prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import time import scipy import random import pickle import torch import json import numpy as np import pandas as pd from urllib import request pd.set_option('display.width', 1000) def adj_to_tensor(adj): if type(adj) != scipy.sparse.coo.coo_matrix: adj = adj.tocoo() sparse_row = torch.LongTensor(adj.row).unsqueeze(1) sparse_col = torch.LongTensor(adj.col).unsqueeze(1) sparse_concat = torch.cat((sparse_row, sparse_col), 1) sparse_data = torch.FloatTensor(adj.data) adj_tensor = torch.sparse.FloatTensor(sparse_concat.t(), sparse_data, torch.Size(adj.shape)) return adj_tensor def adj_preprocess(adj, adj_norm_func=None, mask=None, model_type="torch", device='cpu'): if adj_norm_func is not None: adj = adj_norm_func(adj) if model_type == "torch": if type(adj) is tuple: if mask is not None: adj = [adj_to_tensor(adj_[mask][:, mask]).to(device) for adj_ in adj] else: adj = [adj_to_tensor(adj_).to(device) for adj_ in adj] else: if mask is not None: adj = adj_to_tensor(adj[mask][:, mask]).to(device) else: adj = adj_to_tensor(adj).to(device) elif model_type == "dgl": if type(adj) is tuple: if mask is not None: adj = [adj_[mask][:, mask] for adj_ in adj] else: adj = [adj_ for adj_ in adj] else: if mask is not None: adj = adj[mask][:, mask] else: adj = adj return adj def feat_preprocess(features, feat_norm=None, device='cpu'): def feat_normalize(feat, norm=None): if norm == "arctan": feat = 2 * np.arctan(feat) / np.pi elif norm == "tanh": feat = np.tanh(feat) else: feat = feat return feat if type(features) != torch.Tensor: features = torch.FloatTensor(features) elif features.type() != 'torch.FloatTensor': features = features.float() if feat_norm is not None: features = feat_normalize(features, norm=feat_norm) features = features.to(device) return features def label_preprocess(labels, device='cpu'): if type(labels) != torch.Tensor: labels = torch.LongTensor(labels) elif labels.type() != 'torch.LongTensor': labels = labels.long() labels = labels.to(device) return labels def fix_seed(seed=0): """ Fix random process by a seed. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def get_num_params(model): return sum([np.prod(p.size()) for p in model.parameters() if p.requires_grad]) def save_features(features, file_dir, file_name='features.npy'): if features is not None: if not os.path.exists(file_dir): os.makedirs(file_dir) np.save(os.path.join(file_dir, file_name), features.cpu().detach().numpy()) def save_adj(adj, file_dir, file_name='adj.pkl'): if adj is not None: if not os.path.exists(file_dir): os.makedirs(file_dir) with open(os.path.join(file_dir, file_name), 'wb') as f: pickle.dump(adj, f) def save_model(model, save_dir, name, verbose=True): if save_dir is None: cur_time = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) save_dir = "./tmp_{}".format(cur_time) os.makedirs(save_dir) if not os.path.exists(save_dir): os.makedirs(save_dir) torch.save(model.state_dict(), os.path.join(save_dir, name)) if verbose: print("Model saved in '{}'.".format(os.path.join(save_dir, name))) def get_index_induc(index_a, index_b): i_a, i_b = 0, 0 l_a, l_b = len(index_a), len(index_b) i_new = 0 index_a_new, index_b_new = [], [] while i_new < l_a + l_b: if i_a == l_a: while i_b < l_b: i_b += 1 index_b_new.append(i_new) i_new += 1 continue elif i_b == l_b: while i_a < l_a: i_a += 1 index_a_new.append(i_new) i_new += 1 continue if index_a[i_a] < index_b[i_b]: i_a += 1 index_a_new.append(i_new) i_new += 1 else: i_b += 1 index_b_new.append(i_new) i_new += 1 return index_a_new, index_b_new def download(url, save_path): print("Downloading from {}".format(url)) try: data = request.urlopen(url) except Exception as e: print(e) print("Failed to download the dataset.") exit(1) with open(save_path, "wb") as f: f.write(data.read()) def save_dict_to_xlsx(result_dict, file_dir, file_name="result.xlsx", index=0, verbose=True): if not os.path.exists(file_dir): os.makedirs(file_dir) df =
pd.DataFrame(result_dict, index=[index])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3))
assert_series_equal(ts + s, expected)
pandas.util.testing.assert_series_equal
from typing import Optional import numpy as np import pandas as pd from pandas import DatetimeIndex from stateful.representable import Representable from stateful.storage.tree import DateTree from stateful.utils import list_of_instance, cast_output from pandas.api.types import infer_dtype class Stream(Representable): def __init__(self, name, configuration: dict = None, dtype=None, tree: Optional[DateTree] = None): Representable.__init__(self) self.name = name self.dtype = dtype if dtype else configuration.get("dtype") self._tree = tree self.configuration = configuration if configuration else {} @property def length(self): return len(self._tree) if self._tree else None @property def tree(self): if self._tree is None: self._tree = DateTree(self.name, self.dtype) return self._tree @property def interpolation(self): return self.tree.interpolation @property def empty(self): return not (self.tree is not None and not self.tree.empty) @property def start(self): return self.tree.start @property def end(self): return self.tree.end @property def first(self): return self.tree.first @property def last(self): return self.tree.last def set_name(self, name): self.name = name self._tree.name = name def ceil(self, date): return self.tree.ceil(date) def floor(self, date): return self.tree.floor(date) def head(self, n=5) -> pd.DataFrame: if self.empty: return pd.DataFrame() index, values = [], [] iterator = iter(self._tree) while len(index) < n: idx, value = next(iterator) index.append(idx) values.append(value) if list_of_instance(values, dict): return pd.DataFrame(values, index=index) else: name = self.name if self.name else "values" columns = [{name: v} for v in values] return pd.DataFrame(columns, index=index) def df(self) -> pd.DataFrame: if self.empty: return pd.DataFrame() index, values = zip(*list(self._tree)) if list_of_instance(values, dict): return pd.DataFrame(values, index=index) else: return pd.DataFrame(columns={self.name: values}, index=index) def alias(self, name): return Stream(name, self.configuration, self.dtype, self._tree.alias(name), self.function, self.frozen) def values(self): return self.tree.values() def dates(self): return self.tree.dates() def on(self, on=True) -> None: self._tree.on(on) def within(self, date) -> bool: return self.tree.within(date) def get(self, date, cast=True): if cast: return cast_output(self.dtype, self.tree.get(date)) else: return self.tree.get(date) def all(self, dates: DatetimeIndex, cast=True): if cast: return self.tree.all(dates).cast(self.dtype) else: return self.tree.all(dates) def add(self, date, state): if pd.isna(state) and self.empty: return if self.dtype is None: self.dtype =
infer_dtype([state])
pandas.api.types.infer_dtype
# Copyright 2018 <NAME>, <NAME>. # (Strongly inspired by original Google BERT code and Hugging Face's code) """ Fine-tuning on A Classification Task with pretrained Transformer """ import itertools import csv import fire import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import tokenization import models import optim import train import pdb import numpy as np import pandas as pd from utils import set_seeds, get_device, truncate_tokens_pair import os def read_explanations(path): header = [] uid = None df =
pd.read_csv(path, sep='\t', dtype=str)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Nov 5 16:32:56 2019 @author: daniele """ #%% IMPORTS from dataset import DatabaseManager, loadData, splitData import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.stats import poisson, skellam import statsmodels.api as sm import statsmodels.formula.api as smf from scipy.optimize import minimize import time result_path = './Results/' #%% def rho_correction(x, y, lambda_x, mu_y, rho): if x==0 and y==0: return 1- (lambda_x * mu_y * rho) elif x==0 and y==1: return 1 + (lambda_x * rho) elif x==1 and y==0: return 1 + (mu_y * rho) elif x==1 and y==1: return 1 - rho else: return 1.0 def solve_parameters(dataset, debug = False, init_vals=None, options={'disp': True, 'maxiter':100}, constraints = [{'type':'eq', 'fun': lambda x: sum(x[:20])-20}] , **kwargs): teams = np.sort(dataset['HomeTeam'].unique()) # check for no weirdness in dataset away_teams = np.sort(dataset['AwayTeam'].unique()) if not np.array_equal(teams, away_teams): raise ValueError("Something's not right") n_teams = len(teams) if init_vals is None: # random initialisation of model parameters init_vals = np.concatenate((np.random.uniform(0,1,(n_teams)), # attack strength np.random.uniform(0,-1,(n_teams)), # defence strength np.array([0, 1.0]) # rho (score correction), gamma (home advantage) )) def dc_log_like(x, y, alpha_x, beta_x, alpha_y, beta_y, rho, gamma): lambda_x, mu_y = np.exp(alpha_x + beta_y + gamma), np.exp(alpha_y + beta_x) return (np.log(rho_correction(x, y, lambda_x, mu_y, rho)) + np.log(poisson.pmf(x, lambda_x)) + np.log(poisson.pmf(y, mu_y))) # @jit(float64(float64[:], int64), nopython=True, parallel=True) def estimate_paramters(params): score_coefs = dict(zip(teams, params[:n_teams])) defend_coefs = dict(zip(teams, params[n_teams:(2*n_teams)])) rho, gamma = params[-2:] log_like = [dc_log_like(row.HomeGoals, row.AwayGoals, score_coefs[row.HomeTeam], defend_coefs[row.HomeTeam], score_coefs[row.AwayTeam], defend_coefs[row.AwayTeam], rho, gamma) for row in dataset.itertuples()] return -sum(log_like) # @jit(float64[:](float64[:], int64), nopython=True, parallel=True) # def fast_jac(x, N): # h = 1e-9 # jac = np.zeros_like(x) # f_0 = estimate_paramters(params) # for i in range(N): # x_d = np.copy(x) # x_d[i] += h # f_d = estimate_paramters(x_d, N) # jac[i] = (f_d - f_0) / h # return jac opt_output = minimize(estimate_paramters, init_vals, method='SLSQP', options=options, constraints = constraints, **kwargs) if debug: # sort of hacky way to investigate the output of the optimisation process return opt_output else: return dict(zip(["attack_"+team for team in teams] + ["defence_"+team for team in teams] + ['rho', 'home_adv'], opt_output.x)) def calc_means(param_dict, homeTeam, awayTeam): return [np.exp(param_dict['attack_'+homeTeam] + param_dict['defence_'+awayTeam] + param_dict['home_adv']), np.exp(param_dict['defence_'+homeTeam] + param_dict['attack_'+awayTeam])] def dixon_coles_simulate_match(params_dict, homeTeam, awayTeam, max_goals=8): team_avgs = calc_means(params_dict, homeTeam, awayTeam) team_pred = [[poisson.pmf(i, team_avg) for i in range(0, max_goals+1)] for team_avg in team_avgs] output_matrix = np.outer(np.array(team_pred[0]), np.array(team_pred[1])) correction_matrix = np.array([[rho_correction(home_goals, away_goals, team_avgs[0], team_avgs[1], params_dict['rho']) for away_goals in range(2)] for home_goals in range(2)]) output_matrix[:2,:2] = output_matrix[:2,:2] * correction_matrix return output_matrix class SoccerPrediction(): def __init__(self, league_name, pathFile, dixon=False): self.league_name = league_name self.db = DatabaseManager(league_name, pathFile) self.data = self.db.getUsefulData() self.model = self.poissonModel() self.teams = self.db.teams self.dixon = dixon if(dixon): self.dixon_params = self.dixon() def dixon(self): start = time.time() reduced_set = self.db.data.iloc[0:400] # return reduced_set params = solve_parameters(reduced_set) end = time.time() spent_time_min = (end - start)//60 spent_time_sec = end - start - spent_time_min*60 print('Time spent: {} min {} sec'.format(spent_time_min, spent_time_sec)) return params def updateData(self, data): self.data = data def poissonModel(self): data = self._genData(self.data) data_home = data.rename(columns = {'HomeTeam':'team', 'AwayTeam':'opponent','HomeGoals':'goals'}) data_home = data_home.assign(home = 1) data_away = data.rename(columns={'AwayTeam':'team', 'HomeTeam':'opponent','AwayGoals':'goals'}) data_away = data_away.assign(home = 0) # return data_home, data_away # goal_model_data = pd.concat([data_home, data_away]) goal_model_data = pd.concat([data[['HomeTeam','AwayTeam','HomeGoals']].assign(home=1).rename( columns={'HomeTeam':'team', 'AwayTeam':'opponent','HomeGoals':'goals'}), data[['AwayTeam','HomeTeam','AwayGoals']].assign(home=0).rename( columns={'AwayTeam':'team', 'HomeTeam':'opponent','AwayGoals':'goals'})]) poisson_model = smf.glm(formula="goals ~ home + team + opponent", data=goal_model_data, family=sm.families.Poisson()).fit() # print(poisson_model.summary()) return poisson_model def _genData(self, data): if(data is None): data = self.data data = data.loc[:,['HomeTeam', 'AwayTeam', 'HomeGoals', 'AwayGoals']] return data def checkStatsLeague(self, data=None, plot=True): data = self._genData(data) # print(data.mean()) poisson_pred = np.column_stack([[poisson.pmf(x, data.mean()[j]) for x in range(8)] for j in range(2)]) # plot histogram of actual goals [values, bins, _] = plt.hist(data[['HomeGoals', 'AwayGoals']].values, range(9), alpha=0.7, label=['Home', 'Away'],normed=True, color=["#FFA07A", "#20B2AA"]) # add lines for the Poisson distributions pois1, = plt.plot([i-0.5 for i in range(1,9)], poisson_pred[:,0], linestyle='-', marker='o',label="Home", color = '#CD5C5C') pois2, = plt.plot([i-0.5 for i in range(1,9)], poisson_pred[:,1], linestyle='-', marker='o',label="Away", color = '#006400') leg=plt.legend(loc='upper right', fontsize=13, ncol=2) leg.set_title("Poisson Actual ", prop = {'size':'14', 'weight':'bold'}) plt.xticks([i-0.5 for i in range(1,9)],[i for i in range(9)]) plt.xlabel("Goals per Match",size=13) plt.ylabel("Proportion of Matches",size=13) plt.title("Number of Goals per Match",size=14,fontweight='bold') plt.ylim([-0.004, 0.4]) plt.tight_layout() plt.show() home_error = np.mean(abs(poisson_pred[:,0] - values[0])) away_error = np.mean(abs(poisson_pred[:,1] - values[1])) return [home_error, away_error] def checkDiffInGoals(self, data=None): data = self._genData(data) skellam_pred = [skellam.pmf(i, data.mean()[0], data.mean()[1]) for i in range(-6,8)] plt.hist(data[['HomeGoals']].values - data[['AwayGoals']].values, range(-6,8), alpha=0.7, label='Actual',normed=True) plt.plot([i+0.5 for i in range(-6,8)], skellam_pred, linestyle='-', marker='o',label="Skellam", color = '#CD5C5C') plt.legend(loc='upper right', fontsize=13) plt.xticks([i+0.5 for i in range(-6,8)],[i for i in range(-6,8)]) plt.xlabel("Home Goals - Away Goals",size=13) plt.ylabel("Proportion of Matches",size=13) plt.title("Difference in Goals Scored (Home Team vs Away Team)",size=14,fontweight='bold') plt.ylim([-0.004, 0.26]) plt.tight_layout() plt.show() def checkStatsMatch(self, team1, team2, data): fig,(ax1,ax2) = plt.subplots(2, 1, figsize=(7,5)) team1_home = data[data['HomeTeam']==team1][['HomeGoals']].apply(pd.value_counts,normalize=True) team1_home_pois = [poisson.pmf(i,np.sum(np.multiply(team1_home.values.T,team1_home.index.T),axis=1)[0]) for i in range(8)] team2_home = data[data['HomeTeam']==team2][['HomeGoals']].apply(pd.value_counts,normalize=True) team2_home_pois = [poisson.pmf(i,np.sum(np.multiply(team2_home.values.T,team2_home.index.T),axis=1)[0]) for i in range(8)] team1_away = data[data['AwayTeam']==team1][['AwayGoals']].apply(pd.value_counts,normalize=True) team1_away_pois = [poisson.pmf(i,np.sum(np.multiply(team1_away.values.T,team1_away.index.T),axis=1)[0]) for i in range(8)] team2_away = data[data['AwayTeam']==team2][['AwayGoals']].apply(pd.value_counts,normalize=True) team2_away_pois = [poisson.pmf(i,np.sum(np.multiply(team2_away.values.T,team2_away.index.T),axis=1)[0]) for i in range(8)] ax1.bar(team1_home.index-0.4, team1_home.values.reshape(team1_home.shape[0]), width=0.4, color="#034694", label=team1) ax1.bar(team2_home.index,team2_home.values.reshape(team2_home.shape[0]),width=0.4,color="#EB172B",label=team2) pois1, = ax1.plot([i for i in range(8)], team1_home_pois, linestyle='-', marker='o',label=team1, color = "#0a7bff") pois1, = ax1.plot([i for i in range(8)], team2_home_pois, linestyle='-', marker='o',label=team2, color = "#ff7c89") leg=ax1.legend(loc='upper right', fontsize=12, ncol=2) leg.set_title("Poisson Actual ", prop = {'size':'14', 'weight':'bold'}) ax1.set_xlim([-0.5,7.5]) ax1.set_ylim([-0.01,0.65]) ax1.set_xticklabels([]) # mimicing the facet plots in ggplot2 with a bit of a hack # ax1.text(7.65, 0, ' Home ', rotation=-90, # bbox={'facecolor':'#ffbcf6', 'alpha':0.5, 'pad':5}) # ax2.text(7.65, 0, ' Away ', rotation=-90, # bbox={'facecolor':'#ffbcf6', 'alpha':0.5, 'pad':5}) ax2.bar(team1_away.index-0.4,team1_away.values.reshape(team1_away.shape[0]),width=0.4,color="#034694",label=team1) ax2.bar(team2_away.index,team2_away.values.reshape(team2_away.shape[0]),width=0.4,color="#EB172B",label=team2) pois1, = ax2.plot([i for i in range(8)], team1_away_pois, linestyle='-', marker='o',label=team1, color = "#0a7bff") pois1, = ax2.plot([i for i in range(8)], team2_away_pois, linestyle='-', marker='o',label=team2, color = "#ff7c89") ax2.set_xlim([-0.5,7.5]) ax2.set_ylim([-0.01,0.65]) ax1.set_title("Number of Goals per Match {} vs {}".format(team1,team2),size=14,fontweight='bold') ax2.set_title("Number of Goals per Match {} vs {}".format(team2,team1),size=14,fontweight='bold') ax2.set_xlabel("Goals per Match",size=13) #ax2.text(-1.15, 0.9, 'Proportion of Matches', rotation=90, size=13) plt.tight_layout() plt.show() def drawProbLeague(self, data=None): data = self._genData(data) prob = self._probGoalsDiff(0, data) return 'Draw: {:.1f} %'.format(prob) def homeWinProbLeague(self, goal_di_scarto, data=None): data = self._genData(data) prob = self._probGoalsDiff(goal_di_scarto, data) return 'Home team wins with {} goals more, with prob: {:.1f} %'.format(goal_di_scarto, prob) def _probGoalsDiff(self, diff, data): goals_diff = diff return skellam.pmf(goals_diff, data.mean()[0], data.mean()[1]) def predAvgGoalTeam(self, team, opponent, home_factor): match = {'team':team, 'opponent':opponent, 'home':home_factor} match_df = pd.DataFrame(match, index=[1]) n_goals = self.model.predict(match_df) print('\nResult\n') print(team.upper() + ' probably will score {:.2f} goals'.format(n_goals.values[0])) return n_goals.values[0] def simulate_match(self, homeTeam, awayTeam, max_goals=8): self.max_goals = 8 if(self.dixon == True): match_outcome = dixon_coles_simulate_match(self.dixon_params, homeTeam, awayTeam) result = {'Match':[str(homeTeam + ' vs ' + awayTeam)], 'Outcome': [match_outcome]} match = pd.DataFrame(result) return match else: home_data = {'team':homeTeam, 'opponent':awayTeam, 'home':1} away_data = {'team':awayTeam, 'opponent':homeTeam, 'home':0} home_df = pd.DataFrame(home_data, index=[1]) away_df = pd.DataFrame(away_data, index=[1]) home_goals_avg = self.model.predict(home_df).values[0] away_goals_avg = self.model.predict(away_df).values[0] team_pred = [[poisson.pmf(i, team_avg) for i in range(0, max_goals+1)] for team_avg in [home_goals_avg, away_goals_avg]] match_outcome = np.outer(np.array(team_pred[0]), np.array(team_pred[1])) result = {'Match':[str(homeTeam + ' vs ' + awayTeam)], 'Outcome': [match_outcome]} match =
pd.DataFrame(result)
pandas.DataFrame
"""Collect model input data""" import os from dataclasses import dataclass import pandas as pd @dataclass class ModelData: # Directory containing core data files data_dir: str = os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir, os.path.pardir, 'data') # Directory containing dispatch and demand traces traces_dir: str = os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir, '1_traces', 'output') def __post_init__(self): """Append data objects to class object""" # Name of NTNDP file self.ntndp_filename = '2016 Planning Studies - Additional Modelling Data and Assumptions summary.xlsm' # Minimum reserve levels for each NEM region self.minimum_reserve_levels = self.get_minimum_reserve_levels() # Storage unit properties self.battery_properties = self.get_ntndp_battery_properties() # Generator and storage data Data self.generators = self.get_generator_data() self.storage = self.get_storage_unit_data() # NEM zones and regions self.nem_zones = self.get_nem_zones() self.nem_regions = self.get_nem_regions() # DUIDs for different units self.scheduled_duids = self.get_scheduled_unit_duids() self.semi_scheduled_duids = self.get_semi_scheduled_unit_duids() self.solar_duids = self.get_solar_unit_duids() self.wind_duids = self.get_wind_unit_duids() self.thermal_duids = self.get_thermal_unit_duids() self.hydro_duids = self.get_hydro_unit_duids() self.storage_duids = self.get_storage_unit_duids() self.slow_start_duids = self.get_slow_start_thermal_generator_ids() self.quick_start_duids = self.get_quick_start_thermal_generator_ids() # Mapping between NEM regions and zones self.nem_region_zone_map = self.get_nem_region_zone_map() # Mapping between DUIDs and NEM zones self.duid_zone_map = self.get_duid_zone_map() # Network incidence matrix self.network_incidence_matrix = self.get_network_incidence_matrix() # Links between adjacent NEM regions self.links = self.get_network_links() # Links that have constrained flows self.links_constrained = self.get_link_powerflow_limits().keys() # Power flow limits for constrained links self.powerflow_limits = self.get_link_powerflow_limits() # Demand traces for each day self.demand = pd.read_pickle(os.path.join(self.traces_dir, 'demand_42.pickle')) # Dispatch traces for each day self.dispatch = pd.read_pickle(os.path.join(self.traces_dir, 'dispatch_42.pickle')) def get_minimum_reserve_levels(self): """Minimum reserve levels for each NEM region""" # Minimum reserve levels for each NEM region df = pd.read_excel(os.path.join(self.data_dir, 'files', self.ntndp_filename), sheet_name='MRL', skiprows=1) # Rename columns and set index as NEM region df_o = (df.rename(columns={'Region': 'NEM_REGION', 'Minimum Reserve Level (MW)': 'MINIMUM_RESERVE_LEVEL'}) .set_index('NEM_REGION')) # Keep latest minimum reserve values (SA1 has multiple MRL values with different start dates) df_o = df_o.loc[~df_o.index.duplicated(keep='last'), 'MINIMUM_RESERVE_LEVEL'].to_dict() return df_o def get_ntndp_battery_properties(self): """Load battery properties from NTNDP database""" # Battery properties from NTNDP worksheet df = (pd.read_excel(os.path.join(self.data_dir, 'files', self.ntndp_filename), sheet_name='Battery Properties', skiprows=1) .rename(columns={'Battery': 'STORAGE_ID'}).set_index('STORAGE_ID')) return df def get_generator_data(self): """Load generator data""" # Path to generator data file path = os.path.join(self.data_dir, 'files', 'egrimod-nem-dataset-v1.3', 'akxen-egrimod-nem-dataset-4806603', 'generators', 'generators.csv') # Load generator data into DataFrame df = pd.read_csv(path, index_col='DUID') return df def get_nem_zones(self): """Get tuple of unique NEM zones""" # Load generator information df = self.get_generator_data() # Extract nem zones from existing generators dataset zones = tuple(df.loc[:, 'NEM_ZONE'].unique()) # There should be 16 zones assert len(zones) == 16, 'Unexpected number of NEM zones' return zones def get_nem_regions(self): """Get tuple of unique NEM regions""" # Load generator information df = self.get_generator_data() # Extract nem regions from existing generators dataset regions = tuple(df.loc[:, 'NEM_REGION'].unique()) # There should be 5 NEM regions assert len(regions) == 5, 'Unexpected number of NEM regions' return regions def get_nem_region_zone_map(self): """Construct mapping between NEM regions and the zones belonging to those regions""" # Load generator information df = self.get_generator_data() # Map between NEM regions and zones region_zone_map = (df[['NEM_REGION', 'NEM_ZONE']] .drop_duplicates(subset=['NEM_REGION', 'NEM_ZONE']) .groupby('NEM_REGION')['NEM_ZONE'].apply(lambda x: tuple(x))).to_dict() return region_zone_map def get_duid_zone_map(self): """Get mapping between DUIDs and NEM zones""" # Load generator and storage information df_g = self.get_generator_data() df_s = self.get_storage_unit_data() # Get mapping between DUIDs and zones for generators and storage units generator_map = df_g.loc[:, 'NEM_ZONE'].to_dict() storage_map = df_s.loc[:, 'NEM_ZONE'].to_dict() # Combine dictionaries zone_map = {**generator_map, **storage_map} return zone_map def get_thermal_unit_duids(self): """Get thermal unit DUIDs""" # Load generator information df = self.get_generator_data() # Thermal DUIDs thermal_duids = df.loc[df['FUEL_CAT'] == 'Fossil'].index return thermal_duids def get_solar_unit_duids(self): """Get solar unit DUIDs""" # Load generator information df = self.get_generator_data() # Solar DUIDs solar_duids = df.loc[df['FUEL_CAT'] == 'Solar'].index return solar_duids def get_wind_unit_duids(self): """Get wind unit DUIDs""" # Load generator information df = self.get_generator_data() # Wind DUIDs wind_duids = df.loc[df['FUEL_CAT'] == 'Wind'].index return wind_duids def get_hydro_unit_duids(self): """Get hydro unit DUIDs""" # Load generator information df = self.get_generator_data() # Hydro DUIDs hydro_duids = df.loc[df['FUEL_CAT'] == 'Hydro'].index return hydro_duids def get_scheduled_unit_duids(self): """Get all scheduled unit DUIDs""" # Load generator information df = self.get_generator_data() # Thermal DUIDs scheduled_duids = df.loc[df['SCHEDULE_TYPE'] == 'SCHEDULED'].index return scheduled_duids def get_semi_scheduled_unit_duids(self): """Get all scheduled unit DUIDs""" # Load generator information df = self.get_generator_data() # Semi scheduled DUIDs semi_scheduled_duids = df.loc[df['SCHEDULE_TYPE'] == 'SEMI-SCHEDULED'].index return semi_scheduled_duids def get_network_incidence_matrix(self): """Construct network incidence matrix""" # All NEM zones: zones = self.get_nem_zones() # Links connecting different zones. First zone is 'from' zone second is 'to' zone links = ['NQ-CQ', 'CQ-SEQ', 'CQ-SWQ', 'SWQ-SEQ', 'SEQ-NNS', 'SWQ-NNS', 'NNS-NCEN', 'NCEN-CAN', 'CAN-SWNSW', 'CAN-NVIC', 'SWNSW-NVIC', 'LV-MEL', 'NVIC-MEL', 'TAS-LV', 'MEL-CVIC', 'SWNSW-CVIC', 'CVIC-NSA', 'MEL-SESA', 'SESA-ADE', 'NSA-ADE'] # Initialise empty matrix with NEM zones as row and column labels incidence_matrix = pd.DataFrame(index=links, columns=zones, data=0) # Assign values to 'from' and 'to' zones. +1 is a 'from' zone, -1 is a 'to' zone for link in links: # Get from and to zones from_zone, to_zone = link.split('-') # Set from zone element to 1 incidence_matrix.loc[link, from_zone] = 1 # Set to zone element to -1 incidence_matrix.loc[link, to_zone] = -1 return incidence_matrix def get_network_links(self): """Links connecting adjacent NEM zones""" return self.get_network_incidence_matrix().index @staticmethod def get_link_powerflow_limits(): """Max forward and reverse power flow over links between zones""" # Limits for interconnectors composed of single branches interconnector_limits = {'SEQ-NNS': {'forward': 210, 'reverse': 107}, # Terranora 'SWQ-NNS': {'forward': 1078, 'reverse': 600}, # QNI 'TAS-LV': {'forward': 594, 'reverse': 478}, # Basslink 'MEL-SESA': {'forward': 600, 'reverse': 500}, # Heywood 'CVIC-NSA': {'forward': 220, 'reverse': 200}, # Murraylink } return interconnector_limits def get_slow_start_thermal_generator_ids(self): """ Get IDs for existing and candidate slow start unit A generator is classified as 'slow' if it cannot reach its minimum dispatchable power output in one interval (e.g. 1 hour). Note: A generator's classification of 'quick' or 'slow' depends on its minimum dispatchable output level and ramp-rate. For candidate units the minimum dispatchable output level is a function of the maximum output level, and so is variable. As this level is not known ex ante, all candidate thermal generators are assumed to operate the same way as quick start units (i.e. they can reach their minimum dispatchable output level in 1 trading interval (hour)). """ # Load generator information df = self.get_generator_data() # True if number of hours to ramp to min generator output > 1 mask_slow_start = df['MIN_GEN'].div(df['RR_STARTUP']).gt(1) # Only consider coal and gas units mask_technology = df['FUEL_CAT'].isin(['Fossil']) # Get IDs for slow start generators gen_ids = df.loc[mask_slow_start & mask_technology, :].index return gen_ids def get_quick_start_thermal_generator_ids(self): """ Get IDs for existing and candidate slow start unit Note: A generator is classified as 'quick' if it can reach its minimum dispatchable power output in one interval (e.g. 1 hour). """ # Load generator information df = self.get_generator_data() # Slow start unit IDs - previously identified slow_gen_ids = self.get_slow_start_thermal_generator_ids() # Filter for slow generator IDs (existing units) mask_slow_gen_ids = df.index.isin(slow_gen_ids) # Only consider coal and gas units mask_existing_technology = df['FUEL_CAT'].isin(['Fossil']) # Get IDs for quick start generators existing_quick_gen_ids = df.loc[~mask_slow_gen_ids & mask_existing_technology, :].index return existing_quick_gen_ids def get_storage_unit_data(self): """Get storage unit IDs""" # Path to generator data file path = os.path.join(self.data_dir, 'files', 'NEM Registration and Exemption List.xls') # Load generators and scheduled load data into DataFrame df =
pd.read_excel(path, index_col='DUID', sheet_name='Generators and Scheduled Loads')
pandas.read_excel
# -*- coding: utf-8 -*- """ Created on Wed Mar 25 11:24:51 2020 @author: <NAME> @project: Classe que trata o topic modeling """ from spacy.tokens import Doc import numpy from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA from neo4j import GraphDatabase import pandas as pd import os #import subprocess #import requests #import unidecode import re import csv from acessos import get_conn, read, persistir_banco, persistir_multiplas_linhas import sys import re, numpy as np, pandas as pd from pprint import pprint import spacy # Gensim import gensim from gensim import corpora, models, similarities import gensim, spacy, logging, warnings import gensim.corpora as corpora from gensim.utils import lemmatize, simple_preprocess from gensim.models import CoherenceModel import matplotlib.pyplot as plt from gensim import corpora, models, similarities # NLTK Stop words from nltk.corpus import stopwords from acessos import read, get_conn, persistir_uma_linha, persistir_multiplas_linhas, replace_df from gensim.models.ldamulticore import LdaMulticore import seaborn as sns import matplotlib.colors as mcolors #%matplotlib inline warnings.filterwarnings("ignore",category=DeprecationWarning) logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR) import os import warnings warnings.filterwarnings("ignore",category=DeprecationWarning) from gensim.test.utils import datapath class Topic_Modeling: def __init__(self, language="pt-br", stop_words_list=[]): self.language = language self.stop_words = self._load_stop_words(stop_words_list) self.nlp = self._load_spacy() self.model_list =[] self.coherence_values = [] self.lista_num_topics = [] self.melhor_modelo = None def _load_spacy(self): '''metodo privado que retorna o modelo do spacy baseado no idioma''' #disable_list = ['parser', 'ner'] disable_list = [] if self.language == "pt-br": nlp = spacy.load('pt_core_news_lg', disable=disable_list) elif self.language == "us-en": nlp = spacy.load("en_core_web_sm", disable=disable_list) return nlp def _load_stop_words(self, stop_words_list=[]): '''metodo privado que retorna as stop words baseado no idioma''' if self.language == "pt-br": stop_words = stopwords.words('portuguese') stop_words.extend(stop_words_list) elif self.language == "us-en": stop_words = stopwords.words('english') #Testar stop_words.extend(['from', 'subject', 're', 'edu', 'use', 'not', 'would', 'say', 'could', '_', 'be', 'know', 'good', 'go', 'get', 'do', 'done', 'try', 'many', 'some', 'nice', 'thank', 'think', 'see', 'rather', 'easy', 'easily', 'lot', 'lack', 'make', 'want', 'seem', 'run', 'need', 'even', 'right', 'line', 'even', 'also', 'may', 'take', 'come']) stop_words.extend(stop_words_list) return stop_words def filtrar_pos_tag(self, texto, allowed_postags=["NOUN", "PROPN", "VERB", "ADJ"]): texto_saida = "" doc = self.nlp(texto) for token in doc: if token.pos_ in allowed_postags: texto_saida += " {}".format(token) return texto_saida def replace_ner_por_label(self, texto): texto_out = texto doc = self.nlp(texto) for ent in reversed(doc.ents): #label = " _" + ent.label_ + "_ " label = ent.label_ comeco = ent.start_char fim = comeco + len(ent.text) texto_out = texto_out [:comeco] + label + texto_out[fim:] return texto_out def processamento_inicial(self, lista_documentos): '''remove emails, quebra de linhas e single quotes''' #Tratando abreviações lista_documentos = [re.sub('neh', 'né', sent) for sent in lista_documentos] lista_documentos = [re.sub('td', 'tudo', sent) for sent in lista_documentos] lista_documentos = [re.sub('tds', 'todos', sent) for sent in lista_documentos] lista_documentos = [re.sub('vc', 'você', sent) for sent in lista_documentos] lista_documentos = [re.sub('vcs', 'vocês', sent) for sent in lista_documentos] lista_documentos = [re.sub('voce', 'você', sent) for sent in lista_documentos] lista_documentos = [re.sub('tbm', 'também', sent) for sent in lista_documentos] # Remove Emails lista_documentos = [re.sub('\S*@\S*\s?', '', sent) for sent in lista_documentos] # Remove new line characters lista_documentos = [re.sub('\s+', ' ', sent) for sent in lista_documentos] # Remove distracting single quotes lista_documentos = [re.sub("\'", "", sent) for sent in lista_documentos] return lista_documentos def sent_to_words(self, sentences): '''tokeniza um unico documento''' for sentence in sentences: yield(gensim.utils.simple_preprocess(str(sentence), deacc=False)) # deacc=True removes punctuations def tokenizar(self, lista_documentos): '''tokeniza uma lista de documentos''' lista_documentos_tokenizado = list(self.sent_to_words(lista_documentos)) return lista_documentos_tokenizado def montar_n_grams(self, lista_documentos_tokenizado): '''monta bi_grams e tri_grams de uma lista de documentos tokenizado utilizar este metodo depois de remover stop words''' bigram = gensim.models.Phrases(lista_documentos_tokenizado, min_count=5, threshold=100) # higher threshold fewer phrases. trigram = gensim.models.Phrases(bigram[lista_documentos_tokenizado], threshold=100) # Faster way to get a sentence clubbed as a trigram/bigram bigram_mod = gensim.models.phrases.Phraser(bigram) trigram_mod = gensim.models.phrases.Phraser(trigram) #retorna lista bigram e trigram self.bigram = [bigram_mod[doc] for doc in lista_documentos_tokenizado] self.trigram = [trigram_mod[bigram_mod[doc]] for doc in lista_documentos_tokenizado] return self.bigram , self.trigram def get_n_grams(self): return self.bigram , self.trigram def lematizar_documentos(self, lista_documentos_tokenizado): """https://spacy.io/api/annotation""" documentos_out = [] for sent in lista_documentos_tokenizado: doc = self.nlp(" ".join(sent)) lista_tokens_lematizados = [] for token in doc : lista_tokens_lematizados.append(token.lemma_) documentos_out.append(lista_tokens_lematizados) return documentos_out def remover_stop_words(self, lista_documentos_tokenizado): return [[word for word in simple_preprocess(str(doc)) if word not in self.stop_words] for doc in lista_documentos_tokenizado] def montar_novo_corpus(self, nova_lista_documentos_lematizada, id2word): print(id2word) corpus = [id2word.doc2bow(text) for text in nova_lista_documentos_lematizada] return corpus def pre_processar_texto_ou_lista(self, texto_ou_lista, filtro_ner=True, allowed_postags=["NOUN","PROPN", "VERB", "ADJ"]): if isinstance(texto_ou_lista, str): lista_documentos = [texto_ou_lista] else: lista_documentos = texto_ou_lista lista_documentos = self.processamento_inicial(lista_documentos) if filtro_ner==True: lista_documentos = [self.replace_ner_por_label(texto) for texto in lista_documentos] # if filtro_pos_tag==True: # lista_documentos = [self.filtrar_pos_tag(texto) for texto in lista_documentos] lista_documentos = [self.filtrar_pos_tag(texto, allowed_postags) for texto in lista_documentos] lista_documentos_tokenizado = self.tokenizar(lista_documentos) lista_documentos_tokenizado_stop_words = self.remover_stop_words(lista_documentos_tokenizado) lista_documento_bi_gram, lista_documento_tri_gram = self.montar_n_grams(lista_documentos_tokenizado_stop_words) lista_documento_lematizada = self.lematizar_documentos(lista_documento_tri_gram) #lista_documento_lematizada = lista_documento_bi_gram return lista_documento_lematizada def gerar_modelo_hdp(self, corpus, id2word, texts): model_hdp = models.HdpModel(corpus, id2word=id2word) coherencemodel = CoherenceModel(model=model_hdp, texts=texts, dictionary=id2word, coherence='c_v') self.melhor_modelo = model_hdp return model_hdp, coherencemodel.get_coherence() def gerar_multiplos_modelos(self, id2word, corpus, texts, limit, start=2, step=3): print("Start: {}".format(start)) print("limit: {}".format(limit)) print("Step: {}".format(step)) self.start = start self.limit = limit self.step = step coherence_values = [] model_list = [] for num_topics in range(start, limit, step): print("Gerando novo modelo...") # model = gensim.models.ldamodel.LdaModel(corpus=corpus, # id2word=id2word, # num_topics=num_topics, # random_state=100, # update_every=1, # chunksize=100, # passes=10, # alpha='auto', # per_word_topics=True) lda = LdaMulticore(corpus=corpus, id2word=id2word, random_state=100, num_topics=num_topics, workers=3) model_list.append(model) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=id2word, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) self.lista_num_topics.append(num_topics) self.model_list = model_list self.coherence_values = coherence_values return model_list, coherence_values def plotar_coerencia(self): x = range(self.start, self.limit, self.step) plt.plot(x, self.coherence_values) plt.xlabel("Num de Tópicos") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc='best') plt.show() for m, cv in zip(x, self.coherence_values): print("Num de Tópicos =", m, " valor coerência: ", round(cv, 4)) def classificar_novo_texto(self, texto, model,id2word): lista_lematizada = self.pre_processar_texto_ou_lista(texto) novo_corpus = self.montar_novo_corpus(lista_lematizada,id2word) doc_bow = novo_corpus[0] topicos = model[doc_bow] #topicos_ordenados = sorted(topicos[0], key=lambda x: x[1], reverse=True) topicos_ordenados = sorted(topicos, key=lambda x: x[1], reverse=True) melhor_topico = topicos_ordenados[0] #print(topicos_ordenados) return melhor_topico, topicos_ordenados def montar_id2word(self, lista_documento_lematizada): id2word = corpora.Dictionary(lista_documento_lematizada) return id2word def montar_dict_models(self): dict_models = { "modelo": self.model_list, "coerencia":self.coherence_values, "num_topics": self.lista_num_topics } return dict_models def salvar_modelos(self, diretorio, folder_name): dict_models = self.montar_dict_models() df_models =
pd.DataFrame(dict_models)
pandas.DataFrame
import pandas as pd import xarray as xr import numpy as np import sys from config import * from sklearn.ensemble import RandomForestRegressor from joblib import dump, load from sklearn.model_selection import PredefinedSplit,RandomizedSearchCV def inputs(): msg = "You must specify whether to retrain the model (True) or just load from file (False)" try: retrain_model = sys.argv[1] except: sys.exit(msg) if retrain_model not in ["True", "False"]: sys.exit(msg) return retrain_model def get_numpy_arrays(df): #Split the df into two numpy arrays, one for X features and one for Y outputs y = 'LST_Day_CMG' #the output column df_y = df[[y]] df_x = df.drop([y], axis=1) return df_x.to_numpy(), df_y.to_numpy().ravel() def train(df): print ('Inside train func') sys.exit() #Setup model rf = RandomForestRegressor(n_estimators = 10, verbose=1) #Train the model on training data xtrain,ytrain = get_numpy_arrays(df) rf.fit(xtrain,ytrain) #save trained model to disk dump(rf,data_root+'trained_model.joblib') #Evaluate model training training_score = rf.score(xtrain, ytrain) return rf, training_score def train_with_optimisation(df_train,df_validate): """Train and evaluate the model and save to disk""" # Bring together train and validate sets X = pd.concat([df_train, df_validate]) X_Train, Y_Train = get_numpy_arrays(X) # Create a list where train data indices are -1 and validation data indices are 0 idx1 = [1] * len(df_train) idx2 = [0] * len(df_validate) split_index = idx1 + idx2 pds = PredefinedSplit(test_fold = split_index) #Setup random search hyperparam opt random_search = {'n_estimators': list(np.linspace(10, 100, 10, dtype = int)), 'max_depth': list(np.linspace(10, 1200, 10, dtype = int)) + [None], 'max_features': ['auto', 'sqrt','log2', None], 'min_samples_leaf': [4, 6, 8, 12], 'min_samples_split': [5, 7, 10, 14], } clf = RandomForestRegressor() model = RandomizedSearchCV(estimator = clf, param_distributions = random_search, n_iter = 2, cv = pds, verbose= 5, random_state= 101, n_jobs = 2) #njobs=-1 for all processors model.fit(X_Train,Y_Train) print('completed model train') def predict(model,df): """Use the trained model to make predictions on the test df, then save to disk""" #Get the test data as arrays xtest,ytest = get_numpy_arrays(df) #Evaluate how good our model predictions are testing_score = model.score(xtest, ytest) #...also get the actual predicions themselves ypred = model.predict(xtest) #Make some predictions on the test data using the trained model #...and the error in these predictions relative_error = (ypred - ytest)/ytest #Create a df copy dfIO=df.copy() #Append error and predicitons to test df dfIO['predictions'] = ypred dfIO['relative_error'] = relative_error #Add the testing score as an attribute dfIO.attrs['testing_score'] = testing_score #IO dfIO.to_pickle(data_root+"predictions.pkl") print ('Max/min relative error:', max(abs(relative_error)), min(abs(relative_error))) return testing_score print ('Starting ML') retrain_model = inputs() #Load the data df =
pd.read_pickle(clean_data)
pandas.read_pickle
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 import pandas as pd import numpy as np from sklearn import model_selection from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import Pipeline from tests.fixtures import DataTestCase import mock from tsfresh.feature_extraction import MinimalFCParameters from tsfresh.transformers.relevant_feature_augmenter import RelevantFeatureAugmenter class RelevantFeatureAugmenterTestCase(DataTestCase): def setUp(self): self.test_df = self.create_test_data_sample() fc_parameters = {"length": None} self.kind_to_fc_parameters = {"a": fc_parameters.copy(), "b": fc_parameters.copy()} def test_not_fitted(self): augmenter = RelevantFeatureAugmenter() X = pd.DataFrame() self.assertRaises(RuntimeError, augmenter.transform, X) def test_no_timeseries(self): augmenter = RelevantFeatureAugmenter() X =
pd.DataFrame()
pandas.DataFrame
import os import gzip import warnings import pandas as pd warnings.simplefilter("ignore") import pickle def outlier_analysis(df, model_dir): _df = df[df["is_rescurable_homopolymer"]].reset_index(drop=True) if not len(_df): return df __df = df[~df["is_rescurable_homopolymer"]].reset_index(drop=True) at_ins_df = _df[_df["is_at_ins"] == 1].reset_index(drop=True) at_ins_df = find_outliers(at_ins_df, "at_ins", model_dir) at_del_df = _df[_df["is_at_del"] == 1].reset_index(drop=True) at_del_df = find_outliers(at_del_df, "at_del", model_dir) gc_ins_df = _df[_df["is_gc_ins"] == 1].reset_index(drop=True) gc_ins_df = find_outliers(gc_ins_df, "gc_ins", model_dir) gc_del_df = _df[_df["is_gc_del"] == 1].reset_index(drop=True) gc_del_df = find_outliers(gc_del_df, "gc_del", model_dir) return
pd.concat([__df, at_ins_df, at_del_df, gc_ins_df, gc_del_df], axis=0)
pandas.concat
import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import geopandas as gpd from energy_demand.read_write import data_loader, read_data from energy_demand.basic import date_prop from energy_demand.basic import basic_functions from energy_demand.basic import lookup_tables from energy_demand.technologies import tech_related from energy_demand.plotting import basic_plot_functions from energy_demand.plotting import result_mapping from energy_demand.plotting import fig_p2_weather_val def total_demand_national_scenarios( scenario_result_paths, sim_yrs, fueltype_str, path_out_plots ): dict_scenarios_weather_yrs = {} columns = [ 'weather_yr', 'national_peak_demand'] fueltype_int = tech_related.get_fueltype_int(fueltype_str) # ---------------- # Read all data inform of scenario, simulationyr, weather_yrs # ---------------- for scenario_path in scenario_result_paths: scenario_name = os.path.split(scenario_path)[-1] dict_scenarios_weather_yrs[scenario_name] = {} weather_yrs = [] # Get all folders with weather_yr run results (name of folder is scenario) weather_yr_scenarios_paths = os.listdir(scenario_path) for simulation_run in weather_yr_scenarios_paths: if simulation_run != '_results_PDF_figs': weather_yr_scenarios_paths = os.listdir(os.path.join(scenario_path, simulation_run)) for weather_yr_scenario_path in weather_yr_scenarios_paths: try: split_path_name = weather_yr_scenario_path.split("__") weather_yr = int(split_path_name[0]) path_to_weather_yr = os.path.join(scenario_path, simulation_run, "{}__{}".format(weather_yr, 'all_stations')) weather_yrs.append((weather_yr, path_to_weather_yr)) except: pass for simulation_yr in sim_yrs: dict_scenarios_weather_yrs[scenario_name][simulation_yr] = pd.DataFrame(columns=columns) for weather_yr, path_to_weather_yr in weather_yrs: seasons = date_prop.get_season(year_to_model=2015) model_yeardays_daytype, _, _ = date_prop.get_yeardays_daytype(year_to_model=2015) results_container = read_data.read_in_results( os.path.join(path_to_weather_yr, 'model_run_results_txt'), seasons, model_yeardays_daytype) # --------------------------------------------------- # Calculate hour with national peak demand # This may be different depending on the weather yr # --------------------------------------------------- ele_regions_8760 = results_container['ed_fueltype_regs_yh'][simulation_yr][fueltype_int] sum_all_regs_fueltype_8760 = np.sum(ele_regions_8760, axis=0) # Sum for every hour max_day = int(basic_functions.round_down((np.argmax(sum_all_regs_fueltype_8760) / 24), 1)) max_h = np.argmax(sum_all_regs_fueltype_8760) max_demand = np.max(sum_all_regs_fueltype_8760) # Calculate the national peak demand in GW national_peak_GW = np.max(sum_all_regs_fueltype_8760) # ----------------------- # Add to final container # ----------------------- line_entry = [[ weather_yr, national_peak_GW ]] line_df = pd.DataFrame(line_entry, columns=columns) existing_df = dict_scenarios_weather_yrs[scenario_name][simulation_yr] appended_df = existing_df.append(line_df) dict_scenarios_weather_yrs[scenario_name][simulation_yr] = appended_df # ------------------------------------------------------------------------------------------ # Create plot # ------------------------------------------------------------------------------------------ print("....create plot") weather_yr_to_plot = 1979 #TODO color_list = ['red', 'green', 'orange', '#37AB65', '#C0E4FF', '#3DF735', '#AD6D70', '#EC2504', '#8C0B90', '#27B502', '#7C60A8', '#CF95D7', '#F6CC1D'] # Calculate quantiles quantile_95 = 0.95 quantile_05 = 0.05 # Create dataframe with rows as scenario and lines as simulation yrs scenarios = list(dict_scenarios_weather_yrs.keys()) # Containers df_total_demand_2015 = pd.DataFrame(columns=scenarios) df_q_95_scenarios = pd.DataFrame(columns=scenarios) df_q_05_scenarios = pd.DataFrame(columns=scenarios) for simulation_yr in sim_yrs: line_entries_95 = [] line_entries_05 = [] line_entries_tot_h = [] for scenario_name in scenarios: print("-- {} {}".format(scenario_name, simulation_yr)) # Calculate entires over year df_weather_yrs = dict_scenarios_weather_yrs[scenario_name][simulation_yr] df_q_95 = df_weather_yrs['national_peak_demand'].quantile(quantile_95) df_q_05 = df_weather_yrs['national_peak_demand'].quantile(quantile_05) peak_weather_yr_2015 = df_weather_yrs[df_weather_yrs['weather_yr']==weather_yr_to_plot]['national_peak_demand'].values[0] line_entries_95.append(df_q_95) line_entries_05.append(df_q_05) line_entries_tot_h.append(peak_weather_yr_2015) # Try to smooth lines try: sim_yrs_smoothed, line_entries_tot_h_smoothed = basic_plot_functions.smooth_data(sim_yrs, line_entries_tot_h, num=40000) except: sim_yrs_smoothed = sim_yrs line_entries_tot_h_smoothed = line_entries_tot_h df_q_95_scenarios = df_q_95_scenarios.append(pd.DataFrame([line_entries_95], columns=scenarios)) df_q_05_scenarios = df_q_05_scenarios.append(
pd.DataFrame([line_entries_05], columns=scenarios)
pandas.DataFrame
import pandas as pd import os import cv2 import numpy as np import random def get_diff_scaled(img1,img2,scale): return ((np.clip((img1.astype('int32') - img2.astype('int32')) * scale, -255, 255) + np.ones_like( img1) * 255) / 2).astype('uint8') def get_diff(img1,img2): return ((img1.astype('int32')-img2.astype('int32')+np.ones_like(img1)*255)/2).astype('uint8') def run_patch_matching_3(pm_mode=0,args=None): # select rep mode if pm_mode == 0: representations = ['invrepnet', 'org'] elif pm_mode == 1: representations = ['invrepnet_gray', 'org_gray'] elif pm_mode == 2: representations = ['additional_rep'] else: exit("error") # obtain image names images = next(os.walk(args.task_invrep_dirs))[-1] scenes_list = list(set([im.split('_im')[0] for im in images])) scenes_list.sort() num_scenes = float(len(scenes_list)) test_image_dir = [args.task_image_dirs, args.task_invrep_dirs] #set iters (number of patches) in each image iters=100 print("Iters = {}".format(iters)) #set seed random.seed(2019) #set patch sizes patch_sizes = np.array([32, 64, 128]) col_names = ['32', '64', '128'] #choose matching method methods = ['cv2.TM_CCORR_NORMED'] method_final=[] loglist = [] #patchmathcing main loop for m, meth in enumerate(methods): to_csv = np.copy(patch_sizes) for reptype in representations: if 'org' in reptype or 'additional' in reptype: rt =0 elif 'invrepnet' in reptype: rt = 1 else: exit('error') method_mean_iou_0 = np.zeros(len(patch_sizes)) for sl, scene_name in enumerate(scenes_list): #read images if args.out_channels == 3 or args.out_channels == 1: im0_rep = cv2.imread(os.path.join(test_image_dir[rt], scene_name + '_im0.png')) im1_rep = cv2.imread(os.path.join(test_image_dir[rt], scene_name + '_im1.png')) else: im0_rep=np.load(os.path.join(test_image_dir[rt], scene_name + '_im0.png.npy')) im1_rep=np.load(os.path.join(test_image_dir[rt], scene_name + '_im1.png.npy')) #convert to gray if gray mode if 'gray' in reptype: if 'invrepnet' in reptype: if 'mean' in reptype: im0_rep = im0_rep.mean(-1).astype('uint8') im1_rep = im1_rep.mean(-1).astype('uint8') else: im0_rep = cv2.cvtColor(im0_rep, cv2.COLOR_BGR2GRAY) im1_rep = cv2.cvtColor(im1_rep, cv2.COLOR_BGR2GRAY) else: im0_rep = cv2.cvtColor(im0_rep, cv2.COLOR_BGR2GRAY) im1_rep = cv2.cvtColor(im1_rep, cv2.COLOR_BGR2GRAY) scene_mean_iou_0 = np.zeros(len(patch_sizes)) #loop over patch sizes for jj, ps in enumerate(patch_sizes): np.random.seed(2019) max_x = im1_rep.shape[1] - ps max_y = im1_rep.shape[0] - ps x = np.random.randint(0, max_x, size=iters) y = np.random.randint(0, max_y, size=iters) patch_size_iou_sum = 0 #random patches iter loop for ii in range(iters): template, cr_location = get_random_crop(im1_rep, ps, ps, [x[ii], y[ii]]) # Apply template Matching if 'gray' in reptype: res = cv2.matchTemplate(im0_rep, template, eval(meth)) else: res=cv2.matchTemplate(im0_rep[:,:,0], template[:,:,0], eval(meth)) for ch in range(1, args.out_channels): res= res * cv2.matchTemplate(im0_rep[:,:,ch], template[:,:,ch], eval(meth)) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum if eval(meth) in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc bottom_right = (top_left[0] + ps, top_left[1] + ps) box_detected = [top_left[0], top_left[1], bottom_right[0], bottom_right[1]] box_gt = [cr_location[0], cr_location[1], cr_location[0] + ps, cr_location[1] + ps] #calculate accuracy IOU patch_size_iou_sum = patch_size_iou_sum + bb_intersection_over_union(box_detected, box_gt) scene_mean_iou_0[jj] = patch_size_iou_sum / float(iters) printlog(loglist,'{}: method_0, scene: {}, patch_size= {}, mean_iou= {:4}'.format(reptype, scene_name, ps, scene_mean_iou_0[jj])) method_mean_iou_0 += scene_mean_iou_0 / num_scenes printlog(loglist,'final mean_iou for match method: {}'.format(meth)) for kk, ps in enumerate(patch_sizes): printlog(loglist,'{}: method_0: patch_size={}, mean_iou={}'.format(reptype, ps, method_mean_iou_0[kk])) printlog(loglist,'\n*****************************************************************************************************\n') to_csv = np.vstack([to_csv, method_mean_iou_0]) if reptype == 'invrepnet' or reptype == 'invrepnet_multi_all': method_final.append(method_mean_iou_0) #saving results to CSV I = pd.Index(representations, name="rows") C =
pd.Index(col_names, name="columns")
pandas.Index
import itertools import logging import json import networkit as nk import pandas as pd from src.generators.graphs.SBM import SBM from src.generators.graphs.ErdosRenyi import ErdosRenyi from src.generators.graphs.BarabasiAlbert import BarabasiAlbert from src.measures.FairHarmonicCentrality import FairGroupHarmonicCentrality,GroupHarmonicCentrality from pathlib import Path class Harmonic: ''' instance= { type = "Syntetic or Real" graph = [{ "name": , "parameters":{"n": , "k":, "structure": , "threshold"; , } }], experiments = {"mod": rnd\pagerank\maxHitting\classic\maxDeg\sampleInEachCommunity\maxDegreeInEachCommunity\maxHCInEachCommunity, "Ssize": [ ] , "nRun": , } } ''' def __init__(self,instance): self.instance = instance self.graphs = [] self.communities = [] self.names = [] self.results = [] self.node_community_mapping = [] self.parameters = [] def run(self): if(self.instance['type'] in ['synthetic','Synthetic']): self.runSynteticExperiments() if(self.instance['type'] in ['real','Real']): self.runRealExperiments() if(self.instance['experiments']['mod'] in ['rnd','random','rd']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph' : self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} for size in fairSetSizes: FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) FGH.set_k(size) FGH.sampleS(trials) FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) #print("Group that maximizes GHC ",FGH.get_S()) #print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = trials res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() #result['experiments'].append(FGH) ''' logging.debug("Max Group Harmonic Centrality: %r"%FGH.get_GHC_max_group()) if(PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r"%PoF)''' result['experiments'].append(res) communityIndex += 1 results.append(result) elif(self.instance['experiments']['mod'] in ['pr','PageRank','pagerank']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} for size in fairSetSizes: FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) FGH.set_k(size) FGH.samplePageRankS(trials) FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = trials res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() '''logging.debug("Max Group Harmonic Centrality: %r"%FGH.get_GHC_max_group()) if(PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r"%PoF)''' result['experiments'].append(res) communityIndex += 1 results.append(result) elif (self.instance['experiments']['mod'] in ['sampleInEachCommunity', 'siec']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) FGH.sampleInEachCommunity() FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) # print("Group that maximizes GHC ",FGH.get_S()) # print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = -1 res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex ] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() '''logging.debug("Group Harmonic Centrality: %r" % FGH.get_GH()) if (PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r" % PoF)''' result['experiments'].append(res) communityIndex+=1 results.append(result) elif (self.instance['experiments']['mod'] in ['maxHitting', 'MH','mh']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} for size in fairSetSizes: FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) FGH.set_k(size) FGH.maxHitting() FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) # print("Group that maximizes GHC ",FGH.get_S()) # print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = -1 res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() '''logging.debug("Group Harmonic Centrality: %r" % FGH.get_GH()) if (PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r" % PoF)''' result['experiments'].append(res) communityIndex+=1 results.append(result) elif (self.instance['experiments']['mod'] in ['Classic','classic', 'CL', 'cl']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} for size in fairSetSizes: FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) FGH.set_S(None) FGH.set_k(size) FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) # print("Group that maximizes GHC ",FGH.get_S()) # print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = -1 res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() '''logging.debug("Group Harmonic Centrality: %r" % FGH.get_GH()) if (PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r" % PoF)''' result['experiments'].append(res) communityIndex+=1 results.append(result) elif (self.instance['experiments']['mod'] in ['maxDeg', 'md', 'MD']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} for size in fairSetSizes: FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) FGH.set_k(size) FGH.maxDegS() FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) # print("Group that maximizes GHC ",FGH.get_S()) # print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = -1 res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() '''logging.debug("Group Harmonic Centrality: %r" % FGH.get_GH()) if (PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r" % PoF)''' result['experiments'].append(res) communityIndex+=1 results.append(result) elif (self.instance['experiments']['mod'] in ['maxDegInEachCommunity', 'mdiec', 'MDIEC']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) #FGH.set_k(size) FGH.maxDegreeInEachCommunity() FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) # print("Group that maximizes GHC ",FGH.get_S()) # print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = -1 res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() '''logging.debug("Group Harmonic Centrality: %r" % FGH.get_GH()) if (PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r" % PoF)''' result['experiments'].append(res) communityIndex+=1 results.append(result) elif (self.instance['experiments']['mod'] in ['maxHCInEachCommunity', 'mhciec', 'MHCIEC']): fairSetSizes = self.instance['experiments']['sSize'] trials = self.instance['experiments']['nRun'] results = [] communityIndex = 0 for graph in self.graphs: result = {'graph': self.names[communityIndex], 'parameters': self.parameters[communityIndex], 'experiment_mod': self.instance['experiments']['mod'], 'experiments': []} FGH = FairGroupHarmonicCentrality(graph, self.communities[communityIndex], None) # FGH.set_k(size) FGH.maxHCInEachCommunity() FGH.computeGroupsCentralities() FGH.computeFairGroupHarmonicCentrality(FGH.get_S()) # print("Group that maximizes GHC ",FGH.get_S()) # print("GH ",FGH.get_GHC_max_group()) PoF = FGH.get_price_of_fairness() res = {} res['type_of_exp'] = self.instance['experiments']['mod'] res['sampling_trials'] = -1 res['fair_set_size'] = len(FGH.get_S()) res['fair_set'] = FGH.get_S() res['group_harmonic'] = FGH.get_GHC_max_group() res['PoF'] = FGH.get_price_of_fairness() res['fair_harmonic_centrality'] = FGH.get_FGHC() res['communities_dimension'] = FGH.get_communities_size() res['node_community_mapping'] = self.node_community_mapping[communityIndex ] res['execution_time'] = FGH.get_overall_time() res['fair_group_centrality_time'] = FGH.get_exec_time() res['fair_group_centrality_community_time'] = FGH.get_time_per_comm() logging.debug("Group Harmonic Centrality: %r" % FGH.get_GH()) if (PoF == -1): logging.debug("PoF: Undefined") else: logging.debug("PoF: %r" % PoF) result['experiments'].append(res) communityIndex += 1 results.append(result) self.results.extend(results) def runRealExperiments(self): logging.info("Loading Communities") communities = [] with open(self.instance['inputPathCommunities'], 'r') as f: data = f.read() for line in data.split("\n"): community = [] for elem in line.split("\t"): community.append(int(elem)) communities.append(community) logging.info("Loading Communities: Completed") logging.info("Loading Graph") self.graphs.append(nk.graphio.EdgeListReader('\t', 0, '#').read(self.instance['inputPathGraph'])) #self.graphs.append(nk.graphio.SNAPGraphReader().read(self.instance['inputPathGraph'])) logging.info("Loading Graph: Completed") edgeListName = self.instance['inputPathGraph'].split('/')[-1] self.names.append(edgeListName) self.communities.append(communities) self.parameters.append(" ") # Method that load the datasets and run the experiments def runSynteticExperiments(self): for elem in self.instance['graphs']: # listOfParameters = [] # # for parameter in self.instance['graphs'][elem]: # # listOfParameters.append(parameter) # # parametersCombination =list(itertools.product(*listOfParameters)) # paraKeys = list(self.instance['graphs'][elem].keys()) # Loading the graphs if(elem['name'] in ['Erdos-Renyi','ER','er','<NAME>','ErdosRenyi']): inputPath = "datasets/synthetic/erdos_renyi/" edgeListName = "Erdos-Renyi.ungraph.txt" communitiesName = "Erdos-Renyi.all.cmty.txt" elif(elem['name'] in ['Barabasi-Albert','BA','ba','BarabasiAlbert','Barabasi Albert']): inputPath = "datasets/synthetic/barabasi_albert/" edgeListName = "Barabasi-Albert.ungraph.txt" communitiesName = "Barabasi-Albert.all.cmty.txt" elif(elem['name'] in ['SBM','sbm','Stochastic-Block-Model']): inputPath = "datasets/synthetic/sbm/" edgeListName = "Stochastic-Block-Model.ungraph.txt" communitiesName = "Stochastic-Block-Model.all.cmty.txt" parameterKeys = list(elem['parameters'].keys()) name = "" j = 0 for e,v in elem['parameters'].items(): name += str(e) + str(v) if(j<len(elem['parameters'])): name+="/" j+=1 self.parameters.append(elem['parameters']) #print(elem['parameters']) # for para in parametersCombination: # name = "" # j = 0 # for e in para: # name += "_" + str(paraKeys[j]) + "_" + str(e) # j += 1 inputPathGraph = inputPath + name + edgeListName inputPathCommunities = inputPath + name + communitiesName communities = [] index = 0 node_community_mapping = {} with open(inputPathCommunities, 'r') as f: data = f.read() for line in data.split("\n"): community = [] for elem in line.split("\t"): community.append(int(elem)) node_community_mapping[int(elem)] = index communities.append(community) index +=1 self.graphs.append(nk.graphio.EdgeListReader('\t', 0, '#').read(inputPathGraph)) #self.graphs.append(nk.graphio.SNAPGraphReader().read(inputPathGraph)) self.names.append(edgeListName) self.communities.append(communities) self.node_community_mapping.append(node_community_mapping) def get_graphs(self): return (self.graphs) def get_communities(self): return(self.communities) def get_node_community_mapping(self): return (self.node_community_mapping) def save_results_to_json(self,path = "./"): if Path(path).is_file(): with open(path, 'a+', encoding='utf-8') as f: fileHandle = open(path, "r") lineList = fileHandle.readlines() fileHandle.close() if(lineList[-1] != '['): f.write(',') with open(path, 'a+', encoding='utf-8') as f: json.dump(self.results, f, ensure_ascii=False, indent=4) def define_list_of_jsons(self,path): if not Path(path).is_file(): with open(path, 'a+', encoding='utf-8') as f: f.write('[') def close_list_of_jsons(self,path): with open(path, 'a+', encoding='utf-8') as f: f.write(']') def save_results_to_csv(self,path = "./"): lista_to_csv = [] for elem in self.results: for exp in elem['experiments']: lista_to_csv.append({**elem['parameters'],**exp}) for dic in self.results: df =
pd.DataFrame(lista_to_csv)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :Purpose: Perform automated testing on pdvalidate. :Platform: Linux/Windows | Python 3.5 :Developer: <NAME> :Email: <EMAIL> """ # pylint: disable=protected-access # pylint: disable=wrong-import-position import os import sys sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) import datetime import numpy as np import pytest import pandas as pd from pandas.util.testing import assert_series_equal, assert_frame_equal from pdvalidate.validation import ei, \ validate as pdv, \ ValidationWarning class TestReturnTypes(): strings = pd.Series(['1', '1', 'ab\n', 'a b', 'Ab', 'AB', np.nan]) masks = [pd.Series([False, False, False, True, True, False, False]), pd.Series([True, True, False, True, True, False, True])] def test_return_mask_series(self): assert_series_equal(pdv._get_return_object(self.masks, self.strings, 'mask_series'), pd.Series([True, True, False, True, True, False, True])) def test_return_mask_frame(self): assert_frame_equal(pdv._get_return_object(self.masks, self.strings, 'mask_frame'), pd.concat(self.masks, axis='columns')) def test_return_values(self): assert_series_equal(pdv._get_return_object(self.masks, self.strings, 'values'), pd.Series([np.nan, np.nan, 'ab\n', np.nan, np.nan, 'AB', np.nan])) def test_wrong_return_type(self): with pytest.raises(ValueError): pdv._get_return_object(self.masks, self.strings, 'wrong return type') class TestMaskNonconvertible(): mixed = pd.Series([1, 2.3, np.nan, 'abc',
pd.datetime(2014, 1, 7)
pandas.datetime
import pandas as pd from pandas.tseries.offsets import DateOffset FOUR_MINUTE_OFFSET = DateOffset(minutes=4) HOUR_MINUTE_OFFSET =
DateOffset(hours=1)
pandas.tseries.offsets.DateOffset
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import numpy as np import pandas as pd from joblib import Parallel, delayed from argparse import ArgumentParser from os import path from time import time from utils import trj2blocks # MDAnalysis import MDAnalysis as mda from MDAnalysis.analysis.hydrogenbonds import hbond_analysis def parse(): '''Parse command line arguments. Returns: Namespace object containing input arguments. ''' parser = ArgumentParser(description='MDTools: Hydrogen bond analysis') parser.add_argument('-i', '--input', required=True, type=str, help='Input .xyz file') parser.add_argument('-n', '--n_cpu', required=True, type=int, help='Number of CPUs for parallel processing') parser.add_argument('-c', '--cell_vectors', required=True, type=float, help='Lattice vectors in angstroms (a, b, c)', nargs=3) return parser.parse_args() def hbonds(u, block): '''Computes hydrogen bond (HB) statistics. Args: u: MDAnalysis Universe object containing trajectory. block: Range of frames composing block. Returns: Accepted and donated hydrogen bond counts and surface separations ''' # Initialize hydrogen bond analysis hbonds = hbond_analysis.HydrogenBondAnalysis( u, d_h_a_angle_cutoff=135, d_a_cutoff=3.5) hbonds.donors_sel = 'name O' hbonds.acceptors_sel = 'name O' hbonds.hydrogens_sel = 'name H' # Run hydrogen bond analysis hbonds.run(start=block.start, stop=block.stop, verbose=True) out = hbonds.results.hbonds # Select oxygen atoms, initialize output arrays oxygen = u.select_atoms('name O') acc_counts = np.zeros((len(block), oxygen.n_atoms)) don_counts = np.zeros((len(block), oxygen.n_atoms)) heights = np.zeros((len(block), oxygen.n_atoms)) for i, ts in enumerate(u.trajectory[block.start:block.stop]): print('Processing blocks %.1f%%' % (100*i/len(block)), end='\r') # Get all HBs of current frame step = out[(out[:, 0] == ts.frame)] # Loop over each oxygen for j, idx in enumerate(oxygen.indices): # Get number of accepted and donated HBs + position along z don_counts[i, j] = len(step[(step[:, 1] == idx)]) acc_counts[i, j] = len(step[(step[:, 3] == idx)]) heights[i, j] = oxygen[j].position[2] return np.stack((heights, acc_counts, don_counts)) def main(): args = parse() input = args.input n_jobs = args.n_cpu a, b, c = args.cell_vectors CURRENT_PATH = path.dirname(path.realpath(__file__)) DATA_PATH = path.normpath(path.join(CURRENT_PATH, path.dirname(input))) base = path.splitext(path.basename(input))[0] # Initialize universe (time step 0.5 fs) u = mda.Universe(input, dt=5e-4) u.add_TopologyAttr('charges') u.dimensions = np.array([a, b, c, 90, 90, 90]) # Split trajectory into blocks blocks = trj2blocks.get_blocks(u, n_jobs) print('Analyzing...') results = Parallel(n_jobs=n_jobs)(delayed(hbonds)( u, block) for block in blocks) # Concatenate results results = np.concatenate(results, axis=1) # Save results (heights, accepted HBs, donated HBs) as .csv df1 = pd.DataFrame(results[0]) df2 =
pd.DataFrame(results[1])
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. from factor_learning.utils import utils from factor_learning.dataio.DigitImageTfDataset import DigitImageTfDataset from factor_learning.dataio.DigitImageTfPairsDataset import DigitImageTfPairsDataset from subprocess import call import os from scipy import linalg import numpy as np import cv2 from PIL import Image import math import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader import torch.nn as nn import torch.optim as optim import torch import seaborn as sns from pandas.plotting import scatter_matrix import pandas as pd import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.patches import Rectangle, Circle plt.rcParams.update({'font.size': 14}) BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")) def visualize_correlation(feat_ij, pose_ij): data_tensor = torch.cat([feat_ij, pose_ij], 1) data = data_tensor.data.numpy() data_frame =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import ast import sys import os.path from pandas.core.algorithms import isin sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import dateutil.parser as parser from utils.mysql_utils import separator from utils.io import read_json from utils.scraping_utils import remove_html_tags from utils.user_utils import infer_role from graph.arango_utils import * import pgeocode def cast_to_float(v): try: return float(v) except ValueError: return v def convert_to_iso8601(text): date = parser.parse(text) return date.isoformat() def load_member_summaries( source_dir="data_for_graph/members", filename="company_check", # concat_uk_sector=False ): ''' LOAD FLAT FILES OF MEMBER DATA ''' dfs = [] for membership_level in ("Patron", "Platinum", "Gold", "Silver", "Bronze", "Digital", "Freemium"): summary_filename = os.path.join(source_dir, membership_level, f"{membership_level}_{filename}.csv") print ("reading summary from", summary_filename) dfs.append(pd.read_csv(summary_filename, index_col=0).rename(columns={"database_id": "id"})) summaries = pd.concat(dfs) # if concat_uk_sector: # member_uk_sectors = pd.read_csv(f"{source_dir}/members_to_sector.csv", index_col=0) # # for col in ("sectors", "divisions", "groups", "classes"): # # member_uk_sectors[f"UK_{col}"] = member_uk_sectors[f"UK_{col}"].map(ast.literal_eval) # summaries = summaries.join(member_uk_sectors, on="member_name", how="left") return summaries def populate_sectors( source_dir="data_for_graph", db=None): ''' CREATE AND ADD SECTOR(AS DEFINED IN MIM DB) NODES TO GRAPH ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Sectors", db) sectors = pd.read_csv(f"{source_dir}/all_sectors.csv", index_col=0) i = 0 for _, row in sectors.iterrows(): sector_name = row["sector_name"] print ("creating document for sector", sector_name) document = { "_key": str(i), "name": sector_name, "sector_name": sector_name, "id": row["id"] } insert_document(db, collection, document) i += 1 def populate_commerces( data_dir="data_for_graph", db=None): ''' CREATE AND ADD COMMERCE(AS DEFINED IN MIM DB) NODES TO GRAPH ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Commerces", db) commerces = pd.read_csv(f"{data_dir}/all_commerces_with_categories.csv", index_col=0) commerces = commerces.drop_duplicates("commerce_name") i = 0 for _, row in commerces.iterrows(): commerce = row["commerce_name"] category = row["commerce_category"] print ("creating document for commerce", commerce) document = { "_key": str(i), "name": commerce, "commerce": commerce, "category": category, "id": row["id"] } insert_document(db, collection, document) i += 1 def populate_members( cols_of_interest=[ "id", "member_name", "website", "about_company", "membership_level", "tenancies", "badges", "accreditations", "sectors", # add to member as list "buys", "sells", "sic_codes", "directors", "Cash_figure", "NetWorth_figure", "TotalCurrentAssets_figure", "TotalCurrentLiabilities_figure", ], db=None): ''' CREATE AND POPULATE MEMBER NODES ''' if db is None: db = connect_to_mim_database() collection = connect_to_collection("Members", db, ) members = load_member_summaries(concat_uk_sector=False) members = members[cols_of_interest] members = members.drop_duplicates("member_name") # ensure no accidental duplicates members = members.loc[~pd.isnull(members["tenancies"])] members["about_company"] = members["about_company"].map(remove_html_tags, na_action="ignore") members = members.sort_values("member_name") i = 0 for _, row in members.iterrows(): member_name = row["member_name"] if pd.isnull(member_name): continue document = { "_key" : str(i), "name": member_name, **{ k: (row[k].split(separator) if not pd.isnull(row[k]) and k in {"sectors", "buys", "sells"} else ast.literal_eval(row[k]) if not pd.isnull(row[k]) and k in { "UK_sectors", "UK_divisions", "UK_groups", "UK_classes", "sic_codes", "directors", } else cast_to_float(row[k]) if k in {"Cash_figure","NetWorth_figure","TotalCurrentAssets_figure","TotalCurrentLiabilities_figure"} else row[k] if not
pd.isnull(row[k])
pandas.isnull
""" Author : <NAME>\n email : <EMAIL>\n LICENSE : MIT License """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import seaborn as sns import time from scipy.signal import butter, sosfiltfilt, sosfreqz from scipy.signal import spectrogram as spect from scipy.stats import gaussian_kde import datetime from threading import Thread from msdlib import msdExceptions import os sns.set() pd.plotting.register_matplotlib_converters() # this is a custom designed progress bar for checking the loop timing. The user should follow this approach to make it work #with ProgressBar(arr, desc = 'intro of arr', perc = 5) as pbar: # for i in arr: # 'your code/task inside the loop' # pbar.inc() class ProgressBar(): """ Inputs: :arr: iterable, it is the array you will use to run the loop, it can be range(10) or any numpy array or python list or any other iterator :desc: str, description of the loop, default - 'progress' :barlen: int, length of the progress bar, default is 40 :front space: int, allowed space for description, default is 20 :tblink_max: float/int indicates maximum interval in seconds between two adjacent blinks, default is .4 :tblink_min: float/int indicates minimum interval in seconds between two adjacent blinks, default is .18 Outputs: there is no output. It creates a progress bar which shows the loop progress. """ def __init__(self, arr, desc='progress', barlen=40, front_space = 20, tblink_max = .3, tblink_min = .18): self.xlen = len(arr) self.barlen = barlen if tblink_max >= 1: tblink_max = .9 print("'tblink_max' was set to .9 seconds beacuse of exceeding maximum limit!") self.desc = desc[:front_space] + ' ' + '-' * (front_space - len(desc)) * int(front_space > len(desc))+ ' ' self.barend = ' '*15 self.tblmax = tblink_max self.tblmin = tblink_min self.blintv = self.tblmax # blinking interval self.barincs = [int(self.xlen / self.barlen * (i + 1)) for i in range(self.barlen)] self.barinc = 0 self.sym = '█' # complete symbol in progress bar self.non = ' ' # gap symbol in progress bar self.blsyms = ['|', '/', '-', '\\'] self.bllen = len(self.blsyms) self.blcnt = 0 self.cnt = 0 # iterative counter for x elements self.barelap = 0 # iterative counter for progress bar self.set_barelap() # setting proper next value for self.barinc self.blink = self.blsyms[0] self.tcntst = False self.min_tprint = .1 # minimum time interval for two consecutive bar print self.tprrec = time.time() - self.min_tprint - 1 # initialized with a bigger time def __enter__(self, ): self.tst = time.time() # multithreading initialization self.thread = Thread(target = self.blink_func) self.flblink = True self.thread.start() # bar initialization self.prleftime = 'calculating..' self.tstack = 0 self.tstackst = time.time() self.pastime = datetime.timedelta(seconds = 0) return self def calc_time(self): self.pastime = datetime.timedelta(seconds = time.time() - self.tst) self.leftime = self.pastime * (self.xlen / self.cnt - 1) self.tstackst = time.time() self.tstack = 0 self.blintv = self.tblmax - (self.tblmax - self.tblmin) * (self.barelap + 1) / self.barlen def conv_time(self): d = self.pastime.days s = int(self.pastime.seconds + self.tstack) self.prpastime = '%s'%datetime.timedelta(days = d, seconds = s) if self.tcntst: d = self.leftime.days s = int(self.leftime.seconds - self.tstack) if d < 0: d, s = 0, 0 self.prleftime = '%s'%datetime.timedelta(days = d, seconds = s) def set_barelap(self): if self.cnt == self.barincs[self.barinc]: if self.barinc < self.barlen - 1: self.barinc += 1 while self.barincs[self.barinc] == self.barincs[self.barinc - 1] and self.barinc < self.barlen: self.barinc += 1 self.barelap = int(self.cnt / self.xlen * self.barlen) def inc(self): self.cnt += 1 if not self.tcntst: self.tcntst = True self.set_barelap() self.calc_time() self.conv_time() self.barprint() def barprint(self, end = ''): if time.time() - self.tprrec >= self.min_tprint or not self.flblink: self.bar = self.sym * self.barelap + self.blink * int(self.flblink) + self.non * (self.barlen - self.barelap - int(self.flblink)) self.pr = self.desc + '[' + self.bar + '] ' + '%d/%d <%3d%%>'%(self.cnt, self.xlen, self.cnt / self.xlen * 100) + ' ( %s'%self.prpastime + ' < %s'%self.prleftime + ' )%s'%(self.barend) print('\r%s'%self.pr, end = end, flush = False) self.tprrec = time.time() def blink_func(self): while self.flblink: time.sleep(self.blintv) self.blcnt += 1 if self.blcnt == self.bllen: self.blcnt = 0 self.blink = self.blsyms[self.blcnt] # time adjustment part self.tstack = time.time() - self.tstackst self.conv_time() self.barprint() def __exit__(self, exception_type, exception_value, traceback): self.flblink = False time.sleep(self.tblmax) self.barend = ' Complete!' + ' '*15 self.barprint('\n') def get_time_estimation(time_st, count_ratio=None, current_ep=None, current_batch=None, total_ep=None, total_batch=None, string_out=True): """ This function estimates remaining time inside any loop. he function is prepared for estimating remaining time in machine learning training with mini-batch. But it can be used for other purposes also by providing count_ratio input value. Inputs: :time_st: time.time() instance indicating the starting time count :count_ratio: float, ratio of elapsed time at any moment.\n Must be 0 ~ 1, where 1 will indicate that this is the last iteration of the loop :current_ep: current epoch count :current_batch: current batch count in mini-batch training :total_ep: total epoch in the training model :total_batch: total batch in the mini-batch training :string_out: bool, whether to output the elapsed and estimated time in string format or not. True will output time string Outputs: :output time: the ouput can be a single string in format\n 'elapsed hour : elapsed minute : elapsed second < remaining hour : remaining minute : remaining second '\n if string_out flag is True\n or it can output 6 integer values in the above order for those 6 elements in the string format\n """ if count_ratio is None: # getting count ratio total_count = total_ep * total_batch current_count = current_ep * total_batch + current_batch + 1 count_ratio = current_count / total_count # calculating time t = time.time() elapsed_t = t - time_st # converting time into H:M:S # elapsed time calculation el_h = elapsed_t // 3600 el_m = (elapsed_t - el_h * 3600) // 60 el_s = int(elapsed_t - el_h * 3600 - el_m * 60) if count_ratio == 0: if string_out: return '%d:%02d:%02d < %d:%02d:%02d' % (el_h, el_m, el_s, 0, 0, 0) else: return el_h, el_m, el_s, 0, 0, 0 # remaining time calculation total_t = elapsed_t / count_ratio rem_t = total_t - elapsed_t rem_h = rem_t // 3600 rem_m = (rem_t - rem_h * 3600) // 60 rem_s = int(rem_t - rem_h * 3600 - rem_m * 60) if string_out: out = '%d:%02d:%02d < %d:%02d:%02d' % (el_h, el_m, el_s, rem_h, rem_m, rem_s) return out else: return el_h, el_m, el_s, rem_h, rem_m, rem_s class Filters(): """ This class is used to apply FIR filters as high-pass, low-pass, band-pass and band-stop filters. It also shows the proper graphical representation of the filter response, signal before filtering and after filtering and filter spectram. The core purpose of this class is to make the filtering process super easy and check filter response comfortably. Inputs: :T: float, indicating the sampling period of the signal, must be in seconds (doesnt have any default values) :n: int, indicating number of fft frequency bins, default is 1000 :savepath: str, path to the directory to store the plot, default is None (doesnt save plots) :show: bool, whether to show the plot or not, default is True (Shows figures) :save: bool, whether to store the plot or not, default is False (doesnt save figures) """ def __init__(self, T, N = 1000, savepath=None, save=False, show=True): # T must be in seconds self.fs = 1 / T self.N = N self.savepath = savepath self.show = show self.save = save def raise_cutoff_error(self, msg): raise msdExceptions.CutoffError(msg) def raise_filter_error(self, msg): raise msdExceptions.FilterTypeError(msg) def vis_spectrum(self, sr, f_lim=[], see_neg=False, show=None, save=None, savepath=None, figsize=(30, 3)): """ The purpose of this function is to produce spectrum of time series signal 'sr'. Inputs: :sr: numpy ndarray or pandas Series, indicating the time series signal you want to check the spectrum for :f_lim: python list of len 2, indicating the limits of visualizing frequency spectrum. Default is [] :see_neg: bool, flag indicating whether to check negative side of the spectrum or not. Default is False :show: bool, whether to show the plot or not, default is None (follows Filters.show attribute) :save: bool, whether to store the plot or not, default is None (follows Filters.save attribute) :savepath: str, path to the directory to store the plot, default is None (follows Filters.savepath attribute) :figsize: tuple, size of the figure plotted to show the fft version of the signal. Default is (30, 3) Outputs: doesnt return anything as the purpose is to generate plots """ if savepath is None: savepath = self.savepath if save is None: save = self.save if show is None: show = self.show if isinstance(sr, np.ndarray) or isinstance(sr, list): sr = pd.Series(sr) if sr.name is None: sr.name = 'signal' if see_neg: y = np.fft.fft(sr.dropna().values, n = self.N).real y = np.fft.fftshift(y) f = (np.arange(self.N) / self.N - .5) * self.fs y = pd.Series(y, index = f) else: y = np.fft.fft(sr.dropna().values, n = self.N * 2).real f = np.arange(2 * self.N) / (2 * self.N) * self.fs y = pd.Series(y, index = f) y = y.iloc[:self.N] fig, ax = plt.subplots(figsize = figsize) ax.plot(y.index, y.values, alpha = 1) fig_title = 'Frequency Spectrum of %s'%sr.name ax.set_title(fig_title) ax.set_ylabel('Power') ax.set_xlabel('Frequency (Hz)') if len(f_lim) == 2: ax.set_xlim(f_lim[0], f_lim[1]) fig.tight_layout() if show: plt.show() if save and savepath is not None: os.makedirs(savepath, exist_ok=True) fig.savefig('%s/%s.jpg'%(savepath, fig_title.replace(' ', '_')), bbox_inches='tight') plt.close() def apply(self, sr, filt_type, f_cut, order=10, response=False, plot=False, f_lim=[], savepath=None, show=None, save=None): """ The purpose of this function is to apply an FIR filter on a time series signal 'sr' and get the output filtered signal y Inputs: :sr: numpy ndarray/pandas Series/list, indicating the time series signal you want to apply the filter on :filt_type: str, indicating the type of filter you want to apply on sr.\n {'lp', 'low_pass', 'low pass', 'lowpass'} for applying low pass filter\n and similar for 'high pass', 'band pass' and 'band stop' filters :f_cut: float/list/numpy 1d array, n indicating cut off frequencies. Please follow the explanations bellow\n for lowpass/highpass filters, it must be int/float\n for bandpass/bandstop filters, it must be a list or numpy array of length divisible by 2 :order: int, filter order, the more the values, the sharp edges at the expense of complexer computation. Default is 10. :response: bool, whether to check the frequency response of the filter or not, Default is False :plot: bool, whether to see the spectrum and time series plot of the filtered signal or not, Default is False :f_lim: list of length 2, frequency limit for the plot. Default is [] :savepath: str, path to the directory to store the plot, default is None (follows Filters.savepath attribute) :show: bool, whether to show the plot or not, default is None (follows Filters.show attribute) :save: bool, whether to store the plot or not, default is None (follows Filters.save attribute) Outputs: :y: pandas Series, filtered output signal """ if savepath is None: savepath = self.savepath if save is None: save = self.save if show is None: show = self.show if isinstance(sr, np.ndarray) or isinstance(sr, list): sr =
