'NRM_score': 2, 'NIM_score': 2}) print(list(pimms_result_table.columns.values)) # test diagnostic files # pimms_result_table.to_csv("pimms_coords_join_prt2_" + condition_label + ".txt", index=False, sep='\t', header=False) pimms_result_table = pimms_result_table[['seq_id', 'ID', 'locus_tag', 'type', 'gene', 'start', 'end', 'feat_length', 'product'] + gff_extra + ['num_insertions_mapped_per_feat', 'num_insert_sites_per_feat', 'num_insert_sites_per_feat_per_kb', 'first_insert_posn_as_percentile', 'last_insert_posn_as_percentile', 'NRM_score', # Normalised Reads Mapped 'NIM_score']] # Normalised Insertions Mapped print(list(pimms_result_table.columns.values)) # pimms_result_table_full gff_columns_addback navalues = {'num_insertions_mapped_per_feat': int(0), 'num_insert_sites_per_feat': int(0), 'num_insert_sites_per_feat_per_kb': int(0), 'first_insert_posn_as_percentile': int(0), 'last_insert_posn_as_percentile': int(0), 'NRM_score': int(0), 'NIM_score': int(0)} pimms_result_table_full = pd.merge(gff_columns_addback, pimms_result_table, how='left').fillna(value=navalues) # test diagnostic files # gff_columns_addback.to_csv("pimms_coords_join_gff_columns_addback_" + condition_label + ".txt", index=False, sep='\t', header=False) # pimms_result_table_full.to_csv("pimms_coords_join_prtf1_" + condition_label + ".txt", index=False, sep='\t', header=False) # if set add prefix to columns if condition_label: label_cols = pimms_result_table_full.columns[ pimms_result_table_full.columns.isin(['num_insertions_mapped_per_feat', 'num_insert_sites_per_feat', 'num_insert_sites_per_feat_per_kb', 'first_insert_posn_as_percentile', 'last_insert_posn_as_percentile', 'NRM_score', 'NIM_score'])] pimms_result_table_full.rename(columns=dict(zip(label_cols, condition_label + '_' + label_cols)), inplace=True) return pimms_result_table_full # end of coordinates_to_features() ############################ # SAM_COORDS FUNCTIONS end ############################ def parse_arguments(): ap = configargparse.ArgumentParser( # description='PIMMS2 sam/bam processing', prog="pimms2", add_config_file_help=False, config_file_parser_class=configargparse.DefaultConfigFileParser, epilog="\n\n*** N.B. This is a development version ***\n \n ", description='''description here''' ) ap.add_argument('-v', '--version', action='version', version='%(prog)s 2.1 demo') modes = ap.add_subparsers(parser_class=configargparse.ArgParser, dest='command') findflank = modes.add_parser("find_flank", add_config_file_help=False, help="Mode: find read regions flanking the IS sequence by mapping them to the target genome", description="Args that start with '--' (eg. --fasta) can also be set in a config file (specified via -c)") samcoords = modes.add_parser("bam_extract", add_config_file_help=False, help="Mode: extract insertion site coordinates from sam file", description="Args that start with '--' (eg. --fasta) can also be set in a config file (specified via -c)") tablemerge = modes.add_parser("table_merge", add_config_file_help=False, help='Mode: merge two compatible PIMMS results tables ' '(N.B: this step does a simple table join and does not check the data)').add_mutually_exclusive_group() fullprocess = modes.add_parser("full_process", add_config_file_help=False, help="Mode: find_flank + bam_extract", description="Args that start with '--' (eg. --fasta) can also be set in a config file (specified via -c)") # FIND_FLANK args # to fix: nargs='?' deal with mistaken use of nargs=1 which give a single element list findflank.add_argument("-c", "--config", required=False, is_config_file=True, # dest='config_file', metavar='pimms2.config', help="use parameters from config file") findflank.add_argument("--nano", required=False, action='store_true', default=False, help="override with settings more suitable for nanopore") findflank.add_argument("--fasta", required=False, nargs=1, metavar='ref_genome.fasta', type=extant_file, help="fasta file for reference genome ") findflank.add_argument("--qual_char", required=False, nargs='?', type=str, default='0', choices=[chr(x + 33) for x in list(range(12, 31))], help="substitute a quality score ascii character when fasta read files used (nanopore only) (phred +33: ascii +:?) ['0']") findflank.add_argument("--nomap", required=False, action='store_true', default=False, help="do not run mapping step") findflank.add_argument("--mapper", required=False, nargs='?', type=str, default='bwa', choices=['minimap2', 'bwa'], help="select mapping software from available options") findflank.add_argument("--single", required=False, action='store_true', default=False, help="only single direction Illumina data provided") findflank.add_argument("--keep", required=False, action='store_true', default=False, help="keep intermediate fastq files etc for diagnostic purposes") findflank.add_argument("--lev", required=False, nargs=1, type=int, default=[0], help="use Levenshtein distance (combined insert|del|sub score) [0]") findflank.add_argument("--sub", required=False, nargs=1, type=int, default=[1], help="number of permitted base substitutions in motif match [1]") findflank.add_argument("--insert", required=False, nargs=1, type=int, default=[0], help="number of permitted base insertions in motif match [0]") findflank.add_argument("--del", required=False, nargs=1, type=int, default=[0], dest='deletion', help="number of permitted base insertions in motif match [0]") findflank.add_argument("--in_dir", required=True, nargs=1, dest='in_dir', type=extant_file, help="directory containing input fastq files (assumed to match '*q.gz' or '*.fastq')") findflank.add_argument("--fwdrev", required=False, nargs=1, type=str, default=['_R1_,_R2_'], help="text substring to uniquely identify illumina fwd/rev paired fastq files ['_R1_,_R2_']") findflank.add_argument("--out_dir", required=False, nargs=1, metavar='out_dir', default=[''], action='store', help="directory to contain result files ['pimms2_`label`_`dmy`_`HMS`']") findflank.add_argument("--cpus", required=False, nargs=1, type=int, # default=[4], default=[int(os.cpu_count() / 2)], help="number of processors to use [(os.cpu_count() / 2)] ") findflank.add_argument("--max", required=False, nargs=1, type=int, default=[60], help="clip results to this length [60]") findflank.add_argument("--min", required=False, nargs=1, type=int, default=[25], help="minimum read length [25]") findflank.add_argument("--motif1", required=False, nargs=1, type=str, default=['TCAGAAAACTTTGCAACAGAACC'], # revcomp: GGTTCTGTTGCAAAGTTTTCTGA help="IS end reference motif1 [TCAGAAAACTTTGCAACAGAACC](pGh9)") findflank.add_argument("--motif2", required=False, nargs=1, type=str, default=['GGTTCTGTTGCAAAGTTTAAAAA'], # revcomp: TTTTTAAACTTTGCAACAGAACC help="IS end reference motif2 [GGTTCTGTTGCAAAGTTTAAAAA](pGh9)") findflank.add_argument("--label", required=True, nargs=1, metavar='condition_name', default=[''], help="identifying text tag to add to results file") # SAM EXTRACT args samcoords.add_argument("-c", "--config", required=False, is_config_file=True, metavar='pimms2.config', help="use parameters from config file") samcoords.add_argument("--bam", required=True, nargs=1, metavar='pimms.bam/sam', type=extant_file, help="bam/sam file of mapped IS flanking sequences ") samcoords.add_argument("--nano", required=False, action='store_true', default=False, help="override with settings more suitable for nanopore") samcoords.add_argument("--label", required=True, nargs=1, metavar='condition_name', default=[''], help="text tag to add to results file") samcoords.add_argument("--mismatch", required=False, nargs=1, type=float, metavar='float', default=[None], choices=[round(x * 0.01, 2) for x in range(0, 21)], help="fraction of permitted mismatches in mapped read ( 0 <= mismatch < 0.2) [no filter]") samcoords.add_argument("--min_depth", required=False, nargs=1, type=int, default=[2], metavar='int', help="minimum read depth at insertion site >= int [2]") samcoords.add_argument("--noreps", required=False, action='store_true', default=False, help="do not separate illumina read groups as replicate insertion count columns") samcoords.add_argument("--gff", required=True, nargs=1, type=extant_file, default='', metavar='genome.gff', help="GFF3 formatted file to use\n(note fasta sequence present in the file must be deleted before use)") samcoords.add_argument("--gff_extra", required=False, nargs=1, type=str, default='', metavar="'x,y,z'", help="comma separated list of extra fields to include from the GFF3 annotation\ne.g. 'ID,translation,note' ") samcoords.add_argument("--gff_force", required=False, action='store_true', default=False, help="override GFF/BAM seq id discrepancies e.g. use when the gff has a plasmid not present in the reference sequence or vice-versa") samcoords.add_argument("--out_fmt", required=False, nargs=1, type=str, default=['xlsx'], choices=['xlsx', 'tsv', 'csv'], help="set results table file format tab/comma separated or Excel (tsv|csv|xlsx) [xlsx]") # TABLE_MERGE args tablemerge.add_argument("--xlsx", required=False, nargs=2, type=extant_file, help="2x .xlsx Excel files") tablemerge.add_argument("--csv", required=False, nargs=2, type=extant_file, help="2x .csv comma separated text/table files") tablemerge.add_argument("--tsv", required=False, nargs=2, type=extant_file, help='2x .tsv tab (\\t) separated text/table files') # FULL_PROCESS ########################## fullprocess.add_argument("-c", "--config", required=False, is_config_file=True, metavar='pimms2_run.config', help="use parameters from config file") fullprocess.add_argument("--nano", required=False, action='store_true', default=False, help="override with settings more suitable for nanopore") fullprocess.add_argument("--qual_char", required=False, nargs='?', type=str, default='0', choices=[chr(x + 33) for x in list(range(12, 31))], help="substitute a quality score ascii character when fasta read files used (nanopore only) (phred +33: ascii +:?) ['0']") fullprocess.add_argument("--fasta", required=False, nargs=1, metavar='ref_genome.fasta', type=extant_file, help="fasta file for reference genome ") fullprocess.add_argument("--nomap", required=False, action='store_true', default=False, help="do not run mapping step") fullprocess.add_argument("--mapper", required=False, nargs='?', type=str, default='bwa', choices=['minimap2', 'bwa'], help="select mapping software from available options") fullprocess.add_argument("--single", required=False, action='store_true', default=False, help="only single direction Illumina data provided") fullprocess.add_argument("--keep", required=False, action='store_true', default=False, help="keep intermediate files for diagnostic purposes") fullprocess.add_argument("--lev", required=False, nargs=1, type=int, default=[0], help="use Levenshtein distance (combined insert|del|sub score)") fullprocess.add_argument("--sub", required=False, nargs=1, type=int, default=[1], help="number of permitted base substitutions in motif match [1]") fullprocess.add_argument("--insert", required=False, nargs=1, type=int, default=[0], help="number of permitted base insertions in motif match [0]") fullprocess.add_argument("--del", required=False, nargs=1, type=int, default=[0], dest='deletion', help="number of permitted base insertions in motif match [0]") fullprocess.add_argument("--in_dir", required=True, nargs=1, dest='in_dir', type=extant_file, help="directory containing input fastq files (assumed to match '*q.gz' or '*.fastq')") fullprocess.add_argument("--fwdrev", required=False, nargs=1, type=str, default=['_R1_,_R2_'], help="text substring to uniquely identify illumina fwd/rev paired fastq files ['_R1_,_R2_']") fullprocess.add_argument("--out_dir", required=False, nargs=1, metavar='out_dir', default=[''], action='store', help="directory to contain result files ['pimms2_`label`_`dmy`_`HMS`']") fullprocess.add_argument("--cpus", required=False, nargs=1, type=int, # default=int(4), default=[int(os.cpu_count() / 2)], help="number of processors to use [(os.cpu_count() / 2)] ") fullprocess.add_argument("--max", required=False, nargs=1, type=int, default=[60], help="clip results to this length [60]") fullprocess.add_argument("--min", required=False, nargs=1, type=int, default=[25], help="minimum read length [25]") fullprocess.add_argument("--motif1", required=False, nargs=1, type=str, default=['TCAGAAAACTTTGCAACAGAACC'], # revcomp: GGTTCTGTTGCAAAGTTTTCTGA help="IS end reference motif1 [TCAGAAAACTTTGCAACAGAACC](pGh9)") fullprocess.add_argument("--motif2", required=False, nargs=1, type=str, default=['GGTTCTGTTGCAAAGTTTAAAAA'], # revcomp: TTTTTAAACTTTGCAACAGAACC help="IS end reference motif2 [GGTTCTGTTGCAAAGTTTAAAAA](pGh9)") fullprocess.add_argument("--label", required=True, nargs=1, metavar='condition_name', default=[''], help="identifying text tag to add to results file") fullprocess.add_argument("--bam", required=False, nargs=1, metavar='pimms.bam/sam', # type=extant_file, type=str, default=['bam?'], help=configargparse.SUPPRESS) # samcoords.add_argument("--nano", required=False, action='store_true', default=False, # help="override with settings more suitable for nanopore") # samcoords.add_argument("--label", required=False, nargs=1, metavar='condition_name', default=[''], # help="text tag to add to results file") fullprocess.add_argument("--mismatch", required=False, nargs=1, type=float, metavar='float', default=[None], choices=[round(x * 0.01, 2) for x in range(0, 21)], help="fraction of permitted mismatches in mapped read ( 0 <= mismatch < 0.2) [no filter]") fullprocess.add_argument("--min_depth", required=False, nargs=1, type=int, default=[2], metavar='int', help="minimum read depth at insertion site >= int [2]") fullprocess.add_argument("--noreps", required=False, action='store_true', default=False, help="do not separate illumina read groups as replicate insertion count columns") fullprocess.add_argument("--gff", required=True, nargs=1, type=extant_file, default='', metavar='genome.gff', help="GFF3 formatted file to use\n(note fasta sequence present in the file must be deleted before use)") fullprocess.add_argument("--gff_extra", required=False, nargs=1, type=str, default='', metavar="'x,y,z'", help="comma separated list of extra fields to include from the GFF3 annotation\ne.g. 'ID,translation,note' ") fullprocess.add_argument("--gff_force", required=False, action='store_true', default=False, help="override GFF/BAM seq id discrepancies " "e.g. use when the gff has a plasmid not present in the reference sequence or vice-versa") fullprocess.add_argument("--out_fmt", required=False, nargs=1, type=str, default=['xlsx'], choices=['xlsx', 'tsv', 'csv'], help="set results table file format tab/comma separated or Excel (tsv|csv|xlsx) [xlsx]") local_parsed_args = ap.parse_known_args() print("-----------------") ap.print_values() print("-----------------") # print(ap.format_values()) print(local_parsed_args) print("-----------------") # # exit and print short help message if no mode/arguments supplied if len(sys.argv) <= 2: ap.print_usage() sys.exit(1) if local_parsed_args[0].command == 'find_flank': if not local_parsed_args[0].nomap: prog_in_path_check(local_parsed_args[0].mapper) # prog_in_path_check('bwa') if local_parsed_args[0].fasta is None: ap.error("unless the --nomap flag is used please supply a sequence file e.g: --fasta contigs.fasta") elif not local_parsed_args[0].label: ap.error("unless the --nomap flag is used please supply a text label string --label cond_01") else: print("reference seq file provided: " + local_parsed_args[0].fasta[0]) # print("##########") # print(ap.format_values()) # useful for logging where different settings came from # sys.exit(1) # print("\n\n\n") # print(parsed_args[0].command) # print("----------======") # print(ap.) # sys.exit(1) return local_parsed_args # elif parsed_args[0].command == 'bam_extract': def bam_extract_func(parsed_args_be): print(pimms_mssg + parsed_args_be[0].command + pimms_mssg2) if parsed_args_be[0].nano: parsed_args_be[0].noreps = True # sort out extra requested gff annotation fields if parsed_args_be[0].gff_extra: # strip any formatting quotes and turn comma separated string into a list of fields gff_extra = parsed_args_be[0].gff_extra[0].strip("'\"").split(',') else: gff_extra = [] # process the gff file to get required fields print("extra gff fields: " + str(gff_extra)) gff_file = parsed_args_be[0].gff[0] gff_feat_type = ['CDS', 'tRNA', 'rRNA'] min_depth_cutoff = parsed_args_be[0].min_depth[0] fraction_mismatch = parsed_args_be[0].mismatch[0] sam_file = parsed_args_be[0].bam[0] condition_label = parsed_args_be[0].label[0] print("\ncond label " + condition_label + "\n") # process pimms sam/bam file and produce coordinate / bed files sam_dir, db_rdir, info_rdir = make_results_dirs_in_sam_dir(sam_file, condition_label) # process the gff file to get required fields gff_columns_addback, attr_to_columns = process_gff(gff_file, gff_feat_type, gff_extra, info_rdir) gff_columns_addback_pseudo, attr_to_columns_pseudo = process_gff(gff_file, ['pseudogene'], [], info_rdir) seqid_consistancy_check(gff_columns_addback, sam_file) process_sam(sam_file, min_depth_cutoff, fraction_mismatch) sam_stem = modify_sam_stem(sam_file, min_depth_cutoff, fraction_mismatch) # allocate insertions to features and create results merged with GFF # possibly poor coding to merge with gff here pimms_result_table_full = coordinates_to_features(sam_stem, attr_to_columns, gff_columns_addback, condition_label, min_depth_cutoff, gff_extra, db_rdir) # if parsed_args[0].nano: # print("--noreps forced for nanopore data\n") if not parsed_args_be[0].noreps: print("processing read groups as replicates for illumina data\n") mp_reps_feature_counts = coordinates_to_features_reps(sam_stem, attr_to_columns, condition_label) if not mp_reps_feature_counts.empty: merged_with_reps = pimms_result_table_full.merge(mp_reps_feature_counts, on=["seq_id", "start", "end"], how='outer') # how='inner') pimms_result_table_full = merged_with_reps.fillna(0) else: print("not processing read groups as replicates\n") if not gff_columns_addback_pseudo.empty: tag_psueudogenes = gff_columns_addback_pseudo['locus_tag'] pimms_result_table_full.loc[pimms_result_table_full.locus_tag.isin(tag_psueudogenes), "type"] = \ pimms_result_table_full['type'] + '_pseudo' # print(parsed_args_be[0].out_fmt[0] + "out_fmt\n") # write results as text/excel if parsed_args_be[0].out_fmt[0] == 'tsv': pimms_result_table_full.to_csv(sam_stem + "_countinfo.tsv", index=False, sep='\t') elif parsed_args_be[0].out_fmt[0] == 'csv': pimms_result_table_full.to_csv(sam_stem + "_countinfo.csv", index=False, sep=',') else: writer = pd.ExcelWriter(sam_stem + '_countinfo.xlsx', engine='xlsxwriter') # Convert the dataframe to an XlsxWriter Excel object. pimms_result_table_full.to_excel(writer, sheet_name='PIMMS2_result', index=False) # Close the Pandas Excel writer and output the Excel file. writer.save() os.rename(sam_stem + "_countinfo." + parsed_args_be[0].out_fmt[0], os.path.join(db_rdir, sam_stem + "_countinfo." + parsed_args_be[0].out_fmt[0])) os.rename(sam_stem + "_insert_coords.txt", os.path.join(info_rdir, sam_stem + "_insert_coords.txt")) os.rename(sam_stem + ".bed", os.path.join(info_rdir, sam_stem + ".bed")) # end bam_extract_func def table_merge_func(parsed_args_tm): print(pimms_mssg + parsed_args_tm[0].command + pimms_mssg2) if parsed_args_tm[0].xlsx: print("Join: ", parsed_args_tm[0].xlsx[0], "\t", parsed_args_tm[0].xlsx[1], "\n") # requires dependancy installed result_df1 = pd.read_excel(parsed_args_tm[0].xlsx[0], engine="openpyxl") result_df2 = pd.read_excel(parsed_args_tm[0].xlsx[1], engine="openpyxl") results_merged = pd.DataFrame.merge(result_df1, result_df2) writer =
pd.ExcelWriter('merged_result.xlsx', engine='xlsxwriter')
pandas.ExcelWriter
import sys import pandas as pd import numpy as np import catboost DUR_RU = 'Длительность разговора с оператором, сек' DUR_EN = 'oper_duration' RU_COLS = [ 'Время начала вызова', 'Время окончания вызова', 'Время постановки в очередь', 'Время переключения на оператора', 'Время окончания разговора с оператором', ] EN_COLS = ['call_start_time', 'call_end_time', 'queue_time', 'oper_start_time', 'oper_end_time'] zero_time = pd.to_datetime('00:00:00') SEC_PER_DAY = 60*60*24 NA_VALUE = -1.2345 def extract_features(data): times = data[RU_COLS].apply(pd.to_datetime) times.columns = EN_COLS abs_times = times.apply(lambda x: (x - zero_time).dt.total_seconds()).fillna(NA_VALUE) abs_times.columns = [c + '_abs' for c in EN_COLS] day = abs_times / SEC_PER_DAY * 2 * np.pi hour = (abs_times % (24 * 60)) / (24 * 60) * 2 * np.pi minute = (abs_times % 60) / 60 * 2 * np.pi day_sines = np.sin(day) day_cosines = np.cos(day) hour_sines = np.sin(hour) hour_cosines = np.cos(hour) minute_sines = np.sin(minute) minute_cosines = np.cos(minute) day_sines.columns = ['day_sin__' + c for c in EN_COLS] day_cosines.columns = ['day_cos__' + c for c in EN_COLS] hour_sines.columns = ['hour_sin__' + c for c in EN_COLS] hour_cosines.columns = ['hour_cos__' + c for c in EN_COLS] minute_sines.columns = ['minute_sin__' + c for c in EN_COLS] minute_cosines.columns = ['minute_cos__' + c for c in EN_COLS] null_times = times.isnull().astype(int) null_times.columns = [c + "_miss" for c in EN_COLS] diffs = pd.DataFrame(index=times.index) for i, c1 in enumerate(EN_COLS): for j, c2 in enumerate(EN_COLS[(i + 1):]): diffs['delta_{}_{}'.format(c1, c2)] = (times[c2] - times[c1]).dt.total_seconds().fillna(NA_VALUE) deltas_base = 'delta_call_start_time_call_end_time' for c in diffs.columns: d = diffs[c] / diffs[deltas_base] diffs['rel_{}'.format(c)] = d x = pd.concat( [abs_times, day_sines, day_cosines, hour_sines, hour_cosines, minute_sines, minute_cosines, null_times, diffs], axis=1) x[DUR_EN] = data[DUR_RU].fillna(NA_VALUE) x[DUR_EN + '_miss'] = data[DUR_RU].isnull().astype(int) devia = x['delta_oper_start_time_oper_end_time'] - x[DUR_EN] devia[x['oper_duration_miss'] == 1] = 0 devia[x['delta_oper_start_time_oper_end_time'] < 0] = 0 x['oper_time_deviation'] = devia return x if __name__ == '__main__': input_csv = sys.argv[1] output_csv = sys.argv[2] df_test =
pd.read_csv(input_csv, index_col='id')
pandas.read_csv
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy.testing as npt import os.path import pandas as pd import pkgutil import sys from tabulate import tabulate import unittest try: from StringIO import StringIO except ImportError: from io import StringIO, BytesIO # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # print("parent_dir") # print(parent_dir) # sys.path.append(parent_dir) from ..trex_exe import Trex, TrexOutputs print("sys.path") print(sys.path) # load transposed qaqc data for inputs and expected outputs # this works for both local nosetests and travis deploy # input details try: if __package__ is not None: csv_data = pkgutil.get_data(__package__, 'trex_qaqc_in_transpose.csv') data_inputs = BytesIO(csv_data) pd_obj_inputs = pd.read_csv(data_inputs, index_col=0, engine='python') else: #csv_transpose_path_in = "./trex_qaqc_in_transpose.csv" csv_transpose_path_in = os.path.join(os.path.dirname(__file__),"trex_qaqc_in_transpose.csv") # print(csv_transpose_path_in) pd_obj_inputs = pd.read_csv(csv_transpose_path_in, index_col=0, engine='python') pd_obj_inputs['csrfmiddlewaretoken'] = '<PASSWORD>' # with open('./trex_qaqc_in_transpose.csv') as f: # csv_data = csv.reader(f) finally: pass # print("trex inputs") # print(pd_obj_inputs.shape) # print('trex expected output keys ' + str(pd_obj_inputs.columns.values.tolist())) # print(tabulate(pd_obj_inputs.iloc[:,0:5], headers='keys', tablefmt='plain')) # print(tabulate(pd_obj_inputs.iloc[:,6:10], headers='keys', tablefmt='plain')) # print(tabulate(pd_obj_inputs.iloc[:,11:13], headers='keys', tablefmt='plain')) # print(tabulate(pd_obj_inputs.iloc[:,14:17], headers='keys', tablefmt='plain')) # load transposed qaqc data for expected outputs try: if __package__ is not None: data_exp_outputs = BytesIO(pkgutil.get_data(__package__, 'trex_qaqc_exp_transpose.csv')) pd_obj_exp = pd.read_csv(data_exp_outputs, index_col=0, engine= 'python') else: #csv_transpose_path_exp = "./trex_qaqc_exp_transpose.csv" csv_transpose_path_exp = os.path.join(os.path.dirname(__file__),"trex_qaqc_exp_transpose.csv") # print(csv_transpose_path_exp) pd_obj_exp = pd.read_csv(csv_transpose_path_exp, index_col=0, engine='python') finally: pass # print("trex expected outputs") # print('trex expected output dimensions ' + str(pd_obj_exp.shape)) # print('trex expected output keys ' + str(pd_obj_exp.columns.values.tolist())) # print(tabulate(pd_obj_exp.iloc[:,0:5], headers='keys', tablefmt='plain')) # print(tabulate(pd_obj_exp.iloc[:,6:10], headers='keys', tablefmt='plain')) # print(tabulate(pd_obj_exp.iloc[:,11:14], headers='keys', tablefmt='plain')) # print(tabulate(pd_obj_exp.iloc[:,15:16], headers='keys', tablefmt='plain')) # create an instance of trex object with qaqc data trex_output_empty = TrexOutputs() trex_calc = Trex(pd_obj_inputs, pd_obj_exp) trex_calc.execute_model() inputs_json, outputs_json, exp_out_json = trex_calc.get_dict_rep() # print("trex output") # print(inputs_json) # print("####") # print(trex_calc) test = {} # trex_calc.execute_model() class TestTrex(unittest.TestCase): """ Integration tests for trex. """ def setUp(self): """ Setup routine for trex. :return: """ pass def tearDown(self): """ Teardown routine for trex. :return: """ pass def test_assert_output_series(self): """ Verify that each output variable is a pd.Series """ try: num_variables = len(trex_calc.pd_obj_out.columns) result = pd.Series(False, index=list(range(num_variables)), dtype='bool') expected = pd.Series(True, index=list(range(num_variables)), dtype='bool') for i in range(num_variables): column_name = trex_calc.pd_obj_out.columns[i] output = getattr(trex_calc, column_name) if isinstance(output, pd.Series): result[i] = True tab =
pd.concat([result,expected], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sat Feb 16 09:50:42 2019 @author: michaelek """ import os import numpy as np import pandas as pd import yaml from allotools.data_io import get_permit_data, get_usage_data, allo_filter from allotools.allocation_ts import allo_ts from allotools.utils import grp_ts_agg # from allotools.plot import plot_group as pg # from allotools.plot import plot_stacked as ps from datetime import datetime # from scipy.special import erfc # from matplotlib.pyplot import show ######################################### ### parameters base_path = os.path.realpath(os.path.dirname(__file__)) with open(os.path.join(base_path, 'parameters.yml')) as param: param = yaml.safe_load(param) pk = ['permit_id', 'wap', 'date'] dataset_types = ['allo', 'metered_allo', 'usage', 'usage_est'] allo_type_dict = {'D': 'max_daily_volume', 'W': 'max_daily_volume', 'M': 'max_annual_volume', 'A-JUN': 'max_annual_volume', 'A': 'max_annual_volume'} # allo_mult_dict = {'D': 0.001*24*60*60, 'W': 0.001*24*60*60*7, 'M': 0.001*24*60*60*30, 'A-JUN': 0.001*24*60*60*365, 'A': 0.001*24*60*60*365} temp_datasets = ['allo_ts', 'total_allo_ts', 'wap_allo_ts', 'usage_ts', 'metered_allo_ts'] ####################################### ### Testing # from_date = '2000-07-01' # to_date = '2020-06-30' # # self = AlloUsage(from_date=from_date, to_date=to_date) # # results1 = self.get_ts(['allo', 'metered_allo', 'usage'], 'M', ['permit_id', 'wap']) # results2 = self.get_ts(['usage'], 'D', ['wap']) # results3 = self.get_ts(['allo', 'metered_allo', 'usage', 'usage_est'], 'M', ['permit_id', 'wap']) # results3 = self.get_ts(['allo', 'metered_allo', 'usage', 'usage_est'], 'D', ['permit_id', 'wap']) # wap_filter = {'wap': ['C44/0001']} # # self = AlloUsage(from_date=from_date, to_date=to_date, wap_filter=wap_filter) # # results1 = self.get_ts(['allo', 'metered_allo', 'usage'], 'M', ['permit_id', 'wap']) # results2 = self.get_ts(['usage'], 'D', ['wap']) # permit_filter = {'permit_id': ['200040']} # # self = AlloUsage(from_date=from_date, to_date=to_date, permit_filter=permit_filter) # # results1 = self.get_ts(['allo', 'metered_allo', 'usage', 'usage_est'], 'M', ['permit_id', 'wap']) # results2 = self.get_ts(['allo', 'metered_allo', 'usage', 'usage_est'], 'D', ['permit_id', 'wap']) ######################################## ### Core class class AlloUsage(object): """ Class to to process the allocation and usage data in NZ. Parameters ---------- from_date : str or None The start date of the consent and the final time series. In the form of '2000-01-01'. None will return all consents and subsequently all dates. to_date : str or None The end date of the consent and the final time series. In the form of '2000-01-01'. None will return all consents and subsequently all dates. permit_filter : dict If permit_id_filter is a list, then it should represent the columns from the permit table that should be returned. If it's a dict, then the keys should be the column names and the values should be the filter on those columns. wap_filter : dict If wap_filter is a list, then it should represent the columns from the wap table that should be returned. If it's a dict, then the keys should be the column names and the values should be the filter on those columns. only_consumptive : bool Should only the consumptive takes be returned? Default True include_hydroelectric : bool Should hydro-electric takes be included? Default False Returns ------- AlloUsage object with all of the base sites, allo, and allo_wap DataFrames """ dataset_types = dataset_types # plot_group = pg # plot_stacked = ps _usage_remote = param['remote']['usage'] _permit_remote = param['remote']['permit'] ### Initial import and assignment function def __init__(self, from_date=None, to_date=None, permit_filter=None, wap_filter=None, only_consumptive=True, include_hydroelectric=False): """ Parameters ---------- from_date : str or None The start date of the consent and the final time series. In the form of '2000-01-01'. None will return all consents and subsequently all dates. to_date : str or None The end date of the consent and the final time series. In the form of '2000-01-01'. None will return all consents and subsequently all dates. permit_filter : dict If permit_id_filter is a list, then it should represent the columns from the permit table that should be returned. If it's a dict, then the keys should be the column names and the values should be the filter on those columns. wap_filter : dict If wap_filter is a list, then it should represent the columns from the wap table that should be returned. If it's a dict, then the keys should be the column names and the values should be the filter on those columns. only_consumptive : bool Should only the consumptive takes be returned? Default True include_hydroelectric : bool Should hydro-electric takes be included? Default False Returns ------- AlloUsage object with all of the base sites, allo, and allo_wap DataFrames """ permits0 = get_permit_data(self._permit_remote['connection_config'], self._permit_remote['bucket'], self._permit_remote['permits_key']) waps, permits = allo_filter(permits0, from_date, to_date, permit_filter=permit_filter, wap_filter=wap_filter, only_consumptive=only_consumptive, include_hydroelectric=include_hydroelectric) if from_date is None: from_date1 = pd.Timestamp('1900-07-01') else: from_date1 = pd.Timestamp(from_date) if to_date is None: to_date1 = pd.Timestamp.now().floor('D') else: to_date1 = pd.Timestamp(to_date) setattr(self, 'waps', waps) setattr(self, 'permits', permits) # setattr(self, 'sd', sd) setattr(self, 'from_date', from_date1) setattr(self, 'to_date', to_date1) def _est_allo_ts(self): """ """ ### Run the allocation time series creation ### This has currently been hard-soded to only use the max rate. This should probably be changed once the permitting data gets fixed. limit_col = allo_type_dict[self.freq] # multiplier = allo_mult_dict[self.freq] # limit_col = 'max_rate' allo4 = allo_ts(self.permits, self.from_date, self.to_date, self.freq, limit_col).round() allo4.name = 'total_allo' # allo4 = (allo4 * multiplier).round() # if self.irr_season and ('A' not in self.freq): # dates1 = allo4.index.levels[2] # dates2 = dates1[dates1.month.isin([10, 11, 12, 1, 2, 3, 4])] # allo4 = allo4.loc[(slice(None), slice(None), dates2)] setattr(self, 'total_allo_ts', allo4.reset_index()) def _allo_wap_spit(self): """ """ allo6 = pd.merge(self.total_allo_ts, self.waps[['permit_id', 'wap', 'sd_ratio']], on=['permit_id']) # allo6 = pd.merge(allo5, self.sd, on=['permit_id', 'wap'], how='left') allo6['combo_wap_allo'] = allo6.groupby(['permit_id', 'hydro_feature', 'date'])['total_allo'].transform('sum') allo6['combo_wap_ratio'] = allo6['total_allo']/allo6['combo_wap_allo'] allo6['wap_allo'] = allo6['total_allo'] * allo6['combo_wap_ratio'] allo7 = allo6.drop(['combo_wap_allo', 'combo_wap_ratio', 'total_allo'], axis=1).rename(columns={'wap_allo': 'total_allo'}).copy() ## Calculate the stream depletion allo7.loc[allo7.sd_ratio.isnull() & (allo7.hydro_feature == 'groundwater'), 'sd_ratio'] = 0 allo7.loc[allo7.sd_ratio.isnull() & (allo7.hydro_feature == 'surface water'), 'sd_ratio'] = 1 allo7['sw_allo'] = allo7['total_allo'] * allo7['sd_ratio'] allo7['gw_allo'] = allo7['total_allo'] - allo7['sw_allo'] allo8 = allo7.drop(['hydro_feature', 'sd_ratio'], axis=1).groupby(pk).mean() setattr(self, 'wap_allo_ts', allo8) def _get_allo_ts(self): """ Function to create an allocation time series. """ if not hasattr(self, 'total_allo_ts'): self._est_allo_ts() ### Convert to GW and SW allocation self._allo_wap_spit() def _process_usage(self): """ """ if not hasattr(self, 'wap_allo_ts'): self._get_allo_ts() allo1 = self.wap_allo_ts.copy().reset_index() waps = allo1.wap.unique().tolist() ## Get the ts data and aggregate if hasattr(self, 'usage_ts_daily'): tsdata1 = self.usage_ts_daily else: tsdata1, stns_waps = get_usage_data(self._usage_remote['connection_config'], self._usage_remote['bucket'], waps, self.from_date, self.to_date) tsdata1.rename(columns={'water_use': 'total_usage', 'time': 'date'}, inplace=True) tsdata1 = tsdata1[['wap', 'date', 'total_usage']].copy() ## filter - remove individual spikes and negative values tsdata1.loc[tsdata1['total_usage'] < 0, 'total_usage'] = 0 def remove_spikes(x): val1 = bool(x[1] > (x[0] + x[2] + 2)) if val1: return (x[0] + x[2])/2 else: return x[1] tsdata1.iloc[1:-1, 2] = tsdata1['total_usage'].rolling(3, center=True).apply(remove_spikes, raw=True).iloc[1:-1] setattr(self, 'usage_ts_daily', tsdata1) ## Convert station data to DataFrame stns_waps1 =
pd.DataFrame([{'wap': s['ref'], 'lon': s['geometry']['coordinates'][0], 'lat': s['geometry']['coordinates'][1]} for s in stns_waps])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'chengzhi' """ tqsdk.ta 模块包含了一批常用的技术指标计算函数 """ import numpy as np import pandas as pd import numba from tqsdk import ta_func def ATR(df, n): """平均真实波幅""" new_df = pd.DataFrame() pre_close = df["close"].shift(1) new_df["tr"] = np.where(df["high"] - df["low"] > np.absolute(pre_close - df["high"]), np.where(df["high"] - df["low"] > np.absolute(pre_close - df["low"]), df["high"] - df["low"], np.absolute(pre_close - df["low"])), np.where(np.absolute(pre_close - df["high"]) > np.absolute(pre_close - df["low"]), np.absolute(pre_close - df["high"]), np.absolute(pre_close - df["low"]))) new_df["atr"] = ta_func.ma(new_df["tr"], n) return new_df def BIAS(df, n): """乖离率""" ma1 = ta_func.ma(df["close"], n) new_df = pd.DataFrame(data=list((df["close"] - ma1) / ma1 * 100), columns=["bias"]) return new_df def BOLL(df, n, p): """布林线""" new_df = pd.DataFrame() mid = ta_func.ma(df["close"], n) std = df["close"].rolling(n).std() new_df["mid"] = mid new_df["top"] = mid + p * std new_df["bottom"] = mid - p * std return new_df def DMI(df, n, m): """动向指标""" new_df = pd.DataFrame() new_df["atr"] = ATR(df, n)["atr"] pre_high = df["high"].shift(1) pre_low = df["low"].shift(1) hd = df["high"] - pre_high ld = pre_low - df["low"] admp = ta_func.ma(pd.Series(np.where((hd > 0) & (hd > ld), hd, 0)), n) admm = ta_func.ma(pd.Series(np.where((ld > 0) & (ld > hd), ld, 0)), n) new_df["pdi"] = pd.Series(np.where(new_df["atr"] > 0, admp / new_df["atr"] * 100, np.NaN)).ffill() new_df["mdi"] = pd.Series(np.where(new_df["atr"] > 0, admm / new_df["atr"] * 100, np.NaN)).ffill() ad = pd.Series(np.absolute(new_df["mdi"] - new_df["pdi"]) / (new_df["mdi"] + new_df["pdi"]) * 100) new_df["adx"] = ta_func.ma(ad, m) new_df["adxr"] = (new_df["adx"] + new_df["adx"].shift(m)) / 2 return new_df def KDJ(df, n, m1, m2): """随机指标""" new_df = pd.DataFrame() hv = df["high"].rolling(n).max() lv = df["low"].rolling(n).min() rsv = pd.Series(np.where(hv == lv, 0, (df["close"] - lv) / (hv - lv) * 100)) new_df["k"] = ta_func.sma(rsv, m1, 1) new_df["d"] = ta_func.sma(new_df["k"], m2, 1) new_df["j"] = 3 * new_df["k"] - 2 * new_df["d"] return new_df def MACD(df, short, long, m): """异同移动平均线""" new_df = pd.DataFrame() eshort = ta_func.ema(df["close"], short) elong = ta_func.ema(df["close"], long) new_df["diff"] = eshort - elong new_df["dea"] = ta_func.ema(new_df["diff"], m) new_df["bar"] = 2 * (new_df["diff"] - new_df["dea"]) return new_df @numba.njit def _sar(open, high, low, close, range_high, range_low, n, step, maximum): sar = np.empty_like(close) sar[:n] = np.NAN af = 0 ep = 0 trend = 1 if (close[n] - open[n]) > 0 else -1 if trend == 1: sar[n] = min(range_low[n - 2], low[n - 1]) else: sar[n] = max(range_high[n - 2], high[n - 1]) for i in range(n, len(sar)): if i != n: if abs(trend) > 1: sar[i] = sar[i - 1] + af * (ep - sar[i - 1]) elif trend == 1: sar[i] = min(range_low[i - 2], low[i - 1]) elif trend == -1: sar[i] = max(range_high[i - 2], high[i - 1]) if trend > 0: if sar[i - 1] > low[i]: ep = low[i] af = step trend = -1 else: ep = high[i] af = min(af + step, maximum) if ep > range_high[i - 1] else af trend += 1 else: if sar[i - 1] < high[i]: ep = high[i] af = step trend = 1 else: ep = low[i] af = min(af + step, maximum) if ep < range_low[i - 1] else af trend -= 1 return sar def SAR(df, n, step, max): """抛物转向""" range_high = df["high"].rolling(n - 1).max() range_low = df["low"].rolling(n - 1).min() sar = _sar(df["open"].values, df["high"].values, df["low"].values, df["close"].values, range_high.values, range_low.values, n, step, max) new_df = pd.DataFrame(data=sar, columns=["sar"]) return new_df def WR(df, n): """威廉指标""" hn = df["high"].rolling(n).max() ln = df["low"].rolling(n).min() new_df = pd.DataFrame(data=list((hn - df["close"]) / (hn - ln) * (-100)), columns=["wr"]) return new_df def RSI(df, n): """相对强弱指标""" lc = df["close"].shift(1) rsi = ta_func.sma(pd.Series(np.where(df["close"] - lc > 0, df["close"] - lc, 0)), n, 1) / \ ta_func.sma(np.absolute(df["close"] - lc), n, 1) * 100 new_df = pd.DataFrame(data=rsi, columns=["rsi"]) return new_df def ASI(df): """振动升降指标""" lc = df["close"].shift(1) # 上一交易日的收盘价 aa = np.absolute(df["high"] - lc) bb = np.absolute(df["low"] - lc) cc = np.absolute(df["high"] - df["low"].shift(1)) dd = np.absolute(lc - df["open"].shift(1)) r = np.where((aa > bb) & (aa > cc), aa + bb / 2 + dd / 4, np.where((bb > cc) & (bb > aa), bb + aa / 2 + dd / 4, cc + dd / 4)) x = df["close"] - lc + (df["close"] - df["open"]) / 2 + lc - df["open"].shift(1) si = np.where(r == 0, 0, 16 * x / r * np.where(aa > bb, aa, bb)) new_df = pd.DataFrame(data=list(pd.Series(si).cumsum()), columns=["asi"]) return new_df def VR(df, n): """VR 容量比率""" lc = df["close"].shift(1) vr = pd.Series(np.where(df["close"] > lc, df["volume"], 0)).rolling(n).sum() / pd.Series( np.where(df["close"] <= lc, df["volume"], 0)).rolling(n).sum() * 100 new_df = pd.DataFrame(data=list(vr), columns=["vr"]) return new_df def ARBR(df, n): """人气意愿指标""" new_df = pd.DataFrame() new_df["ar"] = (df["high"] - df["open"]).rolling(n).sum() / (df["open"] - df["low"]).rolling(n).sum() * 100 new_df["br"] = pd.Series( np.where(df["high"] - df["close"].shift(1) > 0, df["high"] - df["close"].shift(1), 0)).rolling( n).sum() / pd.Series( np.where(df["close"].shift(1) - df["low"] > 0, df["close"].shift(1) - df["low"], 0)).rolling(n).sum() * 100 return new_df def DMA(df, short, long, m): """平均线差""" new_df = pd.DataFrame() new_df["ddd"] = ta_func.ma(df["close"], short) - ta_func.ma(df["close"], long) new_df["ama"] = ta_func.ma(new_df["ddd"], m) return new_df def EXPMA(df, p1, p2): """指数加权移动平均线组合""" new_df = pd.DataFrame() new_df["ma1"] = ta_func.ema(df["close"], p1) new_df["ma2"] = ta_func.ema(df["close"], p2) return new_df def CR(df, n, m): """CR能量""" new_df = pd.DataFrame() mid = (df["high"] + df["low"] + df["close"]) / 3 new_df["cr"] = pd.Series(np.where(0 > df["high"] - mid.shift(1), 0, df["high"] - mid.shift(1))).rolling( n).sum() / pd.Series(np.where(0 > mid.shift(1) - df["low"], 0, mid.shift(1) - df["low"])).rolling(n).sum() * 100 new_df["crma"] = ta_func.ma(new_df["cr"], m).shift(int(m / 2.5 + 1)) return new_df def CCI(df, n): """顺势指标""" typ = (df["high"] + df["low"] + df["close"]) / 3 ma = ta_func.ma(typ, n) def mad(x): return np.fabs(x - x.mean()).mean() md = typ.rolling(window=n).apply(mad, raw=True) # 平均绝对偏差 new_df = pd.DataFrame(data=list((typ - ma) / (md * 0.015)), columns=["cci"]) return new_df def OBV(df): """能量潮""" lc = df["close"].shift(1) obv = (np.where(df["close"] > lc, df["volume"], np.where(df["close"] < lc, -df["volume"], 0))).cumsum() new_df = pd.DataFrame(data=obv, columns=["obv"]) return new_df def CDP(df, n): """逆势操作""" new_df = pd.DataFrame() pt = df["high"].shift(1) - df["low"].shift(1) cdp = (df["high"].shift(1) + df["low"].shift(1) + df["close"].shift(1)) / 3 new_df["ah"] = ta_func.ma(cdp + pt, n) new_df["al"] = ta_func.ma(cdp - pt, n) new_df["nh"] = ta_func.ma(2 * cdp - df["low"], n) new_df["nl"] = ta_func.ma(2 * cdp - df["high"], n) return new_df def HCL(df, n): """均线通道""" new_df = pd.DataFrame() new_df["mah"] = ta_func.ma(df["high"], n) new_df["mal"] = ta_func.ma(df["low"], n) new_df["mac"] = ta_func.ma(df["close"], n) return new_df def ENV(df, n, k): """包略线 (Envelopes)""" new_df = pd.DataFrame() new_df["upper"] = ta_func.ma(df["close"], n) * (1 + k / 100) new_df["lower"] = ta_func.ma(df["close"], n) * (1 - k / 100) return new_df def MIKE(df, n): """麦克指标""" new_df = pd.DataFrame() typ = (df["high"] + df["low"] + df["close"]) / 3 ll = df["low"].rolling(n).min() hh = df["high"].rolling(n).max() new_df["wr"] = typ + (typ - ll) new_df["mr"] = typ + (hh - ll) new_df["sr"] = 2 * hh - ll new_df["ws"] = typ - (hh - typ) new_df["ms"] = typ - (hh - ll) new_df["ss"] = 2 * ll - hh return new_df def PUBU(df, m): """瀑布线""" pb = (ta_func.ema(df["close"], m) + ta_func.ma(df["close"], m * 2) + ta_func.ma(df["close"], m * 4)) / 3 new_df = pd.DataFrame(data=list(pb), columns=["pb"]) return new_df def BBI(df, n1, n2, n3, n4): """多空指数""" bbi = (ta_func.ma(df["close"], n1) + ta_func.ma(df["close"], n2) + ta_func.ma(df["close"], n3) + ta_func.ma( df["close"], n4)) / 4 new_df = pd.DataFrame(data=list(bbi), columns=["bbi"]) return new_df def DKX(df, m): """多空线""" new_df = pd.DataFrame() a = (3 * df["close"] + df["high"] + df["low"] + df["open"]) / 6 new_df["b"] = (20 * a + 19 * a.shift(1) + 18 * a.shift(2) + 17 * a.shift(3) + 16 * a.shift(4) + 15 * a.shift( 5) + 14 * a.shift(6) + 13 * a.shift(7) + 12 * a.shift(8) + 11 * a.shift(9) + 10 * a.shift(10) + 9 * a.shift( 11) + 8 * a.shift( 12) + 7 * a.shift(13) + 6 * a.shift(14) + 5 * a.shift(15) + 4 * a.shift(16) + 3 * a.shift( 17) + 2 * a.shift(18) + a.shift(20) ) / 210 new_df["d"] = ta_func.ma(new_df["b"], m) return new_df def BBIBOLL(df, n, m): """多空布林线""" new_df = pd.DataFrame() new_df["bbiboll"] = (ta_func.ma(df["close"], 3) + ta_func.ma(df["close"], 6) + ta_func.ma(df["close"], 12) + ta_func.ma( df["close"], 24)) / 4 new_df["upr"] = new_df["bbiboll"] + m * new_df["bbiboll"].rolling(n).std() new_df["dwn"] = new_df["bbiboll"] - m * new_df["bbiboll"].rolling(n).std() return new_df def ADTM(df, n, m): """动态买卖气指标""" new_df = pd.DataFrame() dtm = np.where(df["open"] < df["open"].shift(1), 0, np.where(df["high"] - df["open"] > df["open"] - df["open"].shift(1), df["high"] - df["open"], df["open"] - df["open"].shift(1))) dbm = np.where(df["open"] >= df["open"].shift(1), 0, np.where(df["open"] - df["low"] > df["open"] - df["open"].shift(1), df["open"] - df["low"], df["open"] - df["open"].shift(1))) stm = pd.Series(dtm).rolling(n).sum() sbm = pd.Series(dbm).rolling(n).sum() new_df["adtm"] = np.where(stm > sbm, (stm - sbm) / stm, np.where(stm == sbm, 0, (stm - sbm) / sbm)) new_df["adtmma"] = ta_func.ma(new_df["adtm"], m) return new_df def B3612(df): """三减六日乖离率""" new_df = pd.DataFrame() new_df["b36"] = ta_func.ma(df["close"], 3) - ta_func.ma(df["close"], 6) new_df["b612"] = ta_func.ma(df["close"], 6) - ta_func.ma(df["close"], 12) return new_df def DBCD(df, n, m, t): """异同离差乖离率""" new_df = pd.DataFrame() bias = (df["close"] - ta_func.ma(df["close"], n)) / ta_func.ma(df["close"], n) dif = bias - bias.shift(m) new_df["dbcd"] = ta_func.sma(dif, t, 1) new_df["mm"] = ta_func.ma(new_df["dbcd"], 5) return new_df def DDI(df, n, n1, m, m1): """方向标准离差指数""" new_df = pd.DataFrame() tr = np.where(np.absolute(df["high"] - df["high"].shift(1)) > np.absolute(df["low"] - df["low"].shift(1)), np.absolute(df["high"] - df["high"].shift(1)), np.absolute(df["low"] - df["low"].shift(1))) dmz = np.where((df["high"] + df["low"]) <= (df["high"].shift(1) + df["low"].shift(1)), 0, tr) dmf = np.where((df["high"] + df["low"]) >= (df["high"].shift(1) + df["low"].shift(1)), 0, tr) diz = pd.Series(dmz).rolling(n).sum() / (pd.Series(dmz).rolling(n).sum() +
pd.Series(dmf)
pandas.Series
#!/usr/bin/env python3.5 """ Predict GE using trained GNN model """ import argparse import subprocess import os, sys import numpy as np import pandas as pd _script_dir = os.path.dirname(os.path.realpath(__file__)) def get_arg_parser(): """ Build command line parser Returns: command line parser """ parser = argparse.ArgumentParser(description='Predict Gene Expression using a trained GNN model.') parser.add_argument('--input', metavar='gnn_input.csv', type=str, required=True, dest="gnn_input", help='Knockout info and Master Regulator expressions.') parser.add_argument('--output', metavar='gnn_pred.csv', type=str, required=True, dest="output_filename", help='Predicted gene expression values.') parser.add_argument('--load-model-dir', metavar='./model_dir', type=str, required=False, dest="model_dir", default="./model_dir", help='Directory to load trained GNN model.') return parser def get_ko_vector(ko_str, nmr_list): ko_vector = np.ones(len(nmr_list)) if type(ko_str) is str and len(ko_str)>0 : ko_str_parts = ko_str.split("&") for gname in ko_str_parts: if gname in nmr_list: gidx = nmr_list.index(gname) ko_vector[gidx] = 0 return ko_vector def get_ko_binary_df(ko_df, nmr_list): def get_ko(x): return get_ko_vector(x, nmr_list) ko_data = ko_df.apply(get_ko) df = pd.DataFrame.from_records(ko_data, columns=nmr_list) return df def get_mr_nmr(dep_filename): mr_list = [] nmr_list = [] with open(dep_filename, "r") as f: line = f.readline() while line: parts = line.strip().split(":") if (len(parts[1]) < 1): mr_list.append(parts[0]) else: nmr_list.append(parts[0]) line = f.readline() return mr_list, nmr_list def prep_data(input_data_filename, model_dir): df =
pd.read_csv(input_data_filename)
pandas.read_csv
import unittest import pandas as pd import numpy as np from scipy.sparse.csr import csr_matrix from string_grouper.string_grouper import DEFAULT_MIN_SIMILARITY, \ DEFAULT_REGEX, DEFAULT_NGRAM_SIZE, DEFAULT_N_PROCESSES, DEFAULT_IGNORE_CASE, \ StringGrouperConfig, StringGrouper, StringGrouperNotFitException, \ match_most_similar, group_similar_strings, match_strings, \ compute_pairwise_similarities from unittest.mock import patch, Mock def mock_symmetrize_matrix(x: csr_matrix) -> csr_matrix: return x class SimpleExample(object): def __init__(self): self.customers_df = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address4', '', 'Description4', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address5', 'Tel5', 'Description5', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.customers_df2 = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('DD012339M', 'HyperStartup Inc.', 'Address4', 'Tel4', 'Description4', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address5', '', 'Description5', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address6', 'Tel6', 'Description6', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.a_few_strings = pd.Series(['BB016741P', 'BB082744L', 'BB098762D', 'BB099931J', 'BB072982K', 'BB059082Q']) self.one_string = pd.Series(['BB0']) self.two_strings = pd.Series(['Hyper', 'Hyp']) self.whatever_series_1 = pd.Series(['whatever']) self.expected_result_with_zeroes = pd.DataFrame( [ (1, 'Hyper Startup Incorporated', 0.08170638, 'whatever', 0), (0, 'Mega Enterprises Corporation', 0., 'whatever', 0), (2, 'Hyper Startup Inc.', 0., 'whatever', 0), (3, 'Hyper-Startup Inc.', 0., 'whatever', 0), (4, 'Hyper Hyper Inc.', 0., 'whatever', 0), (5, 'Mega Enterprises Corp.', 0., 'whatever', 0) ], columns=['left_index', 'left_Customer Name', 'similarity', 'right_side', 'right_index'] ) self.expected_result_centroid = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) self.expected_result_centroid_with_index_col = pd.DataFrame( [ (0, 'Mega Enterprises Corporation'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (4, 'Hyper Hyper Inc.'), (0, 'Mega Enterprises Corporation') ], columns=['group_rep_index', 'group_rep_Customer Name'] ) self.expected_result_first = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) class StringGrouperConfigTest(unittest.TestCase): def test_config_defaults(self): """Empty initialisation should set default values""" config = StringGrouperConfig() self.assertEqual(config.min_similarity, DEFAULT_MIN_SIMILARITY) self.assertEqual(config.max_n_matches, None) self.assertEqual(config.regex, DEFAULT_REGEX) self.assertEqual(config.ngram_size, DEFAULT_NGRAM_SIZE) self.assertEqual(config.number_of_processes, DEFAULT_N_PROCESSES) self.assertEqual(config.ignore_case, DEFAULT_IGNORE_CASE) def test_config_immutable(self): """Configurations should be immutable""" config = StringGrouperConfig() with self.assertRaises(Exception) as _: config.min_similarity = 0.1 def test_config_non_default_values(self): """Configurations should be immutable""" config = StringGrouperConfig(min_similarity=0.1, max_n_matches=100, number_of_processes=1) self.assertEqual(0.1, config.min_similarity) self.assertEqual(100, config.max_n_matches) self.assertEqual(1, config.number_of_processes) class StringGrouperTest(unittest.TestCase): def test_auto_blocking_single_DataFrame(self): """tests whether automatic blocking yields consistent results""" # This function will force an OverflowError to occur when # the input Series have a combined length above a given number: # OverflowThreshold. This will in turn trigger automatic splitting # of the Series/matrices into smaller blocks when n_blocks = None sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] # first do manual blocking sg = StringGrouper(df1, min_similarity=0.1) pd.testing.assert_series_equal(sg.master, df1) self.assertEqual(sg.duplicates, None) matches = fix_row_order(sg.match_strings(df1, n_blocks=(1, 1))) self.assertEqual(sg._config.n_blocks, (1, 1)) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def do_test_with(OverflowThreshold): nonlocal sg # allows reference to sg, as sg will be modified below # Now let us mock sg._build_matches: sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() matches_auto = fix_row_order(sg.match_strings(df1, n_blocks=None)) pd.testing.assert_series_equal(sg.master, df1) pd.testing.assert_frame_equal(matches, matches_auto) self.assertEqual(sg._config.n_blocks, None) # Note that _build_matches is called more than once if and only if # a split occurred (that is, there was more than one pair of # matrix-blocks multiplied) if len(sg._left_Series) + len(sg._right_Series) > \ OverflowThreshold: # Assert that split occurred: self.assertGreater(sg._build_matches.call_count, 1) else: # Assert that split did not occur: self.assertEqual(sg._build_matches.call_count, 1) # now test auto blocking by forcing an OverflowError when the # combined Series' lengths is greater than 10, 5, 3, 2 do_test_with(OverflowThreshold=100) # does not trigger auto blocking do_test_with(OverflowThreshold=10) do_test_with(OverflowThreshold=5) do_test_with(OverflowThreshold=3) do_test_with(OverflowThreshold=2) def test_n_blocks_single_DataFrame(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] matches11 = fix_row_order(match_strings(df1, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. sg = StringGrouper(df1, min_similarity=0.1) def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def test_overflow_error_with(OverflowThreshold, n_blocks): nonlocal sg sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() max_left_block_size = (len(df1)//n_blocks[0] + (1 if len(df1) % n_blocks[0] > 0 else 0)) max_right_block_size = (len(df1)//n_blocks[1] + (1 if len(df1) % n_blocks[1] > 0 else 0)) if (max_left_block_size + max_right_block_size) > OverflowThreshold: with self.assertRaises(Exception): _ = sg.match_strings(df1, n_blocks=n_blocks) else: matches_manual = fix_row_order(sg.match_strings(df1, n_blocks=n_blocks)) pd.testing.assert_frame_equal(matches11, matches_manual) test_overflow_error_with(OverflowThreshold=100, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(2, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 2)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(4, 4)) def test_n_blocks_both_DataFrames(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df['Customer Name'] df2 = simple_example.customers_df2['Customer Name'] matches11 = fix_row_order(match_strings(df1, df2, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, df2, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) def test_n_blocks_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=2) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(0, 2)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2.5)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2, 3)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, )) def test_tfidf_dtype_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=None) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=0) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype='whatever') def test_compute_pairwise_similarities(self): """tests the high-level function compute_pairwise_similarities""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid similarities = compute_pairwise_similarities(df1, df2) expected_result = pd.Series( [ 1.0, 0.6336195351561589, 1.0000000000000004, 1.0000000000000004, 1.0, 0.826462625999832 ], name='similarity' ) expected_result = expected_result.astype(np.float32) pd.testing.assert_series_equal(expected_result, similarities) sg = StringGrouper(df1, df2) similarities = sg.compute_pairwise_similarities(df1, df2) pd.testing.assert_series_equal(expected_result, similarities) def test_compute_pairwise_similarities_data_integrity(self): """tests that an exception is raised whenever the lengths of the two input series of the high-level function compute_pairwise_similarities are unequal""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid with self.assertRaises(Exception): _ = compute_pairwise_similarities(df1, df2[:-2]) @patch('string_grouper.string_grouper.StringGrouper') def test_group_similar_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function group_similar_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = group_similar_strings( test_series_1, string_ids=test_series_id_1 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_most_similar(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_most_similar utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_2 = None test_series_id_1 = None test_series_id_2 = None df = match_most_similar( test_series_1, test_series_2, master_id=test_series_id_1, duplicates_id=test_series_id_2 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_matches.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = match_strings(test_series_1, master_id=test_series_id_1) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_matches.assert_called_once() self.assertEqual(df, 'whatever') @patch( 'string_grouper.string_grouper.StringGrouper._symmetrize_matrix', side_effect=mock_symmetrize_matrix ) def test_match_list_symmetry_without_symmetrize_function(self, mock_symmetrize_matrix_param): """mocks StringGrouper._symmetrize_matches_list so that this test fails whenever _matches_list is **partially** symmetric which often occurs when the kwarg max_n_matches is too small""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() mock_symmetrize_matrix_param.assert_called_once() # obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # switch the column names of lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # if the intersection is empty then _matches_list is completely non-symmetric (this is acceptable) # if the intersection is not empty then at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertFalse(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) def test_match_list_symmetry_with_symmetrize_function(self): """This test ensures that _matches_list is symmetric""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() # Obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # Switch the column names of the lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # Obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # If the intersection is empty this means _matches_list is completely non-symmetric (this is acceptable) # If the intersection is not empty this means at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertTrue(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) @patch( 'string_grouper.string_grouper.StringGrouper._fix_diagonal', side_effect=mock_symmetrize_matrix ) def test_match_list_diagonal_without_the_fix(self, mock_fix_diagonal): """test fails whenever _matches_list's number of self-joins is not equal to the number of strings""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['<NAME>'] matches = match_strings(df, max_n_matches=1) mock_fix_diagonal.assert_called_once() num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertNotEqual(num_self_joins, num_strings) def test_match_list_diagonal(self): """This test ensures that all self-joins are present""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['Customer Name'] matches = match_strings(df, max_n_matches=1) num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertEqual(num_self_joins, num_strings) def test_zero_min_similarity(self): """Since sparse matrices exclude zero elements, this test ensures that zero similarity matches are returned when min_similarity <= 0. A bug related to this was first pointed out by @nbcvijanovic""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.whatever_series_1 matches = match_strings(s_master, s_dup, min_similarity=0) pd.testing.assert_frame_equal(simple_example.expected_result_with_zeroes, matches) def test_zero_min_similarity_small_max_n_matches(self): """This test ensures that a warning is issued when n_max_matches is suspected to be too small while min_similarity <= 0 and include_zeroes is True""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.two_strings with self.assertRaises(Exception): _ = match_strings(s_master, s_dup, max_n_matches=1, min_similarity=0) def test_get_non_matches_empty_case(self): """This test ensures that _get_non_matches() returns an empty DataFrame when all pairs of strings match""" simple_example = SimpleExample() s_master = simple_example.a_few_strings s_dup = simple_example.one_string sg = StringGrouper(s_master, s_dup, max_n_matches=len(s_master), min_similarity=0).fit() self.assertTrue(sg._get_non_matches_list().empty) def test_n_grams_case_unchanged(self): """Should return all ngrams in a string with case""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit do not ignore case sg = StringGrouper(test_series, ignore_case=False) expected_result = ['McD', 'cDo', 'Don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit ignore case sg = StringGrouper(test_series, ignore_case=True) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower_with_defaults(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Implicit default case (i.e. default behaviour) sg = StringGrouper(test_series) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_build_matrix(self): """Should create a csr matrix only master""" test_series = pd.Series(['foo', 'bar', 'baz']) sg = StringGrouper(test_series) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() c = csr_matrix([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) np.testing.assert_array_equal(c.toarray(), master.toarray()) np.testing.assert_array_equal(c.toarray(), dupe.toarray()) def test_build_matrix_master_and_duplicates(self): """Should create a csr matrix for master and duplicates""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() master_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) dupes_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 0., 1., 0.]]) np.testing.assert_array_equal(master_expected.toarray(), master.toarray()) np.testing.assert_array_equal(dupes_expected.toarray(), dupe.toarray()) def test_build_matches(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() expected_matches = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) np.testing.assert_array_equal(expected_matches, sg._build_matches(master, dupe)[0].toarray()) def test_build_matches_list(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_case_insensitive_build_matches_list(self): """Should create the cosine similarity matrix of two case insensitive series""" test_series_1 = pd.Series(['foo', 'BAR', 'baz']) test_series_2 = pd.Series(['FOO', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_get_matches_two_dataframes(self): test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2).fit() left_side = ['foo', 'bar'] left_index = [0, 1] right_side = ['foo', 'bar'] right_index = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'similarity': similarity, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_single(self): test_series_1 = pd.Series(['foo', 'bar', 'baz', 'foo']) sg = StringGrouper(test_series_1) sg = sg.fit() left_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] right_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] left_index = [0, 3, 1, 2, 0, 3] right_index = [0, 0, 1, 2, 3, 3] similarity = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'similarity': similarity, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_1_series_1_id_series(self): test_series_1 = pd.Series(['foo', 'bar', 'baz', 'foo']) test_series_id_1 = pd.Series(['A0', 'A1', 'A2', 'A3']) sg = StringGrouper(test_series_1, master_id=test_series_id_1) sg = sg.fit() left_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] left_side_id = ['A0', 'A3', 'A1', 'A2', 'A0', 'A3'] left_index = [0, 3, 1, 2, 0, 3] right_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] right_side_id = ['A0', 'A0', 'A1', 'A2', 'A3', 'A3'] right_index = [0, 0, 1, 2, 3, 3] similarity = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'left_id': left_side_id, 'similarity': similarity, 'right_id': right_side_id, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_2_series_2_id_series(self): test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_id_1 = pd.Series(['A0', 'A1', 'A2']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) test_series_id_2 = pd.Series(['B0', 'B1', 'B2']) sg = StringGrouper(test_series_1, test_series_2, duplicates_id=test_series_id_2, master_id=test_series_id_1).fit() left_side = ['foo', 'bar'] left_side_id = ['A0', 'A1'] left_index = [0, 1] right_side = ['foo', 'bar'] right_side_id = ['B0', 'B1'] right_index = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'left_id': left_side_id, 'similarity': similarity, 'right_id': right_side_id, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_raises_exception_if_unexpected_options_given(self): # When the input id data does not correspond with its string data: test_series_1 = pd.Series(['foo', 'bar', 'baz']) bad_test_series_id_1 = pd.Series(['A0', 'A1']) good_test_series_id_1 = pd.Series(['A0', 'A1', 'A2']) test_series_2 =
pd.Series(['foo', 'bar', 'bop'])
pandas.Series
# Rutina que preprocesa y transforma los datos para series de tiempo # <NAME> # <NAME> # ------------------------------------------------------------------ # Entrada: 2 o mas archivos .csv asincronos. # Salida: Archivo binario hdf5 con chunks de datos sincronizados # # Cada archivo csv debe tener una columna temporal, con un sampling # que puede ser arbitrario y asincrono respecto a los otros archivos # Pueden haber gaps en los datos # # El parametro de entrada es un archivo json del tipo: # config/sma_uai_alldata.json # Este archivo contiene informacion de los archivos de entrada/salida, # las columnas y variables de conversion. # # El programa toma los archivos y busca bloques continuos de datos # en donde ninguna columna tenga un gap mayor a # "max_delta_between_blocks_sec" segundos, si es menor # los datos se interpolaran # Cada bloque continuo de datos o "chunk" debe tener una duracion # minima de "min_chunk_duration_sec" segundos o es descartado # Luego los datos son sincronizados con un sampling uniforme # dado por "sample_spacing" # # como resultado en el archivo hdf5 se esribiran multiples chunks # de datos continuos, si "min_chunk_duration_sec" es muy grande # y se genera 1 o muy pocos chunks, no es conveniente ya que # para construir el train/testing set deben haber suficientes # chunks para asignarse a cada set. i.e. 20 chunks iguales # implica un split de train/testing con un error del 5% al menos # respecto al ratio definido. import os import sys import json import pandas import numpy # busca bloques continuos de tiempo donde no ocurra una separacion # de tiempo mayor que maxStep y donde el bloque tenga un largo al # menos de minDuration. def get_cont_chunks(df, date_col, maxStep, minDuration): timeArray = df[date_col] # indexes where a discontinuity in time occurs #ojo que funciona solo para numpy 1.20+ idxs = numpy.where(numpy.diff(timeArray) > maxStep)[0] if len(idxs) == 0: # trick: add a last time sample with a huge jump to make the routine # consider a contiguous block as a single block of data timeArray_hack = numpy.concatenate([timeArray, 1e45]) numpy.where(numpy.diff(timeArray_hack) > maxStep)[0] return [0, timeArray.size] print("found {} discontinuities".format(len(idxs))) leftIdx = 0 rightIdx = -1 interval_list = list() for idx in idxs: rightIdx = idx duration = timeArray[rightIdx] - timeArray[leftIdx] if duration > minDuration: interv =
pandas.Interval(timeArray[leftIdx], timeArray[rightIdx])
pandas.Interval
import pathlib import pytest import pandas as pd import numpy as np import gradelib EXAMPLES_DIRECTORY = pathlib.Path(__file__).parent / "examples" GRADESCOPE_EXAMPLE = gradelib.Gradebook.from_gradescope( EXAMPLES_DIRECTORY / "gradescope.csv" ) CANVAS_EXAMPLE = gradelib.Gradebook.from_canvas(EXAMPLES_DIRECTORY / "canvas.csv") # the canvas example has Lab 01, which is also in Gradescope. Let's remove it CANVAS_WITHOUT_LAB_EXAMPLE = gradelib.Gradebook( points=CANVAS_EXAMPLE.points.drop(columns="lab 01"), maximums=CANVAS_EXAMPLE.maximums.drop(index="lab 01"), late=CANVAS_EXAMPLE.late.drop(columns="lab 01"), dropped=CANVAS_EXAMPLE.dropped.drop(columns="lab 01"), ) # given ROSTER = gradelib.read_egrades_roster(EXAMPLES_DIRECTORY / "egrades.csv") def assert_gradebook_is_sound(gradebook): assert gradebook.points.shape == gradebook.dropped.shape == gradebook.late.shape assert (gradebook.points.columns == gradebook.dropped.columns).all() assert (gradebook.points.columns == gradebook.late.columns).all() assert (gradebook.points.index == gradebook.dropped.index).all() assert (gradebook.points.index == gradebook.late.index).all() assert (gradebook.points.columns == gradebook.maximums.index).all() # assignments property # ----------------------------------------------------------------------------- def test_assignments_are_produced_in_order(): assert list(GRADESCOPE_EXAMPLE.assignments) == list( GRADESCOPE_EXAMPLE.points.columns ) # keep_pids() # ----------------------------------------------------------------------------- def test_keep_pids(): # when actual = GRADESCOPE_EXAMPLE.keep_pids(ROSTER.index) # then assert len(actual.pids) == 3 assert_gradebook_is_sound(actual) def test_keep_pids_raises_if_pid_does_not_exist(): # given pids = ["A12345678", "ADNEDNE00"] # when with pytest.raises(KeyError): actual = GRADESCOPE_EXAMPLE.keep_pids(pids) # keep_assignments() and remove_assignments() # ----------------------------------------------------------------------------- def test_keep_assignments(): # when actual = GRADESCOPE_EXAMPLE.keep_assignments(["homework 01", "homework 02"]) # then assert set(actual.assignments) == {"homework 01", "homework 02"} assert_gradebook_is_sound(actual) def test_keep_assignments_raises_if_assignment_does_not_exist(): # given assignments = ["homework 01", "this aint an assignment"] # then with pytest.raises(KeyError): GRADESCOPE_EXAMPLE.keep_assignments(assignments) def test_remove_assignments(): # when actual = GRADESCOPE_EXAMPLE.remove_assignments( GRADESCOPE_EXAMPLE.assignments.starting_with("lab") ) # then assert set(actual.assignments) == { "homework 01", "homework 02", "homework 03", "homework 04", "homework 05", "homework 06", "homework 07", "project 01", "project 02", } assert_gradebook_is_sound(actual) def test_remove_assignments_raises_if_assignment_does_not_exist(): # given assignments = ["homework 01", "this aint an assignment"] # then with pytest.raises(KeyError): GRADESCOPE_EXAMPLE.remove_assignments(assignments) # combine() # ----------------------------------------------------------------------------- def test_combine_with_keep_pids(): # when combined = gradelib.Gradebook.combine( [GRADESCOPE_EXAMPLE, CANVAS_WITHOUT_LAB_EXAMPLE], keep_pids=ROSTER.index ) # then assert "homework 01" in combined.assignments assert "midterm exam" in combined.assignments assert_gradebook_is_sound(combined) def test_combine_raises_if_duplicate_assignments(): # the canvas example and the gradescope example both have lab 01. # when with pytest.raises(ValueError): combined = gradelib.Gradebook.combine([GRADESCOPE_EXAMPLE, CANVAS_EXAMPLE]) def test_combine_raises_if_indices_do_not_match(): # when with pytest.raises(ValueError): combined = gradelib.Gradebook.combine( [CANVAS_WITHOUT_LAB_EXAMPLE, GRADESCOPE_EXAMPLE] ) # number_of_lates() # ----------------------------------------------------------------------------- def test_number_of_lates(): # when labs = GRADESCOPE_EXAMPLE.assignments.starting_with("lab") actual = GRADESCOPE_EXAMPLE.number_of_lates(within=labs) # then assert list(actual) == [1, 4, 2, 2] def test_number_of_lates_with_empty_assignment_list_raises(): # when with pytest.raises(ValueError): actual = GRADESCOPE_EXAMPLE.number_of_lates(within=[]) def test_number_of_lates_with_no_assignment_list_uses_all_assignments(): # when actual = GRADESCOPE_EXAMPLE.number_of_lates() # then assert list(actual) == [1, 5, 2, 2] # forgive_lates() # ----------------------------------------------------------------------------- def test_forgive_lates(): # when labs = GRADESCOPE_EXAMPLE.assignments.starting_with("lab") actual = GRADESCOPE_EXAMPLE.forgive_lates(n=3, within=labs) # then assert list(actual.number_of_lates(within=labs)) == [0, 1, 0, 0] assert_gradebook_is_sound(actual) def test_forgive_lates_with_empty_assignment_list_raises(): # when with pytest.raises(ValueError): actual = GRADESCOPE_EXAMPLE.forgive_lates(n=3, within=[]) def test_forgive_lates_forgives_the_first_n_lates(): # by "first", we mean in the order specified by the `within` argument # student A10000000 had late lab 01, 02, 03, and 07 assignments = ["lab 02", "lab 07", "lab 01", "lab 03"] # when actual = GRADESCOPE_EXAMPLE.forgive_lates(n=2, within=assignments) # then assert not actual.late.loc["A10000000", "lab 02"] assert not actual.late.loc["A10000000", "lab 07"] assert actual.late.loc["A10000000", "lab 01"] assert actual.late.loc["A10000000", "lab 03"] def test_forgive_lates_does_not_forgive_dropped(): # given labs = GRADESCOPE_EXAMPLE.assignments.starting_with("lab") dropped = GRADESCOPE_EXAMPLE.dropped.copy() dropped.iloc[:, :] = True example = gradelib.Gradebook( points=GRADESCOPE_EXAMPLE.points, maximums=GRADESCOPE_EXAMPLE.maximums, late=GRADESCOPE_EXAMPLE.late, dropped=dropped, ) # when actual = example.forgive_lates(n=3, within=labs) # then assert list(actual.number_of_lates(within=labs)) == [1, 4, 2, 2] assert_gradebook_is_sound(actual) # drop_lowest() # ----------------------------------------------------------------------------- def test_drop_lowest_on_simple_example_1(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 = pd.Series(data=[2, 7, 15, 20], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([2, 50, 100, 20], index=columns) gradebook = gradelib.Gradebook(points, maximums) homeworks = gradebook.assignments.starting_with("hw") # if we are dropping 1 HW, the right strategy is to drop the 50 point HW # for A1 and to drop the 100 point homework for A2 # when actual = gradebook.drop_lowest(1, within=homeworks) # then assert actual.dropped.iloc[0, 1] assert actual.dropped.iloc[1, 2] assert list(actual.dropped.sum(axis=1)) == [1, 1] assert_gradebook_is_sound(actual) def test_drop_lowest_on_simple_example_2(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 = pd.Series(data=[2, 7, 15, 20], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([2, 50, 100, 20], index=columns) gradebook = gradelib.Gradebook(points, maximums) homeworks = gradebook.assignments.starting_with("hw") # if we are dropping 1 HW, the right strategy is to drop the 50 point HW # for A1 and to drop the 100 point homework for A2 # when actual = gradebook.drop_lowest(2, within=homeworks) # then assert not actual.dropped.iloc[0, 2] assert not actual.dropped.iloc[1, 0] assert list(actual.dropped.sum(axis=1)) == [2, 2] assert_gradebook_is_sound(actual) def test_drop_lowest_counts_lates_as_zeros(): # given columns = ["hw01", "hw02"] p1 = pd.Series(data=[10, 5], index=columns, name="A1") p2 = pd.Series(data=[10, 10], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([10, 10], index=columns) gradebook = gradelib.Gradebook(points, maximums) gradebook.late.iloc[0, 0] = True # since A1's perfect homework is late, it should count as zero and be # dropped # when actual = gradebook.drop_lowest(1) # then assert actual.dropped.iloc[0, 0] assert list(actual.dropped.sum(axis=1)) == [1, 1] assert_gradebook_is_sound(actual) def test_drop_lowest_ignores_assignments_alread_dropped(): # given columns = ["hw01", "hw02", "hw03", "hw04"] p1 = pd.Series(data=[9, 0, 7, 0], index=columns, name="A1") p2 = pd.Series(data=[10, 10, 10, 10], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([10, 10, 10, 10], index=columns) gradebook = gradelib.Gradebook(points, maximums) gradebook.dropped.loc["A1", "hw02"] = True gradebook.dropped.loc["A1", "hw04"] = True # since A1's perfect homeworks are already dropped, we should drop a third # homework, too: this will be HW03 # when actual = gradebook.drop_lowest(1) # then assert actual.dropped.loc["A1", "hw04"] assert actual.dropped.loc["A1", "hw02"] assert actual.dropped.loc["A1", "hw03"] assert list(actual.dropped.sum(axis=1)) == [3, 1] assert_gradebook_is_sound(actual) # give_equal_weights() # ----------------------------------------------------------------------------- def test_give_equal_weights_on_example(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 = pd.Series(data=[2, 7, 15, 20], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([2, 50, 100, 20], index=columns) gradebook = gradelib.Gradebook(points, maximums) homeworks = gradebook.assignments.starting_with("hw") # when actual = gradebook.give_equal_weights(within=homeworks) # then assert actual.maximums.loc["hw01"] == 1 assert actual.maximums.loc["hw02"] == 1 assert actual.maximums.loc["hw03"] == 1 assert actual.maximums.loc["lab01"] == 20 assert actual.points.loc["A1", "hw01"] == 1 / 2 assert actual.points.loc["A1", "hw02"] == 30 / 50 # score() # ----------------------------------------------------------------------------- def test_score_on_simple_example(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 = pd.Series(data=[2, 7, 15, 20], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([2, 50, 100, 20], index=columns) gradebook = gradelib.Gradebook(points, maximums) homeworks = gradebook.assignments.starting_with("hw") # when actual = gradebook.score(homeworks) # then assert np.allclose(actual.values, [121 / 152, 24 / 152], atol=1e-6) def test_score_counts_lates_as_zero(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 =
pd.Series(data=[2, 7, 15, 20], index=columns, name="A2")
pandas.Series
from copy import deepcopy import inspect import pydoc import numpy as np import pytest import pandas.util._test_decorators as td from pandas.util._test_decorators import ( async_mark, skip_if_no, ) import pandas as pd from pandas import ( DataFrame, Series, date_range, timedelta_range, ) import pandas._testing as tm class TestDataFrameMisc: def test_getitem_pop_assign_name(self, float_frame): s = float_frame["A"] assert s.name == "A" s = float_frame.pop("A") assert s.name == "A" s = float_frame.loc[:, "B"] assert s.name == "B" s2 = s.loc[:] assert s2.name == "B" def test_get_axis(self, float_frame): f = float_frame assert f._get_axis_number(0) == 0 assert f._get_axis_number(1) == 1 assert f._get_axis_number("index") == 0 assert f._get_axis_number("rows") == 0 assert f._get_axis_number("columns") == 1 assert f._get_axis_name(0) == "index" assert f._get_axis_name(1) == "columns" assert f._get_axis_name("index") == "index" assert f._get_axis_name("rows") == "index" assert f._get_axis_name("columns") == "columns" assert f._get_axis(0) is f.index assert f._get_axis(1) is f.columns with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(2) with pytest.raises(ValueError, match="No axis.*foo"): f._get_axis_name("foo") with pytest.raises(ValueError, match="No axis.*None"): f._get_axis_name(None) with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(None) def test_column_contains_raises(self, float_frame): with pytest.raises(TypeError, match="unhashable type: 'Index'"): float_frame.columns in float_frame def test_tab_completion(self): # DataFrame whose columns are identifiers shall have them in __dir__. df = DataFrame([list("abcd"), list("efgh")], columns=list("ABCD")) for key in list("ABCD"): assert key in dir(df) assert isinstance(df.__getitem__("A"), Series) # DataFrame whose first-level columns are identifiers shall have # them in __dir__. df = DataFrame( [list("abcd"), list("efgh")], columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))), ) for key in list("ABCD"): assert key in dir(df) for key in list("EFGH"): assert key not in dir(df) assert isinstance(df.__getitem__("A"), DataFrame) def test_not_hashable(self): empty_frame = DataFrame() df = DataFrame([1]) msg = "'DataFrame' objects are mutable, thus they cannot be hashed" with pytest.raises(TypeError, match=msg): hash(df) with pytest.raises(TypeError, match=msg): hash(empty_frame) def test_column_name_contains_unicode_surrogate(self): # GH 25509 colname = "\ud83d" df = DataFrame({colname: []}) # this should not crash assert colname not in dir(df) assert df.columns[0] == colname def test_new_empty_index(self): df1 = DataFrame(np.random.randn(0, 3)) df2 = DataFrame(np.random.randn(0, 3)) df1.index.name = "foo" assert df2.index.name is None def test_get_agg_axis(self, float_frame): cols = float_frame._get_agg_axis(0) assert cols is float_frame.columns idx = float_frame._get_agg_axis(1) assert idx is float_frame.index msg = r"Axis must be 0 or 1 \(got 2\)" with pytest.raises(ValueError, match=msg): float_frame._get_agg_axis(2) def test_empty(self, float_frame, float_string_frame): empty_frame = DataFrame() assert empty_frame.empty assert not float_frame.empty assert not float_string_frame.empty # corner case df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3)) del df["A"] assert not df.empty def test_len(self, float_frame): assert len(float_frame) == len(float_frame.index) # single block corner case arr = float_frame[["A", "B"]].values expected = float_frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(arr, expected) def test_axis_aliases(self, float_frame): f = float_frame # reg name expected = f.sum(axis=0) result = f.sum(axis="index") tm.assert_series_equal(result, expected) expected = f.sum(axis=1) result = f.sum(axis="columns")