pd.Series(sr)
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < 8 days 01:00:00 < 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_index_repr(self): idx = pd.CategoricalIndex(pd.Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" self.assertEqual(repr(idx), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_ordered(self): i = pd.CategoricalIndex(pd.Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period(self): # test all length idx = pd.period_range('2011-01-01 09:00', freq='H', periods=1) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=2) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=3) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta(self): idx =
pd.timedelta_range('1 days', periods=5)
pandas.timedelta_range
import pandas as pd import numpy as np import os from numba import types from numba.typed import Dict from numba import njit from openbatlib import model from openbatlib import view class Error(Exception): pass class InputError(Error): def __init__(self, expression): self.expression = expression class Controller(object): """Class to manage the models and view components """ _version = '0.1' def __init__(self): """Constructor method """ self.view = view.View() # get path to working directory self.cwd = os.getcwd() def sim(self, fparameter=None, freference=None, system=None, ref_case=None, dt=1, spi=False): """Method for managing the simulation :param fparameter: File path to the system parameters :type fparameter: string :param system: Identifier for the system under simulation in the file :type system: string :param ref_case: Identifier for to chose one of the two reference cases :type ref_case: string :param dt: time step width in seconds :type dt: integer """ if fparameter is None: # set path to the reference case file fparameter = os.path.join(self.cwd, 'parameter/PerModPAR.xlsx') if freference is None: # set path to the reference case file freference = os.path.join(self.cwd, 'reference_case/ref_case_data.npz') try: # Load system parameters parameter = self._load_parameter(fparameter, system) if not parameter['ref_1'] and ref_case == '1': raise InputError('System not suitable with selected reference case 1!') if not parameter['ref_2'] and ref_case == '2': raise InputError('System not suitable with selected reference case 2!') except InputError as err: raise # Load PV generator input ppv = self._load_pv_input(freference, 'ppv') # Load data from reference cases (load and inverter parameters) parameter, pl = self._load_ref_case(parameter, freference, fparameter, ref_case) # Call model for AC coupled systems if parameter['Top'] == 'AC': d = model.transform_dict_to_array(parameter) self.model = model.BatModAC(parameter, d, ppv, pl, dt) self.model.simulation() self.model.bat_mod_res() self.model.calculate_spi() # Call model for DC coupled systems elif parameter['Top'] == 'DC': d = model.transform_dict_to_array(parameter) self.model = model.BatModDC(parameter, d, ppv, pl, dt) self.model.simulation() self.model.bat_mod_res() self.model.calculate_spi() # Call model for PV-coupled systems elif parameter['Top'] == 'PV': Pac, Ppv, Pperi = model.max_self_consumption(parameter, ppv, pl, pvmod=True) d = model.transform_dict_to_array(parameter) self.model = model.BatModPV(parameter, d, ppv, pl, Pac, Ppv, Pperi, dt) # Load the view class self.view = view.View() def modbus(self, host, port, unit_id, data_frame, ref_case, dt, fname, fparameter, fref, system): """Function to establish a connection to a battery system via ModBus protocol :param host: IP-Address of the host :type host: string :param port: Port of the host :type port: integer :param unit_id: Unit-ID of the host :type unit_id: integer :param data_frame: Data Frame holding the values :type data_frame: pandas data frame :param ref_case: Identifier for one of the two reference cases :type ref_case: string :param dt: Time step width in seconds :type dt: integer :param fname: File path to the system under simulation :type fname: string :param fparameter: File path to the system parameters :type fparameter: string :param fref: File to the refence cases :type fref: string :param system: Indentifier for the system under simulation :type system: string """ parameter = self._load_parameter(fparameter, system) #df_resample = model.resample_data_frame(df=data_frame) ppv = data_frame['ppv'].to_numpy() pl = data_frame['L'].to_numpy() parameter, pl_not_used = self._load_ref_case(parameter, fref, fparameter, ref_case) Pr, Ppv_not_used, Ppvs_not_used, Pperi_not_used = model.max_self_consumption(parameter, ppv, pl, pvmod=True) Pr = Pr * -1 # negative values for charging, positive values for discharging self.model = model.ModBus(host, port, unit_id, Pr, dt, fname) def real_time(self, parameter, **kwargs): """Function for direct access to the battery models :param parameter: PV battery system parameters :type parameter: dict :return r: Dictionary of the simulation results :rtype r: dict """ r = dict() # Dictionary storing the results if parameter['Top'] == 'AC': d = self._dict_to_array(parameter) r['Pbat'], r['Pbs'], r['soc'], r['soc0'], r['Pbs0'] = model.BatMod_AC(d, **kwargs) return r elif type == 'DC': d = self._dict_to_array(parameter) r['Ppv2ac_out'], r['Ppv2bat_in'], r['Ppv2bat_in0'], r['Pbat2ac_out'], r['Pbat2ac_out0'], r['Ppvbs'], r['Pbat'], r['soc'], r['soc0'] = model.BatMod_DC(d, **kwargs) return r elif type == 'PV': d = self._dict_to_array(parameter) r['_soc'], r['_soc0'], r['_Ppv'], r['_Ppvbs'], r['_Pbat'], r['_Ppv2ac_out'], r['_Pbat2pv_out'], r['_Ppv2bat_in'] = model.BatMod_PV(d, **kwargs) return r def _load_parameter(self, fparameter, system): """Loads system parameter :param fparameter: Path to file :type fparameter: string :param system: Indicator for the system :type system: string """ parameter = model.load_parameter(fparameter, system) parameter = model.eta2abc(parameter) return parameter def get_residual_power_AC(self, parameter, ppv, pl): Pr, Ppv, Ppvs, Pperi = model.max_self_consumption(parameter, ppv, pl, pvmod=True) return Pr def _dict_to_array(self, parameter): d = model.transform_dict_to_array(parameter) return d def get_parameter(self, fparameter, system): return self._load_parameter(fparameter, system) def _load_pv_input(self, fname, name): """Loads PV input data :param fref: Path to file :type fref: string :param name: Name of the input series :type name: string """ ppv = model.load_ref_case(fname, name) return ppv def _load_set_values(self, fname): return fname def _load_ref_case(self, parameter, fname, fparameter, ref_case): if ref_case == '1': # Load parameters of first inverter if parameter['Top'] == 'AC' or parameter['Top'] == 'PV': inverter_parameter = model.load_parameter(fparameter, 'L') parameter['P_PV'] = 5.0 pl = model.load_ref_case(fname, 'pl1') elif ref_case == '2': # Load paramertes of second inverter if parameter['Top'] == 'AC' or parameter['Top'] == 'PV': inverter_parameter = model.load_parameter(fparameter, 'M') parameter['P_PV'] = 10 pl = model.load_ref_case(fname, 'pl2') # Load inverter parameters for AC or PV coupled systems if parameter['Top'] == 'AC' or parameter['Top'] == 'PV': inverter_parameter = model.eta2abc(inverter_parameter) parameter['P_PV2AC_in'] = inverter_parameter['P_PV2AC_in'] parameter['P_PV2AC_out']= inverter_parameter['P_PV2AC_out'] parameter['P_PVINV_AC'] = inverter_parameter['P_PVINV_AC'] parameter['PV2AC_a_in'] = inverter_parameter['PV2AC_a_in'] parameter['PV2AC_b_in'] = inverter_parameter['PV2AC_b_in'] parameter['PV2AC_c_in'] = inverter_parameter['PV2AC_c_in'] parameter['PV2AC_a_out'] = inverter_parameter['PV2AC_a_out'] parameter['PV2AC_b_out'] = inverter_parameter['PV2AC_b_out'] parameter['PV2AC_c_out'] = inverter_parameter['PV2AC_c_out'] if parameter['Top'] == 'PV': parameter['P_SYS_SOC0_AC'] = inverter_parameter['P_PVINV_AC'] return parameter, pl def print_E(self): E_real, E_ideal = self.model.get_E() E_real_df = pd.DataFrame.from_dict(E_real, orient='index', columns=['real / MWh']) E_ideal_df =
pd.DataFrame.from_dict(E_ideal, orient='index', columns=['ideal / MWh'])
pandas.DataFrame.from_dict
"""Step 1: Solving the problem in a deterministic manner.""" import cvxpy as cp import fledge import numpy as np import os import pandas as pd import plotly.express as px import plotly.graph_objects as go import shutil def main(): # Settings. scenario_name = 'course_project_step_1' results_path = os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'results', 'step_1') run_primal = True run_dual = True run_kkt = True # Clear / instantiate results directory. try: if os.path.isdir(results_path): shutil.rmtree(results_path) os.mkdir(results_path) except PermissionError: pass # STEP 1.0: SETUP MODELS. # Read scenario definition into FLEDGE. # - Data directory from this repository is first added as additional data path. fledge.config.config['paths']['additional_data'].append( os.path.join(os.path.dirname(os.path.dirname(os.path.normpath(__file__))), 'data') ) fledge.data_interface.recreate_database() # Obtain data & models. # Flexible loads. der_model_set = fledge.der_models.DERModelSet(scenario_name) # Thermal grid. thermal_grid_model = fledge.thermal_grid_models.ThermalGridModel(scenario_name) thermal_grid_model.cooling_plant_efficiency = 10.0 # Change model parameter to incentivize use of thermal grid. thermal_power_flow_solution_reference = fledge.thermal_grid_models.ThermalPowerFlowSolution(thermal_grid_model) linear_thermal_grid_model = ( fledge.thermal_grid_models.LinearThermalGridModel(thermal_grid_model, thermal_power_flow_solution_reference) ) # Define arbitrary operation limits. node_head_vector_minimum = 1.5 * thermal_power_flow_solution_reference.node_head_vector branch_flow_vector_maximum = 10.0 * thermal_power_flow_solution_reference.branch_flow_vector # Electric grid. electric_grid_model = fledge.electric_grid_models.ElectricGridModelDefault(scenario_name) power_flow_solution_reference = fledge.electric_grid_models.PowerFlowSolutionFixedPoint(electric_grid_model) linear_electric_grid_model = ( fledge.electric_grid_models.LinearElectricGridModelGlobal(electric_grid_model, power_flow_solution_reference) ) # Define arbitrary operation limits. node_voltage_magnitude_vector_minimum = 0.5 * np.abs(electric_grid_model.node_voltage_vector_reference) node_voltage_magnitude_vector_maximum = 1.5 * np.abs(electric_grid_model.node_voltage_vector_reference) branch_power_magnitude_vector_maximum = 10.0 * electric_grid_model.branch_power_vector_magnitude_reference # Energy price. price_data = fledge.data_interface.PriceData(scenario_name) # Obtain time step index shorthands. scenario_data = fledge.data_interface.ScenarioData(scenario_name) timesteps = scenario_data.timesteps timestep_interval_hours = (timesteps[1] - timesteps[0]) / pd.Timedelta('1h') # Invert sign of losses. # - Power values of loads are negative by convention. Hence, sign of losses should be negative for power balance. # Thermal grid. linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= -1.0 linear_thermal_grid_model.thermal_power_flow_solution.pump_power *= -1.0 # Electric grid. linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= -1.0 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= -1.0 linear_electric_grid_model.power_flow_solution.loss *= -1.0 # Apply base power / voltage scaling. # - Scale values to avoid numerical issues. base_power = 1e6 # in MW. base_voltage = 1e3 # in kV. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): der_model.mapping_active_power_by_output *= 1 / base_power der_model.mapping_reactive_power_by_output *= 1 / base_power der_model.mapping_thermal_power_by_output *= 1 / base_power # Thermal grid. linear_thermal_grid_model.sensitivity_node_head_by_der_power *= base_power linear_thermal_grid_model.sensitivity_branch_flow_by_der_power *= base_power linear_thermal_grid_model.sensitivity_pump_power_by_der_power *= 1 # Electric grid. linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active *= base_power / base_voltage linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive *= base_power / base_voltage linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active *= 1 linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive *= 1 linear_electric_grid_model.power_flow_solution.der_power_vector *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_1 *= 1 / base_power linear_electric_grid_model.power_flow_solution.branch_power_vector_2 *= 1 / base_power linear_electric_grid_model.power_flow_solution.loss *= 1 / base_power linear_electric_grid_model.power_flow_solution.node_voltage_vector *= 1 / base_voltage # Limits. node_voltage_magnitude_vector_minimum /= base_voltage node_voltage_magnitude_vector_maximum /= base_voltage branch_power_magnitude_vector_maximum /= base_power # Energy price. # - Conversion of price values from S$/kWh to S$/p.u. for convenience. Currency S$ is SGD. # - Power values of loads are negative by convention. Hence, sign of price values is inverted here. price_data.price_timeseries *= -1.0 * base_power / 1e3 * timestep_interval_hours # STEP 1.1: SOLVE PRIMAL PROBLEM. if run_primal or run_kkt: # Primal constraints are also needed for KKT problem. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. primal_problem = fledge.utils.OptimizationProblem() # Define variables. # Flexible loads: State space vectors. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. primal_problem.state_vector = dict.fromkeys(der_model_set.flexible_der_names) primal_problem.control_vector = dict.fromkeys(der_model_set.flexible_der_names) primal_problem.output_vector = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: primal_problem.state_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].states) )) ) primal_problem.control_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].controls) )) ) primal_problem.output_vector[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) # Flexible loads: Power vectors. primal_problem.der_thermal_power_vector = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) primal_problem.der_active_power_vector = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) primal_problem.der_reactive_power_vector = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Source variables. primal_problem.source_thermal_power = cp.Variable((len(timesteps), 1)) primal_problem.source_active_power = cp.Variable((len(timesteps), 1)) primal_problem.source_reactive_power = cp.Variable((len(timesteps), 1)) # Define constraints. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): # Initial state. primal_problem.constraints.append( primal_problem.state_vector[der_model.der_name][0, :] == der_model.state_vector_initial.values ) # State equation. primal_problem.constraints.append( primal_problem.state_vector[der_model.der_name][1:, :] == cp.transpose( der_model.state_matrix.values @ cp.transpose(primal_problem.state_vector[der_model.der_name][:-1, :]) + der_model.control_matrix.values @ cp.transpose(primal_problem.control_vector[der_model.der_name][:-1, :]) + der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.iloc[:-1, :].values) ) ) # Output equation. primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] == cp.transpose( der_model.state_output_matrix.values @ cp.transpose(primal_problem.state_vector[der_model.der_name]) + der_model.control_output_matrix.values @ cp.transpose(primal_problem.control_vector[der_model.der_name]) + der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) ) # Output limits. primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] >= der_model.output_minimum_timeseries.values ) primal_problem.constraints.append( primal_problem.output_vector[der_model.der_name] <= der_model.output_maximum_timeseries.replace(np.inf, 1e3).values ) # Power mapping. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) primal_problem.constraints.append( primal_problem.der_active_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_active_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) primal_problem.constraints.append( primal_problem.der_reactive_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_reactive_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) primal_problem.constraints.append( primal_problem.der_thermal_power_vector[:, [der_index]] == cp.transpose( der_model.mapping_thermal_power_by_output.values @ cp.transpose(primal_problem.output_vector[der_model.der_name]) ) ) # Thermal grid. # Node head limit. primal_problem.constraints.append( np.array([node_head_vector_minimum.ravel()]) <= cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) ) # Branch flow limit. primal_problem.constraints.append( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) <= np.array([branch_flow_vector_maximum.ravel()]) ) # Power balance. primal_problem.constraints.append( thermal_grid_model.cooling_plant_efficiency ** -1 * ( primal_problem.source_thermal_power + cp.sum(-1.0 * ( primal_problem.der_thermal_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. ) == cp.transpose( linear_thermal_grid_model.sensitivity_pump_power_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ) ) # Electric grid. # Voltage limits. primal_problem.constraints.append( np.array([node_voltage_magnitude_vector_minimum.ravel()]) <= np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([node_voltage_magnitude_vector_maximum.ravel()]) ) # Branch flow limits. primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) primal_problem.constraints.append( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) <= np.array([branch_power_magnitude_vector_maximum.ravel()]) ) # Power balance. primal_problem.constraints.append( primal_problem.source_active_power + cp.sum(-1.0 * ( primal_problem.der_active_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. == np.real(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) primal_problem.constraints.append( primal_problem.source_reactive_power + cp.sum(-1.0 * ( primal_problem.der_reactive_power_vector ), axis=1, keepdims=True) # Sum along DERs, i.e. sum for each timestep. == np.imag(linear_electric_grid_model.power_flow_solution.loss) + cp.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) # Define objective. primal_problem.objective += ( price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ primal_problem.source_thermal_power * thermal_grid_model.cooling_plant_efficiency ** -1 ) primal_problem.objective += ( price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values.T @ primal_problem.source_active_power ) if run_primal: # Solve problem. fledge.utils.log_time('primal solution') primal_problem.solve() fledge.utils.log_time('primal solution') # Obtain results. # Flexible loads. primal_state_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.states) primal_control_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.controls) primal_output_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) for der_name in der_model_set.flexible_der_names: primal_state_vector.loc[:, (der_name, slice(None))] = ( primal_problem.state_vector[der_name].value ) primal_control_vector.loc[:, (der_name, slice(None))] = ( primal_problem.control_vector[der_name].value ) primal_output_vector.loc[:, (der_name, slice(None))] = ( primal_problem.output_vector[der_name].value ) # Thermal grid. primal_der_thermal_power_vector = ( pd.DataFrame( primal_problem.der_thermal_power_vector.value, columns=linear_thermal_grid_model.thermal_grid_model.ders, index=timesteps ) ) primal_source_thermal_power = ( pd.DataFrame( primal_problem.source_thermal_power.value, columns=['total'], index=timesteps ) ) # Electric grid. primal_der_active_power_vector = ( pd.DataFrame( primal_problem.der_active_power_vector.value, columns=linear_electric_grid_model.electric_grid_model.ders, index=timesteps ) ) primal_der_reactive_power_vector = ( pd.DataFrame( primal_problem.der_reactive_power_vector.value, columns=linear_electric_grid_model.electric_grid_model.ders, index=timesteps ) ) primal_source_active_power = ( pd.DataFrame( primal_problem.source_active_power.value, columns=['total'], index=timesteps ) ) primal_source_reactive_power = ( pd.DataFrame( primal_problem.source_reactive_power.value, columns=['total'], index=timesteps ) ) # Additional results. primal_node_head_vector = ( pd.DataFrame( cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ).value, index=timesteps, columns=thermal_grid_model.nodes ) ) primal_branch_flow_vector = ( pd.DataFrame( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(primal_problem.der_thermal_power_vector) ).value, index=timesteps, columns=thermal_grid_model.branches ) ) primal_node_voltage_vector = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.nodes ) ) primal_branch_power_vector_1 = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.branches ) ) primal_branch_power_vector_2 = ( pd.DataFrame( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( primal_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( primal_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ).value, index=timesteps, columns=electric_grid_model.branches ) ) primal_node_head_vector_per_unit = ( primal_node_head_vector / thermal_grid_model.node_head_vector_reference ) primal_branch_flow_vector_per_unit = ( primal_branch_flow_vector / thermal_grid_model.branch_flow_vector_reference ) primal_node_voltage_vector_per_unit = ( primal_node_voltage_vector * base_voltage / np.abs(electric_grid_model.node_voltage_vector_reference) ) primal_branch_power_vector_1_per_unit = ( primal_branch_power_vector_1 * base_power / electric_grid_model.branch_power_vector_magnitude_reference ) primal_branch_power_vector_2_per_unit = ( primal_branch_power_vector_2 * base_power / electric_grid_model.branch_power_vector_magnitude_reference ) # Store results. primal_state_vector.to_csv(os.path.join(results_path, 'primal_state_vector.csv')) primal_control_vector.to_csv(os.path.join(results_path, 'primal_control_vector.csv')) primal_output_vector.to_csv(os.path.join(results_path, 'primal_output_vector.csv')) primal_der_thermal_power_vector.to_csv(os.path.join(results_path, 'primal_der_thermal_power_vector.csv')) primal_source_thermal_power.to_csv(os.path.join(results_path, 'primal_source_thermal_power.csv')) primal_der_active_power_vector.to_csv(os.path.join(results_path, 'primal_der_active_power_vector.csv')) primal_der_reactive_power_vector.to_csv(os.path.join(results_path, 'primal_der_reactive_power_vector.csv')) primal_source_active_power.to_csv(os.path.join(results_path, 'primal_source_active_power.csv')) primal_source_reactive_power.to_csv(os.path.join(results_path, 'primal_source_reactive_power.csv')) primal_node_head_vector.to_csv(os.path.join(results_path, 'primal_node_head_vector.csv')) primal_branch_flow_vector.to_csv(os.path.join(results_path, 'primal_branch_flow_vector.csv')) primal_node_voltage_vector.to_csv(os.path.join(results_path, 'primal_node_voltage_vector.csv')) primal_branch_power_vector_1.to_csv(os.path.join(results_path, 'primal_branch_power_vector_1.csv')) primal_branch_power_vector_2.to_csv(os.path.join(results_path, 'primal_branch_power_vector_2.csv')) primal_node_head_vector_per_unit.to_csv(os.path.join(results_path, 'primal_node_head_vector_per_unit.csv')) primal_branch_flow_vector_per_unit.to_csv(os.path.join(results_path, 'primal_branch_flow_vector_per_unit.csv')) primal_node_voltage_vector_per_unit.to_csv(os.path.join(results_path, 'primal_node_voltage_vector_per_unit.csv')) primal_branch_power_vector_1_per_unit.to_csv(os.path.join(results_path, 'primal_branch_power_vector_1_per_unit.csv')) primal_branch_power_vector_2_per_unit.to_csv(os.path.join(results_path, 'primal_branch_power_vector_2_per_unit.csv')) # Obtain variable count / dimensions. primal_variable_count = ( sum(np.multiply(*primal_problem.state_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*primal_problem.control_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*primal_problem.output_vector[der_name].shape) for der_name in der_model_set.flexible_der_names) + np.multiply(*primal_problem.der_thermal_power_vector.shape) + np.multiply(*primal_problem.der_active_power_vector.shape) + np.multiply(*primal_problem.der_reactive_power_vector.shape) + np.multiply(*primal_problem.source_thermal_power.shape) + np.multiply(*primal_problem.source_active_power.shape) + np.multiply(*primal_problem.source_reactive_power.shape) ) print(f"primal_variable_count = {primal_variable_count}") # Print objective. primal_objective = pd.Series(primal_problem.objective.value, index=['primal_objective']) primal_objective.to_csv(os.path.join(results_path, 'primal_objective.csv')) print(f"primal_objective = {primal_objective.values}") # STEP 1.2: SOLVE DUAL PROBLEM. if run_dual or run_kkt: # Primal constraints are also needed for KKT problem. # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. dual_problem = fledge.utils.OptimizationProblem() # Define variables. # Flexible loads: State space equations. # - CVXPY only allows for 2-dimensional variables. Using dicts below to represent 3rd dimension. dual_problem.lambda_initial_state_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.lambda_state_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.lambda_output_equation = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.mu_output_minimum = dict.fromkeys(der_model_set.flexible_der_names) dual_problem.mu_output_maximum = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: dual_problem.lambda_initial_state_equation[der_name] = ( cp.Variable(( 1, len(der_model_set.flexible_der_models[der_name].states) )) ) dual_problem.lambda_state_equation[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps[:-1]), len(der_model_set.flexible_der_models[der_name].states) )) ) dual_problem.lambda_output_equation[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) )) ) dual_problem.mu_output_minimum[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) ), nonneg=True) ) dual_problem.mu_output_maximum[der_name] = ( cp.Variable(( len(der_model_set.flexible_der_models[der_name].timesteps), len(der_model_set.flexible_der_models[der_name].outputs) ), nonneg=True) ) # Flexible loads: Power equations. dual_problem.lambda_thermal_power_equation = ( cp.Variable((len(timesteps), len(thermal_grid_model.ders))) ) dual_problem.lambda_active_power_equation = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) dual_problem.lambda_reactive_power_equation = ( cp.Variable((len(timesteps), len(electric_grid_model.ders))) ) # Thermal grid. dual_problem.mu_node_head_minium = ( cp.Variable((len(timesteps), len(thermal_grid_model.nodes)), nonneg=True) ) dual_problem.mu_branch_flow_maximum = ( cp.Variable((len(timesteps), len(thermal_grid_model.branches)), nonneg=True) ) dual_problem.lambda_pump_power_equation = ( cp.Variable((len(timesteps), 1)) ) # Electric grid. dual_problem.mu_node_voltage_magnitude_minimum = ( cp.Variable((len(timesteps), len(electric_grid_model.nodes)), nonneg=True) ) dual_problem.mu_node_voltage_magnitude_maximum = ( cp.Variable((len(timesteps), len(electric_grid_model.nodes)), nonneg=True) ) dual_problem.mu_branch_power_magnitude_maximum_1 = ( cp.Variable((len(timesteps), len(electric_grid_model.branches)), nonneg=True) ) dual_problem.mu_branch_power_magnitude_maximum_2 = ( cp.Variable((len(timesteps), len(electric_grid_model.branches)), nonneg=True) ) dual_problem.lambda_loss_active_equation = cp.Variable((len(timesteps), 1)) dual_problem.lambda_loss_reactive_equation = cp.Variable((len(timesteps), 1)) # Define constraints. for der_model in der_model_set.flexible_der_models.values(): # Differential with respect to state vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_initial_state_equation[der_model.der_name] - ( dual_problem.lambda_state_equation[der_model.der_name][:1, :] @ der_model.state_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][:1, :] @ der_model.state_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_state_equation[der_model.der_name][0:-1, :] - ( dual_problem.lambda_state_equation[der_model.der_name][1:, :] @ der_model.state_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][1:-1, :] @ der_model.state_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_state_equation[der_model.der_name][-1:, :] - ( dual_problem.lambda_output_equation[der_model.der_name][-1:, :] @ der_model.state_output_matrix.values ) ) ) # Differential with respect to control vector. dual_problem.constraints.append( 0.0 == ( - ( dual_problem.lambda_state_equation[der_model.der_name] @ der_model.control_matrix.values ) - ( dual_problem.lambda_output_equation[der_model.der_name][:-1, :] @ der_model.control_output_matrix.values ) ) ) dual_problem.constraints.append( 0.0 == ( - ( dual_problem.lambda_output_equation[der_model.der_name][-1:, :] @ der_model.control_output_matrix.values ) ) ) # Differential with respect to output vector. der_index = int(fledge.utils.get_index(electric_grid_model.ders, der_name=der_model.der_name)) dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_output_equation[der_model.der_name] - dual_problem.mu_output_minimum[der_model.der_name] + dual_problem.mu_output_maximum[der_model.der_name] - ( dual_problem.lambda_thermal_power_equation[:, [der_index]] @ der_model.mapping_thermal_power_by_output.values ) - ( dual_problem.lambda_active_power_equation[:, [der_index]] @ der_model.mapping_active_power_by_output.values ) - ( dual_problem.lambda_reactive_power_equation[:, [der_index]] @ der_model.mapping_reactive_power_by_output.values ) ) ) # Differential with respect to thermal power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_thermal_power_equation - ( dual_problem.mu_node_head_minium @ linear_thermal_grid_model.sensitivity_node_head_by_der_power ) + ( dual_problem.mu_branch_flow_maximum @ linear_thermal_grid_model.sensitivity_branch_flow_by_der_power ) - ( dual_problem.lambda_pump_power_equation @ ( thermal_grid_model.cooling_plant_efficiency ** -1 * np.ones(linear_thermal_grid_model.sensitivity_pump_power_by_der_power.shape) + linear_thermal_grid_model.sensitivity_pump_power_by_der_power ) ) ) ) # Differential with respect to active power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_active_power_equation - ( dual_problem.mu_node_voltage_magnitude_minimum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active ) + ( dual_problem.mu_node_voltage_magnitude_maximum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active ) + ( dual_problem.mu_branch_power_magnitude_maximum_1 @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active ) + ( dual_problem.mu_branch_power_magnitude_maximum_2 @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active ) - ( dual_problem.lambda_loss_active_equation @ ( np.ones(linear_electric_grid_model.sensitivity_loss_active_by_der_power_active.shape) + linear_electric_grid_model.sensitivity_loss_active_by_der_power_active ) ) - ( dual_problem.lambda_loss_reactive_equation @ linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active ) ) ) # Differential with respect to reactive power vector. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_reactive_power_equation - ( dual_problem.mu_node_voltage_magnitude_minimum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive ) + ( dual_problem.mu_node_voltage_magnitude_maximum @ linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive ) + ( dual_problem.mu_branch_power_magnitude_maximum_1 @ linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive ) + ( dual_problem.mu_branch_power_magnitude_maximum_2 @ linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive ) - ( dual_problem.lambda_loss_active_equation @ linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive ) - ( dual_problem.lambda_loss_reactive_equation @ ( np.ones(linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive.shape) + linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive ) ) ) ) # Differential with respect to thermal source power. dual_problem.constraints.append( 0.0 == ( np.transpose([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) + dual_problem.lambda_pump_power_equation ) ) # Differential with respect to active source power. dual_problem.constraints.append( 0.0 == ( np.transpose([price_data.price_timeseries.loc[:, ('active_power', 'source', 'source')].values]) + dual_problem.lambda_loss_active_equation ) ) # Differential with respect to active source power. dual_problem.constraints.append( 0.0 == ( dual_problem.lambda_loss_reactive_equation ) ) if run_dual: # Define objective. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_initial_state_equation[der_model.der_name], np.array([der_model.state_vector_initial.values]) )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_state_equation[der_model.der_name], cp.transpose( der_model.disturbance_matrix.values @ np.transpose(der_model.disturbance_timeseries.values[:-1, :]) ) )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.lambda_output_equation[der_model.der_name], cp.transpose( der_model.disturbance_output_matrix.values @ np.transpose(der_model.disturbance_timeseries.values) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_output_minimum[der_model.der_name], der_model.output_minimum_timeseries.values )) ) dual_problem.objective += ( -1.0 * cp.sum(cp.multiply( dual_problem.mu_output_maximum[der_model.der_name], der_model.output_maximum_timeseries.replace(np.inf, 1e3).values )) ) # Thermal grid. dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_head_minium, ( np.array([node_head_vector_minimum]) # - node_head_vector_reference # + ( # linear_thermal_grid_model.sensitivity_node_head_by_der_power # @ der_thermal_power_vector_reference # ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_flow_maximum, ( # - branch_flow_vector_reference # + ( # linear_thermal_grid_model.sensitivity_branch_flow_by_der_power # @ der_thermal_power_vector_reference # ) - 1.0 * np.array([branch_flow_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_pump_power_equation, ( 0.0 # - pump_power_reference # + ( # linear_thermal_grid_model.sensitivity_pump_power_by_der_power # @ der_thermal_power_vector_reference # ) ) )) ) # Electric grid. dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_voltage_magnitude_minimum, ( np.array([node_voltage_magnitude_vector_minimum]) - np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) + np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_node_voltage_magnitude_maximum, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector)]) - np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([node_voltage_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_power_magnitude_maximum_1, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1)]) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([branch_power_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.mu_branch_power_magnitude_maximum_2, ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2)]) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) - np.array([branch_power_magnitude_vector_maximum]) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_loss_active_equation, ( -1.0 * np.array([np.real(linear_electric_grid_model.power_flow_solution.loss)]) + np.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_loss_active_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) dual_problem.objective += ( cp.sum(cp.multiply( dual_problem.lambda_loss_reactive_equation, ( -1.0 * np.array([np.imag(linear_electric_grid_model.power_flow_solution.loss)]) + np.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_active @ np.transpose([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) + np.transpose( linear_electric_grid_model.sensitivity_loss_reactive_by_der_power_reactive @ np.transpose([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector)]) ) ) )) ) # Invert sign of objective for maximisation. dual_problem.objective *= -1.0 # Solve problem. fledge.utils.log_time('dual solution') dual_problem.solve() fledge.utils.log_time('dual solution') # Obtain results. # Flexible loads. dual_lambda_initial_state_equation = pd.DataFrame(0.0, index=der_model_set.timesteps[:1], columns=der_model_set.states) dual_lambda_state_equation = pd.DataFrame(0.0, index=der_model_set.timesteps[:-1], columns=der_model_set.states) dual_lambda_output_equation = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) dual_mu_output_minimum = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) dual_mu_output_maximum = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs) for der_name in der_model_set.flexible_der_names: dual_lambda_initial_state_equation.loc[:, (der_name, slice(None))] = ( dual_problem.lambda_initial_state_equation[der_name].value ) dual_lambda_state_equation.loc[:, (der_name, slice(None))] = ( dual_problem.lambda_state_equation[der_name].value ) dual_lambda_output_equation.loc[:, (der_name, slice(None))] = ( dual_problem.lambda_output_equation[der_name].value ) dual_mu_output_minimum.loc[:, (der_name, slice(None))] = ( dual_problem.mu_output_minimum[der_name].value ) dual_mu_output_maximum.loc[:, (der_name, slice(None))] = ( dual_problem.mu_output_maximum[der_name].value ) # Flexible loads: Power equations. dual_lambda_thermal_power_equation = ( pd.DataFrame( dual_problem.lambda_thermal_power_equation.value, index=timesteps, columns=thermal_grid_model.ders ) ) dual_lambda_active_power_equation = ( pd.DataFrame( dual_problem.lambda_active_power_equation.value, index=timesteps, columns=electric_grid_model.ders ) ) dual_lambda_reactive_power_equation = ( pd.DataFrame( dual_problem.lambda_reactive_power_equation.value, index=timesteps, columns=electric_grid_model.ders ) ) # Thermal grid. dual_mu_node_head_minium = ( pd.DataFrame( dual_problem.mu_node_head_minium.value, index=timesteps, columns=thermal_grid_model.nodes ) ) dual_mu_branch_flow_maximum = ( pd.DataFrame( dual_problem.mu_branch_flow_maximum.value, index=timesteps, columns=thermal_grid_model.branches ) ) dual_lambda_pump_power_equation = ( pd.DataFrame( dual_problem.lambda_pump_power_equation.value, index=timesteps, columns=['total'] ) ) # Electric grid. dual_mu_node_voltage_magnitude_minimum = ( pd.DataFrame( dual_problem.mu_node_voltage_magnitude_minimum.value, index=timesteps, columns=electric_grid_model.nodes ) ) dual_mu_node_voltage_magnitude_maximum = ( pd.DataFrame( dual_problem.mu_node_voltage_magnitude_maximum.value, index=timesteps, columns=electric_grid_model.nodes ) ) dual_mu_branch_power_magnitude_maximum_1 = ( pd.DataFrame( dual_problem.mu_branch_power_magnitude_maximum_1.value, index=timesteps, columns=electric_grid_model.branches ) ) dual_mu_branch_power_magnitude_maximum_2 = ( pd.DataFrame( dual_problem.mu_branch_power_magnitude_maximum_2.value, index=timesteps, columns=electric_grid_model.branches ) ) dual_lambda_loss_active_equation = ( pd.DataFrame( dual_problem.lambda_loss_active_equation.value, index=timesteps, columns=['total'] ) ) dual_lambda_loss_reactive_equation = ( pd.DataFrame( dual_problem.lambda_loss_reactive_equation.value, index=timesteps, columns=['total'] ) ) # Store results. dual_lambda_initial_state_equation.to_csv(os.path.join(results_path, 'dual_lambda_initial_state_equation.csv')) dual_lambda_state_equation.to_csv(os.path.join(results_path, 'dual_lambda_state_equation.csv')) dual_lambda_output_equation.to_csv(os.path.join(results_path, 'dual_lambda_output_equation.csv')) dual_mu_output_minimum.to_csv(os.path.join(results_path, 'dual_mu_output_minimum.csv')) dual_mu_output_maximum.to_csv(os.path.join(results_path, 'dual_mu_output_maximum.csv')) dual_lambda_thermal_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_thermal_power_equation.csv')) dual_lambda_active_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_active_power_equation.csv')) dual_lambda_reactive_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_reactive_power_equation.csv')) dual_mu_node_head_minium.to_csv(os.path.join(results_path, 'dual_mu_node_head_minium.csv')) dual_mu_branch_flow_maximum.to_csv(os.path.join(results_path, 'dual_mu_branch_flow_maximum.csv')) dual_lambda_pump_power_equation.to_csv(os.path.join(results_path, 'dual_lambda_pump_power_equation.csv')) dual_mu_node_voltage_magnitude_minimum.to_csv(os.path.join(results_path, 'dual_mu_node_voltage_magnitude_minimum.csv')) dual_mu_node_voltage_magnitude_maximum.to_csv(os.path.join(results_path, 'dual_mu_node_voltage_magnitude_maximum.csv')) dual_mu_branch_power_magnitude_maximum_1.to_csv(os.path.join(results_path, 'dual_mu_branch_power_magnitude_maximum_1.csv')) dual_mu_branch_power_magnitude_maximum_2.to_csv(os.path.join(results_path, 'dual_mu_branch_power_magnitude_maximum_2.csv')) dual_lambda_loss_active_equation.to_csv(os.path.join(results_path, 'dual_lambda_loss_active_equation.csv')) dual_lambda_loss_reactive_equation.to_csv(os.path.join(results_path, 'dual_lambda_loss_reactive_equation.csv')) # Obtain variable count / dimensions. dual_variable_count = ( sum(np.multiply(*dual_problem.lambda_initial_state_equation[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.lambda_state_equation[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.lambda_output_equation[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.mu_output_minimum[der_name].shape) for der_name in der_model_set.flexible_der_names) + sum(np.multiply(*dual_problem.mu_output_maximum[der_name].shape) for der_name in der_model_set.flexible_der_names) + np.multiply(*dual_problem.lambda_thermal_power_equation.shape) + np.multiply(*dual_problem.lambda_active_power_equation.shape) + np.multiply(*dual_problem.lambda_reactive_power_equation.shape) + np.multiply(*dual_problem.mu_node_head_minium.shape) + np.multiply(*dual_problem.mu_branch_flow_maximum.shape) + np.multiply(*dual_problem.lambda_pump_power_equation.shape) + np.multiply(*dual_problem.mu_node_voltage_magnitude_minimum.shape) + np.multiply(*dual_problem.mu_node_voltage_magnitude_maximum.shape) + np.multiply(*dual_problem.mu_branch_power_magnitude_maximum_1.shape) + np.multiply(*dual_problem.mu_branch_power_magnitude_maximum_2.shape) + np.multiply(*dual_problem.lambda_loss_active_equation.shape) + np.multiply(*dual_problem.lambda_loss_reactive_equation.shape) ) print(f"dual_variable_count = {dual_variable_count}") # Print objective. dual_objective = pd.Series(-1.0 * dual_problem.objective.value, index=['dual_objective']) dual_objective.to_csv(os.path.join(results_path, 'dual_objective.csv')) print(f"dual_objective = {dual_objective.values}") # STEP 1.3: SOLVE KKT CONDITIONS. if run_kkt: # Instantiate problem. # - Utility object for optimization problem definition with CVXPY. kkt_problem = fledge.utils.OptimizationProblem() # Obtain primal and dual variables. # - Since primal and dual variables are part of the KKT conditions, the previous definitions are recycled. kkt_problem.state_vector = primal_problem.state_vector kkt_problem.control_vector = primal_problem.control_vector kkt_problem.output_vector = primal_problem.output_vector kkt_problem.der_thermal_power_vector = primal_problem.der_thermal_power_vector kkt_problem.der_active_power_vector = primal_problem.der_active_power_vector kkt_problem.der_reactive_power_vector = primal_problem.der_reactive_power_vector kkt_problem.source_thermal_power = primal_problem.source_thermal_power kkt_problem.source_active_power = primal_problem.source_active_power kkt_problem.source_reactive_power = primal_problem.source_reactive_power kkt_problem.lambda_initial_state_equation = dual_problem.lambda_initial_state_equation kkt_problem.lambda_state_equation = dual_problem.lambda_state_equation kkt_problem.lambda_output_equation = dual_problem.lambda_output_equation kkt_problem.mu_output_minimum = dual_problem.mu_output_minimum kkt_problem.mu_output_maximum = dual_problem.mu_output_maximum kkt_problem.lambda_thermal_power_equation = dual_problem.lambda_thermal_power_equation kkt_problem.lambda_active_power_equation = dual_problem.lambda_active_power_equation kkt_problem.lambda_reactive_power_equation = dual_problem.lambda_reactive_power_equation kkt_problem.mu_node_head_minium = dual_problem.mu_node_head_minium kkt_problem.mu_branch_flow_maximum = dual_problem.mu_branch_flow_maximum kkt_problem.lambda_pump_power_equation = dual_problem.lambda_pump_power_equation kkt_problem.mu_node_voltage_magnitude_minimum = dual_problem.mu_node_voltage_magnitude_minimum kkt_problem.mu_node_voltage_magnitude_maximum = dual_problem.mu_node_voltage_magnitude_maximum kkt_problem.mu_branch_power_magnitude_maximum_1 = dual_problem.mu_branch_power_magnitude_maximum_1 kkt_problem.mu_branch_power_magnitude_maximum_2 = dual_problem.mu_branch_power_magnitude_maximum_2 kkt_problem.lambda_loss_active_equation = dual_problem.lambda_loss_active_equation kkt_problem.lambda_loss_reactive_equation = dual_problem.lambda_loss_reactive_equation # Obtain primal and dual constraints. # - Since primal and dual constraints are part of the KKT conditions, the previous definitions are recycled. kkt_problem.constraints.extend(primal_problem.constraints) kkt_problem.constraints.extend(dual_problem.constraints) # Obtain primal and dual problem objective. # - For testing / debugging only, since the KKT problem does not technically have any objective. # kkt_problem.objective = primal_problem.objective # kkt_problem.objective = dual_problem.objective # Define complementarity binary variables. kkt_problem.psi_output_minimum = dict.fromkeys(der_model_set.flexible_der_names) kkt_problem.psi_output_maximum = dict.fromkeys(der_model_set.flexible_der_names) for der_name in der_model_set.flexible_der_names: kkt_problem.psi_output_minimum[der_name] = ( cp.Variable(kkt_problem.mu_output_minimum[der_name].shape, boolean=True) ) kkt_problem.psi_output_maximum[der_name] = ( cp.Variable(kkt_problem.mu_output_maximum[der_name].shape, boolean=True) ) kkt_problem.psi_node_head_minium = cp.Variable(kkt_problem.mu_node_head_minium.shape, boolean=True) kkt_problem.psi_branch_flow_maximum = cp.Variable(kkt_problem.mu_branch_flow_maximum.shape, boolean=True) kkt_problem.psi_node_voltage_magnitude_minimum = cp.Variable(kkt_problem.mu_node_voltage_magnitude_minimum.shape, boolean=True) kkt_problem.psi_node_voltage_magnitude_maximum = cp.Variable(kkt_problem.mu_node_voltage_magnitude_maximum.shape, boolean=True) kkt_problem.psi_branch_power_magnitude_maximum_1 = cp.Variable(kkt_problem.mu_branch_power_magnitude_maximum_1.shape, boolean=True) kkt_problem.psi_branch_power_magnitude_maximum_2 = cp.Variable(kkt_problem.mu_branch_power_magnitude_maximum_2.shape, boolean=True) # Define complementarity big M parameters. # - Big M values are chosen based on expected order of magnitude of constraints from primal / dual solution. kkt_problem.big_m_output_minimum = cp.Parameter(value=2e4) kkt_problem.big_m_output_maximum = cp.Parameter(value=2e4) kkt_problem.big_m_node_head_minium = cp.Parameter(value=1e2) kkt_problem.big_m_branch_flow_maximum = cp.Parameter(value=1e3) kkt_problem.big_m_node_voltage_magnitude_minimum = cp.Parameter(value=1e2) kkt_problem.big_m_node_voltage_magnitude_maximum = cp.Parameter(value=1e2) kkt_problem.big_m_branch_power_magnitude_maximum_1 = cp.Parameter(value=1e3) kkt_problem.big_m_branch_power_magnitude_maximum_2 = cp.Parameter(value=1e3) # Define complementarity constraints. # Flexible loads. for der_model in der_model_set.flexible_der_models.values(): # Output limits. kkt_problem.constraints.append( -1.0 * ( der_model.output_minimum_timeseries.values - kkt_problem.output_vector[der_model.der_name] ) <= kkt_problem.psi_output_minimum[der_model.der_name] * kkt_problem.big_m_output_minimum ) kkt_problem.constraints.append( kkt_problem.mu_output_minimum[der_model.der_name] <= (1 - kkt_problem.psi_output_minimum[der_model.der_name]) * kkt_problem.big_m_output_minimum ) kkt_problem.constraints.append( -1.0 * ( kkt_problem.output_vector[der_model.der_name] - der_model.output_maximum_timeseries.replace(np.inf, 1e4).values ) <= kkt_problem.psi_output_maximum[der_model.der_name] * kkt_problem.big_m_output_maximum ) kkt_problem.constraints.append( kkt_problem.mu_output_maximum[der_model.der_name] <= (1 - kkt_problem.psi_output_maximum[der_model.der_name]) * kkt_problem.big_m_output_maximum ) # Thermal grid. # Node head limit. kkt_problem.constraints.append( -1.0 * ( np.array([node_head_vector_minimum.ravel()]) - cp.transpose( linear_thermal_grid_model.sensitivity_node_head_by_der_power @ cp.transpose(kkt_problem.der_thermal_power_vector) ) ) <= kkt_problem.psi_node_head_minium * kkt_problem.big_m_node_head_minium ) kkt_problem.constraints.append( kkt_problem.mu_node_head_minium <= (1 - kkt_problem.psi_node_head_minium) * kkt_problem.big_m_node_head_minium ) # Branch flow limit. kkt_problem.constraints.append( -1.0 * ( cp.transpose( linear_thermal_grid_model.sensitivity_branch_flow_by_der_power @ cp.transpose(kkt_problem.der_thermal_power_vector) ) - np.array([branch_flow_vector_maximum.ravel()]) ) <= kkt_problem.psi_branch_flow_maximum * kkt_problem.big_m_branch_flow_maximum ) kkt_problem.constraints.append( kkt_problem.mu_branch_flow_maximum <= (1 - kkt_problem.psi_branch_flow_maximum) * kkt_problem.big_m_branch_flow_maximum ) # Voltage limits. kkt_problem.constraints.append( -1.0 * ( np.array([node_voltage_magnitude_vector_minimum.ravel()]) - np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) - cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) ) <= kkt_problem.psi_node_voltage_magnitude_minimum * kkt_problem.big_m_node_voltage_magnitude_minimum ) kkt_problem.constraints.append( kkt_problem.mu_node_voltage_magnitude_minimum <= (1 - kkt_problem.psi_node_voltage_magnitude_minimum) * kkt_problem.big_m_node_voltage_magnitude_minimum ) kkt_problem.constraints.append( -1.0 * ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.node_voltage_vector.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_voltage_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) - np.array([node_voltage_magnitude_vector_maximum.ravel()]) ) <= kkt_problem.psi_node_voltage_magnitude_maximum * kkt_problem.big_m_node_voltage_magnitude_maximum ) kkt_problem.constraints.append( kkt_problem.mu_node_voltage_magnitude_maximum <= (1 - kkt_problem.psi_node_voltage_magnitude_maximum) * kkt_problem.big_m_node_voltage_magnitude_maximum ) # Branch flow limits. kkt_problem.constraints.append( -1.0 * ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_1.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_1_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) - np.array([branch_power_magnitude_vector_maximum.ravel()]) ) <= kkt_problem.psi_branch_power_magnitude_maximum_1 * kkt_problem.big_m_branch_power_magnitude_maximum_1 ) kkt_problem.constraints.append( kkt_problem.mu_branch_power_magnitude_maximum_1 <= (1 - kkt_problem.psi_branch_power_magnitude_maximum_1) * kkt_problem.big_m_branch_power_magnitude_maximum_1 ) kkt_problem.constraints.append( -1.0 * ( np.array([np.abs(linear_electric_grid_model.power_flow_solution.branch_power_vector_2.ravel())]) + cp.transpose( linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_active @ cp.transpose( kkt_problem.der_active_power_vector - np.array([np.real(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) + linear_electric_grid_model.sensitivity_branch_power_2_magnitude_by_der_power_reactive @ cp.transpose( kkt_problem.der_reactive_power_vector - np.array([np.imag(linear_electric_grid_model.power_flow_solution.der_power_vector.ravel())]) ) ) - np.array([branch_power_magnitude_vector_maximum.ravel()]) ) <= kkt_problem.psi_branch_power_magnitude_maximum_2 * kkt_problem.big_m_branch_power_magnitude_maximum_2 ) kkt_problem.constraints.append( kkt_problem.mu_branch_power_magnitude_maximum_2 <= (1 - kkt_problem.psi_branch_power_magnitude_maximum_2) * kkt_problem.big_m_branch_power_magnitude_maximum_2 ) # Solve problem. fledge.utils.log_time('KKT solution') kkt_problem.solve() fledge.utils.log_time('KKT solution') # Obtain results. # Flexible loads. kkt_state_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.states) kkt_control_vector = pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.controls) kkt_output_vector =
pd.DataFrame(0.0, index=der_model_set.timesteps, columns=der_model_set.outputs)
pandas.DataFrame
import logging import pandas as pd import dataiku from dataiku.runnables import ResultTable import datetime import adal import requests import re logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO, format='jira plugin %(levelname)s - %(message)s') class AzureClient(object): MANDATORY_COLUMNS = ["dss_group_name", "aad_group_name", "dss_profile"] V103_REMAPPING_PRESETS = [{'from': '@', 'to': '_'}, {'from': '#', 'to': '_'}] # Relevant URLs authority_url = "https://login.microsoftonline.com/" graph_url = "https://graph.microsoft.com/" graph_group_url = "https://graph.microsoft.com/v1.0/groups?$filter=displayName eq '{}'&$select=id" graph_members_url = "https://graph.microsoft.com/v1.0/groups/{}/members?$select=displayName,userPrincipalName" # Define a translation dict that specifies how each credential should # be named in the user's secrets credentials_labels = { "graph_tenant_id": "Tenant ID", "graph_app_id": "Application ID", "graph_app_secret": "App secret", "graph_app_cert": "App certificate", "graph_app_cert_thumb": "App certificate thumbprint", "graph_user": "User principal", "graph_user_pwd": "<PASSWORD>", } def __init__(self, project_key, config): self.project_key = project_key self.login_remapping = config.get("login_remapping", self.V103_REMAPPING_PRESETS) self.assert_valid_login_remapping() self.azure_ad_connection = config.get("azure_ad_connection", {}) self.flag_simulate = config.get("flag_simulate") self.auth_method = self.azure_ad_connection.get("auth_method") # Read the group configuration data from DSS self.groups_dataset = config.get("groups_dataset", None) if not self.groups_dataset: raise Exception("No groups dataset has been selected.") groups_dataset_handle = dataiku.Dataset(self.groups_dataset, self.project_key) self.groups_df = groups_dataset_handle.get_dataframe() self.client = dataiku.api_client() self.run_user = self.client.get_auth_info()["authIdentifier"] self.possible_dss_profiles = self.get_possible_dss_profiles() self.session = requests.Session() # Initialize a dataframe that will contain log data self.log_df = pd.DataFrame(columns=["date", "user", "type", "message"]) # Configure auth method self.required_credentials = self.get_required_credentials( self.azure_ad_connection.get("auth_method") ) # Read credentials if self.azure_ad_connection.get("flag_user_credentials"): self.credentials = self.get_credentials("user") else: self.credentials = self.get_credentials("parameters") # Connect to Graph API self.set_session_headers() def assert_valid_login_remapping(self): for login_remapping in self.login_remapping: to_value = login_remapping.get("to") if to_value and not self.is_valid_login(to_value): raise Exception("'{}' in the login remapping is not a valid character for a DSS user login. Valid characters must match the regex pattern [a-zA-Z0-9@.+_-]".format(to_value)) @staticmethod def is_valid_login(strg, search=re.compile(r'[^a-zA-Z0-9@.+_-]').search): return not bool(search(strg)) def get_possible_dss_profiles(self): self.available_dss_profiles = self.get_available_dss_profiles() ordered_dss_profiles = self.groups_df["dss_profile"].tolist() self.ranked_dss_profiles = [] for profile in ordered_dss_profiles: if profile in self.available_dss_profiles and profile not in self.ranked_dss_profiles: self.ranked_dss_profiles.append(profile) return self.ranked_dss_profiles def get_user_id(self, email): """ Creates a user ID based on an email address. :param email: the email address """ for login_remapping in self.login_remapping: from_char = login_remapping.get("from") if from_char: email = email.replace(from_char, login_remapping.get("to", "")) return email @staticmethod def list_diff(list1, list2): """Return elements of list1 that are not present in list2.""" return list(set(list1) - set(list2)) def get_dss_profile(self, dss_profile_list): """ Given an list of dss_profile types, return the most potent dss_profile. :param dss_profile_list: a list with dss_profiles """ # For each dss_profile type, going from most to least potent, see if it is present in the list. # If so, return it as the assigned dss_profile type. for dss_profile_type in self.possible_dss_profiles: if dss_profile_type in dss_profile_list: return dss_profile_type # If no match was found above, default to no dss_profile return "NONE" def get_available_dss_profiles(self): licensing = self.client.get_licensing_status() user_profiles = licensing.get('base', []).get('userProfiles', []) user_profiles.append("NONE") return user_profiles @staticmethod def get_required_credentials(auth_method): """Determine which credentials are required, based on the authentication method. :param auth_method: the selected authentication method """ required_credentials = ["graph_tenant_id", "graph_app_id"] if auth_method == "auth_app_token": required_credentials.extend(["graph_app_secret"]) elif auth_method == "auth_app_cert": required_credentials.extend(["graph_app_cert", "graph_app_cert_thumb"]) elif auth_method == "auth_user_pwd": required_credentials.extend(["graph_user", "graph_user_pwd"]) return required_credentials def validate_groups_df(self): """Verifies that the groups data contains the correct columns and dss_profile types.""" # Validate existence of correct columns column_names = list(self.groups_df.columns) self.assert_mandatory_columns(column_names) # Validate content of dss_profile column dss_profile_values = list(self.groups_df["dss_profile"].unique()) impossible_dss_profiles = self.list_diff(dss_profile_values, self.possible_dss_profiles) if impossible_dss_profiles: raise Exception("Invalid dss_profile types were found in the groups configuration: {}. Valid dss_profile values are: {}".format( impossible_dss_profiles, self.possible_dss_profiles ) ) def assert_mandatory_columns(self, column_names): for mandatory_column in self.MANDATORY_COLUMNS: if mandatory_column not in column_names: raise Exception("The groups dataset is not correctly configured. {} is missing".format(mandatory_column)) def get_credentials(self, source): """ Returns a dictionary containing credentials for ADAL call to MS Graph. :param source: where the credentials are taken from, either 'user' or 'parameters' """ # Empty list for missing credentials missing_credentials = [] # Dictionary for present credentials credentials = {} if source == "user": # Load secrets from user profile [{key: value} ...] user_secrets = self.client.get_auth_info(with_secrets=True)["secrets"] secrets_dict = {secret["key"]: secret["value"] for secret in user_secrets} else: secrets_dict = self.azure_ad_connection # get token = secrets_dict.get("azure_ad_credentials") # For each required credential, check whether it is present for key in self.required_credentials: label = self.credentials_labels[key] try: if source == "user": credentials[key] = secrets_dict[label] else: # source == "parameters": credentials[key] = secrets_dict[key] if not credentials[key]: raise KeyError except (KeyError, IndexError): missing_credentials.append(label) if missing_credentials: raise KeyError("Please specify these credentials: {}".format(missing_credentials)) return credentials def add_log(self, message, log_type="INFO"): """ Add a record to the logging dataframe. :param message: The text to be logged :param log_type: The message type, 'INFO' by default. """ new_log = { "date": str(datetime.datetime.now()), "user": self.run_user, "type": log_type, "message": message, } self.log_df = self.log_df.append(new_log, ignore_index=True) def clear_log(self): """ Empties the log. Useful for testing. """ self.log_df =
pd.DataFrame(columns=["date", "user", "type", "message"])
pandas.DataFrame
import pandas import glob import urllib.request url = 'http://example.com/' open_data_ms = pandas.read_csv(urllib.request.urlopen("https://raw.githubusercontent.com/od-ms/resources/master/coronavirus-fallzahlen-regierungsbezirk-muenster.csv")) open_data_ms['Datum'] = pandas.to_datetime(open_data_ms['Datum'], format='%d.%m.%Y') open_data_ms = open_data_ms.sort_values(by='Datum') confirmed_df = pandas.DataFrame({'Kommune': open_data_ms['Gebiet'].unique()}) recovered_df = pandas.DataFrame({'Kommune': open_data_ms['Gebiet'].unique()}) deaths_df = pandas.DataFrame({'Kommune': open_data_ms['Gebiet'].unique()}) confirmed_df = confirmed_df.set_index(['Kommune'], drop=True) recovered_df = recovered_df.set_index(['Kommune'], drop=True) deaths_df = deaths_df.set_index(['Kommune'], drop=True) for day in open_data_ms['Datum'].dt.date.unique(): for kommune in open_data_ms['Gebiet'].unique(): all_data_kommune = open_data_ms[open_data_ms['Gebiet'] == kommune] c = all_data_kommune[all_data_kommune['Datum'] == pandas.Timestamp(day)]['Bestätigte Faelle'].values r = all_data_kommune[all_data_kommune['Datum'] ==
pandas.Timestamp(day)
pandas.Timestamp
import os import pickle import sys from pathlib import Path from typing import Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from Bio import pairwise2 from scipy import interp from scipy.stats import linregress from sklearn.metrics import roc_curve, auc, precision_recall_curve import thoipapy import thoipapy.validation.bocurve from thoipapy.utils import make_sure_path_exists def collect_indiv_validation_data(s, df_set, logging, namedict, predictors, THOIPA_predictor_name, subsets): """ Parameters ---------- s df_set logging namedict predictors THOIPA_predictor_name Returns ------- """ logging.info("start collect_indiv_validation_data THOIPA_PREDDIMER_TMDOCK") ROC_AUC_df = pd.DataFrame() PR_AUC_df = pd.DataFrame() mean_o_minus_r_by_sample_df = pd.DataFrame() AUBOC_from_complete_data_ser = pd.Series() AUC_AUBOC_name_list = [] linechar_name_list = [] AUBOC_list = [] df_o_minus_r_mean_df = pd.DataFrame() roc_auc_mean_list = [] roc_auc_std_list = [] # indiv_validation_dir: Path = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation" indiv_validation_data_xlsx = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/indiv_validation_data.xlsx" thoipapy.utils.make_sure_path_exists(indiv_validation_data_xlsx, isfile=True) # if not os.path.isdir(os.path.dirname(BOAUC10_barchart_pdf)): # os.makedirs(os.path.dirname(BOAUC10_barchart_pdf)) for predictor in predictors: BO_data_df = pd.DataFrame() xv_dict = {} ROC_AUC_dict = {} PR_AUC_dict = {} mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) auc_pkl = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/roc_auc/{predictor}/ROC_AUC_data.pkl" BO_curve_data_csv = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/data/{predictor}/BO_Curve_data.csv" bocurve_data_xlsx = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/data/{predictor}/bocurve_data.xlsx" BO_linechart_png = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/data/{predictor}/BO_linechart.png" BO_barchart_png = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/data/{predictor}/AUBOC_barchart.png" df_o_minus_r_mean_csv = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/data/{predictor}/df_o_minus_r_mean.csv" thoipapy.utils.make_sure_path_exists(auc_pkl, isfile=True) thoipapy.utils.make_sure_path_exists(BO_curve_data_csv, isfile=True) for i in df_set.index: sys.stdout.write(".") sys.stdout.flush() acc = df_set.loc[i, "acc"] database = df_set.loc[i, "database"] acc_db = acc + "-" + database merged_data_csv_path: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/predictions/merged/{database}.{acc}.merged.csv" merged_data_df = pd.read_csv(merged_data_csv_path, engine="python") # invert some predictors so that a high number always indicates a predicted interface residue merged_data_df["LIPS_L*E"] = -1 * merged_data_df["LIPS_L*E"] merged_data_df["PREDDIMER"] = -1 * merged_data_df["PREDDIMER"] merged_data_df["TMDOCK"] = -1 * merged_data_df["TMDOCK"] if database == "crystal" or database == "NMR": # invert the interface score of structural data so that a high number indicates an interface residue merged_data_df["interface_score"] = -1 * merged_data_df["interface_score"] # toggle whether to use boolean (interface) or continuous data (interface_score). Here we want continuous data experiment_col = "interface_score" BO_single_prot_df = thoipapy.validation.bocurve.calc_best_overlap_from_selected_column_in_df(acc_db, merged_data_df, experiment_col, predictor) if BO_data_df.empty: BO_data_df = BO_single_prot_df else: BO_data_df = pd.concat([BO_data_df, BO_single_prot_df], axis=1, join="outer") df_for_roc = merged_data_df.dropna(subset=[experiment_col, predictor]) fpr, tpr, thresholds = roc_curve(df_for_roc.interface, df_for_roc[predictor], drop_intermediate=False) precision, recall, thresholds_PRC = precision_recall_curve(df_for_roc.interface, df_for_roc[predictor]) pr_auc = auc(recall, precision) PR_AUC_dict[acc_db] = pr_auc roc_auc = auc(fpr, tpr) ROC_AUC_dict[acc_db] = roc_auc mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 xv_dict[acc_db] = {"fpr": fpr, "tpr": tpr, "roc_auc": roc_auc, "precision": precision, "recall": recall, "pr_auc": pr_auc} # save dict as pickle with open(auc_pkl, "wb") as f: pickle.dump(xv_dict, f, protocol=pickle.HIGHEST_PROTOCOL) BO_data_df.to_csv(BO_curve_data_csv) # parse BO data csv # print out mean values thoipapy.validation.bocurve.parse_BO_data_csv_to_excel(BO_curve_data_csv, bocurve_data_xlsx, s["n_residues_AUBOC_validation"], logging, predictor) # ROC AUC validation ROC_AUC_ser = pd.Series(ROC_AUC_dict) ROC_AUC_ser.sort_values(inplace=True, ascending=False) roc_auc_mean_list.append(ROC_AUC_ser.mean()) roc_auc_std_list.append(ROC_AUC_ser.std()) # precision-recall AUC validation PR_AUC_ser = pd.Series(PR_AUC_dict) PR_AUC_ser.sort_values(inplace=True, ascending=False) # BO curve AUBOC validation mean_o_minus_r_by_sample_ser = pd.read_excel(bocurve_data_xlsx, sheet_name="mean_o_minus_r_by_sample", index_col=0)["mean_o_minus_r_by_sample"].copy() df_o_minus_r = pd.read_excel(bocurve_data_xlsx, sheet_name="df_o_minus_r", index_col=0) df_o_minus_r.columns = pd.Series(df_o_minus_r.columns).replace(namedict) df_o_minus_r_mean = df_o_minus_r.T.mean() # df_o_minus_r_mean_df= pd.concat([df_o_minus_r_mean_df,df_o_minus_r_mean],axis=1, join="outer") df_o_minus_r_mean_df[predictor] = df_o_minus_r_mean # apply cutoff (e.g. 5 residues for AUBOC5) auboc_ser = df_o_minus_r_mean.iloc[:s["n_residues_AUBOC_validation"]] AUBOC = np.trapz(y=auboc_ser, x=auboc_ser.index) AUBOC_list.append(AUBOC) AUBOC_from_complete_data_ser[predictor] = AUBOC linechar_name_list.append(predictor) AUC_AUBOC_name_list.append("{}-AUC".format(predictor)) AUC_AUBOC_name_list.append("{}-AUBOC".format(predictor)) thoipapy.figs.create_BOcurve_files.save_BO_linegraph_and_barchart(s, bocurve_data_xlsx, BO_linechart_png, BO_barchart_png, namedict, logging, ROC_AUC_ser) ROC_AUC_df[predictor] = ROC_AUC_ser PR_AUC_df[predictor] = PR_AUC_ser mean_o_minus_r_by_sample_df[predictor] = mean_o_minus_r_by_sample_ser means_df = pd.DataFrame() means_df["ROC_AUC"] = ROC_AUC_df.mean() means_df["PR_AUC"] = PR_AUC_df.mean() means_df["mean_o_minus_r_by_sample"] = mean_o_minus_r_by_sample_df.mean() means_df["AUBOC_from_complete_data"] = AUBOC_from_complete_data_ser """ means_df looks like this: ROC_AUC PR_AUC AUBOC THOIPA_5_LOO 0.629557 0.505823 1.202355 PREDDIMER 0.566582 0.416761 0.515193 TMDOCK 0.598387 0.421462 0.666720 """ std_df = pd.DataFrame() std_df["ROC_AUC"] = ROC_AUC_df.std() std_df["PR_AUC"] = PR_AUC_df.std() std_df["mean_o_minus_r_by_sample"] = mean_o_minus_r_by_sample_df.std() SEM_df = pd.DataFrame() SEM_df["ROC_AUC"] = ROC_AUC_df.std() / np.sqrt(ROC_AUC_df.shape[0]) SEM_df["PR_AUC"] = PR_AUC_df.std() / np.sqrt(PR_AUC_df.shape[0]) SEM_df["mean_o_minus_r_by_sample"] = mean_o_minus_r_by_sample_df.std() / np.sqrt(mean_o_minus_r_by_sample_df.shape[0]) with pd.ExcelWriter(indiv_validation_data_xlsx) as writer: means_df.to_excel(writer, sheet_name="means") std_df.to_excel(writer, sheet_name="std") SEM_df.to_excel(writer, sheet_name="SEM") ROC_AUC_df.to_excel(writer, sheet_name="ROC_AUC_indiv") PR_AUC_df.to_excel(writer, sheet_name="PR_AUC_indiv") # mean_o_minus_r_by_sample_df.to_excel(writer, sheet_name="BO_AUBOC_indiv") mean_o_minus_r_by_sample_df.to_excel(writer, sheet_name="mean_o_minus_r_by_sample") df_o_minus_r_mean_df.to_excel(writer, sheet_name="BO_o_minus_r") if "TMDOCK" in PR_AUC_df.columns and "PREDDIMER" in PR_AUC_df.columns: df_THOIPA_vs_others = pd.DataFrame() df_THOIPA_vs_others["THOIPA_better_TMDOCK"] = PR_AUC_df[THOIPA_predictor_name] > PR_AUC_df.TMDOCK df_THOIPA_vs_others["THOIPA_better_PREDDIMER"] = PR_AUC_df[THOIPA_predictor_name] > PR_AUC_df.PREDDIMER df_THOIPA_vs_others["THOIPA_better_both"] = df_THOIPA_vs_others[["THOIPA_better_TMDOCK", "THOIPA_better_PREDDIMER"]].sum(axis=1) == 2 n_THOIPA_better_both = df_THOIPA_vs_others["THOIPA_better_both"].sum() logging.info("THOIPA has higher precision-recall AUC than both TMDOCK and PREDDIMER for {}/{} proteins in {}".format(n_THOIPA_better_both, PR_AUC_df.shape[0], s["setname"])) df_THOIPA_vs_others.to_excel(writer, sheet_name="THOIPA_vs_others") # #sys.stdout.write(roc_auc_mean_list) # AUBOC_mean_df = pd.DataFrame.from_records([AUBOC_list], columns=linechar_name_list) # #AUBOC_mean_df.to_csv(mean_AUBOC_file) # AUBOC_mean_df.to_excel(writer, sheet_name="AUBOC_mean") # df_o_minus_r_mean_df.columns = linechar_name_list # #ROC_AUC_df.columns = AUC_AUBOC_name_list # ROC_AUC_df.index.name = "acc_db" # #ROC_AUC_df.to_csv(AUC_AUBOC_file) # THOIPA_best_set = s["THOIPA_best_set"] # # # AUC for barchart, 4 predictors, mean AUC of all proteins in dataset # #logging.info("_finder : {}".format(mean_roc_auc_barchart_csv)) # AUC_4pred_mean_all_indiv_prot_df = pd.DataFrame(index = linechar_name_list) # #AUC_4pred_mean_all_indiv_prot_df = pd.DataFrame([roc_auc_mean_list, roc_auc_std_list], index = linechar_name_list, columns=["mean", "std"]) # AUC_4pred_mean_all_indiv_prot_df["roc_auc_mean"] = roc_auc_mean_list # AUC_4pred_mean_all_indiv_prot_df["roc_auc_std"] = roc_auc_std_list # AUC_4pred_mean_all_indiv_prot_df["n"] = df_set.shape[0] # AUC_4pred_mean_all_indiv_prot_df["SEM"] = AUC_4pred_mean_all_indiv_prot_df.roc_auc_std / AUC_4pred_mean_all_indiv_prot_df["n"].apply(np.sqrt) # #AUC_4pred_mean_all_indiv_prot_df.to_csv(mean_roc_auc_barchart_csv) # AUC_4pred_mean_all_indiv_prot_df.to_excel(writer, sheet_name="ROC_AUC_mean_indiv") def create_indiv_validation_figs(s, logging, namedict, predictors, THOIPA_predictor_name, subsets): perc_interf_vs_PR_cutoff_linechart_data_csv = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/perc_interf_vs_PR_cutoff_linechart_data.csv" indiv_validation_data_xlsx = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/indiv_validation_data.xlsx" indiv_validation_figs_dir: Path = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/indiv_validation/bocurve/figs" make_sure_path_exists(indiv_validation_figs_dir) indiv_ROC_AUC_barchart_png: Union[Path, str] = indiv_validation_figs_dir / "indiv_ROC_AUC_barchart.png" indiv_PR_AUC_barchart_png: Union[Path, str] = indiv_validation_figs_dir / "indiv_PR_AUC_barchart.png" AUBOC_barchart_png: Union[Path, str] = indiv_validation_figs_dir / "indiv_AUBOC_barchart.png" BOCURVE_linechart_png: Union[Path, str] = indiv_validation_figs_dir / "BOcurve_linechart.png" mean_ROC_AUC_barchart_png: Union[Path, str] = indiv_validation_figs_dir / "mean_ROC_AUC_barchart.png" mean_PR_AUC_barchart_png: Union[Path, str] = indiv_validation_figs_dir / "mean_PR_AUC_barchart.png" ROC_AUC_vs_PR_AUC_scatter_png: Union[Path, str] = indiv_validation_figs_dir / "ROC_AUC_vs_PR_AUC_scatter.png" perc_interf_vs_PR_cutoff_linechart_png: Union[Path, str] = indiv_validation_figs_dir / "perc_interf_vs_PR_cutoff_linechart.png" ROC_AUC_df = pd.read_excel(indiv_validation_data_xlsx, sheet_name="ROC_AUC_indiv", index_col=0) PR_AUC_df = pd.read_excel(indiv_validation_data_xlsx, sheet_name="PR_AUC_indiv", index_col=0) mean_o_minus_r_by_sample_df =
pd.read_excel(indiv_validation_data_xlsx, sheet_name="mean_o_minus_r_by_sample", index_col=0)
pandas.read_excel
import numpy import matplotlib.pyplot as plt import tellurium as te from rrplugins import Plugin auto = Plugin("tel_auto2000") from te_bifurcation import model2te, run_bf import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter sf = ScalarFormatter() sf.set_scientific(False) import re import seaborn as sns import os from pickle import dump, load from sympy import * import lhsmdu import sobol_seq import pickle # Define symbolic variables for symbolic Jacobian R, r, C1, C2, mR1, mR2, K, K1, K2, m, a, b, sR, ksi, ksm, ki0, ki1, km0, km1, k, sR, a1, a2, b1, b2, A = symbols('R r C1 C2 mR1 mR2 K K1 K2 m a b sR ksi ksm ki0 ki1 km0 km1 k s_R a1 a2 b1 b2 A', positive=True, real=True) c1A, c1B, c2, rev, koff, kR, sR0, sR, g, s, C = symbols('c1A c1B c2 rev koff kR sR0 sR g s C', positive=True, real=True) R, r, C, mR1, mR2, K, K1, K2, m, a, b, sR, ksi, ksm, ki0, ki1, km0, km1, k, kR, A = \ symbols('R r C mR1 mR2 K K1 K2 m a b sR ksi ksm ki0 ki1 km0 km1 k k_R A', positive=True, real=True) # Samples of parameter values n = int(1E2) # Production run 1E5 ss = sobol_seq.i4_sobol_generate(4, n) l = np.power(2, -3 + (4+3)*ss[:,:2]) a1sp, b1sp = l[:,0], l[:,1] Ksp = 10**(ss[:,-2]*(np.log10(70000)-np.log10(7)) + np.log10(7)) gsp = 10**(ss[:,-1]*(np.log10(2)-np.log10(0.02)) + np.log10(0.02)) # Model definition model_mmi1_full = { 'pars': { 'sR': 0.0, 'a1' : 1, 'b1' : 1, 'sR0': 0.0, 'g': 1.0, 'K' : 10000, 'koff': 100, }, 'vars': { 'r': '1 - koff*K*R*r + koff*C - g*r + a1*C', 'R': 'sR0 + sR - koff*K*R*r + koff*C - R + b1*g*C', 'C': 'koff*K*R*r - koff*C - a1*C - b1*g*C', }, 'fns': {}, 'aux': [], 'name': 'mmi1_full'} ics_1_mmi1_full = {'r': 0.9, 'R': 0.0, 'C': 0.0} # Symbolic Jacobian eqnD = {} for k, v in model_mmi1_full['vars'].items(): eqnD[k] = parsing.sympy_parser.parse_expr(v, locals()) JnD = Matrix([eqnD['R'], eqnD['r'], eqnD['C']]).jacobian(Matrix([R, r, C])) fJnD = lambdify((K, R, r, C, a1, b1, g, koff), JnD, 'numpy') # Tellurium object r = model2te(model_mmi1_full, ics=ics_1_mmi1_full) uplim = 120 if 1: # A new run hb_cts, hbi, hbnds = 0, [], [] data_all = [] inuerr = [] for i in range(n): print(i) for j, p in enumerate(['a1', 'b1']): r[p] = l[i,j] r['g'], r['K'] = gsp[i], Ksp[i] data, bounds, boundsh = run_bf(r, auto, dirc="+", par="sR", lims=[0,uplim], ds=1E-2, dsmin=1E-5, dsmax=0.1) if data.r.iloc[-1] < -1: data, bounds, boundsh = run_bf(r, auto, dirc="+", par="sR", lims=[0,uplim], ds=1E-2, dsmin=1E-5, dsmax=0.01) data_all.append(data) if len(boundsh) > 0: print('HB point found') hb_cts += 1 hbi.append(i) hbnds.append(boundsh) if 1: # Save the output fn = './te_data/bf_data_MMI1.tebf' specs = {'model':model_mmi1_full, 'n':n, 'uplim':uplim, 'Ksp':Ksp, 'gsp':gsp, 'a1sp':a1sp, 'b1sp':b1sp } with open(fn, 'wb') as f: pickle.dump({'data_all': data_all, 'specs': specs}, f) print('Sets with HB: ', hb_cts) print('Numerical errors', len(inuerr)) else: # Reading a single file fn = './te_data/bf_data_MMI1.tebf' print('Reading', fn) with open(fn, 'rb') as f: f_cont = pickle.load(f) data_all, specs = f_cont['data_all'], f_cont['specs'] n, uplim, Ksp, gsp = specs['n'], specs['uplim'], specs['Ksp'], specs['gsp'] a1sp, b1sp = specs['a1sp'], specs['b1sp'] print('Curves: '+str(n)+'\t','uplim: '+str(uplim)) for sp in ['Ksp', 'gsp', 'a1sp', 'b1sp']: print(sp + ' is between %.4f and %.4f'%(specs[sp].min(), specs[sp].max())) print('\n') # More detailed analysis of the continuation output oui = [] # Spiral sinks hbi = [] # Hopf mxi = [] # Hopf and SN inuerr = [] binned_Rs = [] binned_Rts = [] binned_cons = [] hist_imag = np.zeros(60) nR = 62 do_pars = [] for i, data in enumerate(data_all[:]): if ((i+1) % 10000) == 0: print(i+1) if len(data) == 0: inuerr.append(i) continue if data.PAR.iloc[-1] < (uplim-1) or data.PAR.iloc[-1] > (uplim+1): mxi.append(i) if (data.TY == 3).sum()>0: hbi.append(i) Rsp, rsp, Csp = data.R.values, data.r.values, data.C.values JnDsp = fJnD(Ksp[i], Rsp, rsp, Csp, a1sp[i], b1sp[i], gsp[i], 100.0) Jsp = np.zeros((JnDsp.shape[0], JnDsp.shape[0], Rsp.shape[0])) for p in range(JnDsp.shape[0]): for q in range(JnDsp.shape[1]): Jsp[p,q,:] = JnDsp[p,q] Jsp = np.swapaxes(np.swapaxes(Jsp, 0, 2), 1,2) w, v = np.linalg.eig(Jsp) #print(w) if_imag = np.imag(w) != 0 imags = ((if_imag).sum(axis=1)>0) & (Rsp>-10) & (rsp>-10) igt = np.where(Rsp>0.01)[0] if (len(igt) > 0): sRthr = data.PAR[igt[0]] std_sigs = np.linspace(sRthr*0.0, sRthr*3.1, nR) ids = np.searchsorted(data.PAR, std_sigs) binned_R, binned_Rt = np.empty(nR), np.empty(nR) binned_R[:], binned_Rt[:] = np.NaN, np.NaN R_data = Rsp[[x for x in ids if x < Rsp.size]] Rt_data = R_data + Csp[[x for x in ids if x < Rsp.size]] binned_R[:R_data.size] = R_data binned_Rt[:R_data.size] = Rt_data binned_Rs.append(binned_R) binned_Rts.append(binned_Rt) binned_cons.append(std_sigs) if imags.sum() > 0: if (a1sp[i]>1 and b1sp[i]>1) or (a1sp[i]<1 and b1sp[i]<1): continue rmax, imax = np.real(w).min(axis=1), np.imag(w).max(axis=1) oui.append(i) imagi = np.where(imags>0)[0] if len(igt) > 0: hs, bins = np.histogram(data.PAR[imagi], bins=np.linspace(sRthr*0.0, sRthr*3.0, hist_imag.size+1)) hist_imag = hist_imag + ((hs>0)+0) fig, ax = plt.subplots(figsize=(3,3)) fig.subplots_adjust(bottom=0.2, right=0.78, left=0.15) ax2 = ax.twinx() ax2.bar(range(hist_imag.size), hist_imag/n, color='y', zorder=-10, width=1.0, alpha=0.5) dfl = pd.DataFrame(binned_Rs).melt() sns.lineplot(x="variable", y="value", data=dfl, color='k', ax=ax, ci=99.9, palette="flare") ax.set_ylabel(r'Steady state $\it{R}$ (A.U.)') ax.set_xlabel(r'$\sigma_R$') ax.set_xticks([0, 20, 40, 60]) ltr = r'$\hat{\it{\sigma_R}}$' ax.set_xticklabels([0, ltr, r'2$\times$'+ltr, r'3$\times$'+ltr]) ax.set_xlim(0, 40) ax.spines['right'].set_color('y') ax2.spines['right'].set_color('y') ax2.yaxis.label.set_color('y') ax2.tick_params(axis='y', colors='y') ax2.set_ylabel(r'Frequency (spiral sink)') plt.show() figc, axc = plt.subplots(figsize=(4,3)) figc.subplots_adjust(bottom=0.2, right=0.90, left=0.25) sns.lineplot(x="variable", y="value", data=dfl, color='k', ax=axc, ci=99.9, palette="flare", label=r'$\it{R}$') dft = pd.DataFrame(binned_Rts).melt() sns.lineplot(x="variable", y="value", data=dft, color='m', ax=axc, ci=99.9, palette="flare", label=r'$\it{R}\rm{_T}$') dfc = pd.DataFrame(binned_cons).melt() sns.lineplot(x="variable", y="value", data=dfc, color='b', ax=axc, ci=99.9, palette="flare", label=r'$\it{R}\rm{_T} (=\it{R})$'+'\nw/o microRNA') axc.set_ylabel('Steady state mRNA\nconcentration (A.U.)') axc.set_xlabel(r'$\sigma_R$') axc.set_yscale('log') axc.set_ylim(1E-4, 60) axc.set_xticks([0, 20, 40, 60]) ltr = r'$\hat{\it{\sigma_R}}$' axc.set_xticklabels([0, ltr, r'2$\times$'+ltr, r'3$\times$'+ltr]) axc.set_xlim(0, 40) axc.set_yscale('log') axc.set_ylim(1E-4, 60) axc.legend() plt.show() bi = list(set(range(n)) - set(oui)) astr, bstr, gstr, Kstr = r'$\it{\alpha}$', r'$\it{\beta}$', r'$\it{\gamma}$', r'$1/\it{K}$' cat_strs = [r'Stable node for all $\it{\sigma_R}$', r'Spiral sink for some $\it{\sigma_R}$'] dfb =
pd.DataFrame.from_dict({astr:a1sp[bi], bstr:b1sp[bi], gstr:gsp[bi], Kstr: Ksp[bi],'Category': cat_strs[0]})
pandas.DataFrame.from_dict