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import unittest from unittest import mock import pandas as pd from matplotlib import pyplot as plt import dataprofiler as dp from dataprofiler.profilers import IntColumn from dataprofiler.reports import graphs @mock.patch("dataprofiler.reports.graphs.plt.show") @mock.patch("dataprofiler.reports.graphs.plot_col_histogram") class TestPlotHistograms(unittest.TestCase): @classmethod def setUpClass(cls): cls.data = [[1, 'a', 1.0, '1/2/2021'], [None, 'b', None, '1/2/2020'], [3, 'c', 3.5, '1/2/2022'], [4, 'd', 4.5, '1/2/2023'], [5, 'e', 6.0, '5/2/2020'], [None, 'f', None, '1/5/2020'], [1, 'g', 1.0, '2/5/2020'], [None, 1, 10.0, '3/5/2020']] cls.options = dp.ProfilerOptions() cls.options.set({"data_labeler.is_enabled": False}) cls.profiler = dp.StructuredProfiler(cls.data, options=cls.options) def test_no_columns_specified(self, plot_col_mock, plt_mock): graphsplot = graphs.plot_histograms(self.profiler) self.assertEqual(2, plot_col_mock.call_count) # grabs the first argument passed into the plot col call and validates # it is the column profiler and its name matches what we expect it to self.assertEqual(0, plot_col_mock.call_args_list[0][0][0].name) # grabs the second argument passed into the plot col call and validates # it is the column profiler and its name matches what we expect it to self.assertEqual(2, plot_col_mock.call_args_list[1][0][0].name) self.assertIsInstance(graphsplot, plt.Figure) def test_normal(self, plot_col_mock, plt_mock): graphsplot = graphs.plot_histograms(self.profiler, [2]) self.assertEqual(1, plot_col_mock.call_count) self.assertEqual(2, plot_col_mock.call_args_list[0][0][0].name) self.assertIsInstance(graphsplot, plt.Figure) def test_bad_column_name(self, plot_col_mock, plt_mock): with self.assertRaisesRegex(ValueError, "Column \"a\" is not found as a profiler " "column"): graphs.plot_histograms(self.profiler, [0, "a"]) def test_no_column_plottable(self, plot_col_mock, plt_mock): with self.assertWarnsRegex(Warning, "No plots were constructed" " because no int or float columns " "were found in columns"): graphs.plot_histograms(self.profiler, [1, 3]) def test_empty_profiler(self, plot_col_mock, plt_mock): with self.assertWarnsRegex(Warning, "No plots were constructed" " because no int or float columns " "were found in columns"): graphs.plot_histograms( dp.StructuredProfiler(data=None, options=self.options)) @mock.patch("dataprofiler.reports.graphs.plt.show") class TestPlotColHistogram(unittest.TestCase): @classmethod def setUpClass(cls): cls.data = pd.Series([1, 2, 4, 2, 5, 35, 32], dtype=str) cls.profiler = IntColumn('test') cls.profiler.update(cls.data) def test_normal(self, plt_mock): self.assertIsInstance(graphs.plot_col_histogram(self.profiler), plt.Axes) def test_empty_data(self, plt_mock): data =
pd.Series([], dtype=str)
pandas.Series
import numpy as np import pandas as pd import pickle as pkl import tensorflow as tf from optparse import OptionParser import config from inputs.data import load_question, load_train, load_test from inputs.data import init_embedding_matrix from models.model_library import get_model from utils import log_utils, os_utils, time_utils params = { "model_name": "semantic_matching", "offline_model_dir": "./weights/semantic_matching", "summary_dir": "../summary", "construct_neg": False, "augmentation_init_permutation": 0.5, "augmentation_min_permutation": 0.01, "augmentation_permutation_decay_steps": 2000, "augmentation_permutation_decay_rate": 0.975, "augmentation_init_dropout": 0.5, "augmentation_min_dropout": 0.01, "augmentation_dropout_decay_steps": 2000, "augmentation_dropout_decay_rate": 0.975, "use_features": False, "num_features": 1, "n_runs": 10, "batch_size": 128, "epoch": 50, "max_batch": -1, "l2_lambda": 0.000, # embedding "embedding_dropout": 0.3, "embedding_dim_word": init_embedding_matrix["word"].shape[1], "embedding_dim_char": init_embedding_matrix["char"].shape[1], "embedding_dim": init_embedding_matrix["word"].shape[1], "embedding_dim_compressed": 32, "embedding_trainable": True, "embedding_mask_zero": True, "max_num_word": init_embedding_matrix["word"].shape[0], "max_num_char": init_embedding_matrix["char"].shape[0], "threshold": 0.217277, "calibration": False, "max_seq_len_word": 12, "max_seq_len_char": 20, "pad_sequences_padding": "post", "pad_sequences_truncating": "post", # optimization "optimizer_type": "lazyadam", "init_lr": 0.001, "beta1": 0.9, "beta2": 0.999, "decay_steps": 2000, "decay_rate": 0.95, "schedule_decay": 0.004, "random_seed": 2018, "eval_every_num_update": 5000, # semantic feature layer "encode_method": "textcnn", "attend_method": ["ave", "max", "min", "self-scalar-attention"], "attention_dim": 64, "attention_num_heads": 1, # cnn "cnn_num_layers": 1, "cnn_num_filters": 32, "cnn_filter_sizes": [1, 2, 3], "cnn_timedistributed": False, "cnn_activation": tf.nn.relu, "cnn_gated_conv": False, "cnn_residual": False, "rnn_num_units": 32, "rnn_cell_type": "gru", "rnn_num_layers": 1, # fc block "fc_type": "fc", "fc_hidden_units": [64*4, 64*2, 64], "fc_dropouts": [0, 0, 0], # True: cosine(l1, l2), sum(abs(l1 - l2)) # False: l1 * l2, abs(l1 - l2) "similarity_aggregation": False, # match pyramid "mp_num_filters": [8, 16], "mp_filter_sizes": [5, 3], "mp_activation": tf.nn.relu, "mp_dynamic_pooling": False, "mp_pool_sizes_word": [6, 3], "mp_pool_sizes_char": [10, 5], # bcnn "bcnn_num_layers": 2, "bcnn_num_filters": 16, "bcnn_filter_size": 3, "bcnn_activation": tf.nn.tanh, # tf.nn.relu with euclidean/euclidean_exp produce nan "bcnn_match_score_type": "cosine", "bcnn_mp_att_pooling": False, "bcnn_mp_num_filters": [8, 16], "bcnn_mp_filter_sizes": [5, 3], "bcnn_mp_activation": tf.nn.relu, "bcnn_mp_dynamic_pooling": False, "bcnn_mp_pool_sizes_word": [6, 3], "bcnn_mp_pool_sizes_char": [10, 5], # final layer "final_dropout": 0.3, } def get_model_data(df, features, params): X = { "q1": df.q1.values, "q2": df.q2.values, "label": df.label.values, } if params["use_features"]: X.update({ "features": features, }) params["num_features"] = X["features"].shape[1] return X def downsample(df): # downsample negative num_pos = np.sum(df.label) num_neg = int((1. / config.POS_RATIO_OFFLINE - 1.) * num_pos) idx_pos = np.where(df.label == 1)[0] idx_neg = np.where(df.label == 0)[0] np.random.shuffle(idx_neg) idx = np.hstack([idx_pos, idx_neg[:num_neg]]) return df.loc[idx] def get_train_valid_test_data(augmentation=False): # load data Q = load_question(params) dfTrain = load_train() dfTest = load_test() # train_features = load_feat("train") # test_features = load_feat("test") # params["num_features"] = train_features.shape[1] # load split with open(config.SPLIT_FILE, "rb") as f: train_idx, valid_idx = pkl.load(f) # validation if augmentation: dfDev =
pd.read_csv(config.DATA_DIR + "/" + "dev_aug.csv")
pandas.read_csv
import argparse import numpy as np import pandas as pd from bashplotlib.histogram import plot_hist from scipy.stats import gamma, beta, norm, randint, bernoulli from eemeter.location import zipcode_to_station from eemeter.weather import TMY3WeatherSource from eemeter.weather import GSODWeatherSource from eemeter.models.temperature_sensitivity import AverageDailyTemperatureSensitivityModel from eemeter.meter import AnnualizedUsageMeter from eemeter.location import Location from eemeter.generator import generate_monthly_billing_datetimes from eemeter.evaluation import Period from eemeter.project import Project from eemeter.consumption import ConsumptionData from datetime import datetime, date, timedelta import uuid try: import configparser except ImportError: # python 2 from backports import configparser TEMPERATURE_UNIT_STR = "degF" BINCOUNT = 79 def plot_gamma(k, theta): sample = gamma.rvs(k, scale=theta, size=10000) plot_hist(sample, bincount=BINCOUNT, height=10, xlab=True) def plot_beta(a, b, max=1.0): sample = beta.rvs(a, b, size=10000) * max plot_hist(sample, bincount=BINCOUNT, height=10, xlab=True) def plot_norm(mean, variation): sample = norm.rvs(mean, variation, size=10000) plot_hist(sample, bincount=BINCOUNT, height=10, xlab=True) def get_weather_sources(station): weather_source = GSODWeatherSource(station, 2007, 2015) weather_normal_source = TMY3WeatherSource(station) if weather_source.data == {} or weather_normal_source.data == {}: message = "Insufficient weather data for station {}. Please choose " \ "a different weather station (by selecting a different " \ "zipcode).".format(station) return weather_source, weather_normal_source def find_best_params(usage_pre_retrofit_gas, usage_pre_retrofit_electricity, usage_post_retrofit_gas, usage_post_retrofit_electricity, weather_normal_source): model_e = AverageDailyTemperatureSensitivityModel(heating=True, cooling=True) model_g = AverageDailyTemperatureSensitivityModel(heating=True, cooling=False) # find target model params start_params_e = model_e.param_type({ 'base_daily_consumption': usage_pre_retrofit_electricity / 500, 'heating_balance_temperature': 62, 'heating_slope': usage_pre_retrofit_electricity / 6000, 'cooling_balance_temperature': 68, 'cooling_slope': usage_pre_retrofit_electricity / 6000, }) start_params_g = model_g.param_type({ 'base_daily_consumption': usage_pre_retrofit_gas / 700, 'heating_balance_temperature': 62, 'heating_slope': usage_pre_retrofit_gas / 6000, }) # params and scale factors params_to_change_e = [ ('base_daily_consumption', 2), ('heating_slope', .3), ('cooling_slope', .3)] params_to_change_g = [ ('base_daily_consumption', 2), ('heating_slope', .3)] params_e_pre, ann_usage_e_pre = find_best_annualized_usage_params( usage_pre_retrofit_electricity, model_e, start_params_e, params_to_change_e, weather_normal_source) params_e_post, ann_usage_e_post = find_best_annualized_usage_params( usage_post_retrofit_electricity, model_e, params_e_pre, params_to_change_e, weather_normal_source) params_g_pre, ann_usage_g_pre = find_best_annualized_usage_params( usage_pre_retrofit_gas, model_g, start_params_g, params_to_change_g, weather_normal_source) params_g_post, ann_usage_g_post = find_best_annualized_usage_params( usage_post_retrofit_gas, model_g, params_g_pre, params_to_change_g, weather_normal_source) return params_e_pre, params_e_post, params_g_pre, params_g_post, \ ann_usage_e_pre, ann_usage_e_post, ann_usage_g_pre, ann_usage_g_post def find_best_annualized_usage_params(target_annualized_usage, model, start_params, params_to_change, weather_normal_source, n_guesses=100): best_params = start_params meter = AnnualizedUsageMeter(model=model, temperature_unit_str=TEMPERATURE_UNIT_STR) best_result = meter.evaluate_raw(model_params=best_params, weather_normal_source=weather_normal_source) best_ann_usage = best_result["annualized_usage"][0] for n in range(n_guesses): resolution = abs((target_annualized_usage - best_ann_usage) / target_annualized_usage) param_dict = best_params.to_dict() for param_name,scale_factor in params_to_change: current_value = param_dict[param_name] current_value = norm.rvs(param_dict[param_name], resolution * scale_factor) while current_value < 0: current_value = norm.rvs(param_dict[param_name], resolution * scale_factor) param_dict[param_name] = current_value model_params = model.param_type(param_dict) result = meter.evaluate_raw(model_params=model_params, weather_normal_source=weather_normal_source) ann_usage = result["annualized_usage"][0] if abs(target_annualized_usage - ann_usage) < abs(target_annualized_usage - best_ann_usage): diff = abs(target_annualized_usage - best_ann_usage) best_params = model_params best_ann_usage = ann_usage return best_params, best_ann_usage def create_project(params_e_pre, params_e_post, params_g_pre, params_g_post, baseline_period_start_date, baseline_period_end_date, reporting_period_start_date, reporting_period_end_date, has_electricity, has_gas, weather_source, zipcode): model_e = AverageDailyTemperatureSensitivityModel(heating=True, cooling=True) model_g = AverageDailyTemperatureSensitivityModel(heating=True, cooling=False) # generate consumption baseline_period = Period(baseline_period_start_date, reporting_period_start_date) datetimes_pre = generate_monthly_billing_datetimes(baseline_period, dist=randint(29,31)) reporting_period = Period(datetimes_pre[-1], reporting_period_end_date) datetimes_post = generate_monthly_billing_datetimes(reporting_period, dist=randint(29,31)) location = Location(zipcode=zipcode) baseline_period = Period(baseline_period_start_date, baseline_period_end_date) reporting_period = Period(reporting_period_start_date, reporting_period_end_date) cds = [] if has_electricity: cd_e = generate_consumption_records(model_e, params_e_pre, params_e_post, datetimes_pre, datetimes_post, "electricity", "kWh", weather_source) cds.append(cd_e) if has_gas: cd_g = generate_consumption_records(model_g, params_g_pre, params_g_post, datetimes_pre, datetimes_post, "natural_gas", "therm", weather_source) cds.append(cd_g) return Project(location, cds, baseline_period, reporting_period) def generate_consumption_records(model, params_pre, params_post, datetimes_pre, datetimes_post, fuel_type, energy_unit, weather_source): datetimes = datetimes_pre[:-1] + datetimes_post records = [{"start": start, "end": end, "value": np.nan} for start, end in zip(datetimes, datetimes[1:])] cd = ConsumptionData(records, fuel_type, energy_unit, record_type="arbitrary") periods = cd.periods() periods_pre = periods[:len(datetimes_pre[:-1])] periods_post = periods[len(datetimes_pre[:-1]):] period_pre_daily_temps = weather_source.daily_temperatures(periods_pre, TEMPERATURE_UNIT_STR) period_post_daily_temps = weather_source.daily_temperatures(periods_post, TEMPERATURE_UNIT_STR) period_pre_average_daily_usages = model.transform(period_pre_daily_temps, params_pre) period_post_average_daily_usages = model.transform(period_post_daily_temps, params_post) daily_noise_dist = None for average_daily_usage, period in zip(period_pre_average_daily_usages, periods_pre): n_days = period.timedelta.days if daily_noise_dist is not None: average_daily_usage += np.mean(daily_noise_dist.rvs(n_days)) cd.data[period.start] = average_daily_usage * n_days for average_daily_usage, period in zip(period_post_average_daily_usages, periods_post): n_days = period.timedelta.days if daily_noise_dist is not None: average_daily_usage += np.mean(daily_noise_dist.rvs(n_days)) cd.data[period.start] = average_daily_usage * n_days return cd def write_projects_to_csv(projects, project_csv, consumption_csv): project_rows = [] consumption_rows = [] for project in projects: proj = project["project"] project_id = uuid.uuid4() project_rows.append({ "project_id": project_id, "baseline_period_start": proj.baseline_period.start, "baseline_period_end": proj.baseline_period.end, "reporting_period_start": proj.reporting_period.start, "reporting_period_end": proj.reporting_period.end, "latitude": proj.location.lat + (norm.rvs() * 0.01), "longitude": proj.location.lng + (norm.rvs() * 0.01), "zipcode": proj.location.zipcode, "weather_station": proj.location.station, "predicted_electricity_savings": project["predicted_electricity_savings"], "predicted_natural_gas_savings": project["predicted_natural_gas_savings"], "project_cost": project["project_cost"], }) for consumption_data in proj.consumption: for record in consumption_data.records(): consumption_rows.append({ "start": datetime.strftime(record["start"], "%Y-%m-%d"), "end": datetime.strftime(record["end"], "%Y-%m-%d"), "value": record["value"], "unit_name": consumption_data.unit_name, "fuel_type": consumption_data.fuel_type, "project_id": project_id, }) project_df = pd.DataFrame(project_rows) consumption_df =
pd.DataFrame(consumption_rows)
pandas.DataFrame
""" Created by: <NAME> Sep 7 IEEE Fraud Detection Model - Add back ids - Add V Features """ import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import sys import matplotlib.pylab as plt from sklearn.model_selection import KFold from datetime import datetime import time import logging from sklearn.metrics import roc_auc_score from catboost import CatBoostClassifier, Pool from timeit import default_timer as timer start = timer() ################## # PARAMETERS ################### run_id = "{:%m%d_%H%M}".format(datetime.now()) KERNEL_RUN = False MODEL_NUMBER = os.path.basename(__file__).split('.')[0] if KERNEL_RUN: INPUT_DIR = '../input/champs-scalar-coupling/' FE_DIR = '../input/molecule-fe024/' FOLDS_DIR = '../input/champs-3fold-ids/' TARGET = "isFraud" N_ESTIMATORS = 100000 N_META_ESTIMATORS = 500000 LEARNING_RATE = 0.1 VERBOSE = 1000 EARLY_STOPPING_ROUNDS = 500 RANDOM_STATE = 529 N_THREADS = 48 DEPTH = 7 N_FOLDS = 5 MODEL_TYPE = "catboost" ##################### ## SETUP LOGGER ##################### def get_logger(): """ credits to: https://www.kaggle.com/ogrellier/user-level-lightgbm-lb-1-4480 """ os.environ["TZ"] = "US/Eastern" time.tzset() FORMAT = "[%(levelname)s]%(asctime)s:%(name)s:%(message)s" logging.basicConfig(format=FORMAT) logger = logging.getLogger("main") logger.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) fhandler = logging.FileHandler(f'../logs/{MODEL_NUMBER}_{run_id}.log') formatter = logging.Formatter(FORMAT) handler.setFormatter(formatter) # logger.addHandler(handler) logger.addHandler(fhandler) return logger logger = get_logger() logger.info(f'Running for Model Number {MODEL_NUMBER}') ################## # PARAMETERS ################### if MODEL_TYPE == 'xgboost': EVAL_METRIC = "AUC" elif MODEL_TYPE == 'lgbm': EVAL_METRIC = 'AUC' elif MODEL_TYPE == 'catboost': EVAL_METRIC = "AUC" ################## # TRACKING FUNCTION ################### def update_tracking(run_id, field, value, csv_file="../tracking/tracking.csv", integer=False, digits=None, drop_incomplete_rows=False): """ Function to update the tracking CSV with information about the model """ try: df = pd.read_csv(csv_file, index_col=[0]) except FileNotFoundError: df = pd.DataFrame() if integer: value = round(value) elif digits is not None: value = round(value, digits) if drop_incomplete_rows: df = df.loc[~df['AUC'].isna()] df.loc[run_id, field] = value # Model number is index df.to_csv(csv_file) update_tracking(run_id, "model_number", MODEL_NUMBER, drop_incomplete_rows=True) update_tracking(run_id, "n_estimators", N_ESTIMATORS) update_tracking(run_id, "early_stopping_rounds", EARLY_STOPPING_ROUNDS) update_tracking(run_id, "random_state", RANDOM_STATE) update_tracking(run_id, "n_threads", N_THREADS) update_tracking(run_id, "learning_rate", LEARNING_RATE) update_tracking(run_id, "n_fold", N_FOLDS) update_tracking(run_id, "model_type", MODEL_TYPE) update_tracking(run_id, "eval_metric", EVAL_METRIC) ##################### # PREPARE MODEL DATA ##################### folds = KFold(n_splits=N_FOLDS, random_state=RANDOM_STATE) logger.info('Loading Data...') train_df = pd.read_parquet('../input/train.parquet') test_df =
pd.read_parquet('../input/test.parquet')
pandas.read_parquet
""" This script visualises the prevention parameters of the first and second COVID-19 waves. Arguments: ---------- -f: Filename of samples dictionary to be loaded. Default location is ~/data/interim/model_parameters/COVID19_SEIRD/calibrations/national/ Returns: -------- Example use: ------------ """ __author__ = "<NAME>" __copyright__ = "Copyright (c) 2020 by <NAME>, BIOMATH, Ghent University. All Rights Reserved." # ---------------------- # Load required packages # ---------------------- import json import argparse import datetime import random import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.transforms import offset_copy from covid19model.models import models from covid19model.data import mobility, sciensano, model_parameters from covid19model.models.time_dependant_parameter_fncs import ramp_fun from covid19model.visualization.output import _apply_tick_locator from covid19model.visualization.utils import colorscale_okabe_ito, moving_avg # covid 19 specific parameters plt.rcParams.update({ "axes.prop_cycle": plt.cycler('color', list(colorscale_okabe_ito.values())), }) # ----------------------- # Handle script arguments # ----------------------- parser = argparse.ArgumentParser() parser.add_argument("-n", "--n_samples", help="Number of samples used to visualise model fit", default=100, type=int) parser.add_argument("-k", "--n_draws_per_sample", help="Number of binomial draws per sample drawn used to visualize model fit", default=1, type=int) args = parser.parse_args() ################################################# ## PART 1: Comparison of total number of cases ## ################################################# youth = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame()) cases_youth_nov21 = youth[youth.index == pd.to_datetime('2020-11-21')].values cases_youth_rel = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame())/cases_youth_nov21*100 work = moving_avg((df_sciensano['C_20_29']+df_sciensano['C_30_39']+df_sciensano['C_40_49']+df_sciensano['C_50_59']).to_frame()) cases_work_nov21 = work[work.index == pd.to_datetime('2020-11-21')].values cases_work_rel = work/cases_work_nov21*100 old = moving_avg((df_sciensano['C_60_69']+df_sciensano['C_70_79']+df_sciensano['C_80_89']+df_sciensano['C_90+']).to_frame()) cases_old_nov21 = old[old.index == pd.to_datetime('2020-11-21')].values cases_old_rel = old/cases_old_nov21*100 fig,ax=plt.subplots(figsize=(12,4.3)) ax.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax.set_ylim([0,320]) ax.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax = _apply_tick_locator(ax) ax.set_yticks([0,100,200,300]) ax.grid(False) plt.tight_layout() plt.show() def crosscorr(datax, datay, lag=0): """ Lag-N cross correlation. Parameters ---------- lag : int, default 0 datax, datay : pandas.Series objects of equal length Returns ---------- crosscorr : float """ return datax.corr(datay.shift(lag)) lag_series = range(-15,8) covariance_youth_work = [] covariance_youth_old = [] covariance_work_old = [] for lag in lag_series: covariance_youth_work.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_youth_old.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_work_old.append(crosscorr(cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariances = [covariance_youth_work, covariance_youth_old, covariance_work_old] for i in range(3): n = len(covariances[i]) k = max(covariances[i]) idx=np.argmax(covariances[i]) tau = lag_series[idx] sig = 2/np.sqrt(n-abs(k)) if k >= sig: print(tau, k, True) else: print(tau, k, False) fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1,figsize=(15,10)) # First part ax1.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax1.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax1.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax1.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax1.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax1.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax1.set_ylim([0,300]) ax1.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax1.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax1 = _apply_tick_locator(ax1) # Second part ax2.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax2.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax2.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax2.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax2.axvline(0,linewidth=1, color='black') ax2.grid(False) ax2.set_ylabel('lag-$\\tau$ cross correlation (-)') ax2.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() fig,ax = plt.subplots(figsize=(15,5)) ax.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax.axvline(0,linewidth=1, color='black') ax.grid(False) ax.set_ylabel('lag-$\\tau$ cross correlation (-)') ax.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() ##################################################### ## PART 1: Calibration robustness figure of WAVE 1 ## ##################################################### n_calibrations = 6 n_prevention = 3 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-15.json')), # 2020-04-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-13.json')), # 2020-04-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-23.json')), # 2020-05-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-18.json')), # 2020-05-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-21.json')), # 2020-06-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) # 2020-07-01 ] warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-03-15' # Last datapoint used in inference end_calibrations = ['2020-04-04', '2020-04-15', '2020-05-01', '2020-05-15', '2020-06-01', '2020-07-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2020-07-14' # --------- # Load data # --------- # Contact matrices initN, Nc_home, Nc_work, Nc_schools, Nc_transport, Nc_leisure, Nc_others, Nc_total = model_parameters.get_interaction_matrices(dataset='willem_2012') Nc_all = {'total': Nc_total, 'home':Nc_home, 'work': Nc_work, 'schools': Nc_schools, 'transport': Nc_transport, 'leisure': Nc_leisure, 'others': Nc_others} levels = initN.size # Google Mobility data df_google = mobility.get_google_mobility_data(update=False) # --------------------------------- # Time-dependant parameter function # --------------------------------- # Extract build contact matrix function from covid19model.models.time_dependant_parameter_fncs import make_contact_matrix_function, ramp_fun contact_matrix_4prev, all_contact, all_contact_no_schools = make_contact_matrix_function(df_google, Nc_all) # Define policy function def policies_wave1_4prev(t, states, param, l , tau, prev_schools, prev_work, prev_rest, prev_home): # Convert tau and l to dates tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-09-01') # end of summer holidays # Define key dates of second wave t5 = pd.Timestamp('2020-10-19') # lockdown (1) t6 = pd.Timestamp('2020-11-02') # lockdown (2) t7 = pd.Timestamp('2020-11-16') # schools re-open t8 = pd.Timestamp('2020-12-18') # Christmas holiday starts t9 = pd.Timestamp('2021-01-04') # Christmas holiday ends t10 = pd.Timestamp('2021-02-15') # Spring break starts t11 = pd.Timestamp('2021-02-21') # Spring break ends t12 = pd.Timestamp('2021-04-05') # Easter holiday starts t13 = pd.Timestamp('2021-04-18') # Easter holiday ends # ------ # WAVE 1 # ------ if t <= t1: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 < t < t1 + tau_days: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 + tau_days < t <= t1 + tau_days + l_days: t = pd.Timestamp(t.date()) policy_old = all_contact(t) policy_new = contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) return ramp_fun(policy_old, policy_new, t, tau_days, l, t1) elif t1 + tau_days + l_days < t <= t2: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t2 < t <= t3: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t3 < t <= t4: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) # ------ # WAVE 2 # ------ elif t4 < t <= t5 + tau_days: return contact_matrix_4prev(t, school=1) elif t5 + tau_days < t <= t5 + tau_days + l_days: policy_old = contact_matrix_4prev(t, school=1) policy_new = contact_matrix_4prev(t, prev_schools, prev_work, prev_rest, school=1) return ramp_fun(policy_old, policy_new, t, tau_days, l, t5) elif t5 + tau_days + l_days < t <= t6: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t6 < t <= t7: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t7 < t <= t8: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t8 < t <= t9: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t9 < t <= t10: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t10 < t <= t11: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t11 < t <= t12: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t12 < t <= t13: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) else: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Define initial states initial_states = {"S": initN, "E": np.ones(9)} # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------------- # Define necessary function to plot fit # ------------------------------------- LL = conf_int/2 UL = 1-conf_int/2 def add_poisson(state_name, output, n_samples, n_draws_per_sample, UL=1-0.05*0.5, LL=0.05*0.5): data = output[state_name].sum(dim="Nc").values # Initialize vectors vector = np.zeros((data.shape[1],n_draws_per_sample*n_samples)) # Loop over dimension draws for n in range(data.shape[0]): binomial_draw = np.random.poisson( np.expand_dims(data[n,:],axis=1),size = (data.shape[1],n_draws_per_sample)) vector[:,n*n_draws_per_sample:(n+1)*n_draws_per_sample] = binomial_draw # Compute mean and median mean = np.mean(vector,axis=1) median = np.median(vector,axis=1) # Compute quantiles LL = np.quantile(vector, q = LL, axis = 1) UL = np.quantile(vector, q = UL, axis = 1) return mean, median, LL, UL def plot_fit(ax, state_name, state_label, data_df, time, vector_mean, vector_LL, vector_UL, start_calibration='2020-03-15', end_calibration='2020-07-01' , end_sim='2020-09-01'): ax.fill_between(pd.to_datetime(time), vector_LL, vector_UL,alpha=0.30, color = 'blue') ax.plot(time, vector_mean,'--', color='blue', linewidth=1.5) ax.scatter(data_df[start_calibration:end_calibration].index,data_df[state_name][start_calibration:end_calibration], color='black', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax.scatter(data_df[pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim].index,data_df[state_name][pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim], color='red', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax = _apply_tick_locator(ax) ax.set_xlim(start_calibration,end_sim) ax.set_ylabel(state_label) return ax # ------------------------------- # Visualize prevention parameters # ------------------------------- # Method 1: all in on page fig,axes= plt.subplots(nrows=n_calibrations,ncols=n_prevention+1, figsize=(13,8.27), gridspec_kw={'width_ratios': [1, 1, 1, 3]}) prevention_labels = ['$\Omega_{home}$ (-)', '$\Omega_{work}$ (-)', '$\Omega_{rest}$ (-)'] prevention_names = ['prev_home', 'prev_work', 'prev_rest'] row_labels = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)'] pad = 5 # in points for i in range(n_calibrations): print('Simulation no. {} out of {}'.format(i+1,n_calibrations)) out = model.sim(end_sim,start_date=start_sim,warmup=warmup,N=args.n_samples,draw_fcn=draw_fcn,samples=samples_dicts[i]) vector_mean, vector_median, vector_LL, vector_UL = add_poisson('H_in', out, args.n_samples, args.n_draws_per_sample) for j in range(n_prevention+1): if j != n_prevention: n, bins, patches = axes[i,j].hist(samples_dicts[i][prevention_names[j]], color='blue', bins=15, density=True, alpha=0.6) axes[i,j].axvline(np.mean(samples_dicts[i][prevention_names[j]]), ymin=0, ymax=1, linestyle='--', color='black') max_n = 1.05*max(n) axes[i,j].annotate('$\hat{\mu} = $'+"{:.2f}".format(np.mean(samples_dicts[i][prevention_names[j]])), xy=(np.mean(samples_dicts[i][prevention_names[j]]),max_n), rotation=0,va='bottom', ha='center',annotation_clip=False,fontsize=10) if j == 0: axes[i,j].annotate(row_labels[i], xy=(0, 0.5), xytext=(-axes[i,j].yaxis.labelpad - pad, 0), xycoords=axes[i,j].yaxis.label, textcoords='offset points', ha='right', va='center') axes[i,j].set_xlim([0,1]) axes[i,j].set_xticks([0.0, 0.5, 1.0]) axes[i,j].set_yticks([]) axes[i,j].grid(False) if i == n_calibrations-1: axes[i,j].set_xlabel(prevention_labels[j]) axes[i,j].spines['left'].set_visible(False) else: axes[i,j] = plot_fit(axes[i,j], 'H_in','$H_{in}$ (-)', df_sciensano, out['time'].values, vector_median, vector_LL, vector_UL, end_calibration=end_calibrations[i], end_sim=end_sim) axes[i,j].xaxis.set_major_locator(plt.MaxNLocator(3)) axes[i,j].set_yticks([0,300, 600]) axes[i,j].set_ylim([0,700]) plt.tight_layout() plt.show() model_results_WAVE1 = {'time': out['time'].values, 'vector_mean': vector_mean, 'vector_median': vector_median, 'vector_LL': vector_LL, 'vector_UL': vector_UL} ##################################### ## PART 2: Hospitals vs. R0 figure ## ##################################### def compute_R0(initN, Nc, samples_dict, model_parameters): N = initN.size sample_size = len(samples_dict['beta']) R0 = np.zeros([N,sample_size]) R0_norm = np.zeros([N,sample_size]) for i in range(N): for j in range(sample_size): R0[i,j] = (model_parameters['a'][i] * samples_dict['da'][j] + samples_dict['omega'][j]) * samples_dict['beta'][j] * np.sum(Nc, axis=1)[i] R0_norm[i,:] = R0[i,:]*(initN[i]/sum(initN)) R0_age = np.mean(R0,axis=1) R0_overall = np.mean(np.sum(R0_norm,axis=0)) return R0, R0_overall R0, R0_overall = compute_R0(initN, Nc_all['total'], samples_dicts[-1], params) cumsum = out['H_in'].cumsum(dim='time').values cumsum_mean = np.mean(cumsum[:,:,-1], axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) cumsum_LL = cumsum_mean - np.quantile(cumsum[:,:,-1], q = 0.05/2, axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) cumsum_UL = np.quantile(cumsum[:,:,-1], q = 1-0.05/2, axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) - cumsum_mean cumsum = (out['H_in'].mean(dim="draws")).cumsum(dim='time').values fraction = cumsum[:,-1]/sum(cumsum[:,-1]) fig,ax = plt.subplots(figsize=(12,4)) bars = ('$[0, 10[$', '$[10, 20[$', '$[20, 30[$', '$[30, 40[$', '$[40, 50[$', '$[50, 60[$', '$[60, 70[$', '$[70, 80[$', '$[80, \infty[$') x_pos = np.arange(len(bars)) #ax.bar(x_pos, np.mean(R0,axis=1), yerr = [np.mean(R0,axis=1) - np.quantile(R0,q=0.05/2,axis=1), np.quantile(R0,q=1-0.05/2,axis=1) - np.mean(R0,axis=1)], width=1, color='b', alpha=0.5, capsize=10) ax.bar(x_pos, np.mean(R0,axis=1), width=1, color='b', alpha=0.8) ax.set_ylabel('$R_0$ (-)') ax.grid(False) ax2 = ax.twinx() #ax2.bar(x_pos, cumsum_mean, yerr = [cumsum_LL, cumsum_UL], width=1,color='orange',alpha=0.9,hatch="/", capsize=10) ax2.bar(x_pos, cumsum_mean, width=1,color='orange',alpha=0.6,hatch="/") ax2.set_ylabel('Fraction of hospitalizations (-)') ax2.grid(False) plt.xticks(x_pos, bars) plt.tight_layout() plt.show() ######################################### ## Part 3: Robustness figure of WAVE 2 ## ######################################### n_prevention = 4 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-06.json')), # 2020-11-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-05.json')), # 2020-11-16 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-04.json')), # 2020-12-24 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-02.json')), # 2021-02-01 ] n_calibrations = len(samples_dicts) warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-09-01' # Last datapoint used in inference end_calibrations = ['2020-11-06','2020-11-16','2020-12-24','2021-02-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2021-02-14' # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Model initial condition on September 1st warmup = 0 with open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/initial_states_2020-09-01.json', 'r') as fp: initial_states = json.load(fp) initial_states.update({ 'VE': np.zeros(9), 'V': np.zeros(9), 'V_new': np.zeros(9), 'alpha': np.zeros(9) }) #initial_states['ICU_tot'] = initial_states.pop('ICU') # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_schools'] = samples_dict['prev_schools'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------- # Visualize prevention parameters # ------------------------------- # Method 1: all in on page fig,axes= plt.subplots(nrows=n_calibrations,ncols=n_prevention+1, figsize=(13,8.27), gridspec_kw={'width_ratios': [1, 1, 1, 1, 6]}) prevention_labels = ['$\Omega_{home}$ (-)', '$\Omega_{schools}$ (-)', '$\Omega_{work}$ (-)', '$\Omega_{rest}$ (-)'] prevention_names = ['prev_home', 'prev_schools', 'prev_work', 'prev_rest'] row_labels = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)'] pad = 5 # in points for i in range(n_calibrations): print('Simulation no. {} out of {}'.format(i+1,n_calibrations)) out = model.sim(end_sim,start_date=start_sim,warmup=warmup,N=args.n_samples,draw_fcn=draw_fcn,samples=samples_dicts[i]) vector_mean, vector_median, vector_LL, vector_UL = add_poisson('H_in', out, args.n_samples, args.n_draws_per_sample) for j in range(n_prevention+1): if j != n_prevention: n, bins, patches = axes[i,j].hist(samples_dicts[i][prevention_names[j]], color='blue', bins=15, density=True, alpha=0.6) axes[i,j].axvline(np.mean(samples_dicts[i][prevention_names[j]]), ymin=0, ymax=1, linestyle='--', color='black') max_n = 1.05*max(n) axes[i,j].annotate('$\hat{\mu} = $'+"{:.2f}".format(np.mean(samples_dicts[i][prevention_names[j]])), xy=(np.mean(samples_dicts[i][prevention_names[j]]),max_n), rotation=0,va='bottom', ha='center',annotation_clip=False,fontsize=10) if j == 0: axes[i,j].annotate(row_labels[i], xy=(0, 0.5), xytext=(-axes[i,j].yaxis.labelpad - pad, 0), xycoords=axes[i,j].yaxis.label, textcoords='offset points', ha='right', va='center') axes[i,j].set_xlim([0,1]) axes[i,j].set_xticks([0.0, 1.0]) axes[i,j].set_yticks([]) axes[i,j].grid(False) if i == n_calibrations-1: axes[i,j].set_xlabel(prevention_labels[j]) axes[i,j].spines['left'].set_visible(False) else: axes[i,j] = plot_fit(axes[i,j], 'H_in','$H_{in}$ (-)', df_sciensano, out['time'].values, vector_median, vector_LL, vector_UL, start_calibration = start_calibration, end_calibration=end_calibrations[i], end_sim=end_sim) axes[i,j].xaxis.set_major_locator(plt.MaxNLocator(3)) axes[i,j].set_yticks([0,250, 500, 750]) axes[i,j].set_ylim([0,850]) plt.tight_layout() plt.show() model_results_WAVE2 = {'time': out['time'].values, 'vector_mean': vector_mean, 'vector_median': vector_median, 'vector_LL': vector_LL, 'vector_UL': vector_UL} model_results = [model_results_WAVE1, model_results_WAVE2] ################################################################# ## Part 4: Comparing the maximal dataset prevention parameters ## ################################################################# samples_dict_WAVE1 = json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) samples_dict_WAVE2 = json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-02.json')) labels = ['$\Omega_{schools}$','$\Omega_{work}$', '$\Omega_{rest}$', '$\Omega_{home}$'] keys = ['prev_schools','prev_work','prev_rest','prev_home'] fig,axes = plt.subplots(1,4,figsize=(12,4)) for idx,ax in enumerate(axes): if idx != 0: (n1, bins, patches) = ax.hist(samples_dict_WAVE1[keys[idx]],bins=15,color='blue',alpha=0.4, density=True) (n2, bins, patches) =ax.hist(samples_dict_WAVE2[keys[idx]],bins=15,color='black',alpha=0.4, density=True) max_n = max([max(n1),max(n2)])*1.10 