from typing import Any, Dict, List, Tuple import numpy as np import pandas as pd from hydra.utils import to_absolute_path from joblib import Parallel, delayed from sklearn.cluster import KMeans from tqdm import tqdm data_dir = to_absolute_path("../../input/optiver-realized-volatility-prediction/") + "/" # Function to calculate first WAP def calc_wap1(df: pd.DataFrame) -> pd.Series: wap = (df["bid_price1"] * df["ask_size1"] + df["ask_price1"] * df["bid_size1"]) / ( df["bid_size1"] + df["ask_size1"] ) return wap # Function to calculate second WAP def calc_wap2(df: pd.DataFrame) -> pd.Series: wap = (df["bid_price2"] * df["ask_size2"] + df["ask_price2"] * df["bid_size2"]) / ( df["bid_size2"] + df["ask_size2"] ) return wap def calc_wap3(df: pd.DataFrame) -> pd.Series: wap = (df["bid_price1"] * df["bid_size1"] + df["ask_price1"] * df["ask_size1"]) / ( df["bid_size1"] + df["ask_size1"] ) return wap def calc_wap4(df: pd.DataFrame) -> pd.Series: wap = (df["bid_price2"] * df["bid_size2"] + df["ask_price2"] * df["ask_size2"]) / ( df["bid_size2"] + df["ask_size2"] ) return wap def encode_mean(column: str, df: pd.DataFrame) -> float: avg = df.groupby("time_id")[column].transform("mean") return np.abs(df[column].sub(avg).div(avg)) # Function to calculate the log of the return # Remember that logb(x / y) = logb(x) - logb(y) def log_return(series: pd.DataFrame) -> np.ndarray: return np.log(series).diff() # Calculate the realized volatility def realized_volatility(series: pd.DataFrame) -> np.ndarray: return np.sqrt(np.sum(series ** 2)) # Function to count unique elements of a series def count_unique(series: pd.DataFrame) -> np.ndarray: return len(np.unique(series)) def is_high_realized_volatility( train: pd.DataFrame, test: pd.DataFrame ) -> Tuple[pd.DataFrame, pd.DataFrame]: for i in tqdm(range(1, 5)): train[f"log_return{i}_realized_volatility_is_high"] = train[ f"log_return{i}_realized_volatility" ].apply(lambda x: 0 if 0.0001 <= x <= 0.0003 else 1) test[f"log_return{i}_realized_volatility_is_high"] = test[ f"log_return{i}_realized_volatility" ].apply(lambda x: 0 if 0.0001 <= x <= 0.0003 else 1) return train, test # Function to read our base train and test set def read_train_test(path: str) -> Tuple[pd.DataFrame, pd.DataFrame]: train = pd.read_csv(path + "train.csv") test = pd.read_csv(path + "test.csv") # Create a key to merge with book and trade data train["row_id"] = train["stock_id"].astype(str) + "-" + train["time_id"].astype(str) test["row_id"] = test["stock_id"].astype(str) + "-" + test["time_id"].astype(str) print(f"Our training set has {train.shape[0]} rows") return train, test # Function to read our base train and test set def read_test(path: str) -> pd.DataFrame: test = pd.read_csv(path + "test.csv") # Create a key to merge with book and trade data test["row_id"] = test["stock_id"].astype(str) + "-" + test["time_id"].astype(str) return test # Function to preprocess book data (for each stock id) def book_preprocessor(file_path: str): df = pd.read_parquet(file_path) # Calculate Wap df["wap1"] = calc_wap1(df) df["wap2"] = calc_wap2(df) df["wap3"] = calc_wap3(df) df["wap4"] = calc_wap4(df) # Calculate log returns df["log_return1"] = df.groupby(["time_id"])["wap1"].apply(log_return) df["log_return2"] = df.groupby(["time_id"])["wap2"].apply(log_return) df["log_return3"] = df.groupby(["time_id"])["wap3"].apply(log_return) df["log_return4"] = df.groupby(["time_id"])["wap4"].apply(log_return) # Calculate wap balance df["wap_balance"] = abs(df["wap1"] - df["wap2"]) # Calculate spread df["price_spread"] = (df["ask_price1"] - df["bid_price1"]) / ( (df["ask_price1"] + df["bid_price1"]) / 2 ) df["price_spread2"] = (df["ask_price2"] - df["bid_price2"]) / ( (df["ask_price2"] + df["bid_price2"]) / 2 ) df["bid_spread"] = df["bid_price1"] - df["bid_price2"] df["ask_spread"] = df["ask_price1"] - df["ask_price2"] df["bid_ask_spread"] = abs(df["bid_spread"] - df["ask_spread"]) df["total_volume"] = (df["ask_size1"] + df["ask_size2"]) + ( df["bid_size1"] + df["bid_size2"] ) df["volume_imbalance"] = abs( (df["ask_size1"] + df["ask_size2"]) - (df["bid_size1"] + df["bid_size2"]) ) # Dict for aggregations create_feature_dict = { "wap1": [np.sum, np.std], "wap2": [np.sum, np.std], "wap3": [np.sum, np.std], "wap4": [np.sum, np.std], "log_return1": [realized_volatility], "log_return2": [realized_volatility], "log_return3": [realized_volatility], "log_return4": [realized_volatility], "wap_balance": [np.sum, np.max], "price_spread": [np.sum, np.max], "price_spread2": [np.sum, np.max], "bid_spread": [np.sum, np.max], "ask_spread": [np.sum, np.max], "total_volume": [np.sum, np.max], "volume_imbalance": [np.sum, np.max], "bid_ask_spread": [np.sum, np.max], } create_feature_dict_time = { "log_return1": [realized_volatility], "log_return2": [realized_volatility], "log_return3": [realized_volatility], "log_return4": [realized_volatility], } # Function to get group stats for different windows (seconds in bucket) def get_stats_window( fe_dict: Dict[str, List[Any]], seconds_in_bucket: int, add_suffix: bool = False ) -> pd.DataFrame: # Group by the window df_feature = ( df[df["seconds_in_bucket"] >= seconds_in_bucket] .groupby(["time_id"]) .agg(fe_dict) .reset_index() ) # Rename columns joining suffix df_feature.columns = ["_".join(col) for col in df_feature.columns] # Add a suffix to differentiate windows if add_suffix: df_feature = df_feature.add_suffix("_" + str(seconds_in_bucket)) return df_feature # Get the stats for different windows df_feature = get_stats_window( create_feature_dict, seconds_in_bucket=0, add_suffix=False ) df_feature_500 = get_stats_window( create_feature_dict_time, seconds_in_bucket=500, add_suffix=True ) df_feature_400 = get_stats_window( create_feature_dict_time, seconds_in_bucket=400, add_suffix=True ) df_feature_300 = get_stats_window( create_feature_dict_time, seconds_in_bucket=300, add_suffix=True ) df_feature_200 = get_stats_window( create_feature_dict_time, seconds_in_bucket=200, add_suffix=True ) df_feature_100 = get_stats_window( create_feature_dict_time, seconds_in_bucket=100, add_suffix=True ) # Merge all df_feature = df_feature.merge( df_feature_500, how="left", left_on="time_id_", right_on="time_id__500" ) df_feature = df_feature.merge( df_feature_400, how="left", left_on="time_id_", right_on="time_id__400" ) df_feature = df_feature.merge( df_feature_300, how="left", left_on="time_id_", right_on="time_id__300" ) df_feature = df_feature.merge( df_feature_200, how="left", left_on="time_id_", right_on="time_id__200" ) df_feature = df_feature.merge( df_feature_100, how="left", left_on="time_id_", right_on="time_id__100" ) # Drop unnecesary time_ids df_feature.drop( [ "time_id__500", "time_id__400", "time_id__300", "time_id__200", "time_id__100", ], axis=1, inplace=True, ) # Create row_id so we can merge stock_id = file_path.split("=")[1] df_feature["row_id"] = df_feature["time_id_"].apply(lambda x: f"{stock_id}-{x}") df_feature.drop(["time_id_"], axis=1, inplace=True) return df_feature # Function to preprocess trade data (for each stock id) def trade_preprocessor(file_path: str) -> pd.DataFrame: df = pd.read_parquet(file_path) df["log_return"] = df.groupby("time_id")["price"].apply(log_return) df["amount"] = df["price"] * df["size"] # Dict for aggregations create_feature_dict = { "log_return": [realized_volatility], "seconds_in_bucket": [count_unique], "size": [np.sum, np.max, np.min], "order_count": [np.sum, np.max], "amount": [np.sum, np.max, np.min], } create_feature_dict_time = { "log_return": [realized_volatility], "seconds_in_bucket": [count_unique], "size": [np.sum], "order_count": [np.sum], } # Function to get group stats for different windows (seconds in bucket) def get_stats_window(fe_dict, seconds_in_bucket, add_suffix=False): # Group by the window df_feature = ( df[df["seconds_in_bucket"] >= seconds_in_bucket] .groupby(["time_id"]) .agg(fe_dict) .reset_index() ) # Rename columns joining suffix df_feature.columns = ["_".join(col) for col in df_feature.columns] # Add a suffix to differentiate windows if add_suffix: df_feature = df_feature.add_suffix("_" + str(seconds_in_bucket)) return df_feature # Get the stats for different windows df_feature = get_stats_window( create_feature_dict, seconds_in_bucket=0, add_suffix=False ) df_feature_500 = get_stats_window( create_feature_dict_time, seconds_in_bucket=500, add_suffix=True ) df_feature_400 = get_stats_window( create_feature_dict_time, seconds_in_bucket=400, add_suffix=True ) df_feature_300 = get_stats_window( create_feature_dict_time, seconds_in_bucket=300, add_suffix=True ) df_feature_200 = get_stats_window( create_feature_dict_time, seconds_in_bucket=200, add_suffix=True ) df_feature_100 = get_stats_window( create_feature_dict_time, seconds_in_bucket=100, add_suffix=True ) def tendency(price: np.ndarray, vol: np.ndarray) -> float: df_diff = np.diff(price) val = (df_diff / price[1:]) * 100 power = np.sum(val * vol[1:]) return power lis = [] for n_time_id in df["time_id"].unique(): df_id = df[df["time_id"] == n_time_id] tendencyV = tendency(df_id["price"].values, df_id["size"].values) f_max = np.sum(df_id["price"].values > np.mean(df_id["price"].values)) f_min = np.sum(df_id["price"].values < np.mean(df_id["price"].values)) df_max = np.sum(np.diff(df_id["price"].values) > 0) df_min = np.sum(np.diff(df_id["price"].values) < 0) # new abs_diff = np.median( np.abs(df_id["price"].values - np.mean(df_id["price"].values)) ) energy = np.mean(df_id["price"].values ** 2) iqr_p = np.percentile(df_id["price"].values, 75) - np.percentile( df_id["price"].values, 25 ) # vol vars abs_diff_v = np.median( np.abs(df_id["size"].values - np.mean(df_id["size"].values)) ) energy_v = np.sum(df_id["size"].values ** 2) iqr_p_v = np.percentile(df_id["size"].values, 75) - np.percentile( df_id["size"].values, 25 ) lis.append( { "time_id": n_time_id, "tendency": tendencyV, "f_max": f_max, "f_min": f_min, "df_max": df_max, "df_min": df_min, "abs_diff": abs_diff, "energy": energy, "iqr_p": iqr_p, "abs_diff_v": abs_diff_v, "energy_v": energy_v, "iqr_p_v": iqr_p_v, } ) df_lr = pd.DataFrame(lis) df_feature = df_feature.merge( df_lr, how="left", left_on="time_id_", right_on="time_id" ) # Merge all df_feature = df_feature.merge( df_feature_500, how="left", left_on="time_id_", right_on="time_id__500" ) df_feature = df_feature.merge( df_feature_400, how="left", left_on="time_id_", right_on="time_id__400" ) df_feature = df_feature.merge( df_feature_300, how="left", left_on="time_id_", right_on="time_id__300" ) df_feature = df_feature.merge( df_feature_200, how="left", left_on="time_id_", right_on="time_id__200" ) df_feature = df_feature.merge( df_feature_100, how="left", left_on="time_id_", right_on="time_id__100" ) # Drop unnecesary time_ids df_feature.drop( [ "time_id__500", "time_id__400", "time_id__300", "time_id__200", "time_id", "time_id__100", ], axis=1, inplace=True, ) df_feature = df_feature.add_prefix("trade_") stock_id = file_path.split("=")[1] df_feature["row_id"] = df_feature["trade_time_id_"].apply( lambda x: f"{stock_id}-{x}" ) df_feature.drop(["trade_time_id_"], axis=1, inplace=True) return df_feature def encode_timeid( train: pd.DataFrame, test: pd.DataFrame ) -> Tuple[pd.DataFrame, pd.DataFrame]: columns_to_encode = [ "wap1_sum", "wap2_sum", "wap3_sum", "wap4_sum", "log_return1_realized_volatility", "log_return2_realized_volatility", "log_return3_realized_volatility", "log_return4_realized_volatility", "wap_balance_sum", "price_spread_sum", "price_spread2_sum", "bid_spread_sum", "ask_spread_sum", "total_volume_sum", "volume_imbalance_sum", "bid_ask_spread_sum", "trade_log_return_realized_volatility", "trade_seconds_in_bucket_count_unique", "trade_size_sum", "trade_order_count_sum", "trade_amount_sum", "trade_tendency", "trade_f_max", "trade_df_max", "trade_abs_diff", "trade_energy", "trade_iqr_p", "trade_abs_diff_v", "trade_energy_v", "trade_iqr_p_v", ] df_aux = Parallel(n_jobs=-1, verbose=1)( delayed(encode_mean)(column, train) for column in columns_to_encode ) # Get group stats of time_id and stock_id train = pd.concat( [train] + [x.rename(x.name + "_timeid_encoded") for x in df_aux], axis=1 ) del df_aux df_aux = Parallel(n_jobs=-1, verbose=1)( delayed(encode_mean)(column, test) for column in columns_to_encode ) # Get group stats of time_id and stock_id test = pd.concat( [test] + [x.rename(x.name + "_timeid_encoded") for x in df_aux], axis=1 ) del df_aux return train, test # Function to get group stats for the stock_id and time_id def get_time_stock(df: pd.DataFrame) -> pd.DataFrame: vol_cols = [ "log_return1_realized_volatility", "log_return2_realized_volatility", "log_return1_realized_volatility_400", "log_return2_realized_volatility_400", "log_return1_realized_volatility_300", "log_return2_realized_volatility_300", "log_return1_realized_volatility_200", "log_return2_realized_volatility_200", "trade_log_return_realized_volatility", "trade_log_return_realized_volatility_400", "trade_log_return_realized_volatility_300", "trade_log_return_realized_volatility_200", ] # Group by the stock id df_stock_id = ( df.groupby(["stock_id"])[vol_cols] .agg( [ "mean", "std", "max", "min", ] ) .reset_index() ) # Rename columns joining suffix df_stock_id.columns = ["_".join(col) for col in df_stock_id.columns] df_stock_id = df_stock_id.add_suffix("_" + "stock") # Group by the stock id df_time_id = ( df.groupby(["time_id"])[vol_cols] .agg( [ "mean", "std", "max", "min", ] ) .reset_index() ) # Rename columns joining suffix df_time_id.columns = ["_".join(col) for col in df_time_id.columns] df_time_id = df_time_id.add_suffix("_" + "time") # Merge with original dataframe df = df.merge( df_stock_id, how="left", left_on=["stock_id"], right_on=["stock_id__stock"] ) df = df.merge( df_time_id, how="left", left_on=["time_id"], right_on=["time_id__time"] ) df.drop(["stock_id__stock", "time_id__time"], axis=1, inplace=True) return df # Funtion to make preprocessing function in parallel (for each stock id) def preprocessor(list_stock_ids: np.ndarray, is_train: bool = True) -> pd.DataFrame: # Parrallel for loop def for_joblib(stock_id: int) -> pd.DataFrame: # Train if is_train: file_path_book = data_dir + "book_train.parquet/stock_id=" + str(stock_id) file_path_trade = data_dir + "trade_train.parquet/stock_id=" + str(stock_id) # Test else: file_path_book = data_dir + "book_test.parquet/stock_id=" + str(stock_id) file_path_trade = data_dir + "trade_test.parquet/stock_id=" + str(stock_id) # Preprocess book and trade data and merge them df_tmp = pd.merge( book_preprocessor(file_path_book), trade_preprocessor(file_path_trade), on="row_id", how="left", ) # Return the merge dataframe return df_tmp # Use parallel api to call paralle for loop df = Parallel(n_jobs=-1, verbose=1)( delayed(for_joblib)(stock_id) for stock_id in list_stock_ids ) # Concatenate all the dataframes that return from Parallel df = pd.concat(df, ignore_index=True) return df # replace by order sum (tau) def add_tau_feature( train: pd.DataFrame, test: pd.DataFrame ) -> Tuple[pd.DataFrame, pd.DataFrame]: train["size_tau"] = np.sqrt(1 / train["trade_seconds_in_bucket_count_unique"]) test["size_tau"] = np.sqrt(1 / test["trade_seconds_in_bucket_count_unique"]) # train['size_tau_450'] = np.sqrt( 1/ train['trade_seconds_in_bucket_count_unique_450'] ) # test['size_tau_450'] = np.sqrt( 1/ test['trade_seconds_in_bucket_count_unique_450'] ) train["size_tau_400"] = np.sqrt( 1 / train["trade_seconds_in_bucket_count_unique_400"] ) test["size_tau_400"] = np.sqrt(1 / test["trade_seconds_in_bucket_count_unique_400"]) train["size_tau_300"] = np.sqrt( 1 / train["trade_seconds_in_bucket_count_unique_300"] ) test["size_tau_300"] = np.sqrt(1 / test["trade_seconds_in_bucket_count_unique_300"]) # train['size_tau_150'] = np.sqrt( 1/ train['trade_seconds_in_bucket_count_unique_150'] ) # test['size_tau_150'] = np.sqrt( 1/ test['trade_seconds_in_bucket_count_unique_150'] ) train["size_tau_200"] = np.sqrt( 1 / train["trade_seconds_in_bucket_count_unique_200"] ) test["size_tau_200"] = np.sqrt(1 / test["trade_seconds_in_bucket_count_unique_200"]) train["size_tau2"] = np.sqrt(1 / train["trade_order_count_sum"]) test["size_tau2"] = np.sqrt(1 / test["trade_order_count_sum"]) # train['size_tau2_450'] = np.sqrt( 0.25/ train['trade_order_count_sum'] ) # test['size_tau2_450'] = np.sqrt( 0.25/ test['trade_order_count_sum'] ) train["size_tau2_400"] = np.sqrt(0.33 / train["trade_order_count_sum"]) test["size_tau2_400"] = np.sqrt(0.33 / test["trade_order_count_sum"]) train["size_tau2_300"] = np.sqrt(0.5 / train["trade_order_count_sum"]) test["size_tau2_300"] = np.sqrt(0.5 / test["trade_order_count_sum"]) # train['size_tau2_150'] = np.sqrt( 0.75/ train['trade_order_count_sum'] ) # test['size_tau2_150'] = np.sqrt( 0.75/ test['trade_order_count_sum'] ) train["size_tau2_200"] = np.sqrt(0.66 / train["trade_order_count_sum"]) test["size_tau2_200"] = np.sqrt(0.66 / test["trade_order_count_sum"]) # delta tau train["size_tau2_d"] = train["size_tau2_400"] - train["size_tau2"] test["size_tau2_d"] = test["size_tau2_400"] - test["size_tau2"] return train, test def create_agg_features( train: pd.DataFrame, test: pd.DataFrame, path: str ) -> Tuple[pd.DataFrame, pd.DataFrame]: # Making agg features train_p = pd.read_csv(path + "train.csv") train_p = train_p.pivot(index="time_id", columns="stock_id", values="target") corr = train_p.corr() ids = corr.index kmeans = KMeans(n_clusters=7, random_state=0).fit(corr.values) indexes = [ [(x - 1) for x in ((ids + 1) * (kmeans.labels_ == n)) if x > 0] for n in tqdm(range(7)) ] mat = [] mat_test = [] n = 0 for ind in tqdm(indexes): new_df = train.loc[train["stock_id"].isin(ind)] new_df = new_df.groupby(["time_id"]).agg(np.nanmean) new_df.loc[:, "stock_id"] = str(n) + "c1" mat.append(new_df) new_df = test.loc[test["stock_id"].isin(ind)] new_df = new_df.groupby(["time_id"]).agg(np.nanmean) new_df.loc[:, "stock_id"] = str(n) + "c1" mat_test.append(new_df) n += 1 mat1 = pd.concat(mat).reset_index() mat1.drop(columns=["target"], inplace=True) mat2 = pd.concat(mat_test).reset_index() mat2 = pd.concat([mat2, mat1.loc[mat1.time_id == 5]]) mat1 = mat1.pivot(index="time_id", columns="stock_id") mat1.columns = ["_".join(x) for x in tqdm(mat1.columns.tolist())] mat1.reset_index(inplace=True) mat2 = mat2.pivot(index="time_id", columns="stock_id") mat2.columns = ["_".join(x) for x in tqdm(mat2.columns.tolist())] mat2.reset_index(inplace=True) prefix = [ "log_return1_realized_volatility", "total_volume_sum", "trade_size_sum", "trade_order_count_sum", "price_spread_sum", "bid_spread_sum", "ask_spread_sum", "volume_imbalance_sum", "bid_ask_spread_sum", "size_tau2", ] selected_cols = mat1.filter( regex="|".join(f"^{x}.(0|1|3|4|6)c1" for x in tqdm(prefix)) ).columns.tolist() selected_cols.append("time_id") train_m = pd.merge(train, mat1[selected_cols], how="left", on="time_id") test_m = pd.merge(test, mat2[selected_cols], how="left", on="time_id") # filling missing values with train means features = [ col for col in train_m.columns.tolist() if col not in ["time_id", "target", "row_id"] ] train_m[features] = train_m[features].fillna(train_m[features].mean()) test_m[features] = test_m[features].fillna(train_m[features].mean()) return train_m, test_m def network_agg_features( train: pd.DataFrame, test: pd.DataFrame, path: str ) -> Tuple[pd.DataFrame, pd.DataFrame]: # Making agg features train_p = pd.read_csv(path + "train.csv") train_p = train_p.pivot(index="time_id", columns="stock_id", values="target") corr = train_p.corr() ids = corr.index kmeans = KMeans(n_clusters=7, random_state=0).fit(corr.values) indexes = [ [(x - 1) for x in ((ids + 1) * (kmeans.labels_ == n)) if x > 0] for n in tqdm(range(7)) ] mat = [] mat_test = [] n = 0 for ind in tqdm(indexes): new_df = train.loc[train["stock_id"].isin(ind)] new_df = new_df.groupby(["time_id"]).agg(np.nanmean) new_df.loc[:, "stock_id"] = str(n) + "c1" mat.append(new_df) new_df = test.loc[test["stock_id"].isin(ind)] new_df = new_df.groupby(["time_id"]).agg(np.nanmean) new_df.loc[:, "stock_id"] = str(n) + "c1" mat_test.append(new_df) n += 1 mat1 = pd.concat(mat).reset_index() mat1.drop(columns=["target"], inplace=True) mat2 = pd.concat(mat_test).reset_index() mat2 = pd.concat([mat2, mat1.loc[mat1.time_id == 5]]) mat1 = mat1.pivot(index="time_id", columns="stock_id") mat1.columns = ["_".join(x) for x in tqdm(mat1.columns.tolist())] mat1.reset_index(inplace=True) mat2 = mat2.pivot(index="time_id", columns="stock_id") mat2.columns = ["_".join(x) for x in tqdm(mat2.columns.tolist())] mat2.reset_index(inplace=True) prefix = [ "log_return1_realized_volatility", "total_volume_mean", "trade_size_mean", "trade_order_count_mean", "price_spread_mean", "bid_spread_mean", "ask_spread_mean", "volume_imbalance_mean", "bid_ask_spread_mean", "size_tau2", ] selected_cols = mat1.filter( regex="|".join(f"^{x}.(0|1|3|4|6)c1" for x in prefix) ).columns.tolist() selected_cols.append("time_id") train_m = pd.merge(train, mat1[selected_cols], how="left", on="time_id") test_m =
pd.merge(test, mat2[selected_cols], how="left", on="time_id")
pandas.merge
from __future__ import division import math import sys from random import randint from random import random as rnd from reoccuring_drift_stream import ReoccuringDriftStream import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.optimize import minimize from scipy.spatial.distance import cdist from scipy.special import logit from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils import validation from sklearn.utils.multiclass import unique_labels from sklearn.utils.validation import check_is_fitted from skmultiflow.drift_detection import KSWIN from skmultiflow.data.mixed_generator import MIXEDGenerator #Abrupt Concept Drift Generators from skmultiflow.drift_detection.adwin import ADWIN from skmultiflow.evaluation.evaluate_prequential import EvaluatePrequential from bix.classifiers.rrslvq import RRSLVQ #!sr/bin/env python3 #-*- coding: utf-8 -*- """ Created on Fri Jun 22 09:35:11 2018 @author: moritz """ # TODO: add sigma for every prototype (TODO from https://github.com/MrNuggelz/sklearn-lvq) class RRSLVQ(ClassifierMixin, BaseEstimator): """Robust Soft Learning Vector Quantization Parameters ---------- prototypes_per_class : int or list of int, optional (default=1) Number of prototypes per class. Use list to specify different numbers per class. initial_prototypes : array-like, shape = [n_prototypes, n_features + 1], optional Prototypes to start with. If not given initialization near the class means. Class label must be placed as last entry of each prototype. sigma : float, optional (default=0.5) Variance for the distribution. max_iter : int, optional (default=2500) The maximum number of iterations. gtol : float, optional (default=1e-5) Gradient norm must be less than gtol before successful termination of bfgs. display : boolean, optional (default=False) print information about the bfgs steps. random_state : int, RandomState instance or None, optional If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. gradient_descent : string, Gradient Descent describes the used technique to perform the gradient descent. Possible values: 'SGD' (default), and 'l-bfgs-b'. drift_handling : string, Type of concept drift DETECTION. None means no concept drift detection If KS, use of Kolmogorov Smirnov test If ADWIN, use of Adaptive Sliding Window dimension wise IF DIST, monitoring class distances to detect outlier. Attributes ---------- w_ : array-like, shape = [n_prototypes, n_features] Prototype vector, where n_prototypes in the number of prototypes and n_features is the number of features c_w_ : array-like, shape = [n_prototypes] Prototype classes classes_ : array-like, shape = [n_classes] Array containing labels. initial_fit : boolean, indicator for initial fitting. Set to false after first call of fit/partial fit. """ def __init__(self, prototypes_per_class=1, initial_prototypes=None, sigma=1.0, max_iter=2500, gtol=1e-5, display=False, random_state=None,drift_handling = "KS",confidence=0.05,replace = True): self.sigma = sigma self.confidence = confidence self.random_state = random_state self.initial_prototypes = initial_prototypes self.prototypes_per_class = prototypes_per_class self.display = display self.max_iter = max_iter self.gtol = gtol self.initial_fit = True self.max_class_distances = None self.classes_ = [] self.counter = 0 self.cd_detects = [] self.drift_handling = drift_handling self.drift_detected = False self.replace = replace self.init_drift_detection = True self.some = [] self.bg_data = [[],[]] if not isinstance(self.display, bool): raise ValueError("display must be a boolean") if not isinstance(self.max_iter, int) or self.max_iter < 1: raise ValueError("max_iter must be an positive integer") if not isinstance(self.gtol, float) or self.gtol <= 0: raise ValueError("gtol must be a positive float") def _optfun(self, variables, training_data, label_equals_prototype): n_data, n_dim = training_data.shape nb_prototypes = self.c_w_.size prototypes = variables.reshape(nb_prototypes, n_dim) out = 0 for i in range(n_data): xi = training_data[i] y = label_equals_prototype[i] fs = [self._costf(xi, w) for w in prototypes] fs_max = max(fs) s1 = sum([np.math.exp(fs[i] - fs_max) for i in range(len(fs)) if self.c_w_[i] == y]) s2 = sum([np.math.exp(f - fs_max) for f in fs]) s1 += 0.0000001 s2 += 0.0000001 out += math.log(s1 / s2) return -out def _optimize(self, X, y, random_state): """Implementation of Stochastical Gradient Descent""" n_data, n_dim = X.shape nb_prototypes = self.c_w_.size prototypes = self.w_.reshape(nb_prototypes, n_dim) for i in range(n_data): xi = X[i] c_xi = y[i] for j in range(prototypes.shape[0]): d = (xi - prototypes[j]) c = 0.5 if self.c_w_[j] == c_xi: # Attract prototype to data point self.w_[j] += c * (self._p(j, xi, prototypes=self.w_, y=c_xi) - self._p(j, xi, prototypes=self.w_)) * d else: # Distance prototype from data point self.w_[j] -= c * self._p(j, xi, prototypes=self.w_) * d def _costf(self, x, w, **kwargs): d = (x - w)[np.newaxis].T d = d.T.dot(d) return -d / (2 * self.sigma) def _p(self, j, e, y=None, prototypes=None, **kwargs): if prototypes is None: prototypes = self.w_ if y is None: fs = [self._costf(e, w, **kwargs) for w in prototypes] else: fs = [self._costf(e, prototypes[i], **kwargs) for i in range(prototypes.shape[0]) if self.c_w_[i] == y] fs_max = max(fs) s = sum([np.math.exp(f - fs_max) for f in fs]) o = np.math.exp( self._costf(e, prototypes[j], **kwargs) - fs_max) / s return o def get_prototypes(self): """Returns the prototypes""" return self.w_ def predict(self, x): """Predict class membership index for each input sample. This function does classification on an array of test vectors X. Parameters ---------- x : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) Returns predicted values. """ check_is_fitted(self, ['w_', 'c_w_']) x = validation.check_array(x) if x.shape[1] != self.w_.shape[1]: raise ValueError("X has wrong number of features\n" "found=%d\n" "expected=%d" % (self.w_.shape[1], x.shape[1])) return np.array([self.c_w_[np.array([self._costf(xi,p) for p in self.w_]).argmax()] for xi in x]) def posterior(self, y, x): """ calculate the posterior for x: p(y|x) Parameters ---------- y: class label x: array-like, shape = [n_features] sample Returns ------- posterior :return: posterior """ check_is_fitted(self, ['w_', 'c_w_']) x = validation.column_or_1d(x) if y not in self.classes_: raise ValueError('y must be one of the labels\n' 'y=%s\n' 'labels=%s' % (y, self.classes_)) s1 = sum([self._costf(x, self.w_[i]) for i in range(self.w_.shape[0]) if self.c_w_[i] == y]) s2 = sum([self._costf(x, w) for w in self.w_]) return s1 / s2 def get_info(self): return 'RSLVQ' def predict_proba(self, X): """ predict_proba Predicts the probability of each sample belonging to each one of the known target_values. Parameters ---------- X: Numpy.ndarray of shape (n_samples, n_features) A matrix of the samples we want to predict. Returns ------- numpy.ndarray An array of shape (n_samples, n_features), in which each outer entry is associated with the X entry of the same index. And where the list in index [i] contains len(self.target_values) elements, each of which represents the probability that the i-th sample of X belongs to a certain label. """ return 'Not implemented' def reset(self): self.__init__() def _validate_train_parms(self, train_set, train_lab, classes=None): random_state = validation.check_random_state(self.random_state) train_set, train_lab = validation.check_X_y(train_set, train_lab) if(self.initial_fit): if(classes): self.classes_ = np.asarray(classes) self.protos_initialized = np.zeros(self.classes_.size) else: self.classes_ = unique_labels(train_lab) self.protos_initialized = np.zeros(self.classes_.size) nb_classes = len(self.classes_) nb_samples, nb_features = train_set.shape # nb_samples unused # set prototypes per class if isinstance(self.prototypes_per_class, int): if self.prototypes_per_class < 0 or not isinstance( self.prototypes_per_class, int): raise ValueError("prototypes_per_class must be a positive int") # nb_ppc = number of protos per class nb_ppc = np.ones([nb_classes], dtype='int') * self.prototypes_per_class else: nb_ppc = validation.column_or_1d( validation.check_array(self.prototypes_per_class, ensure_2d=False, dtype='int')) if nb_ppc.min() <= 0: raise ValueError( "values in prototypes_per_class must be positive") if nb_ppc.size != nb_classes: raise ValueError( "length of prototypes per class" " does not fit the number of classes" "classes=%d" "length=%d" % (nb_classes, nb_ppc.size)) # initialize prototypes if self.initial_prototypes is None: #self.w_ = np.repeat(np.array([self.geometric_median(train_set[train_lab == l],"minimize") for l in self.classes_]),nb_ppc,axis=0) #self.c_w_ = np.repeat(self.classes_,nb_ppc) if self.initial_fit: self.w_ = np.empty([np.sum(nb_ppc), nb_features], dtype=np.double) self.c_w_ = np.empty([nb_ppc.sum()], dtype=self.classes_.dtype) pos = 0 for actClass in range(len(self.classes_)): nb_prot = nb_ppc[actClass] # nb_ppc: prototypes per class if(self.protos_initialized[actClass] == 0 and actClass in unique_labels(train_lab)): mean = np.mean( train_set[train_lab == self.classes_[actClass], :], 0) self.w_[pos:pos + nb_prot] = mean + ( random_state.rand(nb_prot, nb_features) * 2 - 1) if math.isnan(self.w_[pos, 0]): print('null: ', actClass) self.protos_initialized[actClass] = 0 else: self.protos_initialized[actClass] = 1 # self.c_w_[pos:pos + nb_prot] = self.classes_[actClass] pos += nb_prot else: x = validation.check_array(self.initial_prototypes) self.w_ = x[:, :-1] self.c_w_ = x[:, -1] if self.w_.shape != (np.sum(nb_ppc), nb_features): raise ValueError("the initial prototypes have wrong shape\n" "found=(%d,%d)\n" "expected=(%d,%d)" % ( self.w_.shape[0], self.w_.shape[1], nb_ppc.sum(), nb_features)) if set(self.c_w_) != set(self.classes_): raise ValueError( "prototype labels and test data classes do not match\n" "classes={}\n" "prototype labels={}\n".format(self.classes_, self.c_w_)) if self.initial_fit: self.initial_fit = False return train_set, train_lab, random_state def fit(self, X, y, classes=None): """Fit the LVQ model to the given training data and parameters using l-bfgs-b. Parameters ---------- x : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers in classification, real numbers in regression) Returns -------- self """ X, y, random_state = self._validate_train_parms(X, y, classes=classes) if len(np.unique(y)) == 1: raise ValueError("fitting " + type( self).__name__ + " with only one class is not possible") self._optimize(X, y, random_state) return self def partial_fit(self, X, y, classes=None): """Fit the LVQ model to the given training data and parameters using l-bfgs-b. Parameters ---------- x : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers in classification, real numbers in regression) Returns -------- self """ if unique_labels(y) in self.classes_ or self.initial_fit: X, y, random_state = self._validate_train_parms( X, y, classes=classes) else: raise ValueError('Class {} was not learned - please declare all \ classes in first call of fit/partial_fit'.format(y)) self.counter = self.counter + 1 if self.drift_handling is not None and self.concept_drift_detection(X,y): self.cd_handling(X,y) if self.counter > 30: self.save_data(X,y,random_state) self.cd_detects.append(self.counter) print(self.w_.shape) self._optimize(X, y, random_state) return self def save_data(self,X,y,random_state): pd.DataFrame(self.w_).to_csv("Prototypes.csv")
pd.DataFrame(self.c_w_)
pandas.DataFrame
import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.dates as mdates import numpy as np import pandas as pd import string from matplotlib.dates import MonthLocator, DayLocator, WeekdayLocator, MO, TU, WE, TH, FR, SA, SU def plot_rca_timeseries_oneradar( rca_file, output_directory, baseline_date, polarization, scan_type, site, inst, start_date, end_date ): """ plot_rca_timeseries_oneradar Parameters ---------- rca_file: str path to RCA CSV file output_directory: str path to directory for output .png file(s) baseline_date: str YYYY-MM-DD format of baseline date in this dataset polarization: str specify the polarization(s) desired 'horizontal' 'dual' scan_type: str specify if the map is for PPI or RHI 'ppi' 'rhi' site: str site abbreviation inst: str instrument name start_date: str Start date of plot, form YYYY-MM-DD end_date: str End date of plot, form YYYY-MM-DD """ ############################################################### # Plotting rc parameters # xtick plt.rc('xtick', color='k', labelsize=10, direction='out') plt.rc('xtick.major', size=4, pad=4) plt.rc('xtick.minor', size=2, pad=4) # ytick plt.rc('ytick', color='k', labelsize=10, direction='in') plt.rc('ytick.major', size=4, pad=4) plt.rc('ytick.minor', size=2, pad=4) # figure plt.rc('figure', titlesize=12, figsize=[8,4], dpi=500, autolayout=False) # legend plt.rc('legend', loc='best') # lines plt.rc('lines', linewidth=0.5, linestyle='-', marker='o', markersize=3.0) # font plt.rc('font', family='sans', style='normal') # text plt.rc('mathtext', fontset='dejavusans') # axes plt.rc('axes', facecolor='white', linewidth=0.8, grid=True, titlesize=14, labelsize=12) plt.rc('axes.grid', axis='both', which='both') # dates #plt.rc('date.autoformatter', day='%Y-%m-%d') ############################################################### # Convert string dates to datetime for plotting baseline_date = pd.to_datetime(baseline_date, format='%Y-%m-%d') start_date =
pd.to_datetime(start_date, format='%Y-%m-%d')
pandas.to_datetime
from typing import Tuple, Union, Optional import os import pytest from PIL import Image from pathlib import Path import scanpy as sc import scvelo as scv import cellrank as cr from anndata import AnnData from cellrank.tl.kernels import VelocityKernel, PrecomputedKernel, ConnectivityKernel import numpy as np import pandas as pd from sklearn.svm import SVR from scipy.sparse import spdiags, issparse, csr_matrix from pandas.testing import assert_frame_equal, assert_series_equal def _jax_not_installed() -> bool: try: import jax import jaxlib return False except ImportError: return True def _rpy2_mgcv_not_installed() -> bool: try: import rpy2 from packaging import version from rpy2.robjects.packages import PackageNotInstalledError, importr try: from importlib_metadata import version as get_version except ImportError: # >=Python3.8 from importlib.metadata import version as get_version try: assert version.parse(get_version(rpy2.__name__)) >= version.parse("3.3.0") _ = importr("mgcv") return False except (PackageNotInstalledError, AssertionError): pass except ImportError: pass return True def bias_knn( conn: csr_matrix, pseudotime: np.ndarray, n_neighbors: int, k: int = 3, frac_to_keep: Optional[float] = None, ) -> csr_matrix: # frac_to_keep=None mimics original impl. (which mimics Palantir) k_thresh = max(0, min(int(np.floor(n_neighbors / k)) - 1, 30)) conn_biased = conn.copy() # check whether the original graph was connected assert _is_connected(conn), "The underlying KNN graph is disconnected." for i in range(conn.shape[0]): # get indices, values and current pseudo t row_data = conn[i, :].data row_ixs = conn[i, :].indices current_t = pseudotime[i] if frac_to_keep is not None: k_thresh = max(0, min(30, int(np.floor(len(row_data) * frac_to_keep)))) # get the 'candidates' - ixs of nodes not in the k_thresh closest neighbors p = np.flip(np.argsort(row_data)) sorted_ixs = row_ixs[p] cand_ixs = sorted_ixs[k_thresh:] # compare pseudotimes and set indices to zero cand_t = pseudotime[cand_ixs] rem_ixs = cand_ixs[cand_t < current_t] conn_biased[i, rem_ixs] = 0 conn_biased.eliminate_zeros() # check whether the biased graph is still connected assert _is_connected(conn_biased), "The biased KNN graph has become disconnected." return conn_biased def density_normalization(velo_graph, trans_graph): # function copied from scanpy q = np.asarray(trans_graph.sum(axis=0)) if not issparse(trans_graph): Q = np.diag(1.0 / q) else: Q = spdiags(1.0 / q, 0, trans_graph.shape[0], trans_graph.shape[0]) velo_graph = Q @ velo_graph @ Q return velo_graph def _is_connected(c) -> bool: import networkx as nx from scipy.sparse import issparse G = nx.from_scipy_sparse_matrix(c) if issparse(c) else nx.from_numpy_array(c) return nx.is_connected(G) def create_kernels( adata: AnnData, velocity_variances: Optional[str] = None, connectivity_variances: Optional[str] = None, ) -> Tuple[VelocityKernel, ConnectivityKernel]: vk = VelocityKernel(adata) vk._mat_scaler = adata.obsp.get( velocity_variances, np.random.normal(size=(adata.n_obs, adata.n_obs)) ) ck = ConnectivityKernel(adata) ck._mat_scaler = adata.obsp.get( connectivity_variances, np.random.normal(size=(adata.n_obs, adata.n_obs)) ) vk._transition_matrix = csr_matrix(np.eye(adata.n_obs)) ck._transition_matrix = np.eye(adata.n_obs, k=1) / 2 + np.eye(adata.n_obs) / 2 ck._transition_matrix[-1, -1] = 1 ck._transition_matrix = csr_matrix(ck._transition_matrix) np.testing.assert_allclose( np.sum(ck._transition_matrix.A, axis=1), 1 ) # sanity check return vk, ck # TODO: make it a fixture def create_model(adata: AnnData) -> cr.ul.models.SKLearnModel: return cr.ul.models.SKLearnModel(adata, SVR(kernel="rbf")) # TODO: make it a fixture def create_failed_model(adata: AnnData) -> cr.ul.models.FailedModel: return cr.ul.models.FailedModel(create_model(adata), exc="foobar") def resize_images_to_same_sizes( expected_image_path: Union[str, Path], actual_image_path: Union[str, Path], kind: str = "actual_to_expected", ) -> None: if not os.path.isfile(actual_image_path): raise OSError(f"Actual image path `{actual_image_path!r}` does not exist.") if not os.path.isfile(expected_image_path): raise OSError(f"Expected image path `{expected_image_path!r}` does not exist.") expected_image = Image.open(expected_image_path) actual_image = Image.open(actual_image_path) if expected_image.size != actual_image.size: if kind == "actual_to_expected": actual_image.resize(expected_image.size).save(actual_image_path) elif kind == "expected_to_actual": expected_image.resize(actual_image.size).save(expected_image) else: raise ValueError( f"Invalid kind of conversion `{kind!r}`." f"Valid options are `'actual_to_expected'`, `'expected_to_actual'`." ) def assert_array_nan_equal( actual: Union[np.ndarray, pd.Series], expected: Union[np.ndarray, pd.Series] ) -> None: """ Test is 2 arrays or :class:`pandas.Series` are equal. Params ------ actual The actual data. expected The expected result. Returns ------- None Nothing, but raises an exception if arrays are not equal, including the locations of NaN values. """ mask1 = ~(pd.isnull(actual) if isinstance(actual, pd.Series) else np.isnan(actual)) mask2 = ~(
pd.isnull(expected)
pandas.isnull
from __future__ import absolute_import, division, print_function import pytest pytest.importorskip('flask') pytest.importorskip('flask.ext.cors') from base64 import b64encode from copy import copy import datashape from datashape.util.testing import assert_dshape_equal import numpy as np from odo import odo, convert from datetime import datetime import pandas as pd from pandas import DataFrame from pandas.util.testing import assert_frame_equal from toolz import pipe from blaze.dispatch import dispatch from blaze.expr import Expr from blaze.utils import example from blaze import discover, symbol, by, CSV, compute, join, into, data from blaze.server.client import mimetype from blaze.server.server import Server, to_tree, from_tree, RC from blaze.server.serialization import all_formats, trusted_formats, fastmsgpack accounts = DataFrame([['Alice', 100], ['Bob', 200]], columns=['name', 'amount']) cities = DataFrame([['Alice', 'NYC'], ['Bob', 'LA']], columns=['name', 'city']) events = DataFrame([[1, datetime(2000, 1, 1, 12, 0, 0)], [2, datetime(2000, 1, 2, 12, 0, 0)]], columns=['value', 'when']) db = data('sqlite:///' + example('iris.db')) class DumbResource(object): df = DataFrame({'a': np.arange(5), 'b': np.arange(5, 10)}) class NoResource(Exception): pass @convert.register(DataFrame, DumbResource) def dumb_to_df(d, return_df=None, **kwargs): if return_df is None: raise DumbResource.NoResource('return_df must be passed') to_return = odo(return_df, DataFrame, dshape=discover(d)) assert_frame_equal(to_return, DumbResource.df) return to_return @dispatch(Expr, DumbResource) def compute_down(expr, d, **kwargs): return dumb_to_df(d, **kwargs) @discover.register(DumbResource) def _discover_dumb(d): return discover(DumbResource.df) tdata = {'accounts': accounts, 'cities': cities, 'events': events, 'db': db, 'dumb': DumbResource()} @pytest.fixture(scope='module') def server(): s = Server(tdata, all_formats) s.app.testing = True return s @pytest.fixture(scope='module') def add_server(): s = Server(tdata, all_formats, allow_add=True) s.app.testing = True return s @pytest.yield_fixture(params=[None, tdata]) def temp_server(request): """For when we want to mutate the server""" data = request.param s = Server(copy(data), formats=all_formats) s.app.testing = True with s.app.test_client() as c: yield c @pytest.yield_fixture(params=[None, tdata]) def temp_add_server(request): """For when we want to mutate the server, and also add datasets to it.""" data = request.param s = Server(copy(data), formats=all_formats, allow_add=True) s.app.testing = True with s.app.test_client() as c: yield c @pytest.yield_fixture def test(server): with server.app.test_client() as c: yield c @pytest.yield_fixture def test_add(add_server): with add_server.app.test_client() as c: yield c @pytest.yield_fixture def iris_server(): iris = CSV(example('iris.csv')) s = Server(iris, all_formats, allow_add=True) s.app.testing = True with s.app.test_client() as c: yield c def test_datasets(test): response = test.get('/datashape') assert_dshape_equal(datashape.dshape(response.data.decode('utf-8')), datashape.dshape(discover(tdata))) @pytest.mark.parametrize('serial', all_formats) def test_bad_responses(test, serial): post = test.post('/compute/accounts.{name}'.format(name=serial.name), data=serial.dumps(500),) assert 'OK' not in post.status post = test.post('/compute/non-existent-table.{name}'.format(name=serial.name), data=serial.dumps(0)) assert 'OK' not in post.status post = test.post('/compute/accounts.{name}'.format(name=serial.name)) assert 'OK' not in post.status def test_to_from_json(): t = symbol('t', 'var * {name: string, amount: int}') assert from_tree(to_tree(t)).isidentical(t) assert from_tree(to_tree(t.amount + 1)).isidentical(t.amount + 1) def test_to_tree(): t = symbol('t', 'var * {name: string, amount: int32}') expr = t.amount.sum() dshape = datashape.dshape('var * {name: string, amount: int32}',) sum_args = [{'op': 'Field', 'args': [{'op': 'Symbol', 'args': ['t', dshape, 0]}, 'amount']}, [0], False] expected = {'op': 'sum', 'args': sum_args} assert to_tree(expr) == expected @pytest.mark.parametrize('serial', all_formats) def test_to_tree_slice(serial): t = symbol('t', 'var * {name: string, amount: int32}') expr = t[:5] expr2 = pipe(expr, to_tree, serial.dumps, serial.loads, from_tree) assert expr.isidentical(expr2) def test_to_from_tree_namespace(): t = symbol('t', 'var * {name: string, amount: int32}') expr = t.name tree = to_tree(expr, names={t: 't'}) assert tree == {'op': 'Field', 'args': ['t', 'name']} new = from_tree(tree, namespace={'t': t}) assert new.isidentical(expr) def test_from_tree_is_robust_to_unnecessary_namespace(): t = symbol('t', 'var * {name: string, amount: int32}') expr = t.amount + 1 tree = to_tree(expr) # don't use namespace assert from_tree(tree, {'t': t}).isidentical(expr) t = symbol('t', discover(tdata)) @pytest.mark.parametrize('serial', all_formats) def test_compute(test, serial): expr = t.accounts.amount.sum() query = {'expr': to_tree(expr)} expected = 300 response = test.post('/compute', data=serial.dumps(query), headers=mimetype(serial)) assert 'OK' in response.status tdata = serial.loads(response.data) assert serial.data_loads(tdata['data']) == expected assert list(tdata['names']) == ['amount_sum'] @pytest.mark.parametrize('serial', all_formats) def test_get_datetimes(test, serial): expr = t.events query = {'expr': to_tree(expr)} response = test.post('/compute', data=serial.dumps(query), headers=mimetype(serial)) assert 'OK' in response.status tdata = serial.loads(response.data) ds = datashape.dshape(tdata['datashape']) result = into(np.ndarray, serial.data_loads(tdata['data']), dshape=ds) assert into(list, result) == into(list, events) assert list(tdata['names']) == events.columns.tolist() @pytest.mark.parametrize('serial', all_formats) def dont_test_compute_with_namespace(test, serial): query = {'expr': {'op': 'Field', 'args': ['accounts', 'name']}} expected = ['Alice', 'Bob'] response = test.post('/compute', data=serial.dumps(query), headers=mimetype(serial)) assert 'OK' in response.status tdata = serial.loads(response.data) assert serial.data_loads(tdata['data']) == expected assert tdata['names'] == ['name'] iris = CSV(example('iris.csv')) @pytest.mark.parametrize('serial', all_formats) def test_compute_with_variable_in_namespace(iris_server, serial): test = iris_server t = symbol('t', discover(iris)) pl = symbol('pl', 'float32') expr = t[t.petal_length > pl].species tree = to_tree(expr, {pl: 'pl'}) blob = serial.dumps({'expr': tree, 'namespace': {'pl': 5}}) resp = test.post('/compute', data=blob, headers=mimetype(serial)) assert 'OK' in resp.status tdata = serial.loads(resp.data) result = serial.data_loads(tdata['data']) expected = list(compute(expr._subs({pl: 5}), {t: iris})) assert odo(result, list) == expected assert list(tdata['names']) == ['species'] @pytest.mark.parametrize('serial', all_formats) def test_compute_by_with_summary(iris_server, serial): test = iris_server t = symbol('t', discover(iris)) expr = by(t.species, max=t.petal_length.max(), sum=t.petal_width.sum()) tree = to_tree(expr) blob = serial.dumps({'expr': tree}) resp = test.post('/compute', data=blob, headers=mimetype(serial)) assert 'OK' in resp.status tdata = serial.loads(resp.data) result = DataFrame(serial.data_loads(tdata['data'])).values expected = compute(expr, iris).values np.testing.assert_array_equal(result[:, 0], expected[:, 0]) np.testing.assert_array_almost_equal(result[:, 1:], expected[:, 1:]) assert list(tdata['names']) == ['species', 'max', 'sum'] @pytest.mark.parametrize('serial', all_formats) def test_compute_column_wise(iris_server, serial): test = iris_server t = symbol('t', discover(iris)) subexpr = ((t.petal_width / 2 > 0.5) & (t.petal_length / 2 > 0.5)) expr = t[subexpr] tree = to_tree(expr) blob = serial.dumps({'expr': tree}) resp = test.post('/compute', data=blob, headers=mimetype(serial)) assert 'OK' in resp.status tdata = serial.loads(resp.data) result = serial.data_loads(tdata['data']) expected = compute(expr, iris) assert list(map(tuple, into(list, result))) == into(list, expected) assert list(tdata['names']) == t.fields @pytest.mark.parametrize('serial', all_formats) def test_multi_expression_compute(test, serial): s = symbol('s', discover(tdata)) expr = join(s.accounts, s.cities) resp = test.post('/compute', data=serial.dumps({'expr': to_tree(expr)}), headers=mimetype(serial)) assert 'OK' in resp.status respdata = serial.loads(resp.data) result = serial.data_loads(respdata['data']) expected = compute(expr, {s: tdata}) assert list(map(tuple, odo(result, list))) == into(list, expected) assert list(respdata['names']) == expr.fields @pytest.mark.parametrize('serial', all_formats) def test_leaf_symbol(test, serial): query = {'expr': {'op': 'Field', 'args': [':leaf', 'cities']}} resp = test.post('/compute', data=serial.dumps(query), headers=mimetype(serial)) tdata = serial.loads(resp.data) a = serial.data_loads(tdata['data']) b = into(list, cities) assert list(map(tuple, into(list, a))) == b assert list(tdata['names']) == cities.columns.tolist() @pytest.mark.parametrize('serial', all_formats) def test_sqlalchemy_result(test, serial): expr = t.db.iris.head(5) query = {'expr': to_tree(expr)} response = test.post('/compute', data=serial.dumps(query), headers=mimetype(serial)) assert 'OK' in response.status tdata = serial.loads(response.data) result = serial.data_loads(tdata['data']) if isinstance(result, list): assert all(isinstance(item, (tuple, list)) for item in result) elif isinstance(result, DataFrame): expected = DataFrame([[5.1, 3.5, 1.4, 0.2, 'Iris-setosa'], [4.9, 3.0, 1.4, 0.2, 'Iris-setosa'], [4.7, 3.2, 1.3, 0.2, 'Iris-setosa'], [4.6, 3.1, 1.5, 0.2, 'Iris-setosa'], [5.0, 3.6, 1.4, 0.2, 'Iris-setosa']], columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']) assert_frame_equal(expected, result) assert list(tdata['names']) == t.db.iris.fields def test_server_accepts_non_nonzero_ables(): Server(DataFrame()) def serialize_query_with_map_builtin_function(test, serial, fcn): """ serialize a query that invokes the 'map' operation using a builtin function return the result of the post operation along with expected result """ t = symbol('t', discover(iris)) expr = t.species.map(fcn, 'int') query = {'expr': to_tree(expr)} response = test.post('/compute', data=serial.dumps(query), headers=mimetype(serial)) assert 'OK' in response.status respdata = serial.loads(response.data) result = serial.data_loads(respdata['data']) exp_res = compute(expr, {t: iris}, return_type=list) return (exp_res, result) @pytest.mark.parametrize('serial', trusted_formats) def test_map_builtin_client_server(iris_server, serial): exp_res, result = serialize_query_with_map_builtin_function(iris_server, serial, len) # Pass through Series() to canonicalize results. assert (pd.Series(result) == pd.Series(exp_res)).all() @pytest.mark.parametrize('serial', trusted_formats) def test_map_numpy_client_server(iris_server, serial): exp_res, result = serialize_query_with_map_builtin_function(iris_server, serial, np.size) # Pass through Series() to canonicalize results. assert (pd.Series(result) ==
pd.Series(exp_res)
pandas.Series
import requests import time import json import os from tqdm import tqdm import pandas as pd def searchPlace(): '''Get all places' name and vicinity around GPS location point from list of location point. List of location point consists of strings in form [latitude,longitude]. (without square brackets) From each point, Google Places API gets all places info around 70 meters, which ranges circle. Current location file almost covers area of 부산광역시 금정구 장전동. latitude-890 makes area circle move down, longitude+1123 makes area circle move right. ''' filename = "./location" f = open(filename, "r") locationList = [] key = os.environ['GOOGLE_PLACES_KEY'] for location in tqdm(f.readlines()): locationString = location.strip() URL = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params = {'key': key, 'location': locationString, 'radius': 70, 'language': 'ko'} resp = requests.get(URL, params=params) jsonObject = json.loads(resp.text) responseResult = jsonObject.get('results') nextpageToken = jsonObject.get('next_page_token') for loc in responseResult: locationList.append([loc["vicinity"], loc["name"]]) while nextpageToken is not None: time.sleep(2) params = {'key': key, 'pagetoken': nextpageToken, 'language': 'ko'} resp = requests.get(URL, params=params) jsonObject = json.loads(resp.text) responseResult = jsonObject.get('results') nextpageToken = jsonObject.get('next_page_token') for loc in responseResult: locationList.append([loc["vicinity"], loc["name"]]) df =
pd.DataFrame(locationList, columns=['vicinity', 'name'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import tweepy import tqdm import csv import json import time from tqdm import tqdm_notebook as tqdm def makeAuthConnection(): consumerApiKey = 'XXXXXXX' consumerApiSecret = 'XXXXXXX' acessToken = 'XXXXXX' acessTokenSecret = 'XXXXXX' auth = tweepy.OAuthHandler(consumerApiKey, consumerApiSecret) #auth = tweepy.AppAuthHandler(consumerApiKey, consumerApiSecret) auth.set_access_token(acessToken, acessTokenSecret) return tweepy.API(auth , wait_on_rate_limit = True,wait_on_rate_limit_notify = True) # In[3]: api = makeAuthConnection() # for status in tweepy.Cursor(api.search, q='tweepy').items(10): # print(status.text) # In[4]: def checkRemainingSearchCount(): jsonString = api.rate_limit_status()['resources']['search']['/search/tweets'] upperLimit = jsonString['limit'] remiaingFetch = jsonString['remaining'] #resetTime = jsonString['reset']/60000 print (jsonString) return upperLimit,remiaingFetch # In[5]: checkRemainingSearchCount() # This method will generate a file containng the tweets of the data # This uses the tweepy API to fetch the data # TODO This method generate the maxind tweets twice. Will have to check on it. def searchTweetsByHashtag(searchlist): # use this filter to filter the tweets based on the key words -filter:retweets AND -filter:replies searchFilter = ' AND -filter:links and -filter:videos and -filter:retweets' fileName = 'tweetDataset.csv' with open (fileName,'a', newline='',encoding='utf-8') as sampleFile: writer = csv.writer(sampleFile,quoting = csv.QUOTE_NONNUMERIC) try: for searchString in searchlist: search_result = api.search(q=searchString + searchFilter,count=1,lang="en",tweet_mode='extended' , result_type = 'recent') if(len(search_result) == 0): print("*************No data on "+ searchString +" hashtag.***************") else : max_id = search_result[0].id #print("max_id",max_id) old_id = -1 i = 1 while(max_id != old_id): old_id = max_id tweetDic = tweepy.Cursor(api.search,q = searchString + searchFilter ,lang = 'en' ,include_entities=False,tweet_mode='extended',count = 100 ,max_id = max_id).items(300) print("loop count",i) for tweets in tweetDic: jsonString = tweets._json #print(jsonString['id'],jsonString['full_text'].replace('\n', ' ')) csv_row = [jsonString['id'],jsonString['user']['screen_name'],jsonString['retweet_count'] ,jsonString['full_text'].replace('\n', ' ')] # we can also encode the text here to remove emojies from the text. max_id = jsonString['id'] + 1 writer.writerow(csv_row) print("Going to sleep to keep limit to check") time.sleep(3) print("Waking Up") print("*************No more data to exact.*************") except tweepy.TweepError as e: print("Some error!!:"+str(e)) # In[8]: search_criteria = ['#MotichoorChaknachoorReview','#jhalkireview','#FordVsFerrari','#MotherlessBrooklyn' ,'#Charlie\'sAngels','#DoctorSleepReview','#MidwayMovie','#Actionreview','#SangathamizhanReview' ,'#JhalleReview'] searchTweetsByHashtag(search_criteria) # secound File #!/usr/bin/env python # coding: utf-8 # In[46]: import numpy as np import pandas as pd import nltk import matplotlib.pyplot as plt import seaborn as sea import copy import emoji import time as time from nltk.tokenize import TweetTokenizer from nltk.corpus import sentiwordnet as swm from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem import PorterStemmer from wordcloud import WordCloud, STOPWORDS from textblob import TextBlob from afinn import Afinn from statistics import mode # In[47]: data = pd.read_csv('InitialData.csv',header = None) data = data.iloc[:,3] # In[3]: print(data.shape) # # Data Preprocessing # ### Removing handle name and hashtags # In[4]: def dataCleaning(data): # reger for handle, for RT and for URls regexes = ['@[A-Z0-9a-z_:]+','^[RT]+','https?://[A-Za-z0-9./]+','(#\w+)','[!,)(.:*“”""+_’\'?\-]+'] for regex in regexes: data = data.replace(to_replace =regex, value = '', regex = True) data = data.str.strip() data = data.str.lower() return data # In[5]: data = dataCleaning(data) # In[6]: data.tail(10) # ### Encode tweets so as to simplify the Emojis # In[7]: def encodeString(tweets): return tweets.encode('ascii', 'ignore').decode('ascii') # In[8]: data = data.apply(emoji.demojize) # In[9]: data[25] # In[10]: data = data.replace(to_replace ='[_:]+', value = ' ', regex = True) # In[11]: data.iloc[25] # ### Removing dublicate rows # In[12]: def removeDublicate(data): print(data.shape[0]) dublicateRows=data.duplicated().tolist() if len(dublicateRows) > 0: print("Completly Dublicate rows",dublicateRows.count(True)) dublicateRows=data.iloc[:].duplicated().tolist() if len(dublicateRows) > 0: print("Dublicate Tweets",dublicateRows.count(True)) data=data.iloc[:].drop_duplicates() return data; # In[13]: data = removeDublicate(data) print(data.shape) # In[14]: # Remove word which has length less than 3 data = data.apply(lambda x: ' '.join([w for w in x.split() if len(w)>3])) # In[15]: data.tail(20) # ### Tokennization and POS tagging # In[16]: def convertToPosTag(tokens): tagged_sent = nltk.pos_tag(tokens) store_it = [(word, nltk.map_tag('en-ptb', 'universal', tag)) for word, tag in tagged_sent] return store_it # In[17]: tt = TweetTokenizer() tokenizedTweets = data.apply(tt.tokenize) POStaggedLabel = tokenizedTweets.apply(convertToPosTag) POStaggedLabel[0] # In[18]: POStaggedLabel[25] # ### Removing STOP word and lemmatizing the tweets # In[36]: def ConvertToSimplerPosTag(tag): if(tag=='NOUN'): tag='n' elif(tag=='VERB'): tag='v' elif(tag=='ADJ'): tag='a' elif(tag=='ADV'): tag = 'r' else: tag='nothing' return tag # In[37]: stop_words = stopwords.words('english') pstem = PorterStemmer() lem = WordNetLemmatizer() # In[38]: def removeStopWord(row): filteredList = [(i,j) for i,j in row if i not in stop_words ] return filteredList # In[39]: noStopWordList = POStaggedLabel.apply(removeStopWord) # In[42]: def lemmatize(row): lemmatizeWord = [lem.lemmatize(w) for w,tag in row] #,pos= ConvertToSimplerPosTag(tag) return [pstem.stem(i) for i in lemmatizeWord] # In[43]: lemmatizedDF = noStopWordList.apply(lemmatize) # In[44]: lemmatizedDF.head() # # Ground Truth Labling # In[48]: modelType = ["Text Blob","SentiWordNet","Afinn",'Combined'] negative = [] neutral = [] positive =[] # ### Labeling the tweets with TextBlob # In[49]: def getLabels(row): polarity = TextBlob(" ".join(row)).sentiment.polarity return 1 if polarity > 0 else 0 if polarity == 0 else -1 # In[50]: SetimentLabel = tokenizedTweets.apply(getLabels) # In[51]: valueCountSentiment = SetimentLabel.value_counts() # In[52]: print(valueCountSentiment.sort_index()) count = list(valueCountSentiment.sort_index()) # In[53]: print(count) negative.append(count[0]) neutral.append(count[1]) positive.append(count[2]) # ### Labeling the tweets with sentiwordnet # In[54]: def ConvertToSimplerPosTag(tag): if(tag=='NOUN'): tag='n' elif(tag=='VERB'): tag='v' elif(tag=='ADJ'): tag='a' elif(tag=='ADV'): tag = 'r' else: tag='nothing' return tag # In[55]: def getSentimentOfWorld(row): positiveScore = [] negativeScore = [] for word ,tag in row: try: tag = ConvertToSimplerPosTag(tag) if(tag!='nothing'): concat = word+'.'+ tag+ '.01' positiveScore.append(swm.senti_synset(concat).pos_score()) negativeScore.append(swm.senti_synset(concat).neg_score()) except Exception as e: #print (e) #print("An exception occurred") pstem = PorterStemmer() lem = WordNetLemmatizer() word = lem.lemmatize(word) word = pstem.stem(word) concat = word+'.'+ tag+ '.01' try: positiveScore.append(swm.senti_synset(concat).pos_score()) negativeScore.append(swm.senti_synset(concat).neg_score()) except Exception as ex: pass #print("Nested error.") #continue postiveScoreTotal = np.sum(positiveScore) negativeScoreTotal = np.sum(negativeScore) if(postiveScoreTotal > negativeScoreTotal) : return 1 elif (postiveScoreTotal < negativeScoreTotal) : return -1 else: return 0 # In[56]: sentiDF = POStaggedLabel.apply(getSentimentOfWorld) # In[57]: count = list(sentiDF.value_counts().sort_index()) # In[58]: print(count) negative.append(count[0]) neutral.append(count[1]) positive.append(count[2]) # ### Labeling Tweets with AFINN # In[59]: def getSentimentAfinn(row): af = Afinn() polarity = af.score(" ".join(row)) return 1 if polarity > 0 else 0 if polarity == 0 else -1 # In[60]: AfinnLabel = tokenizedTweets.apply(getSentimentAfinn) # In[61]: count=list(AfinnLabel.value_counts().sort_values()) print(count) negative.append(count[0]) neutral.append(count[1]) positive.append(count[2]) # # Combing the result of All the sentiment analysor above # In[62]: def assignLabel(row): notAssigned = [] try: return mode(row) except Exception as ex: return row[1] # In[63]: combineLabel = pd.concat([SetimentLabel ,sentiDF, AfinnLabel ] , axis = 1,sort=False) combineLabel.columns = [1,2,3] # In[64]: yLabel= combineLabel.apply(assignLabel,axis =1) # In[65]: count = list(yLabel.value_counts().sort_values()) negative.append(count[0]) neutral.append(count[1]) positive.append(count[2]) # In[66]: print(len(yLabel)) print(len(lemmatizedDF)) # In[67]: def autolabel(ax,rects, xpos='center'): ha = {'center': 'center', 'right': 'left', 'left': 'right'} offset = {'center': 0, 'right': 1, 'left': -1} for rect in rects: height = float("{0:.2f}".format(rect.get_height())) height = int(height) ax.annotate('{}'.format(height),xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(offset[xpos]*3, 3), # use 3 points offset textcoords="offset points", # in both directions ha=ha[xpos], va='bottom') # In[96]: def plotComparisionGraph(modelType,negative,neutral,positive,endValue): print(len(negative)) ind = np.array([i for i in range(3,endValue,3)]) # the x locations for the groups print(ind) width = 0.65 # the width of the bars fig, ax = plt.subplots(figsize = (6,5) ) rects1 = ax.bar(ind- width , negative, width,label='Accuracy') #yerr=men_std rects2 = ax.bar(ind, neutral, width, label='Precision') #yerr=women_std, rects3 = ax.bar(ind+ width, positive, width, label='Recall') #yerr=women_std, #rects4 = ax.bar(ind+ (1.5*width), f1ScoreList, width, label='F1-Score') #yerr=women_std, # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Count') #ax.set_title('Count comparision between differnet Lexicon Model') ax.set_xticks(ind) ax.set_xticklabels(modelType) ax.legend(loc='upper center', bbox_to_anchor=(0.90, 0.8), ncol=1) #shadow=True autolabel(ax,rects1, "center") autolabel(ax,rects2, "center") autolabel(ax,rects3, "center") #autolabel(ax,rects4, "center") #fig.tight_layout() plt.show() # In[97]: plotComparisionGraph(modelType,negative,neutral,positive,13) # ### Visualize with the help of WorldCloud # In[60]: def plotWorldCould(Flattenlist,label): plt.rcParams['figure.figsize']=(10.0,8.0) plt.rcParams['font.size']=10 stopwords = set(STOPWORDS) text = " ".join(tweet for tweet in [" ".join(i) for i in Flattenlist]) #print(text) print ("There are {} words in the combination of all tweets.".format(len(text))) wordcloud = WordCloud( background_color='black', stopwords=stopwords, max_words=250, max_font_size=50, width=500, height=300, random_state=42 ).generate(str(text)) fig = plt.figure(1) plt.imshow(wordcloud) plt.axis('off') plt.title(label) plt.show() #fig.savefig("word1.png", dpi=1400) # In[61]: # seperate the positive and negative data #yLabel = SetimentLabel.to_numpy() # In[62]: def visualizedWordCloud(lemmatizedDF,yLabel): # Ploting Tweets pos = np.where(yLabel == 0)[0] print(len(pos)) neutralTweets = lemmatizedDF.iloc[pos] plotWorldCould(neutralTweets,"Neutral") #Ploting Positive tweets pos = np.where(yLabel == 1)[0] print(len(pos)) print(len(lemmatizedDF)) positiveTweets = lemmatizedDF.iloc[pos] plotWorldCould(positiveTweets,"Positive Word") #Ploting negative pos = np.where(yLabel == -1)[0] print(len(pos)) negativeTweets = lemmatizedDF.iloc[pos] plotWorldCould(negativeTweets,"Negative Word") # In[63]: visualizedWordCloud(lemmatizedDF,yLabel) # # Removing Common words from the tweets # In[64]: def removeWords(row): unwantedWord =['watch','film','movi','review'] row = [i for i in row if i not in unwantedWord] return row # In[65]: lemmatizedDF = lemmatizedDF.apply(removeWords) # In[66]: #Re-visualized visualizedWordCloud(lemmatizedDF,yLabel) # # Saving PrepossedDF to CSV #lemmatizedDF joinedTweet = lemmatizedDF.apply(lambda x: str(" ".join(x))) data = pd.concat([joinedTweet,yLabel],axis = 1 ) data.columns = ['tweets','label'] data.to_csv('PrepeocessedFile.csv', index=False) #3rd File #!/usr/bin/env python # coding: utf-8 # In[53]: import math import pandas as pd import numpy as np import time as time import matplotlib.pyplot as plt from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer import operator from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.utils import resample from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import recall_score from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize from nltk.tokenize import TweetTokenizer from tqdm import tqdm_notebook as tqdm # In[54]: def readData(fileName): data = pd.read_csv(fileName) return data # In[55]: data = readData('PrepeocessedFile.csv') # In[56]: #data['tweets']= data['tweets'].apply(list) data['label'].value_counts() # In[57]: xData = data.iloc[:,0] yLabel = data.iloc[:,1] # # Vectorized data # In[6]: vectorizedType = ['CV_1G','CV_2G','CV_3G','TV_1G','TV_2G','TV_3G'] accuracyList =[] precisionList =[] recallList =[] f1ScoreList = [] # In[7]: def plotCount(words,wordCount): plt.figure(figsize=(8,6)) plt.bar(words[:10],wordCount[:10]) plt.xlabel('Words') plt.ylabel('Frequency') plt.title('Top words - Count Vectorizer') plt.show() # In[8]: def testVectorizationNaiveBias(vectorisedData,yLabel): xTrain, xTest, yTrain, yTest = train_test_split(vectorisedData, yLabel, test_size=0.25, random_state=27) #initialize Model NaiveModel = GaussianNB() NaiveModel.fit(xTrain,yTrain) predictedTrain = NaiveModel.predict(xTrain) predictedTest = NaiveModel.predict(xTest) accuracyTest = accuracy_score(predictedTest,list(yTest)) precisionTest = precision_score(predictedTest,list(yTest),average = 'macro') recallTest = recall_score(predictedTest,list(yTest),average = 'macro') f1Score = f1_score(predictedTest,list(yTest),average = 'macro') print("Accuracy on Training",accuracy_score(predictedTrain,list(yTrain))) print("Accuracy on Testing Set",accuracyTest) print("Precision on Testing Set",precisionTest) print("Recall on Testing Set",recallTest) print("F1 score on Testing Set",f1Score) return accuracyTest,precisionTest,recallTest,f1Score # ### Vectorized with CountVector # In[9]: def countVectorize(xData,ngramRange): cv=CountVectorizer(decode_error='ignore',lowercase=True,analyzer = 'word',ngram_range = ngramRange,max_features = 600 ) x_traincv=cv.fit_transform(xData) x_trainCountVector = x_traincv.toarray() columnsName = cv.get_feature_names() ColwiseSum=x_trainCountVector.sum(axis=0) wordCountPair = sorted(zip(columnsName,ColwiseSum),key=lambda pair: pair[1],reverse=True) word = [x for x,y in wordCountPair] counts = [y for x,y in wordCountPair] plotCount(word,counts) return x_trainCountVector # In[10]: ngramList = [(1,1),(1,2),(1,3)] for ngramrange in ngramList: vectorisedData = countVectorize(xData,ngramrange) accuracyTest,precisionTest,recallTest,f1Score = testVectorizationNaiveBias(vectorisedData,yLabel) accuracyList.append(accuracyTest) precisionList.append(precisionTest) recallList.append(recallTest) f1ScoreList.append(f1Score) # ### Vectorized with tfidfVectorized # In[11]: def tfidfVectorize(xData,ngramRange): cv=TfidfVectorizer(decode_error='ignore',lowercase=True,analyzer = 'word',ngram_range = ngramRange,max_features = 600 ) x_traincv=cv.fit_transform(xData) x_trainCountVector = x_traincv.toarray() columnsName = cv.get_feature_names() ColwiseSum=x_trainCountVector.sum(axis=0) wordCountPair = sorted(zip(columnsName,ColwiseSum),key=lambda pair: pair[1],reverse=True) word = [x for x,y in wordCountPair] counts = [y for x,y in wordCountPair] plotCount(word,counts) return x_trainCountVector # In[12]: ngramList = [(1,1),(1,2),(1,3)] for ngramrange in ngramList: vectorisedData = tfidfVectorize(xData,ngramrange) accuracyTest,precisionTest,recallTest,f1Score = testVectorizationNaiveBias(vectorisedData,yLabel) accuracyList.append(accuracyTest) precisionList.append(precisionTest) recallList.append(recallTest) f1ScoreList.append(f1Score) # In[13]: def autolabel(ax,rects, xpos='center'): ha = {'center': 'center', 'right': 'left', 'left': 'right'} offset = {'center': 0, 'right': 1, 'left': -1} for rect in rects: height = float("{0:.2f}".format(rect.get_height())) ax.annotate('{}'.format(height),xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(offset[xpos]*3, 3), # use 3 points offset textcoords="offset points", # in both directions ha=ha[xpos], va='bottom') # In[14]: def plotComparisionGraph(vectorizedType,accuracyList,precisionList,recallList,f1ScoreList,endValue): print(accuracyList) ind = np.array([i for i in range(3,endValue,3)]) # the x locations for the groups print(ind) width = 0.55 # the width of the bars fig, ax = plt.subplots(figsize = (8,6) ) rects1 = ax.bar(ind- (1.5*width) , accuracyList, width,label='Accuracy') #yerr=men_std rects2 = ax.bar(ind- width/2, precisionList, width, label='Precision') #yerr=women_std, rects3 = ax.bar(ind+ width/2, recallList, width, label='Recall') #yerr=women_std, rects4 = ax.bar(ind+ (1.5*width), f1ScoreList, width, label='F1-Score') #yerr=women_std, # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Scores') ax.set_title('Comparision between different metrics') ax.set_xticks(ind) ax.set_xticklabels(vectorizedType) ax.legend(loc='upper center', bbox_to_anchor=(0.9, 0.5), ncol=1) #shadow=True autolabel(ax,rects1, "center") autolabel(ax,rects2, "center") autolabel(ax,rects3, "center") autolabel(ax,rects4, "center") fig.tight_layout() plt.show() # In[15]: plotComparisionGraph(vectorizedType,accuracyList,precisionList,recallList,f1ScoreList,19) # ### DocToVec vectorization # In[16]: tt = TweetTokenizer() tokenizedData = xData.apply(tt.tokenize) # In[17]: def extractVector(model,rows,col): vector = np.zeros((rows,col)) for i in range(rows): vector[i] = model.docvecs[i] return vector # In[18]: def docToVec(vec_type,tokenizedData): max_epochs = 10 vec_size = 200 alpha = 0.0025 #tagging the words to give tags taggedData = [TaggedDocument(data, tags=[str(i)]) for i,data in enumerate(tokenizedData)] #Using DoctoVec model modle = None if vec_type == 'DBOW': model = Doc2Vec(dm =0,vector_size=vec_size,alpha=alpha,negative = 5,min_alpha=0.00025,min_count=1,workers = 3) elif vec_type == 'DMC': model = Doc2Vec(dm =0,dm_concat=1,vector_size=vec_size,alpha=alpha,negative = 5 ,min_alpha=0.00025,min_count=1,workers = 3) else: model = Doc2Vec(dm=1,dm_mean=1,vector_size=vec_size,alpha=alpha,negative = 5 ,min_alpha=0.00025,min_count=1,workers = 3) model.build_vocab(taggedData) for epoch in tqdm(range(max_epochs)): model.train(taggedData,total_examples=model.corpus_count,epochs=model.iter) model.alpha -= 0.0002 model.min_alpha = model.alpha #retreve Vectors return extractVector(model,len(taggedData),vec_size) # In[19]: doc2VecType = ['DBOW','DMC','DMM'] daccuracyList =[] dprecisionList =[] drecallList =[] df1ScoreList = [] for i in range(3): vectorizedData = docToVec(doc2VecType[2],tokenizedData) accuracy,Precison,Recall,f1 = testVectorizationNaiveBias(vectorisedData,yLabel) daccuracyList.append(accuracyTest) dprecisionList.append(precisionTest) drecallList.append(recallTest) df1ScoreList.append(f1Score) # In[20]: plotComparisionGraph(doc2VecType,daccuracyList,dprecisionList,drecallList,df1ScoreList,10) # ### Finally taking TFIDF with 1-Gram # In[58]: vectorisedData = tfidfVectorize(xData,(1,2)) vectorisedData = pd.DataFrame(vectorisedData) # # Dealing with unbalances dataset # ### Note Plot the graph to show that there is a umbalances dataset # In[59]: X_train, X_test, y_train, y_test = train_test_split(vectorisedData, yLabel, test_size=0.25,stratify=yLabel ,random_state=27) # In[62]: print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape) # In[24]: def HandleUnbalancedDataSet(X_train, y_train,samplesize): X =
pd.concat([X_train, y_train], axis=1)
pandas.concat
import pandas as pd from sklearn.decomposition import PCA x_train = pd.read_csv('X_train.csv', index_col=0).drop(['member_id', 'id', 'pymnt_plan', 'policy_code', 'url'], axis=1) # last_pymnt_d : 81 => 13 dim # issue_d : 78 => 13 dim # last_credit_pull_d : 81 => 13 dim # earliest_cr_line : 758 => 13 dim X_train['issue_d'] = X_train['issue_d'].apply(lambda x: str(x)[:3]) x_train['issue_d'] = x_train['issue_d'].apply(lambda x: str(x)[:3]) x_train['last_pymnt_d'] = x_train['last_pymnt_d'].apply(lambda x: str(x)[:3]) x_train['last_credit_pull_d'] = x_train['last_credit_pull_d'].apply(lambda x: str(x)[:3]) x_train['earliest_cr_line'] = x_train['earliest_cr_line'].apply(lambda x: str(x)[:3]) x_train_one_hot = pd.get_dummies(x_train[['grade','sub_grade','home_ownership','verification_status','purpose', 'addr_state','initial_list_status','emp_length','application_type', 'verification_status_joint','hardship_flag','hardship_type','hardship_reason', 'hardship_status','hardship_loan_status','debt_settlement_flag', 'settlement_status']], dummy_na=True) x_train_one_hot = pd.concat([x_train_one_hot, pd.get_dummies(x_train[['issue_d','last_pymnt_d','last_credit_pull_d', 'earliest_cr_line']])], axis=1) x_train_one_hot = x_train_one_hot.astype('float') x_test =
pd.read_csv('X_test.csv', index_col=0)
pandas.read_csv
import numpy as np import pytest from pandas import ( DatetimeIndex, IntervalIndex, NaT, Period, Series, Timestamp, ) import pandas._testing as tm class TestDropna: def test_dropna_empty(self): ser = Series([], dtype=object) assert len(ser.dropna()) == 0 return_value = ser.dropna(inplace=True) assert return_value is None assert len(ser) == 0 # invalid axis msg = "No axis named 1 for object type Series" with pytest.raises(ValueError, match=msg): ser.dropna(axis=1) def test_dropna_preserve_name(self, datetime_series): datetime_series[:5] = np.nan result = datetime_series.dropna() assert result.name == datetime_series.name name = datetime_series.name ts = datetime_series.copy() return_value = ts.dropna(inplace=True) assert return_value is None assert ts.name == name def test_dropna_no_nan(self): for ser in [ Series([1, 2, 3], name="x"), Series([False, True, False], name="x"), ]: result = ser.dropna() tm.assert_series_equal(result, ser) assert result is not ser s2 = ser.copy() return_value = s2.dropna(inplace=True) assert return_value is None tm.assert_series_equal(s2, ser) def test_dropna_intervals(self): ser = Series( [np.nan, 1, 2, 3], IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]), ) result = ser.dropna() expected = ser.iloc[1:] tm.assert_series_equal(result, expected) def test_dropna_period_dtype(self): # GH#13737 ser = Series([Period("2011-01", freq="M"),
Period("NaT", freq="M")
pandas.Period
import sys import os import logging import datetime import pandas as pd from job import Job, Trace from policies import ShortestJobFirst, FirstInFirstOut, ShortestRemainingTimeFirst, QuasiShortestServiceFirst sys.path.append('..') def simulate_vc(trace, vc, placement, log_dir, policy, logger, start_ts, *args): if policy == 'sjf': scheduler = ShortestJobFirst( trace, vc, placement, log_dir, logger, start_ts) elif policy == 'fifo': scheduler = FirstInFirstOut( trace, vc, placement, log_dir, logger, start_ts) elif policy == 'srtf': scheduler = ShortestRemainingTimeFirst( trace, vc, placement, log_dir, logger, start_ts) elif policy == 'qssf': scheduler = QuasiShortestServiceFirst( trace, vc, placement, log_dir, logger, start_ts, args[0]) scheduler.simulate() logger.info(f'Finish {vc.vc_name}') return True def get_available_schedulers(): return ['fifo', 'sjf', 'srtf', 'qssf'] def get_available_placers(): return ['random', 'consolidate', 'consolidateFirst'] def trace_process(dir, date_range): start = '2020-04-01 00:00:00' df = pd.read_csv(dir+'/cluster_log.csv', parse_dates=['submit_time'], usecols=['job_id', 'user', 'vc', 'jobname', 'gpu_num', 'cpu_num', 'state', 'submit_time', 'duration']) # Consider gpu jobs only df = df[df['gpu_num'] > 0] # VC filter vc_dict = pd.read_pickle(dir+'/vc_dict_homo.pkl') vc_list = vc_dict.keys() df = df[df['vc'].isin(vc_list)] df = df[df['submit_time'] >= pd.Timestamp(start)] df['submit_time'] = df['submit_time'].apply( lambda x: int(datetime.datetime.timestamp(pd.Timestamp(x)))) # Normalizing df['submit_time'] = df['submit_time'] - df.iloc[0]['submit_time'] df['remain'] = df['duration'] df[['start_time', 'end_time']] = sys.maxsize df[['ckpt_times', 'queue', 'jct']] = 0 df['status'] = None # Slicing simulation part begin = (pd.Timestamp(date_range[0])-pd.Timestamp(start)).total_seconds() end = (pd.Timestamp(date_range[1])-pd.Timestamp(start)).total_seconds() df = df[(df['submit_time'] >= begin) & (df['submit_time'] <= end)] df.sort_values(by='submit_time', inplace=True) df.reset_index(inplace=True, drop=True) return df, begin def trace_philly_process(dir, date_range): start = '2017-10-01 00:00:00' df = pd.read_csv(dir+'/cluster_log.csv', parse_dates=['submit_time'], usecols=['user', 'vc', 'jobname', 'gpu_num', 'state', 'submit_time', 'duration']) # Consider gpu jobs only df = df[df['gpu_num'] > 0] # VC filter vc_dict = pd.read_pickle(dir+'/vc_dict_homo.pkl') vc_list = vc_dict.keys() df = df[df['vc'].isin(vc_list)] df = df[df['submit_time'] >= pd.Timestamp(start)] df['submit_time'] = df['submit_time'].apply( lambda x: int(datetime.datetime.timestamp(
pd.Timestamp(x)
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Fri Sep 24 09:54:59 2021 @author: Gary This set of routines is used to assist in the curation of IngredientName. """ import numpy as np import pandas as pd import difflib as dl import build_common sources = build_common.get_transformed_dir() # nonspdf = pd.read_csv('./sources/IngName_non-specific_list.csv',quotechar='$', # encoding='utf-8') # ctsyndf = pd.read_csv('./sources/CAS_synonyms_CompTox.csv',quotechar='$', # encoding='utf-8') # ctsyndf = ctsyndf[~ctsyndf.duplicated()] # sfsyndf = pd.read_csv('./sources/CAS_synonyms.csv',quotechar='$', # encoding='utf-8') # ING_to_curate = pd.read_csv('./tmp/ING_to_curate.csv',quotechar='$',encoding='utf-8') # ING_curated = pd.read_csv('./sources/ING_curated.csv',quotechar='$',encoding='utf-8') # fullscan_df = pd.read_csv('./sources/ING_fullscan.csv',quotechar='$',encoding='utf-8') # t = pd.merge(ING_to_curate,ING_curated[['IngredientName']],on='IngredientName', # how='outer',indicator=True) # ING_to_curate = t[t['_merge']=='left_only'] # print(f'Number of Names to curate: {len(ING_to_curate)}') # create ref dictionary # Text/syn : (curation_code, [(casnum,source), casnum,source)]) def add_to_ref(dic,txt,curcode,casnum,source): if txt=='': # don't add empty strings return dic if txt in dic.keys(): if len(txt)<1: print(txt) # add to existing entry. NOTE THAT LAST INSTANCE FOR AN ENTRY IS # THE GIVEN PRIMACY by writing over previous curcodes prev = dic[txt] new = prev[1] new.append((casnum,source)) dic[txt] = (curcode,new) else: dic[txt] = (curcode,[(casnum,source)]) return dic def summarize_refs(ref): for item in ref: lst = ref[item][1] lbl = ref[item][0] if len(lst)>1: # may need to adjust curation code first = lst[0][0] for l in lst[1:]: if l[0]!=first: lbl = 'non_spec' ref[item] = (lbl, lst) #print(f'adjusted {item} to non_specific') break return ref def ref_stats(dic): cntr =0 for item in dic: if len(dic[item][1])>1: cntr+=1 return cntr def build_refdic(): refdic = {} nonspdf = pd.read_csv(sources+'IngName_non-specific_list.csv',quotechar='$', encoding='utf-8') ctsyndf = pd.read_csv(sources+'CAS_synonyms_CompTox.csv',quotechar='$', encoding='utf-8') ctsyndf = ctsyndf[~ctsyndf.duplicated()] sfsyndf = pd.read_csv(sources+'CAS_synonyms.csv',quotechar='$', encoding='utf-8') # build refdic, one ref set at a time print('scifinder to refdic...') for i,row in sfsyndf.iterrows(): refdic = add_to_ref(refdic, row.synonym, 'CASsyn', row.cas_number, 'scifinder') print('comptox to refdic...') for i,row in ctsyndf.iterrows(): refdic = add_to_ref(refdic, row.synonym, 'CASsyn', row.cas_number, 'comptox') print('nonspec to refdic...') for i,row in nonspdf.iterrows(): refdic = add_to_ref(refdic, row.non_specific_code, 'non_spec', np.NaN, row.source) print(f'Len of refdic {len(refdic)}, num of multiple refs/item: {ref_stats(refdic)}') return summarize_refs(refdic) def add_curated_record(record,ING_curated): t = pd.concat([record,ING_curated],sort=True) return t def save_curated_df(ING_curated): t = ING_curated[['IngredientName','recog_syn','prospect_CAS_fromIng','syn_code','match_ratio', 'alt_CAS','first_date','change_date','change_comment', ]] t.to_csv('./tmp/ING_curated_NEW.csv',index=False,quotechar="$",encoding='utf-8') return t def make_record(IngN='unk',recog_syn='unk',prospect_CAS='unk',syn_code='unk',match_ratio=0, alt1_CAS='unk',alt1_syn='unk'): return pd.DataFrame({'IngredientName':[IngN], 'is_new':True, 'recog_syn':[recog_syn], 'prospect_CAS_fromIng':[prospect_CAS], 'syn_code':[syn_code], 'match_ratio':[match_ratio], 'alt_CAS':[alt1_CAS]}) def add_fullscan_record(record,fs_df): t = pd.concat([record,fs_df],sort=True) t = t[['IngredientName','recog_syn','prospect_CAS','syn_code','match_ratio']] t.to_csv('./tmp/ING_fullscan_NEW.csv',index=False,quotechar="$",encoding='utf-8') return t def make_fullscan_record(IngN='unk',recog_syn='unk',prospect_CAS='unk' ,syn_code='unk',match_ratio=0): return pd.DataFrame({'IngredientName':[IngN], 'recog_syn':[recog_syn], 'prospect_CAS':[prospect_CAS], 'syn_code':[syn_code], 'match_ratio':[match_ratio]},) def full_scan(to_curate,refdic,fs_df): # used to scan the classify the entire list of IngNames. This will take # a significant amt of time for each entry. ingwords = to_curate[to_curate.IngredientName.notna()].IngredientName.tolist() ref = list(refdic.keys()) for cntr,i in enumerate(ingwords): print(f'\n\n< {i} >') d = dl.get_close_matches(i, ref,cutoff=0.85,n=3) # if len(d)==0: print(f'No matches ({cntr})') rec = make_fullscan_record(i,'no match','non_spec','non_spec',0) fs_df = add_fullscan_record(rec, fs_df) if len(d)>0: for cnt,match in enumerate(d): print(f'match {cnt} ({cntr})') print(refdic[match]) mat = refdic[d[cnt]] ratio = dl.SequenceMatcher(a=i,b=match).ratio() if mat[0] == 'non_spec': rec = make_fullscan_record(i,d[cnt],'non_spec','non_spec',ratio) else: rec = make_fullscan_record(i,d[cnt],mat[1][0][0],mat[0],ratio) fs_df = add_fullscan_record(rec, fs_df) return fs_df def analyze_fullscan(fs_df,ING_curated): #,useNEW=True): # if useNEW: # fs_df = pd.read_csv('./tmp/ING_fullscan_NEW.csv',quotechar='$',encoding='utf-8') gb1 = fs_df.groupby('IngredientName',as_index=False)['match_ratio'].max() gb1.columns = ['IngredientName','max_ratio'] fs_df = pd.merge(fs_df,gb1,on='IngredientName',how='left') no_match = gb1[gb1.max_ratio<0.95].IngredientName.unique().tolist() perfect = gb1[gb1.max_ratio==1].IngredientName.unique().tolist() # ---- store no_matches: print('parsing Names with no matches') for ing in no_match: record = make_record(IngN=ing,prospect_CAS='non_spec',syn_code='no_match') ING_curated = add_curated_record(record, ING_curated) # ---- store perfect matches: print('parsing Names with perfect matches') gb = fs_df[fs_df.match_ratio==1].groupby('IngredientName',as_index=False)['prospect_CAS'].first() gb.columns = ['IngredientName','topCAS'] fs2 = pd.merge(fs_df,gb,on='IngredientName',how='left') c1 = fs2.prospect_CAS!=fs2.topCAS c2 = fs2.match_ratio>=0.95 gb2 = fs2[c1&c2].groupby('IngredientName')['prospect_CAS'].apply(set).apply(list).reset_index() gb2.columns = ['IngredientName','alt1_CAS'] fs2 = pd.merge(fs2,gb2,on='IngredientName',how='left') for i,row in fs2[fs2.match_ratio==1].iterrows(): record = make_record(IngN=row.IngredientName, prospect_CAS=row.prospect_CAS, recog_syn = row.recog_syn, syn_code='perfect', match_ratio=row.match_ratio, alt1_CAS=row.alt1_CAS) ING_curated = add_curated_record(record, ING_curated) # ---- find and store matches that are less than perfect print('parsing close and conflicting matches') c1 = fs_df.IngredientName.isin(no_match) c2 = fs_df.IngredientName.isin(perfect) fs3 = fs_df[(~c1)&(~c2)].copy() # the rest of the list gb = fs3.groupby(['IngredientName','prospect_CAS'],as_index=False)['match_ratio'].max() gb1 = gb.groupby('IngredientName',as_index=False)['match_ratio'].max() gb1.columns = ['IngredientName','max_ratio'] mg = pd.merge(gb,gb1,on='IngredientName',how='left') mg['ratdiff'] = mg.max_ratio-mg.match_ratio #mg = mg[mg.match_ratio!=mg.max_ratio] mg = mg[mg.ratdiff<0.05] gbwithin = mg.groupby('IngredientName',as_index=False)['prospect_CAS'].count() gbwithin.columns = ['IngredientName','numprospect'] #mg = pd.merge(mg,gbwithin,on='IngredientName',how='left') gbalt = mg.groupby('IngredientName')['prospect_CAS'].apply(list).reset_index() gbalt.columns = ['IngredientName','alt1_CAS'] t = fs3.sort_values('match_ratio', ascending=False).drop_duplicates('IngredientName') t = pd.merge(t,gbalt,on='IngredientName',how='left') t = fs3.sort_values('match_ratio', ascending=False).drop_duplicates('IngredientName') t =
pd.merge(t,gbalt,on='IngredientName',how='left')
pandas.merge
# use for environment variables import os # use if needed to pass args to external modules import sys # used for math functions import math # used to create threads & dynamic loading of modules import threading import multiprocessing import importlib # used for directory handling import glob #discord needs import request import requests #redis import redis # Added for WebSocket Support import pandas as pd import pandas_ta as ta import websocket, pprint import ccxt import logging # Needed for colorful console output Install with: python3 -m pip install colorama (Mac/Linux) or pip install colorama (PC) from colorama import init init() # needed for the binance API / websockets / Exception handling from binance.client import Client from binance.exceptions import BinanceAPIException from binance.helpers import round_step_size from requests.exceptions import ReadTimeout, ConnectionError # used for dates from datetime import date, datetime, timedelta import time # used to repeatedly execute the code from itertools import count # used to store trades and sell assets import json # used to display holding coins in an ascii table from prettytable import PrettyTable # Load helper modules from helpers.parameters import ( parse_args, load_config ) # Load creds modules from helpers.handle_creds import ( load_correct_creds, test_api_key, load_discord_creds ) # my helper utils from helpers.os_utils import(rchop) from threading import Thread, Event # logging needed otherwise slient fails logger = logging.getLogger('websocket') logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) def InitializeDataFeed(): ####################################### # (a) Create redis database # (b) Define watch list and create a row for every coin # (c) Open Web socket to start collecting market data into the redis database # TO DO: Review: Looking at 3 things - SOCKET_LIST - bookTicker and aggTrade are pretty busy # ###################################### SOCKET_URL= "wss://stream.binance.com:9443/ws/" SOCKET_LIST = ["coin@bookTicker","coin@kline_1m","coin@aggTrade"] current_ticker_list = [] #------------------------------------------------------------------------------- # (a) Create redis database (MarketData) with a hash and list collection # Hash Keys: L1:{Coin} -> which has Level 1 market data fields, see MarketDataRec # list Keys: L1 -> L1:{Coin} # Why: I added the list sorting of the hash, otherwise I could not sort # (b) Define watch list of coins we want to monitor, see SOCKET_LIST + current_ticker_list CoinsCounter = 0 tickers = [line.strip() for line in open(TICKERS_LIST)] print( str(datetime.now()) + " :Preparing watch list defined in tickers file...") for item in tickers: #Create Dataframes with coins coin = item + PAIR_WITH data = {'symbol': coin} MarketDataRec = {'symbol': coin , 'open': CoinsCounter, 'high': -1, 'low': -1, 'close': -1, 'potential' : -1, 'interval' : -1,'LastPx' : -1,'LastQty': -1,'BBPx': -1,'BBQty': -1,'BAPx': -1,'BAQty': -1,'updated' : -1} MarketData.hmset("L1:"+coin, MarketDataRec) MarketData.lpush("L1", "L1:"+coin) #get_data_frame(coin) #Needs to move out coinlist= [sub.replace('coin', coin.lower()) for sub in SOCKET_LIST] current_ticker_list.extend(coinlist) CoinsCounter += 1 print(f'{str(datetime.now())}: Total Coins: {CoinsCounter}') if DEBUG: start = datetime.now() #Example sort and iterate thru the hash collection GetCoinsInOrder = MarketData.sort('L1',alpha=True,desc=False,by='*->open') for key in GetCoinsInOrder: data = MarketData.hgetall(key) print(data) print('---scan--') end = datetime.now() print(str('queried in ' + str(end - start) + ' with sort.')) print (current_ticker_list) #------------------------------------------------------------------------------- # (c) Create a Web Socket to get the market data SOCKET = SOCKET_URL + '/'.join(current_ticker_list) print( str(datetime.now()) + " :Connecting to WebSocket ...") if DEBUG: print( str(datetime.now()) + " :Connecting to WebSocket " + SOCKET + " ...") web_socket_app = websocket.WebSocketApp(SOCKET, header=['User-Agent: Python'], on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open) web_socket_app.run_forever() web_socket_app.close() #------------------------------------------------------------------------------- def is_nan(x): return (x == -1 ) def get_data_frame(symbol): global MarketPriceFrames exchange = ccxt.binance() timeframes = ['5m','15m','4h', '1d'] for item in timeframes: macd = exchange.fetch_ohlcv(symbol, timeframe=item, limit=36) df1 =
pd.DataFrame(macd, columns=['time', 'open', 'high', 'low', 'close', 'volume'])
pandas.DataFrame
import boto3, argparse, subprocess, sys import pandas as pd import numpy as np from sklearn.model_selection import train_test_split def pip_install(package): subprocess.call([sys.executable, "-m", "pip", "install", package]) pip_install('sagemaker') import sagemaker from sagemaker.feature_store.feature_group import FeatureGroup if __name__=='__main__': parser = argparse.ArgumentParser() # preprocessing arguments parser.add_argument('--region', type=str) parser.add_argument('--bucket', type=str) args, _ = parser.parse_known_args() print('Received arguments {}'.format(args)) region = args.region bucket = args.bucket boto_session = boto3.Session(region_name=region) sagemaker_client = boto_session.client(service_name='sagemaker') featurestore_client = boto_session.client(service_name='sagemaker-featurestore-runtime') session = sagemaker.session.Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_featurestore_runtime_client=featurestore_client) # Read feature group name with open('/opt/ml/processing/input/feature_group_name.txt') as f: feature_group_name = f.read() feature_group = FeatureGroup(name=feature_group_name, sagemaker_session=session) feature_group_query = feature_group.athena_query() feature_group_table = feature_group_query.table_name print(feature_group_table) query_string = 'SELECT label,review_body FROM "' \ + feature_group_table+'"' \ + ' INNER JOIN (SELECT product_id FROM (SELECT product_id, avg(star_rating) as avg_rating, count(*) as review_count \ FROM "' + feature_group_table+'"' \ + ' GROUP BY product_id) WHERE review_count > 1000) tmp ON "' \ + feature_group_table+'"'+ '.product_id=tmp.product_id;' print(query_string) dataset =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import requests import numpy as np import pandas as pd from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) # In[2]: BEA_API_KEY = dotenv_values(".env").get("BEA_API_KEY") # In[3]: # Table 1.1.2. Contributions to Percent Change in Real Gross Domestic Product (A) (Q) response_T10102 = requests.get(f'https://apps.bea.gov/api/data/?&UserID={BEA_API_KEY}&' 'method=GetData&DataSetName=NIPA&TableName=T10102&Frequency=Q&Year=ALL&ResultFormat=JSON') # In[4]: df = pd.DataFrame(eval(response_T10102.content.decode('utf-8'))['BEAAPI']['Results']['Data']) # In[5]: df = df[['LineNumber', 'LineDescription', 'TimePeriod', 'DataValue']] # In[6]: #Hago el reemplazo de las fechas dict_quarters = {'Q1':'-01-01', 'Q2':'-04-01', 'Q3':'-07-01', 'Q4':'-10-01'} df['TimePeriod'] = df['TimePeriod'].replace(dict_quarters, regex=True) df['TimePeriod'] =
pd.to_datetime(df['TimePeriod'], format='%Y-%m-%d')
pandas.to_datetime
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0)
tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0)
pandas.util.testing.assertRaisesRegexp
# -*- coding: utf-8 -*- """ Created on Mon Feb 17 11:04:59 2020 @author: <NAME> """ import pandas as pd import janitor import datetime import pickle from pathlib import Path #from builder import * from fars_cleaner.builder import get_renaming import fars_cleaner.extra_info as ei from fars_cleaner.fars_utils import createPerID from fars_cleaner import FARSFetcher class FARSProcessor: def __init__(self, start_year=1975, end_year=2018, fetcher: FARSFetcher = None, ): """ Parameters ---------- start_year : int, optional Year to start analysis. The default is 1975. end_year : int, optional Year to end analysis. The default is 2018. first_run : bool, optional Flag to determine whether to process and write-out the required files, or whether the data can be loaded from disk pre-processed. The default is True. use_dask : bool, optional Flag to determine whether to parallelize using Dask. Not implemented at this time. The default is False. client : Dask Distributed Client, optional. Required if use_dask is True. Not implemented at this time. Returns ------- """ self.NOW = datetime.datetime.now() self.start_year = start_year self.end_year = end_year if fetcher is None: self.fetcher = FARSFetcher() else: self.fetcher = fetcher fetcher.fetch_subset(self.start_year, self.end_year) self.data_dir = self.fetcher.get_data_path() with open(fetcher.fetch_mappers(), 'rb') as f: self.mappers = pickle.load(f) self.load_paths = self.fetcher.fetch_subset(self.start_year, self.end_year) people = [] vehicles = [] accidents = [] for year in range(start_year, end_year + 1): vehicle = self.load_vehicles(year) person = self.load_people(year) accident = self.load_accidents(year) accident['YEAR'] = year vehicle['YEAR'] = year person['YEAR'] = year people.append(person) vehicles.append(vehicle) accidents.append(accident) #self.accidents = pd.concat(accidents) print("accidents") self.accidents = self.process_accidents(
pd.concat(accidents)
pandas.concat
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from collections import namedtuple, defaultdict, OrderedDict from time import sleep from math import fabs import datetime import pytz from six import iteritems, itervalues import polling import pandas as pd import numpy as np from zipline.gens.brokers.broker import Broker from zipline.finance.order import (Order as ZPOrder, ORDER_STATUS as ZP_ORDER_STATUS) from zipline.finance.execution import (MarketOrder, LimitOrder, StopOrder, StopLimitOrder) from zipline.finance.transaction import Transaction import zipline.protocol as zp from zipline.protocol import MutableView from zipline.api import symbol as symbol_lookup from zipline.errors import SymbolNotFound from ib.ext.EClientSocket import EClientSocket from ib.ext.EWrapper import EWrapper from ib.ext.Contract import Contract from ib.ext.Order import Order from ib.ext.ExecutionFilter import ExecutionFilter from ib.ext.EClientErrors import EClientErrors from logbook import Logger if sys.version_info > (3,): long = int log = Logger('IB Broker') Position = namedtuple('Position', ['contract', 'position', 'market_price', 'market_value', 'average_cost', 'unrealized_pnl', 'realized_pnl', 'account_name']) _max_wait_subscribe = 10 # how many cycles to wait _connection_timeout = 15 # Seconds _poll_frequency = 0.1 symbol_to_exchange = defaultdict(lambda: 'SMART') symbol_to_exchange['VIX'] = 'CBOE' symbol_to_exchange['SPX'] = 'CBOE' symbol_to_exchange['VIX3M'] = 'CBOE' symbol_to_exchange['VXST'] = 'CBOE' symbol_to_exchange['VXMT'] = 'CBOE' symbol_to_exchange['GVZ'] = 'CBOE' symbol_to_exchange['GLD'] = 'ARCA' symbol_to_exchange['GDX'] = 'ARCA' symbol_to_exchange['GPRO'] = 'SMART/NASDAQ' symbol_to_exchange['MSFT'] = 'SMART/NASDAQ' symbol_to_exchange['CSCO'] = 'SMART/NASDAQ' symbol_to_sec_type = defaultdict(lambda: 'STK') symbol_to_sec_type['VIX'] = 'IND' symbol_to_sec_type['VIX3M'] = 'IND' symbol_to_sec_type['VXST'] = 'IND' symbol_to_sec_type['VXMT'] = 'IND' symbol_to_sec_type['GVZ'] = 'IND' symbol_to_sec_type['SPX'] = 'IND' def log_message(message, mapping): try: del (mapping['self']) except (KeyError,): pass items = list(mapping.items()) items.sort() log.debug(('### %s' % (message,))) for k, v in items: log.debug((' %s:%s' % (k, v))) def _method_params_to_dict(args): return {k: v for k, v in iteritems(args) if k != 'self'} class TWSConnection(EClientSocket, EWrapper): def __init__(self, tws_uri): """ :param tws_uri: host:listening_port:client_id - host ip of running tws or ibgw - port, default for tws 7496 and for ibgw 4002 - your client id, could be any number as long as it's not already used """ EWrapper.__init__(self) EClientSocket.__init__(self, anyWrapper=self) self.tws_uri = tws_uri host, port, client_id = self.tws_uri.split(':') self._host = host self._port = int(port) self.client_id = int(client_id) self._next_ticker_id = 0 self._next_request_id = 0 self._next_order_id = None self.managed_accounts = None self.symbol_to_ticker_id = {} self.ticker_id_to_symbol = {} self.last_tick = defaultdict(dict) self.bars = {} # accounts structure: accounts[account_id][currency][value] self.accounts = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: np.NaN))) self.accounts_download_complete = False self.positions = {} self.portfolio = {} self.open_orders = {} self.order_statuses = {} self.executions = defaultdict(OrderedDict) self.commissions = defaultdict(OrderedDict) self._execution_to_order_id = {} self.time_skew = None self.unrecoverable_error = False self.connect() def connect(self): log.info("Connecting: {}:{}:{}".format(self._host, self._port, self.client_id)) self.eConnect(self._host, self._port, self.client_id) timeout = _connection_timeout while timeout and not self.isConnected(): sleep(_poll_frequency) timeout -= _poll_frequency else: if not self.isConnected(): raise SystemError("Connection timeout during TWS connection!") self._download_account_details() log.info("Managed accounts: {}".format(self.managed_accounts)) self.reqCurrentTime() self.reqIds(1) while self.time_skew is None or self._next_order_id is None: sleep(_poll_frequency) log.info("Local-Broker Time Skew: {}".format(self.time_skew)) def disconnect(self): self.eDisconnect() def _download_account_details(self): exec_filter = ExecutionFilter() exec_filter.m_clientId = self.client_id self.reqExecutions(self.next_request_id, exec_filter) self.reqManagedAccts() while self.managed_accounts is None: sleep(_poll_frequency) for account in self.managed_accounts: self.reqAccountUpdates(subscribe=True, acctCode=account) while self.accounts_download_complete is False: sleep(_poll_frequency) @property def next_ticker_id(self): ticker_id = self._next_ticker_id self._next_ticker_id += 1 return ticker_id @property def next_request_id(self): request_id = self._next_request_id self._next_request_id += 1 return request_id @property def next_order_id(self): order_id = self._next_order_id self._next_order_id += 1 return order_id def subscribe_to_market_data(self, symbol, sec_type='STK', exchange='SMART', currency='USD'): if symbol in self.symbol_to_ticker_id: # Already subscribed to market data return contract = Contract() contract.m_symbol = symbol contract.m_secType = symbol_to_sec_type[symbol] contract.m_exchange = symbol_to_exchange[symbol] contract.m_currency = currency ticker_id = self.next_ticker_id self.symbol_to_ticker_id[symbol] = ticker_id self.ticker_id_to_symbol[ticker_id] = symbol # INDEX tickers cannot be requested with market data. The data can, # however, be requested with realtimeBars. This change will make # sure we can request data from INDEX tickers like SPX, VIX, etc. if contract.m_secType == 'IND': self.reqRealTimeBars(ticker_id, contract, 60, 'TRADES', False) else: tick_list = "233" # RTVolume, return tick_type == 48 self.reqHistoricalData(ticker_id, contract, '', '60 S', '1 secs', 'TRADES', False, 2) self.reqMktData(ticker_id, contract, tick_list, False) def unsubscribe_from_market_data(self): for symbol, ticker_id in self.symbol_to_ticker_id.copy().items(): if symbol_to_sec_type[symbol] == 'IND': self.cancelRealTimeBars(ticker_id) else: self.cancelMktData(ticker_id) self.symbol_to_ticker_id.pop(symbol, None) def _process_tick(self, ticker_id, tick_type, value): try: symbol = self.ticker_id_to_symbol[ticker_id] except KeyError: log.error("Tick {} for id={} is not registered".format(tick_type, ticker_id)) return if tick_type == 48: # RT Volume Bar. Format: # Last trade price; Last trade size;Last trade time;Total volume;\ # VWAP;Single trade flag # e.g.: 701.28;1;1348075471534;67854;701.46918464;true (last_trade_price, last_trade_size, last_trade_time, total_volume, vwap, single_trade_flag) = value.split(';') # Ignore this update if last_trade_price is empty: # tickString: tickerId=0 tickType=48/RTVolume ;0;1469805548873;\ # 240304;216.648653;true if len(last_trade_price) == 0: return last_trade_dt = pd.to_datetime(float(last_trade_time), unit='ms', utc=True) self._add_bar(symbol, float(last_trade_price), int(last_trade_size), last_trade_dt, int(total_volume), float(vwap), single_trade_flag) def _add_bar(self, symbol, last_trade_price, last_trade_size, last_trade_time, total_volume, vwap, single_trade_flag): bar = pd.DataFrame(index=pd.DatetimeIndex([last_trade_time]), data={'last_trade_price': last_trade_price, 'last_trade_size': last_trade_size, 'total_volume': total_volume, 'vwap': vwap, 'single_trade_flag': single_trade_flag}) if symbol not in self.bars: self.bars[symbol] = bar else: self.bars[symbol] = self.bars[symbol].append(bar) def tickPrice(self, ticker_id, field, price, can_auto_execute): self._process_tick(ticker_id, tick_type=field, value=price) def tickSize(self, ticker_id, field, size): self._process_tick(ticker_id, tick_type=field, value=size) def tickOptionComputation(self, ticker_id, field, implied_vol, delta, opt_price, pv_dividend, gamma, vega, theta, und_price): log_message('tickOptionComputation', vars()) def tickGeneric(self, ticker_id, tick_type, value): self._process_tick(ticker_id, tick_type=tick_type, value=value) def tickString(self, ticker_id, tick_type, value): self._process_tick(ticker_id, tick_type=tick_type, value=value) def tickEFP(self, ticker_id, tick_type, basis_points, formatted_basis_points, implied_future, hold_days, future_expiry, dividend_impact, dividends_to_expiry): log_message('tickEFP', vars()) def updateAccountValue(self, key, value, currency, account_name): self.accounts[account_name][currency][key] = value def updatePortfolio(self, contract, position, market_price, market_value, average_cost, unrealized_pnl, realized_pnl, account_name): symbol = contract.m_symbol position = Position(contract=contract, position=position, market_price=market_price, market_value=market_value, average_cost=average_cost, unrealized_pnl=unrealized_pnl, realized_pnl=realized_pnl, account_name=account_name) self.positions[symbol] = position def updateAccountTime(self, time_stamp): pass def accountDownloadEnd(self, account_name): self.accounts_download_complete = True def nextValidId(self, order_id): self._next_order_id = order_id def contractDetails(self, req_id, contract_details): log_message('contractDetails', vars()) def contractDetailsEnd(self, req_id): log_message('contractDetailsEnd', vars()) def bondContractDetails(self, req_id, contract_details): log_message('bondContractDetails', vars()) def orderStatus(self, order_id, status, filled, remaining, avg_fill_price, perm_id, parent_id, last_fill_price, client_id, why_held): self.order_statuses[order_id] = _method_params_to_dict(vars()) log.debug( "Order-{order_id} {status}: " "filled={filled} remaining={remaining} " "avg_fill_price={avg_fill_price} " "last_fill_price={last_fill_price} ".format( order_id=order_id, status=self.order_statuses[order_id]['status'], filled=self.order_statuses[order_id]['filled'], remaining=self.order_statuses[order_id]['remaining'], avg_fill_price=self.order_statuses[order_id]['avg_fill_price'], last_fill_price=self.order_statuses[order_id]['last_fill_price'])) def openOrder(self, order_id, contract, order, state): self.open_orders[order_id] = _method_params_to_dict(vars()) log.debug( "Order-{order_id} {status}: " "{order_action} {order_count} {symbol} with {order_type} order. " "limit_price={limit_price} stop_price={stop_price}".format( order_id=order_id, status=state.m_status, order_action=order.m_action, order_count=order.m_totalQuantity, symbol=contract.m_symbol, order_type=order.m_orderType, limit_price=order.m_lmtPrice, stop_price=order.m_auxPrice)) def openOrderEnd(self): pass def execDetails(self, req_id, contract, exec_detail): order_id, exec_id = exec_detail.m_orderId, exec_detail.m_execId self.executions[order_id][exec_id] = _method_params_to_dict(vars()) self._execution_to_order_id[exec_id] = order_id log.info( "Order-{order_id} executed @ {exec_time}: " "{symbol} current: {shares} @ ${price} " "total: {cum_qty} @ ${avg_price} " "exec_id: {exec_id} by client-{client_id}".format( order_id=order_id, exec_id=exec_id, exec_time=pd.to_datetime(exec_detail.m_time), symbol=contract.m_symbol, shares=exec_detail.m_shares, price=exec_detail.m_price, cum_qty=exec_detail.m_cumQty, avg_price=exec_detail.m_avgPrice, client_id=exec_detail.m_clientId)) def execDetailsEnd(self, req_id): log.debug( "Execution details completed for request {req_id}".format( req_id=req_id)) def commissionReport(self, commission_report): exec_id = commission_report.m_execId if exec_id in self._execution_to_order_id: order_id = self._execution_to_order_id[exec_id] self.commissions[order_id][exec_id] = commission_report log.debug( "Order-{order_id} report: " "realized_pnl: ${realized_pnl} " "commission: ${commission} yield: {yield_} " "exec_id: {exec_id}".format( order_id=order_id, exec_id=exec_id, realized_pnl=commission_report.m_realizedPNL if commission_report.m_realizedPNL != sys.float_info.max else 0, commission=commission_report.m_commission, yield_=commission_report.m_yield if commission_report.m_yield != sys.float_info.max else 0) ) def connectionClosed(self): self.unrecoverable_error = True log.error("IB Connection closed") def error(self, id_=None, error_code=None, error_msg=None): if isinstance(id_, Exception): # XXX: for an unknown reason 'log' is None in this branch, # therefore it needs to be instantiated before use global log if not log: log = Logger('IB Broker') log.exception(id_) if isinstance(error_code, EClientErrors.CodeMsgPair): error_msg = error_code.msg() error_code = error_code.code() if isinstance(error_code, int): if error_code in (502, 503, 326): # 502: Couldn't connect to TWS. # 503: The TWS is out of date and must be upgraded. # 326: Unable connect as the client id is already in use. self.unrecoverable_error = True if error_code < 1000: log.error("[{}] {} ({})".format(error_code, error_msg, id_)) else: log.info("[{}] {} ({})".format(error_code, error_msg, id_)) else: log.error("[{}] {} ({})".format(error_code, error_msg, id_)) def updateMktDepth(self, ticker_id, position, operation, side, price, size): log_message('updateMktDepth', vars()) def updateMktDepthL2(self, ticker_id, position, market_maker, operation, side, price, size): log_message('updateMktDepthL2', vars()) def updateNewsBulletin(self, msg_id, msg_type, message, orig_exchange): log_message('updateNewsBulletin', vars()) def managedAccounts(self, accounts_list): self.managed_accounts = accounts_list.split(',') def receiveFA(self, fa_data_type, xml): log_message('receiveFA', vars()) def historicalData(self, req_id, date, open_, high, low, close, volume, count, wap, has_gaps): if close != -1: value = (";".join([str(close), str(count), str(int(date) * 1000), str(volume), str(wap), "false"])) self._process_tick(req_id, tick_type=48, value=value) def scannerParameters(self, xml): log_message('scannerParameters', vars()) def scannerData(self, req_id, rank, contract_details, distance, benchmark, projection, legs_str): log_message('scannerData', vars()) def currentTime(self, time): self.time_skew = (pd.to_datetime('now', utc=True) - pd.to_datetime(long(time), unit='s', utc=True)) def deltaNeutralValidation(self, req_id, under_comp): log_message('deltaNeutralValidation', vars()) def fundamentalData(self, req_id, data): log_message('fundamentalData', vars()) def marketDataType(self, req_id, market_data_type): log_message('marketDataType', vars()) def realtimeBar(self, req_id, time, open_, high, low, close, volume, wap, count): value = (";".join([str(close), str(count), str(time), str(volume), str(wap), "true"])) self._process_tick(req_id, tick_type=48, value=value) def scannerDataEnd(self, req_id): log_message('scannerDataEnd', vars()) def tickSnapshotEnd(self, req_id): log_message('tickSnapshotEnd', vars()) def position(self, account, contract, pos, avg_cost): log_message('position', vars()) def positionEnd(self): log_message('positionEnd', vars()) def accountSummary(self, req_id, account, tag, value, currency): log_message('accountSummary', vars()) def accountSummaryEnd(self, req_id): log_message('accountSummaryEnd', vars()) class IBBroker(Broker): def __init__(self, tws_uri, account_id=None): """ :param tws_uri: host:listening_port:client_id - host ip of running tws or ibgw - port, default for tws 7496 and for ibgw 4002 - your client id, could be any number as long as it's not already used """ self._tws_uri = tws_uri self._orders = {} self._transactions = {} self._tws = TWSConnection(tws_uri) self.account_id = (self._tws.managed_accounts[0] if account_id is None else account_id) self.currency = 'USD' self.timezone = 'US/Eastern' self._subscribed_assets = [] super(self.__class__, self).__init__() def init(self): if not self._tws.isConnected(): self._tws.connect() @property def subscribed_assets(self): return self._subscribed_assets def subscribe_to_market_data(self, asset): if asset not in self.subscribed_assets: log.info("Subscribing to market data for {}".format( asset)) # remove str() cast to have a fun debugging journey self._tws.subscribe_to_market_data(str(asset.symbol)) self._subscribed_assets.append(asset) try: polling.poll( lambda: asset.symbol in self._tws.bars, timeout=_max_wait_subscribe, step=_poll_frequency) except polling.TimeoutException as te: log.warning('!!!WARNING: I did not manage to subscribe to %s ' % str(asset.symbol)) else: log.debug("Subscription completed") @property def positions(self): self._get_positions_from_broker() return self.metrics_tracker.positions def _get_positions_from_broker(self): """ get the positions from the broker and update zipline objects ( the ledger ) should be used once at startup and once every time we want to refresh the positions array """ cur_pos_in_tracker = self.metrics_tracker.positions for symbol in self._tws.positions: ib_position = self._tws.positions[symbol] try: z_position = zp.Position(zp.InnerPosition(symbol_lookup(symbol))) editable_position = MutableView(z_position) except SymbolNotFound: # The symbol might not have been ingested to the db therefore # it needs to be skipped. log.warning('Wanted to subscribe to %s, but this asset is probably not ingested' % symbol) continue editable_position._underlying_position.amount = int(ib_position.position) editable_position._underlying_position.cost_basis = float(ib_position.average_cost) # Check if symbol exists in bars df if symbol in self._tws.bars: editable_position._underlying_position.last_sale_price = \ float(self._tws.bars[symbol].last_trade_price.iloc[-1]) editable_position._underlying_position.last_sale_date = \ self._tws.bars[symbol].index.values[-1] else: # editable_position._underlying_position.last_sale_price = None # this cannot be set to None. only numbers. editable_position._underlying_position.last_sale_date = None self.metrics_tracker.update_position(z_position.asset, amount=z_position.amount, last_sale_price=z_position.last_sale_price, last_sale_date=z_position.last_sale_date, cost_basis=z_position.cost_basis) for asset in cur_pos_in_tracker: if asset.symbol not in self._tws.positions: # deleting object from the metrcs_tracker as its not in the portfolio self.metrics_tracker.update_position(asset, amount=0) # for some reason, the metrics tracker has self.positions AND self.portfolio.positions. let's make sure # these objects are consistent # (self.portfolio.positions is self.metrics_tracker._ledger._portfolio.positions) # (self.metrics_tracker.positions is self.metrics_tracker._ledger.position_tracker.positions) self.metrics_tracker._ledger._portfolio.positions = self.metrics_tracker.positions @property def portfolio(self): positions = self.positions return self.metrics_tracker.portfolio def get_account_from_broker(self): ib_account = self._tws.accounts[self.account_id][self.currency] return ib_account def set_metrics_tracker(self, metrics_tracker): self.metrics_tracker = metrics_tracker @property def account(self): ib_account = self._tws.accounts[self.account_id][self.currency] self.metrics_tracker.override_account_fields( settled_cash=float(ib_account['CashBalance']), accrued_interest=float(ib_account['AccruedCash']), buying_power=float(ib_account['BuyingPower']), equity_with_loan=float(ib_account['EquityWithLoanValue']), total_positions_value=float(ib_account['StockMarketValue']), total_positions_exposure=float( (float(ib_account['StockMarketValue']) / (float(ib_account['StockMarketValue']) + float(ib_account['TotalCashValue'])))), regt_equity=float(ib_account['RegTEquity']), regt_margin=float(ib_account['RegTMargin']), initial_margin_requirement=float( ib_account['FullInitMarginReq']), maintenance_margin_requirement=float( ib_account['FullMaintMarginReq']), available_funds=float(ib_account['AvailableFunds']), excess_liquidity=float(ib_account['ExcessLiquidity']), cushion=float( self._tws.accounts[self.account_id]['']['Cushion']), day_trades_remaining=float( self._tws.accounts[self.account_id]['']['DayTradesRemaining']), leverage=float( self._tws.accounts[self.account_id]['']['Leverage-S']), net_leverage=( float(ib_account['StockMarketValue']) / (float(ib_account['TotalCashValue']) + float(ib_account['StockMarketValue']))), net_liquidation=float(ib_account['NetLiquidation']) ) return self.metrics_tracker.account @property def time_skew(self): return self._tws.time_skew def is_alive(self): return not self._tws.unrecoverable_error @staticmethod def _safe_symbol_lookup(symbol): try: return symbol_lookup(symbol) except SymbolNotFound: return None _zl_order_ref_magic = '!ZL' @classmethod def _create_order_ref(cls, ib_order, dt=pd.to_datetime('now', utc=True)): order_type = ib_order.m_orderType.replace(' ', '_') return \ "A:{action} Q:{qty} T:{order_type} " \ "L:{limit_price} S:{stop_price} D:{date} {magic}".format( action=ib_order.m_action, qty=ib_order.m_totalQuantity, order_type=order_type, limit_price=ib_order.m_lmtPrice, stop_price=ib_order.m_auxPrice, date=int(dt.value / 1e9), magic=cls._zl_order_ref_magic) @classmethod def _parse_order_ref(cls, ib_order_ref): if not ib_order_ref or \ not ib_order_ref.endswith(cls._zl_order_ref_magic): return None try: action, qty, order_type, limit_price, stop_price, dt, _ = \ ib_order_ref.split(' ') if not all( [action.startswith('A:'), qty.startswith('Q:'), order_type.startswith('T:'), limit_price.startswith('L:'), stop_price.startswith('S:'), dt.startswith('D:')]): return None return { 'action': action[2:], 'qty': int(qty[2:]), 'order_type': order_type[2:].replace('_', ' '), 'limit_price': float(limit_price[2:]), 'stop_price': float(stop_price[2:]), 'dt': pd.to_datetime(dt[2:], unit='s', utc=True)} except ValueError: log.warning("Error parsing order metadata: {}".format( ib_order_ref)) return None def order(self, asset, amount, style): contract = Contract() contract.m_symbol = str(asset.symbol) contract.m_currency = self.currency contract.m_exchange = symbol_to_exchange[str(asset.symbol)] contract.m_secType = symbol_to_sec_type[str(asset.symbol)] order = Order() order.m_totalQuantity = int(fabs(amount)) order.m_action = "BUY" if amount > 0 else "SELL" is_buy = (amount > 0) order.m_lmtPrice = style.get_limit_price(is_buy) or 0 order.m_auxPrice = style.get_stop_price(is_buy) or 0 if isinstance(style, MarketOrder): order.m_orderType = "MKT" elif isinstance(style, LimitOrder): order.m_orderType = "LMT" elif isinstance(style, StopOrder): order.m_orderType = "STP" elif isinstance(style, StopLimitOrder): order.m_orderType = "STP LMT" # TODO: Support GTC orders both here and at blotter_live order.m_tif = "DAY" order.m_orderRef = self._create_order_ref(order) ib_order_id = self._tws.next_order_id zp_order = self._get_or_create_zp_order(ib_order_id, order, contract) log.info( "Placing order-{order_id}: " "{action} {qty} {symbol} with {order_type} order. " "limit_price={limit_price} stop_price={stop_price} {tif}".format( order_id=ib_order_id, action=order.m_action, qty=order.m_totalQuantity, symbol=contract.m_symbol, order_type=order.m_orderType, limit_price=order.m_lmtPrice, stop_price=order.m_auxPrice, tif=order.m_tif )) self._tws.placeOrder(ib_order_id, contract, order) return zp_order @property def orders(self): self._update_orders() return self._orders def _ib_to_zp_order_id(self, ib_order_id): return "IB-{date}-{account_id}-{client_id}-{order_id}".format( date=str(datetime.datetime.now(pytz.timezone(self.timezone)).date()), account_id=self.account_id, client_id=self._tws.client_id, order_id=ib_order_id) @staticmethod def _action_qty_to_amount(action, qty): return qty if action == 'BUY' else -1 * qty def _get_or_create_zp_order(self, ib_order_id, ib_order=None, ib_contract=None): zp_order_id = self._ib_to_zp_order_id(ib_order_id) if zp_order_id in self._orders: return self._orders[zp_order_id] # Try to reconstruct the order from the given information: # open order state and execution state symbol, order_details = None, None if ib_order and ib_contract: symbol = ib_contract.m_symbol order_details = self._parse_order_ref(ib_order.m_orderRef) if not order_details and ib_order_id in self._tws.open_orders: open_order = self._tws.open_orders[ib_order_id] symbol = open_order['contract'].m_symbol order_details = self._parse_order_ref( open_order['order'].m_orderRef) if not order_details and ib_order_id in self._tws.executions: executions = self._tws.executions[ib_order_id] last_exec_detail = list(executions.values())[-1]['exec_detail'] last_exec_contract = list(executions.values())[-1]['contract'] symbol = last_exec_contract.m_symbol order_details = self._parse_order_ref(last_exec_detail.m_orderRef) asset = self._safe_symbol_lookup(symbol) if not asset: log.warning( "Ignoring symbol {symbol} which has associated " "order but it is not registered in bundle".format( symbol=symbol)) return None if order_details: amount = self._action_qty_to_amount(order_details['action'], order_details['qty']) stop_price = order_details['stop_price'] limit_price = order_details['limit_price'] dt = order_details['dt'] else: dt = pd.to_datetime('now', utc=True) amount, stop_price, limit_price = 0, None, None if ib_order_id in self._tws.open_orders: open_order = self._tws.open_orders[ib_order_id]['order'] amount = self._action_qty_to_amount( open_order.m_action, open_order.m_totalQuantity) stop_price = open_order.m_auxPrice limit_price = open_order.m_lmtPrice stop_price = None if stop_price == 0 else stop_price limit_price = None if limit_price == 0 else limit_price self._orders[zp_order_id] = ZPOrder( dt=dt, asset=asset, amount=amount, stop=stop_price, limit=limit_price, id=zp_order_id) self._orders[zp_order_id].broker_order_id = ib_order_id return self._orders[zp_order_id] @staticmethod def _ib_to_zp_status(ib_status): ib_status = ib_status.lower() if ib_status == 'submitted': return ZP_ORDER_STATUS.OPEN elif ib_status in ('pendingsubmit', 'pendingcancel', 'presubmitted'): return ZP_ORDER_STATUS.HELD elif ib_status == 'cancelled': return ZP_ORDER_STATUS.CANCELLED elif ib_status == 'filled': return ZP_ORDER_STATUS.FILLED elif ib_status == 'inactive': return ZP_ORDER_STATUS.REJECTED else: return None def _update_orders(self): def _update_from_order_status(zp_order, ib_order_id): if ib_order_id in self._tws.open_orders: open_order_state = self._tws.open_orders[ib_order_id]['state'] zp_status = self._ib_to_zp_status(open_order_state.m_status) if zp_status is None: log.warning( "Order-{order_id}: " "unknown order status: {order_status}.".format( order_id=ib_order_id, order_status=open_order_state.m_status)) else: zp_order.status = zp_status if ib_order_id in self._tws.order_statuses: order_status = self._tws.order_statuses[ib_order_id] zp_order.filled = order_status['filled'] zp_status = self._ib_to_zp_status(order_status['status']) if zp_status: zp_order.status = zp_status else: log.warning("Order-{order_id}: " "unknown order status: {order_status}." .format(order_id=ib_order_id, order_status=order_status['status'])) def _update_from_execution(zp_order, ib_order_id): if ib_order_id in self._tws.executions and \ ib_order_id not in self._tws.open_orders: zp_order.status = ZP_ORDER_STATUS.FILLED executions = self._tws.executions[ib_order_id] last_exec_detail = \ list(executions.values())[-1]['exec_detail'] zp_order.filled = last_exec_detail.m_cumQty all_ib_order_ids = (set([e.broker_order_id for e in self._orders.values()]) | set(self._tws.open_orders.keys()) | set(self._tws.order_statuses.keys()) | set(self._tws.executions.keys()) | set(self._tws.commissions.keys())) for ib_order_id in all_ib_order_ids: zp_order = self._get_or_create_zp_order(ib_order_id) if zp_order: _update_from_execution(zp_order, ib_order_id) _update_from_order_status(zp_order, ib_order_id) @property def transactions(self): self._update_transactions() return self._transactions def _update_transactions(self): all_orders = list(self.orders.values()) for ib_order_id, executions in iteritems(self._tws.executions): orders = [order for order in all_orders if order.broker_order_id == ib_order_id] if not orders: log.warning("No order found for executions: {}".format( executions)) continue assert len(orders) == 1 order = orders[0] for exec_id, execution in iteritems(executions): if exec_id in self._transactions: continue try: commission = self._tws.commissions[ib_order_id][exec_id] \ .m_commission except KeyError: log.warning( "Commission not found for execution: {}".format( exec_id)) commission = 0 exec_detail = execution['exec_detail'] is_buy = order.amount > 0 amount = (exec_detail.m_shares if is_buy else -1 * exec_detail.m_shares) tx = Transaction( asset=order.asset, amount=amount, dt=
pd.to_datetime(exec_detail.m_time, utc=True)
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # # BCG Gamma Challenge # # Libraries # In[1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import stats # In[2]: pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) # # Dataset # In[3]: df_municipios_2015 = pd.read_csv('../bcggammachallenge/municipios/municipios20150101.csv') # In[4]: df_municipios_2016 =
pd.read_csv('../bcggammachallenge/municipios/municipios20160101.csv')
pandas.read_csv
# Copyright 2017-2021 QuantRocket LLC - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import pandas as pd import numpy as np import time import requests import json import math from moonshot.slippage import FixedSlippage from moonshot.mixins import WeightAllocationMixin from moonshot.cache import Cache from moonshot.exceptions import MoonshotError, MoonshotParameterError from quantrocket.price import get_prices from quantrocket.master import list_calendar_statuses, download_master_file from quantrocket.account import download_account_balances, download_exchange_rates from quantrocket.blotter import list_positions, download_order_statuses class Moonshot( WeightAllocationMixin): """ Base class for Moonshot strategies. To create a strategy, subclass this class. Implement your trading logic in the class methods, and store your strategy parameters as class attributes. Class attributes include built-in Moonshot parameters which you can override, as well as your own custom parameters. To run a backtest, at minimum you must implement `prices_to_signals`, but in general you will want to implement the following methods (which are called in the order shown): `prices_to_signals` -> `signals_to_target_weights` -> `target_weights_to_positions` -> `positions_to_gross_returns` To trade (i.e. generate orders intended to be placed, but actually placed by other services than Moonshot), you must also implement `order_stubs_to_orders`. Order generation for trading follows the path shown below: `prices_to_signals` -> `signals_to_target_weights` -> `order_stubs_to_orders` Parameters ---------- CODE : str, required the strategy code DB : str, required code of db to pull data from DB_FIELDS : list of str, optional fields to retrieve from db (defaults to ["Open", "Close", "Volume"]) DB_TIMES : list of str (HH:MM:SS), optional for intraday databases, only retrieve these times DB_DATA_FREQUENCY : str, optional Only applicable when DB specifies a Zipline bundle. Whether to query minute or daily data. If omitted, defaults to minute data for minute bundles and to daily data for daily bundles. This parameter only needs to be set to request daily data from a minute bundle. Possible choices: daily, minute (or aliases d, m). SIDS : list of str, optional limit db query to these sids UNIVERSES : list of str, optional limit db query to these universes EXCLUDE_SIDS : list of str, optional exclude these sids from db query EXCLUDE_UNIVERSES : list of str, optional exclude these universes from db query CONT_FUT : str, optional pass this cont_fut option to db query (default None) LOOKBACK_WINDOW : int, optional get this many days additional data prior to the backtest start date or trade date to account for rolling windows. If set to None (the default), will use the largest value of any attributes ending with `*_WINDOW`, or 252 if no such attributes, and will further pad window based on any `*_INTERVAL` attributes, which are interpreted as pandas offset aliases (for example `REBALANCE_INTERVAL = 'Q'`). Set to 0 to disable. NLV : dict, optional dict of currency:NLV for each currency represented in the strategy. Can alternatively be passed directly to backtest method. COMMISSION_CLASS : Class or dict of (sectype,exchange,currency):Class, optional the commission class to use. If strategy includes a mix of security types, exchanges, or currencies, you can pass a dict mapping tuples of (sectype,exchange,currency) to the different commission classes. By default no commission is applied. SLIPPAGE_CLASSES : iterable of slippage classes, optional one or more slippage classes. By default no slippage is applied. SLIPPAGE_BPS : float, optional amount on one-slippage to apply to each trade in BPS (for example, enter 5 to deduct 5 BPS) BENCHMARK : str, optional the sid of a security in the historical data to use as the benchmark BENCHMARK_DB : str, optional the database containing the benchmark, if different from DB. BENCHMARK_DB should contain end-of-day data, not intraday (but can be used with intraday backtests). BENCHMARK_TIME : str (HH:MM:SS), optional use prices from this time of day as benchmark prices. Only applicable if benchmark prices originate in DB (not BENCHMARK_DB), DB contains intraday data, and backtest results are daily. TIMEZONE : str, optional convert timestamps to this timezone (if not provided, will be inferred from securities universe if possible) CALENDAR : str, optional use this exchange's trading calendar to determine which date's signals should be used for live trading. If the exchange is currently open, today's signals will be used. If currently closed, the signals corresponding to the last date the exchange was open will be used. If no calendar is specified, today's signals will be used. POSITIONS_CLOSED_DAILY : bool if True, positions in backtests that fall on adjacent days are assumed to be closed out and reopened each day rather than held continuously; this impacts commission and slippage calculations (default is False, meaning adjacent positions are assumed to be held continuously) ALLOW_REBALANCE : bool or float in live trading, whether to allow rebalancing of existing positions that are already on the correct side. If True (the default), allow rebalancing. If False, no rebalancing. If set to a positive decimal, allow rebalancing only when the existing position differs from the target position by at least this percentage. For example 0.5 means don't rebalance a position unless the position will change by +/-50%. CONTRACT_VALUE_REFERENCE_FIELD : str, optional the price field to use for determining contract values for the purpose of applying commissions and constraining weights in backtests and calculating order quantities in trading. Defaults to the first available of Close, Open, MinuteCloseClose, SecondCloseClose, LastPriceClose, BidPriceClose, AskPriceClose, TimeSalesLastPriceClose, TimeSalesFilteredLastPriceClose, LastPriceMean, BidPriceMean, AskPriceMean, TimeSalesLastPriceMean, TimeSalesFilteredLastPriceMean, MinuteOpenOpen, SecondOpenOpen, LastPriceOpen, BidPriceOpen, AskPriceOpen, TimeSalesLastPriceOpen, TimeSalesFilteredLastPriceOpen. ACCOUNT_BALANCE_FIELD : str or list of str, optional the account field to use for calculating order quantities as a percentage of account equity. Applies to trading only, not backtesting. Default is NetLiquidation. If a list of fields is provided, the minimum value is used. For example, ['NetLiquidation', 'PreviousEquity'] means to use the lesser of NetLiquidation or PreviousEquity to determine order quantities. Examples -------- Example of a minimal strategy that runs on a history db called "mexi-stk-1d" and buys when the securities are above their 200-day moving average: >>> MexicoMovingAverage(Moonshot): >>> >>> CODE = "mexi-ma" >>> DB = "mexi-stk-1d" >>> MAVG_WINDOW = 200 >>> >>> def prices_to_signals(self, prices): >>> closes = prices.loc["Close"] >>> mavgs = closes.rolling(self.MAVG_WINDOW).mean() >>> signals = closes > mavgs.shift() >>> return signals.astype(int) """ CODE = None DB = None DB_FIELDS = ["Open", "Close", "Volume"] DB_TIMES = None DB_DATA_FREQUENCY = None SIDS = None UNIVERSES = None EXCLUDE_SIDS = None EXCLUDE_UNIVERSES = None CONT_FUT = None LOOKBACK_WINDOW = None NLV = None COMMISSION_CLASS = None SLIPPAGE_CLASSES = () SLIPPAGE_BPS = 0 BENCHMARK = None BENCHMARK_DB = None BENCHMARK_TIME = None TIMEZONE = None CALENDAR = None POSITIONS_CLOSED_DAILY = False ALLOW_REBALANCE = True CONTRACT_VALUE_REFERENCE_FIELD = None ACCOUNT_BALANCE_FIELD = None def __init__(self): self.is_trade = False self.review_date = None # see trade() docstring self.is_backtest = False self._securities_master = None self._backtest_results = {} self._inferred_timezone = None self._signal_date = None # set by _weights_to_today_weights self._signal_time = None # set by _weights_to_today_weights def prices_to_signals(self, prices): """ From a DataFrame of prices, return a DataFrame of signals. By convention, signals should be 1=long, 0=cash, -1=short. Must be implemented by strategy subclasses. Parameters ---------- prices : DataFrame, required multiindex (Field, Date) or (Field, Date, Time) DataFrame of price/market data Returns ------- DataFrame signals Examples -------- Buy when the close is above yesterday's 50-day moving average: >>> def prices_to_signals(self, prices): >>> closes = prices.loc["Close"] >>> mavgs = closes.rolling(50).mean() >>> signals = closes > mavgs.shift() >>> return signals.astype(int) """ raise NotImplementedError("strategies must implement prices_to_signals") def signals_to_target_weights(self, signals, prices): """ From a DataFrame of signals, return a DataFrame of target weights. Whereas signals indicate the direction of the trades, weights indicate both the direction and size. For example, -0.5 means a short position equal to 50% of the equity allocated to the strategy. Weights are used to help create orders in live trading, and to help simulate executed positions in backtests. The default implemention of this method evenly divides allocated capital among the signals each period, but it is intended to be overridden by strategy subclasses. A variety of built-in weight allocation algorithms are provided by and documented under `moonshot.mixins.WeightAllocationMixin`. Parameters ---------- signals : DataFrame, required a DataFrame of signals prices : DataFrame, required multiindex (Field, Date) or (Field, Date, Time) DataFrame of price/market data Returns ------- DataFrame weights Examples -------- The default implementation is shown below: >>> def signals_to_target_weights(self, signals, prices): >>> weights = self.allocate_equal_weights(signals) # provided by moonshot.mixins.WeightAllocationMixin >>> return weights """ weights = self.allocate_equal_weights(signals) return weights def target_weights_to_positions(self, weights, prices): """ From a DataFrame of target weights, return a DataFrame of simulated positions. The positions should shift the weights based on when the weights would be filled in live trading. By default, assumes the position are taken in the period after the weights were allocated. Intended to be overridden by strategy subclasses. Parameters ---------- weights : DataFrame, required a DataFrame of weights prices : DataFrame, required multiindex (Field, Date) or (Field, Date, Time) DataFrame of price/market data Returns ------- DataFrame positions Examples -------- The default implemention is shown below (enter position in the period after signal generation/weight allocation): >>> def target_weights_to_positions(self, weights, prices): >>> positions = weights.shift() >>> return positions """ positions = weights.shift() return positions def positions_to_gross_returns(self, positions, prices): """ From a DataFrame of positions, return a DataFrame of returns before commissions and slippage. By default, assumes entry on the close on the period the position is taken and calculates the return through the following period's close. Intended to be overridden by strategy subclasses. Parameters ---------- positions : DataFrame, required a DataFrame of positions prices : DataFrame, required multiindex (Field, Date) or (Field, Date, Time) DataFrame of price/market data Returns ------- DataFrame gross returns Examples -------- The default implementation is shown below: >>> def positions_to_gross_returns(self, positions, prices): >>> closes = prices.loc["Close"] >>> gross_returns = closes.pct_change() * positions.shift() >>> return gross_returns """ closes = prices.loc["Close"] gross_returns = closes.pct_change() * positions.shift() return gross_returns def order_stubs_to_orders(self, orders, prices): """ From a DataFrame of order stubs, creates a DataFrame of fully specified orders. Parameters ---------- orders : DataFrame a DataFrame of order stubs, with columns Sid, Account, Action, OrderRef, and TotalQuantity prices : DataFrame multiindex (Field, Date) or (Field, Date, Time) DataFrame of price/market data Returns ------- DataFrame a DataFrame of fully specified orders, with (at minimum) columns Exchange, Tif, OrderType added Examples -------- The orders DataFrame provided to this method resembles the following: >>> print(orders) Sid Account Action OrderRef TotalQuantity 0 12345 U12345 SELL my-strategy 100 1 12345 U55555 SELL my-strategy 50 2 23456 U12345 BUY my-strategy 100 3 23456 U55555 BUY my-strategy 50 4 34567 U12345 BUY my-strategy 200 5 34567 U55555 BUY my-strategy 100 The default implemention creates MKT DAY orders and is shown below: >>> def order_stubs_to_orders(self, orders, prices): >>> orders["OrderType"] = "MKT" >>> orders["Tif"] = "DAY" >>> return orders Set a limit price equal to the prior closing price: >>> closes = prices.loc["Close"] >>> prior_closes = closes.shift() >>> prior_closes = self.reindex_like_orders(prior_closes, orders) >>> orders["OrderType"] = "LMT" >>> orders["LmtPrice"] = prior_closes """ orders["OrderType"] = "MKT" orders["Tif"] = "DAY" return orders def reindex_like_orders(self, df, orders): """ Reindexes a DataFrame (having Sids as columns and dates as index) to match the shape of the orders DataFrame. Parameters ---------- df : DataFrame, required a DataFrame of arbitrary values with Sids as columns and dates as index orders : DataFrame, required an orders DataFrame with a Sid column Returns ------- Series a Series with an index matching orders Examples -------- Calculate prior closes (assuming daily bars) and reindex like orders: >>> closes = prices.loc["Close"] >>> prior_closes = closes.shift() >>> prior_closes = self.reindex_like_orders(prior_closes, orders) Calculate prior closes (assuming 30-min bars) and reindex like orders: >>> session_closes = prices.loc["Close"].xs("15:30:00", level="Time") >>> prior_closes = session_closes.shift() >>> prior_closes = self.reindex_like_orders(prior_closes, orders) """ df = df.loc[self._signal_date] if "Time" in df.index.names: if not self._signal_time: raise MoonshotError( "cannot reindex DataFrame like orders because DataFrame contains " "'Time' in index, please take a cross-section first, for example: " "`my_dataframe.xs('15:45:00', level='Time')`") df = df.loc[self._signal_time] df.name = "_MoonshotOther" df = orders.join(df, on="Sid")._MoonshotOther df.name = None return df def orders_to_child_orders(self, orders): """ From a DataFrame of orders, returns a DataFrame of child orders (bracket orders) to be submitted if the parent orders fill. An OrderId column will be added to the orders DataFrame, and child orders will be linked to it via a ParentId column. The Action (BUY/SELL) will be reversed on the child orders but otherwise the child orders will be identical to the parent orders. Parameters ---------- orders : DataFrame, required an orders DataFrame Returns ------- DataFrame a DataFrame of child orders Examples -------- >>> orders.head() Sid Action TotalQuantity Exchange OrderType Tif 0 12345 BUY 200 SMART MKT Day 1 23456 BUY 400 SMART MKT Day >>> child_orders = self.orders_to_child_orders(orders) >>> child_orders.loc[:, "OrderType"] = "MOC" >>> orders = pd.concat([orders,child_orders]) >>> orders.head() Sid Action TotalQuantity Exchange OrderType Tif OrderId ParentId 0 12345 BUY 200 SMART MKT Day 0 NaN 1 23456 BUY 400 SMART MKT Day 1 NaN 0 12345 SELL 200 SMART MOC Day NaN 0 1 23456 SELL 400 SMART MOC Day NaN 1 """ if "OrderId" not in orders.columns: orders["OrderId"] = orders.index.astype(str) + ".{0}".format(time.time()) child_orders = orders.copy() child_orders.rename(columns={"OrderId":"ParentId"}, inplace=True) child_orders.loc[orders.Action=="BUY", "Action"] = "SELL" child_orders.loc[orders.Action=="SELL", "Action"] = "BUY" return child_orders def _quantities_to_order_stubs(self, quantities): """ From a DataFrame of quantities to be ordered (with Sids as index, Accounts as columns), returns a DataFrame of order stubs. quantities in: Account U12345 U55555 Sid 12345 -100 -50 23456 100 50 34567 200 100 order_stubs out: Sid Account Action OrderRef TotalQuantity 0 12345 U12345 SELL my-strategy 100 1 12345 U55555 SELL my-strategy 50 2 23456 U12345 BUY my-strategy 100 3 23456 U55555 BUY my-strategy 50 4 34567 U12345 BUY my-strategy 200 5 34567 U55555 BUY my-strategy 100 """ quantities.index.name = "Sid" quantities.columns.name = "Account" quantities = quantities.stack() quantities.name = "Quantity" order_stubs = quantities.to_frame().reset_index() order_stubs["Action"] = np.where(order_stubs.Quantity > 0, "BUY", "SELL") order_stubs = order_stubs.loc[order_stubs.Quantity != 0].copy() order_stubs["OrderRef"] = self.CODE order_stubs["TotalQuantity"] = order_stubs.Quantity.abs() order_stubs = order_stubs.drop("Quantity",axis=1) return order_stubs def _get_nlv(self): """ Return a dict of currency:NLV for each currency in the strategy. By default simply returns the NLV class attribute. """ return self.NLV def _positions_to_turnover(self, positions): """ Given a dataframe of positions, returns a dataframe of turnover. 0 indicates no turnover; 1 indicates going from 100% short to cash or cash to 100% long (for example), and vice versa; and 2 indicates going from 100% short to %100 long (for example). """ # Intraday trades are opened and closed each day there's a position, # so the turnover is twice the positions. if self.POSITIONS_CLOSED_DAILY: turnover = positions * 2 else: turnover = positions.fillna(0).diff() return turnover.abs() def _weights_to_today_weights(self, weights, prices): """ From a DataFrame of target weights, extract the row that contains the weights that should be used for today's trading. Returns a Series of weights by sid: Sid 12345 -0.2 23456 0 34567 0.1 The date whose weights are selected is usually today, but if CALENDAR is used and the market is closed it will be the date when the market closed. Can also be overridden by review_date. For intraday strategies, the time whose weights are selected is the latest time that is earlier than the time at which the strategy is running. """ # First, get the signal date # Use review_date if set if self.review_date: dt = pd.Timestamp(self.review_date) # Else use trading calendar if provided elif self.CALENDAR: status = list_calendar_statuses([self.CALENDAR])[self.CALENDAR] # If the exchange if closed, the signals should correspond to the # date the exchange was last open if status["status"] == "closed": dt = pd.Timestamp(status["since"]) # If the exchange is open, the signals should correspond to # today's date else: dt = pd.Timestamp.now(tz=status["timezone"]) # If no trading calendar, use today's date (in strategy timezone) else: tz = self.TIMEZONE or self._inferred_timezone dt = pd.Timestamp.now(tz=tz) # Keep only the date as the signal_date self._signal_date = pd.Timestamp(dt.date()) # extract the current time (or review date time) trade_time = dt.strftime("%H:%M:%S") weights_is_intraday = "Time" in weights.index.names try: today_weights = weights.loc[self._signal_date] except KeyError: if weights_is_intraday: max_date = weights.index.get_level_values("Date").max() else: max_date = weights.index.max() msg = ("expected signal date {0} not found in target weights DataFrame, " "is the underlying data up-to-date? (max date is {1})") if not self.CALENDAR and not weights_is_intraday and self._signal_date.date() - max_date.date() == pd.Timedelta(days=1): msg += (" If your strategy trades before the open and {0} data " "is not expected, try setting CALENDAR = <exchange>") raise MoonshotError(msg.format( self._signal_date.date().isoformat(), max_date.date().isoformat())) if not weights_is_intraday: print("using target weights for {0} to create orders".format(self._signal_date.date().isoformat())) return today_weights # For intraday strategies, select the weights from the latest time # that is earlier than the trade time. Note that we select the # expected time from the entire weights DataFrame, which will result # in a failure if that time is missing for the trade date unique_times = weights.index.get_level_values("Time").unique() self._signal_time = unique_times[unique_times < trade_time].max() if pd.isnull(self._signal_time): msg = ( "cannot determine which target weights to use for orders because " "target weights DataFrame contains no times earlier than trade time {0} " "for signal date {1}".format( trade_time, self._signal_date.date().isoformat())) if self.review_date: msg += ", please adjust the review_date" raise MoonshotError(msg) # get_prices inserts all times into each day's index, thus # the signal_time will be in the weights DataFrame even if the data # is stale. Instead, to validate the data, we make sure that there is # at least one nonnull field in the prices DataFrame at the # signal_time on the signal_date today_prices = prices.xs(self._signal_date, level="Date") notnull_today_prices = today_prices[today_prices.notnull().any(axis=1)] try: no_signal_time_prices = notnull_today_prices.xs(self._signal_time, level="Time").empty except KeyError: no_signal_time_prices = True if no_signal_time_prices: msg = ("no {0} data found in prices DataFrame for signal date {1}, " "is the underlying data up-to-date? (max time for {1} " "is {2})") notnull_max_date = notnull_today_prices.iloc[-1].name[-1] raise MoonshotError(msg.format( self._signal_time, self._signal_date.date().isoformat(), notnull_max_date)) today_weights = today_weights.loc[self._signal_time] print("using target weights for {0} at {1} to create orders".format( self._signal_date.date().isoformat(), self._signal_time)) return today_weights def _get_commissions(self, positions, prices): """ Returns the commissions to be subtracted from the returns. """ if not self.COMMISSION_CLASS: return pd.DataFrame(0, index=positions.index, columns=positions.columns) turnover = self._positions_to_turnover(positions) contract_values = self._get_contract_values(prices) prices_is_intraday = "Time" in prices.index.names positions_is_intraday = "Time" in positions.index.names if prices_is_intraday and not positions_is_intraday: contract_values = contract_values.groupby( contract_values.index.get_level_values("Date")).first() fields = prices.index.get_level_values("Field").unique() if "Nlv" in self._securities_master.columns: nlvs = contract_values.apply(lambda x: self._securities_master.Nlv, axis=1) else: nlvs = None # handle the case of only one commission class if not isinstance(self.COMMISSION_CLASS, dict): commissions = self.COMMISSION_CLASS.get_commissions(contract_values, turnover=turnover, nlvs=nlvs) return commissions # handle multiple commission classes per sectype/exchange/currency # first, tuple-ize the dict keys in case they are lists commission_classes = {} for sec_group, commission_cls in self.COMMISSION_CLASS.items(): commission_classes[tuple(sec_group)] = commission_cls defined_sec_groups = set([tuple(k) for k in commission_classes.keys()]) # Reindex master fields like contract_values sec_types = contract_values.apply(lambda x: self._securities_master.SecType, axis=1) exchanges = contract_values.apply(lambda x: self._securities_master.Exchange, axis=1) currencies = contract_values.apply(lambda x: self._securities_master.Currency, axis=1) required_sec_groups = set([ tuple(s.split("|")) for s in (sec_types+"|"+exchanges+"|"+currencies).iloc[-1].unique()]) missing_sec_groups = required_sec_groups - defined_sec_groups if missing_sec_groups: raise MoonshotParameterError("expected a commission class for each combination of (sectype,exchange,currency) " "but none is defined for {0}".format( ", ".join(["({0})".format(",".join(t)) for t in missing_sec_groups]))) all_commissions = pd.DataFrame(None, index=positions.index, columns=positions.columns) for sec_group in required_sec_groups: commission_cls = commission_classes[sec_group] sec_type, exchange, currency = sec_group sec_group_commissions = commission_cls.get_commissions( contract_values, turnover=turnover, nlvs=nlvs) in_sec_group = (sec_types == sec_type) & (exchanges == exchange) & (currencies == currency) all_commissions = sec_group_commissions.where(in_sec_group, all_commissions) return all_commissions def _get_slippage(self, positions, prices): """ Returns the slippage to be subtracted from the returns. """ turnover = self._positions_to_turnover(positions) slippage = pd.DataFrame(0, index=turnover.index, columns=turnover.columns) slippage_classes = self.SLIPPAGE_CLASSES or () if not isinstance(slippage_classes, (list, tuple)): slippage_classes = [slippage_classes] for slippage_class in slippage_classes: slippage += slippage_class().get_slippage(turnover, positions, prices) if self.SLIPPAGE_BPS: slippage += FixedSlippage(self.SLIPPAGE_BPS/10000.0).get_slippage(turnover, positions, prices) return slippage.fillna(0) def _constrain_weights(self, weights, prices): """ Constrains the weights by the quantity constraints defined in limit_position_sizes. """ max_quantities_for_longs, max_quantities_for_shorts = self.limit_position_sizes(prices) if max_quantities_for_longs is None and max_quantities_for_shorts is None: return weights if "Nlv" not in self._securities_master.columns: raise MoonshotParameterError("must provide NLVs if using limit_position_sizes") contract_values = self._get_contract_values(prices) contract_values = contract_values.fillna(method="ffill") nlvs_in_trade_currency = contract_values.apply(lambda x: self._securities_master.Nlv, axis=1) prices_is_intraday = "Time" in prices.index.names weights_is_intraday = "Time" in weights.index.names if prices_is_intraday and not weights_is_intraday: # we somewhat arbitrarily pick the contract value as of the # earliest time of day; this contract value might be somewhat # stale but it avoids the possible lookahead bias of using, say, # the contract value as of the latest time of day. We could ask # the user to supply a time but that is rather clunky. earliest_time = prices.index.get_level_values("Time").unique().min() contract_values = contract_values.xs(earliest_time, level="Time") nlvs_in_trade_currency = nlvs_in_trade_currency.xs(earliest_time, level="Time") # Convert weights to quantities trade_values_in_trade_currency = weights * nlvs_in_trade_currency # Note: we take abs() of contract_values because combos can have # negative prices which would invert the sign of the trade quantities = trade_values_in_trade_currency / contract_values.where(contract_values != 0).abs() quantities = quantities.round().fillna(0).astype(int) # Constrain quantities if max_quantities_for_longs is not None: max_quantities_for_longs = max_quantities_for_longs.abs() quantities = max_quantities_for_longs.where( quantities > max_quantities_for_longs, quantities) if max_quantities_for_shorts is not None: max_quantities_for_shorts = -max_quantities_for_shorts.abs() quantities = max_quantities_for_shorts.where( quantities < max_quantities_for_shorts, quantities) # Convert quantities back to weights target_trade_values_in_trade_currency = quantities * contract_values weights = target_trade_values_in_trade_currency / nlvs_in_trade_currency return weights def limit_position_sizes(self, prices): """ This method should return a tuple of DataFrames:: return max_quantities_for_longs, max_quantities_for_shorts where the DataFrames define the maximum number of shares/contracts that can be held long and short, respectively. Maximum limits might be based on available liquidity (recent volume), shortable shares available, etc. The shape and alignment of the returned DataFrames should match that of the target_weights returned by `signals_to_target_weights`. Target weights will be reduced, if necessary, based on max_quantities_for_longs and max_quantities_for_shorts. Return None for one or both DataFrames to indicate "no limits." For example to limit shorts but not longs:: return None, max_quantities_for_shorts Within a DataFrame, any None or NaNs will be treated as "no limit" for that particular security and date. Note that max_quantities_for_shorts can equivalently be represented with positive or negative numbers. This is OK:: AAPL 2018-05-18 100 2018-05-19 100 This is also OK:: AAPL 2018-05-18 -100 2018-05-19 -100 Both of the above DataFrames would mean: short no more than 100 shares of AAPL. Parameters ---------- prices : DataFrame, required multiindex (Field, Date) or (Field, Date, Time) DataFrame of price/market data Returns ------- tuple of (DataFrame, DataFrame) max quantities for long, max quantities for shorts Examples -------- Limit quantities to 1% of 15-day average daily volume: >>> def limit_position_sizes(self, prices): >>> # assumes end-of-day bars, for intraday bars, use `.xs` to >>> # select a time of day >>> volumes = prices.loc["Volume"] >>> mean_volumes = volumes.rolling(15).mean() >>> max_shares = (mean_volumes * 0.01).round() >>> max_quantities_for_longs = max_quantities_for_shorts = max_shares >>> return max_quantities_for_longs, max_quantities_for_shorts """ max_quantities_for_longs = None max_quantities_for_shorts = None return max_quantities_for_longs, max_quantities_for_shorts @classmethod def _get_lookback_window(cls): """ Returns cls.LOOKBACK_WINDOW if set, otherwise infers the lookback window from `_WINDOW`, defaulting to 252. Then increases the lookback based on `_INTERVAL` attributes, which are interpreted as pandas frequencies (for example `REBALANCE_INTERVAL` = 'Q'). This ensures the lookback is sufficient when resampling to quarterly etc. for periodic rebalancing. """ if cls.LOOKBACK_WINDOW is not None: return cls.LOOKBACK_WINDOW window_attrs = [getattr(cls, attr) for attr in dir(cls) if attr.endswith("_WINDOW")] windows = [attr for attr in window_attrs if isinstance(attr, int)] lookback_window = max(windows) if windows else 252 # Add _INTERVAL if any offset_aliases = [getattr(cls, attr) for attr in dir(cls) if attr.endswith("_INTERVAL")] intervals = [] for freq in offset_aliases: if not freq: continue try: periods = pd.date_range(start=pd.to_datetime('today'), freq=freq, periods=2) except ValueError: continue # Use the period date range to count bdays in period bdays = len(pd.bdate_range(start=periods[0], end=periods[1])) intervals.append(bdays) if intervals: lookback_window += max(intervals) return lookback_window def _load_master_file(self, sids, nlv=None, no_cache=False): """ Loads master file from cache or master service. """ securities = None fields = [ "Currency", "Multiplier", "PriceMagnifier", "Exchange", "SecType", "Symbol", "Timezone"] if self.is_backtest and not no_cache: # try to load from cache securities = Cache.get(sids, prefix="_master") if securities is None: # query master f = io.StringIO() download_master_file( f, sids=sids, fields=fields) securities = pd.read_csv(f, index_col="Sid") if self.is_backtest: Cache.set(sids, securities, prefix="_master") if not self.TIMEZONE: timezones = securities.Timezone.unique() if len(timezones) > 1: raise MoonshotParameterError( "cannot infer timezone because multiple timezones are present " "in data, please specify TIMEZONE explicitly (timezones: {0})".format( ", ".join(timezones))) self._inferred_timezone = timezones[0] # Append NLV if applicable nlvs = nlv or self._get_nlv() if nlvs: # For FX, store NLV based on the quote currency (extracted from the Symbol) # not Currency (100 EUR.USD = 100 EUR, not 100 USD) currencies = securities.Symbol.astype(str).str.split(".").str[0].where( securities.SecType=="CASH", securities.Currency) missing_nlvs = set(currencies) - set(nlvs.keys()) if missing_nlvs: raise MoonshotParameterError( "NLV dict is missing values for required currencies: {0}".format( ", ".join(missing_nlvs))) securities["Nlv"] = currencies.apply(lambda currency: nlvs.get(currency, None)) self._securities_master = securities.sort_index() @classmethod def _get_start_date_with_lookback(cls, start_date): """ Returns the start_date adjusted to incorporate the LOOKBACK_WINDOW, plus a buffer. LOOKBACK_WINDOW is measured in trading days, but we query the db in calendar days. Convert from weekdays (260 per year) to calendar days, assuming 25 holidays (NYSE has ~9 per year, TSEJ has ~19), plus a buffer (which varies by window size) to be safe. """ lookback_window = cls._get_lookback_window() days_per_year = 365 weekdays_per_year = 260 max_holidays_per_year = 25 trading_days_per_year = weekdays_per_year - max_holidays_per_year # Vary the buffer by the window length (for very short windows, the # user might not want to load too much data so we want to keep the # buffer reasonably small) # No window, no buffer if lookback_window == 0: buffer = 0 # for window < 1 week, a 2 day buffer (plus the calendar day to # trading day conversion) will suffice elif lookback_window <= 5: buffer = 2 # longer than a week, err on the side of loading ample data else: buffer = 10 start_date = pd.Timestamp(start_date) - pd.Timedelta( days=math.ceil(lookback_window*days_per_year/trading_days_per_year) + buffer) return start_date.date().isoformat() def get_prices(self, start_date, end_date=None, nlv=None, no_cache=False): """ Downloads prices from a history db and/or real-time aggregate db. Downloads security details from the master db. """ if start_date: start_date = self._get_start_date_with_lookback(start_date) codes = self.DB if not isinstance(codes, (list, tuple)): codes = [self.DB] sids = self.SIDS or [] # Add benchmark sid if needed. It's needed if there is no # BENCHMARK_DB, and sids or universes are specified (if they're # not specified, the whole db will be queried, including the # benchmark) if ( self.is_backtest and self.BENCHMARK and not self.BENCHMARK_DB and (sids or self.UNIVERSES) ): sids = list(sids).copy() sids.append(self.BENCHMARK) kwargs = dict( codes=codes, start_date=start_date, end_date=end_date, universes=self.UNIVERSES, sids=sids, exclude_universes=self.EXCLUDE_UNIVERSES, exclude_sids=self.EXCLUDE_SIDS, times=self.DB_TIMES, cont_fut=self.CONT_FUT, fields=self.DB_FIELDS, timezone=self.TIMEZONE, data_frequency=self.DB_DATA_FREQUENCY ) if not self.TIMEZONE: kwargs["infer_timezone"] = True prices = None if self.is_backtest and not no_cache: # If no end_date is specified (indicating the user wants # up-to-date history), we don't want to use the cache if the dbs # were more recently modified (indicating new data collection). # If there's an end date, we use the cache if possible. (The user # can use --no-cache to disable cache usage if needed.) if not end_date: unless_dbs_modified = { "services": ["history", "realtime"], "codes": codes} else: unless_dbs_modified = None # try to load from cache prices = Cache.get(kwargs, prefix="_history", unless_dbs_modified=unless_dbs_modified) if prices is None: prices = get_prices(**kwargs) if self.is_backtest: Cache.set(kwargs, prices, prefix="_history") self._load_master_file(prices.columns.tolist(), nlv=nlv, no_cache=no_cache) return prices def _prices_to_signals(self, prices, **kwargs): """ Converts a prices DataFrame to a DataFrame of signals. This private method, which simply calls the user-modified public method `prices_to_signals`, exists for the benefit of the MoonshotML subclass, which overrides it. """ return self.prices_to_signals(prices) def backtest(self, start_date=None, end_date=None, nlv=None, allocation=1.0, label_sids=False, no_cache=False): """ Backtest a strategy and return a DataFrame of results. Parameters ---------- start_date : str (YYYY-MM-DD), optional the backtest start date (default is to include all history in db) end_date : str (YYYY-MM-DD), optional the backtest end date (default is to include all history in db) nlv : dict dict of currency:nlv. Should contain a currency:nlv pair for each currency represented in the strategy allocation : float how much to allocate to the strategy label_sids : bool replace <Sid> with <Symbol>(<Sid>) in columns in output for better readability (default True) no_cache : bool don't use cached files even if available. Using cached files speeds up backtests but may be undesirable if underlying data has changed. See http://qrok.it/h/mcache to learn more about caching in Moonshot. Returns ------- DataFrame multiindex (Field, Date) or (Field, Date, Time) DataFrame of backtest results """ self.is_backtest = True allocation = allocation or 1.0 prices = self.get_prices(start_date, end_date, nlv=nlv, no_cache=no_cache) signals = self._prices_to_signals(prices, no_cache=no_cache) weights = self.signals_to_target_weights(signals, prices) weights = weights * allocation weights = self._constrain_weights(weights, prices) positions = self.target_weights_to_positions(weights, prices) gross_returns = self.positions_to_gross_returns(positions, prices) commissions = self._get_commissions(positions, prices) slippages = self._get_slippage(positions, prices) returns = gross_returns.fillna(0) - commissions - slippages turnover = self._positions_to_turnover(positions) total_holdings = (positions.fillna(0) != 0).astype(int) results_are_intraday = "Time" in signals.index.names all_results = dict( AbsExposure=positions.abs(), AbsWeight=weights.abs(), Commission=commissions, NetExposure=positions, Return=returns, Signal=signals, Slippage=slippages, TotalHoldings=total_holdings, Turnover=turnover, Weight=weights) # validate that custom backtest results are daily if results are # daily for custom_name, custom_df in self._backtest_results.items(): if "Time" in custom_df.index.names and not results_are_intraday: raise MoonshotParameterError( "custom DataFrame '{0}' won't concat properly with 'Time' in index, " "please take a cross-section first, for example: " "`my_dataframe.xs('15:45:00', level='Time')`".format(custom_name)) all_results.update(self._backtest_results) if self.BENCHMARK: all_results["Benchmark"] = self._get_benchmark(prices, daily=not results_are_intraday) results = pd.concat(all_results, keys=list(sorted(all_results.keys()))) names = ["Field","Date"] if results.index.nlevels == 3: names.append("Time") results.index.set_names(names, inplace=True) if label_sids: symbols = self._securities_master.Symbol symbols_with_sids = symbols.astype(str) + "(" + symbols.index.astype(str) + ")" results.rename(columns=symbols_with_sids.to_dict(), inplace=True) # truncate at requested start_date if start_date: results = results.iloc[ results.index.get_level_values("Date") >= pd.Timestamp(start_date)] return results def _get_benchmark(self, prices, daily=True): """ Returns a 1-column DataFrame of benchmark prices, either extracted from prices or queried from BENCHMARK_DB if defined. BENCHMARK_DB, if used, must contain end-of-day prices. If prices are intraday and daily=True, the returned benchmark prices will be daily; if this is the case and benchmark prices are extracted from the prices DataFrame, BENCHMARK_TIME will be used to extract daily prices. If prices are intraday and daily=False, intraday benchmark prices will be returned; if this is the case and BENCHMARK_DB is used, the daily benchmark prices will be broadcast across the entire intraday timeframe. """ if self.BENCHMARK_DB: try: benchmark_prices = get_prices( self.BENCHMARK_DB, sids=self.BENCHMARK, start_date=prices.index.get_level_values("Date").min(), end_date=prices.index.get_level_values("Date").max(), fields="Close", # if this is a minute Zipline bundle, we want to query # daily bars; data_frequency is ignored if this is not # a Zipline bundle data_frequency="daily" ) except requests.HTTPError as e: raise MoonshotError("error querying BENCHMARK_DB {0}: {1}".format( self.BENCHMARK_DB, repr(e) )) benchmark_prices = benchmark_prices.loc["Close"] if "Time" in benchmark_prices.index.names: raise MoonshotParameterError( "only end-of-day databases are supported for BENCHMARK_DB but {0} is intraday".format( self.BENCHMARK_DB)) # Reindex benchmark prices like prices first_prices_field = prices.loc[prices.index.get_level_values("Field")[0]] # either reindex daily to daily (end-of-day backtests) if "Time" not in first_prices_field.index.names: benchmark_prices = benchmark_prices.reindex(index=first_prices_field.index) else: # or reindex daily to intraday daily (continuous intraday backtests) benchmark_prices = benchmark_prices.reindex(index=first_prices_field.index, level="Date") # and possibly back to daily (once-a-day intraday backtests) if daily: benchmark_prices = benchmark_prices.groupby( benchmark_prices.index.get_level_values("Date")).last() benchmark_db = self.BENCHMARK_DB else: benchmark_prices = prices benchmark_db = self.DB field = None fields = benchmark_prices.index.get_level_values("Field").unique() candidate_fields = ("Close", "Open", "Bid", "Ask", "High", "Low") for candidate in candidate_fields: if candidate in fields: field = candidate break else: raise MoonshotParameterError("Cannot extract BENCHMARK {0} from {1} data without one of {2}".format( self.BENCHMARK, benchmark_db, ", ".join(candidate_fields))) benchmark_prices = benchmark_prices.loc[field] try: benchmark = benchmark_prices[self.BENCHMARK] except KeyError: raise MoonshotError("BENCHMARK Sid {0} is not in {1} data".format( self.BENCHMARK, benchmark_db)) # to avoid inserting an extra column in the results DataFrame, # store the benchmark prices under the first column if self.BENCHMARK_DB: benchmark.name = prices.columns[0] if "Time" in benchmark_prices.index.names and daily: if not self.BENCHMARK_TIME: raise MoonshotParameterError( "Cannot extract BENCHMARK {0} from {1} data because prices contains intraday " "prices but no BENCHMARK_TIME specified".format(self.BENCHMARK, benchmark_db)) try: benchmark = benchmark.xs(self.BENCHMARK_TIME, level="Time") except KeyError: raise MoonshotError("BENCHMARK_TIME {0} is not in {1} data".format( self.BENCHMARK_TIME, benchmark_db)) return pd.DataFrame(benchmark) def save_to_results(self, name, df): """ Saves the DataFrame to the backtest results output. DataFrame should have a Date or (Date, Time) index with Sids as columns. Parameters ---------- name : str, required the name to assign to the DataFrame df : DataFrame, required the DataFrame to save Returns ------- None Examples -------- Save moving averages of closing prices to results: >>> closes = prices.loc["Close"] >>> mavgs = closes.rolling(50).mean() >>> self.save_to_results("MAvg", mavgs) """ # No-op if trading if self.is_trade: return reserved_names = [ "Signal", "Weight", "AbsWeight", "AbsExposure", "NetExposure", "Turnover", "TotalHolding", "Commission", "Slippage", "Return", "Benchmark" ] if name in reserved_names: raise ValueError("name {0} is a reserved name".format(name)) index_levels = df.index.names if "Date" not in index_levels: raise MoonshotParameterError( "custom DataFrame '{0}' must have index called 'Date' to concat properly, but has {1}".format( name, ",".join([str(level_name) for level_name in index_levels]))) if not hasattr(df.index.get_level_values("Date"), "date"): raise MoonshotParameterError("custom DataFrame '{0}' must have a DatetimeIndex to concat properly".format(name)) self._backtest_results[name] = df def trade(self, allocations, review_date=None): """ Run the strategy and create orders. Parameters ---------- allocations : dict, required dict of account:allocation to strategy (expressed as a percentage of NLV) review_date : str (YYYY-MM-DD [HH:MM:SS]), optional generate orders as if it were this date, rather than using the latest date. For end-of-day strategies, provide a date; for intraday strategies a date and time Returns ------- DataFrame orders """ self.is_trade = True self.review_date = review_date start_date = review_date or pd.Timestamp.today() prices = self.get_prices(start_date) prices_is_intraday = "Time" in prices.index.names signals = self._prices_to_signals(prices) weights = self.signals_to_target_weights(signals, prices) weights = self._weights_to_today_weights(weights, prices) allocations = pd.Series(allocations) # Out: # U12345 0.25 # U55555 0.50 # Multiply weights times allocations weights = weights.apply(lambda x: x * allocations) # Out: # U12345 U55555 # 12345 -0.050 -0.10 # 23456 0.000 0.00 # 34567 0.025 0.05 contract_values = self._get_contract_values(prices) contract_values = contract_values.fillna(method="ffill").loc[self._signal_date] if prices_is_intraday: if self._signal_time: contract_values = contract_values.loc[self._signal_time] else: contract_values = contract_values.iloc[-1] contract_values = allocations.apply(lambda x: contract_values).T # Out: # U12345 U55555 # 12345 95.68 95.68 # 23456 1500.00 1500.00 # 34567 3600.00 3600.00 currencies = self._securities_master.Currency sec_types = self._securities_master.SecType # For FX, exchange rate conversions should be based on the quote currency # (extracted from the Symbol), not the currency (i.e. 100 EUR.USD = 100 EUR, # not 100 USD) if (sec_types == "CASH").any(): quote_currencies = self._securities_master.Symbol.astype(str).str.split(".").str[0] currencies = currencies.where(sec_types != "CASH", quote_currencies) account_balance_fields = self.ACCOUNT_BALANCE_FIELD or "NetLiquidation" if not isinstance(account_balance_fields, (list, tuple)): account_balance_fields = [account_balance_fields] f = io.StringIO() download_account_balances( f, latest=True, accounts=list(allocations.index), fields=account_balance_fields) balances = pd.read_csv(f) # Cast account numbers to strings balances["Account"] = balances.Account.astype(str) balances = balances.set_index("Account") f = io.StringIO() download_exchange_rates( f, latest=True, base_currencies=list(balances.Currency.unique()), quote_currencies=list(currencies.unique())) exchange_rates = pd.read_csv(f) # Use the lesser field if multiple fields were given (see class docstring) nlvs = balances[account_balance_fields].min(axis=1).reindex(allocations.index) # Out: # U12345 1000000 # U55555 500000 nlvs = weights.apply(lambda x: nlvs, axis=1) # Out: # U12345 U55555 # 12345 1000000 500000 # 23456 1000000 500000 # 34567 1000000 500000 base_currencies = balances.Currency.reindex(allocations.index) # Out: # U12345 USD # U55555 EUR base_currencies = weights.apply(lambda x: base_currencies, axis=1) # Out: # U12345 U55555 # 12345 USD EUR # 23456 USD EUR # 34567 USD EUR trade_currencies = allocations.apply(lambda x: currencies).T # Out: # U12345 U55555 # 12345 USD USD # 23456 JPY JPY # 34567 JPY JPY base_currencies = base_currencies.stack() trade_currencies= trade_currencies.stack() base_currencies.name = "BaseCurrency" trade_currencies.name = "QuoteCurrency" currencies =
pd.concat((base_currencies,trade_currencies), axis=1)