ax.axvline(np.mean(samples_dict_WAVE1[keys[idx]]),ls=':',ymin=0,ymax=1,color='blue') ax.axvline(np.mean(samples_dict_WAVE2[keys[idx]]),ls=':',ymin=0,ymax=1,color='black') if idx ==1: ax.annotate('$\mu_1 = \mu_2 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE1[keys[idx]])), xy=(np.mean(samples_dict_WAVE1[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) else: ax.annotate('$\mu_1 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE1[keys[idx]])), xy=(np.mean(samples_dict_WAVE1[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) ax.annotate('$\mu_2 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE2[keys[idx]])), xy=(np.mean(samples_dict_WAVE2[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) ax.set_xlabel(labels[idx]) ax.set_yticks([]) ax.spines['left'].set_visible(False) else: ax.hist(samples_dict_WAVE2['prev_schools'],bins=15,color='black',alpha=0.6, density=True) ax.set_xlabel('$\Omega_{schools}$') ax.set_yticks([]) ax.spines['left'].set_visible(False) ax.set_xlim([0,1]) ax.xaxis.grid(False) ax.yaxis.grid(False) plt.tight_layout() plt.show() ################################################################ ## Part 5: Relative contributions of each contact: both waves ## ################################################################ # -------------------------------- # Re-define function to compute R0 # -------------------------------- def compute_R0(initN, Nc, samples_dict, model_parameters): N = initN.size sample_size = len(samples_dict['beta']) R0 = np.zeros([N,sample_size]) R0_norm = np.zeros([N,sample_size]) for i in range(N): for j in range(sample_size): R0[i,j] = (model_parameters['a'][i] * samples_dict['da'][j] + samples_dict['omega'][j]) * samples_dict['beta'][j] *Nc[i,j] R0_norm[i,:] = R0[i,:]*(initN[i]/sum(initN)) R0_age = np.mean(R0,axis=1) R0_mean = np.sum(R0_norm,axis=0) return R0, R0_mean # ----------------------- # Pre-allocate dataframes # ----------------------- index=df_google.index columns = [['1','1','1','1','1','1','1','1','1','1','1','1','1','1','1','2','2','2','2','2','2','2','2','2','2','2','2','2','2','2'],['work_mean','work_LL','work_UL','schools_mean','schools_LL','schools_UL','rest_mean','rest_LL','rest_UL', 'home_mean','home_LL','home_UL','total_mean','total_LL','total_UL','work_mean','work_LL','work_UL','schools_mean','schools_LL','schools_UL', 'rest_mean','rest_LL','rest_UL','home_mean','home_LL','home_UL','total_mean','total_LL','total_UL']] tuples = list(zip(*columns)) columns = pd.MultiIndex.from_tuples(tuples, names=["WAVE", "Type"]) data = np.zeros([len(df_google.index),30]) df_rel = pd.DataFrame(data=data, index=df_google.index, columns=columns) df_abs = pd.DataFrame(data=data, index=df_google.index, columns=columns) df_Re = pd.DataFrame(data=data, index=df_google.index, columns=columns) samples_dicts = [samples_dict_WAVE1, samples_dict_WAVE2] start_dates =[pd.to_datetime('2020-03-15'), pd.to_datetime('2020-10-19')] waves=["1", "2"] for j,samples_dict in enumerate(samples_dicts): print('\n WAVE: ' + str(j)+'\n') # --------------- # Rest prevention # --------------- print('Rest\n') data_rest = np.zeros([len(df_google.index.values), len(samples_dict['prev_rest'])]) Re_rest = np.zeros([len(df_google.index.values), len(samples_dict['prev_rest'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_rest[idx,:] = 0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))*np.ones(len(samples_dict['prev_rest'])) contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_rest'])]) R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))*np.ones(len(samples_dict['prev_rest'])) new = (0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))\ )*np.array(samples_dict['prev_rest']) data_rest[idx,:]= old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_rest'])]) new_contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.array(samples_dict['prev_rest']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_rest[idx,:] = (0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))\ )*np.array(samples_dict['prev_rest']) contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.array(samples_dict['prev_rest']) R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_rest_mean = np.mean(Re_rest,axis=1) Re_rest_LL = np.quantile(Re_rest,q=0.05/2,axis=1) Re_rest_UL = np.quantile(Re_rest,q=1-0.05/2,axis=1) # --------------- # Work prevention # --------------- print('Work\n') data_work = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) Re_work = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_work[idx,:] = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.ones(len(samples_dict['prev_work'])) contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.ones(len(samples_dict['prev_work'])) new = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.array(samples_dict['prev_work']) data_work[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(0.01*(100+df_google['work'][date])*(np.sum(Nc_work,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) new_contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.array(samples_dict['prev_work']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_work[idx,:] = (0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0))))*np.array(samples_dict['prev_work']) contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.array(samples_dict['prev_work']) R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_work_mean = np.mean(Re_work,axis=1) Re_work_LL = np.quantile(Re_work, q=0.05/2, axis=1) Re_work_UL = np.quantile(Re_work, q=1-0.05/2, axis=1) # ---------------- # Home prevention # ---------------- print('Home\n') data_home = np.zeros([len(df_google['work'].values),len(samples_dict['prev_home'])]) Re_home = np.zeros([len(df_google['work'].values),len(samples_dict['prev_home'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_home[idx,:] = np.sum(np.mean(Nc_home,axis=0))*np.ones(len(samples_dict['prev_home'])) contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.ones(len(samples_dict['prev_home'])) R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = np.sum(np.mean(Nc_home,axis=0))*np.ones(len(samples_dict['prev_home'])) new = np.sum(np.mean(Nc_home,axis=0))*np.array(samples_dict['prev_home']) data_home[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(np.sum(Nc_home,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) new_contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.array(samples_dict['prev_home']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_home[idx,:] = np.sum(np.mean(Nc_home,axis=0))*np.array(samples_dict['prev_home']) contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.array(samples_dict['prev_home']) R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_home_mean = np.mean(Re_home,axis=1) Re_home_LL = np.quantile(Re_home, q=0.05/2, axis=1) Re_home_UL = np.quantile(Re_home, q=1-0.05/2, axis=1) # ------------------ # School prevention # ------------------ if j == 0: print('School\n') data_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) Re_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_schools[idx,:] = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_work'])) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_work'])) new = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) data_schools[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) new_contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days + l_days < date <= pd.to_datetime('2020-09-01'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_schools[idx,:] = 1 * (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) # This is wrong, but is never used contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif j == 1: print('School\n') data_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_schools'])]) Re_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_schools[idx,:] = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_schools'])) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_schools'])) new = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) data_schools[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) new_contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days + l_days < date <= pd.to_datetime('2020-11-16'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2020-11-16') < date <= pd.to_datetime('2020-12-18'): data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif
pd.to_datetime('2020-12-18')
pandas.to_datetime
from datetime import datetime import gzip import joblib import linecache import numpy as np import os import pandas as pd import pyBigWig import time import torch if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") def extract_weights(net): list_dicts = [] for param_name, param_val in net.named_parameters(): dict_weights = {} dict_weights["Values"] = param_val.detach().cpu().numpy().reshape(-1) dict_weights["Name"] = [param_name] * len(dict_weights["Values"]) addf = pd.DataFrame(dict_weights) list_dicts.append(addf) outdf = pd.concat(list_dicts) return outdf def get_bce(response_ar, pred_vals, regions, resp_cutoff=0, bce=True): response_ar = response_ar.reshape(response_ar.shape[0], 1) pred_vals = pred_vals.reshape(pred_vals.shape[0], 1) # response_ar = response_ar / max(response_ar) # pred_vals = pred_vals / max(pred_vals) all_ce_losses = 0 len_used_regs = 0 loss = torch.nn.MSELoss() if bce: loss = torch.nn.BCELoss() for region in np.unique(regions): idx_reg = np.where(regions == region)[0] resp_ar = np.sum( response_ar[None, idx_reg] - response_ar[idx_reg, None], axis=-1) pred_ar = np.sum( pred_vals[None, idx_reg] - pred_vals[idx_reg, None], axis=-1) pred_tensor = torch.triu( torch.from_numpy(pred_ar), diagonal=1) resp_tensor = torch.from_numpy( resp_ar[np.triu_indices(resp_ar.shape[0])]).view(-1, 1) pred_tensor = pred_tensor[ np.triu_indices(pred_tensor.shape[0])].view(-1, 1) idx_eval = np.where( abs(resp_tensor.cpu().detach().numpy()) > resp_cutoff)[0] if len(idx_eval) > 0: len_used_regs += 1 if bce: resp_tensor = resp_tensor[idx_eval] resp_tensor[resp_tensor > resp_cutoff] = 1 resp_tensor[resp_tensor < (-1 * resp_cutoff)] = 0 pred_tensor = torch.sigmoid(pred_tensor[idx_eval]) else: resp_tensor = resp_tensor[idx_eval] pred_tensor = pred_tensor[idx_eval] try: ce_loss = loss(pred_tensor, resp_tensor) except Exception: try: ce_loss = loss(pred_tensor, resp_tensor.double()) except Exception: raise ValueError("Failed at BCE") all_ce_losses += ce_loss if len_used_regs > 0: loss = all_ce_losses.cpu().detach().numpy() / len_used_regs else: loss = np.nan() return loss def get_ce_loss(criterion_direction, response_tensor, model_init, regions, resp_cutoff=0, bce=True): pred_vals = model_init.detach().cpu().numpy() all_ce_losses = 0 len_used_regs = 0 for region in np.unique(regions): idx_reg = np.where(regions == region) resp_ar = np.sum( response_tensor[None, idx_reg] - response_tensor[idx_reg, None], axis=-1)[0] pred_ar = np.sum( pred_vals[None, idx_reg] - pred_vals[idx_reg, None], axis=-1)[0] pred_tensor = torch.triu( torch.from_numpy(pred_ar), diagonal=1) resp_tensor = torch.from_numpy( resp_ar[np.triu_indices(resp_ar.shape[0])]).view(-1, 1).to(device) pred_tensor = pred_tensor[ np.triu_indices(pred_tensor.shape[0])].view(-1, 1).to(device) idx_eval = np.where( abs(resp_tensor.cpu().detach().numpy()) > resp_cutoff)[0] if len(idx_eval) > 0: len_used_regs += 1 if not bce: resp_tensor = resp_tensor[idx_eval] pred_tensor = pred_tensor[idx_eval] else: resp_tensor = resp_tensor[idx_eval] resp_tensor[resp_tensor > resp_cutoff] = 1 resp_tensor[resp_tensor < (-1 * resp_cutoff)] = 0 pred_tensor = torch.sigmoid(pred_tensor[idx_eval]) ce_loss = criterion_direction(pred_tensor, resp_tensor) all_ce_losses += ce_loss del resp_tensor, pred_tensor if len_used_regs > 0: ce_loss = all_ce_losses / len_used_regs else: ce_loss = all_ce_losses return ce_loss def regularize_loss(modelparams, net, loss): lambda1 = modelparams["lambda_param"] ltype = modelparams["ltype"] if ltype == 3: if torch.cuda.device_count() > 1: torch.nn.utils.clip_grad_norm_( net.module.conv.parameters(), lambda1) torch.nn.utils.clip_grad_norm_( net.module.layer1.parameters(), lambda1) torch.nn.utils.clip_grad_norm_( net.module.layer2.parameters(), lambda1) torch.nn.utils.clip_grad_norm_( net.module.layer3.parameters(), lambda1) if len(modelparams["convparam"]) == 4: torch.nn.utils.clip_grad_norm_( net.module.layer4.parameters(), lambda1) else: torch.nn.utils.clip_grad_norm_( net.conv.parameters(), lambda1) torch.nn.utils.clip_grad_norm_( net.layer1.parameters(), lambda1) torch.nn.utils.clip_grad_norm_( net.layer2.parameters(), lambda1) torch.nn.utils.clip_grad_norm_( net.layer3.parameters(), lambda1) if len(modelparams["convparam"]) == 4: torch.nn.utils.clip_grad_norm_( net.layer4.parameters(), lambda1) if torch.cuda.device_count() > 1: l0_params = torch.cat( [x.view(-1) for x in net.module.conv.parameters()]) l1_params = torch.cat( [x.view(-1) for x in net.module.layer1.parameters()]) l2_params = torch.cat( [x.view(-1) for x in net.module.layer2.parameters()]) l3_params = torch.cat( [x.view(-1) for x in net.module.layer3.parameters()]) if len(modelparams["convparam"]) == 4: l4_params = torch.cat( [x.view(-1) for x in net.module.layer4.parameters()]) else: l0_params = torch.cat( [x.view(-1) for x in net.conv.parameters()]) l1_params = torch.cat( [x.view(-1) for x in net.layer1.parameters()]) l2_params = torch.cat( [x.view(-1) for x in net.layer2.parameters()]) l3_params = torch.cat( [x.view(-1) for x in net.layer3.parameters()]) if len(modelparams["convparam"]) == 4: l4_params = torch.cat( [x.view(-1) for x in net.layer4.parameters()]) if ltype in [1, 2]: l1_l0 = lambda1 * torch.norm(l0_params, ltype) l1_l1 = lambda1 * torch.norm(l1_params, ltype) l1_l2 = lambda1 * torch.norm(l2_params, ltype) l1_l3 = lambda1 * torch.norm(l3_params, ltype) if len(modelparams["convparam"]) == 4: l1_l4 = lambda1 * torch.norm(l4_params, 1) loss = loss + l1_l0 + l1_l1 + l1_l2 + l1_l3 + l1_l4 else: loss = loss + l1_l0 + l1_l1 + l1_l2 + l1_l3 elif ltype == 4: l1_l0 = lambda1 * torch.norm(l0_params, 1) l1_l1 = lambda1 * torch.norm(l1_params, 1) l1_l2 = lambda1 * torch.norm(l2_params, 1) l1_l3 = lambda1 * torch.norm(l3_params, 1) l2_l0 = lambda1 * torch.norm(l0_params, 2) l2_l1 = lambda1 * torch.norm(l1_params, 2) l2_l2 = lambda1 * torch.norm(l2_params, 2) l2_l3 = lambda1 * torch.norm(l3_params, 2) if len(modelparams["convparam"]) == 4: l1_l4 = lambda1 * torch.norm(l4_params, 1) l2_l4 = lambda1 * torch.norm(l4_params, 2) loss = loss + l1_l0 + l1_l1 + l1_l2 +\ l1_l3 + l1_l4 + l2_l0 + l2_l1 +\ l2_l2 + l2_l3 + l2_l4 else: loss = loss + l1_l0 + l1_l1 + l1_l2 +\ l1_l3 + l2_l0 + l2_l1 +\ l2_l2 + l2_l3 return loss def motor_log(epoch, j, dict_perf, lr, tempdir, current_loss, net, modelpath, macrobatch, regression=False): if regression: log_model_regression( os.path.join( tempdir, "modelLog_lr{}_macrobatch{}.tsv".format( lr, macrobatch)), epoch, current_loss, j, dict_perf["Tuning.R2"], dict_perf["Tuning.Loss"], dict_perf["Training.R2"], dict_perf["averageDNase.R2"]) else: log_model( os.path.join( tempdir, "modelLog_lr{}_macrobatch{}.tsv".format( lr, macrobatch)), epoch, current_loss, j, dict_perf["Tuning.auROC"], dict_perf["Tuning.Loss"], dict_perf["Tuning.AveragePrecision"], dict_perf["Training.auROC"], dict_perf["Training.AveragePrecision"], dict_perf["average.auROC"], dict_perf["average.AP"]) def log_model_regression(logpath, epoch, train_loss, j, tune_r2, tune_loss, train_r2, baseline_r2): current_time = str(datetime.now()) if epoch == 0: if not os.path.exists(logpath): with open(logpath, "w") as loglink: adlist = [ "Time", "Epoch", "MiniBatch", "Training.Loss", "Training.R2", "Tuning.Loss", "Tuning.R2", "averageDnase.R2"] loglink.write("\t".join(adlist) + "\n") with open(logpath, "a+") as loglink: float_vals = [train_loss, train_r2, tune_loss, tune_r2, baseline_r2] float_vals = [str(round(each, 5)) for each in float_vals] adlist = [current_time, str(epoch), str(j)] + float_vals print("\t".join(adlist)) loglink.write("\t".join(adlist) + "\n") def log_model(logpath, epoch, train_loss, j, tune_auroc, tuning_loss, tuning_ap, train_auroc, train_ap, baseline_auroc, baseline_ap): current_time = str(datetime.now()) if epoch == 0: if not os.path.exists(logpath): with open(logpath, "w") as loglink: adlist = [ "Time", "Epoch", "MiniBatch", "Training.Loss", "Training.auROC", "Training.AveragePrecision", "Tuning.Loss", "Tuning.auROC", "Tuning.AveragePrecision", "AverageDnase.auROC", "AverageDnase.averagePrecision"] print("\t".join(adlist)) loglink.write("\t".join(adlist) + "\n") with open(logpath, "a+") as loglink: float_vals = [train_loss, train_auroc, train_ap, tuning_loss, tune_auroc, tuning_ap, baseline_auroc, baseline_ap] float_vals = [str(round(each, 5)) for each in float_vals] adlist = [current_time, str(epoch), str(j)] + float_vals print("\t".join(adlist)) loglink.write("\t".join(adlist) + "\n") def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█', printEnd="\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format( 100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end=printEnd) # Print New Line on Complete if iteration == total: print() def split_tensordict(tensordict_all, ratio=0.8): len_items = len(tensordict_all["Response"]) split_idx = int(len_items * ratio) tensordict = {} tensordict_tune = {} for each_key, each_val in tensordict_all.items(): tensordict[each_key] = tensordict_all[each_key][:split_idx] tensordict_tune[each_key] = tensordict_all[each_key][split_idx:] return tensordict, tensordict_tune def get_n_params(model): pp = 0 for p in list(model.parameters()): nn = 1 for s in list(p.size()): nn = nn*s pp += nn return pp def make_adname(modelparams): augmentations = modelparams["augmentations"] adname = "Block_{}_Init_{}x{}_K{}".format( "_".join([str(each) for each in modelparams["convparam"]]), int(modelparams["initconv"]), modelparams["filter_rate"], int(modelparams["kernel_size"])) adname = adname +\ "_D_{}_Pool_{}_lr_{}".format( "_".join( [str(each) for each in modelparams["dilations"]]), modelparams["pool_dim"], modelparams["lr"]) adname = adname +\ "s_{}__{}_Aug_{}".format( modelparams["stride"], modelparams["optimizer"], "-".join(augmentations)) # adname = adname +\ # "_DP_{}".format(modelparams["dropout"]) # if modelparams["normtype"] != "BatchNorm": # adname = adname + "_{}".format(modelparams["normtype"]) if modelparams["regularize"]: if modelparams["ltype"] in [1, 2]: adname = adname +\ "_l{}_{}".format( modelparams["ltype"], modelparams["lambda_param"]) elif modelparams["ltype"] == 3: adname = adname +\ "_GC_{}".format(modelparams["lambda_param"]) elif modelparams["ltype"] == 4: adname = adname +\ "_l1Andl2_{}".format(modelparams["lambda_param"]) else: raise ValueError("--ltype > 4 not supported") # if "SCALE" in modelparams.keys(): # scale_str = "-".join( # [str(each) for each in modelparams["SCALE"]]) # scale_str = scale_str + "-{}".format(modelparams["SCALE_OP"]) # adname = adname + "_{}".format(scale_str) # if "LOSS_SCALERS" in modelparams.keys(): # scale_str = "-".join( # [str(each) for each in modelparams["LOSS_SCALERS"]]) # adname = adname + "_{}".format(scale_str) # if "RESP_THRESH" in modelparams.keys(): # ad_str = "Resp.Quantile.{}".format( # modelparams["RESP_THRESH"]) # adname = adname + "_{}".format(ad_str) if "arcsinh" in modelparams.keys(): adname = adname + "_{}{}".format( "arcsinh", modelparams["arcsinh"]) if "input_normalize" in modelparams.keys(): adname = adname + "_{}-{}".format( "normalizeInput", modelparams["input_normalize"]) return adname def compile_paths(outdir, modelparams): adname = make_adname(modelparams) logdir = os.path.join( outdir, "modelLog", adname) os.makedirs(logdir, exist_ok=True) chkdir = os.path.join( "/checkpoint/mkarimza", os.environ["SLURM_JOB_ID"]) if not os.path.exists(chkdir): chkdir = os.path.join(logdir, "checkpoints") os.makedirs(chkdir, exist_ok=True) chkpaths = [ os.path.join(chkdir, "{}_{}.pt".format(adname, each)) for each in [0, 1]] itrpaths = [ os.path.join(logdir, "iterDetails_{}.pickle".format(each)) for each in [0, 1]] modelpath = os.path.join( logdir, "{}_currentmodel.pt".format(adname)) modelpath_bestloss = os.path.join( logdir, "{}_bestmodel.pt".format(adname)) tempdir = os.path.join( outdir, "tempData") os.makedirs(tempdir, exist_ok=True) dictpaths = { "adname": adname, "chkpaths": chkpaths, "logdir": logdir, "modelpath": modelpath, "modelpath_bestloss": modelpath_bestloss, "tempdir": tempdir, "itrpaths": itrpaths} return dictpaths def prepare_response(response_tensor): response_tensor[np.where(response_tensor > 0)] = 1 response_tensor = np.array(response_tensor, dtype=int) response_tensor = torch.from_numpy(response_tensor) response_onehot = torch.FloatTensor( response_tensor.shape[0], 2) response_onehot.zero_() response_onehot.scatter_(1, response_tensor, 1) return response_onehot def find_minibatch_size_fast(tensordict, net, criterion, optimizer, device, max_memory=9e9, regression=False): from apex import amp num_devices = torch.cuda.device_count() MINIBATCH = 2 dnase_tensor = torch.from_numpy( tensordict["DNase"][:MINIBATCH]).to(device) rna_tensor = torch.from_numpy( tensordict["RNA"][:MINIBATCH]).to(device) if not regression: response_tensor = prepare_response( tensordict["Response"][:MINIBATCH]) optimizer.zero_grad() labels = response_tensor.long() label_idx = torch.max(labels, 1)[1].to(device) else: label_idx = torch.from_numpy( tensordict["Response"][:MINIBATCH]).to(device) model_init = net( dnase_tensor, rna_tensor) try: loss = criterion( model_init, label_idx) except Exception: loss = criterion( model_init[0], label_idx) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() used_memory = torch.cuda.max_memory_allocated(device) print("Processing 2 batches needs {} GB of GPU memory".format( used_memory / 1e9)) newbatch = MINIBATCH * int(max_memory / used_memory) * num_devices print("Set minibatch size to {}".format(newbatch)) del dnase_tensor, rna_tensor if not regression: del labels, label_idx, model_init, response_tensor else: del label_idx torch.cuda.empty_cache() MINIBATCH = newbatch try: dnase_tensor = torch.from_numpy( tensordict["DNase"][:MINIBATCH]).to(device) rna_tensor = torch.from_numpy( tensordict["RNA"][:MINIBATCH]).to(device) if not regression: response_tensor = prepare_response( tensordict["Response"][:MINIBATCH]) labels = response_tensor.long() label_idx = torch.max(labels, 1)[1].to(device) else: label_idx = torch.from_numpy( tensordict["Response"][:MINIBATCH]).to(device) optimizer.zero_grad() model_init = net( dnase_tensor, rna_tensor) loss = criterion( model_init, label_idx) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() del dnase_tensor, rna_tensor if not regression: del labels, label_idx, model_init, response_tensor else: del label_idx except Exception: newbatch = int(MINIBATCH * 0.8) torch.cuda.empty_cache() return newbatch class Augmentator: def __init__(self, ars, response=[], nucs=["A", "T", "C", "G"]): ''' Accepts a list of arrays to perform a variety of augmentations on them ars: a list of numpy arrays response: response (only needed for .mask_signal) nucs: by default set to A T C G order similar to DataHandler ''' self.ars = ars self.response = response self.nucs = nucs self.dict_nucs = {"A": "T", "T": "A", "C": "G", "G": "C", "N": "N"} def reverse_complement(self): ''' Reverse complements arrays within self.ars ''' list_ars = [] for ar in self.ars: assert len(ar.shape) == 3, "Expects tensor" newar = np.zeros( ar.shape, dtype=np.float16) for i in range(4): nuc = self.nucs[i] rev_nuc = self.dict_nucs[nuc] # i' is the index of the complement nucleotide i_prime = np.where( np.array(self.nucs) == rev_nuc)[0] idx_nuc = np.where(ar[:, i, :] > 0) # for idx_nuc[1] which refers to position, reverse it newar[idx_nuc[0], i_prime, newar.shape[2] - idx_nuc[1] - 1] = \ ar[idx_nuc[0], i, idx_nuc[1]] list_ars.append(newar) return list_ars, self.response def mask_background(self): ''' For positions without any signal, set the values to 0 Signal is identified as value > 0.1 ''' BGVAL = 0.1 # background value list_ars = [] for ar in self.ars: assert len(ar.shape) == 3, "Expects tensor" newar = np.zeros( ar.shape, dtype=np.float16) for i in range(4): idx_add = np.where(ar[:, i, :] > BGVAL) newar[idx_add[0], i, idx_add[1]] = \ ar[idx_add[0], i, idx_add[1]] list_ars.append(newar) return list_ars, self.response def mask_signal(self): ''' Use this type of augmentation to convert a positive example to a negative example. Requires self.response and will set it to 0. ''' assert len(self.response) > 0, "Expects response" BGVAL = 0.1 # background value list_ars = [] for ar in self.ars: assert len(ar.shape) == 3, "Expects tensor" newar = np.zeros( ar.shape, dtype=np.float16) for i in range(4): idx_add = np.where(ar[:, i, :] == BGVAL) newar[idx_add[0], i, idx_add[1]] = \ ar[idx_add[0], i, idx_add[1]] list_ars.append(newar) out_resp = self.response.copy() out_resp[out_resp > 0] = 0 return list_ars, out_resp class DataHandler: def __init__(self, dnasematpath, dnasemetapath, dnaseindexpath, sequencedir, trainchroms, validchroms, validorgans, window=50000, limit=True, select_organs=["default"], select_labels=["default"], tissuespecific=False): ''' Arguments: dnasematpath: Path to dat_FDR01_hg38.txt dnasemetapath: Path to DNaseMetaDataWithAvailableRnas.tsv dnaseindexpath: Path to DHS_Index_and_Vocabulaty... sequencedir: Path to hg38/np trainchroms: List of chromosomes to use for training validchroms: List of chromosomes to use for validation validorgans: List of organs to exclude window: Window size around each specific peak limit: Boolean indicating if should use tissue-specific peaks only. It will ignore trainids and will only use specific tissues outlined in self.select_organs and self.select_labels select_organs: list of organs to limit to select_labels: list of enhancer labels to limit to tissuespecific: If you'd want multiple samples form the same region ''' self.tissuespecific = tissuespecific self.nucs = np.array(["A", "T", "C", "G"]) self.trainchroms = trainchroms self.validchroms = validchroms # self.trainids = trainids # ignore trainids self.validorgans = validorgans self.dnasematpath = dnasematpath self.dnasemetapath = dnasemetapath self.dnaseindexpath = dnaseindexpath self.sequencedir = sequencedir self.window = window self.limit = limit self.dict_indices_train = {} self.select_organs = [ "Brain", "Placenta", "Tongue", "Muscle", "Blood", "Spinal Cord", "Heart", "Lung"] self.select_labels = [ "Neural", "Lymphoid", "Placental / trophoblast", "Musculoskeletal", "Cardiac", "Pulmonary devel."] if select_organs[0] != "default": self.select_organs = select_organs if select_labels[0] != "default": self.select_labels = select_labels self.dictissue = { "Brain": ["Neural"], "Placenta": ["Placental / trophoblast"], "Tonge": ["Musculoskeletal"], "Muscle": ["Musculoskeletal"], "Blood": ["Lymphoid"], "Spinal Cord": ["Neural"], "Heart": ["Cardiac", "Musculoskeletal"], "Lung": ["Pulmonary devel."]} self.process_data() def get_rna(self, idx_region, idx_sample): chrom, summit = [ self.idxdf.iloc[idx_region, j] for j in [0, 6]] start = summit - self.window end = summit + self.window chrom_seq = self.get_seq(chrom) rnatensor = self.initiate_seq( chrom_seq, start, end) if start < 0: start = 0 tempdf = self.metadf.iloc[idx_sample, :] rnapaths = tempdf["RnaPaths"].split(",") list_rnas = [] for rnapath in rnapaths: rnatensorlocal = rnatensor.copy() try: bw = pyBigWig.open(rnapath) except Exception: print("Check {}".format(rnapath)) raise ValueError("BigWig issue, check logs") chrom_max = bw.chroms()[chrom] if end > chrom_max: end = chrom_max signal = bw.values(chrom, start, end, numpy=True) signal[np.isinf(signal)] = max( signal[np.logical_not(np.isinf(signal))]) for j in range(len(self.nucs)): nuc = self.nucs[j].encode() i = np.where( np.logical_and( signal > 0, chrom_seq[start:end] == nuc))[0] rnatensorlocal[j, i] = rnatensorlocal[j, i] + signal[i] list_rnas.append(rnatensorlocal) if len(list_rnas) == 1: rnatensor = list_rnas[0] else: rnatensor = np.zeros(rnatensor.shape) for each in list_rnas: rnatensor = rnatensor + each rnatensor = rnatensor / len(list_rnas) return rnatensor def process_data(self): # dnasemat = pd.read_csv(self.dnasematpath, sep="\t") self.metadf = pd.read_csv(self.dnasemetapath, sep="\t") self.metadf["Index"] = np.arange(self.metadf.shape[0]) self.idxdf = pd.read_csv( self.dnaseindexpath, sep="\t", compression="gzip") self.idxdf["Index"] = np.arange(self.idxdf.shape[0]) if self.limit: self.metadf = self.metadf[ self.metadf["Organ"].isin(self.select_organs)] self.idxdf = self.idxdf[ self.idxdf["component"].isin(self.select_labels)] trainiddf = self.metadf[ np.logical_not(pd.isna(self.metadf["RnaPaths"]))] self.trainorgans = [ each for each in
pd.unique(trainiddf["Organ"])
pandas.unique
# -*- coding: utf-8 -*- """ Created on Mon Feb 15 17:07:38 2021 @author: perger """ # import packages import pandas as pd from datetime import timedelta, datetime import pyam import FRESH_clustering from pathlib import Path import glob # Model name and version, scenario, region model_name = 'FRESH:COM v2.0' scenario_name = 'Default scenario' region_name = 'Austria' #filename_community = 'Input_data_community_IAMC.xlsx' filename_grid = 'Input_data_grid_IAMC.csv' filename_output = 'output_iamc.xlsx' clustering = True # Aggregation in the time domain: preparation time_zone = '+01:00' # deviation from UTC (+01:00 is CET) start_date = '2019-01-01 00:00' # YYYY-MM-DD HH:MM number_days = 365 delta = timedelta(hours=1) # resolution ... hourly time_steps = [] for t in range(24*number_days): time_steps.append((datetime.fromisoformat(start_date+time_zone)+t*delta)) index_time = list(range(len(time_steps))) # Read Input Data (from the IAMC Format) # input data of prosuemr #_p = Path('Input_data/Prosumer_data') prosumer_files = {} prosumer = [] for file in glob.glob("*.csv"): i = Path(file).stem if i.startswith('Prosumer'): prosumer.append(i) prosumer_files[i] = Path(file) #file_community = pd.ExcelFile(filename_community) #prosumer = file_community.sheet_names # Electricity demand, PV generation, and other prosumer data variable_load = 'Final Energy|Residential and Commercial|Electricity' variable_PV = 'Secondary Energy|Electricity|Solar|PV' SoC_max = 'Maximum Storage|Electricity|Energy Storage System' SoC_min = 'Minimum Storage|Electricity|Energy Storage System' q_bat_max = 'Maximum Charge|Electricity|Energy Storage System' q_bat_min = 'Maximum Discharge|Electricity|Energy Storage System' PV_capacity = 'Maximum Active power|Electricity|Solar' w = 'Price|Carbon' _a = [SoC_max, SoC_min, q_bat_max, q_bat_min, PV_capacity, w] load = pd.DataFrame() PV = pd.DataFrame() prosumer_data =
pd.DataFrame()
pandas.DataFrame
# License: Apache-2.0 import databricks.koalas as ks import pandas as pd import numpy as np import pytest from pandas.testing import assert_frame_equal from gators.imputers.numerics_imputer import NumericsImputer from gators.imputers.int_imputer import IntImputer from gators.imputers.float_imputer import FloatImputer from gators.imputers.object_imputer import ObjectImputer ks.set_option('compute.default_index_type', 'distributed-sequence') @pytest.fixture() def data(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', None], 'F': ['a', 'a', 's', np.nan]}) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}) X_object_expected = pd.DataFrame( {'E': ['q', 'w', 'w', 'MISSING'], 'F': ['a', 'a', 's', 'MISSING']}) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, 'object': X_object_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_num(): X_int = pd.DataFrame( {'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}, dtype=np.float32) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}, dtype=np.float32) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}, dtype=np.float32) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}, dtype=np.float32) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) X_dict = { 'int': X_int, 'float': X_float, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_no_missing(): X_int = pd.DataFrame({'A': [0, 1, 1, 8], 'B': [3, 4, 4, 8]}, dtype=int) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 9.], 'D': [2.1, 3.1, 4.1, 9.]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', 'x'], 'F': ['a', 'a', 's', 'x']}) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_expected_dict = { 'int': X_int.copy(), 'float': X_float.copy(), 'object': X_object.copy(), } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture def data_full(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, 1.1, 3.1, 'w', 'a']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int = IntImputer(strategy='constant', value=-9).fit(X) obj_float = FloatImputer(strategy='median').fit(X) obj_object = ObjectImputer(strategy='most_frequent').fit(X) objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X, X_expected @pytest.fixture() def data_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', None], 'F': ['a', 'a', 's', np.nan]}) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}) X_object_expected = pd.DataFrame( {'E': ['q', 'w', 'w', 'MISSING'], 'F': ['a', 'a', 's', 'MISSING']}) X_int_ks = ks.from_pandas(X_int) X_float_ks = ks.from_pandas(X_float) X_object_ks = ks.from_pandas(X_object) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_dict = { 'int': X_int_ks, 'float': X_float_ks, 'object': X_object_ks, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, 'object': X_object_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_num_ks(): X_int = ks.DataFrame( {'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}, dtype=np.float32) X_float = ks.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}, dtype=np.float32) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}, dtype=np.float32) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}, dtype=np.float32) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) X_dict = { 'int': X_int, 'float': X_float, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_no_missing_ks(): X_int = ks.DataFrame({'A': [0, 1, 1, 8], 'B': [3, 4, 4, 8]}, dtype=int) X_float = ks.DataFrame( {'C': [0.1, 1.1, 2.1, 9.], 'D': [2.1, 3.1, 4.1, 9.]}) X_object = ks.DataFrame( {'E': ['q', 'w', 'w', 'x'], 'F': ['a', 'a', 's', 'x']}) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_expected_dict = { 'int': X_int.to_pandas().copy(), 'float': X_float.to_pandas().copy(), 'object': X_object.to_pandas().copy(), } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture def data_full_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = ks.from_pandas(pd.concat([X_int, X_float, X_object], axis=1)) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, 1.1, 3.1, 'w', 'a']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int = IntImputer(strategy='constant', value=-9).fit(X) obj_float = FloatImputer(strategy='median').fit(X) obj_object = ObjectImputer(strategy='most_frequent').fit(X) objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X, X_expected def test_int_pd(data): objs_dict, X_dict, X_expected_dict = data assert_frame_equal( objs_dict['int'].transform(X_dict['int']), X_expected_dict['int'], ) def test_float_pd(data): objs_dict, X_dict, X_expected_dict = data assert_frame_equal( objs_dict['float'].transform( X_dict['float']), X_expected_dict['float'], ) def test_object_pd(data): objs_dict, X_dict, X_expected_dict = data assert_frame_equal( objs_dict['object'].transform( X_dict['object']), X_expected_dict['object'], ) @pytest.mark.koalas def test_int_ks(data_ks): objs_dict, X_dict, X_expected_dict = data_ks assert_frame_equal( objs_dict['int'].transform(X_dict['int']).to_pandas(), X_expected_dict['int'],) @pytest.mark.koalas def test_float_ks(data_ks): objs_dict, X_dict, X_expected_dict = data_ks assert_frame_equal( objs_dict['float'].transform(X_dict['float']).to_pandas(), X_expected_dict['float']) @pytest.mark.koalas def test_object_ks(data_ks): objs_dict, X_dict, X_expected_dict = data_ks assert_frame_equal( objs_dict['object'].transform(X_dict['object']).to_pandas(), X_expected_dict['object'], ) def test_int_pd_np(data): objs_dict, X_dict, X_expected_dict = data X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) def test_float_pd_np(data): objs_dict, X_dict, X_expected_dict = data X_new_np = objs_dict['float'].transform_numpy(X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) def test_object_pd_np(data): objs_dict, X_dict, X_expected_dict = data X_new_np = objs_dict['object'].transform_numpy(X_dict['object'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['object'].columns) assert_frame_equal(X_new, X_expected_dict['object']) @pytest.mark.koalas def test_int_ks_np(data_ks): objs_dict, X_dict, X_expected_dict = data_ks X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) @pytest.mark.koalas def test_float_ks_np(data_ks): objs_dict, X_dict, X_expected_dict = data_ks X_new_np = objs_dict['float'].transform_numpy( X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) @pytest.mark.koalas def test_object_ks_np(data_ks): objs_dict, X_dict, X_expected_dict = data_ks X_new_np = objs_dict['object'].transform_numpy( X_dict['object'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['object'].columns) assert_frame_equal(X_new, X_expected_dict['object']) def test_num_int_pd(data_num): objs_dict, X_dict, X_expected_dict = data_num assert_frame_equal( objs_dict['int'].transform(X_dict['int']), X_expected_dict['int'], ) def test_num_float_pd(data_num): objs_dict, X_dict, X_expected_dict = data_num assert_frame_equal( objs_dict['float'].transform( X_dict['float']), X_expected_dict['float'], ) @pytest.mark.koalas def test_num_int_ks(data_num_ks): objs_dict, X_dict, X_expected_dict = data_num_ks assert_frame_equal(objs_dict['int'].transform( X_dict['int'].to_pandas()), X_expected_dict['int'], ) @pytest.mark.koalas def test_num_float_ks(data_num_ks): objs_dict, X_dict, X_expected_dict = data_num_ks assert_frame_equal(objs_dict['float'].transform( X_dict['float'].to_pandas()), X_expected_dict['float'], ) def test_num_int_pd_np(data_num): objs_dict, X_dict, X_expected_dict = data_num X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) def test_num_float_pd_np(data_num): objs_dict, X_dict, X_expected_dict = data_num X_new_np = objs_dict['float'].transform_numpy(X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns)
assert_frame_equal(X_new, X_expected_dict['float'])
pandas.testing.assert_frame_equal
__all__ = ['class_error', 'groupScatter', 'linear_spline', 'lm', 'mae', 'plotPrediction', 'plot_hist', 'r2', 'statx', 'winsorize',] import riptable as rt import numpy as np from .rt_enum import TypeRegister from .rt_fastarray import FastArray from .rt_numpy import zeros # extra classes import pandas as pd from bokeh.plotting import output_notebook, figure, show from bokeh.models import Label #TODO: Organize the functions in here better #TODO: Add documentation #TODO: Replace pandas dependence with display util def statx(X): if not isinstance(X, np.ndarray): X = np.array(X) pVals = [0.1, 1, 10, 25, 50, 75, 90, 99, 99.9] pValNames = ['min', '0.1%', '1%', '10%', '25%', '50%', '75%', '90%','99%','99.9%' , 'max' , 'Mean', 'StdDev', 'Count', 'NaN_Count'] filt = np.isfinite(X) X_sub = X[filt] vals = np.percentile(X_sub,pVals) vals =np.insert(vals,0,np.min(X_sub)) vals =np.append(vals,np.max(X_sub)) vals = np.append(vals,np.mean(X_sub)) vals = np.append(vals,np.std(X_sub)) validcount = np.sum(filt) # plain count vals = np.append(vals, X.size) #nancount vals = np.append(vals, np.sum(np.isnan(X))) out = pd.DataFrame({'Stat' : pValNames ,'Value' : vals}) return out #NOTE: people might prefer name clip/bound? def winsorize(Y, lb, ub): out = np.maximum(np.minimum(Y, ub), lb) return out def plot_hist(Y, bins): df = pd.DataFrame({'Y': Y}) df.hist(bins=bins) def r2(X, Y): # why are these flipped back? xmean = np.mean(X) ymean = np.mean(Y) xycov = np.mean(np.multiply((X - xmean), (Y - ymean))) xvar = np.var(X) yvar = np.var(Y) r2_value = (xycov * xycov) / (xvar * yvar) return r2_value def mae(X, Y): return np.nanmean(np.abs(X - Y)) def class_error(X, Y): X2 = np.round(X) Y2 = np.round(Y) class_err = np.sum(np.abs(X2 - Y2)) / X2.shape[0] return class_err def lm(X, Y, intercept=True, removeNaN=True, displayStats=True): #TODO: Better display for stats X0 = X.copy() Y0 = Y.copy() if len(X0.shape) == 1: X0 = X0.reshape(X0.shape[0], 1) if len(Y0.shape) == 1: Y0 = Y0.reshape(Y0.shape[0], 1) if intercept: X0 = np.hstack([np.ones((X0.shape[0],1)), X0]) if removeNaN: goodData = ~np.isnan(np.sum(X0, axis=1)) & ~np.isnan(np.sum(Y0, axis=1)) X0 = X0[goodData, :] Y0 = Y0[goodData, :] VXX = np.matmul(np.transpose(X0), X0) VXY = np.matmul(np.transpose(X0), Y0) coeff = np.linalg.solve(VXX, VXY) if displayStats: YHat = np.matmul(X0, coeff) err = Y0 - YHat err = err.reshape(Y0.shape[0], Y0.shape[1]) RMS = np.sqrt(np.mean(err * err)) MAE = np.mean(np.abs(err)) A = np.linalg.solve(VXX, np.transpose(X0)) SE = np.sqrt(np.sum(A * A, axis=1)) * RMS tStat = coeff / SE.reshape(coeff.shape[0], 1) R = np.mean(YHat * Y0) / (np.std(YHat) * np.std(Y0)) R2 = R * R print('R2 = ', R2) print('RMSE = ', RMS) print('MAE = ', MAE) print('tStats: ') print(tStat) return coeff def linear_spline(X0, Y0, knots, display = True): X = X0.copy() Y = Y0.copy() X = X.reshape(X.shape[0], 1) Y = Y.reshape(Y.shape[0], 1) knots.sort() numKnots = len(knots) goodData = ~np.isnan(X) & ~np.isnan(Y) X = X[goodData] Y = Y[goodData] XAug = np.nan * np.zeros((X.shape[0], 2 + numKnots)) XAug[:, 0] = np.ones_like(X) XAug[:, 1] = X for j in range(numKnots): XAug[:, 2 + j] = np.maximum(X - knots[j], 0.0) coeff = lm(XAug, Y, intercept=False, removeNaN=True, displayStats=False) YHat = np.matmul(XAug, coeff) X_uniq, X_idx = np.unique(X, return_index=True) YHat_uniq = YHat[X_idx] # idx = X_uniq <= ub & X_uniq >= lb output_notebook() # create a new plot p = figure(tools="pan,box_zoom,reset,save", title="example", x_axis_label='sections', y_axis_label='particles') p.circle(X_uniq.flatten(), YHat_uniq.flatten(), legend="y", fill_color="red", size=8) if display: show(p) return knots, coeff #TODO: Make formatting aware of environment, e.g., Spyder, jupyter, etc. in groupScatter and plotPrediction #NOTE: Can we use regPlot from seaborn #won't display in jupyter lab #better auto-detect bounds #suppress nan warnings def plotPrediction(X, Yhat, Y, N, lb=None, ub=None): if lb is None: lowerBound = np.nanmin(X) else: lowerBound = lb if lb is None: upperBound = np.nanmax(X) else: upperBound = ub goodFilt = np.isfinite(X) & np.isfinite(Y) & (X <= upperBound) & (X >= lowerBound) & \ np.isfinite(Yhat) & np.isfinite(Y) dF =
pd.DataFrame({'X': X[goodFilt], 'Y': Y[goodFilt], 'Yhat': Yhat[goodFilt]})
pandas.DataFrame
import pandas as pd import numpy as np import datetime from django.core.files import File from django.core.exceptions import ObjectDoesNotExist from fixtures_functions import * from main.functions import max_num_asiento, crea_asiento_simple, extraer_asientos, crear_asientos, valida_simple, valida_compleja class TestMaxNumAsiento: def test_get_max_num_asiento(self, populate_database): _, _, movimientos = populate_database nums = [ m.num for m in movimientos ] assert max(nums) == max_num_asiento() def test_get_max_num_asiento_empty_db(self): assert max_num_asiento() == 0 class TestCreaAsientoSimple: def test_crea_asiento_values(self, populate_database): _, cuentas, _ = populate_database simple = { 'num': 500, 'fecha': datetime.date(2022, 1, 26), 'descripcion': 'Descripción del movimiento', 'valor': 352.55, 'debe': cuentas[0], 'haber': cuentas[1], } crea_asiento_simple(simple) asiento = Movimiento.objects.filter(num=500) for movimiento in asiento: assert movimiento.num == simple['num'] assert movimiento.fecha == simple['fecha'] assert movimiento.descripcion == simple['descripcion'] assert float(movimiento.debe) in [simple['valor'], 0.0] assert float(movimiento.haber) in [simple['valor'], 0.0] assert movimiento.cuenta == cuentas[0] or cuentas[1] def test_crea_asiento_as_strings(self, populate_database): _, cuentas, _ = populate_database # providing the values as strings, as provided by form simple = { 'num': 500, 'fecha': '2022-01-26', 'descripcion': 'Descripción del movimiento', 'valor': '352.55', 'debe': cuentas[0], 'haber': cuentas[1], } crea_asiento_simple(simple) asiento = Movimiento.objects.filter(num=500) for movimiento in asiento: assert movimiento.num == simple['num'] assert movimiento.fecha == datetime.date.fromisoformat(simple['fecha']) assert movimiento.descripcion == simple['descripcion'] assert float(movimiento.debe) in [float(simple['valor']), 0.0] assert float(movimiento.haber) in [float(simple['valor']), 0.0] assert movimiento.cuenta == cuentas[0] or cuentas[1] class TestExtraerAsientos: def test_loading_good_file_plantilla_simple(self): f = open('main/tests/data/plantilla.xlsx', 'rb') simple, _ = extraer_asientos(File(f)) assert isinstance(simple, pd.DataFrame) for col in ['Fecha', 'Descripción', 'Valor', 'Debe', 'Haber']: assert col in simple.columns assert len(simple) == 4 for descr in ['Pan', 'Pizzas Telepizza', 'Gasolina coche', 'Hipoteca']: assert descr in list(simple['Descripción']) def test_loading_good_file_plantilla_compleja(self): f = open('main/tests/data/plantilla.xlsx', 'rb') _, compleja = extraer_asientos(File(f)) assert isinstance(compleja, pd.DataFrame) for col in ['id', 'Fecha', 'Descripción', 'Debe', 'Haber', 'Cuenta']: assert col in compleja.columns assert len(compleja) == 6 for descr in ['Cena en el restaurante', 'Cena en el restaurante propina', 'Factura EDP - gas y electricidad', 'Factura EDP - gas', 'Factura EDP - electricidad']: assert descr in list(compleja['Descripción']) # test on an excel with wrong format, and a non-excel file @pytest.mark.parametrize('filename', ['empty_file.xlsx', 'logo.svg']) def test_loading_bad_file_plantilla_simple(self, filename): f = open('main/tests/data/'+filename, 'rb') simple, _ = extraer_asientos(File(f)) assert isinstance(simple, pd.DataFrame) for col in ['Fecha', 'Descripción', 'Valor', 'Debe', 'Haber']: assert col in simple.columns assert len(simple) == 0 # test on an excel with wrong format, and a non-excel file @pytest.mark.parametrize('filename', ['empty_file.xlsx', 'logo.svg']) def test_loading_bad_file_plantilla_compleja(self, filename): f = open('main/tests/data/'+filename, 'rb') _, compleja = extraer_asientos(File(f)) assert isinstance(compleja, pd.DataFrame) for col in ['id', 'Fecha', 'Descripción', 'Debe', 'Haber', 'Cuenta']: assert col in compleja.columns assert len(compleja) == 0 class TestCrearAsientos: @pytest.fixture def create_asiento_simple_dataframe(self, populate_database_cuentas): _, cuentas = populate_database_cuentas asiento_dict = { 'Fecha': ['2022-01-10', '2022-01-11', '2022-01-12', '2022-01-13'], 'Descripción': [ f'Movimiento {n+1}' for n in range(4) ], 'Valor': [10.10, 11.11, 12.12, 13.13], 'Debe': [cuentas[0].num]*4, 'Haber': [cuentas[1].num]*4, } simple_df =
pd.DataFrame(asiento_dict)
pandas.DataFrame
"""Combine demand, hydro, wind, and solar traces into a single DataFrame""" import os import time import pandas as pd import matplotlib.pyplot as plt def _pad_column(col, direction): """Pad values forwards or backwards to a specified date""" # Drop missing values df = col.dropna() # Convert to DataFrame df = df.to_frame() # Options that must change depending on direction in which to pad if direction == 'forward': keep = 'last' new_index = pd.date_range(start=df.index[0], end='2051-01-01 00:00:00', freq='1H') elif direction == 'backward': keep = 'first' new_index = pd.date_range(start='2016-01-01 01:00:00', end=df.index[-1], freq='1H') else: raise Exception(f'Unexpected direction: {direction}') # Update index df = df.reindex(new_index) def _get_hour_of_year(row): """Get hour of year""" # Get day of year - adjust by 1 minute so last timestamp (2051-01-01 00:00:00) # is assigned to 2050. Note this timestamp actually corresponds to the interval # 2050-12-31 23:00:00 to 2051-01-01 00:00:00 day_timestamp = row.name - pd.Timedelta(minutes=1) # Day of year day = day_timestamp.dayofyear # Hour of year hour = ((day - 1) * 24) + day_timestamp.hour + 1 return hour # Hour of year df['hour_of_year'] = df.apply(_get_hour_of_year, axis=1).to_frame('hour_of_year') # Last year with complete data fill_year = df.dropna(subset=[col.name]).drop_duplicates(subset=['hour_of_year'], keep=keep) # DataFrame that will have values padded forward padded = df.reset_index().set_index('hour_of_year') # Pad using values from last year with complete data padded.update(fill_year.set_index('hour_of_year'), overwrite=False) # Set timestamp as index padded = padded.set_index('index') # Return series padded = padded[col.name] return padded def pad_dataframe(col): """Apply padding - forwards and backwards for each column in DataFrame""" # Pad values forwards padded = _pad_column(col, direction='forward') # Pad values backwards padded = _pad_column(padded, direction='backward') return padded def format_wind_traces(data_dir): """Format wind traces""" # Load wind traces df = pd.read_hdf(os.path.join(data_dir, 'wind_traces.h5')) # Reset index and pivot df = df.reset_index().pivot(index='timestamp', columns='bubble', values='capacity_factor') # Pad data forward df = df.apply(pad_dataframe) # Add level to column index df.columns = pd.MultiIndex.from_product([['WIND'], df.columns]) return df def format_demand_traces(data_dir, root_data_dir): """ Format demand traces Note: Only considering the 'neutral' demand scenario """ # Construct directory containing network data network_dir = os.path.join(root_data_dir, 'files', 'egrimod-nem-dataset-v1.3', 'akxen-egrimod-nem-dataset-4806603', 'network') # Load demand traces df_region_demand = pd.read_hdf(os.path.join(data_dir, 'demand_traces.h5')) # Only consider neutral demand scenario df_region_demand = df_region_demand.loc[df_region_demand['scenario'] == 'Neutral', :] # Reindex and pivot df_region_demand = df_region_demand.reset_index().pivot(index='timestamp', columns='region', values='demand') # Add suffix so region IDs are consistent with other MMSDM datasets df_region_demand = df_region_demand.add_suffix('1') # Network nodes df_nodes = pd.read_csv(os.path.join(network_dir, 'network_nodes.csv'), index_col='NODE_ID') # Proportion of region demand consumed in each zone df_allocation = df_nodes.groupby(['NEM_REGION', 'NEM_ZONE'])['PROP_REG_D'].sum() df_zone_demand = pd.DataFrame(index=df_region_demand.index, columns=df_allocation.index) # Demand for each zone def _get_zone_demand(row): """Disaggregate region demand into zonal demand""" # Demand in each zone zone_demand = df_allocation.loc[(row.name[0], row.name[1])] * df_region_demand[row.name[0]] return zone_demand # Demand in each zone df_zone_demand = df_zone_demand.apply(_get_zone_demand) # Remove region ID from column index df_zone_demand = df_zone_demand.droplevel(0, axis=1) # Pad corresponding day-hour values to extend the series to a specified date df_zone_demand = df_zone_demand.apply(pad_dataframe) # Add label to columns df_zone_demand.columns = pd.MultiIndex.from_product([['DEMAND'], df_zone_demand.columns]) return df_zone_demand def format_solar_traces(data_dir): """Format solar data""" # Solar traces df = pd.read_hdf(os.path.join(data_dir, 'solar_traces.h5')) # Pivot so different solar technologies and their respective zones constitute the columns # and timestamps the index df = df.reset_index().pivot_table(index='timestamp', columns=['zone', 'technology'], values='capacity_factor') # Merge column index levels so NEM zone and technology represented in single label df.columns = df.columns.map('|'.join).str.strip('|') # Pad dates (ensure data starts from 2016 and ends at end of 2050) df = df.apply(pad_dataframe) # Add column index denoting solar data df.columns = pd.MultiIndex.from_product([['SOLAR'], df.columns]) return df def format_hydro_traces(data_dir): """ Repeat hydro traces for each year in model horizon Note: Assuming that hydro traces are mainly influenced by seasonal weather events, and similar cycles are observed year to year. Signals in 2016 are repeated for corresponding hour-day-months in the following years. E.g. hydro output on 2016-01-06 05:00:00 is the same on 2030-01-06 05:00:00. """ # Hydro traces df = pd.read_hdf(os.path.join(data_dir, 'hydro_traces.h5')) # Add hour, day, month to DataFrame df['hour'] = df.index.hour df['day'] = df.index.day df['month'] = df.index.month # Construct new DataFrame with index from 2016 - 2050 model_horizon_index =
pd.date_range(start='2016-01-01 01:00:00', end='2051-01-01 00:00:00', freq='1H')
pandas.date_range
import pandas as pd import cx_Oracle import time import os from datetime import date import omdt as odt import xlwings import wait_handdle as wth pt = os.getcwd() today = date.today() omdb = os.getcwd() + "\\" + "OMDB.csv" # lambda <args> : <return Value> if <condition > ( <return value > if <condition> else <return value>) TS = lambda x: '2G' if ('2G SITE DOWN' in x) \ else ('3G' if ('3G SITE DOWN' in x) \ else ('4G' if ('4G SITE DOWN' in x) \ else ('MF' if ('MAIN' in x) \ else ('DC' if ('VOLTAGE' in x) \ else "NA")))) ExTime = int(time.strftime("%M")) print(ExTime) def timex(): t = time.localtime() curr_tm = time.strftime("%H%M", t) return curr_tm def MACRO_RUN(fpth,comnd): if comnd=='EX': excelpath = os.getcwd() + '\\xlsF\\A_SEMRW.xlsm' filepath = fpth excel_app = xlwings.App(visible=False) excel_book = excel_app.books.open(excelpath) x = excel_book.macro('init') x(filepath) time.sleep( 30 ) return 'success' else: return 'Not Executed' def qry_tg(tbl,usr, pas, selcol): conn = cx_Oracle.connect(usr, pas, 'ossam-cluster-scan.robi.com.bd:1721/RBPB.robi.com.bd') print(conn.version) tim = time.localtime() foldr = os.getcwd() + "\\download\\" + today.strftime('%m%d%y') + time.strftime("%H%M", tim) + '_' + tbl + '.csv' dy_p = odt.day_minus(7) dy_f = odt.day_plus(1) Q1 = "FROM " + tbl + " WHERE TYPE=1 AND Severity BETWEEN 1 AND 5 " Q2 = "AND (LASTOCCURRENCE BETWEEN TO_DATE('" + dy_p + "','DD-MM-RRRR') AND TO_DATE('" + dy_f + "','DD-MM-RRRR'))" QF = "SELECT" + selcol + Q1 + Q2 print(QF) print('----------------') print(timex()) df = pd.read_sql(QF, con=conn) print(timex()) df2g = df[df['SUMMARY'].str.contains('2G SITE DOWN')] df3g = df[df['SUMMARY'].str.contains('3G SITE DOWN')] df4g = df[df['SUMMARY'].str.contains('4G SITE DOWN')] dfmf = df[df['SUMMARY'].str.contains('MAIN')] dfdl = df[df['SUMMARY'].str.contains('DC LOW')] dftmp = df[df['SUMMARY'].str.contains('TEMP')] dfcell = df[df['SUMMARY'].str.contains('CELL DOWN')] dfth = df[df['SUMMARY'].str.contains('ERI-RRU THEFT')] df_cnct = [df2g,df3g,df4g,dfmf,dfdl,dftmp,dfcell,dfth] df_all =
pd.concat(df_cnct)
pandas.concat
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with tm.assert_raises_regex(TypeError, msg): addend + dti_tz # ------------------------------------------------------------- def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_ufunc_coercions(self): idx = date_range('2011-01-01', periods=3, freq='2D', name='x') delta = np.timedelta64(1, 'D') for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2011-01-02', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2010-12-31', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' delta = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D'), np.timedelta64(3, 'D')]) for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-08'], freq='3D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '3D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2010-12-31', '2011-01-01', '2011-01-02'], freq='D', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'D' def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(['now', pd.Timestamp.max]) dtimin =
pd.to_datetime(['now', pd.Timestamp.min])
pandas.to_datetime
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import collections import numpy as np import re from numpy import array from statistics import mode import pandas as pd import warnings import copy from joblib import Memory from itertools import chain import ast import timeit from sklearn.neighbors import KNeighborsClassifier # 1 neighbors from sklearn.svm import SVC # 1 svm from sklearn.naive_bayes import GaussianNB # 1 naive bayes from sklearn.neural_network import MLPClassifier # 1 neural network from sklearn.linear_model import LogisticRegression # 1 linear model from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models from joblib import Parallel, delayed import multiprocessing from sklearn.pipeline import make_pipeline from sklearn import model_selection from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from imblearn.metrics import geometric_mean_score import umap from sklearn.metrics import classification_report from sklearn.preprocessing import scale import eli5 from eli5.sklearn import PermutationImportance from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import RFE from sklearn.decomposition import PCA from mlxtend.classifier import StackingCVClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit from scipy.spatial import procrustes # This block of code == for the connection between the server, the database, and the client (plus routing). # Access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def Reset(): global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global dataSpacePointsIDs dataSpacePointsIDs = [] global previousStateActive previousStateActive = [] global StanceTest StanceTest = False global status status = True global factors factors = [1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1] global KNNModelsCount global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount global keyData keyData = 0 KNNModelsCount = 0 SVCModelsCount = 576 GausNBModelsCount = 736 MLPModelsCount = 1236 LRModelsCount = 1356 LDAModelsCount = 1996 QDAModelsCount = 2196 RFModelsCount = 2446 ExtraTModelsCount = 2606 AdaBModelsCount = 2766 GradBModelsCount = 2926 global XData XData = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 5 # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] return 'The reset was done!' # Retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def RetrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global XData XData = [] global previousState previousState = [] global previousStateActive previousStateActive = [] global status status = True global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 # models global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels KNNModels = [] SVCModels = [] GausNBModels = [] MLPModels = [] LRModels = [] LDAModels = [] QDAModels = [] RFModels = [] ExtraTModels = [] AdaBModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() elif data['fileName'] == 'BiodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) DataSetSelection() return 'Everything is okay' def Convert(lst): it = iter(lst) res_dct = dict(zip(it, it)) return res_dct # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def SendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' # Sent data to client @app.route('/data/ClientRequest', methods=["GET", "POST"]) def CollectionData(): json.dumps(DataResultsRaw) response = { 'Collection': DataResultsRaw } return jsonify(response) def DataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' def callPreResults(): global XData global yData global target_names global impDataInst DataSpaceResMDS = FunMDS(XData) DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = DataSpaceResTSNE.tolist() DataSpaceUMAP = FunUMAP(XData) XDataJSONEntireSetRes = XData.to_json(orient='records') global preResults preResults = [] preResults.append(json.dumps(target_names)) # Position: 0 preResults.append(json.dumps(DataSpaceResMDS)) # Position: 1 preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2 preResults.append(json.dumps(yData)) # Position: 3 preResults.append(json.dumps(AllTargets)) # Position: 4 preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5 preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6 preResults.append(json.dumps(impDataInst)) # Position: 7 # Sending each model's results to frontend @app.route('/data/requestDataSpaceResults', methods=["GET", "POST"]) def SendDataSpaceResults(): global preResults callPreResults() response = { 'preDataResults': preResults, } return jsonify(response) # Main function if __name__ == '__main__': app.run() # Debugging and mirroring client @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): if app.debug: return requests.get('http://localhost:8080/{}'.format(path)).text return render_template("index.html") # This block of code is for server computations def column_index(df, query_cols): cols = df.columns.values sidx = np.argsort(cols) return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist() def class_feature_importance(X, Y, feature_importances): N, M = X.shape X = scale(X) out = {} for c in set(Y): out[c] = dict( zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances) ) return out @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/EnsembleMode', methods=["GET", "POST"]) def EnsembleMethod(): global crossValidation global RANDOM_SEED global XData RANDOM_SEED = 42 RetrievedStatus = request.get_data().decode('utf8').replace("'", '"') RetrievedStatus = json.loads(RetrievedStatus) modeMethod = RetrievedStatus['defaultModeMain'] if (modeMethod == 'blend'): crossValidation = ShuffleSplit(n_splits=1, test_size=.20, random_state=RANDOM_SEED) else: crossValidation = 5 return 'Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def RetrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] toggle = RetrievedModel['Toggle'] global crossValidation global XData global yData global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount # loop through the algorithms global allParametersPerformancePerModel start = timeit.default_timer() print('CVorTT', crossValidation) for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = 0 elif (eachAlgor) == 'SVC': clf = SVC(probability=True,random_state=RANDOM_SEED) params = {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']} AlgorithmsIDsEnd = SVCModelsCount elif (eachAlgor) == 'GauNB': clf = GaussianNB() params = {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))} AlgorithmsIDsEnd = GausNBModelsCount elif (eachAlgor) == 'MLP': clf = MLPClassifier(random_state=RANDOM_SEED) params = {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} AlgorithmsIDsEnd = MLPModelsCount elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} AlgorithmsIDsEnd = LRModelsCount elif (eachAlgor) == 'LDA': clf = LinearDiscriminantAnalysis() params = {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']} AlgorithmsIDsEnd = LDAModelsCount elif (eachAlgor) == 'QDA': clf = QuadraticDiscriminantAnalysis() params = {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))} AlgorithmsIDsEnd = QDAModelsCount elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = RFModelsCount elif (eachAlgor) == 'ExtraT': clf = ExtraTreesClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = ExtraTModelsCount elif (eachAlgor) == 'AdaB': clf = AdaBoostClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']} AlgorithmsIDsEnd = AdaBModelsCount else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} AlgorithmsIDsEnd = GradBModelsCount allParametersPerformancePerModel = GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossValidation) # New visualization - model space # header = "model_id,algorithm_id,mean_test_accuracy,mean_test_precision_micro,mean_test_precision_macro,mean_test_precision_weighted,mean_test_recall_micro,mean_test_recall_macro,mean_test_recall_weighted,mean_test_roc_auc_ovo_weighted,geometric_mean_score_micro,geometric_mean_score_macro,geometric_mean_score_weighted,matthews_corrcoef,f5_micro,f5_macro,f5_weighted,f1_micro,f1_macro,f1_weighted,f2_micro,f2_macro,f2_weighted,log_loss\n" # dataReceived = [] # counter = 0 # for indx, el in enumerate(allParametersPerformancePerModel): # dictFR = json.loads(el) # frame = pd.DataFrame.from_dict(dictFR) # for ind, elInside in frame.iterrows(): # counter = counter + 1 # dataReceived.append(str(counter)) # dataReceived.append(',') # dataReceived.append(str(indx+1)) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_accuracy'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_roc_auc_ovo_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['matthews_corrcoef'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['log_loss'])) # dataReceived.append("\n") # dataReceivedItems = ''.join(dataReceived) # csvString = header + dataReceivedItems # fw = open ("modelSpace.csv","w+",encoding="utf-8") # fw.write(csvString) # fw.close() # call the function that sends the results to the frontend stop = timeit.default_timer() print('Time GridSearch: ', stop - start) SendEachClassifiersPerformanceToVisualize() return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossVal): print('loop') # this is the grid we use to train the models grid = GridSearchCV( estimator=clf, param_grid=params, cv=crossVal, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities grid.fit(XData, yData) # process the results cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): modelsIDs.append(AlgorithmsIDsEnd+i) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersPerformancePerModel = parametersPerformancePerModel.to_json() parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(str(index)) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] PerClassMetric = [] perModelProb = [] perModelPrediction = [] resultsMicro = [] resultsMacro = [] resultsWeighted = [] resultsCorrCoef = [] resultsMicroBeta5 = [] resultsMacroBeta5 = [] resultsWeightedBeta5 = [] resultsMicroBeta1 = [] resultsMacroBeta1 = [] resultsWeightedBeta1 = [] resultsMicroBeta2 = [] resultsMacroBeta2 = [] resultsWeightedBeta2 = [] resultsLogLoss = [] resultsLogLossFinal = [] loop = 8 # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() #impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs) for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) if (toggle == 1): perm = PermutationImportance(clf, cv = None, refit = True, n_iter = 25).fit(XData, yData) permList.append(perm.feature_importances_) n_feats = XData.shape[1] PerFeatureAccuracy = [] for i in range(n_feats): scores = model_selection.cross_val_score(clf, XData.values[:, i].reshape(-1, 1), yData, cv=5) PerFeatureAccuracy.append(scores.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) else: permList.append(0) PerFeatureAccuracyAll.append(0) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) perModelPrediction.append(yPredict) # retrieve target names (class names) PerClassMetric.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True)) yPredictProb = clf.predict_proba(XData) yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro')) resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro')) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5)) resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5)) resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5)) resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1)) resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1)) resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1)) resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2)) resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2)) resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(loop,'geometric_mean_score_micro',resultsMicro) metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro) metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef) metrics.insert(loop+4,'f5_micro',resultsMicroBeta5) metrics.insert(loop+5,'f5_macro',resultsMacroBeta5) metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5) metrics.insert(loop+7,'f1_micro',resultsMicroBeta1) metrics.insert(loop+8,'f1_macro',resultsMacroBeta1) metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1) metrics.insert(loop+10,'f2_micro',resultsMicroBeta2) metrics.insert(loop+11,'f2_macro',resultsMacroBeta2) metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2) metrics.insert(loop+13,'log_loss',resultsLogLossFinal) perModelPredPandas = pd.DataFrame(perModelPrediction) perModelPredPandas = perModelPredPandas.to_json() perModelProbPandas = pd.DataFrame(perModelProb) perModelProbPandas = perModelProbPandas.to_json() PerClassMetricPandas = pd.DataFrame(PerClassMetric) del PerClassMetricPandas['accuracy'] del PerClassMetricPandas['macro avg'] del PerClassMetricPandas['weighted avg'] PerClassMetricPandas = PerClassMetricPandas.to_json() perm_imp_eli5PD = pd.DataFrame(permList) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=chi2, k='all') fit = bestfeatures.fit(XData,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(XData.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() # gather the results and send them back results.append(modelsIDs) # Position: 0 and so on results.append(parametersPerformancePerModel) # Position: 1 and so on results.append(PerClassMetricPandas) # Position: 2 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(featureScores) # Position: 5 and so on metrics = metrics.to_json() results.append(metrics) # Position: 6 and so on results.append(perModelProbPandas) # Position: 7 and so on results.append(json.dumps(perModelPredPandas)) # Position: 8 and so on return results # Sending each model's results to frontend @app.route('/data/PerformanceForEachModel', methods=["GET", "POST"]) def SendEachClassifiersPerformanceToVisualize(): response = { 'PerformancePerModel': allParametersPerformancePerModel, } return jsonify(response) def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: if (isinstance(num, float)): if np.isnan(num): pass else: final_list.append(float(num)) else: final_list.append(num) return final_list # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendBrushedParam', methods=["GET", "POST"]) def RetrieveModelsParam(): RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) counterKNN = 0 counterSVC = 0 counterGausNB = 0 counterMLP = 0 counterLR = 0 counterLDA = 0 counterQDA = 0 counterRF = 0 counterExtraT = 0 counterAdaB = 0 counterGradB = 0 global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels global algorithmsList algorithmsList = RetrieveModelsPar['algorithms'] for index, items in enumerate(algorithmsList): if (items == 'KNN'): counterKNN += 1 KNNModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'SVC'): counterSVC += 1 SVCModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'GauNB'): counterGausNB += 1 GausNBModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'MLP'): counterMLP += 1 MLPModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LR'): counterLR += 1 LRModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LDA'): counterLDA += 1 LDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'QDA'): counterQDA += 1 QDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'RF'): counterRF += 1 RFModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'ExtraT'): counterExtraT += 1 ExtraTModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'AdaB'): counterAdaB += 1 AdaBModels.append(int(RetrieveModelsPar['models'][index])) else: counterGradB += 1 GradBModels.append(int(RetrieveModelsPar['models'][index])) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] # this is if we want to change the factors before running the search #if (len(allParametersPerformancePerModel) == 0): # pass #else: global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew global metricsPerModel sumPerClassifierSel = [] sumPerClassifierSel = preProcsumPerMetric(factors) ModelSpaceMDSNew = [] ModelSpaceTSNENew = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) metricsPerModel = preProcMetricsAllAndSel() flagLocal = 0 countRemovals = 0 for l,el in enumerate(factors): if el == 0: loopThroughMetrics.drop(loopThroughMetrics.columns[[l-countRemovals]], axis=1, inplace=True) countRemovals = countRemovals + 1 flagLocal = 1 if flagLocal == 1: ModelSpaceMDSNew = FunMDS(loopThroughMetrics) ModelSpaceTSNENew = FunTsne(loopThroughMetrics) ModelSpaceTSNENew = ModelSpaceTSNENew.tolist() return 'Everything Okay' @app.route('/data/UpdateOverv', methods=["GET", "POST"]) def UpdateOverview(): ResultsUpdateOverview = [] ResultsUpdateOverview.append(sumPerClassifierSel) ResultsUpdateOverview.append(ModelSpaceMDSNew) ResultsUpdateOverview.append(ModelSpaceTSNENew) ResultsUpdateOverview.append(metricsPerModel) response = { 'Results': ResultsUpdateOverview } return jsonify(response) def PreprocessingMetrics(): dicKNN = json.loads(allParametersPerformancePerModel[6]) dicSVC = json.loads(allParametersPerformancePerModel[15]) dicGausNB = json.loads(allParametersPerformancePerModel[24]) dicMLP = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[42]) dicLDA = json.loads(allParametersPerformancePerModel[51]) dicQDA = json.loads(allParametersPerformancePerModel[60]) dicRF = json.loads(allParametersPerformancePerModel[69]) dicExtraT = json.loads(allParametersPerformancePerModel[78]) dicAdaB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[96]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatMetrics def PreprocessingPred(): dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return predictions def PreprocessingPredUpdate(Models): Models = json.loads(Models) ModelsList= [] for loop in Models['ClassifiersList']: ModelsList.append(loop) dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) listProbs = df_concatProbs.index.values.tolist() deletedElements = 0 for index, element in enumerate(listProbs): if element in ModelsList: index = index - deletedElements df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index]) deletedElements = deletedElements + 1 df_concatProbsCleared = df_concatProbs listIDsRemoved = df_concatProbsCleared.index.values.tolist() predictionsAll = PreprocessingPred() PredictionSpaceAll = FunMDS(predictionsAll) PredictionSpaceAllComb = [list(a) for a in zip(PredictionSpaceAll[0], PredictionSpaceAll[1])] predictionsSel = [] for column, content in df_concatProbsCleared.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsSel.append(el) PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])] mtx2PredFinal = [] mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb) a1, b1 = zip(*mtx2Pred) mtx2PredFinal.append(a1) mtx2PredFinal.append(b1) return [mtx2PredFinal,listIDsRemoved] def PreprocessingParam(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_params = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_params def PreprocessingParamSep(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] return [dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered] def preProcessPerClassM(): dicKNN = json.loads(allParametersPerformancePerModel[2]) dicSVC = json.loads(allParametersPerformancePerModel[11]) dicGausNB = json.loads(allParametersPerformancePerModel[20]) dicMLP = json.loads(allParametersPerformancePerModel[29]) dicLR = json.loads(allParametersPerformancePerModel[38]) dicLDA = json.loads(allParametersPerformancePerModel[47]) dicQDA = json.loads(allParametersPerformancePerModel[56]) dicRF = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[74]) dicAdaB = json.loads(allParametersPerformancePerModel[83]) dicGradB = json.loads(allParametersPerformancePerModel[92]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatParams = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatParams def preProcessFeatAcc(): dicKNN = json.loads(allParametersPerformancePerModel[3]) dicSVC = json.loads(allParametersPerformancePerModel[12]) dicGausNB = json.loads(allParametersPerformancePerModel[21]) dicMLP = json.loads(allParametersPerformancePerModel[30]) dicLR = json.loads(allParametersPerformancePerModel[39]) dicLDA = json.loads(allParametersPerformancePerModel[48]) dicQDA = json.loads(allParametersPerformancePerModel[57]) dicRF = json.loads(allParametersPerformancePerModel[66]) dicExtraT = json.loads(allParametersPerformancePerModel[75]) dicAdaB = json.loads(allParametersPerformancePerModel[84]) dicGradB = json.loads(allParametersPerformancePerModel[93]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA =
pd.DataFrame.from_dict(dicQDA)
pandas.DataFrame.from_dict