pandas.concat
# # -*- coding: utf-8 -*- import argparse import itertools import logging.config import os import sys from collections import Counter from multiprocessing import Pool, cpu_count import numpy as np import pandas as pd from pandas import DataFrame src = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.join(src, "data")) sys.path.append(os.path.join(src, "features")) import multiprocess_utils as multi_utils import preprocess as prep import build_features as feat # TODO: Integrate in the future # AGGREGATE_COLUMNS = ['Languages', 'Locations', 'DeviceCategories', # 'TrafficSources', 'TrafficMediums', 'NetworkLocations', 'sessionID', # 'Times', 'Dates', 'Time_Spent', 'userID'] # TODO: Extend with more BigQuery fields. Pre-defined columns will be aggregated COUNTABLE_AGGREGATE_COLUMNS = ['Languages', 'Locations', 'DeviceCategories', 'DeviceCategory', 'TrafficSources', 'TrafficMediums', 'NetworkLocations', 'Dates'] # TODO: Extend with more BigQuery fields. Pre-defined columns will be aggregated SLICEABLE_COLUMNS = ['Occurrences', 'Languages', 'Locations', 'DeviceCategories', 'DeviceCategory', 'TrafficSources', 'TrafficMediums', 'NetworkLocations', 'Dates'] # Columns to drop post-internal processing if DROP_ONE_OFFS is true: these are initialized in order to set up # "PageSequence" which is used for journey drops instead of "Sequence" which includes events, hence making journeys # overall more infrequent. DROPABLE_COLS = ['Page_Event_List', 'Page_List'] # Execute module for only one file SINGLE: bool = False # Fewer files to process than available cpus. FEWER_THAN_CPU: bool = False # Drop journeys occurring once (not in a day, multiple days, governed by DEPTH globals). If false, overrides depth # globals and keeps journeys, resulting in massive dataframes (danger zone). DROP_ONE_OFFS: bool = False # Drop journeys of length 1 DROP_ONES: bool = False # Keep only journeys of length 1 KEEP_ONES: bool = False # Maximum recursive depth for distribution function MAX_DEPTH: int = -1 # Recursive depth limit for distribution function, so one-off journeys are drop in time. DEPTH_LIM: int = 1 # If there are many files to be merge, load in/preprocess in batches BATCH_SIZE: int = 3 # A bit of a magic number, but limits dataframes that can be passed off to workers. If dataframe exceeds this size, # switch to sequential execution. ROW_LIMIT: int = 1000000 def list_to_dict(metadata_list): """ Transform metadata lists to dictionary aggregates :param metadata_list: :return: """ return list(Counter([xs for xs in metadata_list]).items()) def str_to_dict(metadata_str): """ Transform metadata string eg mobile,desktop,mobile to [(mobile,2),(desktop,1)] dict-like list. :param metadata_str: :return: dict-like list of frequencies """ # print(metadata_str) return list_to_dict(metadata_str.split(',')) def aggregate_dict(metadata_list): """ Aggregate over multiple metadata frequency lists, sum up frequencies over course of multiple days. :param metadata_list: :return: dict-like list of frequencies """ metadata_counter = {} for meta in metadata_list: for key, value in meta: if key not in metadata_counter: metadata_counter[key] = value else: metadata_counter[key] += value return list(metadata_counter.items()) def zip_aggregate_metadata(user_journey_df): """ TODO: needs more work, right now it is dependant on hardcoded df column specification. Not used atm :param user_journey_df: :return: """ col = [] for tup in user_journey_df.itertuples(): locs = tup.Locations.split(',') langs = tup.Languages.split(',') devs = tup.DeviceCategories.split(',') zipped_meta_counter = Counter() for loc, lang, dev in zip(locs, langs, devs): zipped_meta_counter[(loc, lang, dev)] += 1 col.append(list(zipped_meta_counter.items())) user_journey_df['AggMeta'] = col def sequence_preprocess(user_journey_df): """ Bulk-execute main input pre-processing functions: from BigQuery journey strings to Page_Event_List to Page_List. PageSequence required for dataframes groupbys/filtering. :param user_journey_df: dataframe :return: no return, columns added in place. """ logger.info("BQ Sequence string to Page_Event_List...") user_journey_df['Page_Event_List'] = user_journey_df['Sequence'].map(prep.bq_journey_to_pe_list) logger.info("Page_Event_List to Page_List...") user_journey_df['Page_List'] = user_journey_df['Page_Event_List'].map(lambda x: prep.extract_pe_components(x, 0)) logger.info("Page_List to PageSequence...") # TODO: Remove condition + internal PageSequence post-testing/debugging. if 'PageSequence' not in user_journey_df.columns: user_journey_df['PageSequence'] = user_journey_df['Page_List'].map(lambda x: ">>".join(x)) else: user_journey_df['PageSequence_internal'] = user_journey_df['Page_List'].map(lambda x: ">>".join(x)) def event_preprocess(user_journey_df): """ Bulk-execute event related functions... Run after sequence_preprocess(user_journey_df) so that Page_Event_List column exists :param user_journey_df: dataframe :return: no return, columns added in place. """ logger.info("Preprocess and aggregate events...") logger.debug("Page_Event_List to Event_List...") user_journey_df['Event_List'] = user_journey_df['Page_Event_List'].map(lambda x: prep.extract_pe_components(x, 1)) logger.debug("Computing event-related counts and frequencies...") event_counters(user_journey_df) def taxon_preprocess(user_journey_df): """ Bulk map functions for event frequency/counts. :param user_journey_df: dataframe :return: no return, columns added in place. """ logger.info("Preprocess taxons...") logger.debug("Page_Event_List to Taxon_List...") user_journey_df['Taxon_List'] = user_journey_df['Page_Event_List'].map(lambda x: prep.extract_cd_components(x, 2)) logger.debug("Page_Event_List to Taxon_Page_List...") user_journey_df['Taxon_Page_List'] = user_journey_df['Page_Event_List'].map(lambda x: prep.extract_pcd_list(x, 2)) def event_counters(user_journey_df): """ Bulk map functions for event frequency/counts. :param user_journey_df: dataframe :return: no return, columns added in place. """ logger.debug("Computing number of event categories...") user_journey_df['num_event_cats'] = user_journey_df['Event_List'].map(feat.count_event_cat) logger.debug("Computing frequency of event categories...") user_journey_df['Event_cats_agg'] = user_journey_df['Event_List'].map(feat.aggregate_event_cat) logger.debug("Computing frequency of event categories and actions...") user_journey_df['Event_cat_act_agg'] = user_journey_df['Event_List'].map(feat.aggregate_event_cat_act) def add_loop_columns(user_journey_df): """ Bulk map functions for event frequency/counts. :param user_journey_df: dataframe :return: no return, columns added in place. """ logger.info("Preprocess journey looping...") logger.debug("Collapsing loops...") user_journey_df['Page_List_NL'] = user_journey_df['Page_List'].map(prep.collapse_loop) # In order to groupby during analysis step logger.debug("De-looped lists to string...") user_journey_df['Page_Seq_NL'] = user_journey_df['Page_List_NL'].map(lambda x: ">>".join(x)) if 'Page_Seq_Occurrences' not in user_journey_df.columns: logger.debug("Setting up Page_Seq_Occurrences...") user_journey_df['Page_Seq_Occurrences'] = user_journey_df.groupby('PageSequence')['Occurrences'].transform( 'sum') # Count occurrences of de-looped journeys, most generic journey frequency metric. logger.debug("Aggregating de-looped journey occurrences...") user_journey_df['Occurrences_NL'] = user_journey_df.groupby('Page_Seq_NL')['Occurrences'].transform('sum') logger.debug("De-looped page sequence to list...") user_journey_df['Page_List_NL'] = user_journey_df['Page_Seq_NL'].map( lambda x: x.split(">>") if isinstance(x, str) else np.NaN) def groupby_meta(df_slice: DataFrame, depth: int, multiple_dfs: bool): """ Aggregate specified metadata column. If it's the first recursive run, transform aggregate metadata string to a dict-like list. :param df_slice: specified metadata column (refer to AGGREGATE_COLUMNS values) :param depth: (int) recursive call tracker, depth = 0 indicates first recursive call :param multiple_dfs: (boolean) indicates whether many dfs have been merged and require grouping by :return: no return, mapping and drops happen inplace on df_slice. """ agg = df_slice.columns[1] print("multiple dfs:", multiple_dfs) # One-off if isinstance(df_slice[agg].iloc[0], str): print("list to dict") df_slice[agg] = df_slice[agg].map(str_to_dict) if multiple_dfs: metadata_gpb = df_slice.groupby('Sequence')[agg].apply(aggregate_dict) logger.debug("Mapping {}, items: {}...".format(agg, len(metadata_gpb))) df_slice[agg] = df_slice['Sequence'].map(metadata_gpb) drop_duplicate_rows(df_slice) def drop_duplicate_rows(df_slice: DataFrame): """ Drop duplicate rows from a dataframe slice. :param df_slice: :return: """ bef = df_slice.shape[0] logger.debug("Current # of rows: {}. Dropping duplicate rows..".format(bef)) df_slice.drop_duplicates(subset='Sequence', keep='first', inplace=True) after = df_slice.shape[0] logger.debug("Dropped {} duplicated rows.".format(bef - after)) # noinspection PyUnusedLocal def conditional_pre_gpb_drop(df_occ_slice: list, df_meta_slice: list): """ Drop samples from metadata dataframe slice depending on already reduced Occurrences slice (occ slice set up as basis for drop because it's the fastest to compute. Only runs if contents df_occ_slice have already been reduced. :param df_occ_slice: list of (file_code, df_occurrence_slice) tuples :param df_meta_slice: list of (file_code, df_meta_slice) tuples :return: reduced df_meta_slice """ for df_code_i, df_slice_i in df_occ_slice: for df_code_j, df_slice_j in df_meta_slice: if df_code_i == df_code_j: seq_occ = df_slice_i.Sequence.values df_slice_j.query("Sequence.isin(@seq_occ)", inplace=True) return df_meta_slice def process_dataframes(pool: Pool, dflist: list, chunks: int, depth: int = 0, additional: DataFrame = None): """ Main func :param pool: pool of worker processes (daemons) :param dflist: list of dataframes to evaluate :param chunks: len(partitions) :param depth: Increases roughly every 4-5 days of data accumulation :param additional: from batching process, output from previous run that needs to be merged with dflist contents :return: contents of dflist merged into a single, metadata+occurrence-aggregated dataframe """ # or (len(dflist) == 1 and depth == 0) if len(dflist) > 1 or (len(dflist) == 1 and depth == 0): new_list = [] partitions = multi_utils.partition_list(dflist, chunks, FEWER_THAN_CPU) multi_dfs = [] parts_to_merge = len(partitions) print("number of partitions:", partitions) print("number of dfs:", len(dflist)) for i, index_list in enumerate(partitions): print(index_list) lst = [dflist[ind] for ind in index_list] multi_dfs.append(len(lst) > 1) logger.info("Run: {} Num_of_df_to_merge: {}".format(i, len(lst))) pair_df =
pd.concat(lst)
pandas.concat
import os import openmatrix as omx import pandas as pd import geopandas as gpd from shapely import wkt import numpy as np import logging import requests from tqdm import tqdm import time from pilates.utils.geog import get_block_geoms, \ map_block_to_taz, get_zone_from_points, get_taz_geoms logger = logging.getLogger(__name__) beam_skims_types = {'timePeriod': str, 'pathType': str, 'origin': int, 'destination': int, 'TIME_minutes': float, 'TOTIVT_IVT_minutes': float, 'VTOLL_FAR': float, 'DIST_meters': float, 'WACC_minutes': float, 'WAUX_minutes': float, 'WEGR_minutes': float, 'DTIM_minutes': float, 'DDIST_meters': float, 'KEYIVT_minutes': float, 'FERRYIVT_minutes': float, 'BOARDS': float, 'DEBUG_TEXT': str } def _load_raw_beam_skims(settings, remote_url=None): if not remote_url: skims_fname = settings.get('skims_fname', False) path_to_beam_skims = os.path.join( settings['beam_local_output_folder'], skims_fname) else: path_to_beam_skims = remote_url try: # load skims from disk or url skims = pd.read_csv(path_to_beam_skims, dtype=beam_skims_types) except KeyError: raise KeyError( "Couldn't find input skims at {0}".format(path_to_beam_skims)) return skims def _create_skim_object(data_dir, overwrite=True): skims_path = os.path.join(data_dir, 'skims.omx') skims_exist = os.path.exists(skims_path) if skims_exist: if (overwrite): logger.info("Found existing skims, removing.") os.remove(skims_path) else: logger.info("Found existing skims, no need to re-create.") return False logger.info("Creating skims.omx from BEAM skims") skims = omx.open_file(skims_path, 'w') skims.close() return True def _create_skims_by_mode(settings): """ Returns 2 OD pandas dataframe for auto and transit """ logger.info("Splitting BEAM skims by mode.") skims_df = _load_raw_beam_skims(settings) num_hours = skims_df['timePeriod'].nunique() num_modes = skims_df['pathType'].nunique() num_od_pairs = len(skims_df) / num_hours / num_modes # make sure the matrix is square num_taz = np.sqrt(num_od_pairs) assert num_taz.is_integer() num_taz = int(num_taz) # convert beam skims to activitysim units (miles and minutes) skims_df['DIST_miles'] = skims_df['DIST_meters'] * (0.621371 / 1000) skims_df['DDIST_miles'] = skims_df['DDIST_meters'] * (0.621371 / 1000) skims_df = skims_df.sort_values(['origin', 'destination', 'TIME_minutes']) logger.info('Splitting out auto skims.') auto_df = skims_df.loc[skims_df['pathType'] == 'SOV'] logger.info('Splitting out transit skims.') transit_df = skims_df.loc[ skims_df['pathType'].isin(settings['transit_paths'])] return auto_df, transit_df, num_taz def _distance_skims(settings, auto_df, data_dir, num_taz): # Open skims object skims_path = os.path.join(data_dir, 'skims.omx') skims = omx.open_file(skims_path, 'a') # TO DO: Include walk and bike distances, # for now walk and bike are the same as drive. distances_auto = auto_df.drop_duplicates( ['origin', 'destination'], keep='last')[settings['beam_asim_hwy_measure_map']['DIST']] # TO DO: Do something better. distances_auto = distances_auto.replace( 0, np.random.normal(39, 20)) # distances_walk = walk_df.drop_duplicates( # ['origin', 'destination'])[beam_asim_hwy_measure_map['DIST']] mx_auto = distances_auto.values.reshape((num_taz, num_taz)) # mx_walk = distances_walk.values.reshape((num_taz, num_taz)) # Distance matrices skims['DIST'] = mx_auto skims['DISTBIKE'] = mx_auto skims['DISTWALK'] = mx_auto skims.close() def _transit_access(transit_df, access_paths, num_taz): ''' OD pair value for drive access ''' df = transit_df.loc[transit_df.pathType.isin(access_paths), :].copy() df.drop_duplicates(['origin', 'destination'], keep='last', inplace=True) assert df.shape[0] == num_taz * num_taz return df def _transit_skims(settings, transit_df, data_dir, num_taz): """ Generate transit OMX skims""" logger.info("Creating transit skims.") # Open skims object skims_path = os.path.join(data_dir, 'skims.omx') skims = omx.open_file(skims_path, 'a') drive_access = ['DRV_COM_WLK', 'DRV_HVY_WLK', 'DRV_LOC_WLK', 'DRV_LRF_WLK', 'DRV_EXP_WLK'] walk_acces = ['WLK_COM_WLK', 'WLK_HVY_WLK', 'WLK_LOC_WLK', 'WLK_LRF_WLK', 'WLK_EXP_WLK', 'WLK_TRN_WLK'] drive_access_values = _transit_access(transit_df, drive_access, num_taz) walk_access_values = _transit_access(transit_df, walk_acces, num_taz) for path in settings['transit_paths']: path_ = path.replace('EXP', "LOC") # Get the values of LOC for EXP. path_ = path_.replace('TRN', "LOC") # Get the values of LOC for TRN. # # When BEAM skims generates all skims # mask1 = transit_df['pathType'] == path_ # df = transit_df[mask1] # TO DO: Drive access needs to be different for each transit mode # TO DO: Walk access needs to be different for each transit mode if path[:4] == 'DRIVE': df = drive_access_values else: df = walk_access_values beam_asim_transit_measure_map = settings[ 'beam_asim_transit_measure_map'] for period in settings['periods']: # # When BEAM skims generates all skims # mask2 = df_['timePeriod'] == period # df_ = df[mask2] df_ = df for measure in beam_asim_transit_measure_map.keys(): name = '{0}_{1}__{2}'.format(path, measure, period) if (measure == 'FAR') or (measure == 'BOARDS'): vals = df_[beam_asim_transit_measure_map[measure]] mx = vals.values.reshape((num_taz, num_taz), order='C') elif beam_asim_transit_measure_map[measure]: # activitysim estimated its models using transit skims from Cube # which store time values as scaled integers (e.g. x100), so their # models also divide transit skim values by 100. Since our skims # aren't coming out of Cube, we multiply by 100 to negate the division. # This only applies for travel times. Fare is not multiplied by 100. vals = df_[beam_asim_transit_measure_map[measure]] mx = vals.values.reshape((num_taz, num_taz), order='C') * 100 else: mx = np.zeros((num_taz, num_taz)) skims[name] = mx skims.close() def _auto_skims(settings, auto_df, data_dir, num_taz): logger.info("Creating drive skims.") # Open skims object skims_path = os.path.join(data_dir, 'skims.omx') skims = omx.open_file(skims_path, 'a') # Create skims for period in settings['periods']: mask1 = auto_df['timePeriod'] == period df = auto_df[mask1] beam_asim_hwy_measure_map = settings['beam_asim_hwy_measure_map'] for path in settings['hwy_paths']: for measure in beam_asim_hwy_measure_map.keys(): name = '{0}_{1}__{2}'.format(path, measure, period) if beam_asim_hwy_measure_map[measure]: vals = df[beam_asim_hwy_measure_map[measure]] mx = vals.values.reshape((num_taz, num_taz), order='C') else: mx = np.zeros((num_taz, num_taz)) skims[name] = mx skims.close() def _create_offset(auto_df, data_dir): logger.info("Creating skims offset keys") # Open skims object skims_path = os.path.join(data_dir, 'skims.omx') skims = omx.open_file(skims_path, 'a') # Generint offset taz_equivs = auto_df.origin.sort_values().unique() skims.create_mapping('taz', taz_equivs) skims.close() def create_skims_from_beam(data_dir, settings, overwrite=True): new = _create_skim_object(data_dir, overwrite) if new: auto_df, transit_df, num_taz = _create_skims_by_mode(settings) # Create skims _distance_skims(settings, auto_df, data_dir, num_taz) _auto_skims(settings, auto_df, data_dir, num_taz) _transit_skims(settings, transit_df, data_dir, num_taz) # Create offset _create_offset(auto_df, data_dir) def _get_full_time_enrollment(state_fips, year): base_url = ( 'https://educationdata.urban.org/api/v1/' '{t}/{so}/{e}/{y}/{l}/?{f}&{s}&{r}&{cl}&{ds}&{fips}') levels = ['undergraduate', 'graduate'] enroll_list = [] for level in levels: level_url = base_url.format( t='college-university', so='ipeds', e='fall-enrollment', y=year, l=level, f='ftpt=1', s='sex=99', r='race=99', cl='class_level=99', ds='degree_seeking=99', fips='fips={0}'.format(state_fips)) enroll_result = requests.get(level_url) enroll = pd.DataFrame(enroll_result.json()['results']) enroll = enroll[['unitid', 'enrollment_fall']].rename( columns={'enrollment_fall': level}) enroll[level].clip(0, inplace=True) enroll.set_index('unitid', inplace=True) enroll_list.append(enroll) full_time = pd.concat(enroll_list, axis=1).fillna(0) full_time['full_time'] = full_time['undergraduate'] + full_time['graduate'] s = full_time.full_time assert s.index.name == 'unitid' return s def _get_part_time_enrollment(state_fips): base_url = ( 'https://educationdata.urban.org/api/v1/' '{t}/{so}/{e}/{y}/{l}/?{f}&{s}&{r}&{cl}&{ds}&{fips}') levels = ['undergraduate', 'graduate'] enroll_list = [] for level in levels: level_url = base_url.format( t='college-university', so='ipeds', e='fall-enrollment', y='2015', l=level, f='ftpt=2', s='sex=99', r='race=99', cl='class_level=99', ds='degree_seeking=99', fips='fips={0}'.format(state_fips)) enroll_result = requests.get(level_url) enroll = pd.DataFrame(enroll_result.json()['results']) enroll = enroll[['unitid', 'enrollment_fall']].rename( columns={'enrollment_fall': level}) enroll[level].clip(0, inplace=True) enroll.set_index('unitid', inplace=True) enroll_list.append(enroll) part_time =
pd.concat(enroll_list, axis=1)
pandas.concat
import argparse import os import numpy as np import torch import torch.utils.data from PIL import Image import pandas as pd import cv2 import json from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from torchvision.transforms import functional as F from torchvision.models.detection import fasterrcnn_resnet50_fpn from torchvision.models.detection.faster_rcnn import FastRCNNPredictor # from utils import utils class FramesDataset(Dataset): """Creates a dataset that can be fed into DatasetLoader Args: frames (list): A list of cv2-compatible numpy arrays or a list of PIL Images """ def __init__(self, frames): # Convert to list of tensors x = [F.to_tensor(img) for img in frames] # Define which device to use, either gpu or cpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Send the frames to device x_device = [img.to(device) for img in x] self.x = x_device #x def __getitem__(self, idx): return self.x[idx] def __len__(self): return len(self.x) class ObjectDetector(): """ObjectDetector class with staticmethods that can be called from outside by importing as below: from helmet_detector.detector import ObjectDetector The staic methods can be accessed using ObjectDetector.<name of static method>() """ @staticmethod def load_custom_model(model_path=None, num_classes=None): """Load a model from local file system with custom parameters Load FasterRCNN model using custom parameters Args: model_path (str): Path to model parameters num_classes (int): Number of classes in the custom model Returns: model: Loaded model in evaluation mode for inference """ # load an object detection model pre-trained on COCO model = fasterrcnn_resnet50_fpn(pretrained=True) # get the number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features,num_classes) # load previously fine-tuned parameters # Define which device to use, either gpu or cpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') if torch.cuda.is_available(): model.load_state_dict(torch.load(model_path)) model.to(device) else: model.load_state_dict(torch.load(model_path, map_location=device)) # Put the model in evaluation mode model.eval() return model @staticmethod def run_detection(img, loaded_model): """ Run inference on single image Args: img: image in 'numpy.ndarray' format loaded_model: trained model Returns: Default predictions from trained model """ # need to make sure we have 3d tensors of shape [C, H, W] with torch.no_grad(): prediction = loaded_model(img) return prediction @staticmethod def to_dataframe_highconf(predictions, conf_thres, frame_id): """ Converts the default predictions into a Pandas DataFrame, only predictions with score greater than conf_thres Args: predictions (list): Default FasterRCNN implementation output. This is a list of dicts with keys ['boxes','labels','scores'] frame_id : frame id conf_thres: score greater than this will be kept as detections Returns: A Pandas DataFrame with columns ['frame_id','class_id','score','x1','y1','x2','y2'] """ df_list = [] for i, p in enumerate(predictions): boxes = p['boxes'].detach().cpu().tolist() labels = p['labels'].detach().cpu().tolist() scores = p['scores'].detach().cpu().tolist() df = pd.DataFrame(boxes, columns=['x1','y1','x2','y2']) df['class_id'] = labels df['score'] = scores df['frame_id'] = frame_id df_list.append(df) df_detect = pd.concat(df_list, axis=0) df_detect = df_detect[['frame_id','class_id','score','x1','y1','x2','y2']] # Keep predictions with high confidence, with score greater than conf_thres df_detect = df_detect.loc[df_detect['score'] >= conf_thres] return df_detect @staticmethod def to_dataframe(predictions): """ Converts the default predictions into a Pandas DataFrame Args: predictions (list): Default FasterRCNN implementation output. This is a list of dicts with keys ['boxes','labels','scores'] Returns: A Pandas DataFrame with columns ['frame_id','class_id','score','x1','y1','x2','y2'] """ df_list = [] for i, p in enumerate(predictions): boxes = p['boxes'].detach().cpu().tolist() labels = p['labels'].detach().cpu().tolist() scores = p['scores'].detach().cpu().tolist() df = pd.DataFrame(boxes, columns=['x1','y1','x2','y2']) df['class_id'] = labels df['score'] = scores df['frame_id'] = i df_list.append(df) df_detect = pd.concat(df_list, axis=0) df_detect = df_detect[['frame_id','class_id','score','x1','y1','x2','y2']] return df_detect @staticmethod def calc_iou(boxA, boxB): # https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) # compute the area of intersection rectangle interArea = max(0, xB - xA) * max(0, yB - yA) # compute the area of both the prediction and ground-truth # rectangles boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1]) boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1]) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = interArea / float(boxAArea + boxBArea - interArea) # return the intersection over union value return iou @staticmethod def evaluate_detections_iou(gt, det, iou_threshold): """Evaluate and obtain FN and FP records between detection and annotations Args: df_detect (pandas.DataFrame): Detected boxes in a Pandas Dataframe with columns ['frame_id','class_id','score','x1','y1','x2','y2'] df_annot (pandas.DataFrame): Known/annotation boxes in a Pandas Dataframe with columns ['frame_id','class_id','x1','y1','x2','y2'] Returns: result (pandas.DataFrame): Count of total number of objects in gt and det, and tp, fn, fp with columns ['num_object_gt', 'num_object_det', 'tp', 'fn', 'fp'] df_fn (pandas.DataFrame): False negative records in a Pandas Dataframe with columns ['frame_id','class_id','x1','y1','x2','y2'] df_fp (pandas.DataFrame): False positive records in a Pandas Dataframe with columns ['frame_id','class_id', 'score', 'x1','y1','x2','y2'] """ if (gt is not None) and (det is not None): matched = [] for g in range(gt.shape[0]): count = 0 for d in range(det.shape[0]): iou = ObjectDetector.calc_iou(np.array(gt.iloc[g,2:]), np.array(det.iloc[d,3:])) if (iou > iou_threshold): if (count == 0): max_conf = det.iloc[d,2] temp = [g,d,iou, det.iloc[d,2]] count +=1 elif (count > 0): print("Multiple detections found, keep only with highest confidence") if (max_conf < det.iloc[d,2]): max_conf = det.iloc[d,2] temp = [g,d,iou, det.iloc[d,2]] count +=1 if (count != 0): matched.append(temp) df_tp = pd.DataFrame(matched, columns = ['gt_index', 'det_index', 'iou', 'det_conf']) # To qualitatively find detection error, output fn and fp boxes. just visualize them on the frame # Get unmatched gt - these are FNs df_fn = [] num_fn = 0 for i in range(gt.shape[0]): if i not in df_tp['gt_index'].tolist(): df_fn.append(gt.iloc[i,:]) num_fn +=1 if num_fn > 0: df_fn = pd.DataFrame(data=df_fn) df_fn.columns = ['frame_id','class_id','x1','y1','x2','y2'] else: df_fn = None # Get unmatched det - these are FPs df_fp = [] num_fp = 0 for i in range(det.shape[0]): if i not in df_tp['det_index'].tolist(): df_fp.append(det.iloc[i,:]) num_fp +=1 if num_fp > 0: df_fp = pd.DataFrame(data=df_fp) df_fp.columns = ['frame_id','class_id', 'score', 'x1','y1','x2','y2'] else: # print("num_fp = 0 in frame_id {}".format(gt.iloc[0,0])) df_fp = None # To quantify detection error, output number of helmets in gt, number of helmets in det, tp, fn, fp frame_id = gt.iloc[0,0] tp = len(df_tp['gt_index'].unique()) result = [] result.append([frame_id, gt.shape[0], det.shape[0], tp, num_fn, num_fp]) result = pd.DataFrame(data=result, columns = ['frame_id', 'num_object_gt', 'num_object_det', 'tp', 'fn', 'fp']) else: result = None df_fn = None df_fp = None return result, df_fn, df_fp @staticmethod def find_frames_high_fn_fp(eval_det, fn_thres, fp_thres): """ Find frames with high fn and fp, fn >= fn_thres and fp >= fp_thres Arg: eval_det: Detection evaluation matrix for whole play fn_thres: Get a list of frames where fn is greater than equal to this value fp_thres: Get a list of frames where fn is greater than equal to this value Return: frame_list: List of frames with high fn and fp """ frame_list = eval_det[(eval_det['fn'] >= fn_thres) & (eval_det['fp'] >= fp_thres)]['frame_id'].tolist() return frame_list @staticmethod def run_detection_video(video_in, model_path, full_video=True, subset_video=60, conf_thres=0.9): """ Run detection on video Args: video_in: Input video path model_path: Location of the pretrained model.pt full_video: Bool to indicate whether to run the whole video, default = False subset_video: Number of frames to run detection on conf_thres = Only consider detections with score higher than conf_thres, default = 0.9 Returns: Predicted detection for all the frames in a video df_predictions (pandas.DataFrame): prediction of detected object for all frames with columns ['frame_id', 'class_id', 'score', 'x1', 'y1', 'x2', 'y2'] """ # Capture the input video vid = cv2.VideoCapture(video_in) # Get video title vid_title = os.path.splitext(os.path.basename(video_in))[0] # Get total number of frames num_frames = vid.get(cv2.CAP_PROP_FRAME_COUNT) # load model num_classes = 2 model = ObjectDetector.load_custom_model(model_path=model_path, num_classes=num_classes) # if running for the whole video, then change the size of subset_video with total number of frames if full_video: subset_video = int(num_frames) df_predictions = [] # predictions for whole video for i in range(subset_video): #383 ret, frame = vid.read() print("Processing frame#: {} running detection for videos".format(i)) # Get detection for this frame list_frame = [frame] dataset_frame = FramesDataset(list_frame) prediction = ObjectDetector.run_detection(dataset_frame, model) df_prediction = ObjectDetector.to_dataframe_highconf(prediction, conf_thres, i) df_predictions.append(df_prediction) # Concatenate predictions for all frames of the video df_predictions = pd.concat(df_predictions) return df_predictions @staticmethod def run_detection_frames(frames, model_path, batch_size=4, conf_thres=0.9, start_frame=0, end_frame=-1): """ Run detection on list of frames Args: frames: List of frames between start_frame and end_frame of a full play video model_path: Location of the pretrained model.pt batch_size (int): Size of inference minibatch --> not sure we need this conf_thres: Only consider detections with score higher than conf_thres, default = 0.9 start_frame: First frame number to output. Default is 0. end_frame: Last frame number to output. If less than 1 then take all frames Returns: Predicted detection for all the frames between start_frame and end_frame of a full play video df_predictions (pandas.DataFrame): prediction of detected object for all frames with columns ['frame_id', 'class_id', 'score', 'x1', 'y1', 'x2', 'y2'] Todo: Figure out how reduce confusion around start_frame/end_frame var collision with utils.frames_from_video() """ if end_frame>=1: assert start_frame<=end_frame if end_frame < 0: end_frame = start_frame + len(frames) -1 # load model num_classes = 2 model = ObjectDetector.load_custom_model(model_path=model_path, num_classes=num_classes) df_predictions = [] # predictions for all frames count = 0 for i in range(start_frame, end_frame): # Get detection for this frame dataset_frame = FramesDataset([frames[count]]) prediction = ObjectDetector.run_detection(dataset_frame, model) df_prediction = ObjectDetector.to_dataframe_highconf(prediction, conf_thres, i) df_predictions.append(df_prediction) count+=1 # dataset = FramesDataset(frames) # batcher = DataLoader(dataset, batch_size=batch_size, shuffle=False) # for batch in batcher: # prediction = ObjectDetector.run_detection(batch, model) # df_prediction = ObjectDetector.to_dataframe_highconf(prediction, conf_thres, batch) # df_predictions.append(df_prediction) # Concatenate predictions for all frames of the video df_predictions = pd.concat(df_predictions) return df_predictions @staticmethod def get_gt_frame(frame_id, cur_boxes): """Get ground truth annotations on the frames Args: frame_id: Frame id cur_boxes: Current annotation boxes "left", "width", "top", "height" Returns: box_ret: ground truth boxes in a Pandas Dataframe with columns ['frame_id','class_id','x1','y1','x2','y2'] """ box_out = [] for box in cur_boxes: box_out.append([frame_id, 1, box[0],box[2],box[0]+box[1], box[2]+box[3]]) # Return gt dataframe box_ret = pd.DataFrame(data = box_out, columns = ['frame_id','class_id','x1','y1','x2','y2']) return box_ret @staticmethod def run_detection_eval_video(video_in, gtfile_name, model_path, full_video=True, subset_video=60, conf_thres=0.9, iou_threshold = 0.5): """ Run detection on video Args: video_in: Input video path gtfile_name: Ground Truth annotation json file name model_path: Location of the pretrained model.pt full_video: Bool to indicate whether to run the whole video, default = False subset_video: Number of frames to run detection on conf_thres = Only consider detections with score higher than conf_thres, default = 0.9 iou_threshold = Match detection with ground trurh if iou is higher than iou_threshold, default = 0.5 Returns: Predicted detection for all the frames in a video, evaluation for detection, a dataframe with bounding boxes for false negatives and false positives df_predictions (pandas.DataFrame): prediction of detected object for all frames with columns ['frame_id', 'class_id', 'score', 'x1', 'y1', 'x2', 'y2'] eval_results (pandas.DataFrame): Count of total number of objects in gt and det, and tp, fn, fp for all frames with columns ['frame_id', 'num_object_gt', 'num_object_det', 'tp', 'fn', 'fp'] fns (pandas.DataFrame): False negative records in a Pandas Dataframe for all frames with columns ['frame_id','class_id','x1','y1','x2','y2'], return empty dataframe if no false negatives fps (pandas.DataFrame): False positive records in a Pandas Dataframe for all frames with columns ['frame_id','class_id', 'score', 'x1','y1','x2','y2'], return empty dataframe if no false positives """ # Capture the input video vid = cv2.VideoCapture(video_in) # Get video title vid_title = os.path.splitext(os.path.basename(video_in))[0] # Get total number of frames num_frames = vid.get(cv2.CAP_PROP_FRAME_COUNT) print("********** Num of frames", num_frames) # load model num_classes = 2 model = ObjectDetector.load_custom_model(model_path=model_path, num_classes=num_classes) print("Pretrained model loaded") # Get GT annotations gt_labels = pd.read_csv('/home/ec2-user/SageMaker/0Artifact/helmet_detection/input/train_labels.csv')#.fillna(0) video = os.path.basename(video_in) print("Processing video: ",video) labels = gt_labels[gt_labels['video']==video] # if running for the whole video, then change the size of subset_video with total number of frames if full_video: subset_video = int(num_frames) # frames = [] df_predictions = [] # predictions for whole video eval_results = [] # detection evaluations for the whole video fns = [] # false negative detections for the whole video fps = [] # false positive detections for the whole video for i in range(subset_video): ret, frame = vid.read() print("Processing frame#: {} running detection and evaluation for videos".format(i+1)) # Get detection for this frame list_frame = [frame] dataset_frame = FramesDataset(list_frame) prediction = ObjectDetector.run_detection(dataset_frame, model) df_prediction = ObjectDetector.to_dataframe_highconf(prediction, conf_thres, i) df_predictions.append(df_prediction) # Get label for this frame cur_label = labels[labels['frame']==i+1] # get this frame's record cur_boxes = cur_label[['left','width','top','height']].values gt = ObjectDetector.get_gt_frame(i+1, cur_boxes) # Evaluate detection for this frame eval_result, fn, fp = ObjectDetector.evaluate_detections_iou(gt, df_prediction, iou_threshold) eval_results.append(eval_result) if fn is not None: fns.append(fn) if fp is not None: fps.append(fp) # Concatenate predictions, evaluation resutls, fns and fps for all frames of the video df_predictions = pd.concat(df_predictions) eval_results = pd.concat(eval_results) # Concatenate fns if not empty, otherwise create an empty dataframe if not fns: fns =
pd.DataFrame()
pandas.DataFrame
""" test date_range, bdate_range construction from the convenience range functions """ from datetime import datetime, time, timedelta import numpy as np import pytest import pytz from pytz import timezone from pandas._libs.tslibs import timezones from pandas._libs.tslibs.offsets import BDay, CDay, DateOffset, MonthEnd, prefix_mapping from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td import pandas as pd from pandas import DatetimeIndex, Timestamp, bdate_range, date_range, offsets import pandas._testing as tm from pandas.core.arrays.datetimes import generate_range START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestTimestampEquivDateRange: # Older tests in TestTimeSeries constructed their `stamp` objects # using `date_range` instead of the `Timestamp` constructor. # TestTimestampEquivDateRange checks that these are equivalent in the # pertinent cases. def test_date_range_timestamp_equiv(self): rng = date_range("20090415", "20090519", tz="US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_dateutil(self): rng = date_range("20090415", "20090519", tz="dateutil/US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="dateutil/US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_explicit_pytz(self): rng = date_range("20090415", "20090519", tz=pytz.timezone("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=pytz.timezone("US/Eastern"), freq="D") assert ts == stamp @td.skip_if_windows_python_3 def test_date_range_timestamp_equiv_explicit_dateutil(self): from pandas._libs.tslibs.timezones import dateutil_gettz as gettz rng = date_range("20090415", "20090519", tz=gettz("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=gettz("US/Eastern"), freq="D") assert ts == stamp def test_date_range_timestamp_equiv_from_datetime_instance(self): datetime_instance = datetime(2014, 3, 4) # build a timestamp with a frequency, since then it supports # addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq="D")[0] ts = Timestamp(datetime_instance, freq="D") assert ts == timestamp_instance def test_date_range_timestamp_equiv_preserve_frequency(self): timestamp_instance = date_range("2014-03-05", periods=1, freq="D")[0] ts = Timestamp("2014-03-05", freq="D") assert timestamp_instance == ts class TestDateRanges: def test_date_range_nat(self): # GH#11587 msg = "Neither `start` nor `end` can be NaT" with pytest.raises(ValueError, match=msg): date_range(start="2016-01-01", end=pd.NaT, freq="D") with pytest.raises(ValueError, match=msg): date_range(start=pd.NaT, end="2016-01-01", freq="D") def test_date_range_multiplication_overflow(self): # GH#24255 # check that overflows in calculating `addend = periods * stride` # are caught with tm.assert_produces_warning(None): # we should _not_ be seeing a overflow RuntimeWarning dti = date_range(start="1677-09-22", periods=213503, freq="D") assert dti[0] == Timestamp("1677-09-22") assert len(dti) == 213503 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("1969-05-04", periods=200000000, freq="30000D") def test_date_range_unsigned_overflow_handling(self): # GH#24255 # case where `addend = periods * stride` overflows int64 bounds # but not uint64 bounds dti = date_range(start="1677-09-22", end="2262-04-11", freq="D") dti2 = date_range(start=dti[0], periods=len(dti), freq="D") assert dti2.equals(dti) dti3 = date_range(end=dti[-1], periods=len(dti), freq="D") assert dti3.equals(dti) def test_date_range_int64_overflow_non_recoverable(self): # GH#24255 # case with start later than 1970-01-01, overflow int64 but not uint64 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(start="1970-02-01", periods=106752 * 24, freq="H") # case with end before 1970-01-01, overflow int64 but not uint64 with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1969-11-14", periods=106752 * 24, freq="H") def test_date_range_int64_overflow_stride_endpoint_different_signs(self): # cases where stride * periods overflow int64 and stride/endpoint # have different signs start = Timestamp("2262-02-23") end = Timestamp("1969-11-14") expected = date_range(start=start, end=end, freq="-1H") assert expected[0] == start assert expected[-1] == end dti = date_range(end=end, periods=len(expected), freq="-1H") tm.assert_index_equal(dti, expected) start2 = Timestamp("1970-02-01") end2 = Timestamp("1677-10-22") expected2 = date_range(start=start2, end=end2, freq="-1H") assert expected2[0] == start2 assert expected2[-1] == end2 dti2 = date_range(start=start2, periods=len(expected2), freq="-1H") tm.assert_index_equal(dti2, expected2) def test_date_range_out_of_bounds(self): # GH#14187 msg = "Cannot generate range" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("2016-01-01", periods=100000, freq="D") with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1763-10-12", periods=100000, freq="D") def test_date_range_gen_error(self): rng = date_range("1/1/2000 00:00", "1/1/2000 00:18", freq="5min") assert len(rng) == 4 @pytest.mark.parametrize("freq", ["AS", "YS"]) def test_begin_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-01-01", "2014-01-01", "2015-01-01", "2016-01-01", "2017-01-01"], freq=freq, ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["A", "Y"]) def test_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-31"], freq=freq ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["BA", "BY"]) def test_business_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-30"], freq=freq ) tm.assert_index_equal(rng, exp) def test_date_range_negative_freq(self): # GH 11018 rng = date_range("2011-12-31", freq="-2A", periods=3) exp = DatetimeIndex(["2011-12-31", "2009-12-31", "2007-12-31"], freq="-2A") tm.assert_index_equal(rng, exp) assert rng.freq == "-2A" rng = date_range("2011-01-31", freq="-2M", periods=3) exp = DatetimeIndex(["2011-01-31", "2010-11-30", "2010-09-30"], freq="-2M") tm.assert_index_equal(rng, exp) assert rng.freq == "-2M" def test_date_range_bms_bug(self): # #1645 rng = date_range("1/1/2000", periods=10, freq="BMS") ex_first = Timestamp("2000-01-03") assert rng[0] == ex_first def test_date_range_normalize(self): snap = datetime.today() n = 50 rng = date_range(snap, periods=n, normalize=False, freq="2D") offset = timedelta(2) values = DatetimeIndex([snap + i * offset for i in range(n)], freq=offset)
tm.assert_index_equal(rng, values)
pandas._testing.assert_index_equal
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]] tm.assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=["B", "D"]) result = ix[f.index[5:10], [False, True, False, True]] tm.assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] tm.assert_frame_equal(result, expected) result = ix[boolvec, :] tm.assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=["C", "D"]) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_boolean(self, float_frame): # from 2d, set with booleans frame = float_frame.copy() expected = float_frame.copy() mask = frame["A"] > 0 frame.loc[mask] = 0.0 expected.values[mask.values] = 0.0 tm.assert_frame_equal(frame, expected) frame = float_frame.copy() expected = float_frame.copy() frame.loc[mask, ["A", "B"]] = 0.0 expected.values[mask.values, :2] = 0.0 tm.assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self, float_frame): result = float_frame.iloc[[1, 4, 7]] expected = float_frame.loc[float_frame.index[[1, 4, 7]]] tm.assert_frame_equal(result, expected) result = float_frame.iloc[:, [2, 0, 1]] expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]] tm.assert_frame_equal(result, expected) def test_getitem_setitem_boolean_misaligned(self, float_frame): # boolean index misaligned labels mask = float_frame["A"][::-1] > 1 result = float_frame.loc[mask] expected = float_frame.loc[mask[::-1]] tm.assert_frame_equal(result, expected) cp = float_frame.copy() expected = float_frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 tm.assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] tm.assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5
tm.assert_frame_equal(df, expected)
pandas._testing.assert_frame_equal
# install pattern # install gensim # install nltk # install pyspellchecker import re import pandas as pd import numpy as np import gensim from collections import Counter import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import RegexpTokenizer from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet from spellchecker import SpellChecker class Cleaning: def __init__(self): self.WORDS = {} return # remove urls (starts with https, http) def remove_URL(self, col): text = col.tolist() TEXT=[] for word in text: if pd.isnull(word): TEXT.append(word) else: TEXT.append(re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', str(word))) se = pd.Series(TEXT) return(se) def count_mark(self, col): df = pd.DataFrame() rdf = pd.DataFrame() # remove the special characters (numbers, exclamations and question marks) from the text # store them in a dataframe for later use text = col.tolist() for row in text: if pd.isnull(row): ser = pd.Series([np.nan,np.nan,np.nan,np.nan], index=['Number', 'Exclamation_count', 'Question_Mark_count', 'Comments_OE']) df = df.append(ser, ignore_index=True) else: numVals = [] excCount = [] quesCount = [] num = re.findall(r'\b\d+\b', row) numVals.append(num) # remove the number from the text for n in num: row = row.replace(n, '') excCount.append(row.count('!')) row = row.replace('!', '') quesCount.append(row.count('?')) row = row.replace('?', '') numSeries = pd.Series(numVals) rdf['Number'] = numSeries.values excSeries = pd.Series(excCount) rdf['Exclamation_count'] = excSeries quesSeries = pd.Series(quesCount) rdf['Question_Mark_count'] = quesSeries txtSeries = pd.Series(row) rdf['Comments_OE'] = txtSeries df = df.append(rdf, ignore_index=True) rdf =
pd.DataFrame()
pandas.DataFrame
# coding:utf-8 import os import base64 import configparser import json import urllib import pandas as pd import requests from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from QUANTAXIS.QAMarket.QABroker import QA_Broker from QUANTAXIS.QAUtil.QASetting import setting_path from QUANTAXIS.QAUtil.QAParameter import ORDER_DIRECTION, ORDER_MODEL CONFIGFILE_PATH = '{}{}{}'.format(setting_path, os.sep, 'config.ini') DEFAULT_SHIPANE_URL = 'http://1172.16.31.10:8888' def get_config_SPE(): config = configparser.ConfigParser() if os.path.exists(CONFIGFILE_PATH): config.read(CONFIGFILE_PATH) try: return config.get('SPE', 'uri') except configparser.NoSectionError: config.add_section('SPE') config.set('SPE', 'uri', DEFAULT_SHIPANE_URL) return DEFAULT_SHIPANE_URL except configparser.NoOptionError: config.set('SPE', 'uri', DEFAULT_SHIPANE_URL) return DEFAULT_SHIPANE_URL finally: with open(CONFIGFILE_PATH, 'w') as f: config.write(f) else: f = open(CONFIGFILE_PATH, 'w') config.add_section('SPE') config.set('SPE', 'uri', DEFAULT_SHIPANE_URL) config.write(f) f.close() return DEFAULT_SHIPANE_URL class QA_SPEBroker(QA_Broker): def __init__(self, endpoint=get_config_SPE()): self._endpoint = endpoint self._session = requests self.fillorder_headers = ['name', 'datetime', 'towards', 'price', 'amount', 'money', 'trade_id', 'order_id', 'code', 'shareholder', 'other'] self.holding_headers = ['code', 'name', 'hoding_price', 'price', 'pnl', 'amount', 'sell_available', 'pnl_money', 'holdings', 'total_amount', 'lastest_amounts', 'shareholder'] self.askorder_headers = ['code', 'towards', 'price', 'amount', 'transaction_price', 'transaction_amount', 'status', 'order_time', 'order_id', 'id', 'code', 'shareholders'] def call(self, func, params=''): try: response = self._session.get( '{}/api/v1.0/{}'.format(self._endpoint, func), params) text = response.text return json.loads(text) except: print("ERROR") return None def call_post(self, func, params={}): uri = '{}/api/v1.0/{}?client={}'.format( self._endpoint, func, params.pop('client')) response = self._session.post(uri, json=params) text = response.text return json.loads(text) def call_delete(self, func, params=''): uri = '{}/api/v1.0/{}?client={}'.format( self._endpoint, func, params.pop('client')) response = self._session.delete(uri) text = response.text print(text) try: return json.loads(text) except: return text def data_to_df(self, result): return
pd.DataFrame(data=result)
pandas.DataFrame
from pathlib import Path import numpy as np import pandas as pd import pytest from message_ix import Scenario, macro from message_ix.models import MACRO from message_ix.testing import SCENARIO, make_westeros # tons of deprecation warnings come from reading excel (xlrd library), ignore # them for now pytestmark = pytest.mark.filterwarnings("ignore") W_DATA_PATH = Path(__file__).parent / 'data' / 'westeros_macro_input.xlsx' MR_DATA_PATH = Path(__file__).parent / 'data' / 'multiregion_macro_input.xlsx' class MockScenario: def __init__(self): self.data = pd.read_excel(MR_DATA_PATH, sheet_name=None) for name, df in self.data.items(): if 'year' in df: df = df[df.year >= 2030] self.data[name] = df def has_solution(self): return True def var(self, name, **kwargs): df = self.data['aeei'] # add extra commodity to be removed extra_commod = df[df.sector == 'i_therm'] extra_commod['sector'] = self.data['config']['ignore_sectors'][0] # add extra region to be removed extra_region = df[df.node == 'R11_AFR'] extra_region['node'] = self.data['config']['ignore_nodes'][0] df = pd.concat([df, extra_commod, extra_region]) if name == 'DEMAND': df = df.rename(columns={'sector': 'commodity'}) elif name in ['COST_NODAL_NET', 'PRICE_COMMODITY']: df = df.rename(columns={ 'sector': 'commodity', 'value': 'lvl' }) df['lvl'] = 1e3 return df @pytest.fixture(scope='class') def westeros_solved(test_mp): yield make_westeros(test_mp, solve=True) @pytest.fixture(scope='class') def westeros_not_solved(westeros_solved): yield westeros_solved.clone(keep_solution=False) def test_calc_valid_data_file(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() def test_calc_valid_data_dict(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None) c = macro.Calculate(s, data) c.read_data() def test_calc_no_solution(westeros_not_solved): s = westeros_not_solved pytest.raises(RuntimeError, macro.Calculate, s, W_DATA_PATH) def test_config(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.nodes = set(list(c.nodes) + ['foo']) c.sectors = set(list(c.sectors) + ['bar']) assert c.nodes == set(['Westeros', 'foo']) assert c.sectors == set(['light', 'bar']) c.read_data() assert c.nodes == set(['Westeros']) assert c.sectors == set(['light']) def test_calc_data_missing_par(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None) data.pop('gdp_calibrate') c = macro.Calculate(s, data) pytest.raises(ValueError, c.read_data) def test_calc_data_missing_column(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None) # skip first data point data['gdp_calibrate'] = data['gdp_calibrate'].drop('year', axis=1) c = macro.Calculate(s, data) pytest.raises(ValueError, c.read_data) def test_calc_data_missing_datapoint(westeros_solved): s = westeros_solved data = pd.read_excel(W_DATA_PATH, sheet_name=None) # skip first data point data['gdp_calibrate'] = data['gdp_calibrate'][1:] c = macro.Calculate(s, data) pytest.raises(ValueError, c.read_data) # # Regression tests: these tests were compiled upon moving from R to Python, # values were confirmed correct at the time and thus are tested explicitly here # def test_calc_growth(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._growth() assert len(obs) == 4 obs = obs.values exp = np.array([0.0265836, 0.041380, 0.041380, 0.029186]) assert np.isclose(obs, exp).all() def test_calc_rho(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._rho() assert len(obs) == 1 obs = obs[0] exp = -4 assert obs == exp def test_calc_gdp0(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._gdp0() assert len(obs) == 1 obs = obs[0] exp = 500 assert obs == exp def test_calc_k0(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._k0() assert len(obs) == 1 obs = obs[0] exp = 1500 assert obs == exp def test_calc_total_cost(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._total_cost() # 4 values, 3 in model period, one in history assert len(obs) == 4 obs = obs.values exp = np.array([15, 17.477751, 22.143633, 28.189798]) / 1e3 assert np.isclose(obs, exp).all() def test_calc_price(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._price() # 4 values, 3 in model period, one in history assert len(obs) == 4 obs = obs.values exp = np.array([195, 183.094376, 161.645111, 161.645111]) assert np.isclose(obs, exp).all() def test_calc_demand(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._demand() # 4 values, 3 in model period, one in history assert len(obs) == 4 obs = obs.values exp = np.array([90, 100, 150, 190]) assert np.isclose(obs, exp).all() def test_calc_bconst(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._bconst() assert len(obs) == 1 obs = obs[0] exp = 3.6846576e-05 assert np.isclose(obs, exp) def test_calc_aconst(westeros_solved): s = westeros_solved c = macro.Calculate(s, W_DATA_PATH) c.read_data() obs = c._aconst() assert len(obs) == 1 obs = obs[0] exp = 26.027323 assert np.isclose(obs, exp) def test_init(message_test_mp): scen = Scenario(message_test_mp, **SCENARIO['dantzig']) scen = scen.clone('foo', 'bar') scen.check_out() MACRO.initialize(scen) scen.commit('foo') scen.solve() assert np.isclose(scen.var('OBJ')['lvl'], 153.675) assert 'mapping_macro_sector' in scen.set_list() assert 'aeei' in scen.par_list() assert 'DEMAND' in scen.var_list() assert 'COST_ACCOUNTING_NODAL' in scen.equ_list() def test_add_model_data(westeros_solved): base = westeros_solved clone = base.clone('foo', 'bar', keep_solution=False) clone.check_out() MACRO.initialize(clone) macro.add_model_data(base, clone, W_DATA_PATH) clone.commit('finished adding macro') clone.solve() obs = clone.var('OBJ')['lvl'] exp = base.var('OBJ')['lvl'] assert np.isclose(obs, exp) def test_calibrate(westeros_solved): base = westeros_solved clone = base.clone(base.model, 'test macro calibration', keep_solution=False) clone.check_out() MACRO.initialize(clone) macro.add_model_data(base, clone, W_DATA_PATH) clone.commit('finished adding macro') start_aeei = clone.par('aeei')['value'] start_grow = clone.par('grow')['value'] macro.calibrate(clone, check_convergence=True) end_aeei = clone.par('aeei')['value'] end_grow = clone.par('grow')['value'] # calibration should have changed some/all of these values and none should # be NaNs assert not np.allclose(start_aeei, end_aeei, rtol=1e-2) assert not np.allclose(start_grow, end_grow, rtol=1e-2) assert not end_aeei.isnull().any() assert not end_grow.isnull().any() def test_calibrate_roundtrip(westeros_solved): # this is a regression test with values observed on Aug 9, 2019 with_macro = westeros_solved.add_macro( W_DATA_PATH, check_convergence=True) aeei = with_macro.par('aeei')['value'].values assert len(aeei) == 4 exp = [0.02, 0.07173523, 0.03741514, 0.01990172] assert np.allclose(aeei, exp) grow = with_macro.par('grow')['value'].values assert len(grow) == 4 exp = [0.02658363, 0.06910296, 0.07952086, 0.02452946] assert np.allclose(grow, exp) # # These are a series of tests to guarantee multiregion/multisector # behavior is as expected. # def test_multiregion_valid_data(): s = MockScenario() c = macro.Calculate(s, MR_DATA_PATH) c.read_data() def test_multiregion_derive_data(): s = MockScenario() c = macro.Calculate(s, MR_DATA_PATH) c.read_data() c.derive_data() nodes = ['R11_AFR', 'R11_CPA'] sectors = ['i_therm', 'rc_spec'] # make sure no extraneous data is there check = c.data['demand'].reset_index() assert (check['node'].unique() == nodes).all() assert (check['sector'].unique() == sectors).all() obs = c.data['aconst'] exp = pd.Series([3.74767687, 0.00285472], name='value', index=pd.Index(nodes, name='node')) pd.testing.assert_series_equal(obs, exp) obs = c.data['bconst'] idx = pd.MultiIndex.from_product([nodes, sectors], names=['node', 'sector']) exp = pd.Series([1.071971e-08, 1.487598e-11, 9.637483e-09, 6.955715e-13], name='value', index=idx)
pd.testing.assert_series_equal(obs, exp)
pandas.testing.assert_series_equal
#%% #### Processes the raw data json using pandas to get #### dataframes that can be exported directly to Postgres as normalized tables import sys import inspect import os import json import pandas as pd class DataProcessing: def __init__(self): self.product_data_path = self.data_path = '../data/product_data' self.recipes_data_path = '../data/recipes_data' self.raw_product_data = DataProcessing._read_data(self.product_data_path) self.raw_recipes_data = DataProcessing._read_data(self.recipes_data_path) self.dictionary_of_category_dataframes = {} self._product_data_to_dataframes() # populate dictionary_of_category_dataframes self.all_products_df =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime import pandas as pd from featuretools.primitives import IsNull, Max from featuretools.primitives.base import PrimitiveBase, make_agg_primitive from featuretools.variable_types import DatetimeTimeIndex, Numeric def test_call_agg(): primitive = Max() # the assert is run twice on purpose assert 5 == primitive(range(6)) assert 5 == primitive(range(6)) def test_call_trans(): primitive = IsNull() assert pd.Series([False for i in range(6)]).equals(primitive(range(6))) assert pd.Series([False for i in range(6)]).equals(primitive(range(6))) def test_uses_calc_time(): def time_since_last(values, time=None): time_since = time - values.iloc[0] return time_since.total_seconds() TimeSinceLast = make_agg_primitive(time_since_last, [DatetimeTimeIndex], Numeric, name="time_since_last", uses_calc_time=True) primitive = TimeSinceLast() datetimes = pd.Series([datetime(2015, 6, 7), datetime(2015, 6, 6)]) answer = 86400.0 assert answer == primitive(datetimes, time=datetime(2015, 6, 8)) def test_call_multiple_args(): class TestPrimitive(PrimitiveBase): def get_function(self): def test(x, y): return y return test primitive = TestPrimitive() assert pd.Series([0, 1]).equals(primitive(range(1), range(2))) assert
pd.Series([0, 1])
pandas.Series
import argparse import json import math import random import string import pandas as pd from faker import Faker def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', help='Path to json config file', dest='config_file_path', required=True) parser.add_argument('--output', help='output xslx file', dest='output_file_path', required=True) args = parser.parse_args() with open(args.config_file_path) as config_file: config = json.load(config_file) num_of_initial_rows = int(config['total_row_cnt']) - int(config['total_row_cnt'] * config['duplication_rate']) num_duplicated_rows = int(config['total_row_cnt']) - num_of_initial_rows fake_gen = Faker(config['localization']) initial_fake_data =
pd.DataFrame()
pandas.DataFrame
""" Coding: utf-8 Author: Jesse Code Goal: 完成一级指标:政策主体的指标构建,使用颁布主题清单。 Code Logic: 分成两个部分:颁布主体行政级别以及是否联合发布 颁布主体行政级别部分 """ import pandas as pd import numpy as np import xlwings as xw from PolicyAnalysis import cptj as cj """ ———————————————————— 以下是使用 re 检索+ DFC 映射的数据处理写法 ———————————————————— """ class supervisors_re: def __init__(self, Data, userdict, indifile, opsheet): # 添加关键词词典 self.userdict = userdict self.indifile = indifile self.opsheet = opsheet self.Data = Data self.DTM = None self.DFC = None self.cls_map = None self.sr_map = None self.pt_map = None self.export = None # 定义一个Dataframe用于判断联合还是单独发布 self.middle = pd.DataFrame() self.score_map() self.class_map() self.supervisors() def score_map(self): # 导入指标文件 app = xw.App(visible=False, add_book=False) app.screen_updating = False app.display_alerts = False try: wb = app.books.open(self.indifile) sht = wb.sheets[self.opsheet] df_indi = sht.used_range.value df_indi = pd.DataFrame(df_indi) df_indi.drop(0, axis=0, inplace=True) df_indi.reset_index(drop=True, inplace=True) sr_indi = df_indi[0] sr_score = df_indi[1] sr_map = dict([(k, v) for k, v in zip(sr_indi, sr_score)]) finally: app.quit() self.sr_map = sr_map def class_map(self): # 导入指标文件 app = xw.App(visible=False, add_book=False) app.screen_updating = False app.display_alerts = False try: wb = app.books.open(self.indifile) sht = wb.sheets[self.opsheet] df_indi = sht.used_range.value df_indi = pd.DataFrame(df_indi) df_indi.drop(0, axis=0, inplace=True) df_indi.reset_index(drop=True, inplace=True) cls_indi = df_indi[0] cls_id = df_indi[2] cls_map = dict([(k, v) for k, v in zip(cls_indi, cls_id)]) finally: app.quit() self.cls_map = cls_map def supervisors(self): """ :param userdict_link: 关键词清单链接 :param Data: 输入的样本框, {axis: 1, 0: id, 1: 标题, 2: 正文, 3: 来源, 4:: freq} :return: 返回一个Series, {index=df['id'], values=level of supervisors} supervisors 会对输入的样本进行切词 + 词频统计处理,计算 发文主体+联合发布 的分数 """ lst = cj.txt_to_list(self.userdict) print('开始检索标题……') data = self.Data.copy() # 防止对样本以外的样本框造成改动 # 接下来对标题进行检索 data['正文'] = data['标题'] result_title = cj.words_docs_freq(lst, data) point_title = cj.dfc_point_giver(result_title['DFC'], self.sr_map) class_title = cj.dfc_sort_filter(result_title['DFC'], self.cls_map) # 接下来对来源进行检索 print('开始检索来源……') data['正文'] = data['来源'] result_source = cj.words_docs_freq(lst, data) self.DFC = result_source['DFC'] self.DTM = result_source['DTM'] point_source = cj.dfc_point_giver(self.DFC, self.sr_map) class_source = cj.dfc_sort_filter(self.DTM, self.cls_map) two_point = pd.concat([point_title, point_source], axis=1) two_class = pd.concat([class_title, class_source], axis=1) final_point = pd.DataFrame(two_point.agg(np.max, axis=1), columns=['颁布主体得分']) final_class = pd.DataFrame(two_class.agg(np.max, axis=1), columns=['是否联合发布']) final_class = final_class.applymap(lambda x: 1 if x > 1 else 0) final_point.fillna(0, inplace=True) final_class.fillna(0, inplace=True) export_data = pd.concat([final_class, final_point], axis=1) # ff_export_data.to_excel('Export_data_1_颁布主体+是否联合发布.xlsx') self.export = export_data """ ———————————————————————— 以下是使用 jieba 分词后检索+ DTM 映射的数据处理写法 ———————————————————————— """ class supervisor_jieba: def __init__(self, Data, userdict, indifile, opsheet, stopwords): self.userdict = userdict self.indifile = indifile self.opsheet = opsheet self.stopwords = stopwords self.Data = Data self.DTM = None self.DFC = None self.cls_map = None self.sr_map = None self.pt_map = None self.export = None # 定义一个Dataframe用于判断联合还是单独发布 self.middle = pd.DataFrame() self.point_map() self.class_map() self.sort_map() self.supervisors() def class_map(self): # 导入指标文件 app = xw.App(visible=False, add_book=False) app.screen_updating = False app.display_alerts = False try: wb = app.books.open(self.indifile) sht = wb.sheets[self.opsheet] df_indi = sht.used_range.value df_indi =
pd.DataFrame(df_indi)
pandas.DataFrame
""" Created on Mon May 30 2020 @author: evadatinez """ from pathlib import Path import pandas as pd def complaintsData(fname, data): """This function updates a dataframe with the CSV data with complaints Params: fname: path to FILE data: pandas dataframe to store data """ path = Path(fname + '/Participant8Observations.csv') # read csv from path df =
pd.read_csv(path)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # 02__trans_motifs # # in this notebook, i find motifs that are associated w/ trans effects using linear models and our RNA-seq data # In[1]: import warnings warnings.filterwarnings('ignore') import itertools import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm import statsmodels.formula.api as smf import sys from itertools import combinations from scipy.stats import boxcox from scipy.stats import linregress from scipy.stats import spearmanr from scipy.stats import pearsonr from statsmodels.stats.anova import anova_lm from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestNeighbors # import utils sys.path.append("../../../utils") from plotting_utils import * get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'svg'") mpl.rcParams['figure.autolayout'] = False # In[2]: sns.set(**PAPER_PRESET) fontsize = PAPER_FONTSIZE # In[3]: np.random.seed(2019) # In[4]: QUANT_ALPHA = 0.05 # ## functions # In[5]: def calculate_gc(row, col): cs = row[col].count("C") gs = row[col].count("G") gc = (cs+gs)/len(row[col]) return gc # In[6]: def calculate_cpg(row, col): cpgs = row[col].count("CG") cpg = cpgs/len(row[col]) return cpg # In[7]: def sig_status(row): if row.padj_trans < 0.05: return "sig" else: return "not sig" # In[8]: def neg_odds(row): if row["sig_status"] == "sig hESC": return -row["hESC_odds"] elif row["sig_status"] == "sig mESC": return row["mESC_odds"] else: return np.nan # In[9]: def direction_match(row): if row.activ_or_repr == "activating": if row.beta_trans < 0 and row.logFC < 0: return "match" elif row.beta_trans > 0 and row.logFC > 0: return "match" else: return "no match" elif row.activ_or_repr == "repressing": if row.beta_trans < 0 and row.logFC > 0: return "match" elif row.beta_trans > 0 and row.logFC < 0: return "match" else: return "no match" else: return "unclear" # ## variables # In[10]: human_motifs_f = "../../../data/04__mapped_motifs/human_motifs_filtered.txt.gz" mouse_motifs_f = "../../../data/04__mapped_motifs/mouse_motifs_filtered.txt.gz" # In[11]: motif_info_dir = "../../../misc/01__motif_info" motif_map_f = "%s/00__lambert_et_al_files/00__metadata/curated_motif_map.txt" % motif_info_dir motif_info_f = "%s/00__lambert_et_al_files/00__metadata/motif_info.txt" % motif_info_dir # In[12]: sig_motifs_f = "../../../data/04__mapped_motifs/sig_motifs.txt" # In[13]: tss_map_f = "../../../data/01__design/01__mpra_list/mpra_tss.with_ids.RECLASSIFIED_WITH_MAX.txt" # In[14]: index_f = "../../../data/01__design/02__index/TWIST_pool4_v8_final.with_element_id.txt.gz" # In[15]: data_f = "../../../data/02__mpra/03__results/all_processed_results.txt" # In[16]: expr_dir = "../../../data/03__rna_seq/04__TF_expr" orth_expr_f = "%s/orth_TF_expression.txt" % expr_dir human_expr_f = "%s/hESC_TF_expression.txt" % expr_dir mouse_expr_f = "%s/mESC_TF_expression.txt" % expr_dir # In[17]: orth_f = "../../../misc/00__ensembl_orthologs/ensembl96_human_mouse_orths.txt.gz" # ## 1. import data # In[18]: index = pd.read_table(index_f, sep="\t") index_elem = index[["element", "tile_type", "element_id", "name", "tile_number", "chrom", "strand", "actual_start", "actual_end", "dupe_info"]] index_elem = index_elem.drop_duplicates() # In[19]: tss_map = pd.read_table(tss_map_f, sep="\t") tss_map.head() # In[20]: # this file is already filtered to correct tile nums human_motifs = pd.read_table(human_motifs_f, sep="\t") human_motifs.head() # In[21]: # this file is already filtered to correct tile nums mouse_motifs = pd.read_table(mouse_motifs_f, sep="\t") mouse_motifs.head() # In[22]: motif_info = pd.read_table(motif_info_f, sep="\t") motif_info.head() # In[23]: sig_motifs = pd.read_table(sig_motifs_f) sig_motifs = sig_motifs[sig_motifs["padj"] < 0.05] print(len(sig_motifs)) sig_motifs.head() # In[24]: data = pd.read_table(data_f) data.head() # In[25]: orth_expr = pd.read_table(orth_expr_f, sep="\t") orth_expr.head() # In[26]: human_expr = pd.read_table(human_expr_f, sep="\t") human_expr.head() # In[27]: mouse_expr = pd.read_table(mouse_expr_f, sep="\t") mouse_expr.head() # In[28]: orth = pd.read_table(orth_f, sep="\t") orth.head() # ## 2. merge data to build model # In[29]: index_elem = index_elem[index_elem["name"].str.contains("EVO")] index_elem.head() # In[30]: index_elem["tss_id"] = index_elem["name"].str.split("__", expand=True)[1] index_elem["tss_tile_num"] = index_elem["name"].str.split("__", expand=True)[2] index_elem.sample(5) # In[31]: index_human = index_elem[index_elem["name"].str.contains("HUMAN")] index_mouse = index_elem[index_elem["name"].str.contains("MOUSE")] index_mouse.sample(5) # In[32]: print(len(data)) data_elem = data.merge(index_human[["element", "tss_id", "tss_tile_num"]], left_on=["hg19_id", "tss_tile_num"], right_on=["tss_id", "tss_tile_num"]) data_elem = data_elem.merge(index_mouse[["element", "tss_id", "tss_tile_num"]], left_on=["mm9_id", "tss_tile_num"], right_on=["tss_id", "tss_tile_num"], suffixes=("_human", "_mouse")) data_elem.drop(["tss_id_human", "tss_id_mouse"], axis=1, inplace=True) print(len(data)) data_elem.head() # In[33]: data_elem["gc_human"] = data_elem.apply(calculate_gc, col="element_human", axis=1) data_elem["gc_mouse"] = data_elem.apply(calculate_gc, col="element_mouse", axis=1) data_elem["cpg_human"] = data_elem.apply(calculate_cpg, col="element_human", axis=1) data_elem["cpg_mouse"] = data_elem.apply(calculate_cpg, col="element_mouse", axis=1) data_elem.sample(5) # In[34]: data_elem.columns # In[35]: data_human = data_elem[["hg19_id", "tss_tile_num", "logFC_trans_human", "gc_human", "cpg_human", "HUES64_padj_hg19", "trans_status_one"]] data_mouse = data_elem[["mm9_id", "tss_tile_num", "logFC_trans_mouse", "gc_mouse", "cpg_mouse", "mESC_padj_mm9", "trans_status_one"]] data_human.columns = ["tss_id", "tss_tile_num", "logFC_trans", "gc", "cpg", "padj", "trans_status"] data_mouse.columns = ["tss_id", "tss_tile_num", "logFC_trans", "gc", "cpg", "padj", "trans_status"] data_indiv = data_human.append(data_mouse).drop_duplicates() print(len(data_indiv)) data_indiv.head() # ## 3. build reduced model # In[36]: scaled_features = StandardScaler().fit_transform(data_indiv[["logFC_trans", "gc", "cpg"]]) data_norm =
pd.DataFrame(scaled_features, index=data_indiv.index, columns=["logFC_trans", "gc", "cpg"])
pandas.DataFrame
import pandas as pd import numpy as np ht_fail = pd.read_csv('/content/sample_data/heart failur classification dataset.csv') ht_fail.head(5) ht_fail.shape ht_fail.isnull() ht_fail.isnull().sum() #Imputing missing values from sklearn.impute import SimpleImputer impute = SimpleImputer(missing_values=np.nan, strategy='mean') impute.fit(ht_fail[['time']]) ht_fail['time'] = impute.transform(ht_fail[['time']]) ht_fail[['time']] #Imputing missing values from sklearn.impute import SimpleImputer impute = SimpleImputer(missing_values=np.nan, strategy='mean') impute.fit(ht_fail[['serum_sodium']]) ht_fail['serum_sodium'] = impute.transform(ht_fail[['serum_sodium']]) ht_fail[['serum_sodium']] ht_fail.isnull().sum() #Handling categorical features #ht_fail.info ht_fail ht_fail['smoking'].unique() ht_fail['smoking'] = ht_fail['smoking'].map({'No':0,'Yes':1}) ht_fail ht_fail['sex'].unique() ht_fail['sex'] = ht_fail['sex'].map({'Male':0,'Female':1}) ht_fail #Train_Test Split from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ht_fail.iloc[:, :-1], ht_fail.iloc[:,-1],random_state=1) #SVM from sklearn.svm import SVC svc = SVC(kernel="linear") svc.fit(x_train, y_train) pre_score_svm = svc.score(x_test, y_test) print("Training accuracy of the model is {:.2f}".format(svc.score(x_train, y_train))) print("Testing accuracy of the model is {:.2f}".format(svc.score(x_test, y_test))) predictions = svc.predict(x_test) print(predictions) #MLP from sklearn.neural_network import MLPClassifier nnc=MLPClassifier(hidden_layer_sizes=(7), activation="relu", max_iter=1000000) nnc.fit(x_train, y_train) pre_score_mlp = nnc.score(x_test, y_test) print("The Training accuracy of the model is {:.2f}".format(nnc.score(x_train, y_train))) print("The Testing accuracy of the model is {:.2f}".format(nnc.score(x_test, y_test))) predictions = nnc.predict(x_test) print(predictions) #Random Forest from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=50) rfc.fit(x_train, y_train) pre_score_rndmForest = rfc.score(x_test, y_test) print("The Training accuracy of the model is {:.2f}".format(rfc.score(x_train, y_train))) print("The Testing accuracy of the model is {:.2f}".format(rfc.score(x_test, y_test))) predictions = rfc.predict(x_test) print(predictions) #performance without dimensionality reduction from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier(n_neighbors=4) knn.fit(x_train, y_train) print("Training accuracy is {:.2f}".format(knn.score(x_train, y_train)) ) print("Testing accuracy is {:.2f} ".format(knn.score(x_test, y_test)) ) htfail_origin = np.array(ht_fail.iloc[:, :-1]) htfail_origin_target = np.array(ht_fail.iloc[:,-1]) #dimensionality reduction from sklearn.preprocessing import StandardScaler scaler= StandardScaler() htfail_df= pd.DataFrame(scaler.fit_transform(htfail_origin.data)) htfail_df=htfail_df.assign(target=htfail_origin_target) #PCA from sklearn.decomposition import PCA pca = PCA(n_components=7) principal_components= pca.fit_transform(htfail_origin.data) print(principal_components) pca.explained_variance_ratio_ sum(pca.explained_variance_ratio_) principal_df = pd.DataFrame(data=principal_components) main_df=
pd.concat([principal_df, htfail_df[["target"]]], axis=1)
pandas.concat
import pandas as pd from koapy import KiwoomOpenApiContext from koapy.backend.cybos.CybosPlusComObject import CybosPlusComObject kiwoom = KiwoomOpenApiContext() cybos = CybosPlusComObject() kiwoom.EnsureConnected() cybos.EnsureConnected() kiwoom_codes = kiwoom.GetCommonCodeList() cybos_codes = cybos.GetCommonCodeList() cybos_codes = [code[1:] for code in cybos_codes] kiwoom_codes =
pd.DataFrame(kiwoom_codes, columns=['code'])
pandas.DataFrame
import scrapy from bs4 import BeautifulSoup import pandas as pd import shelve import os import Notification import json def scrapHTML(html): soup=BeautifulSoup(html,"html.parser") tableRows=soup.find_all("tr") # print(tableRows[1]) dataframe=[] # [1:] tableRows=tableRows[1:] for tr in tableRows: # print(tr) # print('_'*100) td=tr.find_all("td") row = [cell.text for cell in td] dataframe.append(row) return dataframe param1 = [] param2 = [] filename='' cols=[] with open("scraper_parameters.json",'r') as file: parameters=json.loads(file.read()) param1 = parameters["allowed_domains"] param2 = parameters["start_urls"] filename = parameters["filename"] cols = parameters["cols"] class ScrapSpider(scrapy.Spider): name = 'scrap' allowed_domains = param1 start_urls = param2 def parse(self, response): # pass print('_'*100) f=shelve.open("Query_Length") scrapped=scrapHTML(response.body) if not 'length' in f.keys(): # Initialize the query length f['length']=-1 change=f['length']-len(scrapped) if change!=0: print("Change Happened!!!") # Update dataframe =
pd.DataFrame(scrapped, columns=cols)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # File : utils.py # Modified : 17.02.2022 # By : <NAME> <<EMAIL>> from collections import OrderedDict import numpy as np import os from typing import List import random import cv2 from PIL import Image import torch import torchvision from pathlib import Path import torch.nn as nn from torch import optim from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader from efficientnet_pytorch import EfficientNet from torchvision import transforms from torch.utils.data import Dataset import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, roc_auc_score, f1_score import wandb training_transforms = transforms.Compose([#Microscope(), #AdvancedHairAugmentation(), transforms.RandomRotation(30), #transforms.RandomResizedCrop(256, scale=(0.8, 1.0)), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), #transforms.ColorJitter(brightness=32. / 255.,saturation=0.5,hue=0.01), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) testing_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(256), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) def seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) # Creating seeds to make results reproducible def seed_everything(seed_value): np.random.seed(seed_value) random.seed(seed_value) torch.manual_seed(seed_value) os.environ['PYTHONHASHSEED'] = str(seed_value) if torch.cuda.is_available(): torch.cuda.manual_seed(seed_value) torch.cuda.manual_seed_all(seed_value) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False seed = 2022 seed_everything(seed) def get_parameters(net, EXCLUDE_LIST) -> List[np.ndarray]: parameters = [] for i, (name, tensor) in enumerate(net.state_dict().items()): # print(f" [layer {i}] {name}, {type(tensor)}, {tensor.shape}, {tensor.dtype}") # Check if this tensor should be included or not exclude = False for forbidden_ending in EXCLUDE_LIST: if forbidden_ending in name: exclude = True if exclude: continue # Convert torch.Tensor to NumPy.ndarray parameters.append(tensor.cpu().numpy()) return parameters def set_parameters(net, parameters, EXCLUDE_LIST): keys = [] for name in net.state_dict().keys(): # Check if this tensor should be included or not exclude = False for forbidden_ending in EXCLUDE_LIST: if forbidden_ending in name: exclude = True if exclude: continue # Add to list of included keys keys.append(name) params_dict = zip(keys, parameters) state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict}) net.load_state_dict(state_dict, strict=False) class Net(nn.Module): def __init__(self, arch, return_feats=False): super(Net, self).__init__() self.arch = arch self.return_feats = return_feats if 'fgdf' in str(arch.__class__): self.arch.fc = nn.Linear(in_features=1280, out_features=500, bias=True) if 'EfficientNet' in str(arch.__class__): self.arch._fc = nn.Linear(in_features=self.arch._fc.in_features, out_features=500, bias=True) #self.dropout1 = nn.Dropout(0.2) else: self.arch.fc = nn.Linear(in_features=arch.fc.in_features, out_features=500, bias=True) self.output = nn.Linear(500, 1) def forward(self, images): """ No sigmoid in forward because we are going to use BCEWithLogitsLoss Which applies sigmoid for us when calculating a loss """ x = images features = self.arch(x) output = self.output(features) if self.return_feats: return features return output def load_model(model = 'efficientnet-b2', device="cuda"): if "efficientnet" in model: arch = EfficientNet.from_pretrained(model) elif model == "googlenet": arch = torchvision.models.googlenet(pretrained=True) else: arch = torchvision.models.resnet50(pretrained=True) model = Net(arch=arch).to(device) return model def create_split(source_dir, n_b, n_m): # Split synthetic dataset input_images = [str(f) for f in sorted(Path(source_dir).rglob('*')) if os.path.isfile(f)] ind_0, ind_1 = [], [] for i, f in enumerate(input_images): if f.split('.')[0][-1] == '0': ind_0.append(i) else: ind_1.append(i) train_id_list, val_id_list = ind_0[:round(len(ind_0)*0.8)], ind_0[round(len(ind_0)*0.8):] #ind_0[round(len(ind_0)*0.6):round(len(ind_0)*0.8)] , train_id_1, val_id_1 = ind_1[:round(len(ind_1)*0.8)], ind_1[round(len(ind_1)*0.8):] #ind_1[round(len(ind_1)*0.6):round(len(ind_1)*0.8)] , train_id_list = np.append(train_id_list, train_id_1) val_id_list = np.append(val_id_list, val_id_1) return train_id_list, val_id_list #test_id_list def load_isic_by_patient(partition, path='/workspace/melanoma_isic_dataset'): # Load data df = pd.read_csv(os.path.join(path,'train_concat.csv')) train_img_dir = os.path.join(path,'train/train/') df['image_name'] = [os.path.join(train_img_dir, df.iloc[index]['image_name'] + '.jpg') for index in range(len(df))] df["patient_id"] = df["patient_id"].fillna('nan') # df.loc[df['patient_id'].isnull()==True]['target'].unique() # 337 rows melanomas """ # EXP 6: same bias/ratio same size - different BIASES bias_df = pd.read_csv("/workspace/flower/bias_pseudoannotations_real_train_ISIC20.csv") bias_df['image_name'] = [os.path.join(train_img_dir, bias_df.iloc[index]['image_name']) for index in range(len(bias_df))] #bias_df = pd.merge(bias_df, df, how='inner', on=["image_name"]) target_groups = bias_df.groupby('target', as_index=False) # keep column target df_ben = target_groups.get_group(0) # 32533 benign df_mal = target_groups.get_group(1) # 5105 melanoma # EXP 6 if partition == 0: #FRAMES df_b = df_ben.groupby('black_frame').get_group(1) # 687 with frame df_m = df_mal.groupby(['black_frame','ruler_mark']).get_group((1,0))[:323] # 2082 with frame df = pd.concat([df_b, df_m]) # Use 1010 (32%mel) # TOTAL 2848 (75% mel) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 1: # RULES df_b = df_ben.groupby(['black_frame','ruler_mark']).get_group((0,1)).head(1125) # 4717 with rules and no frames df_m = df_mal.groupby(['black_frame','ruler_mark']).get_group((0,1)).head(375) # 516 with rules and no frames df = pd.concat([df_b, df_m]) # Use 1500 (25%mel) # TOTAL 5233 (10% mel) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 2: # NONE df_b = df_ben.groupby(['black_frame','ruler_mark']).get_group((0,0)).head(1125) # 27129 without frames or rulers df_m = df_mal.groupby(['black_frame','ruler_mark']).get_group((0,0)).head(375) # 2507 without frames or rulers 14% df = pd.concat([df_b, df_m]) # Use 1500 (25%mel) # TOTAL 29636 (8.4% mel) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) else: #server df_b = df_ben.groupby(['black_frame','ruler_mark']).get_group((0,0))[2000:5000] # 3000 df_m = df_mal.groupby(['black_frame','ruler_mark']).get_group((0,0))[500:1500] # 1000 (30% M) T=4000 valid_split = pd.concat([df_b, df_m]) validation_df=pd.DataFrame(valid_split) testing_dataset = CustomDataset(df = validation_df, train = True, transforms = testing_transforms ) return testing_dataset """ # Split by Patient patient_groups = df.groupby('patient_id') #37311 # Split by Patient and Class melanoma_groups_list = [patient_groups.get_group(x) for x in patient_groups.groups if patient_groups.get_group(x)['target'].unique().all()==1] # 4188 - after adding ID na 4525 benign_groups_list = [patient_groups.get_group(x) for x in patient_groups.groups if 0 in patient_groups.get_group(x)['target'].unique()] # 2055 - 33123 np.random.shuffle(melanoma_groups_list) np.random.shuffle(benign_groups_list) # EXP 5: same bias/ratio different size - simulate regions if partition == 0: df_b = pd.concat(benign_groups_list[:270]) # 4253 df_m = pd.concat(melanoma_groups_list[:350]) # 1029 (19.5% melanomas) T=5282 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 1: df_b = pd.concat(benign_groups_list[270:440]) # 2881 df_m = pd.concat(melanoma_groups_list[350:539]) # 845 (22.6% melanomas) T=3726 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 2: df_b = pd.concat(benign_groups_list[440:490]) # 805 df_m = pd.concat(melanoma_groups_list[539:615]) # 194 (19.4% melanomas) T=999 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 3: df_b = pd.concat(benign_groups_list[490:511]) # 341 df_m = pd.concat(melanoma_groups_list[615:640]) # 87 (20% melanomas) T=428 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 4: df_b = pd.concat(benign_groups_list[515:520]) # 171 df_m = pd.concat(melanoma_groups_list[640:656]) # 47 (21.5% melanomas) T=218 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) else: #server df_b = pd.concat(benign_groups_list[520:720]) # 3531 df_m = pd.concat(melanoma_groups_list[700:1100]) # 1456 (29% M) T=4987 valid_split = pd.concat([df_b, df_m]) validation_df=pd.DataFrame(valid_split) testing_dataset = CustomDataset(df = validation_df, train = True, transforms = testing_transforms ) return testing_dataset """ # EXP 4: same size (1.5k) different ratio b/m if partition == 1: df_b = pd.concat(benign_groups_list[:75]) # 1118 df_m = pd.concat(melanoma_groups_list[:90]) # 499 (30.8% melanomas) T=1617 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 2: df_b = pd.concat(benign_groups_list[75:185]) # 1600 df_m = pd.concat(melanoma_groups_list[90:95]) # 17 (1% melanomas) T=1617 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 0: df_b = pd.concat(benign_groups_list[185:191]) # 160 df_m = pd.concat(melanoma_groups_list[150:550]) # 1454 (90% melanomas) T=1614 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) else: #server df_b = pd.concat(benign_groups_list[500:700]) # 3630 df_m = pd.concat(melanoma_groups_list[600:1100]) # 1779 (33% M) T=5409 valid_split = pd.concat([df_b, df_m]) validation_df=pd.DataFrame(valid_split) testing_dataset = CustomDataset(df = validation_df, train = True, transforms = testing_transforms ) return testing_dataset # EXP 3 if partition == 2: df_b = pd.concat(benign_groups_list[:90]) # 1348 df_m = pd.concat(melanoma_groups_list[:60]) # 172 (11.3% melanomas) T=1520 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 1: df_b = pd.concat(benign_groups_list[90:150]) # 937 df_m = pd.concat(melanoma_groups_list[60:90]) # 99 (10% melanomas) T=1036 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) elif partition == 0: df_b = pd.concat(benign_groups_list[150:170]) # 246 df_m = pd.concat(melanoma_groups_list[90:300]) # 626 (72% melanomas) T=872 df = pd.concat([df_b, df_m]) train_split, valid_split = train_test_split(df, stratify=df.target, test_size = 0.20, random_state=42) else: #server df_b = pd.concat(benign_groups_list[170:370]) # 3343 df_m = pd.concat(melanoma_groups_list[300:1000]) # 2603 valid_split = pd.concat([df_b, df_m]) validation_df=pd.DataFrame(valid_split) testing_dataset = CustomDataset(df = validation_df, train = True, transforms = testing_transforms ) return testing_dataset #EXP 2 if partition == 2: df_b_test = pd.concat(benign_groups_list[1800:]) # 4462 df_b_train = pd.concat(benign_groups_list[800:1800]) # 16033 - TOTAL 20495 samples df_m_test = pd.concat(melanoma_groups_list[170:281]) # 340 df_m_train = pd.concat(melanoma_groups_list[281:800]) # 1970 - TOTAL: 2310 samples elif partition == 1: df_b_test = pd.concat(benign_groups_list[130:250]) # 1949 df_b_train = pd.concat(benign_groups_list[250:800]) # 8609 - TOTAL 10558 samples df_m_test = pd.concat(melanoma_groups_list[1230:]) # 303 df_m_train = pd.concat(melanoma_groups_list[800:1230]) # 1407 - TOTAL 1710 samples else: df_b_test = pd.concat(benign_groups_list[:30]) # 519 df_b_train = pd.concat(benign_groups_list[30:130]) # 1551 - TOTAL: 2070 samples df_m_test = pd.concat(melanoma_groups_list[:70]) # 191 df_m_train = pd.concat(melanoma_groups_list[70:170]) # 314 - TOTAL: 505 samples train_split = pd.concat([df_b_train, df_m_train]) valid_split = pd.concat([df_b_test, df_m_test]) """ train_df=pd.DataFrame(train_split) validation_df=pd.DataFrame(valid_split) num_examples = {"trainset" : len(train_df), "testset" : len(validation_df)} return train_df, validation_df, num_examples def load_isic_by_patient_server( path='/workspace/melanoma_isic_dataset'): # Load data df = pd.read_csv(os.path.join(path,'train_concat.csv')) train_img_dir = os.path.join(path,'train/train/') df['image_name'] = [os.path.join(train_img_dir, df.iloc[index]['image_name'] + '.jpg') for index in range(len(df))] df["patient_id"] = df["patient_id"].fillna('nan') # df.loc[df['patient_id'].isnull()==True]['target'].unique() # 337 rows melanomas # Split by Patient patient_groups = df.groupby('patient_id') #37311 melanoma_groups_list = [patient_groups.get_group(x) for x in patient_groups.groups if patient_groups.get_group(x)['target'].unique().all()==1] # 4188 - after adding na 4525 benign_groups_list = [patient_groups.get_group(x) for x in patient_groups.groups if 0 in patient_groups.get_group(x)['target'].unique()] # 2055 - 33123 np.random.shuffle(melanoma_groups_list) np.random.shuffle(benign_groups_list) df_b_test = pd.concat(benign_groups_list[1800:]) # 4462 df_b_train = pd.concat(benign_groups_list[800:1800]) # 16033 - TOTAL 20495 samples df_m_test = pd.concat(melanoma_groups_list[170:281]) # 340 df_m_train = pd.concat(melanoma_groups_list[281:800]) # 1970 - TOTAL: 2310 samples train_split1 = pd.concat([df_b_train, df_m_train]) valid_split1 = pd.concat([df_b_test, df_m_test]) df_b_test = pd.concat(benign_groups_list[130:250]) # 1949 df_b_train =
pd.concat(benign_groups_list[250:800])
pandas.concat
import dash from dash import dcc import dash_bootstrap_components as dbc from dash import html from dash.dependencies import Input, Output, State import pandas as pd import random import re ####################### # Helper functions ####################### # # convert a dataframe into a dict where each item is another dict corresponding # # to a row of the html table def make_table(df): # table header rows = [html.Tr([html.Th(col) for col in list(df.columns)])] # loop through each unique filename and create a list of the Html objects to make that row for r in range(len(df.index)): row = [html.Th(df.iloc[r,c]) for c in range(len(df.columns))] rows.append(html.Tr(row)) return rows def get_auto_picks(start_pick,end_pick,pl,n_teams,roster): randweights = [0]*25+[1]*9+[2]*5+[3]*3+[4]*2+[5]*2+[6]+[7]+[8]+[9] for pick_number in range(start_pick,end_pick): # determine team needs team = (teamnames[:n_teams+1]+teamnames[n_teams:0:-1])[pick_number % (2*n_teams)] pln = remove_unneeded_players(pl, roster, team) # use randomness to determine which player will be selected pick_no = randweights[random.randrange(0,49)] pick_idx = pln.sort_values('Rank',ascending=True).index[pick_no] pos= pl.loc[pick_idx,'Position(s)'] # update players table pl.loc[pick_idx,'Available'] = False pl.loc[pick_idx,'Rd'] = (pick_number-1) // n_teams + 1 pl.loc[pick_idx,'Pick'] = (pick_number-1) % n_teams + 1 pl.loc[pick_idx,'Slot'] = determine_slot(pos,roster,pl.loc[pl.Team == team]) pl.loc[pick_idx,'Team'] = team return pl def determine_slot(pos, ros, teampl): m = ros.merge(teampl,on='Slot',how='left') # add alternative positions altpos = (['MI'] if '2B' in pos or 'SS' in pos else []) + ( ['CI'] if '1B' in pos or '3B' in pos else []) + ['UT','BE'] for p in pos.split(', ') + altpos: for a in m.loc[m.Player.isna()].sort_values('Num')['Slot']: if p == re.sub('\d$','',a): return a else: return '-' def remove_unneeded_players(pl,roster,team): # Remove the players from pl that team doesn't need based on roster teampl = pl.loc[pl.Team == team] teamros = roster.merge(teampl,on = 'Slot',how='left') needs = list(teamros.loc[teamros.Player.isna(),'Slot'].str.replace('\d+$','',regex=True)) # handle MI and CI if 'MI' in needs: needs = needs + ['SS','2B'] if 'CI' in needs: needs = needs + ['1B','3B'] # filter players that don't match roster needs if ('BE' not in needs) and ('UT' not in needs): return pl.loc[pl['Position(s)'].str.match('|'.join(needs)) & pl['Available']] else: return pl.loc[pl['Available']] ####################### # Initial Data Prep ####################### players = pd.read_csv('players.csv') players['Team'], players['Slot'], players['Rd'], players['Pick'] = (pd.NA, pd.NA, pd.NA, pd.NA) teamnames = 'AABCDEFGHIJKLMNOPQRSTUVWXYZ' ####################### # Dash app layout ####################### app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) server = app.server # header for the app header = [dbc.Row(html.H1('Draft Simulator')), dbc.Row(html.Div(' ',style = {'height': "35px"})) ] startsection = [ dbc.Row([ dbc.Col( html.Div([ dcc.Dropdown(id='n-p-dropdown',options=list(range(5,16)),value=9), html.Div(children='# of Pitchers') ],style = {'width':'90%'}), md=1), dbc.Col( html.Div([ dcc.Dropdown(id='n-of-dropdown',options=list(range(3,8)),value=3), html.Div(children='# of Outfielders') ],style = {'width':'90%'}), md=1), dbc.Col( html.Div([ dcc.Dropdown(id='n-c-dropdown',options=list(range(1,4)),value=1), html.Div(children='# of Catchers') ],style = {'width':'90%'}), md=1), dbc.Col( html.Div([ dcc.Dropdown(id='n-ci-dropdown',options=list(range(0,6)),value=1), html.Div(children='# of Corner IF') ],style = {'width':'90%'}), md=1), dbc.Col( html.Div([ dcc.Dropdown(id='n-mi-dropdown',options=list(range(0,6)),value=1), html.Div(children='# of Middle IF') ],style = {'width':'90%'}), md=1), dbc.Col( html.Div([ dcc.Dropdown(id='n-ut-dropdown',options=list(range(0,21)),value=2), html.Div(children='# of Utility Players') ],style = {'width':'90%'}), md=1), dbc.Col( html.Div([ dcc.Dropdown(id='n-be-dropdown',options=list(range(0,21)),value=2), html.Div(children='# of Bench Players') ],style = {'width':'15%'}), md=6) ],id = 'start-row-1'), dbc.Row(html.Div(' ',style = {'height': "25px"})), dbc.Row([ dbc.Col( html.Div([ dcc.Dropdown(id='n-teams-dropdown',options=list(range(2,25)),value=10), html.Div(children='Select number of teams') ],style = {'width':'75%'}), md=2), dbc.Col( html.Div([ dcc.Dropdown(id='position-dropdown'), html.Div(children='Select your draft position') ],style = {'width':'75%'}), md=2), dbc.Col(html.Button('Begin!',id='begin-button',style={'width': '25%'}),md=8) ],id = 'start-row-2') ] # put the table of the sorted data in the left half of the screen draftpanel = [ html.Div([ html.Div([ html.H3('Select Player'), dbc.Row([ dbc.Col([ dcc.Dropdown(options = players.Rank.astype(str)+'. '+players.Name+' ('+players['Position(s)']+')' ,id = 'pick-dropdown'), html.Button('Draft Player', id='draft-button', n_clicks=0)],md=5), dbc.Col([ html.Table(make_table(pd.DataFrame({})),id='bat-proj-table',className='table'), html.Table(make_table(pd.DataFrame({})),id='pit-proj-table',className='table')],md=7) ]), html.Div(' ',style={'height':'20px'}) ],id = 'draft-div'), html.H3('Team Roster'), dcc.Dropdown(id='team-roster-dropdown',options=['My-Team'], value = 'My-Team'), html.Table(make_table(pd.DataFrame({})),id='roster-table',className='table') ],id='draft-panel',style={"width": "90%"}) ] pickspanel = [ html.Div([ html.H3('Last Picks'), html.Table(make_table(pd.DataFrame({})),id='last-picks-table',className='table'), html.Div(players.to_json(),id='players',style={'display': 'none'}), html.Div(0,id='n-teams',style={'display': 'none'}), html.Div(0,id='position',style={'display': 'none'}), html.Div(0,id='pick-number',style={'display': 'none'}), html.Div(0,id='roster',style={'display': 'none'}) ],style = {"width": "90%"}) ] projpanel = [ html.Div([ html.H3('Projected Standings'), dcc.RadioItems(['Stats','Ranks'],'Stats',id='proj-type-radioitems',style = {'width':'200%'}), html.Table(make_table(pd.DataFrame({})),id='proj-standings-table',className='table') ]) ] # lay out the app based on the above panel definitions app.layout = dbc.Container([ html.Div(header), html.Div(startsection,id ='start-section'), html.Div(dbc.Row([dbc.Col(draftpanel, md=5), dbc.Col(projpanel, md=5), dbc.Col(pickspanel, md=2)]) ,id = 'main-section',style = {'display':'none'}) ],fluid=True) # ####################### # # Reactive callbacks # ####################### @app.callback( Output('roster','children'), [Input('n-of-dropdown','value'), Input('n-p-dropdown','value'), Input('n-c-dropdown','value'), Input('n-mi-dropdown','value'), Input('n-ci-dropdown','value'), Input('n-ut-dropdown','value'), Input('n-be-dropdown','value'), Input('begin-button','n_clicks')] ) def update_roster(n_of,n_p,n_c,n_mi,n_ci,n_ut,n_be,n_clicks): slots = (['C'+str(i+1) for i in range(n_c)] + ['1B','2B','3B','SS'] + ['OF'+str(i+1) for i in range(n_of)] + ['MI'+str(i+1) for i in range(n_mi)] + ['CI'+str(i+1) for i in range(n_ci)] + ['P'+str(i+1) for i in range(n_p)] + ['UT'+str(i+1) for i in range(n_ut)] + ['BE'+str(i+1) for i in range(n_be)]) roster = pd.DataFrame({'Slot': slots,'Num': list(range(len(slots)))}) return roster.to_json() @app.callback( Output('position-dropdown', 'options'), [Input('n-teams-dropdown', 'value')] ) def update_position_dropdown(num_teams): return list(range(1,num_teams+1)) @app.callback( [Output('pick-dropdown','options')], [Input('players','children'), Input('roster','children')] ) def update_pick_options(players_json,roster_json): pl = pd.read_json(players_json) roster = pd.read_json(roster_json) pln = remove_unneeded_players(pl, roster, 'My-Team') return [list(pln.Rank.astype(str)+'. '+pln.Player+' ('+pln['Position(s)']+')')] @app.callback( Output('last-picks-table', 'children'), [Input('players','children')], [State('n-teams','children')] ) def update_last_picks_table(players_json,n_teams): pl = pd.read_json(players_json) last_picks = pl.loc[~pl.Team.isna()] last_picks['Pick'] = (last_picks['Rd']-1)*n_teams + last_picks['Pick'] last_picks.loc[last_picks.Team == 'My-Team','Team'] = 'Me' return make_table(last_picks.sort_values('Pick',ascending = False) [['Pick','Team','Player']].iloc[0:3*n_teams]) @app.callback( Output('roster-table', 'children'), [Input('players','children'), Input('team-roster-dropdown','value')], [State('roster','children')] ) def update_roster_table(players_json,teamchoice,roster_json): ros = pd.read_json(roster_json) pl = pd.read_json(players_json) pl['AVG'] = (pl['H']/pl['AB']).round(3) pl['ERA'] = (9*pl['ER']/pl['IP']).round(2) pl['WHIP'] = ((pl['BB']+pl['H.P'])/pl['IP']).round(2) teampl = pl.loc[pl.Team == teamchoice] retcols = ['Slot','Player','Rd','AB','R','HR','RBI','SB','AVG', 'IP', 'ERA', 'W', 'SO', 'SV', 'WHIP'] ret = ros.merge(teampl,on='Slot',how='left').sort_values('Num') return make_table(ret[retcols]) @app.callback( Output('bat-proj-table', 'children'), [Input('pick-dropdown','value')], [State('players','children')] ) def update_bat_proj_table(pick,players_json): pl = pd.read_json(players_json) pickrank = int(pick.split('.')[0]) pick_idx = pl.loc[pl.Rank == pickrank].index[0] pl['AVG'] = (pl['H']/pl['AB']).round(3) if pl.loc[pick_idx,['AB']].count() > 0: return make_table(pl.loc[[pick_idx],['AB', 'R', 'HR', 'RBI', 'SB','AVG']]) else: return make_table(pd.DataFrame({})) @app.callback( Output('pit-proj-table', 'children'), [Input('pick-dropdown','value')], [State('players','children')] ) def update_pit_proj_table(pick,players_json): pl = pd.read_json(players_json) pickrank = int(pick.split('.')[0]) pick_idx = pl.loc[pl.Rank == pickrank].index[0] pl['WHIP'] = ((pl['BB']+pl['H.P'])/pl['IP']).round(2) pl['ERA'] = (9*pl['ER']/pl['IP']).round(2) if pl.loc[pick_idx,['IP']].count() > 0: return make_table(pl.loc[[pick_idx],['IP', 'ERA', 'W', 'SO', 'SV', 'WHIP']]) else: return make_table(pd.DataFrame({})) @app.callback( Output('proj-standings-table','children'), [Input('players','children'), Input('proj-type-radioitems','value')] ) def update_proj_standings(players_json,proj_type): df = pd.read_json(players_json) dfg=df.groupby('Team')[['AB', 'H', 'R', 'HR', 'RBI', 'SB', 'IP', 'ER', 'W', 'SO', 'SV', 'H.P','BB']].sum().reset_index().sort_values('Team') dfg['AVG'] = (dfg['H']/dfg['AB']).round(3) dfg['ERA'] = (9*dfg['ER']/dfg['IP']).round(2) dfg['WHIP'] = ((dfg['BB']+dfg['H.P'])/dfg['IP']).round(2) ranks = {'Team':dfg.Team} for m in ['R', 'HR', 'RBI', 'SB','AVG', 'W','SO', 'SV']: ranks.update({m: dfg[m].rank(ascending=False)}) for m in ['ERA','WHIP']: ranks.update({m: dfg[m].rank()}) rdf = pd.DataFrame(ranks,index=dfg.index) rdf['Score'] = rdf.sum(axis=1) if proj_type == 'Ranks': return make_table(rdf.sort_values('Score')) else: dfg['Score'] = rdf.Score return make_table(dfg[rdf.columns].sort_values('Score')) @app.callback( [Output('n-teams','children'), Output('position','children'), Output('pick-number','children'), Output('players','children'), Output('begin-button','n_clicks'), Output('draft-button','n_clicks'), Output('team-roster-dropdown','options'), Output('main-section','style'), Output('start-section','style')], [Input('begin-button', 'n_clicks'), Input('n-teams-dropdown','value'), Input('position-dropdown','value'), Input('draft-button','n_clicks'), Input('pick-dropdown','value')], [State('n-teams','children'), State('position','children'), State('pick-number','children'), State('team-roster-dropdown','options'), State('main-section','style'), State('start-section','style'), State('players','children'), State('roster','children')] ) def update_data(begin_clicks,n_teams,position,draft_clicks,pick, prev_n_teams,prev_position,pick_number,prev_opts, prev_style1,prev_style2,players_json,roster_json): if begin_clicks is not None: # prepare data frames pl = pd.read_json(players_json) ros = pd.read_json(roster_json) # initial autopicks pl = get_auto_picks(1, position, pl, n_teams, ros) # list of team names opts = ['My-Team'] + [teamnames[i] for i in range(1,n_teams+1) if i != position] return (n_teams, position, position, pl.to_json(), None, None, opts, {'display':'block'}, {'display':'none'}) elif draft_clicks is not None: pl =
pd.read_json(players_json)
pandas.read_json
from typing import Any, Dict, Tuple, Union, Mapping, Optional, Sequence from typing_extensions import Literal from enum import auto from types import MappingProxyType from pathlib import Path from datetime import datetime from anndata import AnnData from cellrank import logging as logg from cellrank._key import Key from cellrank.tl._enum import ModeEnum from cellrank.ul._docs import d from cellrank.tl._utils import ( save_fig, _eigengap, _fuzzy_to_discrete, _series_from_one_hot_matrix, ) from cellrank.tl._colors import _get_black_or_white, _create_categorical_colors from cellrank.tl._lineage import Lineage from cellrank.tl.estimators._utils import SafeGetter from cellrank.tl.estimators.mixins import EigenMixin, SchurMixin, LinDriversMixin from cellrank.tl.kernels._base_kernel import KernelExpression from cellrank.tl.estimators.mixins._utils import logger, shadow, register_plotter from cellrank.tl.estimators.terminal_states._term_states_estimator import ( TermStatesEstimator, ) import numpy as np import pandas as pd from scipy.sparse import spmatrix from pandas.api.types import infer_dtype, is_categorical_dtype import matplotlib.pyplot as plt from matplotlib.axes import Axes from matplotlib.colors import Normalize, ListedColormap from matplotlib.ticker import StrMethodFormatter from matplotlib.colorbar import ColorbarBase class TermStatesMethod(ModeEnum): # noqa: D101 EIGENGAP = auto() EIGENGAP_COARSE = auto() TOP_N = auto() STABILITY = auto() @d.dedent class GPCCA(TermStatesEstimator, LinDriversMixin, SchurMixin, EigenMixin): """ Generalized Perron Cluster Cluster Analysis :cite:`reuter:18` as implemented in \ `pyGPCCA <https://pygpcca.readthedocs.io/en/latest/>`_. Coarse-grains a discrete Markov chain into a set of macrostates and computes coarse-grained transition probabilities among the macrostates. Each macrostate corresponds to an area of the state space, i.e. to a subset of cells. The assignment is soft, i.e. each cell is assigned to every macrostate with a certain weight, where weights sum to one per cell. Macrostates are computed by maximizing the 'crispness' which can be thought of as a measure for minimal overlap between macrostates in a certain inner-product sense. Once the macrostates have been computed, we project the large transition matrix onto a coarse-grained transition matrix among the macrostates via a Galerkin projection. This projection is based on invariant subspaces of the original transition matrix which are obtained using the real Schur decomposition :cite:`reuter:18`. Parameters ---------- %(base_estimator.parameters)s """ def __init__( self, obj: Union[AnnData, np.ndarray, spmatrix, KernelExpression], obsp_key: Optional[str] = None, **kwargs: Any, ): super().__init__(obj=obj, obsp_key=obsp_key, **kwargs) self._coarse_init_dist: Optional[pd.Series] = None self._coarse_stat_dist: Optional[pd.Series] = None self._coarse_tmat: Optional[pd.DataFrame] = None self._macrostates: Optional[pd.Series] = None self._macrostates_memberships: Optional[Lineage] = None self._macrostates_colors: Optional[np.ndarray] = None self._term_states_memberships: Optional[Lineage] = None @property @d.get_summary(base="gpcca_macro") def macrostates(self) -> Optional[pd.Series]: """Macrostates of the transition matrix.""" return self._macrostates @property @d.get_summary(base="gpcca_macro_memberships") def macrostates_memberships(self) -> Optional[Lineage]: """Macrostate membership matrix. Soft assignment of microstates (cells) to macrostates. """ return self._macrostates_memberships @property @d.get_summary(base="gpcca_term_states_memberships") def terminal_states_memberships(self) -> Optional[Lineage]: """Terminal state membership matrix. Soft assignment of cells to terminal states. """ return self._term_states_memberships @property @d.get_summary(base="gpcca_coarse_init") def coarse_initial_distribution(self) -> Optional[pd.Series]: """Coarse-grained initial distribution.""" return self._coarse_init_dist @property @d.get_summary(base="gpcca_coarse_stat") def coarse_stationary_distribution(self) -> Optional[pd.Series]: """Coarse-grained stationary distribution.""" return self._coarse_stat_dist @property @d.get_summary(base="gpcca_coarse_tmat") def coarse_T(self) -> Optional[pd.DataFrame]: """Coarse-grained transition matrix.""" return self._coarse_tmat @d.get_sections(base="gpcca_compute_macro", sections=["Parameters", "Returns"]) @d.dedent def compute_macrostates( self, n_states: Optional[Union[int, Sequence[int]]] = None, n_cells: Optional[int] = 30, cluster_key: Optional[str] = None, **kwargs: Any, ) -> None: """ Compute the macrostates. Parameters ---------- n_states Number of macrostates. If a :class:`typing.Sequence`, use the *minChi* criterion :cite:`reuter:18`. If `None`, use the *eigengap* heuristic. %(n_cells)s cluster_key If a key to cluster labels is given, names and colors of the states will be associated with the clusters. kwargs Keyword arguments for :meth:`compute_schur`. Returns ------- Nothing, just updates the following fields: - :attr:`macrostates` - %(gpcca_macro.summary)s - :attr:`macrostates_memberships` - %(gpcca_macro_memberships.summary)s - :attr:`coarse_T` - %(gpcca_coarse_tmat.summary)s - :attr:`coarse_initial_distribution` - %(gpcca_coarse_init.summary)s - :attr:`coarse_stationary_distribution` - %(gpcca_coarse_stat.summary)s - :attr:`schur_vectors` - %(schur_vectors.summary)s - :attr:`schur_matrix` - %(schur_matrix.summary)s - :attr:`eigendecomposition` - %(eigen.summary)s """ n_states = self._n_states(n_states) if n_states == 1: self._compute_one_macrostate( n_cells=n_cells, cluster_key=cluster_key, ) return if self._gpcca is None or kwargs: self.compute_schur(n_states, **kwargs) n_states = self._validate_n_states(n_states) if self._gpcca._p_X.shape[1] < n_states: # precomputed X logg.warning( f"Requested more macrostates `{n_states}` than available " f"Schur vectors `{self._gpcca._p_X.shape[1]}`. Recomputing the decomposition" ) start = logg.info(f"Computing `{n_states}` macrostates") try: self._gpcca = self._gpcca.optimize(m=n_states) except ValueError as e: if "will split complex conjugate eigenvalues" not in str(e): raise # this is the following case - we have 4 Schur vectors, user requests 5 states, but it splits the conj. ev. # in the try block, Schur decomposition with 5 vectors is computed, but it fails (no way of knowing) # so in this case, we increase it by 1 logg.warning( f"Unable to compute macrostates with `n_states={n_states}` because it will " f"split complex conjugate eigenvalues. Using `n_states={n_states + 1}`" ) self._gpcca = self._gpcca.optimize(m=n_states + 1) self._set_macrostates( memberships=self._gpcca.memberships, n_cells=n_cells, cluster_key=cluster_key, params=self._create_params(), time=start, ) @d.dedent def predict( self, method: Literal[ "stability", "top_n", "eigengap", "eigengap_coarse" ] = TermStatesMethod.STABILITY, n_cells: int = 30, alpha: Optional[float] = 1, stability_threshold: float = 0.96, n_states: Optional[int] = None, ) -> None: """ Automatically select terminal states from macrostates. Parameters ---------- method How to select the terminal states. Valid option are: - `'eigengap'` - select the number of states based on the *eigengap* of :attr:`transition_matrix`. - `'eigengap_coarse'` - select the number of states based on the *eigengap* of the diagonal of :attr:`coarse_T`. - `'top_n'` - select top ``n_states`` based on the probability of the diagonal of :attr:`coarse_T`. - `'stability'` - select states which have a stability >= ``stability_threshold``. The stability is given by the diagonal elements of :attr:`coarse_T`. %(n_cells)s alpha Weight given to the deviation of an eigenvalue from one. Only used when ``method = 'eigengap'`` or ``method = 'eigengap_coarse'``. stability_threshold Threshold used when ``method = 'stability'``. n_states Number of states used when ``method = 'top_n'``. Returns ------- Nothing, just updates the following fields: - :attr:`terminal_states` - %(tse_term_states.summary)s - :attr:`terminal_states_memberships` - %(gpcca_term_states_memberships.summary)s - :attr:`terminal_states_probabilities` - %(tse_term_states_probs.summary)s """ if self.macrostates is None: raise RuntimeError("Compute macrostates first as `.compute_macrostates()`.") # fmt: off if len(self._macrostates.cat.categories) == 1: logg.warning("Found only one macrostate. Making it the single terminal state") self.set_terminal_states_from_macrostates(None, n_cells=n_cells, params=self._create_params()) return method = TermStatesMethod(method) eig = self.eigendecomposition coarse_T = self.coarse_T if method == TermStatesMethod.EIGENGAP: if eig is None: raise RuntimeError("Compute eigendecomposition first as `.compute_eigendecomposition()`.") n_states = _eigengap(eig["D"], alpha=alpha) + 1 elif method == TermStatesMethod.EIGENGAP_COARSE: if coarse_T is None: raise RuntimeError("Compute macrostates first as `.compute_macrostates()`.") n_states = _eigengap(np.sort(np.diag(coarse_T)[::-1]), alpha=alpha) elif method == TermStatesMethod.TOP_N: if n_states is None: raise ValueError("Expected `n_states != None` for `method='top_n'`.") elif n_states <= 0: raise ValueError(f"Expected `n_states` to be positive, found `{n_states}`.") elif method == TermStatesMethod.STABILITY: if stability_threshold is None: raise ValueError("Expected `stability_threshold != None` for `method='stability'`.") stability = pd.Series(np.diag(coarse_T), index=coarse_T.columns) names = stability[stability.values >= stability_threshold].index self.set_terminal_states_from_macrostates(names, n_cells=n_cells, params=self._create_params()) return else: raise NotImplementedError(f"Method `{method}` is not yet implemented.") # fmt: on names = coarse_T.columns[np.argsort(np.diag(coarse_T))][-n_states:] self.set_terminal_states_from_macrostates( names, n_cells=n_cells, params=self._create_params() ) return @d.dedent def set_terminal_states_from_macrostates( self, names: Optional[Union[str, Sequence[str], Mapping[str, str]]] = None, n_cells: int = 30, **kwargs: Any, ) -> None: """ Manually select terminal states from macrostates. Parameters ---------- names Names of the macrostates to be marked as terminal. Multiple states can be combined using `','`, such as ``["Alpha, Beta", "Epsilon"]``. If a :class:`dict`, keys correspond to the names of the macrostates and the values to the new names. If `None`, select all macrostates. %(n_cells)s Returns ------- Nothing, just updates the following fields: - :attr:`terminal_states` - %(tse_term_states.summary)s - :attr:`terminal_states_probabilities` - %(tse_term_states_probs.summary)s - :attr:`terminal_states_probabilities_memberships` - %(gpcca_term_states_memberships.summary)s """ if n_cells <= 0: raise ValueError(f"Expected `n_cells` to be positive, found `{n_cells}`.") memberships = self.macrostates_memberships if memberships is None: raise RuntimeError("Compute macrostates first as `.compute_macrostates()`.") rename = True if names is None: names = memberships.names rename = False if isinstance(names, str): names = [names] rename = False if not isinstance(names, dict): names = {n: n for n in names} rename = False if not len(names): raise ValueError("No macrostates have been selected.") # we do this also here because if `rename_terminal_states` fails # invalid states would've been written to this object and nothing to adata names = {str(k): str(v) for k, v in names.items()} names_after_renaming = {names.get(n, n) for n in memberships.names} if len(names_after_renaming) != memberships.shape[1]: raise ValueError( f"After renaming, terminal state names will no longer be unique: `{names_after_renaming}`." ) # this also checks that the names are correct before renaming is_singleton = memberships.shape[1] == 1 memberships = memberships[list(names.keys())].copy() states = self._create_states(memberships, n_cells=n_cells, check_row_sums=False) if is_singleton: colors = self._macrostates_colors.copy() probs = memberships.X.squeeze() / memberships.X.max() else: colors = memberships[list(states.cat.categories)].colors probs = (memberships.X / memberships.X.max(0)).max(1) probs = pd.Series(probs, index=self.adata.obs_names) self._write_terminal_states( states, colors, probs, memberships, params=kwargs.pop("params", {}) ) if rename: # TODO(michalk8): in a future PR, remove this behavior in Lineage # access lineage renames join states, e.g. 'Alpha, Beta' becomes 'Alpha or Beta' + whitespace stripping self.rename_terminal_states( dict(zip(self.terminal_states.cat.categories, names.values())) ) @d.dedent def rename_terminal_states(self, new_names: Mapping[str, str]) -> None: """ %(tse_rename_term_states.full_desc)s Parameters ---------- %(tse_rename_term_states.parameters)s Returns ------- %(tse_rename_term_states.returns)s - :attr:`terminal_states_memberships` - %(gpcca_term_states_memberships.summary)s """ # noqa: D400 term_states_memberships = self.terminal_states_memberships super().rename_terminal_states(new_names) # fmt: off new_names = {str(k): str(v) for k, v in new_names.items()} term_states_memberships.names = [new_names.get(n, n) for n in term_states_memberships.names] self._set("_term_states_memberships", value=term_states_memberships, shadow_only=True) # fmt: on with self._shadow: key = Key.obsm.memberships(Key.obs.macrostates(self.backward)) self._set(obj=self.adata.obsm, key=key, value=term_states_memberships) @d.dedent def fit( self, n_states: Optional[Union[int, Sequence[int]]] = None, n_cells: Optional[int] = 30, cluster_key: Optional[str] = None, **kwargs: Any, ) -> "GPCCA": """ Prepare self for terminal states prediction. Parameters ---------- %(gpcca_compute_macro.parameters)s Returns ------- %(gpcca_compute_macro.returns)s """ if n_states is None: self.compute_eigendecomposition() n_states = self.eigendecomposition["eigengap"] + 1 if isinstance(n_states, int) and n_states == 1: self.compute_eigendecomposition() self.compute_macrostates(n_states=n_states, cluster_key=cluster_key, **kwargs) return self @d.dedent def plot_coarse_T( self, show_stationary_dist: bool = True, show_initial_dist: bool = False, cmap: Union[str, ListedColormap] = "viridis", xtick_rotation: float = 45, annotate: bool = True, show_cbar: bool = True, title: Optional[str] = None, figsize: Tuple[float, float] = (8, 8), dpi: int = 80, save: Optional[Union[Path, str]] = None, text_kwargs: Mapping[str, Any] = MappingProxyType({}), **kwargs: Any, ) -> None: """ Plot the coarse-grained transition matrix between macrostates. Parameters ---------- show_stationary_dist Whether to show :attr:`coarse_stationary_distribution`, if present. show_initial_dist Whether to show :attr:`coarse_initial_distribution`. cmap Colormap to use. xtick_rotation Rotation of ticks on the x-axis. annotate Whether to display the text on each cell. show_cbar Whether to show colorbar. title Title of the figure. %(plotting)s text_kwargs Keyword arguments for :func:`matplotlib.pyplot.text`. kwargs Keyword arguments for :func:`matplotlib.pyplot.imshow`. Returns ------- %(just_plots)s """ def stylize_dist( ax: Axes, data: np.ndarray, xticks_labels: Sequence[str] = () ) -> None: _ = ax.imshow(data, aspect="auto", cmap=cmap, norm=norm) for spine in ax.spines.values(): spine.set_visible(False) if xticks_labels is not None: ax.set_xticks(np.arange(data.shape[1])) ax.set_xticklabels(xticks_labels) plt.setp( ax.get_xticklabels(), rotation=xtick_rotation, ha="right", rotation_mode="anchor", ) else: ax.set_xticks([]) ax.tick_params( which="both", top=False, right=False, bottom=False, left=False ) ax.set_yticks([]) def annotate_heatmap(im, valfmt: str = "{x:.2f}") -> None: # modified from matplotlib's site data = im.get_array() kw = {"ha": "center", "va": "center"} kw.update(**text_kwargs) # Get the formatter in case a string is supplied if isinstance(valfmt, str): valfmt = StrMethodFormatter(valfmt) # Loop over the data and create a `Text` for each "pixel". # Change the text's color depending on the data. texts = [] for i in range(data.shape[0]): for j in range(data.shape[1]): kw.update(color=_get_black_or_white(im.norm(data[i, j]), cmap)) text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) texts.append(text) def annotate_dist_ax(ax, data: np.ndarray, valfmt: str = "{x:.2f}"): if ax is None: return if isinstance(valfmt, str): valfmt = StrMethodFormatter(valfmt) kw = {"ha": "center", "va": "center"} kw.update(**text_kwargs) for i, val in enumerate(data): kw.update(color=_get_black_or_white(im.norm(val), cmap)) ax.text( i, 0, valfmt(val, None), **kw, ) coarse_T = self.coarse_T coarse_init_d = self.coarse_initial_distribution coarse_stat_d = self.coarse_stationary_distribution if coarse_T is None: raise RuntimeError( "Compute coarse-grained transition matrix first as `.compute_macrostates()` with `n_states > 1`." ) if show_stationary_dist and coarse_stat_d is None: logg.warning("Coarse stationary distribution is `None`, ignoring") show_stationary_dist = False if show_initial_dist and coarse_init_d is None: logg.warning("Coarse initial distribution is `None`, ignoring") show_initial_dist = False hrs, wrs = [1], [1] if show_stationary_dist: hrs += [0.05] if show_initial_dist: hrs += [0.05] if show_cbar: wrs += [0.025] dont_show_dist = not show_initial_dist and not show_stationary_dist fig = plt.figure(constrained_layout=False, figsize=figsize, dpi=dpi) gs = plt.GridSpec( 1 + show_stationary_dist + show_initial_dist, 1 + show_cbar, height_ratios=hrs, width_ratios=wrs, wspace=0.05, hspace=0.05, ) if isinstance(cmap, str): cmap = plt.get_cmap(cmap) ax = fig.add_subplot(gs[0, 0]) cax = fig.add_subplot(gs[:1, -1]) if show_cbar else None init_ax, stat_ax = None, None labels = list(self.coarse_T.columns) tmp = coarse_T if show_initial_dist: tmp = np.c_[tmp, coarse_stat_d] if show_initial_dist: tmp = np.c_[tmp, coarse_init_d] minn, maxx = np.nanmin(tmp), np.nanmax(tmp) norm = Normalize(vmin=minn, vmax=maxx) if show_stationary_dist: stat_ax = fig.add_subplot(gs[1, 0]) stylize_dist( stat_ax, np.array(coarse_stat_d).reshape(1, -1), xticks_labels=labels if not show_initial_dist else None, ) stat_ax.yaxis.set_label_position("right") stat_ax.set_ylabel("stationary dist", rotation=0, ha="left", va="center") if show_initial_dist: init_ax = fig.add_subplot(gs[show_stationary_dist + show_initial_dist, 0]) stylize_dist( init_ax, np.array(coarse_init_d).reshape(1, -1), xticks_labels=labels ) init_ax.yaxis.set_label_position("right") init_ax.set_ylabel("initial dist", rotation=0, ha="left", va="center") im = ax.imshow(coarse_T, aspect="auto", cmap=cmap, norm=norm, **kwargs) ax.set_title("coarse-grained transition matrix" if title is None else title) if cax is not None: _ = ColorbarBase( cax, cmap=cmap, norm=norm, ticks=np.linspace(minn, maxx, 10), format="%0.3f", ) ax.set_yticks(np.arange(coarse_T.shape[0])) ax.set_yticklabels(labels) ax.tick_params( top=False, bottom=dont_show_dist, labeltop=False, labelbottom=dont_show_dist, ) for spine in ax.spines.values(): spine.set_visible(False) if dont_show_dist: ax.set_xticks(np.arange(coarse_T.shape[1])) ax.set_xticklabels(labels) plt.setp( ax.get_xticklabels(), rotation=xtick_rotation, ha="right", rotation_mode="anchor", ) else: ax.set_xticks([]) ax.set_yticks(np.arange(coarse_T.shape[0] + 1) - 0.5, minor=True) ax.tick_params(which="minor", bottom=dont_show_dist, left=False, top=False) if annotate: annotate_heatmap(im) if show_stationary_dist: annotate_dist_ax(stat_ax, coarse_stat_d.values) if show_initial_dist: annotate_dist_ax(init_ax, coarse_init_d.values) if save: save_fig(fig, save) @d.dedent def plot_macrostate_composition( self, key: str, width: float = 0.8, title: Optional[str] = None, labelrot: float = 45, legend_loc: Optional[str] = "upper right out", figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, show: bool = True, ) -> Optional[Axes]: """ Plot stacked histogram of macrostates over categorical annotations. Parameters ---------- %(adata)s key Key from :attr:`anndata.AnnData.obs` containing categorical annotations. width Bar width in `[0, 1]`. title Title of the figure. If `None`, create one automatically. labelrot Rotation of labels on x-axis. legend_loc Position of the legend. If `None`, don't show legend. %(plotting)s show If `False`, return :class:`matplotlib.pyplot.Axes`. Returns ------- The axes object, if ``show = False``. %(just_plots)s """ from cellrank.pl._utils import _position_legend macrostates = self.macrostates if macrostates is None: raise RuntimeError("Compute macrostates first as `.compute_macrostates()`.") if key not in self.adata.obs: raise KeyError(f"Data not found in `adata.obs[{key!r}]`.") if not is_categorical_dtype(self.adata.obs[key]): raise TypeError( f"Expected `adata.obs[{key!r}]` to be `categorical`, " f"found `{infer_dtype(self.adata.obs[key])}`." ) mask = ~macrostates.isnull() df = ( pd.DataFrame({"macrostates": macrostates, key: self.adata.obs[key]})[mask] .groupby([key, "macrostates"]) .size() ) try: cats_colors = self.adata.uns[f"{key}_colors"] except KeyError: cats_colors = _create_categorical_colors( len(self.adata.obs[key].cat.categories) ) cat_color_mapper = dict(zip(self.adata.obs[key].cat.categories, cats_colors)) x_indices = np.arange(len(macrostates.cat.categories)) bottom = np.zeros_like(x_indices, dtype=np.float32) width = min(1, max(0, width)) fig, ax = plt.subplots(figsize=figsize, dpi=dpi, tight_layout=True) for cat, color in cat_color_mapper.items(): frequencies = df.loc[cat] # do not add to legend if category is missing if np.sum(frequencies) > 0: ax.bar( x_indices, frequencies, width, label=cat, color=color, bottom=bottom, ec="black", lw=0.5, ) bottom += np.array(frequencies) ax.set_xticks(x_indices) ax.set_xticklabels( # assuming at least 1 category frequencies.index, rotation=labelrot, ha="center" if labelrot in (0, 90) else "right", ) y_max = bottom.max() ax.set_ylim([0, y_max + 0.05 * y_max]) ax.set_yticks(np.linspace(0, y_max, 5)) ax.margins(0.05) ax.set_xlabel("macrostate") ax.set_ylabel("frequency") if title is None: title = f"distribution over {key}" ax.set_title(title) if legend_loc not in (None, "none"): _position_legend(ax, legend_loc=legend_loc) if save is not None: save_fig(fig, save) if not show: return ax def _n_states(self, n_states: Optional[Union[int, Sequence[int]]]) -> int: if n_states is None: if self.eigendecomposition is None: raise RuntimeError( "Compute eigendecomposition first as `.compute_eigendecomposition()` or " "supply `n_states != None`." ) return self.eigendecomposition["eigengap"] + 1 # fmt: off if isinstance(n_states, int): if n_states <= 0: raise ValueError(f"Expected `n_states` to be positive, found `{n_states}`.") return n_states if self._gpcca is None: raise RuntimeError("Compute Schur decomposition first as `.compute_schur()`.") if not isinstance(n_states, Sequence): raise TypeError(f"Expected `n_states` to be a `Sequence`, found `{type(n_states).__name__!r}`.") if len(n_states) != 2: raise ValueError(f"Expected `n_states` to be of size `2`, found `{len(n_states)}`.") minn, maxx = sorted(n_states) if minn <= 1: minn = 2 logg.warning(f"Minimum value must be larger than `1`, found `{minn}`. Setting `min={minn}`") if minn == 2: minn = 3 logg.warning( f"In most cases, 2 clusters will always be optimal. " f"If you really expect 2 clusters, use `n_states=2`. Setting `min={minn}`" ) # fmt: on maxx = max(minn + 1, maxx) logg.info(f"Calculating minChi criterion in interval `[{minn}, {maxx}]`") return int(np.arange(minn, maxx + 1)[np.argmax(self._gpcca.minChi(minn, maxx))]) def _create_states( self, probs: Union[np.ndarray, Lineage], n_cells: int, check_row_sums: bool = False, return_not_enough_cells: bool = False, ) -> Union[pd.Series, Tuple[pd.Series, np.ndarray]]: if n_cells <= 0: raise ValueError(f"Expected `n_cells` to be positive, found `{n_cells}`.") discrete, not_enough_cells = _fuzzy_to_discrete( a_fuzzy=probs, n_most_likely=n_cells, remove_overlap=False, raise_threshold=0.2, check_row_sums=check_row_sums, ) states = _series_from_one_hot_matrix( membership=discrete, index=self.adata.obs_names, names=probs.names if isinstance(probs, Lineage) else None, ) return (states, not_enough_cells) if return_not_enough_cells else states def _validate_n_states(self, n_states: int) -> int: if self._invalid_n_states is not None and n_states in self._invalid_n_states: logg.warning( f"Unable to compute macrostates with `n_states={n_states}` because it will " f"split complex conjugate eigenvalues. Using `n_states={n_states + 1}`" ) n_states += 1 # cannot force recomputation of the Schur decomposition assert n_states not in self._invalid_n_states, "Sanity check failed." return n_states def _compute_one_macrostate( self, n_cells: Optional[int], cluster_key: Optional[str], ) -> None: start = logg.info("For 1 macrostate, stationary distribution is computed") eig = self.eigendecomposition if ( eig is not None and "stationary_dist" in eig and eig["params"]["which"] == "LR" ): stationary_dist = eig["stationary_dist"] else: self.compute_eigendecomposition(only_evals=False, which="LR") stationary_dist = self.eigendecomposition["stationary_dist"] self._set_macrostates( memberships=stationary_dist[:, None], n_cells=n_cells, cluster_key=cluster_key, check_row_sums=False, time=start, ) @d.dedent def _set_macrostates( self, memberships: np.ndarray, n_cells: Optional[int] = 30, cluster_key: str = "clusters", check_row_sums: bool = True, time: Optional[datetime] = None, params: Dict[str, Any] = MappingProxyType({}), ) -> None: """ Map fuzzy clustering to pre-computed annotations to get names and colors. Given the fuzzy clustering, we would like to select the most likely cells from each state and use these to give each state a name and a color by comparing with pre-computed, categorical cluster annotations. Parameters ---------- memberships Fuzzy clustering. %(n_cells)s cluster_key Key from :attr:`anndata.AnnData.obs` to get reference cluster annotations. check_row_sums Check whether rows in `memberships` sum to `1`. time Start time of macrostates computation. params Parameters used in macrostates computation. Returns ------- Nothing, just updates the field as described in :meth:`compute_macrostates`. """ if n_cells is None: # fmt: off logg.debug("Setting the macrostates using macrostate assignment") assignment = pd.Series(np.argmax(memberships, axis=1).astype(str), dtype="category") # sometimes, a category can be missing assignment = assignment.cat.reorder_categories([str(i) for i in range(memberships.shape[1])]) not_enough_cells = [] # fmt: on else: logg.debug("Setting the macrostates using macrostates memberships") # select the most likely cells from each macrostate assignment, not_enough_cells = self._create_states( memberships, n_cells=n_cells, check_row_sums=check_row_sums, return_not_enough_cells=True, ) # remove previous fields self._write_terminal_states(None, None, None, None, log=False) # fmt: off assignment, colors = self._set_categorical_labels(assignment, cluster_key=cluster_key) memberships = Lineage(memberships, names=list(assignment.cat.categories), colors=colors) # fmt: on groups = pd.DataFrame(assignment).groupby(0).size() groups = groups[groups != n_cells].to_dict() if len(groups): logg.warning( f"The following terminal states have different number " f"of cells than requested ({n_cells}): {groups}" ) self._write_macrostates( assignment, colors, memberships, time=time, params=params ) @logger @shadow def _write_macrostates( self, macrostates: pd.Series, colors: np.ndarray, memberships: Lineage, params: Dict[str, Any] = MappingProxyType({}), ) -> str: # fmt: off names = list(macrostates.cat.categories) key = Key.obs.macrostates(self.backward) self._set("_macrostates", obj=self.adata.obs, key=key, value=macrostates, shadow_only=True) ckey = Key.uns.colors(key) self._set("_macrostates_colors", obj=self.adata.uns, key=ckey, value=colors, shadow_only=True) mkey = Key.obsm.memberships(key) self._set("_macrostates_memberships", obj=self.adata.obsm, key=mkey, value=memberships, shadow_only=True) self.params[key] = dict(params) if len(names) > 1: # not using stationary distribution g = self._gpcca tmat = pd.DataFrame(g.coarse_grained_transition_matrix, index=names, columns=names) init_dist =
pd.Series(g.coarse_grained_input_distribution, index=names)
pandas.Series
import json import os import warnings import random import string import csv import time import datetime import io import pandas as pd from flask import ( Blueprint, flash, Flask, g, redirect, render_template, request, url_for, jsonify, Response ) from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField, IntegerField, BooleanField from wtforms.validators import DataRequired, NumberRange, InputRequired from wtforms.widgets import html5 from flask_wtf.csrf import CSRFProtect from werkzeug.utils import secure_filename from survey._app import app, csrf_protect from survey.db import get_db, table_exists, insert, update bp = Blueprint("admin", __name__) ###### helpers ##### class JobConfig(dict): def __init__(self, job_id, api_key, nb_rows=0, unique_worker=True, base_code="", expected_judgments=0, payment_max_cents=0): super().__init__() self["job_id"] = job_id self["api_key"] = api_key self["nb_rows"] = nb_rows self["unique_worker"] = unique_worker self["base_code"] = base_code self["expected_judgments"] = expected_judgments self["payment_max_cents"] = payment_max_cents self.__dict__ = self def get_job_config(con, job_id, table="jobs"): """ Return a job config or the default configuration if the job wasn't found :param con: (Connection) :param job_id: :param table: """ _job_config = None if table_exists(con, table): with con: _job_config = con.execute(f"SELECT * from {table} WHERE job_id==?", (job_id,)).fetchone() if _job_config is None: job_config = JobConfig(job_id, api_key='') else: job_config = JobConfig(**_job_config) return job_config def update_job(con, job_id, job_config, table="jobs"): if not table_exists(con, table): insert(pd.DataFrame(data=[job_config]), table=table, con=con) else: with con: check = con.execute(f"SELECT job_id from jobs where job_id==?", (job_id,)).fetchone() if check: update( f"UPDATE {table} SET api_key=?, base_code=?, expected_judgments=?, payment_max_cents=?", args=(job_config['api_key'], job_config['base_code'], job_config['expected_judgments'], job_config['payment_max_cents']), con=con ) else: insert(
pd.DataFrame(data=[job_config])
pandas.DataFrame
# What is different in this kernel: # - data preprocessing was modularised and hopefully made more clear, as repetitative actions were moved into a separate function # - LightGBM hyperparameters were taken from my another kernel, where they were tuned to the `application` data subset only: # https://www.kaggle.com/mlisovyi/lightgbm-hyperparameter-optimisation-lb-0-746 # - Check out the feature importance plot. It is VERY different from any other kernel. # It is most likely related to the regularisation in the model. This will have to be studied # # What was borrowed in this kernel: # This script is a fork of the awesome kernel by olivier, that insiper a lot of kernels on this competition: # https://www.kaggle.com/ogrellier/good-fun-with-ligthgbm # It also uses memory-footprint-reduction technique copied over from this very clear and useful kernel: # https://www.kaggle.com/gemartin/load-data-reduce-memory-usage # The tiny add-on to store OOF predictions on the training dataset was taken from this kernel: # https://www.kaggle.com/tilii7/olivier-lightgbm-parameters-by-bayesian-opt/ import pandas as pd import numpy as np from sklearn.metrics import roc_auc_score, precision_recall_curve, roc_curve, average_precision_score from sklearn.model_selection import KFold, StratifiedKFold from lightgbm import LGBMClassifier import matplotlib.pyplot as plt import seaborn as sns import gc PATH='~/.kaggle/competitions/home-credit-default-risk/' def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df def import_data(file): """create a dataframe and optimize its memory usage""" df = pd.read_csv(file, parse_dates=True, keep_date_col=True) df = reduce_mem_usage(df) return df def average_dummies(df, dummy_col, count_col, gb_col, preffix='', del_input=True): print('DF shape : ', df.shape) if dummy_col: print('transform to dummies') df = pd.concat([df, pd.get_dummies(df[dummy_col])], axis=1).drop(dummy_col, axis=1) if count_col and gb_col: print('Counting buros') df_counts = df[[gb_col, count_col]].groupby(gb_col).count() df[count_col] = df[gb_col].map(df_counts[count_col]) avg_df = None if gb_col: print('averaging ') avg_df = df.groupby(gb_col).mean() if preffix: avg_df.columns = [preffix + f_ for f_ in avg_df.columns] print(avg_df.head()) print(df.head()) if del_input: print('Deleting input') del df gc.collect() if avg_df is not None: print(avg_df.head()) print(avg_df.columns.values) return avg_df elif not del_input: return df else: return None def build_model_input(): print('Read Bureau_Balance') buro_bal = import_data(PATH+'/bureau_balance.csv') avg_buro_bal = average_dummies(buro_bal, dummy_col='STATUS', count_col='MONTHS_BALANCE', gb_col='SK_ID_BUREAU', preffix='avg_buro_') print('Read Bureau') buro_full = import_data(PATH+'/bureau.csv') buro_full = average_dummies(buro_full, dummy_col=['CREDIT_ACTIVE', 'CREDIT_CURRENCY', 'CREDIT_TYPE'], count_col=None, gb_col=None, preffix=None, del_input=False) print('Merge with buro avg') buro_full = buro_full.merge(right=avg_buro_bal.reset_index(), how='left', on='SK_ID_BUREAU', suffixes=('', '_bur_bal')) avg_buro = average_dummies(buro_full, dummy_col=None, count_col='SK_ID_BUREAU', gb_col='SK_ID_CURR', preffix='avg_buro_', del_input=True) print('Read prev') prev = import_data(PATH+'/previous_application.csv') prev_cat_features = [ f_ for f_ in prev.columns if prev[f_].dtype == 'object' ] avg_prev = average_dummies(prev, dummy_col=prev_cat_features, count_col='SK_ID_PREV', gb_col='SK_ID_CURR', preffix='prev_') print('Reading POS_CASH') pos = import_data(PATH+'/POS_CASH_balance.csv') avg_pos = average_dummies(pos, dummy_col='NAME_CONTRACT_STATUS', count_col='SK_ID_PREV', gb_col='SK_ID_CURR', preffix='pos_') print('Reading CC balance') cc_bal = import_data(PATH+'/credit_card_balance.csv') avg_cc_bal = average_dummies(cc_bal, dummy_col='NAME_CONTRACT_STATUS', count_col='SK_ID_PREV', gb_col='SK_ID_CURR', preffix='cc_bal_') print('Reading Installments') inst = import_data(PATH+'/installments_payments.csv') avg_inst = average_dummies(inst, dummy_col=None, count_col='SK_ID_PREV', gb_col='SK_ID_CURR', preffix='inst_') print('Read data and test') data = import_data(PATH+'/application_train.csv') test = import_data(PATH+'/application_test.csv') print('Shapes : ', data.shape, test.shape) y = data['TARGET'] del data['TARGET'] categorical_feats = [ f for f in data.columns if data[f].dtype == 'object' ] categorical_feats for f_ in categorical_feats: data[f_], indexer =
pd.factorize(data[f_])
pandas.factorize
from __future__ import (absolute_import, division, print_function, unicode_literals) import calendar import ccdproc import collections import datetime import glob import logging import math import numpy as np import os import pandas import random import re import subprocess import sys import time from astropy.utils import iers iers.Conf.iers_auto_url.set('ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.all') from astroplan import Observer from astropy import units as u from astropy.io import fits from astropy.convolution import convolve, Gaussian1DKernel, Box1DKernel from astropy.coordinates import EarthLocation from astropy.modeling import (models, fitting, Model) from astropy.stats import sigma_clip from astropy.time import Time from astroscrappy import detect_cosmics from matplotlib import pyplot as plt from scipy import signal, interpolate from threading import Timer from . import check_version __version__ = __import__('goodman_pipeline').__version__ log = logging.getLogger(__name__) def astroscrappy_lacosmic(ccd, red_path=None, save_mask=False): mask, ccd.data = detect_cosmics(ccd.data) ccd.header['GSP_COSM'] = ('LACosmic', "Cosmic ray rejection method") log.info("Cosmic rays rejected using astroscrappy's lacosmic") if save_mask and red_path is not None: mask_ccd = ccd.copy() mask_ccd.mask = mask new_file_name = 'crmask_' + mask_ccd.header['GSP_FNAM'] mask_ccd.header['GSP_FNAM'] = new_file_name log.info("Saving binary mask of cosmic rays to " "{:s}".format(new_file_name)) write_fits(ccd=mask_ccd, full_path=os.path.join(red_path, new_file_name)) return ccd def add_wcs_keys(ccd): """Adds generic keyword for linear wavelength solution to the header Linear wavelength solutions require a set of standard fits keywords. Later on they will be updated accordingly. The main goal of putting them here is to have consistent and nicely ordered headers. Notes: This does NOT add a WCS solution, just the keywords. Args: ccd (CCDData) A :class:~astropy.nddata.CCDData` instance with no wcs keywords. Returns: ccd (CCDData) A :class:`~astropy.nddata.CCDData` instance with modified header with added WCS keywords """ log.debug("Adding FITS LINEAR wcs keywords to header.") ccd.header.set('BANDID1', value='spectrum - background none, weights none, ' 'clean no', comment='') ccd.header.set('APNUM1', value='1 1 0 0', comment='') ccd.header.set('WCSDIM', value=1, comment='') ccd.header.set('CTYPE1', value='LINEAR', comment='') ccd.header.set('CRVAL1', value=1, comment='') ccd.header.set('CRPIX1', value=1, comment='') ccd.header.set('CDELT1', value=1, comment='') ccd.header.set('CD1_1', value=1, comment='') ccd.header.set('LTM1_1', value=1, comment='') ccd.header.set('WAT0_001', value='system=equispec', comment='') ccd.header.set('WAT1_001', value='wtype=linear label=Wavelength units=angstroms', comment='') ccd.header.set('DC-FLAG', value=0, comment='') ccd.header.set('DCLOG1', value='REFSPEC1 = non set', comment='') return ccd def add_linear_wavelength_solution(ccd, x_axis, reference_lamp, crpix=1): """Add wavelength solution to the new FITS header Defines FITS header keyword values that will represent the wavelength solution in the header so that the image can be read in any other astronomical tool. (e.g. IRAF) Args: ccd (CCDData) Instance of :class:`~astropy.nddata.CCDData` x_axis (ndarray): Linearized x-axis in angstrom reference_lamp (str): Name of lamp used to get wavelength solution. crpix (int): reference pixel for defining wavelength solution. Default 1. For most cases 1 should be fine. Returns: ccd (CCDData) A :class:`~astropy.nddata.CCDData` instance with linear wavelength solution on it. """ assert crpix > 0 new_crpix = crpix new_crval = x_axis[new_crpix - crpix] new_cdelt = x_axis[new_crpix] - x_axis[new_crpix - crpix] ccd.header.set('BANDID1', 'spectrum - background none, weights none, ' 'clean no') ccd.header.set('WCSDIM', 1) ccd.header.set('CTYPE1', 'LINEAR ') ccd.header.set('CRVAL1', new_crval) ccd.header.set('CRPIX1', new_crpix) ccd.header.set('CDELT1', new_cdelt) ccd.header.set('CD1_1', new_cdelt) ccd.header.set('LTM1_1', 1.) ccd.header.set('WAT0_001', 'system=equispec') ccd.header.set('WAT1_001', 'wtype=linear label=Wavelength units=angstroms') ccd.header.set('DC-FLAG', 0) ccd.header.set('DCLOG1', 'REFSPEC1 = {:s}'.format(reference_lamp)) return ccd def bias_subtract(ccd, master_bias, master_bias_name): """Subtract bias from file. Wrapper for :func:`~ccdproc.subtract_bias`. The main goal is to have a consistent API for apps using the Goodman Pipeline as a library. Args: ccd (CCDData): A file to be bias-subtracted master_bias (CCDData): master_bias_name (str): Full path to master bias file, this is added to the bias-subtracted ccd under `GSP_BIAS`. Returns: A bias-subtracted file. """ ccd = ccdproc.subtract_bias(ccd=ccd, master=master_bias, add_keyword=False) log.info("Bias subtracted") ccd.header.set('GSP_BIAS', value=os.path.basename(master_bias_name), comment="Master Bias Image") return ccd def bin_reference_data(wavelength, intensity, serial_binning): """Bins a 1D array This method reduces the size of an unbinned array by binning. The function to combine data is `numpy.mean`. Args: wavelength (array): Wavelength axis intensity (array): Intensity serial_binning (int): Serial Binning is the binning in the dispersion axis. Returns: Binned wavelength and intensity arrays. """ if serial_binning != 1: b_wavelength = ccdproc.block_reduce(wavelength, serial_binning, np.mean) b_intensity = ccdproc.block_reduce(intensity, serial_binning, np.mean) return b_wavelength, b_intensity else: return wavelength, intensity def call_cosmic_rejection(ccd, image_name, out_prefix, red_path, keep_files=False, prefix='c', method='dcr', save=False): """Call for the appropriate cosmic ray rejection method There are four options when dealing with cosmic ray rejection in this pipeline, The default option is called ``default`` and it will choose the rejection method based on the binning of the image. Note that there are only two *real* methods: ``dcr`` and ``lacosmic``. For ``binning 1x1`` the choice will be ``dcr`` for ``binning 2x2`` and ``3x3`` will be ``lacosmic``. The method ``dcr`` is a program written in C by <NAME> (http://users.camk.edu.pl/pych/DCR/) that works very well for spectroscopy the only negative aspect is that integration with python was difficult and not natively (through subprocess). The method `lacosmic` is well known but there are different implementations, we started using :func:`~ccdproc.cosmicray_lacosmic` but later we shifted towards ``astroscrappy.detect_cosmics``. The LACosmic method was developed by <NAME>. See <http://www.astro.yale.edu/dokkum/lacosmic/> There is also the option of skipping cosmic ray removal by using ``none``. Args: ccd (CCCData): a :class:`~astropy.nddata.CCDData` instance. image_name (str): Science image name. out_prefix (str): Partial prefix to be added to the image name. Related to previous processes and not cosmic ray rejection. red_path (str): Path to reduced data directory. keep_files (bool): If True, the original file and the cosmic ray mask will not be deleted. Default is False. prefix (str): Cosmic ray rejection related prefix to be added to image name. method (str): Method to use for cosmic ray rejection. There are four options: `default`, `dcr`, `lacosmic` and `none`. save (bool): Disables by default saving the images Returns: :class:`~astropy.nddata.CCDData` instance and `out_prefix` which is the prefix added to the image name. Raises: NotImplementedError if the `method` argument is not `dcr`, `lacosmic` nor `none`. """ log.debug("Cosmic ray rejection method from input is '{:s}'".format(method)) binning, _ = [int(i) for i in ccd.header['CCDSUM'].split()] if method == 'default': if binning == 1: method = 'dcr' log.info('Setting cosmic ray rejection method to:' ' {:s}'.format(method)) elif binning == 2: method = 'lacosmic' log.info('Setting cosmic ray rejection method to:' ' {:s}'.format(method)) elif binning == 3: method = 'lacosmic' log.info('Setting cosmic ray rejection method to:' ' {:s}'.format(method)) if ccd.header['OBSTYPE'] == 'COMP' and method != 'none': log.info("Changing cosmic ray rejection method from '{:s}' to 'none'" " for comparison lamp. Prefix 'c' will be added " "anyway.".format(method)) method = 'none' log.debug("Cosmic ray rejection changed to 'none' for this file: " "{:s}".format(ccd.header['GSP_FNAM'])) out_prefix = prefix + out_prefix if method == 'dcr': log.warning('DCR does apply the correction to images if you want ' 'the mask use --keep-cosmic-files') if not os.path.isfile(os.path.join(red_path, 'dcr.par')): _create = GenerateDcrParFile() _instrument = ccd.header['INSTCONF'] _binning, _ = ccd.header['CCDSUM'].split() _create(instrument=_instrument, binning=_binning, path=red_path) full_path = os.path.join(red_path, f"{out_prefix}_{image_name}") ccd.header.set('GSP_COSM', value="DCR", comment="Cosmic ray rejection method") write_fits(ccd=ccd, full_path=full_path) log.info('Saving image: {:s}'.format(full_path)) in_file = f"{out_prefix}_{image_name}" # This is to return the prefix that will be used by dcr # Not to be used by dcr_cosmicray_rejection out_prefix = prefix + out_prefix ccd = dcr_cosmicray_rejection(data_path=red_path, in_file=in_file, prefix=prefix, keep_cosmic_files=keep_files, save=save) return ccd, out_prefix elif method == 'lacosmic': ccd = astroscrappy_lacosmic(ccd=ccd, red_path=red_path, save_mask=keep_files) out_prefix = prefix + out_prefix full_path = os.path.join(red_path, f"{out_prefix}_{image_name}") if save: log.info('Saving image: {:s}'.format(full_path)) write_fits(ccd=ccd, full_path=full_path) return ccd, out_prefix elif method == 'none': full_path = os.path.join(red_path, f"{out_prefix}_{image_name}") if save: log.info('Saving image: {:s}'.format(full_path)) write_fits(ccd=ccd, full_path=full_path) return ccd, out_prefix else: log.error('Unrecognized Cosmic Method {:s}'.format(method)) raise NotImplementedError def create_master_bias(bias_files, raw_data, reduced_data, technique): """Create Master Bias Given a :class:`~pandas.DataFrame` object that contains a list of compatible bias. This function creates the master flat using ccdproc.combine using median and 3-sigma clipping. Args: bias_files (list): List of all bias files to be combined. They have to be compatible with each other as no check is done in this method. raw_data (str): Full path to raw data location. reduced_data (str): Full path to were reduced data will reside. technique (str): Name of observing technique. Imaging or Spectroscopy. Returns: master_bias (object): master_bias_name (str): """ assert isinstance(bias_files, list) master_bias_list = [] log.info('Creating master bias') for image_file in bias_files: image_full_path = os.path.join(raw_data, image_file) ccd = read_fits(image_full_path, technique=technique) log.debug('Loading bias image: ' + image_full_path) master_bias_list.append(ccd) # combine bias for spectroscopy log.info("Combining {} images to create master bias".format( len(master_bias_list))) master_bias = ccdproc.combine(master_bias_list, method='median', sigma_clip=True, sigma_clip_low_thresh=3.0, sigma_clip_high_thresh=3.0, add_keyword=False) # add name of images used to create master bias for n in range(len(bias_files)): master_bias.header['GSP_IC{:02d}'.format(n + 1)] = ( bias_files[n], 'Image used to create master bias') master_bias_name = "master_bias_{}_{}_{}_R{:05.2f}_G{:05.2f}.fits".format( master_bias.header['INSTCONF'].upper(), technique[0:2].upper(), "x".join(master_bias.header['CCDSUM'].split()), float(master_bias.header['RDNOISE']), float(master_bias.header['GAIN']) ) write_fits(ccd=master_bias, full_path=os.path.join(reduced_data, master_bias_name), combined=True, overwrite=True) log.info('Created master bias: ' + master_bias_name) return master_bias, master_bias_name def create_master_flats(flat_files, raw_data, reduced_data, technique, overscan_region, trim_section, master_bias_name, new_master_flat_name, saturation_threshold, ignore_bias=False): """Creates master flats Using a list of compatible flat images it combines them using median and 1-sigma clipping. Also it apply all previous standard calibrations to each image. Args: flat_files (list): List of files previously filtered, there is no compatibility check in this function and is assumed the files are combinables. raw_data (str): Full path to raw data. reduced_data (str): Full path to reduced data. Where reduced data should be stored. technique (str): Observing technique. Imaging or Spectroscopy. overscan_region (str): Defines the area to be used to estimate the overscan region for overscan correction. Should be in the format. `[x1:x2.,y1:y2]`. trim_section (str):Defines the area to be used after trimming unusable selected parts (edges). In the format `[x1:x2.,y1:y2]`. master_bias_name (str): Master bias name, can be full path or not. If it is a relative path, the path will be ignored and will define the full path as `raw_path` + `basename`. new_master_flat_name (str): Name of the file to save new master flat. Can be absolute path or not. saturation_threshold (int): Saturation threshold, defines the percentage of pixels above saturation level allowed for flat field images. ignore_bias (bool): Flag to create master bias without master bias. Returns: The master flat :class:`~astropy.nddata.CCDData` instance and the name of under which the master flat was stored. If it can't build the master flat it will return None, None. """ cleaned_flat_list = [] master_flat_list = [] if os.path.isabs(os.path.dirname(new_master_flat_name)): master_flat_name = new_master_flat_name else: master_flat_name = os.path.join( reduced_data, os.path.basename(new_master_flat_name)) if not ignore_bias: if os.path.isabs(os.path.dirname(master_bias_name)) and \ os.path.exists(master_bias_name): master_bias = read_fits(master_bias_name, technique=technique) else: master_bias_name = os.path.join(reduced_data, os.path.basename(master_bias_name)) master_bias = read_fits(master_bias_name, technique=technique) master_bias = image_trim(ccd=master_bias, trim_section=trim_section, trim_type='trimsec') log.info('Creating Master Flat') for flat_file in flat_files: if os.path.isabs(flat_file): image_full_path = flat_file else: image_full_path = os.path.join(raw_data, flat_file) log.debug('Loading flat image: ' + image_full_path) ccd = read_fits(image_full_path, technique=technique) if ignore_bias and technique == 'Spectroscopy': ccd = image_overscan(ccd, overscan_region=overscan_region) ccd = image_trim(ccd=ccd, trim_section=trim_section, trim_type='trimsec') if not ignore_bias: ccd = ccdproc.subtract_bias(ccd, master_bias, add_keyword=False) ccd.header['GSP_BIAS'] = ( os.path.basename(master_bias_name), 'Master bias image') else: log.warning('Ignoring bias on request') if is_file_saturated(ccd=ccd, threshold=saturation_threshold): log.warning('Removing saturated image {:s}. ' 'Use --saturation_threshold to change saturation_threshold ' 'level'.format(flat_file)) continue else: cleaned_flat_list.append(flat_file) master_flat_list.append(ccd) if master_flat_list != []: log.info("Combining {} images to create master flat".format( len(master_flat_list))) master_flat = ccdproc.combine(master_flat_list, method='median', sigma_clip=True, sigma_clip_low_thresh=1.0, sigma_clip_high_thresh=1.0, add_keyword=False) # add name of images used to create master bias for n in range(len(cleaned_flat_list)): master_flat.header['GSP_IC{:02d}'.format(n + 1)] = ( cleaned_flat_list[n], 'Image used to create master flat') write_fits(ccd=master_flat, full_path=master_flat_name, combined=True) log.info('Created Master Flat: ' + master_flat_name) return master_flat, master_flat_name else: log.error('Empty flat list. Check that they do not exceed the ' 'saturation_threshold limit.') return None, None def cross_correlation(reference, compared, slit_size, serial_binning, mode='full', plot=False): """Do cross correlation of two 1D spectra It convolves the reference lamp depending on the slit size of the new_array that corresponds with a comparison lamp. If the slit is larger than 3 arcseconds the reference lamp is convolved with a `~astropy.convolution.Box1DKernel` because spectral lines look more like a block than a line. And if it is smaller or equal to 3 it will use a `~astropy.convolution.Gaussian1DKernel` ponderated by the binning. All reference lamp are unbinned, or binning is 1x1. Args: reference (array): Reference array. compared (array): Array to be matched. A new reference lamp. slit_size (float): Slit width in arcseconds serial_binning (int): Binning in the spectral axis mode (str): Correlation mode for `signal.correlate`. plot (bool): Switch debugging plots on or off. Returns: correlation_value (int): Shift value in pixels. """ cyaxis2 = compared if slit_size > 3: box_width = slit_size / (0.15 * serial_binning) log.debug('BOX WIDTH: {:f}'.format(box_width)) box_kernel = Box1DKernel(width=box_width) max_before = np.max(reference) cyaxis1 = convolve(reference, box_kernel) max_after = np.max(cyaxis1) cyaxis1 *= max_before / max_after else: kernel_stddev = slit_size / (0.15 * serial_binning) gaussian_kernel = Gaussian1DKernel(stddev=kernel_stddev) cyaxis1 = convolve(reference, gaussian_kernel) cyaxis2 = convolve(compared, gaussian_kernel) ccorr = signal.correlate(cyaxis1, cyaxis2, mode=mode) max_index = np.argmax(ccorr) x_ccorr = np.linspace(-int(len(ccorr) / 2.), int(len(ccorr) / 2.), len(ccorr)) correlation_value = x_ccorr[max_index] if plot: # pragma: no cover plt.ion() plt.title('Cross Correlation') plt.xlabel('Lag Value') plt.ylabel('Correlation Value') plt.plot(x_ccorr, ccorr) plt.draw() plt.pause(2) plt.clf() plt.ioff() return correlation_value def classify_spectroscopic_data(path, search_pattern): """Classify data by grouping them by a set of keywords. This function uses :class:`~ccdproc.ImageFileCollection`. First it creates a collection of information regarding the images located in ``path`` that match the pattern ``search_pattern``. The information obtained are all keywords listed in the list ``keywords``. The :class:`~ccdproc.ImageFileCollection` object is translated into :class:`~pandas.DataFrame` and then is used much like an SQL database to select and filter values and in that way put them in groups that are :class:`~pandas.DataFrame` instances. The keywords retrieved are: - ``date`` - ``slit`` - ``date-obs`` - ``obstype`` - ``object`` - ``exptime`` - ``obsra`` - ``obsdec`` - ``grating`` - ``cam_targ`` - ``grt_targ`` - ``filter`` - ``filter2`` - ``gain`` - ``rdnoise``. Then all data is grouped by matching the following keywords: - ``slit`` - ``radeg`` - ``decdeg`` - ``grating`` - ``cam_targ`` - ``grt_targ`` - ``filter`` - ``filter2`` - ``gain`` - ``rdnoise`` And finally, every group is classified as: a *comparison lamp-only* group, an *object-only* group or a *group of object and comparison lamps*. The comparison lamps present in the last group (``COMP`` + ``OBJECT``) are also added in the first one (``COMP``-only). Args: path (str): Path to data location search_pattern (str): Prefix to match files. Returns: Instance of :class:`goodman_pipeline.core.core.NightDataContainer` """ log.debug("Spectroscopic Data Classification") search_path = os.path.join(path, search_pattern + '*.fits') file_list = glob.glob(search_path) if file_list == []: log.error('No file found using search pattern ' '"{:s}"'.format(search_pattern)) sys.exit('Please use the argument --search-pattern to define the ' 'common prefix for the files to be processed.') data_container = NightDataContainer(path=path, instrument=str('Red'), technique=str('Spectroscopy')) keywords = ['date', 'slit', 'date-obs', 'obstype', 'object', 'exptime', 'obsra', 'obsdec', 'grating', 'cam_targ', 'grt_targ', 'filter', 'filter2', 'gain', 'rdnoise', 'lamp_hga', 'lamp_ne', 'lamp_ar', 'lamp_fe', 'lamp_cu' ] ifc = ccdproc.ImageFileCollection(path, keywords=keywords, filenames=file_list) pifc = ifc.summary.to_pandas() pifc['radeg'] = '' pifc['decdeg'] = '' for i in pifc.index.tolist(): radeg, decdeg = ra_dec_to_deg(pifc.obsra.iloc[i], pifc.obsdec.iloc[i]) pifc.iloc[i, pifc.columns.get_loc('radeg')] = '{:.2f}'.format(radeg) pifc.iloc[i, pifc.columns.get_loc('decdeg')] = '{:.2f}'.format(decdeg) # now we can compare using degrees confs = pifc.groupby(['slit', 'radeg', 'decdeg', 'grating', 'cam_targ', 'grt_targ', 'filter', 'filter2', 'gain', 'rdnoise']).size().reset_index().rename( columns={0: 'count'}) for i in confs.index: spec_group = pifc[((pifc['slit'] == confs.iloc[i]['slit']) & (pifc['radeg'] == confs.iloc[i]['radeg']) & (pifc['decdeg'] == confs.iloc[i]['decdeg']) & (pifc['grating'] == confs.iloc[i]['grating']) & (pifc['cam_targ'] == confs.iloc[i]['cam_targ']) & (pifc['grt_targ'] == confs.iloc[i]['grt_targ']) & (pifc['filter'] == confs.iloc[i]['filter']) & (pifc['filter2'] == confs.iloc[i]['filter2']) & (pifc['gain'] == confs.iloc[i]['gain']) & (pifc['rdnoise'] == confs.iloc[i]['rdnoise']))] group_obstype = spec_group.obstype.unique() if any([value in ['COMP', 'ARC'] for value in group_obstype]) and \ len(group_obstype) == 1: log.debug('Adding COMP group') data_container.add_comp_group(comp_group=spec_group) elif any([value in ['OBJECT', 'SPECTRUM'] for value in group_obstype]) \ and len(group_obstype) == 1: log.debug('Adding OBJECT group') data_container.add_object_group(object_group=spec_group) else: log.debug('Adding OBJECT-COMP group') data_container.add_spec_group(spec_group=spec_group) return data_container def combine_data(image_list, dest_path, prefix=None, output_name=None, method="median", save=False): """Combine a list of :class:`~astropy.nddata.CCDData` instances. Args: image_list (list): Each element should be an instance of :class:`~astropy.nddata.CCDData` dest_path (str): Path to where the new image should saved prefix (str): Prefix to add to the image file name output_name (str): Alternatively a file name can be parsed, this will ignore `prefix`. method (str): Method for doing the combination, this goes straight to the call of `ccdproc.combine` function. save (bool): If True will save the combined images. If False it will ignore `prefix` or `output_name`. Returns: A combined image as a :class:`~astropy.nddata.CCDData` object. """ assert len(image_list) > 1 combined_full_path = os.path.join(dest_path, 'combined_file.fits') if output_name is not None: combined_full_path = os.path.join(dest_path, output_name) elif prefix is not None: sample_image_name = random.choice(image_list).header['GSP_FNAM'] splitted_name = sample_image_name.split('_') splitted_name[0] = re.sub('_', '', prefix) splitted_name[1] = 'comb' splitted_name[-1] = re.sub('.fits', '', splitted_name[-1]) combined_base_name = "_".join(splitted_name) number = len(glob.glob( os.path.join(dest_path, combined_base_name + "*.fits"))) combined_full_path = os.path.join( dest_path, combined_base_name + "_{:03d}.fits".format(number + 1)) # combine image combined_image = ccdproc.combine(image_list, method=method, sigma_clip=True, sigma_clip_low_thresh=1.0, sigma_clip_high_thresh=1.0, add_keyword=False) # add name of files used in the combination process for i in range(len(image_list)): image_name = image_list[i].header['GSP_FNAM'] new_image_name = '_' + image_name if os.path.isfile(os.path.join(dest_path, image_name)): write_fits(image_list[i], full_path=os.path.join(dest_path, new_image_name)) log.info("Deleting file {}".format(image_name)) os.unlink(os.path.join(dest_path, image_name)) else: log.error("File {} does not exists".format( os.path.join(dest_path, image_name))) combined_image.header.set("GSP_IC{:02d}".format(i + 1), value=new_image_name, comment='Image used to create combined') if save: write_fits(combined_image, full_path=combined_full_path, combined=True) log.info("Saved combined file to {}".format(combined_full_path)) return combined_image def convert_time(in_time): """Converts time to seconds since epoch Args: in_time (str): time obtained from header's keyword DATE-OBS Returns: time in seconds since epoch """ return calendar.timegm(time.strptime(in_time, "%Y-%m-%dT%H:%M:%S.%f")) def dcr_cosmicray_rejection(data_path, in_file, prefix, keep_cosmic_files=False, save=True): """Runs an external code for cosmic ray rejection DCR was created by <NAME> and the code can be obtained from http://users.camk.edu.pl/pych/DCR/ and is written in C. Contrary to ccdproc's LACosmic it actually applies the correction, and also doesn't update the mask attribute since it doesn't work with :class:`~astropy.nddata.CCDData` instances. The binary takes three positional arguments, they are: 1. input image, 2. output image and 3. cosmic rays image. Also it needs that a dcr.par file is located in the directory. All this is implemented in this function, if `delete` is True it will remove the original image and the cosmic rays image. The removal of the original image is absolutely safe when used in the context of the goodman pipeline, however if you want to implement it somewhere else, be careful. Notes: This function operates an external code therefore it doesn't return anything natively, instead it creates a new image. A workaround has been created that loads the new image and deletes the file. Args: data_path (str): Data location in_file (str): Name of the file to have its cosmic rays removed prefix (str): Prefix to add to the file with the cosmic rays removed keep_cosmic_files (bool): True for deleting the input and cosmic ray file. save (bool): Toggles the option of saving the image. """ log.info('Removing cosmic rays using DCR by <NAME>') log.debug('See http://users.camk.edu.pl/pych/DCR/') # add the prefix for the output file out_file = prefix + in_file # define the name for the cosmic rays file cosmic_file = 'cosmic_' + '_'.join(in_file.split('_')[1:]) # define full path for all the files involved full_path_in = os.path.join(data_path, in_file) full_path_out = os.path.join(data_path, out_file) full_path_cosmic = os.path.join(data_path, cosmic_file) # this is the command for running dcr, all arguments are required command = 'dcr {:s} {:s} {:s}'.format(full_path_in, full_path_out, full_path_cosmic) log.debug('DCR command:') log.debug(command) # get the current working directory to go back to it later in case the # the pipeline has not been called from the same data directory. cwd = os.getcwd() # move to the directory were the data is, dcr is expecting a file dcr.par os.chdir(data_path) # call dcr try: dcr = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError as error: log.error(error) sys.exit('Your system can not locate the executable file dcr, try ' 'moving it to /bin or create a symbolic link\n\n\tcd /bin\n\t' 'sudo ln -s /full/path/to/dcr') # return False # if the process is taking too long to respond, kill it # kill_process = lambda process: process.kill() def kill_process(process): # pragma: no cover log.error("DCR Timed out") process.kill() dcr_timer = Timer(10, kill_process, [dcr]) try: dcr_timer.start() stdout, stderr = dcr.communicate() finally: dcr_timer.cancel() # wait for dcr to terminate # dcr.wait() # go back to the original directory. Could be the same. os.chdir(cwd) # If no error stderr is an empty string if stderr != b'': log.error(stderr) if b'dcr: not found' in stderr: sys.exit('Your system can not locate the executable file dcr, try ' 'moving it to /bin or create a symbolic link\n\n\tcd ' '/bin\n\tsudo ln -s /full/path/to/dcr') elif b'ERROR' in stdout: for output_line in stdout.split(b'\n'): log.error(output_line.decode("utf-8")) else: for output_line in stdout.split(b'\n'): log.debug(output_line) # delete extra files only if the execution ended without error if not keep_cosmic_files and stderr == b'' and b'USAGE:' not in stdout \ and b'ERROR! calc_submean() failed' not in stdout: try: log.warning('Removing input file: {:s}'.format(full_path_in)) os.unlink(full_path_in) except OSError as error: log.error(error) try: log.warning( 'Removing cosmic rays file: {:s}'.format(full_path_cosmic)) os.unlink(full_path_cosmic) except OSError as error: log.error(error) # recovers the saved file and returns the :class:`~astropy.nddata.CCDData` # instance if os.path.isfile(full_path_out): ccd = ccdproc.CCDData.read(full_path_out, unit=u.adu) if not save: log.warning("Removing file because the attribute 'save' " "is set to False") os.unlink(full_path_out) return ccd def define_trim_section(sample_image, technique): """Get the initial trim section The initial trim section is usually defined in the header with the keyword ``TRIMSEC`` but in the case of Goodman HTS this does not work well. In particular for spectroscopy where is more likely to have combined binning and so on. Args: sample_image (str): Full path to sample image. technique (str): The name of the technique, the options are: Imaging or Spectroscopy. Returns: The trim section in the format ``[x1:x2, y1:y2]`` """ assert os.path.isabs(os.path.dirname(sample_image)) assert os.path.isfile(sample_image) trim_section = None # TODO (simon): Consider binning and possibly ROIs for trim section log.warning('Determining trim section. Assuming you have only one ' 'kind of data in this folder') ccd = read_fits(sample_image, technique=technique) # serial binning - dispersion binning # parallel binning - spatial binning spatial_length, dispersion_length = ccd.data.shape serial_binning, \ parallel_binning = [int(x) for x in ccd.header['CCDSUM'].split()] # Trim section is valid for Blue and Red Camera Binning 1x1 and # Spectroscopic ROI if technique == 'Spectroscopy': # left low_lim_spectral = int(np.ceil(51. / serial_binning)) # right high_lim_spectral = int(4110 / serial_binning) # bottom low_lim_spatial = 2 # top # t = int(1896 / parallel_binning) # TODO (simon): Need testing # trim_section = '[{:d}:{:d},{:d}:{:d}]'.format(l, r, b, t) trim_section = '[{:d}:{:d},{:d}:{:d}]'.format( low_lim_spectral, high_lim_spectral, low_lim_spatial, spatial_length) elif technique == 'Imaging': trim_section = ccd.header['TRIMSEC'] log.info('Trim Section: %s', trim_section) return trim_section def extraction(ccd, target_trace, spatial_profile, extraction_name): """Calls appropriate spectrum extraction routine This function calls the appropriate extraction function based on `extraction_name` Notes: Optimal extraction is not implemented. Args: ccd (CCDData): Instance of :class:`~astropy.nddata.CCDData` containing a 2D spectrum target_trace (object): Instance of astropy.modeling.Model, a low order polynomial that defines the trace of the spectrum in the ccd object. spatial_profile (Model): Instance of :class:`~astropy.modeling.Model`, a Gaussian model previously fitted to the spatial profile of the 2D spectrum contained in the ccd object. extraction_name (str): Extraction type, can be `fractional` or `optimal` though the optimal extraction is not implemented yet. Returns: ccd (CCDData): Instance of :class:`~astropy.nddata.CCDData` containing a 1D spectrum. The attribute 'data' is replaced by the 1D array resulted from the extraction process. Raises: NotImplementedError: When `extraction_name` is `optimal`. """ assert isinstance(ccd, ccdproc.CCDData) assert isinstance(target_trace, Model) if spatial_profile.