from dataclasses import replace import datetime as dt from functools import partial import inspect from pathlib import Path import re import types import uuid import pandas as pd from pandas.testing import assert_frame_equal import pytest from solarforecastarbiter import datamodel from solarforecastarbiter.io import api, nwp, utils from solarforecastarbiter.reference_forecasts import main, models from solarforecastarbiter.conftest import default_forecast, default_observation BASE_PATH = Path(nwp.__file__).resolve().parents[0] / 'tests/data' @pytest.mark.parametrize('model', [ models.gfs_quarter_deg_hourly_to_hourly_mean, models.gfs_quarter_deg_to_hourly_mean, models.hrrr_subhourly_to_hourly_mean, models.hrrr_subhourly_to_subhourly_instantaneous, models.nam_12km_cloud_cover_to_hourly_mean, models.nam_12km_hourly_to_hourly_instantaneous, models.rap_cloud_cover_to_hourly_mean, models.gefs_half_deg_to_hourly_mean ]) def test_run_nwp(model, site_powerplant_site_type, mocker): """ to later patch the return value of load forecast, do something like def load(*args, **kwargs): return load_forecast_return_value mocker.patch.object(inspect.unwrap(model), '__defaults__', (partial(load),)) """ mocker.patch.object(inspect.unwrap(model), '__defaults__', (partial(nwp.load_forecast, base_path=BASE_PATH),)) mocker.patch( 'solarforecastarbiter.reference_forecasts.utils.get_init_time', return_value=pd.Timestamp('20190515T0000Z')) site, site_type = site_powerplant_site_type fx = datamodel.Forecast('Test', dt.time(5), pd.Timedelta('1h'), pd.Timedelta('1h'), pd.Timedelta('6h'), 'beginning', 'interval_mean', 'ghi', site) run_time = pd.Timestamp('20190515T1100Z') issue_time = pd.Timestamp('20190515T1100Z') out = main.run_nwp(fx, model, run_time, issue_time) for var in ('ghi', 'dni', 'dhi', 'air_temperature', 'wind_speed', 'ac_power'): if site_type == 'site' and var == 'ac_power': assert out.ac_power is None else: ser = getattr(out, var) assert len(ser) >= 6 assert isinstance(ser, (pd.Series, pd.DataFrame)) assert ser.index[0] == pd.Timestamp('20190515T1200Z') assert ser.index[-1] < pd.Timestamp('20190515T1800Z') @pytest.fixture def obs_5min_begin(site_metadata): observation = default_observation( site_metadata, interval_length=pd.Timedelta('5min'), interval_label='beginning') return observation @pytest.fixture def observation_values_text(): """JSON text representation of test data""" tz = 'UTC' data_index = pd.date_range( start='20190101', end='20190112', freq='5min', tz=tz, closed='left') # each element of data is equal to the hour value of its label data = pd.DataFrame({'value': data_index.hour, 'quality_flag': 0}, index=data_index) text = utils.observation_df_to_json_payload(data) return text.encode() @pytest.fixture def session(requests_mock, observation_values_text): session = api.APISession('') matcher = re.compile(f'{session.base_url}/observations/.*/values') requests_mock.register_uri('GET', matcher, content=observation_values_text) return session @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) def test_run_persistence_scalar(session, site_metadata, obs_5min_begin, interval_label, mocker): run_time = pd.Timestamp('20190101T1945Z') # intraday, index=False forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label=interval_label) issue_time = pd.Timestamp('20190101T2300Z') mocker.spy(main.persistence, 'persistence_scalar') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 1 assert main.persistence.persistence_scalar.call_count == 1 @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) def test_run_persistence_scalar_index(session, site_metadata, obs_5min_begin, interval_label, mocker): run_time = pd.Timestamp('20190101T1945Z') forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label=interval_label) issue_time = pd.Timestamp('20190101T2300Z') # intraday, index=True mocker.spy(main.persistence, 'persistence_scalar_index') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time, index=True) assert isinstance(out, pd.Series) assert len(out) == 1 assert main.persistence.persistence_scalar_index.call_count == 1 def test_run_persistence_interval(session, site_metadata, obs_5min_begin, mocker): run_time = pd.Timestamp('20190102T1945Z') # day ahead, index = False forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190102T2300Z') mocker.spy(main.persistence, 'persistence_interval') out = main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 24 assert main.persistence.persistence_interval.call_count == 1 def test_run_persistence_weekahead(session, site_metadata, mocker): variable = 'net_load' observation = default_observation( site_metadata, variable=variable, interval_length=pd.Timedelta('5min'), interval_label='beginning') run_time = pd.Timestamp('20190110T1945Z') forecast = default_forecast( site_metadata, variable=variable, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1d'), interval_label='beginning') issue_time = pd.Timestamp('20190111T2300Z') mocker.spy(main.persistence, 'persistence_interval') out = main.run_persistence(session, observation, forecast, run_time, issue_time) assert isinstance(out, pd.Series) assert len(out) == 24 assert main.persistence.persistence_interval.call_count == 1 def test_run_persistence_interval_index(session, site_metadata, obs_5min_begin): # index=True not supported for day ahead forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time, index=True) assert 'index=True not supported' in str(excinfo.value) def test_run_persistence_interval_too_long(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('48h'), # too long interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'midnight to midnight' in str(excinfo.value) def test_run_persistence_interval_not_midnight_to_midnight(session, site_metadata, obs_5min_begin): # not midnight to midnight forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=22), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('24h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2200Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'midnight to midnight' in str(excinfo.value) def test_run_persistence_incompatible_issue(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2330Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'incompatible' in str(excinfo.value).lower() def test_run_persistence_fx_too_short(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1min'), run_length=pd.Timedelta('3min'), interval_label='beginning') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'requires observation.interval_length' in str(excinfo.value) def test_run_persistence_incompatible_instant_fx(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='instantaneous') issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs_5min_begin, forecast, run_time, issue_time) assert 'instantaneous forecast' in str(excinfo.value).lower() def test_run_persistence_incompatible_instant_interval(session, site_metadata, obs_5min_begin): forecast = default_forecast( site_metadata, issue_time_of_day=dt.time(hour=23), lead_time_to_start=pd.Timedelta('1h'), interval_length=pd.Timedelta('1h'), run_length=pd.Timedelta('1h'), interval_label='instantaneous') obs = obs_5min_begin.replace(interval_label='instantaneous', interval_length=pd.Timedelta('10min')) issue_time = pd.Timestamp('20190423T2300Z') run_time = pd.Timestamp('20190422T1945Z') with pytest.raises(ValueError) as excinfo: main.run_persistence(session, obs, forecast, run_time, issue_time) assert 'identical interval length' in str(excinfo.value) def test_verify_nwp_forecasts_compatible(ac_power_forecast_metadata): fx0 = ac_power_forecast_metadata fx1 = replace(fx0, run_length=pd.Timedelta('10h'), interval_label='ending') df = pd.DataFrame({'forecast': [fx0, fx1], 'model': ['a', 'b']}) errs = main._verify_nwp_forecasts_compatible(df) assert set(errs) == {'model', 'run_length', 'interval_label'} @pytest.mark.parametrize('string,expected', [ ('{"is_reference_forecast": true}', True), ('{"is_reference_persistence_forecast": true}', False), ('{"is_reference_forecast": "True"}', True), ('{"is_reference_forecast":"True"}', True), ('is_reference_forecast" : "True"}', True), ('{"is_reference_forecast" : true, "otherkey": badjson, 9}', True), ('reference_forecast": true', False), ('{"is_reference_forecast": false}', False), ("is_reference_forecast", False) ]) def test_is_reference_forecast(string, expected): assert main._is_reference_forecast(string) == expected def test_find_reference_nwp_forecasts_json_err(ac_power_forecast_metadata, mocker): logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') extra_params = '{"model": "themodel", "is_reference_forecast": true}' fxs = [replace(ac_power_forecast_metadata, extra_parameters=extra_params), replace(ac_power_forecast_metadata, extra_parameters='{"model": "yes"}'), replace(ac_power_forecast_metadata, extra_parameters='{"is_reference_forecast": true'), # NOQA replace(ac_power_forecast_metadata, extra_parameters='')] out = main.find_reference_nwp_forecasts(fxs) assert logger.warning.called assert len(out) == 1 def test_find_reference_nwp_forecasts_no_model(ac_power_forecast_metadata, mocker): logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') fxs = [replace(ac_power_forecast_metadata, extra_parameters='{}', forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts(fxs) assert len(out) == 0 assert logger.debug.called assert logger.error.called def test_find_reference_nwp_forecasts_no_init(ac_power_forecast_metadata): fxs = [replace(ac_power_forecast_metadata, extra_parameters='{"model": "am", "is_reference_forecast": true}', # NOQA forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "am", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts(fxs) assert len(out) == 2 assert out.next_issue_time.unique() == [None] assert out.piggyback_on.unique() == ['0'] def test_find_reference_nwp_forecasts(ac_power_forecast_metadata): fxs = [replace(ac_power_forecast_metadata, extra_parameters='{"model": "am", "is_reference_forecast": true}', # NOQA forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "am", "is_reference_forecast": true}', # NOQA forecast_id='1')] out = main.find_reference_nwp_forecasts( fxs, pd.Timestamp('20190501T0000Z')) assert len(out) == 2 assert out.next_issue_time.unique()[0] == pd.Timestamp('20190501T0500Z') assert out.piggyback_on.unique() == ['0'] @pytest.fixture() def forecast_list(ac_power_forecast_metadata): model = 'nam_12km_cloud_cover_to_hourly_mean' prob_dict = ac_power_forecast_metadata.to_dict() prob_dict['constant_values'] = (0, 50, 100) prob_dict['axis'] = 'y' prob_dict['extra_parameters'] = '{"model": "gefs_half_deg_to_hourly_mean", "is_reference_forecast": true}' # NOQA return [replace(ac_power_forecast_metadata, extra_parameters=( '{"model": "%s", "is_reference_forecast": true}' % model), forecast_id='0'), replace(ac_power_forecast_metadata, extra_parameters='{"model": "gfs_quarter_deg_hourly_to_hourly_mean", "is_reference_forecast": true}', # NOQA forecast_id='1'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='2', variable='ghi'), datamodel.ProbabilisticForecast.from_dict(prob_dict), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='3', variable='dni', provider='Organization 2' ), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "badmodel", "is_reference_forecast": true}', # NOQA forecast_id='4'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "6", "model": "%s", "is_reference_forecast": true}' % model, # NOQA forecast_id='5', variable='ghi'), replace(ac_power_forecast_metadata, extra_parameters='{"piggyback_on": "0", "model": "%s", "is_reference_forecast": false}' % model, # NOQA forecast_id='7', variable='ghi'), ] def test_process_nwp_forecast_groups(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-4]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert not logger.error.called assert not logger.warning.called assert post_vals.call_count == 4 @pytest.mark.parametrize('run_time', [None, pd.Timestamp('20190501T0000Z')]) def test_process_nwp_forecast_groups_issue_time(mocker, forecast_list, run_time): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-4], run_time) main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert post_vals.call_count == 4 run_nwp.assert_called_with(mocker.ANY, mocker.ANY, mocker.ANY, pd.Timestamp('20190501T0500Z')) def test_process_nwp_forecast_groups_missing_var(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[:-3]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert not logger.error.called assert logger.warning.called assert post_vals.call_count == 4 def test_process_nwp_forecast_groups_bad_model(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') post_vals = mocker.patch( 'solarforecastarbiter.reference_forecasts.main._post_forecast_values') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[4:-1]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert logger.error.called assert not logger.warning.called assert post_vals.call_count == 0 def test_process_nwp_forecast_groups_missing_runfor(mocker, forecast_list): api = mocker.MagicMock() run_nwp = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.run_nwp') class res: ac_power = [0] ghi = [0] dni = None run_nwp.return_value = res fxs = main.find_reference_nwp_forecasts(forecast_list[-2:]) logger = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.logger') main.process_nwp_forecast_groups(api, pd.Timestamp('20190501T0000Z'), fxs) assert logger.error.called assert not logger.warning.called assert api.post_forecast_values.call_count == 0 @pytest.mark.parametrize('ind', [0, 1, 2]) def test__post_forecast_values_regular(mocker, forecast_list, ind): api = mocker.MagicMock() fx = forecast_list[ind] main._post_forecast_values(api, fx, [0], 'whatever') assert api.post_forecast_values.call_count == 1 def test__post_forecast_values_cdf(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) main._post_forecast_values(api, fx, vals, 'gefs') assert api.post_probabilistic_forecast_constant_value_values.call_count == 3 # NOQA def test__post_forecast_values_cdf_not_gefs(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) with pytest.raises(ValueError): main._post_forecast_values(api, fx, vals, 'gfs') def test__post_forecast_values_cdf_less_cols(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(10)}) with pytest.raises(TypeError): main._post_forecast_values(api, fx, vals, 'gefs') def test__post_forecast_values_cdf_not_df(mocker, forecast_list): api = mocker.MagicMock() fx = forecast_list[3] ser = pd.Series([0, 1]) with pytest.raises(TypeError): main._post_forecast_values(api, fx, ser, 'gefs') def test__post_forecast_values_cdf_no_cv_match(mocker, forecast_list): api = mocker.MagicMock() fx = replace(forecast_list[3], constant_values=( replace(forecast_list[3].constant_values[0], constant_value=3.0 ),)) ser = pd.Series([0, 1]) vals = pd.DataFrame({i: ser for i in range(21)}) with pytest.raises(KeyError): main._post_forecast_values(api, fx, vals, 'gefs') @pytest.mark.parametrize('issue_buffer,empty', [ (pd.Timedelta('10h'), False), (pd.Timedelta('1h'), True), (pd.Timedelta('5h'), False) ]) def test_make_latest_nwp_forecasts(forecast_list, mocker, issue_buffer, empty): session = mocker.patch('solarforecastarbiter.io.api.APISession') session.return_value.get_user_info.return_value = {'organization': ''} session.return_value.list_forecasts.return_value = forecast_list[:-3] session.return_value.list_probabilistic_forecasts.return_value = [] run_time = pd.Timestamp('20190501T0000Z') # last fx has different org fxdf = main.find_reference_nwp_forecasts(forecast_list[:-4], run_time) process = mocker.patch( 'solarforecastarbiter.reference_forecasts.main.process_nwp_forecast_groups') # NOQA main.make_latest_nwp_forecasts('', run_time, issue_buffer) if empty: process.assert_not_called() else: assert_frame_equal(process.call_args[0][-1], fxdf) @pytest.mark.parametrize('string,expected', [ ('{"is_reference_forecast": true}', False), ('{"is_reference_persistence_forecast": true}', True), ('{"is_reference_persistence_forecast": "True"}', True), ('{"is_reference_persistence_forecast":"True"}', True), ('is_reference_persistence_forecast" : "True"}', True), ('{"is_reference_persistence_forecast" : true, "otherkey": badjson, 9}', True), ('reference_persistence_forecast": true', False), ('{"is_reference_persistence_forecast": false}', False), ("is_reference_persistence_forecast", False) ]) def test_is_reference_persistence_forecast(string, expected): assert main._is_reference_persistence_forecast(string) == expected @pytest.fixture def perst_fx_obs(mocker, ac_power_observation_metadata, ac_power_forecast_metadata): observations = [ ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ), ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ), ac_power_observation_metadata.replace( observation_id=str(uuid.uuid1()) ) ] def make_extra(obs): extra = ( '{"is_reference_persistence_forecast": true,' f'"observation_id": "{obs.observation_id}"' '}' ) return extra forecasts = [ ac_power_forecast_metadata.replace( name='FX0', extra_parameters=make_extra(observations[0]), run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ), ac_power_forecast_metadata.replace( name='FX no persist', run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ), ac_power_forecast_metadata.replace( name='FX bad js', extra_parameters='is_reference_persistence_forecast": true other', run_length=pd.Timedelta('1h'), forecast_id=str(uuid.uuid1()) ) ] return forecasts, observations def test_generate_reference_persistence_forecast_parameters( mocker, perst_fx_obs): forecasts, observations = perst_fx_obs session = mocker.MagicMock() session.get_user_info.return_value = {'organization': ''} session.get_observation_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T15:33Z')) session.get_forecast_time_range.return_value = ( pd.Timestamp('2019-01-01T12:00Z'), pd.Timestamp('2020-05-20T14:00Z')) max_run_time = pd.Timestamp('2020-05-20T16:00Z') # one hour ahead forecast, so 14Z was made at 13Z # enough data to do 14Z and 15Z issue times but not 16Z param_gen = main.generate_reference_persistence_forecast_parameters( session, forecasts, observations, max_run_time ) assert isinstance(param_gen, types.GeneratorType) param_list = list(param_gen) assert len(param_list) == 2 assert param_list[0] == ( forecasts[0], observations[0], pd.Timestamp('2020-05-20T14:00Z'), False ) assert param_list[1] == ( forecasts[0], observations[0],
pd.Timestamp('2020-05-20T15:00Z')
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Mon Feb 12 15:18:57 2018 @author: Denny.Lehman """ import pandas as pd import numpy as np import datetime import time from pandas.tseries.offsets import MonthEnd def npv(rate, df): value = 0 for i in range(0, df.size): value += df.iloc[i] / (1 + rate) ** (i + 1) return value # use this function if finance wants to use the faster CSV version. This version requires proper data cleaning steps def get_datatape_csv(filepath): list_of_column_names_required = ['System Project: Sunnova System ID', 'Committed Capital', 'Quote: Recurring Payment', 'Quote: Contract Type' ,'Quote: Payment Escalator', 'InService Date', 'Asset Portfolio - Partner', 'Location'] rename_list = {'System Project: Sunnova System ID':'ID','Committed Capital':'Committed Capital', 'Quote: Contract Type' :'Contract Type', 'Quote: Recurring Payment':'Recurring Payment','Quote: Payment Escalator':'Escalator', 'Location' : 'State'} d_types = {'System Project: Sunnova System ID':str, 'Committed Capital':np.float64, 'Quote: Recurring Payment': np.float64, 'Quote: Contract Type':str, 'Quote: Payment Escalator':str, 'Asset Portfolio - Partner':str } parse_dates = ['InService Date'] names=['ID', 'CC', 'RP', 'CT', 'PE', 'InS', 'AP'] df3 =
pd.read_csv(filepath, sep=',', skiprows=0, header=2)
pandas.read_csv
import unittest import pandas from data_set_info_data_class.data_class.data_set_info import DataSetInfo from data_set_remover.classes.data_class.data_for_criteria_remove import DataForCriteriaRemove from data_set_remover.depedency_injector.container import Container from data_set_remover.exceptions.remover_exceptions import WrongInputFormatError, NonIterableObjectError, \ NonExistingDataSetWithGivenNameError, ColumnArraysShouldNotBeBothEmpty, ColumnArraysShouldNotBeBothFilled, \ WrongCriteriaNameError, MissingColumnToIncludeError, MissingPercentCriteriaValueMustBeBetween1and99, \ UniqueImpressionCriteriaValueMustBeGreaterThan1 class DataSetsRemoverTestBase(unittest.TestCase): pass class DataSetsRemoverTestErrorCases(DataSetsRemoverTestBase): def setUp(self): self.data_set_remover = Container.data_set_remover() def test_given_none_when_remove_data_set_by_name_then_throw_wrong_input_format_error(self): with self.assertRaises(WrongInputFormatError): self.data_set_remover.remove_manually(None, None) def test_given_non_array_input_when_remove_data_sets_then_throw_non_iterable_input_error(self): non_iterable_input = 1 with self.assertRaises(NonIterableObjectError): self.data_set_remover.remove_manually(non_iterable_input, "") def test_given_array_with_wrong_element_and_data_set_name_type_when_remove_data_sets_then_throw_wrong_input_format_error( self): input_with_wrong_element_type = [1, 2, 3] with self.assertRaises(WrongInputFormatError): self.data_set_remover.remove_manually(input_with_wrong_element_type, 1) def test_given_array_with_data_set_and_wrong_data_set_name_when_remove_data_set_then_throw_not_existing_data_set_name( self): data_set_info = DataSetInfo("Test", pandas.DataFrame([]), [], []) wrong_data_set_name = "TestTest" with self.assertRaises(NonExistingDataSetWithGivenNameError): self.data_set_remover.remove_manually([data_set_info], wrong_data_set_name) class DataSetsRemoveByCriteriaTestErrorCases(DataSetsRemoverTestBase): def setUp(self): self.data_set_remover = Container.data_set_remover() self.data_set_info = DataSetInfo("Test",
pandas.DataFrame([[1]], columns=["Test"])
pandas.DataFrame
import pandas as pd import numpy as np import pdb import sys sys.path.append('../data') from pytorch_data_operations import buildLakeDataForRNN_manylakes_finetune2, parseMatricesFromSeqs import torch import torch.nn as nn import torch.utils.data from torch.utils.data import Dataset, DataLoader from torch.nn.init import xavier_normal_ from sklearn.ensemble import GradientBoostingRegressor import math import re ####################################################################### # (Sept 2020 - Jared) - this script uses cross validation on the training lakes # to estimate the best number of lakes "k" to ensemble ############################################################################# use_gpu = True ids =
pd.read_csv('../../metadata/pball_site_ids.csv', header=None)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Jul 27 13:26:04 2020 @author: alex1 """ import math import numpy as np import pandas as pd # # debug # mp = MpFunctions(data=df, freq=2, style='tpo', avglen=8, ticksize=24, session_hr=24) # mplist = mp.get_context() # #mplist[1] # meandict = mp.get_mean() # #meandict['volume_mean'] class MpFunctions(): def __init__(self, data, freq=30, style='tpo', avglen=8, ticksize=8, session_hr=8): self.data = data self.freq = freq self.style = style self.avglen = avglen self.ticksize = ticksize self.session_hr = session_hr def get_ticksize(self): # data = df numlen = int(len(self.data) / 2) # sample size for calculating ticksize = 50% of most recent data tztail = self.data.tail(numlen).copy() tztail['tz'] = tztail.Close.rolling(self.freq).std() # std. dev of 30 period rolling tztail = tztail.dropna() ticksize = np.ceil(tztail['tz'].mean() * 0.25) # 1/4 th of mean std. dev is our ticksize if ticksize < 0.2: ticksize = 0.2 # minimum ticksize limit return int(ticksize) def abc(self): caps = [' A', ' B', ' C', ' D', ' E', ' F', ' G', ' H', ' I', ' J', ' K', ' L', ' M', ' N', ' O', ' P', ' Q', ' R', ' S', ' T', ' U', ' V', ' W', ' X', ' Y', ' Z'] abc_lw = [x.lower() for x in caps] Aa = caps + abc_lw alimit = math.ceil(self.session_hr * (60 / self.freq)) + 3 if alimit > 52: alphabets = Aa * int( (np.ceil((alimit - 52) / 52)) + 1) # if bar frequency is less than 30 minutes then multiply list else: alphabets = Aa[0:alimit] bk = [28, 31, 35, 40, 33, 34, 41, 44, 35, 52, 41, 40, 46, 27, 38] ti = [] for s1 in bk: ti.append(Aa[s1 - 1]) tt = (''.join(ti)) return alphabets, tt def get_rf(self): self.data['cup'] = np.where(self.data['Close'] >= self.data['Close'].shift(), 1, -1) self.data['hup'] = np.where(self.data['High'] >= self.data['High'].shift(), 1, -1) self.data['lup'] = np.where(self.data['Low'] >= self.data['Low'].shift(), 1, -1) self.data['rf'] = self.data['cup'] + self.data['hup'] + self.data['lup'] dataf = self.data.drop(['cup', 'lup', 'hup'], axis=1) return dataf def get_mean(self): """ dfhist: pandas dataframe 1 min frequency avglen: Length for mean values freq: timeframe for the candlestick & TPOs return: a) daily mean for volume, rotational factor (absolute value), IB volume, IB RF b) session length dfhist = df.copy() """ dfhist = self.get_rf() # dfhist = get_rf(dfhist.copy()) dfhistd = dfhist.resample("D").agg( {'Open': 'first', 'High': 'max', 'Low': 'min', 'Close': 'last', 'volume': 'sum', 'rf': 'sum', }) dfhistd = dfhistd.dropna() comp_days = len(dfhistd) vm30 = dfhistd['volume'].rolling(self.avglen).mean() volume_mean = vm30[len(vm30) - 1] rf30 = abs((dfhistd['rf'])).rolling( self.avglen).mean() # it is abs mean to get meaningful value to compare daily values rf_mean = rf30[len(rf30) - 1] date2 = dfhistd.index[1].date() mask = dfhist.index.date < date2 dfsession = dfhist.loc[mask] session_hr = math.ceil(len(dfsession) / 60) all_val = dict(volume_mean=volume_mean, rf_mean=rf_mean, session_hr=session_hr) return all_val def tpo(self, dft_rs): # dft_rs = dfc1.copy() # if len(dft_rs) > int(60 / freq): if len(dft_rs) > int(0): dft_rs = dft_rs.drop_duplicates('datetime') dft_rs = dft_rs.reset_index(inplace=False, drop=True) dft_rs['rol_mx'] = dft_rs['High'].cummax() dft_rs['rol_mn'] = dft_rs['Low'].cummin() dft_rs['ext_up'] = dft_rs['rol_mn'] > dft_rs['rol_mx'].shift(2) dft_rs['ext_dn'] = dft_rs['rol_mx'] < dft_rs['rol_mn'].shift(2) alphabets = self.abc()[0] # alphabets = abc(session_hr, freq)[0] alphabets = alphabets[0:len(dft_rs)] hh = dft_rs['High'].max() ll = dft_rs['Low'].min() day_range = hh - ll dft_rs['abc'] = alphabets # place represents total number of steps to take to compare the TPO count place = int(np.ceil((hh - ll) / self.ticksize)) # kk = 0 abl_bg = [] tpo_countbg = [] pricel = [] volcountbg = [] # datel = [] for u in range(place): abl = [] tpoc = [] volcount = [] p = ll + (u * self.ticksize) for lenrs in range(len(dft_rs)): if p >= dft_rs['Low'][lenrs] and p < dft_rs['High'][lenrs]: abl.append(dft_rs['abc'][lenrs]) tpoc.append(1) volcount.append((dft_rs['volume'][lenrs]) / self.freq) abl_bg.append(''.join(abl)) tpo_countbg.append(sum(tpoc)) volcountbg.append(sum(volcount)) pricel.append(p) dftpo = pd.DataFrame({'close': pricel, 'alphabets': abl_bg, 'tpocount': tpo_countbg, 'volsum': volcountbg}) # drop empty rows dftpo['alphabets'].replace('', np.nan, inplace=True) dftpo = dftpo.dropna() dftpo = dftpo.reset_index(inplace=False, drop=True) dftpo = dftpo.sort_index(ascending=False) dftpo = dftpo.reset_index(inplace=False, drop=True) if self.style == 'tpo': column = 'tpocount' else: column = 'volsum' dfmx = dftpo[dftpo[column] == dftpo[column].max()] mid = ll + ((hh - ll) / 2) dfmax = dfmx.copy() dfmax['poc-mid'] = abs(dfmax['close'] - mid) pocidx = dfmax['poc-mid'].idxmin() poc = dfmax['close'][pocidx] poctpo = dftpo[column].max() tpo_updf = dftpo[dftpo['close'] > poc] tpo_updf = tpo_updf.sort_index(ascending=False) tpo_updf = tpo_updf.reset_index(inplace=False, drop=True) tpo_dndf = dftpo[dftpo['close'] < poc] tpo_dndf = tpo_dndf.reset_index(inplace=False, drop=True) valtpo = (dftpo[column].sum()) * 0.70 abovepoc = tpo_updf[column].to_list() belowpoc = tpo_dndf[column].to_list() if (len(abovepoc) / 2).is_integer() is False: abovepoc = abovepoc + [0] if (len(belowpoc) / 2).is_integer() is False: belowpoc = belowpoc + [0] bel2 = np.array(belowpoc).reshape(-1, 2) bel3 = bel2.sum(axis=1) bel4 = list(bel3) abv2 = np.array(abovepoc).reshape(-1, 2) abv3 = abv2.sum(axis=1) abv4 = list(abv3) # cum = poctpo # up_i = 0 # dn_i = 0 df_va = pd.DataFrame({'abv': pd.Series(abv4), 'bel':
pd.Series(bel4)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pickle import shutil import sys import tempfile import numpy as np from numpy import arange, nan import pandas.testing as pdt from pandas import DataFrame, MultiIndex, Series, to_datetime # dependencies testing specific import pytest import recordlinkage from recordlinkage.base import BaseCompareFeature STRING_SIM_ALGORITHMS = [ 'jaro', 'q_gram', 'cosine', 'jaro_winkler', 'dameraulevenshtein', 'levenshtein', 'lcs', 'smith_waterman' ] NUMERIC_SIM_ALGORITHMS = ['step', 'linear', 'squared', 'exp', 'gauss'] FIRST_NAMES = [ u'Ronald', u'Amy', u'Andrew', u'William', u'Frank', u'Jessica', u'Kevin', u'Tyler', u'Yvonne', nan ] LAST_NAMES = [ u'Graham', u'Smith', u'Holt', u'Pope', u'Hernandez', u'Gutierrez', u'Rivera', nan, u'Crane', u'Padilla' ] STREET = [ u'<NAME>', nan, u'<NAME>', u'<NAME>', u'<NAME>', u'<NAME>', u'Williams Trail', u'Durham Mountains', u'Anna Circle', u'<NAME>' ] JOB = [ u'Designer, multimedia', u'Designer, blown glass/stained glass', u'Chiropractor', u'Engineer, mining', u'Quantity surveyor', u'Phytotherapist', u'Teacher, English as a foreign language', u'Electrical engineer', u'Research officer, government', u'Economist' ] AGES = [23, 40, 70, 45, 23, 57, 38, nan, 45, 46] # Run all tests in this file with: # nosetests tests/test_compare.py class TestData(object): @classmethod def setup_class(cls): N_A = 100 N_B = 100 cls.A = DataFrame({ 'age': np.random.choice(AGES, N_A), 'given_name': np.random.choice(FIRST_NAMES, N_A), 'lastname': np.random.choice(LAST_NAMES, N_A), 'street': np.random.choice(STREET, N_A) }) cls.B = DataFrame({ 'age': np.random.choice(AGES, N_B), 'given_name': np.random.choice(FIRST_NAMES, N_B), 'lastname': np.random.choice(LAST_NAMES, N_B), 'street': np.random.choice(STREET, N_B) }) cls.A.index.name = 'index_df1' cls.B.index.name = 'index_df2' cls.index_AB = MultiIndex.from_arrays( [arange(len(cls.A)), arange(len(cls.B))], names=[cls.A.index.name, cls.B.index.name]) # Create a temporary directory cls.test_dir = tempfile.mkdtemp() @classmethod def teardown_class(cls): # Remove the test directory shutil.rmtree(cls.test_dir) class TestCompareApi(TestData): """General unittest for the compare API.""" def test_repr(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) c_str = str(comp) c_repr = repr(comp) assert c_str == c_repr start_str = '<{}'.format(comp.__class__.__name__) assert c_str.startswith(start_str) def test_instance_linking(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A, self.B) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_instance_dedup(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_label_linking(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A, self.B) assert "my_feature_label" in result.columns.tolist() def test_label_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A) assert "my_feature_label" in result.columns.tolist() def test_multilabel_none_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A, self.B) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A, self.B) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_none_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_error_dedup(self): def ones(s1, s2): return np.ones((len(s1), 2)) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones, 'given_name', 'given_name', label=['a', 'b', 'c']) with pytest.raises(ValueError): comp.compute(self.index_AB, self.A) def test_incorrect_collabels_linking(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A, self.B) def test_incorrect_collabels_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A) def test_compare_custom_vectorized_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A, B) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col', label='my_feature_label') result = comp.compute(ix, A, B) expected = DataFrame( [1, 1, 1, 1, 1], index=ix, columns=['my_feature_label']) pdt.assert_frame_equal(result, expected) # def test_compare_custom_nonvectorized_linking(self): # A = DataFrame({'col': [1, 2, 3, 4, 5]}) # B = DataFrame({'col': [1, 2, 3, 4, 5]}) # ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # def custom_func(a, b): # return np.int64(1) # # test without label # comp = recordlinkage.Compare() # comp.compare_single( # custom_func, # 'col', # 'col' # ) # result = comp.compute(ix, A, B) # expected = DataFrame([1, 1, 1, 1, 1], index=ix) # pdt.assert_frame_equal(result, expected) # # test with label # comp = recordlinkage.Compare() # comp.compare_single( # custom_func, # 'col', # 'col', # label='test' # ) # result = comp.compute(ix, A, B) # expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test']) # pdt.assert_frame_equal(result, expected) def test_compare_custom_instance_type(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) def call(s1, s2): # this should raise on incorrect types assert isinstance(s1, np.ndarray) assert isinstance(s2, np.ndarray) return np.ones(len(s1), dtype=np.int) comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A, B) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_arguments_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5) result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5, label='test') result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) # test with kwarg comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', x=5, label='test') result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_dedup(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col', label='test') result = comp.compute(ix, A) expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_arguments_dedup(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5) result = comp.compute(ix, A) expected = DataFrame([5, 5, 5, 5, 5], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5, label='test') result = comp.compute(ix, A) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_parallel_comparing_api(self): # use single job comp = recordlinkage.Compare(n_jobs=1) comp.exact('given_name', 'given_name', label='my_feature_label') result_single = comp.compute(self.index_AB, self.A, self.B) result_single.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=2) comp.exact('given_name', 'given_name', label='my_feature_label') result_2processes = comp.compute(self.index_AB, self.A, self.B) result_2processes.sort_index(inplace=True) # compare results pdt.assert_frame_equal(result_single, result_2processes) def test_parallel_comparing(self): # use single job comp = recordlinkage.Compare(n_jobs=1) comp.exact('given_name', 'given_name', label='my_feature_label') result_single = comp.compute(self.index_AB, self.A, self.B) result_single.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=2) comp.exact('given_name', 'given_name', label='my_feature_label') result_2processes = comp.compute(self.index_AB, self.A, self.B) result_2processes.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=4) comp.exact('given_name', 'given_name', label='my_feature_label') result_4processes = comp.compute(self.index_AB, self.A, self.B) result_4processes.sort_index(inplace=True) # compare results pdt.assert_frame_equal(result_single, result_2processes) pdt.assert_frame_equal(result_single, result_4processes) def test_pickle(self): # test if it is possible to pickle the Compare class comp = recordlinkage.Compare() comp.string('given_name', 'given_name') comp.numeric('number', 'number') comp.geo('lat', 'lng', 'lat', 'lng') comp.date('before', 'after') # do the test pickle_path = os.path.join(self.test_dir, 'pickle_compare_obj.pickle') pickle.dump(comp, open(pickle_path, 'wb')) def test_manual_parallel_joblib(self): # test if it is possible to pickle the Compare class # This is only available for python 3. For python 2, it is not # possible to pickle instancemethods. A workaround can be found at # https://stackoverflow.com/a/29873604/8727928 if sys.version.startswith("3"): # import joblib dependencies from joblib import Parallel, delayed # split the data into smaller parts len_index = int(len(self.index_AB) / 2) df_chunks = [self.index_AB[0:len_index], self.index_AB[len_index:]] comp = recordlinkage.Compare() comp.string('given_name', 'given_name') comp.string('lastname', 'lastname') comp.exact('street', 'street') # do in parallel Parallel(n_jobs=2)( delayed(comp.compute)(df_chunks[i], self.A, self.B) for i in [0, 1]) def test_indexing_types(self): # test the two types of indexing # this test needs improvement A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B_reversed = B[::-1].copy() ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)]) # test with label indexing type comp_label = recordlinkage.Compare(indexing_type='label') comp_label.exact('col', 'col') result_label = comp_label.compute(ix, A, B_reversed) # test with position indexing type comp_position = recordlinkage.Compare(indexing_type='position') comp_position.exact('col', 'col') result_position = comp_position.compute(ix, A, B_reversed) assert (result_position.values == 1).all(axis=0) pdt.assert_frame_equal(result_label, result_position) def test_pass_list_of_features(self): from recordlinkage.compare import FrequencyA, VariableA, VariableB # setup datasets and record pairs A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)]) # test with label indexing type features = [ VariableA('col', label='y1'), VariableB('col', label='y2'), FrequencyA('col', label='y3') ] comp_label = recordlinkage.Compare(features=features) result_label = comp_label.compute(ix, A, B) assert list(result_label) == ["y1", "y2", "y3"] class TestCompareFeatures(TestData): def test_feature(self): # test using classes and the base class A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) feature = BaseCompareFeature('col', 'col') feature._f_compare_vectorized = lambda s1, s2: np.ones(len(s1)) feature.compute(ix, A, B) def test_feature_multicolumn_return(self): # test using classes and the base class A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) def ones(s1, s2): return DataFrame(np.ones((len(s1), 3))) feature = BaseCompareFeature('col', 'col') feature._f_compare_vectorized = ones result = feature.compute(ix, A, B) assert result.shape == (5, 3) def test_feature_multicolumn_input(self): # test using classes and the base class A = DataFrame({ 'col1': ['abc', 'abc', 'abc', 'abc', 'abc'], 'col2': ['abc', 'abc', 'abc', 'abc', 'abc'] }) B = DataFrame({ 'col1': ['abc', 'abd', 'abc', 'abc', '123'], 'col2': ['abc', 'abd', 'abc', 'abc', '123'] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) feature = BaseCompareFeature(['col1', 'col2'], ['col1', 'col2']) feature._f_compare_vectorized = \ lambda s1_1, s1_2, s2_1, s2_2: np.ones(len(s1_1)) feature.compute(ix, A, B) class TestCompareExact(TestData): """Test the exact comparison method.""" def test_exact_str_type(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) expected = DataFrame([1, 0, 1, 1, 0], index=ix) comp = recordlinkage.Compare() comp.exact('col', 'col') result = comp.compute(ix, A, B) pdt.assert_frame_equal(result, expected) def test_exact_num_type(self): A = DataFrame({'col': [42, 42, 41, 43, nan]}) B = DataFrame({'col': [42, 42, 42, 42, 42]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) expected = DataFrame([1, 1, 0, 0, 0], index=ix) comp = recordlinkage.Compare() comp.exact('col', 'col') result = comp.compute(ix, A, B) pdt.assert_frame_equal(result, expected) def test_link_exact_missing(self): A = DataFrame({'col': [u'a', u'b', u'c', u'd', nan]}) B = DataFrame({'col': [u'a', u'b', u'd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.exact('col', 'col', label='na_') comp.exact('col', 'col', missing_value=0, label='na_0') comp.exact('col', 'col', missing_value=9, label='na_9') comp.exact('col', 'col', missing_value=nan, label='na_na') comp.exact('col', 'col', missing_value='str', label='na_str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1, 1, 0, 0, 0], index=ix, name='na_') pdt.assert_series_equal(result['na_'], expected) # Missing values as 0 expected = Series([1, 1, 0, 0, 0], index=ix, name='na_0') pdt.assert_series_equal(result['na_0'], expected) # Missing values as 9 expected = Series([1, 1, 0, 9, 9], index=ix, name='na_9') pdt.assert_series_equal(result['na_9'], expected) # Missing values as nan expected = Series([1, 1, 0, nan, nan], index=ix, name='na_na') pdt.assert_series_equal(result['na_na'], expected) # Missing values as string expected = Series([1, 1, 0, 'str', 'str'], index=ix, name='na_str') pdt.assert_series_equal(result['na_str'], expected) def test_link_exact_disagree(self): A = DataFrame({'col': [u'a', u'b', u'c', u'd', nan]}) B = DataFrame({'col': [u'a', u'b', u'd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.exact('col', 'col', label='d_') comp.exact('col', 'col', disagree_value=0, label='d_0') comp.exact('col', 'col', disagree_value=9, label='d_9') comp.exact('col', 'col', disagree_value=nan, label='d_na') comp.exact('col', 'col', disagree_value='str', label='d_str') result = comp.compute(ix, A, B) # disagree values as default expected = Series([1, 1, 0, 0, 0], index=ix, name='d_') pdt.assert_series_equal(result['d_'], expected) # disagree values as 0 expected = Series([1, 1, 0, 0, 0], index=ix, name='d_0') pdt.assert_series_equal(result['d_0'], expected) # disagree values as 9 expected = Series([1, 1, 9, 0, 0], index=ix, name='d_9') pdt.assert_series_equal(result['d_9'], expected) # disagree values as nan expected = Series([1, 1, nan, 0, 0], index=ix, name='d_na') pdt.assert_series_equal(result['d_na'], expected) # disagree values as string expected = Series([1, 1, 'str', 0, 0], index=ix, name='d_str') pdt.assert_series_equal(result['d_str'], expected) # tests/test_compare.py:TestCompareNumeric class TestCompareNumeric(TestData): """Test the numeric comparison methods.""" def test_numeric(self): A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 2, 3, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', 'step', offset=2) comp.numeric('col', 'col', method='step', offset=2) comp.numeric('col', 'col', 'step', 2) result = comp.compute(ix, A, B) # Basics expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=0) pdt.assert_series_equal(result[0], expected) # Basics expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=1) pdt.assert_series_equal(result[1], expected) # Basics expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=2) pdt.assert_series_equal(result[2], expected) def test_numeric_with_missings(self): A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 1, 1, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', scale=2) comp.numeric('col', 'col', scale=2, missing_value=0) comp.numeric('col', 'col', scale=2, missing_value=123.45) comp.numeric('col', 