__class__.name == 'Gaussian1D': target_fwhm = spatial_profile.fwhm elif spatial_profile.__class__.name == 'Moffat1D': target_fwhm = spatial_profile.fwhm else: raise NotImplementedError if extraction_name == 'fractional': extracted, background, bkg_info = extract_fractional_pixel( ccd=ccd, target_trace=target_trace, target_fwhm=target_fwhm, extraction_width=2) background_1, background_2 = bkg_info if background_1 is not None: log.info('Background extraction zone 1: {:s}'.format(background_1)) extracted.header.set('GSP_BKG1', value=background_1) else: log.info("Background extraction zone 1: 'none'") if background_2 is not None: log.info('Background extraction zone 2: {:s}'.format(background_2)) extracted.header.set('GSP_BKG2', value=background_2) else: log.info("Background extraction zone 2: 'none'") return extracted elif extraction_name == 'optimal': raise NotImplementedError def extract_fractional_pixel(ccd, target_trace, target_fwhm, extraction_width, background_spacing=3): """Performs an spectrum extraction using fractional pixels. Args: ccd (CCDData) Instance of :class:`~astropy.nddata.CCDData` that contains a 2D spectrum. target_trace (object): Instance of astropy.modeling.models.Model that defines the trace of the target on the image (ccd). target_fwhm (float): FWHM value for the spatial profile fitted to the target. extraction_width (int): Width of the extraction area as a function of `target_fwhm`. For instance if `extraction_with` is set to 1 the function extract 0.5 to each side from the center of the traced target. background_spacing (float): Number of `target_stddev` to separate the target extraction to the background. This is from the edge of the extraction zone to the edge of the background region. """ assert isinstance(ccd, ccdproc.CCDData) assert isinstance(target_trace, Model) log.info("Fractional Pixel Extraction for " "{:s}".format(ccd.header['GSP_FNAM'])) spat_length, disp_length = ccd.data.shape disp_axis = range(disp_length) trace_points = target_trace(disp_axis) apnum1 = None background_info_1 = None background_info_2 = None non_background_sub = [] extracted_spectrum = [] background_list = [] if ccd.header['OBSTYPE'] not in ['OBJECT', 'SPECTRUM']: log.debug("No background subtraction for OBSTYPE = " "{:s}".format(ccd.header['OBSTYPE'])) for i in disp_axis: # this defines the extraction limit for every column low_limit = trace_points[i] - 0.5 * extraction_width * target_fwhm high_limit = trace_points[i] + 0.5 * extraction_width * target_fwhm if apnum1 is None: # TODO (simon): add secondary targets apnum1 = '{:d} {:d} {:.2f} {:.2f}'.format(1, 1, low_limit, high_limit) ccd.header.set('APNUM1', value=apnum1, comment="Aperture in first column") ccd.header.set('GSP_EXTR', value="{:.2f}:{:.2f}".format(low_limit, high_limit)) log.info("Extraction aperture in first column: {:s}".format( ccd.header['GSP_EXTR'])) column_sum = fractional_sum(data=ccd.data, index=i, low_limit=low_limit, high_limit=high_limit) non_background_sub.append(column_sum) if ccd.header['OBSTYPE'] in ['OBJECT', 'SPECTRUM']: # background limits # background_spacing is the distance from the edge of the target's # limits defined by `int_low_limit` and # `int_high_limit` in stddev units background_width = high_limit - low_limit # define pixel values for background subtraction # low_background_zone high_1 = low_limit - background_spacing * target_fwhm low_1 = high_1 - background_width # High background zone low_2 = high_limit + background_spacing * target_fwhm high_2 = low_2 + background_width # validate background subtraction zones background_1 = None background_2 = None # this has to be implemented, leaving it True assumes there is no # restriction for background selection. # TODO (simon): Implement background subtraction zones validation neighbouring_target_condition = True if low_1 > 0 and neighbouring_target_condition: # integer limits background_1 = fractional_sum(data=ccd.data, index=i, low_limit=low_1, high_limit=high_1) else: log.error("Invalid Zone 1: [{}:{}]".format(low_1, high_1)) if high_2 < spat_length and neighbouring_target_condition: background_2 = fractional_sum(data=ccd.data, index=i, low_limit=low_2, high_limit=high_2) else: log.error("Invalid Zone 2: [{}:{}]".format(low_2, high_2)) # background = 0 if background_1 is not None and background_2 is None: background = background_1 if background_info_1 is None: background_info_1 = "{:.2f}:{:.2f} column {:d}".format( low_1, high_1, i+1) elif background_1 is None and background_2 is not None: background = background_2 if background_info_2 is None: background_info_2 = "{:.2f}:{:.2f} column {:d}".format( low_2, high_2, i+1) else: background = np.mean([background_1, background_2]) if background_info_1 is None: background_info_1 = "{:.2f}:{:.2f} column {:d}".format( low_1, high_1, i+1) if background_info_2 is None: background_info_2 = "{:.2f}:{:.2f} column {:d}".format( low_2, high_2, i+1) # actual background subtraction background_subtracted_column_sum = column_sum - background # append column value to list extracted_spectrum.append(background_subtracted_column_sum) background_list.append(background) else: extracted_spectrum.append(column_sum) new_ccd = ccd.copy() new_ccd.data = np.asarray(extracted_spectrum) log.warning("Setting mask to None, otherwise saving will fail.") new_ccd.mask = None if new_ccd.header['NAXIS'] != 1: for i in range(int(new_ccd.header['NAXIS']), 1, -1): new_ccd.header.remove(keyword="NAXIS{:d}".format(i)) new_ccd.header.set('NAXIS', value=1) return new_ccd, np.asarray(background_list), [background_info_1, background_info_2] def extract_optimal(): """Placeholder for optimal extraction method. Raises: NotImplementedError """ raise NotImplementedError def evaluate_wavelength_solution(clipped_differences): """Calculates Root Mean Square Error for the wavelength solution. Args: clipped_differences (ndarray): Numpy masked array of differences between reference line values in angstrom and the value calculated using the model of the wavelength solution. Returns: Root Mean Square Error, number of points and number of points rejected in the calculation of the wavelength solution. """ n_points = len(clipped_differences) n_rejections = np.ma.count_masked(clipped_differences) square_differences = [] for i in range(len(clipped_differences)): if clipped_differences[i] is not np.ma.masked: square_differences.append(clipped_differences[i] ** 2) rms_error = np.sqrt( np.sum(square_differences) / len(square_differences)) log.info('Wavelength solution RMS Error : {:.3f}'.format( rms_error)) return rms_error, n_points, n_rejections def fix_keywords(path, pattern='*.fits'): """Fix FITS uncompliance of some keywords Uses automatic header fixing by :class:`~astropy.nddata.CCDData`. Note that this only fixes FITS compliance. Args: path (str): Path to raw data pattern (str): Search pattern for listing file in path. """ file_list = glob.glob(os.path.join(path, pattern)) for _file in file_list: log.info("Fixing file {:s}".format(_file)) ccd = ccdproc.CCDData.read(_file, unit='adu') ccd.write(_file, overwrite=True) log.info("Fix succeeded!") def fractional_sum(data, index, low_limit, high_limit): """Performs a fractional pixels sum A fractional pixels sum is required several times while extracting a 1D spectrum from a 2D spectrum. The method is actually very simple. It requires the full data, the column and the range to sum, this range is given as real numbers. First it separates the limits values as an integer and fractional parts. Then it will sum the integer's interval and subtract the `low_limit`'s fractional part and sum the `high_limit`'s fractional part. The sum is performed in one operation. It does not do background subtraction, for which this very same method is used to get the background sum to be subtracted later. Args: data (numpy.ndarray): 2D array that contains the 2D spectrum/image index (int): Index of the column to be summed. low_limit (float): Lower limit for the range to be summed. high_limit (float): Higher limit for the range to be summed. Returns: Sum in ADU of all pixels and fractions between `low_limit` and `high_limit`. """ # these are the limits within the full amount of flux on each pixel is # summed low_fraction, low_integer = math.modf(low_limit) high_fraction, high_integer = math.modf(high_limit) column_sum = np.sum(data[int(low_integer):int(high_integer), index]) - \ data[int(low_integer), index] * low_fraction + \ data[int(high_integer), index] * high_fraction return column_sum def get_best_flat(flat_name, path): """Look for matching master flat Given a basename for master flats defined as a combination of key parameters extracted from the header of the image that we want to flat field, this function will find the name of the files that matches the base name and then will choose the first. Ideally this should go further as to check signal, time gap, etc. After it identifies the file it will load it using :class:`~astropy.nddata.CCDData` and return it along the filename. In the case it fails it will return None instead of master_flat and another None instead of master_flat_name. Args: flat_name (str): Full path of master flat basename. Ends in '*.fits' for using glob. path (str): Location to look for flats. Returns: master_flat (object): A :class:`~astropy.nddata.CCDData` instance. master_flat_name (str): Full path to the chosen master flat. """ flat_list = glob.glob(os.path.join(path, flat_name)) log.debug('Flat base name {:s}'.format(flat_name)) log.debug('Matching master flats found: {:d}'.format(len(flat_list))) if len(flat_list) > 0: master_flat_name = flat_list[0] # if len(flat_list) == 1: # master_flat_name = flat_list[0] # else: # master_flat_name = flat_list[0] # elif any('dome' in flat for flat in flat_list): # master_flat_name = master_flat = ccdproc.CCDData.read(master_flat_name, unit=u.adu) log.debug('Found suitable master flat: {:s}'.format(master_flat_name)) return master_flat, master_flat_name else: log.error('There is no flat available') return None, None def get_central_wavelength(grating, grt_ang, cam_ang): """Calculates the central wavelength for a given spectroscopic mode The equation used to calculate the central wavelength is the following .. math:: \\lambda_{central} = \\frac{1e6}{GRAT} \\sin\\left(\\frac{\\alpha \\pi}{180}\\right) + \\sin\\left(\\frac{\\beta \\pi}{180}\\right) Args: grating (str): Grating frequency as a string. Example '400'. grt_ang (str): Grating Angle as a string. Example '12.0'. cam_ang (str): Camera Angle as a string. Example '20.0' Returns: central_wavelength (float): Central wavelength as a float value. """ grating_frequency = float(grating) / u.mm grt_ang = float(grt_ang) * u.deg cam_ang = float(cam_ang) * u.deg alpha = grt_ang.to(u.rad) beta = cam_ang.to(u.rad) - grt_ang.to(u.rad) # central_wavelength = (1e6 / grating_frequency) * \ # (np.sin(alpha * np.pi / 180.) + # np.sin(beta * np.pi / 180.)) central_wavelength = (np.sin(alpha) + np.sin(beta)) / grating_frequency central_wavelength = central_wavelength.to(u.angstrom) log.debug('Found {:.3f} as central wavelength'.format(central_wavelength)) return central_wavelength def get_lines_in_lamp(ccd, plots=False): """Identify peaks in a lamp spectrum Uses `signal.argrelmax` to find peaks in a spectrum i.e emission lines, then it calls the recenter_lines method that will recenter them using a "center of mass", because, not always the maximum value (peak) is the center of the line. Args: ccd (CCDData): Lamp `ccdproc.CCDData` instance. plots (bool): Wether to plot or not. Returns: lines_candidates (list): A common list containing pixel values at approximate location of lines. """ if isinstance(ccd, ccdproc.CCDData): lamp_data = ccd.data lamp_header = ccd.header raw_pixel_axis = range(len(lamp_data)) else: log.error('Error receiving lamp') return None no_nan_lamp_data = np.asarray(np.nan_to_num(lamp_data)) filtered_data = np.where( np.abs(no_nan_lamp_data > no_nan_lamp_data.min() + 0.03 * no_nan_lamp_data.max()), no_nan_lamp_data, None) # replace None to zero and convert it to an array none_to_zero = [0 if it is None else it for it in filtered_data] filtered_data = np.array(none_to_zero) _upper_limit = no_nan_lamp_data.min() + 0.03 * no_nan_lamp_data.max() slit_size = np.float64(re.sub('[a-zA-Z"_*]', '', lamp_header['slit'])) serial_binning, parallel_binning = [ int(x) for x in lamp_header['CCDSUM'].split()] new_order = int(round(float(slit_size) / (0.15 * serial_binning))) log.debug('New Order: {:d}'.format(new_order)) peaks = signal.argrelmax(filtered_data, axis=0, order=new_order)[0] if slit_size >= 5.: lines_center = recenter_broad_lines( lamp_data=no_nan_lamp_data, lines=peaks, order=new_order) else: # lines_center = peaks lines_center = recenter_lines(no_nan_lamp_data, peaks) if plots: # pragma: no cover plt.close('all') fig, ax = plt.subplots() fig.canvas.set_window_title('Lines Detected') mng = plt.get_current_fig_manager() mng.window.showMaximized() ax.set_title('Lines detected in Lamp\n' '{:s}'.format(lamp_header['OBJECT'])) ax.set_xlabel('Pixel Axis') ax.set_ylabel('Intensity (counts)') # Build legends without data to avoid repetitions ax.plot([], color='k', label='Comparison Lamp Data') ax.plot([], color='k', linestyle=':', label='Spectral Line Detected') ax.axhline(_upper_limit, color='r') for line in peaks: ax.axvline(line, color='k', linestyle=':') ax.plot(raw_pixel_axis, no_nan_lamp_data, color='k') ax.legend(loc='best') plt.tight_layout() plt.show() return lines_center def get_overscan_region(sample_image, technique): """Get the right overscan region for spectroscopy It works for the following ROI: Spectroscopic 1x1 Spectroscopic 2x2 Spectroscopic 3x3 The limits where measured on a Spectroscopic 1x1 image and then divided by the binning size. This was checked that it actually works as expected. Notes: The regions are 1-based i.e. different to Python convention. For Imaging there is no overscan region. Args: sample_image (str): Full path to randomly chosen image. technique (str): Observing technique, either `Spectroscopy` or `Imaging` Returns: overscan_region (str) Region for overscan in the format '[min:max,:]' where min is the starting point and max is the end point of the overscan region. """ assert os.path.isabs(os.path.dirname(sample_image)) assert os.path.isfile(sample_image) log.debug('Overscan Sample File ' + sample_image) ccd = ccdproc.CCDData.read(sample_image, unit=u.adu) # Image height - spatial direction spatial_length, dispersion_length = ccd.data.shape # Image width - spectral direction # w = ccd.data.shape[1] # Take the binnings serial_binning, parallel_binning = \ [int(x) for x in ccd.header['CCDSUM'].split()] if technique == 'Spectroscopy': log.info('Overscan regions has been tested for ROI ' 'Spectroscopic 1x1, 2x2 and 3x3') # define l r b and t to avoid local variable might be # defined before assignment warning low_lim_spectral, \ high_lim_spectral, \ low_lim_spatial, \ high_lim_spatial = [None] * 4 if ccd.header['INSTCONF'] == 'Red': # for red camera it is necessary to eliminate the first # rows/columns (depends on the point of view) because # they come with an abnormal high signal. Usually the # first 5 pixels. In order to find the corresponding # value for the subsequent binning divide by the # binning size. # The numbers 6 and 49 where obtained from visual # inspection # left low_lim_spectral = int(np.ceil(6. / serial_binning)) # right high_lim_spectral = int(49. / serial_binning) # bottom low_lim_spatial = 1 # top high_lim_spatial = spatial_length elif ccd.header['INSTCONF'] == 'Blue': # 16 is the length of the overscan region with no # binning. # left low_lim_spectral = 1 # right high_lim_spectral = int(16. / serial_binning) # bottom low_lim_spatial = 1 # top high_lim_spatial = spatial_length overscan_region = '[{:d}:{:d},{:d}:{:d}]'.format( low_lim_spectral, high_lim_spectral, low_lim_spatial, high_lim_spatial) elif technique == 'Imaging': log.warning("Imaging mode doesn't have overscan " "region. Use bias instead.") overscan_region = None else: overscan_region = None log.info('Overscan Region: %s', overscan_region) return overscan_region def get_slit_trim_section(master_flat, debug_plots=False): """Find the slit edges to trim all data Using a master flat, ideally with good signal to noise ratio, this function will identify the edges of the slit projected into the detector. Having this done will allow to reduce the overall processing time and also reduce the introduction of artifacts due to non-illuminated regions in the detectors, such as NaNs -INF +INF, etc. Args: master_flat (CCDData): A :class:`~astropy.nddata.CCDData` instance. debug_plots (bool): Flag to show debugging plots Returns: slit_trim_section (str): Trim section in spatial direction in the format [:,slit_lower_limit:slit_higher_limit] """ x, y = master_flat.data.shape # Using the middle point to make calculations, usually flats have good # illumination already at the middle. middle = int(y / 2.) ccd_section = master_flat.data[:, middle:middle + 200] ccd_section_median = np.median(ccd_section, axis=1) spatial_axis = range(len(ccd_section_median)) # set values for initial box model definition box_max = np.max(ccd_section_median) box_center = len(ccd_section_median) / 2. box_width = .75 * len(ccd_section_median) # box model definition box_model = models.Box1D(amplitude=box_max, x_0=box_center, width=box_width) box_fitter = fitting.SimplexLSQFitter() fitted_box = box_fitter(box_model, spatial_axis, ccd_section_median) # the number of pixels that will be removed from the detected edge of the # image on each side offset = 10 if fitted_box.width.value < x: log.debug("Slit detected. Adding a 10 pixels offset") else: log.debug("Slit limits not detected. Setting additional " "offset to 0") offset = 0 # Here we force the slit limits within the boundaries of the data (image) # this defines a preliminary set of slit limit l_lim = 1 + fitted_box.x_0.value - 0.5 * fitted_box.width.value + offset h_lim = 1 + fitted_box.x_0.value + 0.5 * fitted_box.width.value - offset low_lim = int(np.max([1 + offset, l_lim + 1])) high_lim = int(np.min([h_lim, len(ccd_section_median) - offset])) # define the slit trim section as (IRAF) # convert o 1-based slit_trim_section = '[1:{:d},{:d}:{:d}]'.format(y, low_lim, high_lim) log.debug("Slit Trim Section: {:s}".format(slit_trim_section)) # debugging plots that have to be manually turned on if debug_plots: # pragma: no cover manager = plt.get_current_fig_manager() manager.window.showMaximized() plt.title('Slit Edge Detection') plt.plot(box_model(spatial_axis), color='c', label='Initial Box1D') plt.plot(fitted_box(spatial_axis), color='k', label='Fitted Box1D') plt.plot(ccd_section_median, label='Median Along Disp.') # plt.plot(pseudo_derivative, color='g', label='Pseudo Derivative') # plt.axvline(None, color='r', label='Detected Edges') # -1 to make it zero-based. plt.axvline(low_lim - 1, color='r', label='Detected Edges') plt.axvline(high_lim - 1, color='r') # for peak in peaks: # plt.axvline(peak, color='r') plt.legend(loc='best') plt.show() return slit_trim_section def get_spectral_characteristics(ccd, pixel_size, instrument_focal_length): """Calculates some Goodman's specific spectroscopic values. From the header value for Grating, Grating Angle and Camera Angle it is possible to estimate what are the wavelength values at the edges as well as in the center. It was necessary to add offsets though, since the formulas provided are slightly off. The values are only an estimate. Args: ccd (CCDData): Lamp `ccdproc.CCDData` instance pixel_size (float): Pixel size in microns instrument_focal_length (float): Instrument focal length Returns: spectral_characteristics (dict): Contains the following parameters: center: Center Wavelength blue: Blue limit in Angstrom red: Red limit in Angstrom alpha: Angle beta: Angle pix1: Pixel One pix2: Pixel Two """ # TODO (simon): find a definite solution for this, this only work # TODO (simon): (a little) for one configuration blue_correction_factor = -50 * u.angstrom red_correction_factor = -37 * u.angstrom grating_frequency = float(re.sub('[A-Za-z_-]', '', ccd.header['GRATING'])) / u.mm grating_angle = float(ccd.header['GRT_ANG']) * u.deg camera_angle = float(ccd.header['CAM_ANG']) * u.deg # serial binning - dispersion binning # parallel binning - spatial binning serial_binning, parallel_binning = [ int(x) for x in ccd.header['CCDSUM'].split()] pixel_count = len(ccd.data) # Calculations # TODO (simon): Check whether is necessary to remove the # TODO (simon): slit_offset variable alpha = grating_angle.to(u.rad) beta = camera_angle.to(u.rad) - grating_angle.to(u.rad) center_wavelength = (np.sin(alpha) + np.sin(beta)) / grating_frequency limit_angle = np.arctan(pixel_count * ((pixel_size * serial_binning) / instrument_focal_length) / 2) blue_limit = ((np.sin(alpha) + np.sin(beta - limit_angle.to(u.rad))) / grating_frequency).to(u.angstrom) + blue_correction_factor red_limit = ((np.sin(alpha) + np.sin(beta + limit_angle.to(u.rad))) / grating_frequency).to(u.angstrom) + red_correction_factor pixel_one = 0 pixel_two = 0 log.debug( 'Center Wavelength : {:.3f} Blue Limit : ' '{:.3f} Red Limit : {:.3f} '.format(center_wavelength.to(u.angstrom), blue_limit, red_limit)) spectral_characteristics = {'center': center_wavelength, 'blue': blue_limit, 'red': red_limit, 'alpha': alpha, 'beta': beta, 'pix1': pixel_one, 'pix2': pixel_two} return spectral_characteristics def get_twilight_time(date_obs): """Get end/start time of evening/morning twilight Notes: Taken from <NAME>'s development Args: date_obs (list): List of all the dates from data. Returns: twilight_evening (str): Evening twilight time in the format 'YYYY-MM-DDTHH:MM:SS.SS' twilight_morning (str): Morning twilight time in the format 'YYYY-MM-DDTHH:MM:SS.SS' sun_set_time (str): Sun set time in the format 'YYYY-MM-DDTHH:MM:SS.SS' sun_rise_time (str): Sun rise time in the format 'YYYY-MM-DDTHH:MM:SS.SS' """ # observatory(str): Observatory name. observatory = 'SOAR Telescope' geodetic_location = ['-70d44m01.11s', '-30d14m16.41s', 2748] # longitude (str): Geographic longitude in string format longitude = geodetic_location[0] # latitude (str): Geographic latitude in string format. latitude = geodetic_location[1] # elevation (int): Geographic elevation in meters above sea level elevation = geodetic_location[2] # timezone (str): Time zone. timezone = 'UTC' # description(str): Observatory description description = 'Soar Telescope on Cerro Pachon, Chile' soar_loc = EarthLocation.from_geodetic(longitude, latitude, elevation * u.m, ellipsoid='WGS84') soar = Observer(name=observatory, location=soar_loc, timezone=timezone, description=description) time_first_frame, time_last_frame = Time(min(date_obs)), Time( max(date_obs)) twilight_evening = soar.twilight_evening_astronomical( Time(time_first_frame), which='nearest').isot twilight_morning = soar.twilight_morning_astronomical( Time(time_last_frame), which='nearest').isot sun_set_time = soar.sun_set_time( Time(time_first_frame), which='nearest').isot sun_rise_time = soar.sun_rise_time( Time(time_last_frame), which='nearest').isot log.debug('Sun Set ' + sun_set_time) log.debug('Sun Rise ' + sun_rise_time) return (twilight_evening, twilight_morning, sun_set_time, sun_rise_time) def identify_targets(ccd, fit_model, background_threshold, nfind=3, profile_min_width=None, profile_max_width=None, plots=False): """Identify Spectroscopic Targets Wrapper to the class `IdentifySpectroscopicTargets`. Args: ccd (CCDData): Image containing spectra fit_model (str): Name of the model to be fitted `moffat` or `gaussian`. background_threshold (int): Number of background levels for target discrimination. nfind (int): Maximum number of targets passing the background threshold to be returned, they are order from most intense peak to least intense. profile_min_width (float): Minimum FWHM (moffat) or STDDEV (gaussian) for spatial profile model. profile_max_width (float): Maximum FWHM (moffat) or STDDEV (gaussian) for spatial profile model. plots (bool): Flat for plotting results. Returns: identified_targets (list): List of models successfully fitted. """ identify = IdentifySpectroscopicTargets() identified_targets = identify(ccd=ccd, nfind=nfind, background_threshold=background_threshold, model_name=fit_model, profile_min_width=profile_min_width, profile_max_width=profile_max_width, plots=plots) return identified_targets def identify_technique(target, obstype, slit, grating, wavmode, roi): """Identify whether is Imaging or Spectroscopic data Args: target (str): Target name as in the keyword `OBJECT` this is useful in Automated aquisition mode, such as AEON. obstype (str): Observation type as in `OBSTYPE` slit (str): Value of `SLIT` keyword. grating (str): Value of `GRATING` keyword. wavmode (str): Value of `WAVMODE` keyword. roi (str): Value of `ROI` keyword. Returns: Observing technique as a string. Either `Imaging` or `Spectroscopy`. """ if 'Spectroscopic' in roi or \ obstype in ['ARC', 'SPECTRUM', 'COMP'] or \ slit not in ['NO_MASK', '<NO MASK>'] or \ grating not in ['NO_GRATING', '<NO GRATING>'] or \ '_SP_' in target: technique = 'Spectroscopy' elif 'Imaging' in roi or \ obstype in ['EXPOSE'] or\ wavmode == 'IMAGING' or '_IM_' in target: technique = 'Imaging' else: technique = 'Unknown' return technique def image_overscan(ccd, overscan_region, add_keyword=False): """Apply overscan correction to data Uses ccdproc.subtract_overscan to perform the task. Notes: The overscan_region argument uses FITS convention, just like IRAF, therefore is 1 based. i.e. it starts in 1 not 0. Args: ccd (CCDData) A :class:`~astropy.nddata.CCDData` instance to be overscan corrected. overscan_region (str): The overscan region in the format `[x1:x2,y1:y2]` where x is the spectral axis and y is the spatial axis. add_keyword (bool): Tells ccdproc whether to add a keyword or not. Default False. Returns: ccd (CCDData) Overscan corrected :class:`~astropy.nddata.CCDData` instance """ if overscan_region is not None: log.debug( 'Applying overscan Correction: {:s}'.format(overscan_region)) ccd = ccdproc.subtract_overscan(ccd=ccd, median=True, fits_section=overscan_region, add_keyword=add_keyword) ccd.header['GSP_OVER'] = (overscan_region, 'Overscan region') else: log.debug("Overscan region is None, returning the original data.") # ccd.header['GSP_OVER'] = ('none', 'Overscan region') return ccd def image_trim(ccd, trim_section, trim_type='trimsec', add_keyword=False): """Trim image to a given section Notes: The overscan_region argument uses FITS convention, just like IRAF, therefore is 1 based. i.e. it starts in 1 not 0. Args: ccd (CCDData) A :class:`~astropy.nddata.CCDData` instance. trim_section (str): The trimming section in the format `[x1:x2,y1:y2]` where x is the spectral axis and y is the spatial axis. trim_type (str): trimsec or slit trim. add_keyword (bool): Tells ccdproc whether to add a keyword or not. Default False. Returns: ccd (CCDData) Trimmed :class:`~astropy.nddata.CCDData` instance """ if trim_section is not None: ccd = ccdproc.trim_image(ccd=ccd, fits_section=trim_section, add_keyword=add_keyword) if trim_type == 'trimsec': ccd.header['GSP_TRIM'] = (trim_section, 'Trim section from TRIMSEC') elif trim_type == 'slit': ccd.header['GSP_SLIT'] = (trim_section, 'Slit trim section, slit illuminated ' 'area only.') else: log.warning('Unrecognized trim type: {}'.format(trim_type)) ccd.header['GSP_TRIM'] = (trim_section, 'Image trimmed by unrecognized method: ' '{:s}'.format(trim_type)) else: log.info("{:s} trim section is not " "defined.".format(trim_type.capitalize())) log.debug("Trim section is None, returning the same data.") return ccd def interpolate_spectrum(spectrum, interpolation_size): """Creates an interpolated version of the input spectrum This method creates an interpolated version of the input array, it is used mainly for a spectrum but it can also be used with any unidimensional array. The reason for doing interpolation is that it allows to find the lines and its respective center more precisely. Args: spectrum (array): an uncalibrated spectrum or any unidimensional array. interpolation_size (int): Number of points to interpolate. (points added between two existing ones) Returns: Two dimensional array containing x-axis and interpolated array. The x-axis preserves original pixel values. """ x_axis = range(spectrum.size) first_x = x_axis[0] last_x = x_axis[-1] new_x_axis = np.linspace(first_x, last_x, spectrum.size * interpolation_size) tck = interpolate.splrep(x_axis, spectrum, s=0) new_spectrum = interpolate.splev(new_x_axis, tck, der=0) return [new_x_axis, new_spectrum] def is_file_saturated(ccd, threshold): """Detects a saturated image It counts the number of pixels above the saturation_threshold level, then finds which percentage they represents and if it is above the threshold it will return True. The percentage threshold can be set using the command line argument ``--saturation_threshold``. Args: ccd (CCDData): Image to be tested for saturation_threshold threshold (float): Percentage of saturated pixels allowed. Default 1. Returns: True for saturated and False for non-saturated """ saturation_values = SaturationValues() pixels_above_saturation = np.count_nonzero( ccd.data[np.where( ccd.data > saturation_values.get_saturation_value( ccd=ccd))]) total_pixels = np.count_nonzero(ccd.data) saturated_percent = (pixels_above_saturation * 100.) / total_pixels if saturated_percent >= float(threshold): log.warning( "The current image has more than {:.2f} percent " "of pixels above saturation_threshold level".format(float(threshold))) return True else: return False def linearize_spectrum(data, wavelength_solution, plots=False): """Produces a linearized version of the spectrum Storing wavelength solutions in a FITS header is not simple at all for non-linear solutions therefore is easier for the final user and for the development code to have the spectrum linearized. It first finds a spline representation of the data, then creates a linear wavelength axis (angstrom) and finally it resamples the data from the spline representation to the linear wavelength axis. It also applies a median filter of kernel size three to smooth the linearized spectrum. Sometimes the splines produce funny things when the original data is too steep. Args: data (Array): The non-linear spectrum wavelength_solution (object): Mathematical model representing the wavelength solution. plots (bool): Whether to show the plots or not. Returns: linear_data (list): Contains two elements: Linear wavelength axis and the smoothed linearized data itself. """ pixel_axis = range(len(data)) if any(np.isnan(data)): log.error("there are nans") sys.exit(0) if wavelength_solution is not None: x_axis = wavelength_solution(pixel_axis) try: # pragma: no cover plt.imshow(data) plt.show() except TypeError: pass new_x_axis = np.linspace(x_axis[0], x_axis[-1], len(data)) tck = interpolate.splrep(x_axis, data, s=0) linearized_data = interpolate.splev(new_x_axis, tck, der=0) smoothed_linearized_data = signal.medfilt(linearized_data) if plots: # pragma: no cover fig6 = plt.figure(6) plt.xlabel('Wavelength (Angstrom)') plt.ylabel('Intensity (Counts)') fig6.canvas.set_window_title('Linearized Data') plt.plot(x_axis, data, color='k', label='Data') plt.plot(new_x_axis, linearized_data, color='r', linestyle=':', label='Linearized Data') plt.plot(new_x_axis, smoothed_linearized_data, color='m', alpha=0.5, label='Smoothed Linearized Data') fig6.tight_layout() plt.legend(loc=3) plt.show() fig7 = plt.figure(7) plt.xlabel('Pixels') plt.ylabel('Angstroms') fig7.canvas.set_window_title('Wavelength Solution') plt.plot(x_axis, color='b', label='Non linear wavelength-axis') plt.plot(new_x_axis, color='r', label='Linear wavelength-axis') fig7.tight_layout() plt.legend(loc=3) plt.show() linear_data = [new_x_axis, smoothed_linearized_data] return linear_data def name_master_flats(header, technique, reduced_data, sun_set, sun_rise, evening_twilight, morning_twilight, target_name='', get=False): """Defines the name of a master flat or what master flat is compatible with a given data Given the header of a flat image this method will look for certain keywords that are unique to a given instrument configuration therefore they are used to discriminate compatibility. It can be used to define a master flat's name when creating it or find a base name to match existing master flat files thus finding a compatible one for a given non-flat image. Args: header (object): Fits header. Instance of :class:`~astropy.io.fits.header.Header` technique (str): Observing technique, either Spectroscopy or Imaging. reduced_data (str): Full path to reduced data directory sun_set (str): Sunset time formatted as "%Y-%m-%dT%H:%M:%S.%f" sun_rise (str): Sunrise time formatted as "%Y-%m-%dT%H:%M:%S.%f" evening_twilight (str): End of evening twilight formatted as "%Y-%m-%dT%H:%M:%S.%f" morning_twilight (str): Start of morning twilight in the format "%Y-%m-%dT%H:%M:%S.%f" target_name (str): Optional science target name to be added to the master flat name. get (bool): This option is used when trying to find a suitable master flat for a given data. Returns: A master flat name, or basename to find a match among existing files. """ master_flat_name = os.path.join(reduced_data, 'master_flat') sunset = datetime.datetime.strptime(sun_set, "%Y-%m-%dT%H:%M:%S.%f") sunrise = datetime.datetime.strptime(sun_rise, "%Y-%m-%dT%H:%M:%S.%f") afternoon_twilight = datetime.datetime.strptime(evening_twilight, "%Y-%m-%dT%H:%M:%S.%f") morning_twilight = datetime.datetime.strptime(morning_twilight, "%Y-%m-%dT%H:%M:%S.%f") date_obs = datetime.datetime.strptime(header['DATE-OBS'], "%Y-%m-%dT%H:%M:%S.%f") if target_name != '': target_name = '_' + target_name if not get: # TODO (simon): There must be a pythonic way to do this if afternoon_twilight < date_obs < morning_twilight: dome_sky = '_night' elif (sunset < date_obs < afternoon_twilight) or \ (morning_twilight < date_obs < sunrise): dome_sky = '_sky' else: dome_sky = '_dome' else: dome_sky = '*' if technique == 'Spectroscopy': if header['GRATING'] != '<NO GRATING>': flat_grating = '_' + re.sub('[A-Za-z_ ]', '', header['GRATING']) # self.spec_mode is an instance of SpectroscopicMode spectroscopic_mode = SpectroscopicMode() wavmode = spectroscopic_mode(header=header) else: flat_grating = '_no_grating' wavmode = '' flat_slit = re.sub('[A-Za-z_ ]', '', header['SLIT']) filter2 = header['FILTER2'] if filter2 == '<NO FILTER>': filter2 = '' else: filter2 = '_' + filter2 master_flat_name += target_name \ + flat_grating \ + wavmode \ + filter2 \ + '_' \ + flat_slit \ + dome_sky \ + '.fits' elif technique == 'Imaging': if header['FILTER'] != 'NO_FILTER': flat_filter = header['FILTER'] elif header['FILTER2'] != 'NO_FILTER': flat_filter = header['FILTER2'] else: flat_filter = "NO_FILTER" flat_filter = re.sub('[- ]', '_', flat_filter) flat_filter = re.sub('[<> ]', '', flat_filter) master_flat_name += '_' + flat_filter + dome_sky + '.fits' return master_flat_name def normalize_master_flat(master, name, method='simple', order=15): """Master flat normalization method This function normalize a master flat in three possible ways: *mean*: simply divide the data by its mean *simple*: Calculates the median along the spatial axis in order to obtain the dispersion profile. Then fits a :class:`~astropy.modeling.polynomial.Chebyshev1D` model and apply this to all the data. *full*: This is for experimental purposes only because it takes a lot of time to process. It will fit a model to each line along the dispersion axis and then divide it by the fitted model. I do not recommend this method unless you have a good reason as well as a very powerful computer. Args: master (CCDData): Master flat. Has to be a :class:`~astropy.nddata.CCDData` instance. name (str): Full path of master flat prior to normalization. method (str): Normalization method, 'mean', 'simple' or 'full'. order (int): Order of the polynomial to be fitted. Returns: master (CCDData): The normalized master flat. :class:`~astropy.nddata.CCDData` instance. """ assert isinstance(master, ccdproc.CCDData) master = master.copy() # define new name, base path and full new name new_name = 'norm_' + os.path.basename(name) path = os.path.dirname(name) norm_name = os.path.join(path, new_name) if method == 'mean': log.debug('Normalizing by mean') master.data /= master.data.mean() master.header['GSP_NORM'] = ('mean', 'Flat normalization method') elif method == 'simple' or method == 'full': log.debug('Normalizing flat by {:s} model'.format(method)) # Initialize Fitting models and fitter model_init = models.Chebyshev1D(degree=order) model_fitter = fitting.LevMarLSQFitter() # get data shape x_size, y_size = master.data.shape x_axis = range(y_size) if method == 'simple': # get profile along dispersion axis to fit a model to use for # normalization profile = np.median(master.data, axis=0) # do the actual fit fit = model_fitter(model_init, x_axis, profile) # convert fit into an array fit_array = fit(x_axis) # pythonic way to divide an array by a vector master.data = master.data / fit_array[None, :] # master.header.add_history('Flat Normalized by simple model') master.header['GSP_NORM'] = ('simple', 'Flat normalization method') elif method == 'full': log.warning('This part of the code was left here for ' 'experimental purposes only') log.warning('This procedure takes a lot to process, you might ' 'want to see other method such as "simple" or ' '"mean".') for i in range(x_size): fit = model_fitter(model_init, x_axis, master.data[i]) master.data[i] = master.data[i] / fit(x_axis) master.header['GSP_NORM'] = ('full', 'Flat normalization method') # write normalized flat to a file write_fits(ccd=master, full_path=norm_name, parent_file=name) return master, norm_name def ra_dec_to_deg(right_ascension, declination): """Converts right ascension and declination to degrees Args: right_ascension (str): Right ascension in the format hh:mm:ss.sss declination (str): Declination in the format dd:mm:ss.sss Returns: right_ascension_deg (float): Right ascension in degrees declination_deg (float): Declination in degrees """ right_ascension = right_ascension.split(":") declination = declination.split(":") # RIGHT ASCENSION conversion right_ascension_deg = (float(right_ascension[0]) + (float(right_ascension[1]) + (float(right_ascension[2]) / 60.)) / 60.) * \ (360. / 24.) # DECLINATION conversion if float(declination[0]) == abs(float(declination[0])): sign = 1 else: sign = -1 declination_deg = sign * (abs(float(declination[0])) + (float(declination[1]) + (float(declination[2]) / 60.)) / 60.) return right_ascension_deg, declination_deg def read_fits(full_path, technique='Unknown'): """Read fits files while adding important information to the header It is necessary to record certain data to the image header so that's the reason for this wrapper of :meth:`~astropy.nddata.CCDData.read` to exist. It will add the following keywords. In most cases, if the keyword already exist it will skip it except for `GSP_FNAM`, `GSP_PATH` and `BUNIT`. GSP_VERS: Goodman Spectroscopic Pipeline version number GSP_ONAM: Original File name GSP_PNAM: Parent file name or name of the file from which this one originated after some process or just a copy. GSP_FNAM: Current file name. GSP_PATH: Path to file at the moment of reading. GSP_TECH: Observing technique. `Spectroscopy` or `Imaging`. GSP_DATE: Date of first reading. GSP_OVER: Overscan region. GSP_TRIM: Trim section (region). GSP_SLIT: Slit trim section, obtained from the slit illuminated area. GSP_BIAS: Master bias image used. Default `none`. GSP_FLAT: Master flat image used. Default `none`. GSP_SCTR: Science target file GSP_NORM: Flat normalization method. GSP_COSM: Cosmic ray rejection method. GSP_EXTR: Extraction window at first column GSP_BKG1: First background extraction zone GSP_BKG2: Second background extraction zone GSP_WRMS: Wavelength solution RMS Error. GSP_WPOI: Number of points used to calculate the wavelength solution Error. GSP_WREJ: Number of points rejected. Args: full_path (str): Full path to file. technique (str): Observing technique. 'Imaging' or 'Spectroscopy'. Returns: Instance of :class:`~astropy.nddata.CCDData` corresponding to the file from `full_path`. """ assert os.path.isfile(full_path) ccd = ccdproc.CCDData.read(full_path, unit=u.adu) all_keys = [key for key in ccd.header.keys()] ccd.header.set('GSP_VERS', value=__version__, comment='Goodman Spectroscopic Pipeline Version') if 'GSP_ONAM' not in all_keys: ccd.header.set('GSP_ONAM', value=os.path.basename(full_path), comment='Original file name') if 'GSP_PNAM' not in all_keys: ccd.header.set('GSP_PNAM', value=os.path.basename(full_path), comment='Parent file name') ccd.header.set('GSP_FNAM', value=os.path.basename(full_path), comment='Current file name') ccd.header.set('GSP_PATH', value=os.path.dirname(full_path), comment='Location at moment of reduce') if 'GSP_TECH' not in all_keys: ccd.header.set('GSP_TECH', value=technique, comment='Observing technique') if 'GSP_DATE' not in all_keys: ccd.header.set('GSP_DATE', value=time.strftime("%Y-%m-%d"), comment='Processing date') if 'GSP_OVER' not in all_keys: ccd.header.set('GSP_OVER', value='none', comment='Overscan region') if 'GSP_TRIM' not in all_keys: ccd.header.set('GSP_TRIM', value='none', comment='Trim section') if 'GSP_SLIT' not in all_keys: ccd.header.set('GSP_SLIT', value='none', comment='Slit trim section, slit illuminated area only') if 'GSP_BIAS' not in all_keys: ccd.header.set('GSP_BIAS', value='none', comment='Master bias image') if 'GSP_FLAT' not in all_keys: ccd.header.set('GSP_FLAT', value='none', comment='Master flat image') if 'GSP_NORM' not in all_keys: ccd.header.set('GSP_NORM', value='none', comment='Flat normalization method') if 'GSP_COSM' not in all_keys: ccd.header.set('GSP_COSM', value='none', comment='Cosmic ray rejection method') if 'GSP_TMOD' not in all_keys: ccd.header.set('GSP_TMOD', value='none', comment='Model name used to fit trace') if 'GSP_EXTR' not in all_keys: ccd.header.set('GSP_EXTR', value='none', comment='Extraction window at first column') if 'GSP_BKG1' not in all_keys: ccd.header.set('GSP_BKG1', value='none', comment='First background extraction zone') if 'GSP_BKG2' not in all_keys: ccd.header.set('GSP_BKG2', value='none', comment='Second background extraction zone') if 'GSP_WRMS' not in all_keys: ccd.header.set('GSP_WRMS', value='none', comment='Wavelength solution RMS Error') if 'GSP_WPOI' not in all_keys: ccd.header.set('GSP_WPOI', value='none', comment='Number of points used to ' 'calculate wavelength solution') if 'GSP_WREJ' not in all_keys: ccd.header.set('GSP_WREJ', value='none', comment='Number of points rejected') if '' not in all_keys: ccd.header.add_blank('-- Goodman Spectroscopic Pipeline --', before='GSP_VERS') ccd.header.add_blank('-- GSP END --', after='GSP_WREJ') ccd.header.set('BUNIT', after='CCDSUM') return ccd def recenter_broad_lines(lamp_data, lines, order): """Recenter broad lines Notes: This method is used to recenter broad lines only, there is a special method for dealing with narrower lines. Args: lamp_data (ndarray): numpy.ndarray instance. It contains the lamp data. lines (list): A line list in pixel values. order (float): A rough estimate of the FWHM of the lines in pixels in the data. It is calculated using the slit size divided by the pixel scale multiplied by the binning. Returns: A list containing the recentered line positions. """ # TODO (simon): use slit size information for a square function # TODO (simon): convolution new_line_centers = [] gaussian_kernel = Gaussian1DKernel(stddev=2.) lamp_data = convolve(lamp_data, gaussian_kernel) for line in lines: lower_index = max(0, int(line - order)) upper_index = min(len(lamp_data), int(line + order)) lamp_sample = lamp_data[lower_index:upper_index] x_axis = np.linspace(lower_index, upper_index, len(lamp_sample)) line_max = np.max(lamp_sample) gaussian_model = models.Gaussian1D(amplitude=line_max, mean=line, stddev=order) fit_gaussian = fitting.LevMarLSQFitter() fitted_gaussian = fit_gaussian(gaussian_model, x_axis, lamp_sample) new_line_centers.append(fitted_gaussian.mean.value) return new_line_centers def recenter_lines(data, lines, plots=False): """Finds the centroid of an emission line For every line center (pixel value) it will scan left first until the data stops decreasing, it assumes it is an emission line and then will scan right until it stops decreasing too. Defined those limits it will use the line data in between and calculate the centroid. Notes: This method is used to recenter relatively narrow lines only, there is a special method for dealing with broad lines. Args: data (ndarray): numpy.ndarray instance. or the data attribute of a :class:`~astropy.nddata.CCDData` instance. lines (list): A line list in pixel values. plots (bool): If True will plot spectral line as well as the input center and the recentered value. Returns: A list containing the recentered line positions. """ new_center = [] x_size = data.shape[0] median = np.median(data) for line in lines: # TODO (simon): Check if this definition is valid, so far is not # TODO (cont..): critical left_limit = 0 right_limit = 1 condition = True left_index = int(line) while condition and left_index - 2 > 0: if (data[left_index - 1] > data[left_index]) and \ (data[left_index - 2] > data[left_index - 1]): condition = False left_limit = left_index elif data[left_index] < median: condition = False left_limit = left_index else: left_limit = left_index left_index -= 1 # id right limit condition = True right_index = int(line) while condition and right_index + 2 < x_size - 1: if (data[right_index + 1] > data[right_index]) and \ (data[right_index + 2] > data[right_index + 1]): condition = False right_limit = right_index elif data[right_index] < median: condition = False right_limit = right_index else: right_limit = right_index right_index += 1 index_diff = [abs(line - left_index), abs(line - right_index)] sub_x_axis = range(line - min(index_diff), (line + min(index_diff)) + 1) sub_data = data[line - min(index_diff):(line + min(index_diff)) + 1] centroid = np.sum(sub_x_axis * sub_data) / np.sum(sub_data) # checks for asymmetries differences = [abs(data[line] - data[left_limit]), abs(data[line] - data[right_limit])] if max(differences) / min(differences) >= 2.: if plots: # pragma: no cover plt.axvspan(line - 1, line + 1, color='g', alpha=0.3) new_center.append(line) else: new_center.append(centroid) if plots: # pragma: no cover fig, ax = plt.subplots(1, 1) fig.canvas.set_window_title('Lines Detected in Lamp') ax.axhline(median, color='b') ax.plot(range(len(data)), data, color='k', label='Lamp Data') for line in lines: ax.axvline(line + 1, color='k', linestyle=':', label='First Detected Center') for center in new_center: ax.axvline(center, color='k', linestyle='.-', label='New Center') plt.show() return new_center def record_trace_information(ccd, trace_info): """Adds trace information to fits header Notes: Example of trace_info. OrderedDict([('GSP_TMOD', ['Polynomial1D', 'Model name used to fit trace']), ('GSP_TORD', [2, 'Degree of the model used to fit target trace']), ('GSP_TC00', [80.92244303468138, 'Parameter c0']), ('GSP_TC01', [0.0018921968204536187, 'Parameter c1']), ('GSP_TC02', [-7.232545448865748e-07, 'Parameter c2']), ('GSP_TERR', [0.18741058188097284, 'RMS error of target trace'])]) Args: ccd (CCDData): ccdproc.CCDData instance to have trace info recorded into its header. trace_info (OrderedDict): Ordered Dictionary with a set of fits keywords associated to a list of values corresponding to value and comment. Returns: ccd (CCDData): Same ccdproc.CCDData instance with the header modified. """ last_keyword = None for info_key in trace_info: info_value, info_comment = trace_info[info_key] log.debug( "Adding trace information: " "{:s} = {:s} / {:s}".format(info_key, str(info_value), info_comment)) if last_keyword is None: ccd.header.set(info_key, value=info_value, comment=info_comment) last_keyword = info_key else: ccd.header.set(info_key, value=info_value, comment=info_comment, after=last_keyword) last_keyword = info_key return ccd def save_extracted(ccd, destination, prefix='e', target_number=1): """Save extracted spectrum while adding a prefix. Args: ccd (CCDData) :class:`~astropy.nddata.CCDData` instance destination (str): Path where the file will be saved. prefix (str): Prefix to be added to images. Default `e`. target_number (int): Secuential number of spectroscopic target. Returns: :class:`~astropy.nddata.CCDData` instance of the image just recorded. although is not really necessary. """ assert isinstance(ccd, ccdproc.CCDData) assert os.path.isdir(destination) file_name = ccd.header['GSP_FNAM'] if target_number > 0: new_suffix = '_target_{:d}.fits'.format(target_number) file_name = re.sub('.fits', new_suffix, file_name) if ccd.header['OBSTYPE'] in ['COMP', 'ARC']: extraction_region = re.sub(':','-', ccd.header['GSP_EXTR']) file_name = re.sub('.fits', '_{:s}.fits'.format(extraction_region), file_name) new_file_name = prefix + file_name else: new_file_name = prefix + file_name log.info("Saving uncalibrated(w) extracted spectrum to file: " "{:s}".format(new_file_name)) full_path = os.path.join(destination, new_file_name) ccd = write_fits(ccd=ccd, full_path=full_path, parent_file=file_name) return ccd def search_comp_group(object_group, comp_groups, reference_data): """Search for a suitable comparison lamp group In case a science target was observed without comparison lamps, usually right before or right after, this function will look for a compatible set obtained at a different time or pointing. Notes: This methodology is not recommended for radial velocity studies. Args: object_group (DataFrame): A :class:`~pandas.DataFrame` instances containing a group of images for a given scientific target. comp_groups (list): A list in which every element is a :class:`~pandas.DataFrame` that contains information regarding groups of comparison lamps. reference_data (ReferenceData): Instance of `goodman.pipeline.core.ReferenceData` contains all information related to the reference lamp library. Returns: """ log.debug('Finding a suitable comparison lamp group') object_confs = object_group.groupby(['grating', 'cam_targ', 'grt_targ', 'filter', 'filter2'] ).size().reset_index() # .rename(columns={0: 'count'}) for comp_group in comp_groups: if ((comp_group['grating'] == object_confs.iloc[0]['grating']) & (comp_group['cam_targ'] == object_confs.iloc[0]['cam_targ']) & (comp_group['grt_targ'] == object_confs.iloc[0]['grt_targ']) & (comp_group['filter'] == object_confs.iloc[0]['filter']) & (comp_group['filter2'] == object_confs.iloc[0]['filter2'] )).all(): if reference_data.check_comp_group(comp_group) is not None: log.debug('Found a matching comparison lamp group') return comp_group raise NoMatchFound def setup_logging(debug=False, generic=False): # pragma: no cover """configures logging Notes: Logging file name is set to default 'goodman_log.txt'. If --debug is activated then the format of the message is different. """ log_filename = 'goodman_log.txt' if '--debug' in sys.argv or debug: log_format = '[%(asctime)s][%(levelname)8s]: %(message)s ' \ '[%(module)s.%(funcName)s:%(lineno)d]' logging_level = logging.DEBUG else: log_format = '[%(asctime)s][%(levelname).1s]: %(message)s' logging_level = logging.INFO date_format = '%H:%M:%S' formatter = logging.Formatter(fmt=log_format, datefmt=date_format) logging.basicConfig(level=logging_level, format=log_format, datefmt=date_format) log = logging.getLogger(__name__) file_handler = logging.FileHandler(filename=log_filename) file_handler.setFormatter(fmt=formatter) file_handler.setLevel(level=logging_level) log.addHandler(file_handler) if not generic: log.info("Starting Goodman HTS Pipeline Log") log.info("Local Time : {:}".format( datetime.datetime.now())) log.info("Universal Time: {:}".format( datetime.datetime.utcnow())) try: latest_release = check_version.get_last() if "dev" in __version__: log.warning("Running Development version: {:s}".format(__version__)) log.info("Latest Release: {:s}".format(latest_release)) elif check_version.am_i_updated(__version__): if __version__ == latest_release: log.info("Pipeline Version: {:s} (latest)".format(__version__)) else: log.warning("Current Version: {:s}".format(__version__)) log.info("Latest Release: {:s}".format(latest_release)) else: log.warning("Current Version '{:s}' is outdated.".format( __version__)) log.info("Latest Release: {:s}".format(latest_release)) except ConnectionRefusedError: log.error('Unauthorized GitHub API Access reached maximum') log.info("Current Version: {:s}".format(__version__)) def trace(ccd, model, trace_model, model_fitter, sampling_step, nfwhm=1, plots=False): """Find the trace of a spectrum This function is called by the `trace_targets` function, the difference is that it only takes single models only not `CompoundModels` so this function is called for every single target. `CompoundModels` are a bit tricky when you need each model separated so all `CompoundModels` have been removed. Notes: This method forces the trace to go withing a rectangular region of center `model.mean.value` and width `2 * nsigmas`, this is for allowing the tracing of low SNR targets. The assumption is valid since the spectra are always well aligned to the detectors's pixel columns. (dispersion axis) Args: ccd (CCDData) A :class:`~astropy.nddata.CCDData` instance, 2D image. model (Model): An astropy.modeling.Model instance that contains information regarding the target to be traced. trace_model (object): An astropy.modeling.Model instance, usually a low order polynomial. model_fitter (Fitter): An astropy.modeling.fitting.Fitter instance. Will fit the sampled points to construct the trace model sampling_step (int): Step for sampling the spectrum. nfwhm (int): Number of fwhm to each side of the mean to be used for searching the trace. plots (bool): Toggles debugging plot Returns: An `astropy.modeling.Model` instance, that defines the trace of the spectrum. """ assert isinstance(ccd, ccdproc.CCDData) assert isinstance(model, Model) assert isinstance(trace_model, Model) spatial_length, dispersion_length = ccd.data.shape sampling_axis = range(0, dispersion_length, sampling_step) sample_values = [] if model.__class__.name == 'Gaussian1D': model_fwhm = model.fwhm model_mean = model.mean.value elif model.__class__.name == 'Moffat1D': model_fwhm = model.fwhm model_mean = model.x_0.value else: raise NotImplementedError sample_center = float(model_mean) lower_limit_list = [] upper_limit_list = [] lower_limit = None upper_limit = None for point in sampling_axis: lower_limit = np.max([0, int(sample_center - nfwhm * model_fwhm)]) upper_limit = np.min([int(sample_center + nfwhm * model_fwhm), spatial_length]) lower_limit_list.append(lower_limit) upper_limit_list.append(upper_limit) sample = ccd.data[lower_limit:upper_limit, point:point + sampling_step] sample_median = np.median(sample, axis=1) try: sample_peak = np.argmax(sample_median) except ValueError: # pragma: no cover log.error('Nfwhm {}'.format(nfwhm)) log.error('Model Stddev {}'.format(model_fwhm)) log.error('sample_center {}'.format(sample_center)) log.error('sample {}'.format(sample)) log.error('sample_median {}'.format(sample_median)) log.error('lower_limit {}'.format(lower_limit)) log.error('upper_limit {}'.format(upper_limit)) log.error('point {}'.format(point)) log.error('point + sampling_step {}'.format(point + sampling_step)) log.error("Spatial length: {}, Dispersion length {}".format( spatial_length, dispersion_length)) sys.exit() sample_values.append(sample_peak + lower_limit) if np.abs(sample_peak + lower_limit - model_mean)\ < nfwhm * model_fwhm: sample_center = int(sample_peak + lower_limit) else: sample_center = float(model_mean) trace_model.c2.fixed = True fitted_trace = model_fitter(trace_model, sampling_axis, sample_values) sampling_differences = [ (fitted_trace(sampling_axis[i]) - sample_values[i]) ** 2 for i in range(len(sampling_axis))] rms_error = np.sqrt( np.sum(np.array(sampling_differences))/len(sampling_differences)) log.debug("RMS Error of unclipped trace differences {:.3f}".format( rms_error)) clipped_values = sigma_clip(sampling_differences, sigma=2, maxiters=3, cenfunc=np.ma.median) if np.ma.is_masked(clipped_values): _sampling_axis = list(sampling_axis) _sample_values = list(sample_values) sampling_axis = [] sample_values = [] for i in range(len(clipped_values)): if clipped_values[i] is not np.ma.masked: sampling_axis.append(_sampling_axis[i]) sample_values.append(_sample_values[i]) log.debug("Re-fitting the trace for a better trace.") trace_model.c2.fixed = False fitted_trace = model_fitter(trace_model, sampling_axis, sample_values) sampling_differences = [ (fitted_trace(sampling_axis[i]) - sample_values[i]) ** 2 for i in range(len(sampling_axis))] rms_error = np.sqrt( np.sum(np.array(sampling_differences)) / len(sampling_differences)) log.debug( "RMS Error after sigma-clipping trace differences {:.3f}".format( rms_error)) trace_info = collections.OrderedDict() trace_info['GSP_TMOD'] = [fitted_trace.__class__.__name__, 'Model name used to fit trace'] trace_info['GSP_TORD'] = [fitted_trace.degree, 'Degree of the model used to fit target trace'] for i in range(fitted_trace.degree + 1): trace_info['GSP_TC{:02d}'.format(i)] = [ fitted_trace.__getattribute__('c{:d}'.format(i)).value, 'Parameter c{:d}'.format(i)] trace_info['GSP_TERR'] = [rms_error, 'RMS error of target trace'] log.info("Target tracing RMS error: {:.3f}".format(rms_error)) if plots: # pragma: no cover z1 = np.mean(ccd.data) - 0.5 * np.std(ccd.data) z2 = np.median(ccd.data) + np.std(ccd.data) fig, ax = plt.subplots() fig.canvas.set_window_title(ccd.header['GSP_FNAM']) mng = plt.get_current_fig_manager() mng.window.showMaximized() ax.set_title("Tracing information\n{:s}\n" "RMS Error {:.2f}".format(ccd.header['GSP_FNAM'], rms_error)) ax.imshow(ccd.data, clim=(z1, z2), cmap='gray') ax.plot(sampling_axis, sample_values, color='b', marker='o', alpha=0.4, label='Sampling points') sampling_axis_limits = range(0, dispersion_length, sampling_step) low_span = fitted_trace(sampling_axis_limits) - (fitted_trace(sampling_axis_limits) - np.mean(lower_limit_list)) up_span = fitted_trace(sampling_axis_limits) + (np.mean(upper_limit_list) - fitted_trace(sampling_axis_limits)) ax.fill_between(sampling_axis_limits, low_span, up_span, where=up_span > low_span, facecolor='g', interpolate=True, alpha=0.3, label='Aproximate extraction window') ax.plot(fitted_trace(range(dispersion_length)), color='r', linestyle='--', label='Fitted Trace Model') # plt.plot(model(range(spatial_length))) ax.legend(loc='best') plt.tight_layout() if plt.isinteractive(): plt.draw() plt.pause(2) else: plt.show() return fitted_trace, trace_info def trace_targets(ccd, target_list, sampling_step=5, pol_deg=2, nfwhm=5, plots=False): """Find the trace of the target's spectrum on the image This function defines a low order polynomial that trace the location of the spectrum. The attributes pol_deg and sampling_step define the polynomial degree and the spacing in pixels for the samples. For every sample a gaussian model is fitted and the center (mean) is recorded and since spectrum traces vary smoothly this value is used as a new center for the base model used to fit the spectrum profile. Notes: This doesn't work for extended sources. Also this calls for the function `trace` for doing the actual trace, the difference is that this method is at a higher level. Args: ccd (CCDData) Instance of :class:`~astropy.nddata.CCDData` target_list (list): List of single target profiles. sampling_step (int): Frequency of sampling in pixels pol_deg (int): Polynomial degree for fitting the trace plots (bool): If True will show plots (debugging) nfwhm (int): Number of fwhm from spatial profile center to search for a target. default 10. Returns: all_traces (list): List that contains traces that are astropy.modeling.Model instance """ # added two assert for debugging purposes assert isinstance(ccd, ccdproc.CCDData) assert all([isinstance(profile, Model) for profile in target_list]) # Initialize model fitter model_fitter = fitting.LevMarLSQFitter() # Initialize the model to fit the traces trace_model = models.Polynomial1D(degree=pol_deg) # List that will contain all the Model instances corresponding to traced # targets all_traces = [] for profile in target_list: single_trace, trace_info = trace(ccd=ccd, model=profile, trace_model=trace_model, model_fitter=model_fitter, sampling_step=sampling_step, nfwhm=nfwhm, plots=plots) if 0 < single_trace.c0.value < ccd.shape[0]: log.debug('Adding trace to list') all_traces.append([single_trace, profile, trace_info]) else: log.error("Unable to trace target.") log.error('Trace is out of boundaries. Center: ' '{:.4f}'.format(single_trace.c0.value)) if plots: # pragma: no cover z1 = np.mean(ccd.data) - 0.5 * np.std(ccd.data) z2 = np.median(ccd.data) + np.std(ccd.data) fig, ax = plt.subplots() fig.canvas.set_window_title(ccd.header['GSP_FNAM']) mng = plt.get_current_fig_manager() mng.window.showMaximized() ax.set_title("Trace(s) for {:s}".format(ccd.header['GSP_FNAM'])) ax.imshow(ccd.data, clim=(z1, z2), cmap='gray') ax.plot([], color='r', label='Trace(s)') for strace, prof, trace_info in all_traces: ax.plot(strace(range(ccd.data.shape[1])), color='r') ax.legend(loc='best') plt.tight_layout() plt.show() return all_traces def validate_ccd_region(ccd_region, regexp='^\[\d*:\d*,\d*:\d*\]$'): compiled_reg_exp = re.compile(regexp) if not compiled_reg_exp.match(ccd_region): raise SyntaxError("ccd regions must be defined in the format " "'[x1:x2,y1:y2]'") else: return True def write_fits(ccd, full_path, combined=False, parent_file=None, overwrite=True): """Write fits while adding information to the header. This is a wrapper for allowing to save files while being able to add information into the header. Mostly for historical reasons. Args: ccd (CCDData) A :class:`~astropy.nddata.CCDData` instance to be saved to fits. full_path (str): Full path of file. combined (bool): True if `ccd` is the result of combining images. parent_file (str): Name of the file from which ccd originated. If combined is True this will be set to `combined`. overwrite (bool): Overwrite files, default True. Returns: :class:`~astropy.nddata.CCDData` instance. """ assert isinstance(ccd, ccdproc.CCDData) if os.path.isabs(full_path) and not os.path.isdir(os.path.dirname(full_path)): log.error("Directory {} does not exist. Creating it right now." "".format(os.path.dirname(full_path))) os.mkdir(os.path.dirname(full_path)) # Original File Name # This should be set only once. if combined: ccd.header.set('GSP_ONAM', value=os.path.basename(full_path)) ccd.header.set('GSP_PNAM', value='combined') # Parent File Name if not combined and parent_file is not None: ccd.header.set('GSP_PNAM', value=os.path.basename(parent_file)) # Current File Name ccd.header.set('GSP_FNAM', value=os.path.basename(full_path)) ccd.header.set('GSP_PATH', value=os.path.dirname(full_path)) # write to file log.info("Saving FITS file to {:s}".format(os.path.basename(full_path))) ccd.write(full_path, overwrite=overwrite) assert os.path.isfile(full_path) return ccd # classes definition class GenerateDcrParFile(object): """Creates dcr.par file based on lookup table `dcr` parameters depend heavily on binning, this class generates a file using the default format. The lookup table considers camera and binning. """ _format = [ "THRESH = {:.1f} // Threshold (in STDDEV)", "XRAD = {:d} // x-radius of the box (size = 2 * radius)", "YRAD = {:d} // y-radius of the box (size = 2 * radius)", "NPASS = {:d} // Maximum number of cleaning passes", "DIAXIS = {:d} // Dispersion axis: 0 - no dispersion, 1 - X, 2 - Y", "LRAD = {:d} // Lower radius of region for replacement statistics", "URAD = {:d} // Upper radius of region for replacement statistics", "GRAD = {:d} // Growing radius", "VERBOSE = {:d} // Verbose level [0,1,2]", "END"] _columns = ['parameter', 'red-1', 'red-2', 'red-3', 'blue-1', 'blue-2', 'blue-3'] _lookup = [ ['thresh', 3.0, 4.0, 3.0, 3.0, 3.0, 3.0], ['xrad', 9, 7, 9, 8, 9, 9], ['yrad', 9, 9, 9, 8, 9, 9], ['npass', 5, 5, 5, 5, 5, 5], ['diaxis', 0, 0, 0, 0, 0, 0], ['lrad', 1, 1, 1, 1, 1, 1], ['urad', 3, 3, 3, 3, 3, 3], ['grad', 1, 0, 1, 1, 1, 1], ['verbose', 1, 1, 1, 1, 1, 1] ] def __init__(self, par_file_name='dcr.par'): """ Args: par_file_name: """ self._file_name = par_file_name self._df = pandas.DataFrame(self._lookup, columns=self._columns) self._binning = "{:s}-{:s}" self._data_format = "\n".join(self._format) def __call__(self, instrument='Red', binning='1', path='default'): """ Args: instrument (str): Instrument from INSTCONF keyword binning (str): Serial (dispersion) Binning from the header. path (str): Directory where to save the file. """ assert any([instrument == option for option in ['Red', 'Blue']]) b = self._binning.format(instrument.lower(), binning) self._data_format = self._data_format.format( self._df[b][self._df.parameter == 'thresh'].values[0], int(self._df[b][self._df.parameter == 'xrad'].values[0]), int(self._df[b][self._df.parameter == 'yrad'].values[0]), int(self._df[b][self._df.parameter == 'npass'].values[0]), int(self._df[b][self._df.parameter == 'diaxis'].values[0]), int(self._df[b][self._df.parameter == 'lrad'].values[0]), int(self._df[b][self._df.parameter == 'urad'].values[0]), int(self._df[b][self._df.parameter == 'grad'].values[0]), int(self._df[b][self._df.parameter == 'verbose'].values[0])) self._create_file(path=path) def _create_file(self, path): """Creates `dcr.par` file Args: path (str): Path to where to save the `dcr.par` file. """ if os.path.isdir(path): full_path = os.path.join(path, self._file_name) else: full_path = os.path.join(os.getcwd(), self._file_name) with open(full_path, 'w') as dcr_par: dcr_par.write(self._data_format) class NightDataContainer(object): """This class is designed to be the organized data container. It doesn't store image data but a list of :class:`~pandas.DataFrame` objects. Also it stores critical variables such as sunrise and sunset times. """ def __init__(self, path, instrument, technique): """Initializes all the variables for the class Args: path (str): Full path to the directory where raw data is located instrument (str): `Red` or `Blue` stating whether the data was taken using the Red or Blue Goodman Camera. technique (str): `Spectroscopy` or `Imaging` stating what kind of data was taken. """ self.full_path = path self.instrument = instrument self.technique = technique self.gain = None self.rdnoise = None self.roi = None self.is_empty = True """For imaging use""" self.bias = None self.day_flats = None self.dome_flats = None self.sky_flats = None self.data_groups = None """For spectroscopy use""" # comp_groups will store :class:`~pandas.DataFrame` (groups) that # contain only OBSTYPE == COMP, they should be requested only when # needed, for the science case when for every science target is # observed with comparison lamps and quartz (if) self.comp_groups = None # object_groups will store :class:`~pandas.DataFrame` (groups) with only # OBSTYPE == OBJECT this is the case when the observer takes comparison # lamps only at the beginning or end of the night. self.object_groups = None # spec_groups will store :class:`~pandas.DataFrame` (groups) with a set # of OBJECT and COMP, this is usually the case for radial velocity # studies. self.spec_groups = None """Time reference points""" self.sun_set_time = None self.sun_rise_time = None self.evening_twilight = None self.morning_twilight = None def __repr__(self): """Produces a nice summary of the information contained""" if self.is_empty: return str("Empty Data Container") else: class_info = str("{:s}\n" "Full Path: {:s}\n" "Instrument: {:s}\n" "Technique: {:s}".format(str(self.__class__), self.full_path, self.instrument, self.technique)) if all([self.gain, self.rdnoise, self.roi]): class_info += str("\nGain: {:.2f}\n" "Readout Noise: {:.2f}\n" "ROI: {:s}".format(self.gain, self.rdnoise, self.roi)) class_info += str("\nIs Empty: {:s}\n".format(str(self.is_empty))) group_info = "\nData Grouping Information\n" group_info += "BIAS Group:\n" group_info += self._get_group_repr(self.bias) group_info += "Day FLATs Group:\n" group_info += self._get_group_repr(self.day_flats) group_info += "Dome FLATs Group:\n" group_info += self._get_group_repr(self.dome_flats) group_info += "Sky FLATs Group:\n" group_info += self._get_group_repr(self.sky_flats) if self.technique == 'Spectroscopy': group_info += "COMP Group:\n" group_info += self._get_group_repr(self.comp_groups) group_info += "OBJECT Group\n" group_info += self._get_group_repr(self.object_groups) group_info += "OBJECT + COMP Group:\n" group_info += self._get_group_repr(self.spec_groups) # group_info += self._get_group_repr(self.data_groups) class_info += group_info elif self.technique == 'Imaging': group_info += "DATA Group:\n" group_info += self._get_group_repr(self.data_groups) class_info += group_info return class_info @staticmethod def _get_group_repr(group): """Converts the file names in each group to string This class has a __repr__ method and in this method the file names contained in the different groups gets formatted as a string for displaying in a readable way. """ group_str = "" if group is not None: for i in range(len(group)): if len(group) == 1: group_str += "Files in Group\n" else: group_str += "Files in Group {:d}\n".format(i + 1) for _file in group[i]['file']: group_str += " {:s}\n".format(_file) return group_str else: return " Group is Empty\n" def add_bias(self, bias_group): """Adds a bias group Args: bias_group (DataFrame): A :class:`~pandas.DataFrame` Contains a set of keyword values of grouped image metadata """ if len(bias_group) < 2: if self.technique == 'Imaging': log.error('Imaging mode needs BIAS to work properly. ' 'Go find some.') else: log.warning('BIAS are needed for optimal results.') else: if self.bias is None: self.bias = [bias_group] else: self.bias.append(bias_group) if self.bias is not None: self.is_empty = False def add_day_flats(self, day_flats): """"Adds a daytime flat group Args: day_flats (DataFrame): A :class:`~pandas.DataFrame` Contains a set of keyword values of grouped image metadata """ if self.day_flats is None: self.day_flats = [day_flats] else: self.day_flats.append(day_flats) if self.day_flats is not None: self.is_empty = False def add_data_group(self, data_group): """Adds a data group Args: data_group (DataFrame): A :class:`~pandas.DataFrame` Contains a set of keyword values of grouped image metadata """ if self.data_groups is None: self.data_groups = [data_group] else: self.data_groups.append(data_group) if self.data_groups is not None: self.is_empty = False def add_comp_group(self, comp_group): """Adds a comp-only group All comparison lamps groups are added here. The ones that may have been taken in the afternoon (isolated) or along science target. This will act as a pool of comparison lamp groups for eventual science targets taken without comparison lamps. Args: comp_group (DataFrame): A :class:`~pandas.DataFrame` Contains a set of keyword values of grouped image metadata """ if self.comp_groups is None: self.comp_groups = [comp_group] else: self.comp_groups.append(comp_group) if self.comp_groups is not None: self.is_empty = False def add_object_group(self, object_group): """Adds a object-only group Args: object_group (DataFrame): A :class:`~pandas.DataFrame` Contains a set of keyword values of grouped image metadata """ if self.object_groups is None: self.object_groups = [object_group] else: self.object_groups.append(object_group) if self.object_groups is not None: self.is_empty = False def add_spec_group(self, spec_group): """Adds a data group containing object and comp The comparison lamp groups are also added to a general pool of comparison lamps. Args: spec_group (DataFrame): A :class:`~pandas.DataFrame` Contains a set of keyword values of grouped image metadata """ if self.spec_groups is None: self.spec_groups = [spec_group] else: self.spec_groups.append(spec_group) if self.spec_groups is not None: self.is_empty = False comp_group = spec_group[spec_group.obstype == 'COMP'] self.add_comp_group(comp_group=comp_group) def set_sun_times(self, sun_set, sun_rise): """Sets values for sunset and sunrise Args: sun_set (str): Sun set time in the format 'YYYY-MM-DDTHH:MM:SS.SS' sun_rise (str):Sun rise time in the format 'YYYY-MM-DDTHH:MM:SS.SS' """ self.sun_set_time = sun_set self.sun_rise_time = sun_rise def set_twilight_times(self, evening, morning): """Sets values for evening and morning twilight Args: evening (str): Evening twilight time in the format 'YYYY-MM-DDTHH:MM:SS.SS' morning (str): Morning twilight time in the format 'YYYY-MM-DDTHH:MM:SS.SS' """ self.evening_twilight = evening self.morning_twilight = morning def set_readout(self, gain, rdnoise, roi): """Set Gain, Read noise and ROI. Args: gain (float): Gain from header rdnoise (float): Read noise from header. roi (str): ROI from header. """ self.gain = gain self.rdnoise = rdnoise self.roi = roi class NoMatchFound(Exception): # pragma: no cover """Exception for when no match is found.""" def __init__(self, message="No match found"): Exception.__init__(self, message) class NoTargetException(Exception): # pragma: no cover """Exception to be raised when no target is identified""" def __init__(self): Exception.__init__(self, 'No targets identified.') class NotEnoughLinesDetected(Exception): # pragma: no cover """Exception for when there are no lines detected.""" def __init__(self): Exception.__init__(self, 'Not enough lines detected.') class ReferenceData(object): """Contains spectroscopic reference lines values and filename to templates. This class stores: - file names for reference fits spectrum - file names for CSV tables with reference lines and relative intensities - line positions only for the elements used in SOAR comparison lamps """ def __init__(self, reference_dir): """Init method for the ReferenceData class This methods uses ccdproc.ImageFileCollection on the `reference_dir` to capture all possible reference lamps. The reference lamps have a list of lines detected on the data registered to the header as GSP_P??? where ??? are numbers from 001 to 999. Also the pixel values are stored in keywords of the form GSP_A???. Args: reference_dir (str): full path to the reference data directory """ self.log = logging.getLogger(__name__) self.reference_dir = reference_dir reference_collection = ccdproc.ImageFileCollection(self.reference_dir) self.ref_lamp_collection = reference_collection.summary.to_pandas() self.lines_pixel = None self.lines_angstrom = None self._ccd = None self.nist = {} self.lamp_status_keywords = [ 'LAMP_HGA', 'LAMP_NE', 'LAMP_AR', 'LAMP_FE', 'LAMP_CU', 'LAMP_QUA', 'LAMP_QPE', 'LAMP_BUL', 'LAMP_DOM', 'LAMP_DPE'] def get_reference_lamp(self, header): """Finds a suitable template lamp from the catalog Args: header (Header): FITS header of image we are looking a reference lamp. Returns: full path to best matching reference lamp. """ if all([keyword in [hkey for hkey in header.keys()] for keyword in self.lamp_status_keywords]): self.log.info("Searching matching reference lamp") filtered_collection = self.ref_lamp_collection[( (self.ref_lamp_collection['lamp_hga'] == header['LAMP_HGA']) & (self.ref_lamp_collection['lamp_ne'] == header['LAMP_NE']) & (self.ref_lamp_collection['lamp_ar'] == header['LAMP_AR']) & (self.ref_lamp_collection['lamp_fe'] == header['LAMP_FE']) & (self.ref_lamp_collection['lamp_cu'] == header['LAMP_CU']) & (self.ref_lamp_collection['wavmode'] == header['wavmode']))] if filtered_collection.empty: error_message = "Unable to find a match for: "\ "LAMP_HGA = {}, "\ "LAMP_NE = {}, "\ "LAMP_AR = {}, "\ "LAMP_FE = {}, "\ "LAMP_CU = {}, "\ "WAVMODE = {} ".format(header['LAMP_HGA'], header['LAMP_NE'], header['LAMP_AR'], header['LAMP_FE'], header['LAMP_CU'], header['WAVMODE']) self.log.error(error_message) raise NoMatchFound(error_message) else: filtered_collection = self.ref_lamp_collection[ (self.ref_lamp_collection['object'] == header['object']) & # TODO (simon): Wavemode can be custom (GRT_TARG, CAM_TARG, GRATING) (self.ref_lamp_collection['wavmode'] == re.sub(' ', '_', header['wavmode']).upper())] if filtered_collection.empty: error_message = "Unable to find matching "\ "reference lamp for: "\ "OBJECT = {}, "\ "WAVMODE = {}".format(header['OBJECT'], header['WAVMODE']) self.log.error(error_message) raise NoMatchFound(error_message) if len(filtered_collection) == 1: self.log.info( "Reference Lamp Found: {:s}" "".format("".join(filtered_collection.file.to_string(index=False).split()))) full_path = os.path.join(self.reference_dir, "".join(filtered_collection.file.to_string( index=False).split())) self._ccd = ccdproc.CCDData.read(full_path, unit=u.adu) self._recover_lines() return self._ccd else: raise NotImplementedError( "Found {} matches".format(len(filtered_collection))) def lamp_exists(self, header): """Checks whether a matching lamp exist or not Args: object_name (str): Name of the lamp from 'OBJECT' keyword. grating (str): Grating from 'GRATING' keyword. grt_targ (float): Grating target from keyword 'GRT_TARG'. cam_targ (float): Camera target from keyword 'CAM_TARG'. Returns: True of False depending if a single matching lamp exist. Raises: NotImplementedError if there are more than one lamp found. """ filtered_collection = self.ref_lamp_collection[ (self.ref_lamp_collection['lamp_hga'] == header['LAMP_HGA']) & (self.ref_lamp_collection['lamp_ne'] == header['LAMP_NE']) & (self.ref_lamp_collection['lamp_ar'] == header['LAMP_AR']) & (self.ref_lamp_collection['lamp_cu'] == header['LAMP_CU']) & (self.ref_lamp_collection['lamp_fe'] == header['LAMP_FE']) & (self.ref_lamp_collection['grating'] == header['GRATING']) & (self.ref_lamp_collection['grt_targ'] == header['GRT_TARG']) & (self.ref_lamp_collection['cam_targ'] == header['CAM_TARG'])] if filtered_collection.empty: return False elif len(filtered_collection) == 1: return True else: raise NotImplementedError def check_comp_group(self, comp_group): """Check if comparison lamp group has matching reference lamps Args: comp_group (DataFrame): A :class:`~pandas.DataFrame` instance that contains meta-data for a group of comparison lamps. Returns: """ lamps = comp_group.groupby(['grating', 'grt_targ', 'cam_targ', 'lamp_hga', 'lamp_ne', 'lamp_ar', 'lamp_fe', 'lamp_cu']).size().reset_index( ).rename(columns={0: 'count'}) # for the way the input is created this should run only once but the # for loop has been left in case this happens. for i in lamps.index: pseudo_header = fits.Header() # pseudo_header.set('OBJECT', value=lamps.iloc[i]['object']) pseudo_header.set('GRATING', value=lamps.iloc[i]['grating']) pseudo_header.set('GRT_TARG', value=lamps.iloc[i]['grt_targ']) pseudo_header.set('CAM_TARG', value=lamps.iloc[i]['cam_targ']) pseudo_header.set('LAMP_HGA', value=lamps.iloc[i]['lamp_hga']) pseudo_header.set('LAMP_NE', value=lamps.iloc[i]['lamp_ne']) pseudo_header.set('LAMP_AR', value=lamps.iloc[i]['lamp_ar']) pseudo_header.set('LAMP_FE', value=lamps.iloc[i]['lamp_fe']) pseudo_header.set('LAMP_CU', value=lamps.iloc[i]['lamp_cu']) if self.lamp_exists(header=pseudo_header): new_group = comp_group[ (comp_group['grating'] == lamps.iloc[i]['grating']) & (comp_group['grt_targ'] == lamps.iloc[i]['grt_targ']) & (comp_group['cam_targ'] == lamps.iloc[i]['cam_targ']) & (comp_group['lamp_hga'] == lamps.iloc[i]['lamp_hga']) & (comp_group['lamp_ne'] == lamps.iloc[i]['lamp_ne']) & (comp_group['lamp_ar'] == lamps.iloc[i]['lamp_ar']) & (comp_group['lamp_fe'] == lamps.iloc[i]['lamp_fe']) & (comp_group['lamp_cu'] == lamps.iloc[i]['lamp_cu'])] return new_group else: self.log.warning("The target's comparison lamps do not have " "reference lamps.") self.log.debug("In this case a compatible lamp will be " "obtained from all the lamps obtained in the " "data or present in the files.") self.log.debug("Using the full set of comparison lamps " "for extraction.") return comp_group return None def _recover_lines(self): """Read lines from the reference lamp's header.""" self.log.info("Recovering line information from reference Lamp.") self.lines_pixel = [] self.lines_angstrom = [] pixel_keys = self._ccd.header['GSP_P*'] for pixel_key in pixel_keys: if re.match(r'GSP_P\d{3}', pixel_key) is not None: angstrom_key = re.sub('GSP_P', 'GSP_A', pixel_key) assert pixel_key[-3:] == angstrom_key[-3:] assert angstrom_key in self._ccd.header if int(float(self._ccd.header[angstrom_key])) != 0: self.lines_pixel.append(float(self._ccd.header[pixel_key])) self.lines_angstrom.append( float(self._ccd.header[angstrom_key])) else: self.log.debug( "File: {:s}".format(self._ccd.header['GSP_FNAM'])) self.log.debug( "Ignoring keywords: {:s}={:f}, {:s}={:f}".format( pixel_key, self._ccd.header[pixel_key], angstrom_key, float(self._ccd.header[angstrom_key]))) @staticmethod def _order_validation(lines_array): """Checks that the array of lines only increases.""" previous = None for line_value in lines_array: if previous is not None: try: assert line_value > previous previous = line_value except AssertionError: log.error("Error: Line {:f} is not larger " "than {:f}".format(line_value, previous)) return False else: previous = line_value return True def _load_nist_list(self, **kwargs): """Load all csv files from strong lines in NIST.""" nist_path = kwargs.get( 'path', os.path.join(os.path.dirname( sys.modules['goodman_pipeline'].__file__), 'data/nist_list')) assert os.path.isdir(nist_path) nist_files = glob.glob(os.path.join(nist_path, "*.txt")) for nist_file in nist_files: key = os.path.basename(nist_file)[22:-4] nist_data = pandas.read_csv(nist_file, names=['intensity', 'air_wavelength', 'spectrum', 'reference']) self.nist[key] = nist_data class SaturationValues(object): """Contains a complete table of readout modes and 50% half well """ def __init__(self, ccd=None): """Defines a :class:`~pandas.DataFrame` with saturation_threshold information Both, Red and Blue cameras have tabulated saturation_threshold values depending on the readout configurations. It defines a :class:`~pandas.DataFrame` object. Notes: For the purposes of this documentation *50% full well* is the same as ``saturation_threshold level`` though they are not the same thing. Args: ccd (CCDData): Image to be tested for saturation_threshold """ self.log = logging.getLogger(__name__) self.__saturation = None columns = ['camera', 'read_rate', 'analog_attn', 'gain', 'read_noise', 'half_full_well', 'saturates_before'] saturation_table = [['Blue', 50, 0, 0.25, 3.33, 279600, True], ['Blue', 50, 2, 0.47, 3.35, 148723, True], ['Blue', 50, 3, 0.91, 3.41, 76813, True], ['Blue', 100, 0, 0.56, 3.69, 124821, True], ['Blue', 100, 2, 1.06, 3.72, 65943, True], ['Blue', 100, 3, 2.06, 3.99, 33932, False], ['Blue', 200, 0, 1.4, 4.74, 49928, False], ['Blue', 200, 2, 2.67, 5.12, 26179, False], ['Blue', 400, 0, 5.67, 8.62, 12328, False], ['Red', 100, 3, 1.54, 3.45, 66558, True], ['Red', 100, 2, 3.48, 5.88, 29454, False], ['Red', 344, 3, 1.48, 3.89, 69257, True], ['Red', 344, 0, 3.87, 7.05, 26486, False], ['Red', 750, 2, 1.47, 5.27, 69728, True], ['Red', 750, 2, 1.45, 5.27, 69728, True], ['Red', 750, 0, 3.77, 8.99, 27188, False], ['Red', 750, 0, 3.78, 8.99, 27188, False]] self._sdf = pandas.DataFrame(saturation_table, columns=columns) if ccd is not None: self.get_saturation_value(ccd=ccd) @property def saturation_value(self): """Saturation value in counts In fact the value it returns is the 50% of full potential well, Some configurations reach digital saturation_threshold before 50% of full potential well, they are specified in the last column: ``saturates_before``. Returns: None if the value has not been defined """ if self.__saturation is None: self.log.error('Saturation value not set') return None else: return self.__saturation def get_saturation_value(self, ccd): """Defines the saturation_threshold level Args: ccd (CCDData): Image to be tested for saturation_threshold Returns: The saturation_threshold value or None """ hfw = self._sdf.half_full_well[ (self._sdf.camera == ccd.header['INSTCONF']) & (self._sdf.gain == ccd.header['GAIN']) & (self._sdf.read_noise == ccd.header['RDNOISE'])] if hfw.empty: self.log.critical('Unable to obtain saturation_threshold level') self.__saturation = None return None else: self.__saturation = float("".join(hfw.to_string(index=False).split())) self.log.debug("Set saturation_threshold level as {:.0f}".format( self.__saturation)) return self.__saturation class SpectroscopicMode(object): def __init__(self): """Init method for the Spectroscopic Mode This method defines a :class:`~pandas.DataFrame` instance that contains all the current standard wavelength modes for Goodman HTS. """ self.log = logging.getLogger(__name__) columns = ['grating_freq', 'wavmode', 'camtarg', 'grttarg', 'ob_filter'] spec_mode = [['400', 'm1', '11.6', '5.8', 'None'], ['400', 'm2', '16.1', '7.5', 'GG455'], ['600', 'UV', '15.25', '7.0', 'None'], ['600', 'Blue', '17.0', '7.0', 'None'], ['600', 'Mid', '20.0', '10.0', 'GG385'], ['600', 'Red', '27.0', '12.0', 'GG495'], ['930', 'm1', '20.6', '10.3', 'None'], ['930', 'm2', '25.2', '12.6', 'None'], ['930', 'm3', '29.9', '15.0', 'GG385'], ['930', 'm4', '34.6', '18.3', 'GG495'], ['930', 'm5', '39.4', '19.7', 'GG495'], ['930', 'm6', '44.2', '22.1', 'OG570'], ['1200', 'm0', '26.0', '16.3', 'None'], ['1200', 'm1', '29.5', '16.3', 'None'], ['1200', 'm2', '34.4', '18.7', 'None'], ['1200', 'm3', '39.4', '20.2', 'None'], ['1200', 'm4', '44.4', '22.2', 'GG455'], ['1200', 'm5', '49.6', '24.8', 'GG455'], ['1200', 'm6', '54.8', '27.4', 'GG495'], ['1200', 'm7', '60.2', '30.1', 'OG570'], ['1800', 'Custom', 'None', 'None', 'None'], ['2100', 'Custom', 'None', 'None', 'None'], ['2400', 'Custom', 'None', 'None', 'None'] ] self.modes_data_frame =