'col', scale=2, missing_value=nan) comp.numeric('col', 'col', scale=2, missing_value='str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1.0, 1.0, 1.0, 0.0, 0.0], index=ix, name=0) pdt.assert_series_equal(result[0], expected) # Missing values as 0 expected = Series( [1.0, 1.0, 1.0, 0.0, 0.0], index=ix, dtype=np.float64, name=1) pdt.assert_series_equal(result[1], expected) # Missing values as 123.45 expected = Series([1.0, 1.0, 1.0, 123.45, 123.45], index=ix, name=2) pdt.assert_series_equal(result[2], expected) # Missing values as nan expected = Series([1.0, 1.0, 1.0, nan, nan], index=ix, name=3) pdt.assert_series_equal(result[3], expected) # Missing values as string expected = Series( [1, 1, 1, 'str', 'str'], index=ix, dtype=object, name=4) pdt.assert_series_equal(result[4], expected) @pytest.mark.parametrize("alg", NUMERIC_SIM_ALGORITHMS) def test_numeric_algorithms(self, alg): A = DataFrame({'col': [1, 1, 1, 1, 1]}) B = DataFrame({'col': [1, 2, 3, 4, 5]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', method='step', offset=1, label='step') comp.numeric( 'col', 'col', method='linear', offset=1, scale=2, label='linear') comp.numeric( 'col', 'col', method='squared', offset=1, scale=2, label='squared') comp.numeric( 'col', 'col', method='exp', offset=1, scale=2, label='exp') comp.numeric( 'col', 'col', method='gauss', offset=1, scale=2, label='gauss') result_df = comp.compute(ix, A, B) result = result_df[alg] # All values between 0 and 1. assert (result >= 0.0).all() assert (result <= 1.0).all() if alg != 'step': print(alg) print(result) # sim(scale) = 0.5 expected_bool = Series( [False, False, False, True, False], index=ix, name=alg) pdt.assert_series_equal(result == 0.5, expected_bool) # sim(offset) = 1 expected_bool = Series( [True, True, False, False, False], index=ix, name=alg) pdt.assert_series_equal(result == 1.0, expected_bool) # sim(scale) larger than 0.5 expected_bool = Series( [False, False, True, False, False], index=ix, name=alg) pdt.assert_series_equal((result > 0.5) & (result < 1.0), expected_bool) # sim(scale) smaller than 0.5 expected_bool = Series( [False, False, False, False, True], index=ix, name=alg) pdt.assert_series_equal((result < 0.5) & (result >= 0.0), expected_bool) @pytest.mark.parametrize("alg", NUMERIC_SIM_ALGORITHMS) def test_numeric_algorithms_errors(self, alg): # scale negative if alg != "step": with pytest.raises(ValueError): comp = recordlinkage.Compare() comp.numeric('age', 'age', method=alg, offset=2, scale=-2) comp.compute(self.index_AB, self.A, self.B) # offset negative with pytest.raises(ValueError): comp = recordlinkage.Compare() comp.numeric('age', 'age', method=alg, offset=-2, scale=-2) comp.compute(self.index_AB, self.A, self.B) def test_numeric_does_not_exist(self): # raise when algorithm doesn't exists A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 1, 1, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.numeric('col', 'col', method='unknown_algorithm') pytest.raises(ValueError, comp.compute, ix, A, B) # tests/test_compare.py:TestCompareDates class TestCompareDates(TestData): """Test the exact comparison method.""" def test_dates(self): A = DataFrame({ 'col': to_datetime( ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30']) }) B = DataFrame({ 'col': to_datetime([ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ]) }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.date('col', 'col') result = comp.compute(ix, A, B)[0] expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name=0) pdt.assert_series_equal(result, expected) def test_date_incorrect_dtype(self): A = DataFrame({ 'col': ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30'] }) B = DataFrame({ 'col': [ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) A['col1'] = to_datetime(A['col']) B['col1'] = to_datetime(B['col']) comp = recordlinkage.Compare() comp.date('col', 'col1') pytest.raises(ValueError, comp.compute, ix, A, B) comp = recordlinkage.Compare() comp.date('col1', 'col') pytest.raises(ValueError, comp.compute, ix, A, B) def test_dates_with_missings(self): A = DataFrame({ 'col': to_datetime( ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30']) }) B = DataFrame({ 'col': to_datetime([ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ]) }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.date('col', 'col', label='m_') comp.date('col', 'col', missing_value=0, label='m_0') comp.date('col', 'col', missing_value=123.45, label='m_float') comp.date('col', 'col', missing_value=nan, label='m_na') comp.date('col', 'col', missing_value='str', label='m_str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name='m_') pdt.assert_series_equal(result['m_'], expected) # Missing values as 0 expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name='m_0') pdt.assert_series_equal(result['m_0'], expected) # Missing values as 123.45 expected = Series([1, 123.45, 0, 0.5, 0.5], index=ix, name='m_float') pdt.assert_series_equal(result['m_float'], expected) # Missing values as nan expected = Series([1, nan, 0, 0.5, 0.5], index=ix, name='m_na') pdt.assert_series_equal(result['m_na'], expected) # Missing values as string expected = Series( [1, 'str', 0, 0.5, 0.5], index=ix, dtype=object, name='m_str') pdt.assert_series_equal(result['m_str'], expected) def test_dates_with_swap(self): months_to_swap = [(9, 10, 123.45), (10, 9, 123.45), (1, 2, 123.45), (2, 1, 123.45)] A = DataFrame({ 'col': to_datetime( ['2005/11/23', nan, '2004/11/23', '2010/01/10', '2010/10/30']) }) B = DataFrame({ 'col': to_datetime([ '2005/11/23', '2010/12/31', '2005/11/23', '2010/10/01', '2010/9/30' ]) }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.date('col', 'col', label='s_') comp.date( 'col', 'col', swap_month_day=0, swap_months='default', label='s_1') comp.date( 'col', 'col', swap_month_day=123.45, swap_months='default', label='s_2') comp.date( 'col', 'col', swap_month_day=123.45, swap_months=months_to_swap, label='s_3') comp.date( 'col', 'col', swap_month_day=nan, swap_months='default', missing_value=nan, label='s_4') comp.date('col', 'col', swap_month_day='str', label='s_5') result = comp.compute(ix, A, B) # swap_month_day as default expected = Series([1, 0, 0, 0.5, 0.5], index=ix, name='s_') pdt.assert_series_equal(result['s_'], expected) # swap_month_day and swap_months as 0 expected = Series([1, 0, 0, 0, 0.5], index=ix, name='s_1') pdt.assert_series_equal(result['s_1'], expected) # swap_month_day 123.45 (float) expected = Series([1, 0, 0, 123.45, 0.5], index=ix, name='s_2') pdt.assert_series_equal(result['s_2'], expected) # swap_month_day and swap_months 123.45 (float) expected = Series([1, 0, 0, 123.45, 123.45], index=ix, name='s_3') pdt.assert_series_equal(result['s_3'], expected) # swap_month_day and swap_months as nan expected = Series([1, nan, 0, nan, 0.5], index=ix, name='s_4') pdt.assert_series_equal(result['s_4'], expected) # swap_month_day as string expected = Series( [1, 0, 0, 'str', 0.5], index=ix, dtype=object, name='s_5') pdt.assert_series_equal(result['s_5'], expected) # tests/test_compare.py:TestCompareGeo class TestCompareGeo(TestData): """Test the geo comparison method.""" def test_geo(self): # Utrecht, Amsterdam, Rotterdam (Cities in The Netherlands) A = DataFrame({ 'lat': [52.0842455, 52.3747388, 51.9280573], 'lng': [5.0124516, 4.7585305, 4.4203581] }) B = DataFrame({ 'lat': [52.3747388, 51.9280573, 52.0842455], 'lng': [4.7585305, 4.4203581, 5.0124516] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.geo( 'lat', 'lng', 'lat', 'lng', method='step', offset=50) # 50 km range result = comp.compute(ix, A, B) # Missing values as default [36.639460, 54.765854, 44.092472] expected = Series([1.0, 0.0, 1.0], index=ix, name=0) pdt.assert_series_equal(result[0], expected) def test_geo_batch(self): # Utrecht, Amsterdam, Rotterdam (Cities in The Netherlands) A = DataFrame({ 'lat': [52.0842455, 52.3747388, 51.9280573], 'lng': [5.0124516, 4.7585305, 4.4203581] }) B = DataFrame({ 'lat': [52.3747388, 51.9280573, 52.0842455], 'lng': [4.7585305, 4.4203581, 5.0124516] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.geo( 'lat', 'lng', 'lat', 'lng', method='step', offset=1, label='step') comp.geo( 'lat', 'lng', 'lat', 'lng', method='linear', offset=1, scale=2, label='linear') comp.geo( 'lat', 'lng', 'lat', 'lng', method='squared', offset=1, scale=2, label='squared') comp.geo( 'lat', 'lng', 'lat', 'lng', method='exp', offset=1, scale=2, label='exp') comp.geo( 'lat', 'lng', 'lat', 'lng', method='gauss', offset=1, scale=2, label='gauss') result_df = comp.compute(ix, A, B) print(result_df) for alg in ['step', 'linear', 'squared', 'exp', 'gauss']: result = result_df[alg] # All values between 0 and 1. assert (result >= 0.0).all() assert (result <= 1.0).all() def test_geo_does_not_exist(self): # Utrecht, Amsterdam, Rotterdam (Cities in The Netherlands) A = DataFrame({ 'lat': [52.0842455, 52.3747388, 51.9280573], 'lng': [5.0124516, 4.7585305, 4.4203581] }) B = DataFrame({ 'lat': [52.3747388, 51.9280573, 52.0842455], 'lng': [4.7585305, 4.4203581, 5.0124516] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.geo('lat', 'lng', 'lat', 'lng', method='unknown') pytest.raises(ValueError, comp.compute, ix, A, B) class TestCompareStrings(TestData): """Test the exact comparison method.""" def test_defaults(self): # default algorithm is levenshtein algorithm # test default values are indentical to levenshtein A = DataFrame({ 'col': [u'str_abc', u'str_abc', u'str_abc', nan, u'hsdkf'] }) B = DataFrame({'col': [u'str_abc', u'str_abd', u'jaskdfsd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', label='default') comp.string('col', 'col', method='levenshtein', label='with_args') result = comp.compute(ix, A, B) pdt.assert_series_equal( result['default'].rename(None), result['with_args'].rename(None) ) def test_fuzzy(self): A = DataFrame({ 'col': [u'str_abc', u'str_abc', u'str_abc', nan, u'hsdkf'] }) B = DataFrame({'col': [u'str_abc', u'str_abd', u'jaskdfsd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', method='jaro', missing_value=0) comp.string('col', 'col', method='q_gram', missing_value=0) comp.string('col', 'col', method='cosine', missing_value=0) comp.string('col', 'col', method='jaro_winkler', missing_value=0) comp.string('col', 'col', method='dameraulevenshtein', missing_value=0) comp.string('col', 'col', method='levenshtein', missing_value=0) result = comp.compute(ix, A, B) print(result) assert result.notnull().all(1).all(0) assert (result[result.notnull()] >= 0).all(1).all(0) assert (result[result.notnull()] <= 1).all(1).all(0) def test_threshold(self): A = DataFrame({'col': [u"gretzky", u"gretzky99", u"gretzky", u"gretzky"]}) B = DataFrame({'col': [u"gretzky", u"gretzky", nan, u"wayne"]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string( 'col', 'col', method="levenshtein", threshold=0.5, missing_value=2.0, label="x_col1" ) comp.string( 'col', 'col', method="levenshtein", threshold=1.0, missing_value=0.5, label="x_col2" ) comp.string( 'col', 'col', method="levenshtein", threshold=0.0, missing_value=nan, label="x_col3" ) result = comp.compute(ix, A, B) expected = Series([1.0, 1.0, 2.0, 0.0], index=ix, name="x_col1") pdt.assert_series_equal(result["x_col1"], expected) expected = Series([1.0, 0.0, 0.5, 0.0], index=ix, name="x_col2") pdt.assert_series_equal(result["x_col2"], expected) expected = Series([1.0, 1.0, nan, 1.0], index=ix, name="x_col3") pdt.assert_series_equal(result["x_col3"], expected) @pytest.mark.parametrize("alg", STRING_SIM_ALGORITHMS) def test_incorrect_input(self, alg): A = DataFrame({'col': [1, 1, 1, nan, 0]}) B = DataFrame({'col': [1, 1, 1, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) with pytest.raises(Exception): comp = recordlinkage.Compare() comp.string('col', 'col', method=alg) comp.compute(ix, A, B) @pytest.mark.parametrize("alg", STRING_SIM_ALGORITHMS) def test_string_algorithms_nan(self, alg): A = DataFrame({'col': [u"nan", nan, nan, nan, nan]}) B = DataFrame({'col': [u"nan", nan, nan, nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.string('col', 'col', method=alg) result = comp.compute(ix, A, B)[0] expected = Series([1.0, 0.0, 0.0, 0.0, 0.0], index=ix, name=0) pdt.assert_series_equal(result, expected) comp = recordlinkage.Compare() comp.string('col', 'col', method=alg, missing_value=nan) result = comp.compute(ix, A, B)[0] expected = Series([1.0, nan, nan, nan, nan], index=ix, name=0)
pdt.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree(): c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent m = Node('m', children=[p]) p = m['p'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 1 assert 'p' in m.children assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) c1.price == 100 c2.price == 100 i = 1 s.update(dts[i], data.ix[dts[i]]) c1.price == 105 c2.price == 95 i = 2 s.update(dts[i], data.ix[dts[i]]) c1.price == 100 c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.ix[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.ix[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.ix[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.ix[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts =
pd.date_range('2010-01-01', periods=3)
pandas.date_range
import functools import numpy as np import scipy import scipy.linalg import scipy import scipy.sparse as sps import scipy.sparse.linalg as spsl import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings import logging import tables as tb import os import sandy import pytest pd.options.display.float_format = '{:.5e}'.format __author__ = "<NAME>" __all__ = [ "CategoryCov", "EnergyCov", "triu_matrix", "corr2cov", "random_corr", "random_cov", "sample_distribution", ] S = np.array([[1, 1, 1], [1, 2, 1], [1, 3, 1]]) var = np.array([[0, 0, 0], [0, 2, 0], [0, 0, 3]]) minimal_covtest = pd.DataFrame( [[9437, 2, 1e-2, 9437, 2, 1e-2, 0.02], [9437, 2, 2e5, 9437, 2, 2e5, 0.09], [9437, 2, 1e-2, 9437, 102, 1e-2, 0.04], [9437, 2, 2e5, 9437, 102, 2e5, 0.05], [9437, 102, 1e-2, 9437, 102, 1e-2, 0.01], [9437, 102, 2e5, 9437, 102, 2e5, 0.01]], columns=["MAT", "MT", "E", "MAT1", "MT1", 'E1', "VAL"] ) def cov33csv(func): def inner(*args, **kwargs): key = "<KEY>" kw = kwargs.copy() if key in kw: if kw[key]: print(f"found argument '{key}', ignore oher arguments") out = func( *args, index_col=[0, 1, 2], header=[0, 1, 2], ) out.index.names = ["MAT", "MT", "E"] out.columns.names = ["MAT", "MT", "E"] return out else: del kw[key] out = func(*args, **kw) return out return inner class _Cov(np.ndarray): """Covariance matrix treated as a `numpy.ndarray`. Methods ------- corr extract correlation matrix corr2cov produce covariance matrix given correlation matrix and standard deviation array eig get covariance matrix eigenvalues and eigenvectors get_L decompose and extract lower triangular matrix sampling draw random samples """ def __new__(cls, arr): obj = np.ndarray.__new__(cls, arr.shape, float) obj[:] = arr[:] if not obj.ndim == 2: raise sandy.Error("covariance matrix must have two dimensions") if not np.allclose(obj, obj.T): raise sandy.Error("covariance matrix must be symmetric") if (np.diag(arr) < 0).any(): raise sandy.Error("covariance matrix must have positive variances") return obj @staticmethod def _up2down(self): U = np.triu(self) L = np.triu(self, 1).T C = U + L return C def eig(self): """ Extract eigenvalues and eigenvectors. Returns ------- `Pandas.Series` real part of eigenvalues sorted in descending order `np.array` matrix of eigenvectors """ E, V = scipy.linalg.eig(self) E, V = E.real, V.real return E, V def corr(self): """Extract correlation matrix. .. note:: zeros on the covariance matrix diagonal are translated into zeros also on the the correlation matrix diagonal. Returns ------- `sandy.formats.utils.Cov` correlation matrix """ std = np.sqrt(np.diag(self)) with np.errstate(divide='ignore', invalid='ignore'): coeff = np.true_divide(1, std) coeff[~ np.isfinite(coeff)] = 0 # -inf inf NaN corr = np.multiply(np.multiply(self.T, coeff).T, coeff) return self.__class__(corr) def _reduce_size(self): """ Reduces the size of the matrix, erasing the null values. Returns ------- nonzero_idxs : numpy.ndarray The indices of the diagonal that are not null. cov_reduced : sandy.core.cov._Cov The reduced matrix. """ nonzero_idxs = np.flatnonzero(np.diag(self)) cov_reduced = self[nonzero_idxs][:, nonzero_idxs] return nonzero_idxs, cov_reduced @classmethod def _restore_size(cls, nonzero_idxs, cov_reduced, dim): """ Restore the size of the matrix Parameters ---------- nonzero_idxs : numpy.ndarray The indices of the diagonal that are not null. cov_reduced : sandy.core.cov._Cov The reduced matrix. dim : int Dimension of the original matrix. Returns ------- cov : sandy.core.cov._Cov Matrix of specified dimensions. """ cov = _Cov(np.zeros((dim, dim))) for i, ni in enumerate(nonzero_idxs): cov[ni, nonzero_idxs] = cov_reduced[i] return cov def sampling(self, nsmp, seed=None): """ Extract random samples from the covariance matrix, either using the cholesky or the eigenvalue decomposition. Parameters ---------- nsmp : `int` number of samples seed : `int` seed for the random number generator (default is `None`) Returns ------- `np.array` 2D array of random samples with dimension `(self.shape[0], nsmp)` """ dim = self.shape[0] np.random.seed(seed=seed) y = np.random.randn(dim, nsmp) nonzero_idxs, cov_reduced = self._reduce_size() L_reduced = cov_reduced.get_L() L = self.__class__._restore_size(nonzero_idxs, L_reduced, dim) samples = np.array(L.dot(y)) return samples def get_L(self): """ Extract lower triangular matrix `L` for which `L*L^T == self`. Returns ------- `np.array` lower triangular matrix """ try: L = scipy.linalg.cholesky( self, lower=True, overwrite_a=False, check_finite=False ) except np.linalg.linalg.LinAlgError: E, V = self.eig() E[E <= 0] = 0 Esqrt = np.diag(np.sqrt(E)) M = V.dot(Esqrt) Q, R = scipy.linalg.qr(M.T) L = R.T return L class CategoryCov(): """ Properties ---------- data covariance matrix as a dataframe size first dimension of the covariance matrix Methods ------- corr2cov create a covariance matrix given a correlation matrix and a standard deviation vector from_stack create a covariance matrix from a stacked `pd.DataFrame` from_stdev construct a covariance matrix from a stdev vector from_var construct a covariance matrix from a variance vector get_corr extract correlation matrix from covariance matrix get_eig extract eigenvalues and eigenvectors from covariance matrix get_L extract lower triangular matrix such that $C=L L^T$ get_std extract standard deviations from covariance matrix invert calculate the inverse of the matrix sampling extract perturbation coefficients according to chosen distribution and covariance matrix """ def __repr__(self): return self.data.__repr__() def __init__(self, *args, **kwargs): self.data = pd.DataFrame(*args, **kwargs) @property def data(self): """ Covariance matrix as a dataframe. Attributes ---------- index : `pandas.Index` or `pandas.MultiIndex` indices columns : `pandas.Index` or `pandas.MultiIndex` columns values : `numpy.array` covariance values as `float` Returns ------- `pandas.DataFrame` covariance matrix Notes ----- ..note :: In the future, another tests will be implemented to check that the covariance matrix is symmetric and have positive variances. Examples -------- >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array[1]) >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array([[1, 2], [2, -4]])) >>> with pytest.raises(TypeError): sandy.CategoryCov(np.array([[1, 2], [3, 4]])) """ return self._data @data.setter def data(self, data): self._data = pd.DataFrame(data, dtype=float) if not len(data.shape) == 2 and data.shape[0] == data.shape[1]: raise TypeError("Covariance matrix must have two dimensions") if not (np.diag(data) >= 0).all(): raise TypeError("Covariance matrix must have positive variance") sym_limit = 10 # Round to avoid numerical fluctuations if not (data.values.round(sym_limit) == data.values.T.round(sym_limit)).all(): raise TypeError("Covariance matrix must be symmetric") @property def size(self): return self.data.values.shape[0] def get_std(self): """ Extract standard deviations. Returns ------- `pandas.Series` 1d array of standard deviations Examples -------- >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).get_std() 0 1.00000e+00 1 1.00000e+00 Name: STD, dtype: float64 """ cov = self.to_sparse().diagonal() std = np.sqrt(cov) return pd.Series(std, index=self.data.index, name="STD") def get_eig(self, tolerance=None): """ Extract eigenvalues and eigenvectors. Parameters ---------- tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. The replacement condition is implemented as: .. math:: $$ \frac{e_i}{e_{MAX}} < tolerance $$ Then, a `tolerance=1e-3` will replace all eigenvalues 1000 times smaller than the largest eigenvalue. A `tolerance=0` will replace all negative eigenvalues. Returns ------- `Pandas.Series` array of eigenvalues `pandas.DataFrame` matrix of eigenvectors Notes ----- .. note:: only the real part of the eigenvalues is preserved .. note:: the discussion associated to the implementeation of this algorithm is available [here](https://github.com/luca-fiorito-11/sandy/discussions/135) Examples -------- Extract eigenvalues of correlation matrix. >>> sandy.CategoryCov([[1, 0.4], [0.4, 1]]).get_eig()[0] 0 1.40000e+00 1 6.00000e-01 Name: EIG, dtype: float64 Extract eigenvectors of correlation matrix. >>> sandy.CategoryCov([[1, 0.4], [0.4, 1]]).get_eig()[1] 0 1 0 7.07107e-01 -7.07107e-01 1 7.07107e-01 7.07107e-01 Extract eigenvalues of covariance matrix. >>> sandy.CategoryCov([[0.1, 0.1], [0.1, 1]]).get_eig()[0] 0 8.90228e-02 1 1.01098e+00 Name: EIG, dtype: float64 Set up a tolerance. >>> sandy.CategoryCov([[0.1, 0.1], [0.1, 1]]).get_eig(tolerance=0.1)[0] 0 0.00000e+00 1 1.01098e+00 Name: EIG, dtype: float64 Test with negative eigenvalues. >>> sandy.CategoryCov([[1, 2], [2, 1]]).get_eig()[0] 0 3.00000e+00 1 -1.00000e+00 Name: EIG, dtype: float64 Replace negative eigenvalues. >>> sandy.CategoryCov([[1, 2], [2, 1]]).get_eig(tolerance=0)[0] 0 3.00000e+00 1 0.00000e+00 Name: EIG, dtype: float64 Check output size. >>> cov = sandy.CategoryCov.random_cov(50, seed=11) >>> assert cov.get_eig()[0].size == cov.data.shape[0] == 50 >>> sandy.CategoryCov([[1, 0.2, 0.1], [0.2, 2, 0], [0.1, 0, 3]]).get_eig()[0] 0 9.56764e-01 1 2.03815e+00 2 3.00509e+00 Name: EIG, dtype: float64 Real test on H1 file >>> endf6 = sandy.get_endf6_file("jeff_33", "xs", 10010) >>> ek = sandy.energy_grids.CASMO12 >>> err = endf6.get_errorr(ek_errorr=ek, err=1) >>> cov = err.get_cov() >>> cov.get_eig()[0].sort_values(ascending=False).head(7) 0 3.66411e-01 1 7.05311e-03 2 1.55346e-03 3 1.60175e-04 4 1.81374e-05 5 1.81078e-06 6 1.26691e-07 Name: EIG, dtype: float64 >>> assert not (cov.get_eig()[0] >= 0).all() >>> assert (cov.get_eig(tolerance=0)[0] >= 0).all() """ E, V = scipy.linalg.eig(self.data) E = pd.Series(E.real, name="EIG") V = pd.DataFrame(V.real) if tolerance is not None: E[E/E.max() < tolerance] = 0 return E, V def get_corr(self): """ Extract correlation matrix. Returns ------- df : :obj: `CetgoryCov` correlation matrix Examples -------- >>> sandy.CategoryCov([[4, 2.4],[2.4, 9]]).get_corr() 0 1 0 1.00000e+00 4.00000e-01 1 4.00000e-01 1.00000e+00 """ cov = self.data.values with np.errstate(divide='ignore', invalid='ignore'): coeff = np.true_divide(1, self.get_std().values) coeff[~ np.isfinite(coeff)] = 0 # -inf inf NaN corr = np.multiply(np.multiply(cov, coeff).T, coeff) df = pd.DataFrame( corr, index=self.data.index, columns=self.data.columns, ) return self.__class__(df) def invert(self, rows=None): """ Method for calculating the inverse matrix. Parameters ---------- tables : `bool`, optional Option to use row calculation for matrix calculations. The default is False. rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `CategoryCov` The inverse matrix. Examples -------- >>> S = sandy.CategoryCov(np.diag(np.array([1, 2, 3]))) >>> S.invert() 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 >>> S = sandy.CategoryCov(np.diag(np.array([0, 2, 3]))) >>> S.invert() 0 1 2 0 0.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 >>> S = sandy.CategoryCov(np.diag(np.array([0, 2, 3]))) >>> S.invert(rows=1) 0 1 2 0 0.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 5.00000e-01 0.00000e+00 2 0.00000e+00 0.00000e+00 3.33333e-01 """ index = self.data.index columns = self.data.columns M_nonzero_idxs, M_reduce = reduce_size(self.data) cov = sps.csc_matrix(M_reduce.values) rows_ = cov.shape[0] if rows is None else rows data = sparse_tables_inv(cov, rows=rows_) M_inv = restore_size(M_nonzero_idxs, data, len(self.data)) M_inv = M_inv.reindex(index=index, columns=columns).fillna(0) return self.__class__(M_inv) def log2norm_cov(self, mu): """ Transform covariance matrix to the one of the underlying normal distribution. Parameters ---------- mu : iterable The desired mean values of the target lognormal distribution. Returns ------- `CategoryCov` of the underlying normal covariance matrix Examples -------- >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> cov.log2norm_cov(pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index)) A B C A 2.19722e+00 1.09861e+00 1.38629e+00 B 1.09861e+00 2.39790e+00 1.60944e+00 C 1.38629e+00 1.60944e+00 2.07944e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = pd.Series([1, 2, .5], index=["A", "B", "C"]) >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = [1, 2, .5] >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = np.array([1, 2, .5]) >>> cov.log2norm_cov(mu) A B C A 2.19722e+00 6.93147e-01 1.94591e+00 B 6.93147e-01 1.25276e+00 1.60944e+00 C 1.94591e+00 1.60944e+00 3.36730e+00 Notes ----- ..notes:: Reference for the equation is 10.1016/j.nima.2012.06.036 .. math:: $$ cov(lnx_i, lnx_j) = \ln\left(\frac{cov(x_i,x_j)}{<x_i>\cdot<x_j>}+1\right) $$ """ mu_ = np.diag(1 / pd.Series(mu)) mu_ = pd.DataFrame(mu_, index=self.data.index, columns=self.data.index) return self.__class__(np.log(self.sandwich(mu_).data + 1)) def log2norm_mean(self, mu): """ Transform mean values to the mean values of the undelying normal distribution. Parameters ---------- mu : iterable The target mean values. Returns ------- `pd.Series` of the underlyig normal distribution mean values Examples -------- >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = pd.Series(np.ones(cov.data.shape[0]), index=cov.data.index) >>> cov.log2norm_mean(mu) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> cov.log2norm_mean([1, 1, 1]) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 >>> cov = CategoryCov(pd.DataFrame([[8, 2, 3], [2, 10, 4], [3, 4, 7]], index=['A', 'B', 'C'], columns=['A', 'B', 'C'])) >>> mu = np.ones(cov.data.shape[0]) >>> cov.log2norm_mean(mu) A -1.09861e+00 B -1.19895e+00 C -1.03972e+00 dtype: float64 Reindexing example """ mu_ = pd.Series(mu) mu_.index = self.data.index return np.log(mu_**2 / np.sqrt(np.diag(self.data) + mu_**2)) def sampling(self, nsmp, seed=None, rows=None, pdf='normal', tolerance=None, relative=True): """ Extract perturbation coefficients according to chosen distribution with covariance from given covariance matrix. See note for non-normal distribution sampling. The samples' mean will be 1 or 0 depending on `relative` kwarg. Parameters ---------- nsmp : `int` number of samples. seed : `int`, optional, default is `None` seed for the random number generator (by default use `numpy` dafault pseudo-random number generator). rows : `int`, optional, default is `None` option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. pdf : `str`, optional, default is 'normal' random numbers distribution. Available distributions are: * `'normal'` * `'uniform'` * `'lognormal'` tolerance : `float`, optional, default is `None` replace all eigenvalues smaller than a given tolerance with zeros. relative : `bool`, optional, default is `True` flag to switch between relative and absolute covariance matrix handling * `True`: samples' mean will be 1 * `False`: samples' mean will be 0 Returns ------- `sandy.Samples` object containing samples Notes ----- .. note:: sampling with uniform distribution is performed on diagonal covariance matrix, neglecting all correlations. .. note:: sampling with lognormal distribution gives a set of samples with mean=1 as lognormal distribution can not have mean=0. Therefore, `relative` parameter does not apply to it. Examples -------- Draw 3 sets of samples using custom seed: >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11) 0 1 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 >>> sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(3, seed=11, rows=1) 0 1 0 -7.49455e-01 -2.13159e+00 1 1.28607e+00 1.10684e+00 2 1.48457e+00 9.00879e-01 >>> sample = sandy.CategoryCov([[1, 0.4],[0.4, 1]]).sampling(1000000, seed=11) >>> sample.data.cov() 0 1 0 9.98662e-01 3.99417e-01 1 3.99417e-01 9.98156e-01 Small negative eigenvalue: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, tolerance=0) 0 1 0 2.74945e+00 5.21505e+00 1 7.13927e-01 1.07147e+00 2 5.15435e-01 1.64683e+00 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, tolerance=0).data.cov() 0 1 0 9.98662e-01 -1.99822e-01 1 -1.99822e-01 2.99437e+00 Sampling with different `pdf`: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(3, seed=11, pdf='uniform', tolerance=0) 0 1 0 -1.07578e-01 2.34960e+00 1 -6.64587e-01 5.21222e-01 2 8.72585e-01 9.12563e-01 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(3, seed=11, pdf='lognormal', tolerance=0) 0 1 0 3.03419e+00 1.57919e+01 1 5.57248e-01 4.74160e-01 2 4.72366e-01 6.50840e-01 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0).data.cov() 0 1 0 1.00042e+00 -1.58806e-03 1 -1.58806e-03 3.00327e+00 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0).data.cov() 0 1 0 1.00219e+00 1.99199e-01 1 1.99199e-01 3.02605e+00 `relative` kwarg usage: >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=True).data.mean(axis=0) 0 1.00014e+00 1 9.99350e-01 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='normal', tolerance=0, relative=False).data.mean(axis=0) 0 1.41735e-04 1 -6.49679e-04 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=True).data.mean(axis=0) 0 9.98106e-01 1 9.99284e-01 dtype: float64 >>> sandy.CategoryCov([[1, -.2],[-.2, 3]]).sampling(1000000, seed=11, pdf='uniform', tolerance=0, relative=False).data.mean(axis=0) 0 -1.89367e-03 1 -7.15929e-04 dtype: float64 Lognormal distribution sampling indeoendency from `relative` kwarg >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=True).data.mean(axis=0) 0 9.99902e-01 1 9.99284e-01 dtype: float64 >>> sandy.CategoryCov([[1, .2],[.2, 3]]).sampling(1000000, seed=11, pdf='lognormal', tolerance=0, relative=False).data.mean(axis=0) 0 9.99902e-01 1 9.99284e-01 dtype: float64 """ dim = self.data.shape[0] pdf_ = pdf if pdf != 'lognormal' else 'normal' y = sample_distribution(dim, nsmp, seed=seed, pdf=pdf_) - 1 y = sps.csc_matrix(y) # the covariance matrix to decompose is created depending on the chosen # pdf if pdf == 'uniform': to_decompose = self.__class__(np.diag(np.diag(self.data))) elif pdf == 'lognormal': ones = np.ones(self.data.shape[0]) to_decompose = self.log2norm_cov(ones) else: to_decompose = self L = sps.csr_matrix(to_decompose.get_L(rows=rows, tolerance=tolerance)) samples = pd.DataFrame(L.dot(y).toarray(), index=self.data.index, columns=list(range(nsmp))) if pdf == 'lognormal': # mean value of lognormally sampled distributions will be one by # defaul samples = np.exp(samples.add(self.log2norm_mean(ones), axis=0)) elif relative: samples += 1 return sandy.Samples(samples.T) @classmethod def from_var(cls, var): """ Construct the covariance matrix from the variance vector. Parameters ---------- var : 1D iterable Variance vector. Returns ------- `CategoryCov` Object containing the covariance matrix. Example ------- >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) >>> cov = sandy.CategoryCov.from_var(S) >>> cov 1 2 3 1 0.00000e+00 0.00000e+00 0.00000e+00 2 0.00000e+00 2.00000e+00 0.00000e+00 3 0.00000e+00 0.00000e+00 3.00000e+00 >>> assert type(cov) is sandy.CategoryCov >>> S = sandy.CategoryCov.from_var((1, 2, 3)) >>> S 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 2.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 3.00000e+00 >>> assert type(S) is sandy.CategoryCov >>> assert type(sandy.CategoryCov.from_var([1, 2, 3])) is sandy.CategoryCov """ var_ = pd.Series(var) cov_values = sps.diags(var_.values).toarray() cov = pd.DataFrame(cov_values, index=var_.index, columns=var_.index) return cls(cov) @classmethod def from_stdev(cls, std): """ Construct the covariance matrix from the standard deviation vector. Parameters ---------- std : `pandas.Series` Standard deviations vector. Returns ------- `CategoryCov` Object containing the covariance matrix. Example ------- >>> S = pd.Series(np.array([0, 2, 3]), index=pd.Index([1, 2, 3])) >>> cov = sandy.CategoryCov.from_stdev(S) >>> cov 1 2 3 1 0.00000e+00 0.00000e+00 0.00000e+00 2 0.00000e+00 4.00000e+00 0.00000e+00 3 0.00000e+00 0.00000e+00 9.00000e+00 >>> assert type(cov) is sandy.CategoryCov >>> S = sandy.CategoryCov.from_stdev((1, 2, 3)) >>> S 0 1 2 0 1.00000e+00 0.00000e+00 0.00000e+00 1 0.00000e+00 4.00000e+00 0.00000e+00 2 0.00000e+00 0.00000e+00 9.00000e+00 >>> assert type(S) is sandy.CategoryCov >>> assert type(sandy.CategoryCov.from_stdev([1, 2, 3])) is sandy.CategoryCov """ std_ = pd.Series(std) var = std_ * std_ return cls.from_var(var) @classmethod def from_stack(cls, data_stack, index, columns, values, rows=10000000, kind='upper'): """ Create a covariance matrix from a stacked dataframe. Parameters ---------- data_stack : `pd.Dataframe` Stacked dataframe. index : 1D iterable, optional Index of the final covariance matrix. columns : 1D iterable, optional Columns of the final covariance matrix. values : `str`, optional Name of the column where the values are located. rows : `int`, optional Number of rows to take into account into each loop. The default is 10000000. kind : `str`, optional Select if the stack data represents upper or lower triangular matrix. The default is 'upper. Returns ------- `sandy.CategoryCov` Covarinace matrix. Examples -------- If the stack data represents the covariance matrix: >>> S = pd.DataFrame(np.array([[1, 1, 1], [1, 2, 1], [1, 1, 1]])) >>> S = S.stack().reset_index().rename(columns = {'level_0': 'dim1', 'level_1': 'dim2', 0: 'cov'}) >>> S = S[S['cov'] != 0] >>> sandy.CategoryCov.from_stack(S, index=['dim1'], columns=['dim2'], values='cov', kind='all') dim2 0 1 2 dim1 0 1.00000e+00 1.00000e+00 1.00000e+00 1 1.00000e+00 2.00000e+00 1.00000e+00 2 1.00000e+00 1.00000e+00 1.00000e+00 If the stack data represents only the upper triangular part of the covariance matrix: >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL').data >>> test_1 MAT1 9437 MT1 2 102 E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT MT E 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT", "MT", "E"], columns=["MAT1", "MT1", "E1"], values='VAL', rows=1).data >>> test_2 MAT1 9437 MT1 2 102 E1 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT MT E 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> assert (test_1 == test_2).all().all() If the stack data represents only the lower triangular part of the covariance matrix: >>> test_1 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower").data >>> test_1 MAT 9437 MT 2 102 E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT1 MT1 E1 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> test_2 = sandy.CategoryCov.from_stack(minimal_covtest, index=["MAT1", "MT1", "E1"], columns=["MAT", "MT", "E"], values='VAL', kind="lower", rows=1).data >>> test_2 MAT 9437 MT 2 102 E 1.00000e-02 2.00000e+05 1.00000e-02 2.00000e+05 MAT1 MT1 E1 9437 2 1.00000e-02 2.00000e-02 0.00000e+00 4.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 9.00000e-02 0.00000e+00 5.00000e-02 102 1.00000e-02 4.00000e-02 0.00000e+00 1.00000e-02 0.00000e+00 2.00000e+05 0.00000e+00 5.00000e-02 0.00000e+00 1.00000e-02 >>> assert (test_1 == test_2).all().all() """ cov = segmented_pivot_table(data_stack, rows=rows, index=index, columns=columns, values=values) if kind == 'all': return cls(cov) else: return triu_matrix(cov, kind=kind) def _gls_Vy_calc(self, S, rows=None): """ 2D calculated output using .. math:: $$ S\cdot V_{x_{prior}}\cdot S.T $$ Parameters ---------- S : 2D iterable Sensitivity matrix (MXN). rows : `int`, optional Option to use row calculation for matrix calculations. This option defines the number of lines to be taken into account in each loop. The default is None. Returns ------- `pd.DataFrame` Covariance matrix `Vy_calc` calculated using S.dot(Vx_prior).dot(S.T) Example ------- >>> S = np.array([[1, 2], [3, 4]]) >>> cov = sandy.CategoryCov.from_var([1, 1]) >>> cov._gls_Vy_calc(S) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 >>> cov._gls_Vy_calc(S, rows=1) 0 1 0 5.00000e+00 1.10000e+01 1 1.10000e+01 2.50000e+01 """ index =
pd.DataFrame(S)
pandas.DataFrame
import os from PIL import Image import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.gridspec as gridspec from matplotlib.ticker import MultipleLocator import seaborn as sns import motmetrics as mm from algorithms.aaa_util import convert_df from file_manager import ReadResult sns.set() sns.set_style("whitegrid") LINEWIDTH = 4 ANNOT_SIZE = 12 ALL_HEIGHT = 3 def calc_rank(dataset, trackers_name, scores, reverse=False): ranks = [] for seq_name in dataset.sequence_names["train"]: value = np.array( [scores[tracker_name][seq_name] for tracker_name in trackers_name] ) temp = value.argsort() if reverse: temp = temp[::-1] rank = np.empty_like(temp) rank[temp] = np.arange(len(value)) rank = len(trackers_name) - rank ranks.append(rank) ranks = np.array(ranks) return ranks def draw_detngt(dataset, result_dir): for seq in dataset: dataset_name = seq.seq_info["dataset_name"] seq_name = seq.seq_info["seq_name"] if seq_name != "MOT17-09-SDP": continue save_dir = result_dir / dataset_name / "DetNGT" / seq_name os.makedirs(save_dir, exist_ok=True) for frame_idx, (img_path, dets, gts) in enumerate(seq): filename = os.path.basename(img_path) im = Image.open(img_path).convert("RGB") fig, axes = plt.subplots(nrows=1, ncols=1) fig.add_subplot(111, frameon=False) sample_ax = axes # draw frame sample_ax.imshow(np.asarray(im), aspect="auto") # draw detection results for i in range(len(dets)): box = dets[i, 2:6] rect = patches.Rectangle( (box[0], box[1]), box[2], box[3], linewidth=LINEWIDTH, edgecolor="purple", facecolor="none", alpha=1, ) sample_ax.add_patch(rect) sample_ax.annotate( "Det", xy=(box[0] + box[2] / 2, box[1]), xycoords="data", weight="bold", xytext=(-5, 5), textcoords="offset points", size=ANNOT_SIZE, color="purple", ) # draw ground truth for i in range(len(gts)): if (dataset_name == "MOT16" or dataset_name == "MOT17") and gts[ i, 7 ] != 1: continue box = gts[i, 1:6] rect = patches.Rectangle( (box[1], box[2]), box[3], box[4], linewidth=LINEWIDTH, edgecolor="darkorange", facecolor="none", alpha=1, ) sample_ax.add_patch(rect) sample_ax.annotate( f"{int(box[0])}", xy=(box[1] + box[3] / 2, box[2] + box[4]), xycoords="data", weight="bold", xytext=(-5, -10), textcoords="offset points", size=ANNOT_SIZE, color="darkorange", ) sample_ax.axis("off") # hide tick and tick label of the big axes plt.axis("off") plt.grid(False) plt.savefig(save_dir / filename, bbox_inches="tight") plt.close() def draw_det(dataset, result_dir): for seq in dataset: dataset_name = seq.seq_info["dataset_name"] seq_name = seq.seq_info["seq_name"] if seq_name != "MOT17-09-SDP": continue save_dir = result_dir / dataset_name / "Det" / seq_name os.makedirs(save_dir, exist_ok=True) for frame_idx, (img_path, dets, gts) in enumerate(seq): filename = os.path.basename(img_path) im = Image.open(img_path).convert("RGB") fig, axes = plt.subplots(nrows=1, ncols=1) fig.add_subplot(111, frameon=False) sample_ax = axes # draw frame sample_ax.imshow(np.asarray(im), aspect="auto") # draw detection results for i in range(len(dets)): box = dets[i, 2:6] rect = patches.Rectangle( (box[0], box[1]), box[2], box[3], linewidth=LINEWIDTH, edgecolor="black", facecolor="none", alpha=1, ) sample_ax.add_patch(rect) sample_ax.annotate( "Det", xy=(box[0] + box[2] / 2, box[1]), xycoords="data", weight="bold", xytext=(-5, -5), textcoords="offset points", size=ANNOT_SIZE, color="black", ) sample_ax.axis("off") # hide tick and tick label of the big axes plt.axis("off") plt.grid(False) plt.savefig(save_dir / filename, bbox_inches="tight") plt.close() def draw_gt(dataset, result_dir): for seq in dataset: dataset_name = seq.seq_info["dataset_name"] seq_name = seq.seq_info["seq_name"] save_dir = result_dir / dataset_name / "GT" / seq_name os.makedirs(save_dir, exist_ok=True) for frame_idx, (img_path, dets, gts) in enumerate(seq): filename = os.path.basename(img_path) im = Image.open(img_path).convert("RGB") fig, axes = plt.subplots(nrows=1, ncols=1) fig.add_subplot(111, frameon=False) sample_ax = axes # draw frame sample_ax.imshow(np.asarray(im), aspect="auto") # draw ground truth for i in range(len(gts)): if (dataset_name == "MOT16" or dataset_name == "MOT17") and gts[ i, 7 ] != 1: continue box = gts[i, 1:6] rect = patches.Rectangle( (box[1], box[2]), box[3], box[4], linewidth=LINEWIDTH, edgecolor="black", facecolor="none", alpha=1, ) sample_ax.add_patch(rect) sample_ax.annotate( f"{int(box[0])}", xy=(box[1] + box[3] / 2, box[2] + box[4]), xycoords="data", weight="bold", xytext=(-5, -10), textcoords="offset points", size=ANNOT_SIZE, color="black", ) sample_ax.axis("off") # hide tick and tick label of the big axes plt.axis("off") plt.grid(False) plt.savefig(save_dir / filename, bbox_inches="tight") plt.close() def draw_result( output_dir, dataset, tracker_name, result_dir, is_algorithm=True, duration=None, ): if is_algorithm: show = ["weight", "frame"] else: show = ["frame"] for seq in dataset: dataset_name = seq.seq_info["dataset_name"] seq_name = seq.seq_info["seq_name"] tracker_reader = ReadResult(output_dir, dataset_name, tracker_name, seq_name) if is_algorithm: dataset_dir = output_dir / dataset_name / tracker_name weight_path = dataset_dir / f"{seq_name}_weight.txt" weights = pd.read_csv(weight_path, header=None).set_index(0) save_dir = result_dir / dataset_name / tracker_name / seq_name os.makedirs(save_dir, exist_ok=True) for frame_idx, (img_path, dets, gts) in enumerate(seq): filename = os.path.basename(img_path) im = Image.open(img_path).convert("RGB") cond = [drawing in show for drawing in ["weight", "frame"]] ratios = [1 if i != 1 else 3 for i in range(len(cond)) if cond[i]] fig, axes = plt.subplots( nrows=sum(cond), ncols=1, gridspec_kw={"height_ratios": ratios} ) fig.add_subplot(111, frameon=False) i = 0 if cond[0]: weight_ax = axes[i] if len(ratios) > 1 else axes i += 1 if cond[1]: sample_ax = axes[i] if len(ratios) > 1 else axes # draw weight graph if cond[0]: for i in weights.columns: weight = weights.loc[: frame_idx + 1][i] weight_ax.plot(range(len(weight)), weight) weight_ax.set( ylabel="Weight", xlim=(0, len(seq)), ylim=(-0.05, 1.05,), ) weight_ax.set_xticks([]) # draw anchor line for i in range(frame_idx): if i + 1 % duration == 0: weight_ax.axvline( x=i, color="gray", linestyle="--", linewidth=1 ) # draw frame if cond[1]: sample_ax.imshow(np.asarray(im), aspect="auto") bboxes = tracker_reader.get_result_by_frame(frame_idx) # draw tracking bbox for i in range(len(bboxes)): box = bboxes[i] rect = patches.Rectangle( (box[1], box[2]), box[3], box[4], linewidth=LINEWIDTH, facecolor="none", alpha=1, edgecolor="red", ) sample_ax.add_patch(rect) sample_ax.annotate( f"{int(box[0])}", xy=(box[1] + box[3] / 2, box[2]), xycoords="data", weight="bold", xytext=(-5, 5), textcoords="offset points", size=ANNOT_SIZE, color="red", ) # draw ground truth for i in range(len(gts)): if gts[i, 7] != 1: continue box = gts[i, 1:6] rect = patches.Rectangle( (box[1], box[2]), box[3], box[4], linewidth=LINEWIDTH, edgecolor="black", facecolor="none", alpha=1, ) sample_ax.add_patch(rect) sample_ax.annotate( f"{int(box[0])}", xy=(box[1] + box[3] / 2, box[2] + box[4]), xycoords="data", weight="bold", xytext=(-5, -10), textcoords="offset points", size=ANNOT_SIZE, color="black", ) sample_ax.axis("off") # hide tick and tick label of the big axes plt.axis("off") plt.grid(False) plt.subplots_adjust(wspace=0, hspace=0.1 if len(ratios) > 1 else 0) plt.savefig(save_dir / filename, bbox_inches="tight") plt.close() def draw_all_result(output_dir, dataset, trackers_name, result_dir, colors, duration): for seq in dataset: dataset_name = seq.seq_info["dataset_name"] seq_name = seq.seq_info["seq_name"] trackers_reader = [ ReadResult(output_dir, dataset_name, tracker_name, seq_name) for tracker_name in trackers_name ] dataset_dir = output_dir / dataset_name / trackers_name[0] weight_path = dataset_dir / f"{seq_name}_weight.txt" weights =
pd.read_csv(weight_path, header=None)
pandas.read_csv
import datetime import string import matplotlib.dates import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from nltk import WordNetLemmatizer, LancasterStemmer, pos_tag, sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.sentiment import SentimentIntensityAnalyzer from pandas._libs.tslibs.offsets import BDay from sklearn import tree from sklearn.calibration import calibration_curve from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report from sklearn.model_selection import train_test_split, learning_curve from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR, LinearSVC from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, plot_tree from textblob import TextBlob from wordcloud import WordCloud def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)): if axes is None: _, axes = plt.subplots(1, 3, figsize=(20, 5)) axes[0].set_title(title) if ylim is not None: axes[0].set_ylim(*ylim) axes[0].set_xlabel("Training examples") axes[0].set_ylabel("Score") train_sizes, train_scores, test_scores, fit_times, _ =\ learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, return_times=True) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) fit_times_mean = np.mean(fit_times, axis=1) fit_times_std = np.std(fit_times, axis=1) axes[0].grid() axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") axes[0].plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") axes[0].plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") axes[0].legend(loc="best") axes[1].grid() axes[1].plot(train_sizes, fit_times_mean, 'o-') axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std, fit_times_mean + fit_times_std, alpha=0.1) axes[1].set_xlabel("Training examples") axes[1].set_ylabel("fit_times") axes[1].set_title("Scalability of the model") axes[2].grid() axes[2].plot(fit_times_mean, test_scores_mean, 'o-') axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1) axes[2].set_xlabel("fit_times") axes[2].set_ylabel("Score") axes[2].set_title("Performance of the model") return plt def create_word_cloud(text, type): print('\nCreating word cloud...') word_cloud = WordCloud(width=1024, height=1024, margin=0).generate(text) fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(word_cloud, interpolation='bilinear') ax.axis("off") ax.margins(x=0, y=0) plt.savefig(f'wordcloud_{type}.png') def get_stop_words(tokens): stop_word_tokens = [] for word in tokens: if word.startswith('//t.co/') or word.startswith('http') or word in ['RT', 'http', 'rt', 'timestamp', '.', '[video]', 'AMP', 'and', 'at', 'for', 'from', 'the', 'this', 'is', 'it', 'jul', 'of', 'on', 'to', 'in', 'with', 2018, 'FALSE', '2018', 'amp', 'you', 'by', False, 0, 7, 12, 15, '0', '7', '12', '15', 'inc']: continue elif word not in stopwords.words('english') or word not in ['RT', 'http', 'rt', 'timestamp', '.', '[video]']: stop_word_tokens.append(word) sentence = ' '.join(stop_word_tokens) return sentence def get_lemma(tokens): lemma = WordNetLemmatizer() lemmatized_tokens = [] for token in tokens: temp_tokens = lemma.lemmatize(token) lemmatized_tokens.append(temp_tokens) return get_stop_words(lemmatized_tokens) def get_stems(tokens): stemmer = LancasterStemmer() stemmed_tokens = [] for token in tokens: for word in token: if word[1] == 'DT' or word[1] == 'PRP' or word[1] == 'PRP$' or word[1] == 'NN' or word[1] == 'NNP' or word[1] == 'NNPS': temp_tokens = word[0] else: temp_tokens = stemmer.stem(word[0]) stemmed_tokens.append(temp_tokens) return get_lemma(stemmed_tokens) def get_pos_tag(tokens): pos_tokens = [pos_tag(token) for token in tokens] return get_stems(pos_tokens) def get_tokens(document): sequences = sent_tokenize(document) seq_tokens = [word_tokenize(sequence) for sequence in sequences] no_punctuation_seq_tokens = [] for seq_token in seq_tokens: no_punctuation_seq_tokens.append([token for token in seq_token if token not in string.punctuation]) return get_pos_tag(no_punctuation_seq_tokens) def get_num_words(s): return len(s.split()) def append_col(train_data): print('\nGetting number of words in new text cells...') word_counts = [] for index, row in train_data.iterrows(): word_counts.append(get_num_words(row['new_text'])) train_data['new_text_count'] = word_counts return train_data def get_bigrams(train_data): print("\nCalculating the bigrams...") bigram_vectorizer = CountVectorizer(ngram_range=[2, 2]) x = bigram_vectorizer.fit_transform(train_data.text) bigram_total = bigram_vectorizer.get_feature_names() transformer = TfidfTransformer() mat = transformer.fit_transform(x) bigrams = pd.DataFrame(mat.todense(), index=train_data.index, columns=bigram_vectorizer.get_feature_names()) train_data = pd.concat([train_data, bigrams], ignore_index=False, sort=False, axis=1, join="inner") return len(bigram_total), train_data def get_trigrams(train_data): print("\nCalculating the trigrams...") trigram_vectorizer = CountVectorizer(ngram_range=[3, 3]) x = trigram_vectorizer.fit_transform(train_data.text) trigram_total = trigram_vectorizer.get_feature_names() transformer = TfidfTransformer() mat = transformer.fit_transform(x) trigram = pd.DataFrame(mat.todense(), index=train_data.index, columns=trigram_vectorizer.get_feature_names()) train_data = pd.concat([train_data, trigram], ignore_index=False, sort=False, axis=1, join="inner") return len(trigram_total), train_data def get_bag_of_words(train_data, features, name, type): print("\nCalculating the bag of words...") vectorizer = CountVectorizer(max_features=features, stop_words='english') x = vectorizer.fit_transform(train_data.text) words = vectorizer.get_feature_names() transformer = TfidfTransformer() mat = transformer.fit_transform(x) bow = pd.DataFrame(mat.todense(), index=train_data.index, columns=vectorizer.get_feature_names()) train_data = pd.concat([train_data, bow], ignore_index=False, sort=False, axis=1, join="inner") df_total = train_data.drop(['text'], axis=1) train_data.to_csv(f'df_{type}_{name}_total.csv') return train_data def plot_ngrams(ngrams): print('\nPlotting ngrams...') fig = plt.figure() ax = plt.axes() x = ['unigram', 'bigram', 'trigram'] ax.plot(x, ngrams) ax.set_title('Number of ngrams in Stockerbot Dataset') plt.savefig('ngrams.png') def concat_date_time(train_data): train_data['timestamp'] = train_data['date'].str.cat(train_data['time'], sep=' ') return train_data def get_vader_polarity(document): vader = SentimentIntensityAnalyzer() score = vader.polarity_scores(document) return list(score.values()) def split_vader_polarity(train_data): print('\nSplitting Vader sentiment dictionary into separate columns...') nvs = [] Nvs = [] pvs = [] cvs = [] for v in train_data.iloc[:, 19]: nvs.append(v[0]) Nvs.append(v[1]) pvs.append(v[2]) cvs.append(v[3]) train_data['negative_vader_score'] = nvs train_data['neutral_vader_score'] = Nvs train_data['positive_vader_score'] = pvs train_data['compound_vader_score'] = cvs return train_data def get_textblob_polarity(document): return TextBlob(document).sentiment.polarity def get_decision_tree_regression(name, file): print(f'Conducting decision tree regression on {name}\'s {file} file...') train_data = pd.read_csv(f'df_{file}_{name}_total.csv') train_data = train_data.drop(['Unnamed: 0'], axis=1) train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.sort_values(by=['final_scores']) X = train_data.iloc[:, 2:3].values.astype(float) y = train_data.iloc[:, 3:4].values.astype(float) sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) print(f'\n{name} training set after standard scaling:') print(X.shape, y.shape) regr_1 = DecisionTreeRegressor(max_depth=2, max_features='auto') regr_2 = DecisionTreeRegressor(max_depth=5, max_features='auto') regr_1.fit(X, y) regr_2.fit(X, y) X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) plt.figure() plt.scatter(X, y, s=20, edgecolor='black', c='darkorange', label='data') plt.plot(X_test, y_1, color='cornflowerblue', label='max_depth=2', linewidth=2) plt.plot(X_test, y_2, color='yellowgreen', label='max_depth=5', linewidth=2) plt.xlabel('data') plt.ylabel('target') plt.title(f'{name} Decision Tree Regression ({file})') plt.legend() plt.savefig(f'{file}_{name}_dtr.png') return train_data def get_comparison_calibration_classifiers(name1, file): print(f'Conducting a comparison of calibration classifiers on {name1}\'s {file} file...') train_data = pd.read_csv(f'df_{file}_{name1}_total.csv') train_data = train_data.drop(['Unnamed: 0'], axis=1) train_data = train_data.drop(['date'], axis=1) train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.sort_values(by=['2_SMA']) X = train_data[['final_scores', '2_SMA', '5_SMA', '7_EMA']] y = train_data[['sentiment']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7) lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC() rfc = RandomForestClassifier() fig = plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train.values.ravel()) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name,)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.5, 1.5]) ax1.legend(loc="lower right") ax1.set_title(f'{name1} Calibration plots (reliability curve)({file})') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.savefig(f'{file}_{name1}_ccc.png') return train_data def get_support_vector_regression(name, file): print(f'Conducting support vector regression on {name}\'s {file} file...') senti_data = pd.read_csv(f'df_{file}_{name}_total.csv') stock_data = pd.read_csv(f'df_stock_{name}.csv') stocks = stock_data[['date', '2_SMA', '5_SMA', '7_EMA']].copy() train_data = senti_data[['date', 'sentiment', 'final_scores']].copy() new = train_data['date'].str.split(' ', n=1, expand=True) train_data['date'] = new[0] train_data = pd.merge(train_data, stocks, on=['date', 'date'], how='left', sort=False) train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.fillna(method='ffill') train_data = train_data.fillna(value=0) train_data = train_data.sort_values(by=['final_scores']) X = train_data.iloc[:, 2:3].values.astype(float) y = train_data.iloc[:, 3:4].values.astype(float) sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) print(f'\n{name} training set after standard scaling:') print(X.shape, y.shape) svr_rbf = SVR(kernel='rbf', C=10000, gamma=0.1, epsilon=.1) svr_lin = SVR(kernel='linear', C=10000, gamma='auto') svr_poly = SVR(kernel='poly', C=10000, gamma='auto', degree=3, epsilon=.1, coef0=1) lw = 2 svrs = [svr_rbf, svr_lin, svr_poly] kernel_label = ['RBF', 'Linear', 'Polynomial'] model_color = ['m', 'c', 'g'] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True) for ix, svr in enumerate(svrs): axes[ix].plot(X, svr.fit(X, y).predict(X), color=model_color[ix], lw=lw, label='{} model'.format(kernel_label[ix])) axes[ix].scatter(X[svr.support_], y[svr.support_], facecolor="none", edgecolor=model_color[ix], s=50, label='{} support vectors'.format(kernel_label[ix])) axes[ix].scatter(X[np.setdiff1d(np.arange(len(X)), svr.support_)], y[np.setdiff1d(np.arange(len(X)), svr.support_)], facecolor="none", edgecolor="k", s=50, label='other training data') axes[ix].legend(loc='upper center', bbox_to_anchor=(0.5, 1.1), ncol=1, fancybox=True, shadow=True) fig.text(0.5, 0.04, 'data', ha='center', va='center') fig.text(0.06, 0.5, 'target', ha='center', va='center', rotation='vertical') fig.suptitle(f'{name} Support Vector Regression ({file})', fontsize=14) plt.savefig(f'{file}_{name}_swr.png') train_data.to_csv(f'df_{file}_{name}_total.csv') return train_data def get_decision_tree_classifier(train_data, name, file): print(f'Creating decision tree classifiers on {name}\'s {file} file...') train_data = train_data.drop(['date'], axis=1) train_data = train_data.drop(['trading_time'], axis=1) train_data = train_data.drop(['source'], axis=1) train_data = train_data.drop(['text'], axis=1) sentiment = train_data.pop('sentiment') train_data.insert(0, 'sentiment', sentiment) y = train_data.iloc[:, 0].values X_train, X_test, y_train, y_test = train_test_split(train_data, y, test_size=0.33) dtc = DecisionTreeClassifier(criterion='entropy', max_features='auto', max_depth=5, random_state=0) print("Decision Tree classifier") pred = dtc.fit(X_train, y_train) predictions = pred.predict(X_test) text_representation = tree.export_text(dtc) with open(f'decision_tree_{file}_{name}.log', 'w') as fout: fout.write(text_representation) feature_names = list(train_data.columns.values) fig = plt.figure(figsize=(15, 10)) plot_tree(dtc, feature_names=feature_names, class_names=["FALSE", "TRUE"], filled=True, fontsize=12) plt.title(f'{file} Decision Tree for {name}') plt.savefig(f'decision_tree_{file}_{name}.png') fig = plt.figure(figsize=(15, 10)) con_mat = confusion_matrix(y_true=y_test, y_pred=predictions) group_names = ['True Neg', 'False Pos', 'False Neg', 'True Pos'] group_counts = ['{0: 0.0f}'.format(value) for value in con_mat.flatten()] group_percentages = ['{0: .2f}'.format(value) for value in con_mat.flatten() / np.sum(con_mat)] labels = [f'{v1}\n{v2}\n{v3}' for v1, v2, v3 in zip(group_names, group_counts, group_percentages)] labels = np.asarray(labels).reshape(2, 2) sns.heatmap(con_mat, annot=labels, fmt='', cmap='Blues') plt.title(f'{file} Confusion Matrix for {name}') plt.savefig(f'confusion_matrix_{file}_{name}.png') fig = plt.figure(figsize=(15, 10)) class_rpt = pd.DataFrame(classification_report(predictions, y_test, digits=2, output_dict=True)) class_rpt.style.background_gradient(cmap='newcmp', subset=pd.IndexSlice['0':'9', :'f1-score']).set_properties( **{'text-align': 'center', 'font-size': '30px'}) sns.heatmap(class_rpt.iloc[:-1, :].T, annot=True) plt.title(f'{file} Classification Report for {name}') plt.savefig(f'classification_report_{file}_{name}.png') def combine_stock_sentiments(name, code): print('\nCombining extreme and blob data frames back with train_data for regressions...') train_data = pd.read_csv(f'stockerbot_cleaned.csv') if code == 0: df_extreme = pd.read_csv(f'df_extreme_vader_{name}.csv') df_extreme['date'] = pd.to_datetime(df_extreme['date']) type = 'vader' elif code == 1: df_extreme = pd.read_csv(f'df_extreme_blob_{name}.csv') df_extreme['date'] = pd.to_datetime(df_extreme['date']) type = 'blob' train_data['date'] = pd.to_datetime(train_data['date'] + ' ' + train_data['time']) df_total = pd.merge(df_extreme, train_data, on=['date', 'date'], how='left', sort=False, suffixes=('_v', '_b')) df_total = df_total.drop(['Unnamed: 0_v'], axis=1) df_total = df_total.drop(['Unnamed: 0_b'], axis=1) df_total = df_total.drop(['Date'], axis=1) df_total = df_total.drop(['time'], axis=1) df_total = df_total.drop(['fb'], axis=1) df_total = df_total.drop(['aapl'], axis=1) df_total = df_total.drop(['amzn'], axis=1) df_total = df_total.drop(['nflx'], axis=1) df_total = df_total.drop(['googl'], axis=1) df_total = df_total.drop(['vader_sentiment'], axis=1) df_total = df_total.drop(['negative_vader_score'], axis=1) df_total = df_total.drop(['neutral_vader_score'], axis=1) df_total = df_total.drop(['positive_vader_score'], axis=1) df_total = df_total.drop(['compound_vader_score'], axis=1) df_total = df_total.drop(['tb_sentiment'], axis=1) df_total = df_total.drop(['verified'], axis=1) df_total = df_total.drop(['faang'], axis=1) df_total = df_total.drop(['timestamp'], axis=1) df_total = df_total.drop(['above_mean'], axis=1) df_total['sentiment'] = np.where(df_total['final_scores'] > 0, 0, 1) df_total = df_total.fillna(value=0) df_total.to_csv(f'df_{type}_{name}_total.csv') return df_total def get_trade_open(date): curr_date_open = pd.to_datetime(date).floor('d').replace(hour=13, minute=30) - BDay(0) curr_date_close =
pd.to_datetime(date)
pandas.to_datetime
__author__ = "<NAME>, <NAME>" __credits__ = ["<NAME>", "<NAME>"] __maintainer__ = "<NAME>, <NAME>" __email__ = "<EMAIL>" __version__ = "0.1" __license__ = "MIT" import matplotlib.pyplot as plt import numpy as np import pandas import pandas as pd from matplotlib.ticker import NullFormatter from idf_analysis import IntensityDurationFrequencyAnalyse from idf_analysis.definitions import COL from idf_analysis.little_helpers import duration_steps_readable, minutes_readable, frame_looper, event_caption from idf_analysis.sww_utils import (guess_freq, rain_events, event_duration, resample_rain_series, rain_bar_plot, agg_events, ) COL.MAX_SRI = 'max_SRI_{}' COL.MAX_SRI_DURATION = 'max_SRI_duration_{}' #################################################################################################################### def grisa_factor(tn): """ calculates the grisa-factor according to Grisa's formula Args: tn (float): in [years] Returns: float: factor """ return 1 + (np.log(tn) / np.log(2)) def next_bigger(v, l): return l[next(x for x, val in enumerate(l) if val >= v)] class SCHMITT: # Zuweisung nach Schmitt des SRI über der Wiederkehrperiode SRI_TN = { 1: 1, 2: 1, 3: 2, 5: 2, 10: 3, 20: 4, 25: 4, 30: 5, 50: 6, 75: 6, 100: 7 } # Erhöhungsfaktoren nach Schmitt für SRI 8,9,10,11,12 basierend auf SRI 7 # untere und obere Grenze MULTI_FACTOR = { 8: (1.2, 1.39), 9: (1.4, 1.59), 10: (1.6, 2.19), 11: (2.2, 2.78), 12: (2.8, 2.8), } VERBAL = { (1, 2): 'Starkregen', (3, 5): 'intensiver Starkregen', (6, 7): 'außergewöhnlicher Starkregen', (8, 12): 'extremer Starkregen' } INDICES_COLOR = {1: (0.69, 0.9, 0.1), 2: (0.8, 1, 0.6), 3: (0.9, 1, 0.3), 4: (1, 0.96, 0), 5: (1, 0.63, 0), 6: (1, 0.34, 0), 7: (1, 0.16, 0), 8: (0.97, 0.12, 0.24), 9: (1, 0.10, 0.39), 10: (0.97, 0.03, 0.51), 11: (0.92, 0.08, 0.75), 12: (0.66, 0.11, 0.86)} INDICES_COLOR_RGB = {1: (176, 230, 25), 2: (204, 255, 153), 3: (230, 255, 77), 4: (255, 244, 0), 5: (255, 160, 0), 6: (255, 86, 0), 7: (255, 40, 0), 8: (247, 30, 61), 9: (255, 26, 99), 10: (247, 9, 130), 11: (235, 21, 191), 12: (189, 28, 220)} INDICES_COLOR_HEX = {1: "#b0e619", 2: "#ccff99", 3: "#e6ff4d", 4: "#fff400", 5: "#ffa000", 6: "#ff5600", 7: "#ff2800", 8: "#f71e3d", 9: "#ff1a63", 10: "#f70982", 11: "#eb15bf", 12: "#bd1cdc"} krueger_pfister_verbal = { (1, 4): 'moderat', (5, 7): 'stark', (8, 10): 'heftig', (11, 12): 'extrem' } grisa_verbal = { (1, 2): 'Minor', (3, 4): 'Moderate', (5, 6): 'Major', (7, 8): 'Extreme', (9, 10): 'Catastrophic' } def cat_dict(cat): res = {} for num_range, verbal in cat.items(): for i in range(num_range[0], num_range[1]+1): res[i] = verbal return res #################################################################################################################### class HeavyRainfallIndexAnalyse(IntensityDurationFrequencyAnalyse): indices = list(range(1, 13)) class METHODS: SCHMITT = 'Schmitt' KRUEGER_PFISTER = 'KruegerPfister' MUDERSBACH = 'Mudersbach' @classmethod def all(cls): return cls.SCHMITT, cls.KRUEGER_PFISTER, cls.MUDERSBACH indices_color = SCHMITT.INDICES_COLOR def __init__(self, *args, method=METHODS.SCHMITT, **kwargs): IntensityDurationFrequencyAnalyse.__init__(self, *args, **kwargs) self.method = method self._sri_frame = None def set_series(self, series): IntensityDurationFrequencyAnalyse.set_series(self, series) self._sri_frame = None def get_sri(self, height_of_rainfall, duration): """ calculate the heavy rain index (StarkRegenIndex), when the height of rainfall and the duration are given Args: height_of_rainfall (float): in [mm] duration (int | float | list | numpy.ndarray | pandas.Series): in minutes Returns: int | float | list | numpy.ndarray | pandas.Series: heavy rain index """ tn = self.get_return_period(height_of_rainfall, duration) if self.method == self.METHODS.MUDERSBACH: if isinstance(tn, (pd.Series, np.ndarray)): sri = np.round(1.5 * np.log(tn) + 0.4 * np.log(duration), 0) sri[tn <= 1] = 1 sri[tn >= 100] = 12 return sri else: if tn <= 1: return 1 elif tn >= 100: return 12 else: return np.round(1.5 * np.log(tn) + 0.4 * np.log(duration), 0) elif self.method == self.METHODS.SCHMITT: if isinstance(tn, (pd.Series, np.ndarray)): breaks = [-np.inf] + list(SCHMITT.SRI_TN.keys()) + [np.inf] d = dict(zip(range(11), SCHMITT.SRI_TN.values())) sri = pd.cut(tn, breaks, labels=False).replace(d) over_100 = tn > 100 hn_100 = self.depth_of_rainfall(duration, 100) breaks2 = [1] + [f[0] for f in SCHMITT.MULTI_FACTOR.values()][1:] + [np.inf] d2 = dict(zip(range(len(breaks2) - 1), range(8, 13))) sri.loc[over_100] = pd.cut(height_of_rainfall.loc[over_100] / hn_100, breaks2, labels=False).replace(d2) else: if tn >= 100: hn_100 = self.depth_of_rainfall(duration, 100) for sri, mul in SCHMITT.MULTI_FACTOR.items(): if height_of_rainfall <= hn_100 * mul[0]: break else: sri = SCHMITT.SRI_TN[next_bigger(tn, list(SCHMITT.SRI_TN.keys()))] elif self.method == self.METHODS.KRUEGER_PFISTER: h_24h = self.depth_of_rainfall(duration=24 * 60, return_period=tn) hn_100 = self.depth_of_rainfall(duration=duration, return_period=100) duration_adjustment_factor = height_of_rainfall / h_24h intensity_adjustment_factor = height_of_rainfall / hn_100 sri = grisa_factor(tn) * duration_adjustment_factor * intensity_adjustment_factor if isinstance(sri, (pd.Series, np.ndarray)): sri[tn < 0.5] = 0 else: if tn < 0.5: return 0 return np.clip(np.ceil(sri), 0, 12) else: raise NotImplementedError(f'Method {self.method} not implemented!') return sri # __________________________________________________________________________________________________________________ def result_sri_table(self, durations=None): """ get a standard idf table of rainfall depth with return periods as columns and durations as rows Args: durations (list | numpy.ndarray | None): list of durations in minutes for the table Returns: pandas.DataFrame: idf table """ idf_table = self.result_table(durations) if self.method == self.METHODS.SCHMITT: sri_table = idf_table.rename(columns=SCHMITT.SRI_TN) for sri, mul in SCHMITT.MULTI_FACTOR.items(): sri_table[sri] = mul[1] * sri_table[7] sri_table = sri_table.loc[:, ~sri_table.columns.duplicated('last')] elif self.method == self.METHODS.MUDERSBACH: # zuerst eine Tabelle mit den Wiederkehrperioden rp_table = pd.DataFrame(index=idf_table.index, columns=range(1, 13)) # abhängigkeit nach dauerstufe a = np.log(rp_table.index.values) * 0.4 for sri in rp_table.columns: rp_table[sri] = np.exp((sri + 0.5 - a) / 1.5) rp_table.loc[:, 1] = 1 # rp_table.loc[:, 12] = 100 # dann mittels Dauerstufe und Wiederkehrperiode die Regenhöhe errechnen sri_table = rp_table.round(1).copy() for dur in rp_table.index: sri_table.loc[dur] = self.depth_of_rainfall(dur, rp_table.loc[dur]) # extrapolation vermutlich nicht sehr seriös sri_table[rp_table >= 100] = np.NaN # sri_table.loc[:12] = self.depth_of_rainfall(sri_table.index.values, 100) sri_table[rp_table < 1] = np.NaN sri_table = sri_table.astype(float).round(2) sri_table = sri_table.fillna(method='ffill', axis=1, limit=None) elif self.method == self.METHODS.KRUEGER_PFISTER: # duration_adjustment_factor = idf_table.div(idf_table.loc[24 * 60]) # intensity_adjustment_factor = idf_table.div(idf_table[100].values, axis=0) # sri_table = grisa_factor( # idf_table.columns.values) * duration_adjustment_factor * intensity_adjustment_factor # sri_table = sri_table.round().astype(int).clip(0,12) sri_table = pd.DataFrame(index=idf_table.index) sri_vector = (idf_table.loc[1440, 100] * idf_table.loc[:, 100]) / (1 + (np.log(100) / np.log(2))) for i in self.indices: sri_table[i] = np.sqrt(i * sri_vector) else: raise NotImplementedError(f'Method or "{self.method}" not implemented! ' f'Please contact the developer for the request to implement it.') sri_table.index.name = 'duration in min' sri_table.columns.name = 'SRI' return sri_table def interim_sri_table(self, durations=None): """M get a table of SRI with return periods as columns and durations as rows Args: durations (list | numpy.ndarray): list of durations in minutes for the table return_periods (list): list of return periods in years for the table Returns: pandas.DataFrame: idf table """ idf_table = self.result_table(durations) sri_table = pd.DataFrame(index=idf_table.index, columns=idf_table.columns) if self.method == self.METHODS.SCHMITT: for col in sri_table: sri_table[col] = SCHMITT.SRI_TN[col] elif self.method == self.METHODS.MUDERSBACH: sri_table[1] = 1 a = np.log(sri_table.index.values) * 0.4 for tn in [2, 3, 5, 10, 20, 25, 30, 50, 75, 100]: sri_table[tn] = a + np.log(tn) * 1.5 sri_table = sri_table.round().astype(int) elif self.method == self.METHODS.KRUEGER_PFISTER: duration_adjustment_factor = idf_table.div(idf_table.loc[24 * 60]) intensity_adjustment_factor = idf_table.div(idf_table[100].values, axis=0) sri_table = grisa_factor(idf_table.columns.values) * duration_adjustment_factor * intensity_adjustment_factor sri_table = sri_table.round().astype(int).clip(0,12) else: raise NotImplementedError(f'Method {self.method} not implemented!') sri_table.index.name = 'duration in min' sri_table.columns.name = 'Return Period in a' return sri_table #################################################################################################################### def result_sri_figure(self, duration_steps=None, ax=None, grid=True): """ SRI curves are generated depending on the selected procedure for SRI generation. Args: duration_steps (list | numpy.ndarray): list of durations in minutes for the table ax (plt.Axes): if plot is a subplot give the axes grid (bool): if to make a grid Returns: (matplotlib.pyplot.Figure, matplotlib.pyplot.Axes): figure and axes of the plot """ sri_table = self.result_sri_table(durations=duration_steps) ax = sri_table.plot(color=self.indices_color, logx=True, legend=True, ax=ax) ax.tick_params(axis='both', which='both', direction='out') ax.set_xlabel('Duration D') ax.set_ylabel('Rainfall h$\\mathsf{_N}$ in mm') # ax.set_xlabel('Dauerstufe D') # ax.set_ylabel('Regenhöhe h$\\mathsf{_N}$ in mm') # ax.set_title('Starkregenindex - Kurven', fontweight='bold') ax.set_xticks([], minor=True) ax.set_xticks(sri_table.index) ax.set_xlim(*sri_table.index.values[[0, -1]]) ax.set_xticklabels(duration_steps_readable(sri_table.index)) ax.set_facecolor('w') if grid: ax.grid(color='grey', linestyle='-', linewidth=0.3) handles, labels = ax.get_legend_handles_labels() ax.legend(handles[::-1], labels[::-1], bbox_to_anchor=(1.02, 1.), loc='upper left', borderaxespad=0., title='SRI') fig = ax.get_figure() # cm_to_inch = 2.54 # fig.set_size_inches(h=11 / cm_to_inch, w=25 / cm_to_inch) # (11.69, 8.27) fig.tight_layout() return fig, ax #################################################################################################################### @property def sri_frame(self): """ get the return periods over the whole time-series for the default duration steps. Returns: pandas.DataFrame: data-frame of return periods where the columns are the duration steps """ if self._sri_frame is None: self._sri_frame = self.get_sri_frame() return self._sri_frame def get_sri_frame(self, series=None, durations=None): """ Args: series (pandas.Series): precipitation time-series of the time range of interest i.e. of an event durations (list): list of durations in minutes which are of interest (default: pre defined durations) Returns: pandas.DataFrame: index=date-time-index; columns=durations; values=SRI """ # TODO: Probleme bei geringen Regenhöhen, Formel nicht dafür gemacht!! sums = self.get_rainfall_sum_frame(series=series, durations=durations) df = pd.DataFrame(index=sums.index) for d in frame_looper(sums.index.size, columns=sums.columns, label='sri'): df[d] = self.get_sri(height_of_rainfall=sums[d][sums[d] > 0.1], duration=d) return df#.round(1) def add_max_sri_to_events(self, events, series=None): """M maximum SRI is added to the table Args: events (list): list of rainfall events Returns: pandas.DataFrame: table """ if COL.MAX_SRI.format(self.method) not in events: events[COL.MAX_SRI.format(self.method)] = None events[COL.MAX_SRI_DURATION.format(self.method)] = None rainfall_sum_frame = self.get_rainfall_sum_frame(series=series) for event_no, event in events.iterrows(): s = self.get_event_sri_max(event[COL.START], event[COL.END], rainfall_sum_frame=rainfall_sum_frame) events.loc[event_no, COL.MAX_SRI.format(self.method)] = s.max() events.loc[event_no, COL.MAX_SRI_DURATION.format(self.method)] = s.idxmax() def get_event_sri_max(self, start, end, rainfall_sum_frame=None): """M maximum SRI is added to the table Args: events (list): list of rainfall events Returns: pandas.DataFrame: table """ if rainfall_sum_frame is None: d = self.rainfall_sum_frame[start:end].max().to_dict() else: d = rainfall_sum_frame[start:end].max().to_dict() sri = dict() for dur, h in d.items(): sri[dur] = self.get_sri(h, dur) return pd.Series(sri, name=self.method) def sri_bar_axes(self, ax, sri_frame, durations=None): """ create a bar axes for the sri event plot Args: ax (matplotlib.pyplot.Axes): sri_frame (pandas.DataFrame): index=DatetimeIndex and columns=SRI durations (list): Returns: matplotlib.pyplot.Axes: """ if durations is None: durations = [5, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240, 360, 540, 720, 1080, 1440, 2880, 4320] # legend from matplotlib.lines import Line2D custom_lines = [Line2D([0], [0], color=self.indices_color[i], lw=4) for i in self.indices] names = [str(i) for i in self.indices] ax.legend(custom_lines, names, bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=len(self.indices), mode="expand", borderaxespad=0., title='StarkRegenIndex', handlelength=0.7) duration_size = len(durations) # labels for the y axis durations_index = range(duration_size) dh = 1 ax.set_yticks([i + dh / 2 for i in durations_index], minor=True) ax.set_yticks(list(durations_index), minor=False) ax.set_yticklabels(duration_steps_readable(durations), minor=True) ax.set_yticklabels([''] * duration_size, minor=False) ax.set_ylabel('duration of the design rainfall') # for the relative start time freq = guess_freq(sri_frame.index) start_period = sri_frame.index[0].to_period(freq).ordinal # idf_table.index = idf_table.index - idf_table.index[0] min_duration = pd.Timedelta(minutes=1) for hi, d in enumerate(sri_frame.columns): sri = sri_frame[d] for i in self.indices: # not really a rain event, but the results are the same tab = rain_events(sri, ignore_rain_below=i, min_gap=freq) if tab.empty: continue if 1: durations = (event_duration(tab) / min_duration).tolist() rel_starts = ((tab[COL.START] - sri_frame.index[0]) / min_duration + start_period).tolist() bar_x = list(zip(rel_starts, durations)) else: tab[COL.DUR] = event_duration(tab) / min_duration bar_x = [(r[COL.START] / min_duration + start_period, r[COL.DUR]) for _, r in tab.iterrows()] ax.broken_barh(bar_x, (hi, dh), facecolors=self.indices_color[i]) ax.set_ylim(0, duration_size) ax.set_xticklabels([]) ax.xaxis.set_major_formatter(NullFormatter()) ax.axhline(0, color='k') ax.axhline(duration_size / 2, color='k') return ax @staticmethod def event_plot_caption(event, method, unit='mm'): """ get a caption for the event Args: event (pd.Series | dict): statistics of the event method (str): used method for HRI estimation (i.e. SCHMITT, MUDERSBACH, KRUEGER_PFISTER) unit (str): unit of the observation Returns: str: caption for the plot """ caption = event_caption(event, unit) + '\n' caption += f'The method used for the SRI calculation is: {method}.\n' if COL.MAX_SRI.format(method) in event: caption += f'The maximum SRI was {event[COL.MAX_SRI.format(method)]:0.2f}\n' if COL.MAX_SRI_DURATION.format(method) in event: caption += f'at a duration of {minutes_readable(event[COL.MAX_SRI_DURATION.format(method)])}.' return caption def event_plot_sri(self, event, durations=None, unit='mm', column_name='Precipitation'): """ get a plot of the selected event Args: event (pandas.Series): event durations (list | numpy.ndarray): list of durations in minutes for the table unit (str): unit of the observation column_name (str): label of the observation Returns: (matplotlib.pyplot.Figure, matplotlib.pyplot.Axes): figure and axes of the plot """ event = event.to_dict() start = event[COL.START] end = event[COL.END] plot_range = slice(start - pd.Timedelta(self._freq), end + pd.Timedelta(self._freq)) if durations: max_dur = max(durations) else: max_dur = max(self.duration_steps) sri_frame_extended = self.get_sri_frame( self.series[start -
pd.Timedelta(minutes=max_dur)
pandas.Timedelta
from datetime import datetime import warnings import numpy as np import pytest from pandas.core.dtypes.generic import ABCDateOffset import pandas as pd from pandas import ( DatetimeIndex, Index, PeriodIndex, Series, Timestamp, bdate_range, date_range, ) from pandas.tests.test_base import Ops import pandas.util.testing as tm from pandas.tseries.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Series' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.format(op)): getattr(self.dt_series, op) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) index = pd.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = pd.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = pd.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "minute", "second", "millisecond", "microsecond", ], ): idx = pd.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_value_counts_unique(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = pd.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", pd.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [pd.NaT, "2011-01-03", "2011-01-05", "2011-01-02", pd.NaT], [pd.NaT, pd.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = index.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep="last") exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep="last") tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) @pytest.mark.parametrize( "freq", [ "A", "2A", "-2A", "Q", "-1Q", "M", "-1M", "D", "3D", "-3D", "W", "-1W", "H", "2H", "-2H", "T", "2T", "S", "-3S", ], ) def test_infer_freq(self, freq): # GH 11018 idx = pd.date_range("2011-01-01 09:00:00", freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat(self, tz_naive_fixture): tz = tz_naive_fixture assert pd.DatetimeIndex._na_value is pd.NaT assert pd.DatetimeIndex([])._na_value is pd.NaT idx = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(["2011-01-01", "NaT"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"]) assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert idx.astype(object).equals(idx) assert idx.astype(object).equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(pd.Series(idx)) idx2 = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"], tz="US/Pacific") assert not idx.equals(idx2) assert not idx.equals(idx2.copy()) assert not idx.equals(idx2.astype(object)) assert not idx.astype(object).equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(
pd.Series(idx2)
pandas.Series