pandas.DataFrame(spec_mode, columns=columns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster.bicluster import SpectralCoclustering from bokeh.plotting import figure, output_file, show from bokeh.models import HoverTool, ColumnDataSource from itertools import product ######## practice pt1 x = pd.Series([6, 3, 8, 6], index=["q", "w", "e", "r"]) # print(x.index) # print(x) x = x.reindex(sorted(x.index)) # print(x.index) # print(x) y = pd.Series([7, 3, 5, 2], index=["e", "q", "r", "t"]) # print(x + y) ######## practice pt2 data = {'name': ['Tim', 'Jim', 'Pam', 'Sam'], 'age': [29, 31, 27, 35], 'ZIP': ['02115', '02130', '67700', '00100']} y = pd.DataFrame(data, columns=["name", "age", "ZIP"]) # print(y.name) ######## whisky preparations and plotting whisky = pd.read_csv("whiskies.txt") whisky["Region"] = pd.read_csv("regions.txt") # print("\n\nWhisky head\n", whisky.head()) # print("\nWhisky tail\n", whisky.tail()) # print(whisky.iloc[0:10]) # print(whisky.iloc[5:10, 0:5]) # print(whisky.columns) flavors = whisky.iloc[:, 2:14] corr_flavors =
pd.DataFrame.corr(flavors)
pandas.DataFrame.corr
import glob import os import sys utils_path = os.path.join(os.path.abspath(os.getenv('PROCESSING_DIR')),'utils') if utils_path not in sys.path: sys.path.append(utils_path) import util_files import util_cloud import util_carto import logging from ftplib import FTP import urllib import numpy as np import pandas as pd from zipfile import ZipFile # Set up logging # Get the top-level logger object logger = logging.getLogger() for handler in logger.handlers: logger.removeHandler(handler) logger.setLevel(logging.INFO) # make it print to the console. console = logging.StreamHandler() logger.addHandler(console) logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') # name of table on Carto where you want to upload data # this should be a table name that is not currently in use dataset_name = 'dis_017_storm_events_us' #check logger.info('Executing script for dataset: ' + dataset_name) # create a new sub-directory within your specified dir called 'data' # within this directory, create files to store raw and processed data data_dir = util_files.prep_dirs(dataset_name) ''' Download data and save to your data directory. Two types of files are being used: details and locations. Using bulk download via FTP, link to NOAA's storm events database: https://www.ncdc.noaa.gov/stormevents/ftp.jsp ''' # connect to the FTP server and login anonymously ftp = FTP('ftp.ncdc.noaa.gov', timeout = 30) ftp.login() # navigate to the correct directory and get a list of all filenames ftp.cwd('/pub/data/swdi/stormevents/csvfiles/') filenames = ftp.nlst() # retrieve a sorted list of the details files details_files = [] for filename in filenames: if not filename.startswith('StormEvents_details-ftp_v1.0_d'): continue details_files.append(filename) details_files.sort() # retrieve a sorted list of the locations files locations_files = [] for filename in filenames: if not filename.startswith('StormEvents_locations-ftp_v1.0_d'): continue locations_files.append(filename) locations_files.sort() def ftp_download(file_dir): ''' download data INPUT file_dir: ftp location of file to download (string) ''' for filename in file_dir: with open(os.path.join(data_dir, filename), 'wb') as fo: ftp.retrbinary("RETR " + filename, fo.write) # download data from the source FTP ftp_download(details_files) ftp_download(locations_files) ''' Process data ''' #Concatenating details and locations files raw_data_file = glob.glob(os.path.join(data_dir, "*.gz")) # advisable to use os.path.join as this makes concatenation OS independent details_list = [] locations_list = [] # go through each file, turn it into a dataframe, and append that df to one of two lists, based on if it # is a details file or a locations file for file in raw_data_file: if file.startswith('data/StormEvents_details-ftp_v1.0_d'): df =
pd.read_csv(file)
pandas.read_csv
import numpy as np import gegenbauer import compute_NTK_spectrum import matplotlib.pyplot as plt import approx_learning_curves import csv import numba from numba import jit from numba import prange import time import pandas as pd import argparse def SGD(X, Y, Theta, r, num_iter, readout_only=False): P = X.shape[0] d = X.shape[1] M = Theta.shape[0] deltaTheta = Theta.copy() batch_size = 40 r = np.zeros(M) m_r = np.zeros(M) v_r = np.zeros(M) beta_1 = 0.9 beta_2 = 0.999 m_Theta = np.zeros((M,d)) v_Theta = np.zeros((M,d)) for t in range(num_iter): #r_grad = np.zeros(M) #Theta_grad = np.zeros((M,d)) r_grad = np.zeros((batch_size, M)) Theta_grad = np.zeros((batch_size, M, d)) if t % 500==0: print("SGD epoch = %d" % t) Z0 = Theta @ X.T Z = np.maximum(Z0, np.zeros(Z0.shape)) E_tr = 1/P * np.linalg.norm(Z.T @ r - Y)**2 print("Etr = %e" % E_tr) if E_tr < 1e-16: break g = np.zeros(M) g_Theta = np.zeros((M,d)) # batch wise computation inds = np.random.randint(0,P, batch_size) x_t = X[inds, :] y_t = Y[inds] Z = Theta @ x_t.T A = np.maximum(Z, np.zeros((M, batch_size))) Deriv = np.heaviside(Z, np.zeros((M, batch_size))) f_t = A.T @ r # batchsize g = A @ (f_t - y_t) r_deriv = np.outer(r, np.ones(batch_size)) * Deriv f_y_x = x_t * np.outer(f_t - y_t, np.ones(d)) g_Theta = r_deriv @ f_y_x m_r = beta_1*m_r + (1-beta_1)*g v_r = beta_2*v_r + (1-beta_2)*(g**2) m_hat = m_r / (1-beta_1) v_hat = v_r / (1-beta_2) m_Theta = beta_1 * m_Theta + (1-beta_1) * g_Theta v_Theta = beta_2 * v_Theta + (1-beta_2) * g_Theta**2 m_Theta_hat = m_Theta / (1-beta_1) v_Theta_hat = v_Theta / (1-beta_2) delta_r = - 1e-3 / d * m_hat / (np.sqrt(v_hat) + 1e-8*np.ones(M)) delta_Theta = - 1e-3 /d * m_Theta_hat / (np.sqrt(v_Theta_hat) + 1e-8 *np.ones((M,d))) r += delta_r Theta += delta_Theta Z0 = Theta @ X.T Z = np.maximum(Z0, np.zeros(Z0.shape)) E_tr = 1/P * np.linalg.norm(Z.T @ r - Y)**2 return Theta, r, E_tr def sample_random_points(num_pts, d): R = np.random.multivariate_normal(np.zeros(d), np.eye(d), num_pts) R = R* np.outer( np.linalg.norm(R, axis=1)**(-1), np.ones(d) ) return R @jit(nopython=True, parallel=True) def sample_random_points_jit(num_pts, d, R): for i in prange(R.shape[0]): for j in prange(R.shape[1]): R[i,j] = np.random.standard_normal() for i in prange(R.shape[0]): R[i,:] = R[i,:] * (np.linalg.norm(R[i,:]) + 1e-10)**(-1) return R @jit(nopython = True) def feedfoward(X, Theta, r): Z0 = Theta @ X.T Z = np.maximum(Z0, np.zeros(Z0.shape)) return Z.T @ r def compute_kernel(X, Xp, spectrum, d, kmax): P = X.shape[0] Pp = Xp.shape[0] gram = X @ Xp.T gram = np.reshape(gram, P*Pp) #Q = gegenbauer.get_gegenbauer(gram, kmax, d) Q = gegenbauer.get_gegenbauer_fast2(gram, kmax, d) degens = np.array( [gegenbauer.degeneracy(d,k) for k in range(kmax)] ) K = Q.T @ (spectrum * degens) #K = Q.T @ spectrum K = np.reshape(K, (P,Pp)) return K def get_gegenbauer_gram(Theta1, Theta2): gram = Theta1 @ Theta2.T M = Theta1.shape[0] perc = 0 Q = gegenbauer.get_gegenbauer_fast2(np.reshape(gram, M**2), kmax, d) return Q #@jit(nopython=True) def get_mode_errs(Theta, Theta_teach, r, r_teach, kmax, d, degens): M = Theta.shape[0] Q_ss = get_gegenbauer_gram(Theta, Theta) Q_st = get_gegenbauer_gram(Theta, Theta_teach) Q_tt = get_gegenbauer_gram(Theta_teach, Theta_teach) mode_errs=np.zeros(kmax) for k in range(kmax): Q_ssk = np.reshape(Q_ss[k,:], (M,M)) Q_stk = np.reshape(Q_st[k,:], (M,M)) Q_ttk = np.reshape(Q_tt[k,:], (M,M)) mode_errs[k] = spectrum[k] * degens[k] * ( r.T @ Q_ssk @ r - 2*r.T @ Q_stk @ r_teach + r_teach.T @ Q_ttk @ r_teach ) return mode_errs #@jit(nopython=True, parallel=True) def generalization_expt(P, spectrum, M, d, kmax, num_repeats, Theta_teach, r_teach, num_test=1000): all_mode_errs = np.zeros((num_repeats, kmax)) all_mc_errs = np.zeros(num_repeats) all_training_errs = np.zeros(num_repeats) degens = np.array( [gegenbauer.degeneracy(d,k) for k in range(kmax)] ) print("P = %d" % P) Theta = np.zeros((M,d)) #Theta_teach = np.zeros((M,d)) X_test = np.zeros((num_test, d)) X = np.zeros((P, d)) for t in range(num_repeats): print("t=%d" %t) start = time.time() Theta = sample_random_points_jit(M, d, Theta) r = np.random.standard_normal(M) / np.sqrt(M) X = sample_random_points_jit(P, d, X) Z_teach = np.maximum(Theta_teach @ X.T, np.zeros((M,P)) ) Y = Z_teach.T @ r_teach num_iter = min(200*P, 40000) Theta, r, E_tr = SGD(X, Y, Theta, r, num_iter, readout_only=False) print("final Etr = %e" % E_tr) counter = 1 print("finished SGD") print("num tries: %d" % counter) all_mode_errs[t,:] = get_mode_errs(Theta,Theta_teach, r, r_teach, kmax, d, degens) end = time.time() print("time = %lf" %(end -start)) X_test = sample_random_points_jit(num_test, d, X_test) #X_test = sample_random_points(num_test, d) Y_test = feedfoward(X_test, Theta_teach, r_teach) Y_pred = feedfoward(X_test, Theta, r) all_mc_errs[t] = 1/num_test * np.linalg.norm(Y_test-Y_pred)**2 all_training_errs[t] = E_tr average_mode_errs = np.mean(all_mode_errs, axis = 0) std_errs = np.std(all_mode_errs, axis=0) average_mc =np.mean(all_mc_errs) std_mc = np.std(all_mc_errs) print("average MC = %e" % average_mc) print("sum of modes = %e" % np.sum(average_mode_errs)) return average_mc, std_mc, np.mean(all_training_errs) def compute_kernel(X, Xp, spectrum, d, kmax): P = X.shape[0] Pp = Xp.shape[0] gram = X @ Xp.T gram = np.reshape(gram, P*Pp) #Q = gegenbauer.get_gegenbauer(gram, kmax, d) Q = gegenbauer.get_gegenbauer_fast2(gram, kmax, d) degens = np.array( [gegenbauer.degeneracy(d,k) for k in range(kmax)] ) K = Q.T @ (spectrum * degens) #K = Q.T @ spectrum K = np.reshape(K, (P,Pp)) return K def generalization_expt_kteach(P, spectrum, M, d, kmax, num_repeats, X_teach, alpha_teach, spectrum_teach, num_test=1000): all_mode_errs = np.zeros((num_repeats, kmax)) all_mc_errs = np.zeros(num_repeats) all_training_errs = np.zeros(num_repeats) degens = np.array( [gegenbauer.degeneracy(d,k) for k in range(kmax)] ) print("P = %d" % P) Theta = np.zeros((M,d)) X_test = np.zeros((num_test, d)) X = np.zeros((P, d)) for t in range(num_repeats): print("t=%d" %t) start = time.time() Theta = sample_random_points_jit(M, d, Theta) r = np.random.standard_normal(M) / np.sqrt(M) X = sample_random_points_jit(P, d, X) K = compute_kernel(X_teach, X) Y = K.T @ alpha_teach num_iter = 3*P Theta, r, E_tr = SGD(X, Y, Theta, r, num_iter, readout_only=False) print("Etr = %e" % E_tr) counter = 1 print("finished SGD") print("num tries: %d" % counter) all_mode_errs[t,:] = get_mode_errs(Theta,Theta_teach, r, r_teach, kmax, d, degens) end = time.time() print("time = %lf" %(end -start)) X_test = sample_random_points_jit(num_test, d, X_test) #X_test = sample_random_points(num_test, d) Y_test = feedfoward(X_test, Theta_teach, r_teach) Y_pred = feedfoward(X_test, Theta, r) all_mc_errs[t] = 1/num_test * np.linalg.norm(Y_test-Y_pred)**2 all_training_errs[t] = E_tr average_mode_errs = np.mean(all_mode_errs, axis = 0) std_errs = np.std(all_mode_errs, axis=0) average_mc =np.mean(all_mc_errs) std_mc = np.std(all_mc_errs) print("average MC = %e" % average_mc) print("sum of modes = %e" % np.sum(average_mode_errs)) return average_mc, std_mc, np.mean(all_training_errs) parser = argparse.ArgumentParser() parser.add_argument('--input_dim', type=int, default= 30, help='data input dimension') parser.add_argument('--M', type=int, help='number of hidden units', default = 500) args = parser.parse_args() d = args.input_dim M = args.M kmax = 25 P_vals = [10,20,50,100,250,500] num_repeats = 10 # calculate spectrum of teacher spectrum = gegenbauer.calculate_activation_coeffs(kmax, d)**2 degens = np.array( [gegenbauer.degeneracy(d,k) for k in range(kmax)] ) # fix get effective spectrum for higher d theory_spectrum = compute_NTK_spectrum.get_effective_spectrum([1], kmax, d, ker = 'NTK')[0,:] theory_spectrum_hermite = compute_NTK_spectrum.get_effective_spectrum_hermite([2], kmax, d, ker='NTK')[0,:] theory_spectrum_NNGP = compute_NTK_spectrum.get_effective_spectrum([1], kmax, d, ker = 'NNGP')[0,:] theory_g_sqr, p = approx_learning_curves.simulate_uc(theory_spectrum, degens, lamb = 1e-10) theory_g_sqr_NNGP, p = approx_learning_curves.simulate_uc(theory_spectrum_NNGP, degens, lamb = 1e-10) theory_g_sqr_hermite, p = approx_learning_curves.simulate_uc(theory_spectrum_hermite, degens, lamb = 1e-8) theory_gen = np.zeros(theory_g_sqr.shape) theory_gen_NNGP = np.zeros(theory_g_sqr.shape) theory_gen_hermite = np.zeros(theory_g_sqr.shape) for k in range(kmax): if spectrum[k] !=0: theory_gen[:,k] = theory_g_sqr[:,k] / theory_spectrum[k]**2 * spectrum[k] theory_gen_NNGP[:,k] = theory_g_sqr_NNGP[:,k] / theory_spectrum_NNGP[k]**2 * spectrum[k] theory_gen_hermite[:,k] = theory_g_sqr_hermite[:,k] / theory_spectrum[k]**2 * spectrum[k] #theory_gen[:,k] = theory_g_sqr[:,k] / spectrum[k] * M colors = ['b','r','g', 'm', 'c'] kplot = [0,1,2,4,6] mc_errs = np.zeros(len(P_vals)) std_mc_errs = np.zeros(len(P_vals)) training_errs = np.zeros(len(P_vals)) Theta_teach = sample_random_points(M, d) r_teach = np.random.standard_normal(M) / np.sqrt(M) for i in range(len(P_vals)): P = P_vals[i] av_mc, std_mc, E_tr = generalization_expt(P, spectrum, M, d, kmax, num_repeats, Theta_teach, r_teach) mc_errs[i] = av_mc std_mc_errs[i] = std_mc training_errs[i] = E_tr plt.rcParams.update({'font.size': 12}) plt.loglog(P_vals, training_errs) plt.xlabel('P') plt.ylabel(r'$E_{tr}$') plt.savefig('train_errs.pdf') plt.show() colors = ['b','r','g', 'm', 'c'] mode_df = pd.DataFrame(mode_errs) std_df = pd.DataFrame(std_errs) training_df =
pd.DataFrame(training_errs)
pandas.DataFrame
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.arrays import FloatingArray @pytest.fixture def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.fixture def left_array(): return pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean") @pytest.fixture def right_array(): return
pd.array([True, False, None] * 3, dtype="boolean")
pandas.array
#!/usr/bin/python ''' This file holds the functions necessary to process the data behind the scenes ''' import config import json import pandas as pd import requests import spotipy from datetime import datetime from flask import Flask from flask import request from numpy import nan from spotipy.oauth2 import SpotifyClientCredentials app = Flask(__name__) app.config.from_object('config') spotify_client_id = config.spotify_client_id.decode('utf-8') spotify_client_secret = config.spotify_client_secret.decode('utf-8') seatgeek_client_id = config.seatgeek_client_id def process_daterange(daterange): ''' Process daterange from datepicker input. Args: daterange (str): string with daterange formatted as 'YYYY-MM-DD to YYYY-MM-DD' ''' daterange = daterange.strip() if "to" in daterange: date1, date2 = daterange.split(" to ") else: date1, date2 = (daterange, None) return date1, date2 def get_concert_information(zipcode, date1, date2, dist=3, per_page=100, client_id=seatgeek_client_id): ''' Fetch concert information from seatgeek Args: zipcode (str): zipcode to search near date1 (str): min date of search date2 (str): max date of search dist (str): distance (mi) around zipcode for search (default 3) per_page (int): maximum number of results (default: 100) client_id (str): seatgeek client id (default: from config.py) ''' # Get dates in formate seatgeek likes if not date2: date2 = date1 datetime1 = f'{date1}T00:00:00' datetime2 = f'{date2}T23:00:00' # seatgeek API request params = {"geoip": zipcode, "type": "concert", "per_page": per_page, "range": f"{dist}mi", "datetime_local.gte": datetime1, "datetime_local.lte": datetime2} base_url = f"https://api.seatgeek.com/2/events?client_id={client_id}" param_str = "&".join([f"{i}={v}" for i, v in params.items()]) response = requests.get(base_url + "&" + param_str) data = response.json() if response.status_code == 200: # If there are no concerts raise exception if len(data['events']) < 1: raise NoConcertsFound return data else: raise FailedApiRequestError def build_df_and_get_spotify_info(data): ''' Take cocert information from the seatgeek API, make a dataframe, and populate with Spotify artist and track infomration Args: data (dict): dictionary from seatgeek api response Returns: pandas.DataFrame: dataframe with cncert and artist information in it ''' # Use spotipy for its great support for large volume of requests client_credentials_manager = SpotifyClientCredentials(client_id=spotify_client_id, client_secret=spotify_client_secret) sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager) # Pull select data fields and put into pandas dataframe df_dict = {} for event in data['events']: for performer in event['performers']: d = {} d['performer'] = performer['short_name'] try: d['genre'] = performer['genres'][0]['name'] except KeyError: d['genre'] = "NA" d['datetime_local'] = event['datetime_local'] dt = datetime.strptime(d['datetime_local'], "%Y-%m-%dT%H:%M:%S") d['date_local'] = dt.strftime("%b %d %Y") d['time_local'] = dt.strftime("%I:%M%p") d['event_id'] = event['id'] d['event_title'] = event['title'] d['venue_name'] = event['venue']['name'] d['venue_id'] = event['venue']['id'] d['venue_address'] = f"{event['venue']['address']}, {event['venue']['extended_address']}" # noqa # # Spotify searching spotify_artist_id, spotify_top_track_id = lookup_spotify_artist_track(sp, d['performer']) # noqa d['spotify_artist_id'] = spotify_artist_id d['spotify_top_track_id'] = spotify_top_track_id # Performer information to dictionary df_dict[performer['id']] = d df =
pd.DataFrame(df_dict)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import numpy.linalg as LA from scipy.sparse import csr_matrix from sklearn.preprocessing import MinMaxScaler def show_mtrx(m, title = None): fig, ax = plt.subplots(figsize = (10, 5)) min_val = int(m.min()) max_val = int(m.max()) cax = ax.matshow(m, cmap=plt.cm.seismic) fig.colorbar(cax, ticks=[min_val, int((min_val + max_val)/2), max_val]) plt.title(title) plt.show() def plot_results(MADs, MSEs): f, axes = plt.subplots(1, 2, figsize=(10, 5)) if len(MADs) == 3: mad = {"K": list(range(2, 2 + len(MADs[0]))), "xTx": MADs[0], "zTz": MADs[1], "rTr": MADs[2]} else: mad = {"K": list(range(2, 2 + len(MADs[0]))), "xTx": MADs[0], "zTz": MADs[1]} df_mad =
pd.DataFrame(mad)
pandas.DataFrame
import csv import pandas as pd import os import numpy as np BASE_DIR = os.getcwd() def merge_dev_data(result_filename, file_pos, file_neg): """ Description: function that merges dev data from both sentiments into a single data structure Input: -result_filename: str, name of the file to write the result to -file_pos: str, name of file containing positive dev data -file_neg: str, name of file containing negative dev data """ merged_data = [] with open(file_pos, errors="replace") as text: txt = text.readlines() merged_data += [(line, "positive") for line in txt] text.close() with open(file_neg, errors="replace") as text: txt = text.readlines() merged_data += [(line, "negative") for line in txt] text.close() df = pd.DataFrame(merged_data, columns=["text", "sentiment"]) df["text"] = df["text"].apply(lambda x: x.strip()) df = df.replace("", np.nan) df = df[df["text"].notnull()] df.to_csv(result_filename, index=False) def merge_training_data(result_filename, original_dir, sentiment): """ Description: function that merges the training text files for the positive and negative directories Input: -result_filename_pos: str, name of the file that will contain training data for the given sentiment -original_dir: str, the directory containing the text files -sentiment: str, the sentiment of the given text files """ df =
pd.DataFrame()
pandas.DataFrame
from aridanalysis import aridanalysis as aa import pytest import pandas as pd import numpy as np import sklearn from vega_datasets import data import altair as alt import statsmodels # import warnings import sys import os myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, myPath + "/../aridanalysis") import error_strings as errors # noqaE402 @pytest.fixture def simple_frame(): """ Create a basic test dataframe for linear regression tests """ tdf = pd.DataFrame( { "x1": [1, 0, 0], "x2": [0, 1.0, 0], "x3": [0, 0, 1], "x4": ["a", "a", "b"], "y": [1, 3, -1.0], } ) return tdf def test_arideda_return(): """ Test return data type """ _, out = aa.arid_eda( data.iris(), "species", "categorical", ["sepalLength", "sepalWidth"] ) assert isinstance(out, alt.HConcatChart) def test_arideda_features(): """ Test calling with valid features list """ out, _ = aa.arid_eda( data.iris(), "species", "categorical", ["sepalLength", "sepalWidth"] ) assert isinstance(out, pd.core.frame.DataFrame) def test_arideda_numfeature(): """ Ensure data frame is appropriate size according to features """ features = ["sepalLength", "sepalWidth"] out, _ = aa.arid_eda(data.iris(), "species", "categorical", features) assert out.shape == (8, len(features)) def test_arideda_returns_tuple(): """ Check that function returns two items """ assert ( len( aa.arid_eda( data.iris(), "species", "categorical", ["sepalLength", "sepalWidth"] ) ) == 2 ) def test_arideda_empty_df(): """ Test if error occurs when repsonse type is not categorical or continuous """ with pytest.raises(AssertionError): aa.arid_eda( data.iris(), "species", "ORDINAL", ["sepalLength", "sepalWidth"]) def test_response_type_incorrect(): """ Test if an error occurs when wrong response type is given """ with pytest.raises(AssertionError): aa.arid_eda( data.iris(), "petalLength", "categorical", ["sepalLength", "sepalWidth"] ) def test_linreg_input_errors(simple_frame): """ Test linear regression input argument validation """ with pytest.raises(AssertionError, match=errors.INVALID_DATAFRAME): aa.arid_linreg(6, "y") with pytest.raises(AssertionError, match=errors.EMPTY_DATAFRAME): aa.arid_linreg(pd.DataFrame(), "y") with pytest.raises(AssertionError, match=errors.RESPONSE_NOT_FOUND): aa.arid_linreg(simple_frame, "z") with pytest.raises(AssertionError, match=errors.INVALID_RESPONSE_DATATYPE): aa.arid_linreg(simple_frame, "x4") with pytest.raises(AssertionError, match=errors.INVALID_REGULARIZATION_INPUT): # noqaE501 aa.arid_linreg(simple_frame, "y", regularization="L3") with pytest.raises(AssertionError, match=errors.INVALID_ALPHA_INPUT): aa.arid_linreg(simple_frame, "y", alpha="b") def test_linreg_input_features(simple_frame): """ Test linear regression input feature arguments """ with pytest.raises(AssertionError, match=errors.NO_VALID_FEATURES): aa.arid_linreg(simple_frame[["y"]], "y") with pytest.raises(AssertionError, match=errors.NO_VALID_FEATURES): aa.arid_linreg(simple_frame[["x4", "y"]], "y") with pytest.raises(AssertionError, match=errors.NO_VALID_FEATURES): aa.arid_linreg(simple_frame, "y", features=["b"]) with pytest.raises(AssertionError, match=errors.NO_VALID_FEATURES): aa.arid_linreg(simple_frame, "y", features=["x4"]) with pytest.warns(UserWarning): aa.arid_linreg(simple_frame, "y", features=["x1", "x2", "x3", "x4"]) with pytest.warns(UserWarning): aa.arid_linreg(simple_frame, "y", features=["x1", "b"]) assert len((aa.arid_linreg(simple_frame, "y"))[0].coef_) == 3 assert ( len((aa.arid_linreg(simple_frame, "y", features=simple_frame.columns))[0].coef_) == 3 ) assert ( len((aa.arid_linreg(simple_frame, "y", features=["x1", "x2", "x3"]))[0].coef_) == 3 ) assert ( len( (aa.arid_linreg(simple_frame, "y", features=["x1", "x2", "x3", "x4"]))[ 0 ].coef_ ) == 3 ) assert len((aa.arid_linreg( simple_frame, "y", features=["x1"]))[0].coef_) == 1 assert len((aa.arid_linreg( simple_frame, "y", features=["x1", "x2"]))[0].coef_) == 2 assert len((aa.arid_linreg(simple_frame, "y"))[1].params) == 3 assert ( len( (aa.arid_linreg( simple_frame, "y", features=simple_frame.columns))[1].params ) == 3 ) assert ( len((aa.arid_linreg( simple_frame, "y", features=["x1", "x2", "x3"]))[1].params) == 3 ) assert ( len( (aa.arid_linreg( simple_frame, "y", features=["x1", "x2", "x3", "x4"]))[ 1 ].params ) == 3 ) assert len((aa.arid_linreg( simple_frame, "y", features=["x1"]))[1].params) == 1 assert ( len((aa.arid_linreg( simple_frame, "y", features=["x1", "x2"]))[1].params) == 2 ) def test_linreg_model_types(simple_frame): """ Test linear regression output model types """ assert ( type((aa.arid_linreg(simple_frame, "y"))[0]) == sklearn.linear_model._base.LinearRegression ) assert ( type((aa.arid_linreg(simple_frame, "y", regularization="L1"))[0]) == sklearn.linear_model._coordinate_descent.Lasso ) assert ( type((aa.arid_linreg(simple_frame, "y", regularization="L2"))[0]) == sklearn.linear_model._ridge.Ridge ) assert ( type((aa.arid_linreg(simple_frame, "y", regularization="L1L2"))[0]) == sklearn.linear_model._coordinate_descent.ElasticNet ) assert ( type((aa.arid_linreg(simple_frame, "y"))[1]) == statsmodels.regression.linear_model.RegressionResultsWrapper ) assert ( type((aa.arid_linreg(simple_frame, "y", regularization="L1"))[1]) == statsmodels.base.elastic_net.RegularizedResultsWrapper ) assert ( type((aa.arid_linreg(simple_frame, "y", regularization="L2"))[1]) == statsmodels.base.elastic_net.RegularizedResults ) assert ( type((aa.arid_linreg(simple_frame, "y", regularization="L1L2"))[1]) == statsmodels.base.elastic_net.RegularizedResultsWrapper ) def test_linreg_model_coefficients(simple_frame): """ Test statsmodel & sklearn model coefficients match """ assert ( aa.arid_linreg(simple_frame, "y")[0].coef_.all() == (aa.arid_linreg(simple_frame, "y")[1].params).to_numpy().all() ) assert ( aa.arid_linreg(simple_frame, "y", regularization="L1")[0].coef_.all() == (aa.arid_linreg(simple_frame, "y", regularization="L1")[1].params) .to_numpy() .all() ) assert ( aa.arid_linreg(simple_frame, "y", regularization="L2")[0].coef_.all() == (aa.arid_linreg(simple_frame, "y", regularization="L2")[1].params).all() # noqaE501 ) assert ( aa.arid_linreg(simple_frame, "y", regularization="L1L2")[0].coef_.all() == (aa.arid_linreg(simple_frame, "y", regularization="L1L2")[1].params) .to_numpy() .all() ) def test_linreg_model_predictions(simple_frame): """ Test statsmodel and sklearn model predictions match """ assert round( aa.arid_linreg(simple_frame, "y")[0].predict(np.array([[1, 4, 3]]))[0], 3 # noqaE501 ) == round( (aa.arid_linreg(simple_frame, "y")[1].predict(np.array([[1, 4, 3]])))[0], 3 # noqaE501 ) assert round( aa.arid_linreg(simple_frame, "y", regularization="L1")[0].predict( np.array([[1, 4, 3]]) )[0], 3, ) == round( ( aa.arid_linreg(simple_frame, "y", regularization="L1")[1].predict( np.array([[1, 4, 3]]) ) )[0], 3, ) assert round( aa.arid_linreg(simple_frame, "y", regularization="L2")[0].predict( np.array([[1, 4, 3]]) )[0], 3, ) == round( ( aa.arid_linreg(simple_frame, "y", regularization="L2")[1].predict( np.array([[1, 4, 3]]) ) )[0], 3, ) assert round( aa.arid_linreg(simple_frame, "y", regularization="L1L2")[0].predict( np.array([[1, 4, 3]]) )[0], 3, ) == round( aa.arid_linreg(simple_frame, "y", regularization="L1L2")[1].predict( np.array([[1, 4, 3]]) )[0], 3, ) @pytest.fixture def log_df(): """ Create a basic test dataframe for logistic regression tests """ data = [ [32, "male", 80, 0], [26, "female", 65, 1], [22, "female", 75, 1], [36, "male", 85, 0], [45, "male", 82, 1], [18, "female", 57, 0], [57, "male", 60, 1], ] log_df =
pd.DataFrame(data, columns=["Age", "Sex", "Weight", "Target"])
pandas.DataFrame
#!/usr/bin/env python3 import argparse import collections import copy import datetime import functools import glob import json import logging import math import operator import os import os.path import re import sys import typing import warnings import matplotlib import matplotlib.cm import matplotlib.dates import matplotlib.pyplot import matplotlib.ticker import networkx import numpy import pandas import tabulate import tqdm import rows.console import rows.load import rows.location_finder import rows.model.area import rows.model.carer import rows.model.datetime import rows.model.historical_visit import rows.model.history import rows.model.json import rows.model.location import rows.model.metadata import rows.model.past_visit import rows.model.problem import rows.model.rest import rows.model.schedule import rows.model.service_user import rows.model.visit import rows.parser import rows.plot import rows.routing_server import rows.settings import rows.sql_data_source def handle_exception(exc_type, exc_value, exc_traceback): """Logs uncaught exceptions""" if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) else: logging.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) __COMMAND = 'command' __PULL_COMMAND = 'pull' __INFO_COMMAND = 'info' __SHOW_WORKING_HOURS_COMMAND = 'show-working-hours' __COMPARE_BOX_PLOTS_COMMAND = 'compare-box-plots' __COMPARE_DISTANCE_COMMAND = 'compare-distance' __COMPARE_WORKLOAD_COMMAND = 'compare-workload' __COMPARE_QUALITY_COMMAND = 'compare-quality' __COMPARE_COST_COMMAND = 'compare-cost' __CONTRAST_WORKLOAD_COMMAND = 'contrast-workload' __COMPARE_PREDICTION_ERROR_COMMAND = 'compare-prediction-error' __COMPARE_BENCHMARK_COMMAND = 'compare-benchmark' __COMPARE_BENCHMARK_TABLE_COMMAND = 'compare-benchmark-table' __COMPARE_LITERATURE_TABLE_COMMAND = 'compare-literature-table' __COMPARE_THIRD_STAGE_PLOT_COMMAND = 'compare-third-stage-plot' __COMPARE_THIRD_STAGE_TABLE_COMMAND = 'compare-third-stage-table' __COMPARE_THIRD_STAGE_SUMMARY_COMMAND = 'compare-third-stage-summary' __COMPARE_QUALITY_OPTIMIZER_COMMAND = 'compare-quality-optimizer' __COMPUTE_RISKINESS_COMMAND = 'compute-riskiness' __COMPARE_DELAY_COMMAND = 'compare-delay' __TYPE_ARG = 'type' __ACTIVITY_TYPE = 'activity' __VISITS_TYPE = 'visits' __COMPARE_TRACE_COMMAND = 'compare-trace' __CONTRAST_TRACE_COMMAND = 'contrast-trace' __COST_FUNCTION_TYPE = 'cost_function' __DEBUG_COMMAND = 'debug' __AREA_ARG = 'area' __FROM_ARG = 'from' __TO_ARG = 'to' __FILE_ARG = 'file' __DATE_ARG = 'date' __BASE_FILE_ARG = 'base-file' __CANDIDATE_FILE_ARG = 'candidate-file' __SOLUTION_FILE_ARG = 'solution' __PROBLEM_FILE_ARG = 'problem' __OUTPUT_PREFIX_ARG = 'output_prefix' __OPTIONAL_ARG_PREFIX = '--' __BASE_SCHEDULE_PATTERN = 'base_schedule_pattern' __CANDIDATE_SCHEDULE_PATTERN = 'candidate_schedule_pattern' __SCHEDULE_PATTERNS = 'schedule_patterns' __LABELS = 'labels' __OUTPUT = 'output' __ARROWS = 'arrows' __FILE_FORMAT_ARG = 'output_format' __color_map = matplotlib.pyplot.get_cmap('tab20c') FOREGROUND_COLOR = __color_map.colors[0] FOREGROUND_COLOR2 = 'black' def get_or_raise(obj, prop): value = getattr(obj, prop) if not value: raise ValueError('{0} not set'.format(prop)) return value def get_date_time(value): date_time = datetime.datetime.strptime(value, '%Y-%m-%d') return date_time def get_date(value): value_to_use = get_date_time(value) return value_to_use.date() def configure_parser(): parser = argparse.ArgumentParser(prog=sys.argv[0], description='Robust Optimization ' 'for Workforce Scheduling command line utility') subparsers = parser.add_subparsers(dest=__COMMAND) pull_parser = subparsers.add_parser(__PULL_COMMAND) pull_parser.add_argument(__AREA_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FROM_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TO_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT_PREFIX_ARG) info_parser = subparsers.add_parser(__INFO_COMMAND) info_parser.add_argument(__FILE_ARG) compare_distance_parser = subparsers.add_parser(__COMPARE_DISTANCE_COMMAND) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __PROBLEM_FILE_ARG, required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __SCHEDULE_PATTERNS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __LABELS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) compare_workload_parser = subparsers.add_parser(__COMPARE_WORKLOAD_COMMAND) compare_workload_parser.add_argument(__PROBLEM_FILE_ARG) compare_workload_parser.add_argument(__BASE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__CANDIDATE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) debug_parser = subparsers.add_parser(__DEBUG_COMMAND) # debug_parser.add_argument(__PROBLEM_FILE_ARG) # debug_parser.add_argument(__SOLUTION_FILE_ARG) compare_trace_parser = subparsers.add_parser(__COMPARE_TRACE_COMMAND) compare_trace_parser.add_argument(__PROBLEM_FILE_ARG) compare_trace_parser.add_argument(__FILE_ARG) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __ARROWS, type=bool, default=False) contrast_workload_parser = subparsers.add_parser(__CONTRAST_WORKLOAD_COMMAND) contrast_workload_parser.add_argument(__PROBLEM_FILE_ARG) contrast_workload_parser.add_argument(__BASE_FILE_ARG) contrast_workload_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TYPE_ARG) compare_prediction_error_parser = subparsers.add_parser(__COMPARE_PREDICTION_ERROR_COMMAND) compare_prediction_error_parser.add_argument(__BASE_FILE_ARG) compare_prediction_error_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser = subparsers.add_parser(__CONTRAST_TRACE_COMMAND) contrast_trace_parser.add_argument(__PROBLEM_FILE_ARG) contrast_trace_parser.add_argument(__BASE_FILE_ARG) contrast_trace_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) show_working_hours_parser = subparsers.add_parser(__SHOW_WORKING_HOURS_COMMAND) show_working_hours_parser.add_argument(__FILE_ARG) show_working_hours_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_quality_parser = subparsers.add_parser(__COMPARE_QUALITY_COMMAND) compare_quality_optimizer_parser = subparsers.add_parser(__COMPARE_QUALITY_OPTIMIZER_COMMAND) compare_quality_optimizer_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_COST_COMMAND) compare_benchmark_parser = subparsers.add_parser(__COMPARE_BENCHMARK_COMMAND) compare_benchmark_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_LITERATURE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_BENCHMARK_TABLE_COMMAND) subparsers.add_parser(__COMPUTE_RISKINESS_COMMAND) subparsers.add_parser(__COMPARE_DELAY_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_PLOT_COMMAND) compare_box_parser = subparsers.add_parser(__COMPARE_BOX_PLOTS_COMMAND) compare_box_parser.add_argument(__PROBLEM_FILE_ARG) compare_box_parser.add_argument(__BASE_FILE_ARG) compare_box_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) third_stage_summary_parser = subparsers.add_parser(__COMPARE_THIRD_STAGE_SUMMARY_COMMAND) third_stage_summary_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) return parser def split_delta(delta: datetime.timedelta) -> typing.Tuple[int, int, int, int]: days = int(delta.days) hours = int((delta.total_seconds() - 24 * 3600 * days) // 3600) minutes = int((delta.total_seconds() - 24 * 3600 * days - 3600 * hours) // 60) seconds = int(delta.total_seconds() - 24 * 3600 * days - 3600 * hours - 60 * minutes) assert hours < 24 assert minutes < 60 assert seconds < 60 return days, hours, minutes, seconds def get_time_delta_label(total_travel_time: datetime.timedelta) -> str: days, hours, minutes, seconds = split_delta(total_travel_time) time = '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) if days == 0: return time elif days == 1: return '1 day ' + time else: return '{0} days '.format(days) + time def pull(args, settings): area_code = get_or_raise(args, __AREA_ARG) from_raw_date = get_or_raise(args, __FROM_ARG) to_raw_date = get_or_raise(args, __TO_ARG) output_prefix = get_or_raise(args, __OUTPUT_PREFIX_ARG) console = rows.console.Console() user_tag_finder = rows.location_finder.UserLocationFinder(settings) location_cache = rows.location_finder.FileSystemCache(settings) location_finder = rows.location_finder.MultiModeLocationFinder(location_cache, user_tag_finder, timeout=5.0) data_source = rows.sql_data_source.SqlDataSource(settings, console, location_finder) from_date_time = get_date_time(from_raw_date) to_date_time = get_date_time(to_raw_date) current_date_time = from_date_time while current_date_time <= to_date_time: schedule = data_source.get_past_schedule(rows.model.area.Area(code=area_code), current_date_time.date()) for visit in schedule.visits: visit.visit.address = None output_file = '{0}_{1}.json'.format(output_prefix, current_date_time.date().strftime('%Y%m%d')) with open(output_file, 'w') as output_stream: json.dump(schedule, output_stream, cls=rows.model.json.JSONEncoder) current_date_time += datetime.timedelta(days=1) def get_travel_time(schedule, user_tag_finder): routes = schedule.routes() total_travel_time = datetime.timedelta() with rows.plot.create_routing_session() as session: for route in routes: visit_it = iter(route.visits) current_visit = next(visit_it, None) current_location = user_tag_finder.find(int(current_visit.visit.service_user)) while current_visit: prev_location = current_location current_visit = next(visit_it, None) if not current_visit: break current_location = user_tag_finder.find(int(current_visit.visit.service_user)) travel_time_sec = session.distance(prev_location, current_location) if travel_time_sec: total_travel_time += datetime.timedelta(seconds=travel_time_sec) return total_travel_time def info(args, settings): user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() schedule_file = get_or_raise(args, __FILE_ARG) schedule_file_to_use = os.path.realpath(os.path.expandvars(schedule_file)) schedule = rows.load.load_schedule(schedule_file_to_use) carers = {visit.carer for visit in schedule.visits} print(get_travel_time(schedule, user_tag_finder), len(carers), len(schedule.visits)) def compare_distance(args, settings): schedule_patterns = getattr(args, __SCHEDULE_PATTERNS) labels = getattr(args, __LABELS) output_file = getattr(args, __OUTPUT, 'distance') output_file_format = getattr(args, __FILE_FORMAT_ARG) data_frame_file = 'data_frame_cache.bin' if os.path.isfile(data_frame_file): data_frame = pandas.read_pickle(data_frame_file) else: problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) store = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for label, schedule_pattern in zip(labels, schedule_patterns): for schedule_path in glob.glob(schedule_pattern): schedule = rows.load.load_schedule(schedule_path) duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(schedule) frame = rows.plot.get_schedule_data_frame(schedule, problem, duration_estimator, distance_estimator) visits = frame['Visits'].sum() carers = len(frame.where(frame['Visits'] > 0)) idle_time = frame['Availability'] - frame['Travel'] - frame['Service'] idle_time[idle_time < pandas.Timedelta(0)] = pandas.Timedelta(0) overtime = frame['Travel'] + frame['Service'] - frame['Availability'] overtime[overtime < pandas.Timedelta(0)] = pandas.Timedelta(0) store.append({'Label': label, 'Date': schedule.metadata.begin, 'Availability': frame['Availability'].sum(), 'Travel': frame['Travel'].sum(), 'Service': frame['Service'].sum(), 'Idle': idle_time.sum(), 'Overtime': overtime.sum(), 'Carers': carers, 'Visits': visits}) data_frame = pandas.DataFrame(store) data_frame.sort_values(by=['Date'], inplace=True) data_frame.to_pickle(data_frame_file) condensed_frame = pandas.pivot(data_frame, columns='Label', values='Travel', index='Date') condensed_frame['Improvement'] = condensed_frame['2nd Stage'] - condensed_frame['3rd Stage'] condensed_frame['RelativeImprovement'] = condensed_frame['Improvement'] / condensed_frame['2nd Stage'] color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, ax = matplotlib.pyplot.subplots(1, 1, sharex=True) try: width = 0.20 dates = data_frame['Date'].unique() time_delta_convert = rows.plot.TimeDeltaConverter() indices = numpy.arange(1, len(dates) + 1, 1) handles = [] position = 0 for color_number, label in enumerate(labels): data_frame_to_use = data_frame[data_frame['Label'] == label] handle = ax.bar(indices + position * width, time_delta_convert(data_frame_to_use['Travel']), width, color=color_map.colors[color_number], bottom=time_delta_convert.zero) handles.append(handle) position += 1 ax.yaxis_date() yaxis_converter = rows.plot.CumulativeHourMinuteConverter() ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(yaxis_converter)) ax.set_ylabel('Total Travel Time [hh:mm:ss]') ax.set_yticks([time_delta_convert.zero + datetime.timedelta(seconds=seconds) for seconds in range(0, 30 * 3600, 4 * 3600 + 1)]) ax.set_xlabel('Day of October 2017') translate_labels = { '3rd Stage': '3rd Stage', 'Human Planners': 'Human Planners' } labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] rows.plot.add_legend(ax, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -0.25)) # , bbox_to_anchor=(0.5, -1.1) figure.tight_layout() figure.subplots_adjust(bottom=0.20) rows.plot.save_figure(output_file, output_file_format) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) # figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(3, 1, sharex=True) # try: # width = 0.20 # dates = data_frame['Date'].unique() # time_delta_convert = rows.plot.TimeDeltaConverter() # indices = numpy.arange(1, len(dates) + 1, 1) # # handles = [] # position = 0 # for label in labels: # data_frame_to_use = data_frame[data_frame['Label'] == label] # # handle = ax1.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Travel']), # width, # bottom=time_delta_convert.zero) # # ax2.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Idle']), # width, # bottom=time_delta_convert.zero) # # ax3.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Overtime']), # width, # bottom=time_delta_convert.zero) # # handles.append(handle) # position += 1 # # ax1.yaxis_date() # ax1.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax1.set_ylabel('Travel Time') # # ax2.yaxis_date() # ax2.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax2.set_ylabel('Idle Time') # # ax3.yaxis_date() # ax3.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax3.set_ylabel('Total Overtime') # ax3.set_xlabel('Day of October 2017') # # translate_labels = { # '3rd Stage': 'Optimizer', # 'Human Planners': 'Human Planners' # } # labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] # # rows.plot.add_legend(ax3, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -1.1)) # figure.tight_layout() # figure.subplots_adjust(bottom=0.20) # # rows.plot.save_figure(output_file, output_file_format) # finally: # matplotlib.pyplot.cla() # matplotlib.pyplot.close(figure) def calculate_forecast_visit_duration(problem): forecast_visit_duration = rows.plot.VisitDict() for recurring_visits in problem.visits: for local_visit in recurring_visits.visits: forecast_visit_duration[local_visit] = local_visit.duration return forecast_visit_duration def compare_workload(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary base_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __BASE_SCHEDULE_PATTERN))} base_schedule_by_date = {schedule.metadata.begin: schedule for schedule in base_schedules} candidate_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __CANDIDATE_SCHEDULE_PATTERN))} candidate_schedule_by_date = {schedule.metadata.begin: schedule for schedule in candidate_schedules} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() output_file_format = getattr(args, __FILE_FORMAT_ARG) dates = set(candidate_schedule_by_date.keys()) for date in base_schedule_by_date.keys(): dates.add(date) dates = list(dates) dates.sort() with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for date in dates: base_schedule = base_schedule_by_date.get(date, None) if not base_schedule: logging.error('No base schedule is available for %s', date) continue duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(base_schedule) candidate_schedule = candidate_schedule_by_date.get(date, None) if not candidate_schedule: logging.error('No candidate schedule is available for %s', date) continue base_schedule_file = base_schedules[base_schedule] base_schedule_data_frame = rows.plot.get_schedule_data_frame(base_schedule, problem, duration_estimator, distance_estimator) base_schedule_stem, base_schedule_ext = os.path.splitext(os.path.basename(base_schedule_file)) rows.plot.save_workforce_histogram(base_schedule_data_frame, base_schedule_stem, output_file_format) candidate_schedule_file = candidate_schedules[candidate_schedule] candidate_schedule_data_frame = rows.plot.get_schedule_data_frame(candidate_schedule, problem, duration_estimator, distance_estimator) candidate_schedule_stem, candidate_schedule_ext \ = os.path.splitext(os.path.basename(candidate_schedule_file)) rows.plot.save_workforce_histogram(candidate_schedule_data_frame, candidate_schedule_stem, output_file_format) rows.plot.save_combined_histogram(candidate_schedule_data_frame, base_schedule_data_frame, ['2nd Stage', '3rd Stage'], 'contrast_workforce_{0}_combined'.format(date), output_file_format) def contrast_workload(args, settings): __WIDTH = 0.35 __FORMAT = 'svg' plot_type = getattr(args, __TYPE_ARG, None) if plot_type != __ACTIVITY_TYPE and plot_type != __VISITS_TYPE: raise ValueError( 'Unknown plot type: {0}. Use either {1} or {2}.'.format(plot_type, __ACTIVITY_TYPE, __VISITS_TYPE)) problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) base_schedule = rows.load.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.load.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) if base_schedule.metadata.begin != candidate_schedule.metadata.begin: raise ValueError('Schedules begin at a different date: {0} vs {1}' .format(base_schedule.metadata.begin, candidate_schedule.metadata.begin)) if base_schedule.metadata.end != candidate_schedule.metadata.end: raise ValueError('Schedules end at a different date: {0} vs {1}' .format(base_schedule.metadata.end, candidate_schedule.metadata.end)) location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary date = base_schedule.metadata.begin problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) with rows.plot.create_routing_session() as routing_session: observed_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) base_schedule_frame = rows.plot.get_schedule_data_frame(base_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) candidate_schedule_frame = rows.plot.get_schedule_data_frame(candidate_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, axis = matplotlib.pyplot.subplots() matplotlib.pyplot.tight_layout() try: contrast_frame = pandas.DataFrame.merge(base_schedule_frame, candidate_schedule_frame, on='Carer', how='left', suffixes=['_Base', '_Candidate']) contrast_frame['Visits_Candidate'] = contrast_frame['Visits_Candidate'].fillna(0) contrast_frame['Availability_Candidate'] \ = contrast_frame['Availability_Candidate'].mask(pandas.isnull, contrast_frame['Availability_Base']) contrast_frame['Travel_Candidate'] \ = contrast_frame['Travel_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame['Service_Candidate'] \ = contrast_frame['Service_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame = contrast_frame.sort_values( by=['Availability_Candidate', 'Service_Candidate', 'Travel_Candidate'], ascending=False) if plot_type == __VISITS_TYPE: indices = numpy.arange(len(contrast_frame.index)) base_handle = axis.bar(indices, contrast_frame['Visits_Base'], __WIDTH) candidate_handle = axis.bar(indices + __WIDTH, contrast_frame['Visits_Candidate'], __WIDTH) axis.legend((base_handle, candidate_handle), ('Human Planners', 'Constraint Programming'), loc='best') output_file = problem_file_name + '_contrast_visits_' + date.isoformat() + '.' + __FORMAT elif plot_type == __ACTIVITY_TYPE: indices = numpy.arange(len(base_schedule_frame.index)) def plot_activity_stacked_histogram(availability, travel, service, axis, width=0.35, initial_width=0.0, color_offset=0): time_delta_converter = rows.plot.TimeDeltaConverter() travel_series = numpy.array(time_delta_converter(travel)) service_series = numpy.array(time_delta_converter(service)) idle_overtime_series = list(availability - travel - service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices + initial_width, service_series, width, bottom=time_delta_converter.zero, color=color_map.colors[0 + color_offset]) travel_handle = axis.bar(indices + initial_width, travel_series, width, bottom=service_series + time_delta_converter.zero_num, color=color_map.colors[2 + color_offset]) idle_handle = axis.bar(indices + initial_width, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[4 + color_offset]) overtime_handle = axis.bar(indices + initial_width, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[6 + color_offset]) return service_handle, travel_handle, idle_handle, overtime_handle travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Candidate, contrast_frame.Travel_Candidate, contrast_frame.Service_Candidate, axis, __WIDTH) travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Base, contrast_frame.Travel_Base, contrast_frame.Service_Base, axis, __WIDTH, __WIDTH, 1) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend( (travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle, travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle), ('', '', '', '', 'Service', 'Travel', 'Idle', 'Overtime'), loc='best', ncol=2, columnspacing=0) output_file = problem_file_name + '_contrast_activity_' + date.isoformat() + '.' + __FORMAT bottom, top = axis.get_ylim() axis.set_ylim(bottom, top + 0.025) else: raise ValueError('Unknown plot type {0}'.format(plot_type)) matplotlib.pyplot.subplots_adjust(left=0.125) matplotlib.pyplot.savefig(output_file, format=__FORMAT, dpi=300) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def parse_time_delta(text): if text: time = datetime.datetime.strptime(text, '%H:%M:%S').time() return datetime.timedelta(hours=time.hour, minutes=time.minute, seconds=time.second) return None class TraceLog: __STAGE_PATTERN = re.compile('^\w+(?P<number>\d+)(:?\-Patch)?$') __PENALTY_PATTERN = re.compile('^MissedVisitPenalty:\s+(?P<penalty>\d+)$') __CARER_USED_PATTERN = re.compile('^CarerUsedPenalty:\s+(?P<penalty>\d+)$') class ProgressMessage: def __init__(self, **kwargs): self.__branches = kwargs.get('branches', None) self.__cost = kwargs.get('cost', None) self.__dropped_visits = kwargs.get('dropped_visits', None) self.__memory_usage = kwargs.get('memory_usage', None) self.__solutions = kwargs.get('solutions', None) self.__wall_time = parse_time_delta(kwargs.get('wall_time', None)) @property def cost(self): return self.__cost @property def solutions(self): return self.__solutions @property def dropped_visits(self): return self.__dropped_visits class ProblemMessage: def __init__(self, **kwargs): self.__carers = kwargs.get('carers', None) self.__visits = kwargs.get('visits', None) self.__date = kwargs.get('date', None) if self.__date: self.__date = datetime.datetime.strptime(self.__date, '%Y-%b-%d').date() self.__visit_time_windows = parse_time_delta(kwargs.get('visit_time_windows', None)) self.__break_time_windows = parse_time_delta(kwargs.get('break_time_windows', None)) self.__shift_adjustment = parse_time_delta(kwargs.get('shift_adjustment', None)) self.__area = kwargs.get('area', None) self.__missed_visit_penalty = kwargs.get('missed_visit_penalty', None) self.__carer_used_penalty = kwargs.get('carer_used_penalty', None) @property def date(self): return self.__date @property def carers(self): return self.__carers @property def visits(self): return self.__visits @property def visit_time_window(self): return self.__visit_time_windows @property def carer_used_penalty(self): return self.__carer_used_penalty @carer_used_penalty.setter def carer_used_penalty(self, value): self.__carer_used_penalty = value @property def missed_visit_penalty(self): return self.__missed_visit_penalty @missed_visit_penalty.setter def missed_visit_penalty(self, value): self.__missed_visit_penalty = value @property def shift_adjustment(self): return self.__shift_adjustment StageSummary = collections.namedtuple('StageSummary', ['duration', 'final_cost', 'final_dropped_visits']) def __init__(self, time_point): self.__start = time_point self.__events = [] self.__current_stage = None self.__current_strategy = None self.__problem = TraceLog.ProblemMessage() @staticmethod def __parse_stage_number(body): comment = body.get('comment', None) if comment: match = TraceLog.__STAGE_PATTERN.match(comment) if match: return int(match.group('number')) return None def append(self, time_point, body): if 'branches' in body: body_to_use = TraceLog.ProgressMessage(**body) elif 'type' in body: if body['type'] == 'started': self.__current_stage = self.__parse_stage_number(body) elif body['type'] == 'finished': self.__current_stage = None self.__current_strategy = None elif body['type'] == 'unknown': if 'comment' in body: if 'MissedVisitPenalty' in body['comment']: match = re.match(self.__PENALTY_PATTERN, body['comment']) assert match is not None missed_visit_penalty = int(match.group('penalty')) self.__problem.missed_visit_penalty = missed_visit_penalty elif 'CarerUsedPenalty' in body['comment']: match = re.match(self.__CARER_USED_PATTERN, body['comment']) assert match is not None carer_used_penalty = int(match.group('penalty')) self.__problem.carer_used_penalty = carer_used_penalty body_to_use = body elif 'area' in body: body_to_use = TraceLog.ProblemMessage(**body) if body_to_use.missed_visit_penalty is None and self.__problem.missed_visit_penalty is not None: body_to_use.missed_visit_penalty = self.__problem.missed_visit_penalty if body_to_use.carer_used_penalty is None and self.__problem.carer_used_penalty is not None: body_to_use.carer_used_penalty = self.__problem.carer_used_penalty self.__problem = body_to_use else: body_to_use = body # quick fix to prevent negative computation time if the time frame crosses midnight if self.__start < time_point: computation_time = time_point - self.__start else: computation_time = time_point + datetime.timedelta(hours=24) - self.__start self.__events.append([computation_time, self.__current_stage, self.__current_strategy, time_point, body_to_use]) def compute_stages(self) -> typing.List[StageSummary]: groups = dict() for delta, stage, topic, time, message in self.__events: if isinstance(message, TraceLog.ProgressMessage): if stage not in groups: groups[stage] = [] groups[stage].append([delta, topic, message]) result = [] def create_stage_summary(group): duration = group[-1][0] - group[0][0] cost = group[-1][2].cost dropped_visits = group[-1][2].dropped_visits return TraceLog.StageSummary(duration=duration, final_cost=cost, final_dropped_visits=dropped_visits) if len(groups) == 1: result.append(create_stage_summary(groups[None])) else: for stage in range(1, max(filter(lambda s: s is not None, groups)) + 1): result.append(create_stage_summary(groups[stage])) return result def has_stages(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if isinstance(event, TraceLog.ProblemMessage) or isinstance(event, TraceLog.ProgressMessage): continue if 'type' in event and event['type'] == 'started': return True return False def best_cost(self, stage: int): best_cost, _ = self.__best_cost_and_time(stage) return best_cost def best_cost_time(self, stage: int): _, best_cost_time = self.__best_cost_and_time(stage) return best_cost_time def last_cost(self): last_cost, _ = self.__last_cost_and_time() return last_cost def last_cost_time(self): _, last_cost_time = self.__last_cost_and_time() return last_cost_time def computation_time(self): computation_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__events: computation_time = relative_time return computation_time def __best_cost_and_time(self, stage: int): best_cost = float('inf') best_time = datetime.timedelta.max for relative_time, event_stage, strategy, absolute_time, event in self.__filtered_events(): if event_stage > stage: continue if best_cost > event.cost: best_cost = event.cost best_time = relative_time return best_cost, best_time def __last_cost_and_time(self): last_cost = float('inf') last_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__filtered_events(): last_cost = event.cost last_time = relative_time return last_cost, last_time def __filtered_events(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if stage != 2 and stage != 3: continue if strategy == 'DELAY_RISKINESS_REDUCTION': continue if not isinstance(event, TraceLog.ProgressMessage): continue yield relative_time, stage, strategy, absolute_time, event @property def strategy(self): return self.__current_strategy @strategy.setter def strategy(self, value): self.__current_strategy = value @property def visits(self): return self.__problem.visits @property def carers(self): return self.__problem.carers @property def date(self): return self.__problem.date @property def visit_time_window(self): return self.__problem.visit_time_window @property def carer_used_penalty(self): return self.__problem.carer_used_penalty @property def missed_visit_penalty(self): return self.__problem.missed_visit_penalty @property def shift_adjustment(self): return self.__problem.shift_adjustment @property def events(self): return self.__events def read_traces(trace_file) -> typing.List[TraceLog]: log_line_pattern = re.compile('^\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?]\s+(?P<body>.*)$') other_line_pattern = re.compile('^.*?\[\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?\]\s+(?P<body>.*)$') strategy_line_pattern = re.compile('^Solving the (?P<stage_name>\w+) stage using (?P<strategy_name>\w+) strategy$') loaded_visits_pattern = re.compile('^Loaded past visits in \d+ seconds$') trace_logs = [] has_preambule = False with open(trace_file, 'r') as input_stream: current_log = None for line in input_stream: match = log_line_pattern.match(line) if not match: match = other_line_pattern.match(line) if match: raw_time = match.group('time') time = datetime.datetime.strptime(raw_time, '%H:%M:%S.%f') try: raw_body = match.group('body') body = json.loads(raw_body) if 'comment' in body and (body['comment'] == 'All' or 'MissedVisitPenalty' in body['comment'] or 'CarerUsedPenalty' in body['comment']): if body['comment'] == 'All': if 'type' in body: if body['type'] == 'finished': has_preambule = False current_log.strategy = None elif body['type'] == 'started': has_preambule = True current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) elif 'area' in body and not has_preambule: current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) except json.decoder.JSONDecodeError: strategy_match = strategy_line_pattern.match(match.group('body')) if strategy_match: current_log.strategy = strategy_match.group('strategy_name') continue loaded_visits_match = loaded_visits_pattern.match(match.group('body')) if loaded_visits_match: continue warnings.warn('Failed to parse line: ' + line) elif 'GUIDED_LOCAL_SEARCH specified without sane timeout: solve may run forever.' in line: continue else: warnings.warn('Failed to match line: ' + line) return trace_logs def traces_to_data_frame(trace_logs): columns = ['relative_time', 'cost', 'dropped_visits', 'solutions', 'stage', 'stage_started', 'date', 'carers', 'visits'] has_stages = [trace.has_stages() for trace in trace_logs] if all(has_stages) != any(has_stages): raise ValueError('Some traces have stages while others do not') has_stages = all(has_stages) data = [] if has_stages: for trace in trace_logs: current_carers = None current_visits = None current_stage_started = None current_stage_name = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): if not current_stage_name: continue data.append([rel_time, event.cost, event.dropped_visits, event.solutions, current_stage_name, current_stage_started, trace.date, current_carers, current_visits]) elif 'type' in event: if 'comment' in event and event['type'] == 'unknown': continue if event['type'] == 'finished': current_carers = None current_visits = None current_stage_started = None current_stage_name = None continue if event['type'] == 'started': current_stage_started = rel_time current_stage_name = event['comment'] else: for trace in trace_logs: current_carers = None current_visits = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): data.append([rel_time, event.cost, event.dropped_visits, event.solutions, None, None, trace.date, current_carers, current_visits]) return pandas.DataFrame(data=data, columns=columns) def parse_pandas_duration(value): raw_hours, raw_minutes, raw_seconds = value.split(':') return datetime.timedelta(hours=int(raw_hours), minutes=int(raw_minutes), seconds=int(raw_seconds)) class DateTimeFormatter: def __init__(self, format): self.__format = format def __call__(self, x, pos=None): if x < 0: return None x_to_use = x if isinstance(x, numpy.int64): x_to_use = x.item() delta = datetime.timedelta(seconds=x_to_use) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime(self.__format) class AxisSettings: def __init__(self, minutes_per_step, format_pattern, units_label, right_xlimit, xticks): self.__minutes_per_step = minutes_per_step self.__format_pattern = format_pattern self.__formatter = matplotlib.ticker.FuncFormatter(DateTimeFormatter(self.__format_pattern)) self.__units_label = units_label self.__right_xlimit = right_xlimit self.__xticks = xticks @property def formatter(self): return self.__formatter @property def units_label(self): return self.__units_label @property def right_xlimit(self): return self.__right_xlimit @property def xticks(self): return self.__xticks @staticmethod def infer(max_relative_time): if datetime.timedelta(minutes=30) < max_relative_time < datetime.timedelta(hours=1): minutes_step = 10 format = '%H:%M' units = '[hh:mm]' elif datetime.timedelta(hours=1) <= max_relative_time: minutes_step = 60 format = '%H:%M' units = '[hh:mm]' else: assert max_relative_time <= datetime.timedelta(minutes=30) minutes_step = 5 format = '%M:%S' units = '[mm:ss]' right_xlimit = (max_relative_time + datetime.timedelta(minutes=1)).total_seconds() // 60 * 60 xticks = numpy.arange(0, max_relative_time.total_seconds() + minutes_step * 60, minutes_step * 60) return AxisSettings(minutes_step, format, units, right_xlimit, xticks) def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours return '{0:02d}:{1:02d}'.format(hours, minutes) def format_time(x, pos=None): if isinstance(x, numpy.int64): x = x.item() delta = datetime.timedelta(seconds=x) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime('%H:%M') __SCATTER_POINT_SIZE = 1 __Y_AXIS_EXTENSION = 1.2 def add_trace_legend(axis, handles, bbox_to_anchor=(0.5, -0.23), ncol=3): first_row = handles[0] def legend_single_stage(row): handle, multi_visits, visits, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02} {3} {4}'.format(multi_visits, visits, carers, cost_function, date_time.strftime('%d-%m')) def legend_multi_stage(row): handle, multi_visits, visits, multi_carers, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02}/{3:02} {4} {5}' \ .format(multi_visits, visits, multi_carers, carers, cost_function, date_time.strftime('%d-%m')) if len(first_row) == 6: legend_formatter = legend_single_stage elif len(first_row) == 7: legend_formatter = legend_multi_stage else: raise ValueError('Expecting row of either 6 or 7 elements') return rows.plot.add_legend(axis, list(map(operator.itemgetter(0), handles)), list(map(legend_formatter, handles)), ncol, bbox_to_anchor) def scatter_cost(axis, data_frame, color): return axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['cost'], s=__SCATTER_POINT_SIZE, c=color) def scatter_dropped_visits(axis, data_frame, color): axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['dropped_visits'], s=__SCATTER_POINT_SIZE, c=color) def draw_avline(axis, point, color='lightgrey', linestyle='--'): axis.axvline(point, color=color, linestyle=linestyle, linewidth=0.8, alpha=0.8) def get_problem_stats(problem, date): problem_visits = [visit for carer_visits in problem.visits for visit in carer_visits.visits if visit.date == date] return len(problem_visits), len([visit for visit in problem_visits if visit.carer_count > 1]) def compare_trace(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) trace_file = get_or_raise(args, __FILE_ARG) trace_file_base_name = os.path.basename(trace_file) trace_file_stem, trace_file_ext = os.path.splitext(trace_file_base_name) output_file_stem = getattr(args, __OUTPUT, trace_file_stem) trace_logs = read_traces(trace_file) data_frame = traces_to_data_frame(trace_logs) current_date = getattr(args, __DATE_ARG, None) dates = data_frame['date'].unique() if current_date and current_date not in dates: raise ValueError('Date {0} is not present in the data set'.format(current_date)) color_numbers = [0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13] color_number_it = iter(color_numbers) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) max_relative_time = datetime.timedelta() try: if current_date: current_color = color_map.colors[next(color_number_it)] total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) ax_settings = AxisSettings.infer(max_relative_time) stages = current_date_frame['stage'].unique() if len(stages) > 1: handles = [] for stage in stages: time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] current_stage_data_frame = current_date_frame[current_date_frame['stage'] == stage] draw_avline(ax1, time_delta.total_seconds()) draw_avline(ax2, time_delta.total_seconds()) total_stage_visits = current_stage_data_frame['visits'].iloc[0] carers = current_stage_data_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_stage_data_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_stage_visits, carers, cost_function, current_date]) ax2.set_xlim(left=0) ax2.set_ylim(bottom=-10) ax2.xaxis.set_major_formatter(ax_settings.formatter) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = ax1.scatter( [time_delta.total_seconds() for time_delta in current_date_frame['relative_time']], current_date_frame['cost'], s=1) add_trace_legend(ax1, [[handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function]]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.xaxis.set_major_formatter(ax_settings.formatter) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) else: handles = [] for current_date in dates: current_color = color_map.colors[next(color_number_it)] current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) stages = current_date_frame['stage'].unique() if len(stages) > 1: stage_linestyles = [None, 'dotted', 'dashed'] for stage, linestyle in zip(stages, stage_linestyles): time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), color=current_color, linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), color=current_color, linestyle=linestyle) total_carers = current_date_frame['carers'].max() multi_carers = current_date_frame['carers'].min() if multi_carers == total_carers: multi_carers = 0 total_visits = current_date_frame['visits'].max() multi_visits = current_date_frame['visits'].min() if multi_visits == total_visits: multi_visits = 0 handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_date_frame, current_color) handles.append([handle, multi_visits, total_visits, multi_carers, total_carers, cost_function, current_date]) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function, current_date]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax_settings = AxisSettings.infer(max_relative_time) ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) # if add_arrows: # ax1.arrow(950, 200000, 40, -110000, head_width=10, head_length=20000, fc='k', ec='k') # ax2.arrow(950, 60, 40, -40, head_width=10, head_length=10, fc='k', ec='k') ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_xlim(left=0, right=ax_settings.right_xlimit) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.set_xlim(left=0, right=ax_settings.right_xlimit) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def get_schedule_stats(data_frame): def get_stage_stats(stage): if stage and (isinstance(stage, str) or (isinstance(stage, float) and not numpy.isnan(stage))): stage_frame = data_frame[data_frame['stage'] == stage] else: stage_frame = data_frame[data_frame['stage'].isnull()] min_carers, max_carers = stage_frame['carers'].min(), stage_frame['carers'].max() if min_carers != max_carers: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_carers, max_carers)) min_visits, max_visits = stage_frame['visits'].min(), stage_frame['visits'].max() if min_visits != max_visits: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_visits, max_visits)) return min_carers, min_visits stages = data_frame['stage'].unique() if len(stages) > 1: data = [] for stage in stages: carers, visits = get_stage_stats(stage) data.append([stage, carers, visits]) return data else: stage_to_use = None if len(stages) == 1: stage_to_use = stages[0] carers, visits = get_stage_stats(stage_to_use) return [[None, carers, visits]] def contrast_trace(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) output_file_stem = getattr(args, __OUTPUT, problem_file_name + '_contrast_traces') cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) candidate_trace_file = get_or_raise(args, __CANDIDATE_FILE_ARG) base_frame = traces_to_data_frame(read_traces(base_trace_file)) candidate_frame = traces_to_data_frame(read_traces(candidate_trace_file)) current_date = get_or_raise(args, __DATE_ARG) if current_date not in base_frame['date'].unique(): raise ValueError('Date {0} is not present in the base data set'.format(current_date)) if current_date not in candidate_frame['date'].unique(): raise ValueError('Date {0} is not present in the candidate data set'.format(current_date)) max_relative_time = datetime.timedelta() max_relative_time = max(base_frame[base_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = max(candidate_frame[candidate_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = datetime.timedelta(minutes=20) ax_settings = AxisSettings.infer(max_relative_time) color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: def plot(data_frame, color): stages = data_frame['stage'].unique() if len(stages) > 1: for stage, linestyle in zip(stages, [None, 'dotted', 'dashed']): time_delta = data_frame[data_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), linestyle=linestyle) scatter_dropped_visits(ax2, data_frame, color=color) return scatter_cost(ax1, data_frame, color=color) base_current_data_frame = base_frame[base_frame['date'] == current_date] base_handle = plot(base_current_data_frame, color_map.colors[0]) base_stats = get_schedule_stats(base_current_data_frame) candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] candidate_handle = plot(candidate_current_data_frame, color_map.colors[1]) candidate_stats = get_schedule_stats(candidate_current_data_frame) labels = [] for stages in [base_stats, candidate_stats]: if len(stages) == 1: labels.append('Direct') elif len(stages) > 1: labels.append('Multistage') else: raise ValueError() ax1.set_ylim(bottom=0.0) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0.0, right=max_relative_time.total_seconds()) legend1 = ax1.legend([base_handle, candidate_handle], labels) for handle in legend1.legendHandles: handle._sizes = [25] ax2.set_xlim(left=0.0, right=max_relative_time.total_seconds()) ax2.set_ylim(bottom=0.0) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax1.set_xticks(ax_settings.xticks) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) legend2 = ax2.legend([base_handle, candidate_handle], labels) for handle in legend2.legendHandles: handle._sizes = [25] figure.tight_layout() matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] scatter_dropped_visits(ax2, candidate_current_data_frame, color=color_map.colors[1]) scatter_cost(ax1, candidate_current_data_frame, color=color_map.colors[1]) stage2_started = \ candidate_current_data_frame[candidate_current_data_frame['stage'] == 'Stage2']['stage_started'].iloc[0] ax1.set_ylim(bottom=0, top=6 * 10 ** 4) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0, right=12) ax2.set_xlim(left=0, right=12) x_ticks_positions = range(0, 12 + 1, 2) # matplotlib.pyplot.locator_params(axis='x', nbins=6) ax2.set_ylim(bottom=-10.0, top=120) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(x_ticks_positions) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() # rows.plot.save_figure(output_file_stem + '_first_stage_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_box_plots(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) output_file_stem = getattr(args, __OUTPUT, problem_file_name) traces = read_traces(base_trace_file) figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(1, 3) stages = [trace.compute_stages() for trace in traces] num_stages = max(len(s) for s in stages) durations = [[getattr(local_stage[num_stage], 'duration').total_seconds() for local_stage in stages] for num_stage in range(num_stages)] max_duration = max(max(stage_durations) for stage_durations in durations) axis_settings = AxisSettings.infer(datetime.timedelta(seconds=max_duration)) try: ax1.boxplot(durations, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax1.set_yticks(axis_settings.xticks) ax1.yaxis.set_major_formatter(axis_settings.formatter) ax1.set_xlabel('Stage') ax1.set_ylabel('Duration [hh:mm]') costs = [[getattr(local_stage[num_stage], 'final_cost') for local_stage in stages] for num_stage in range(num_stages)] ax2.boxplot(costs, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) formatter = matplotlib.ticker.ScalarFormatter() formatter.set_scientific(True) formatter.set_powerlimits((-3, 3)) ax2.yaxis.set_major_formatter(formatter) ax2.set_xlabel('Stage') ax2.set_ylabel('Cost') declined_visits = [[getattr(local_stage[num_stage], 'final_dropped_visits') for local_stage in stages] for num_stage in range(num_stages)] ax3.boxplot(declined_visits, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) max_declined_visits = max(max(declined_visits)) ax3.set_xlabel('Stage') ax3.set_ylabel('Declined Visits') dropped_visit_ticks = None if max_declined_visits < 100: dropped_visit_ticks = range(0, max_declined_visits + 1) else: dropped_visit_ticks = range(0, max_declined_visits + 100, 100) ax3.set_yticks(dropped_visit_ticks) figure.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_prediction_error(args, settings): base_schedule = rows.plot.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.plot.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) observed_duration_by_visit = rows.plot.calculate_observed_visit_duration(base_schedule) expected_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) data = [] for visit in base_schedule.visits: observed_duration = observed_duration_by_visit[visit.visit] expected_duration = expected_duration_by_visit[visit.visit] data.append([visit.key, observed_duration.total_seconds(), expected_duration.total_seconds()]) frame = pandas.DataFrame(columns=['Visit', 'ObservedDuration', 'ExpectedDuration'], data=data) frame['Error'] = (frame.ObservedDuration - frame.ExpectedDuration) / frame.ObservedDuration figure, axis = matplotlib.pyplot.subplots() try: axis.plot(frame['Error'], label='(Observed - Expected)/Observed)') axis.legend() axis.set_ylim(-20, 2) axis.grid() matplotlib.pyplot.show() finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def remove_violated_visits(rough_schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, duration_estimator: rows.plot.DurationEstimator, distance_estimator: rows.plot.DistanceEstimator) -> rows.model.schedule.Schedule: max_delay = metadata.visit_time_window min_delay = -metadata.visit_time_window dropped_visits = 0 allowed_visits = [] for route in rough_schedule.routes: carer_diary = problem.get_diary(route.carer, metadata.date) if not carer_diary: continue for visit in route.visits: if visit.check_in is not None: check_in_delay = visit.check_in - datetime.datetime.combine(metadata.date, visit.time) if check_in_delay > max_delay: # or check_in_delay < min_delay: dropped_visits += 1 continue allowed_visits.append(visit) # schedule does not have visits which exceed time windows first_improved_schedule = rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) allowed_visits = [] for route in first_improved_schedule.routes: if not route.visits: continue diary = problem.get_diary(route.carer, metadata.date) assert diary is not None # shift adjustment is added twice because it is allowed to extend the time before and after the working hours max_shift_end = max(event.end for event in diary.events) + metadata.shift_adjustment + metadata.shift_adjustment first_visit = route.visits[0] current_time = datetime.datetime.combine(metadata.date, first_visit.time) if current_time <= max_shift_end: allowed_visits.append(first_visit) visits_made = [] total_slack = datetime.timedelta() if len(route.visits) == 1: visit = route.visits[0] visit_duration = duration_estimator(visit.visit) if visit_duration is None: visit_duration = visit.duration current_time += visit_duration if current_time <= max_shift_end: visits_made.append(visit) else: dropped_visits += 1 else: for prev_visit, next_visit in route.edges(): visit_duration = duration_estimator(prev_visit.visit) if visit_duration is None: visit_duration = prev_visit.duration current_time += visit_duration current_time += distance_estimator(prev_visit, next_visit) start_time = max(current_time, datetime.datetime.combine(metadata.date, next_visit.time) - max_delay) total_slack += start_time - current_time current_time = start_time if current_time <= max_shift_end: visits_made.append(next_visit) else: dropped_visits += 1 if current_time <= max_shift_end: total_slack += max_shift_end - current_time total_break_duration = datetime.timedelta() for carer_break in diary.breaks: total_break_duration += carer_break.duration if total_slack + datetime.timedelta(hours=2) < total_break_duration: # route is not respecting contractual breaks visits_made.pop() for visit in visits_made: allowed_visits.append(visit) # schedule does not contain visits which exceed overtime of the carer return rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) class ScheduleCost: CARER_COST = datetime.timedelta(seconds=60 * 60 * 4) def __init__(self, travel_time: datetime.timedelta, carers_used: int, visits_missed: int, missed_visit_penalty: int): self.__travel_time = travel_time self.__carers_used = carers_used self.__visits_missed = visits_missed self.__missed_visit_penalty = missed_visit_penalty @property def travel_time(self) -> datetime.timedelta: return self.__travel_time @property def visits_missed(self) -> int: return self.__visits_missed @property def missed_visit_penalty(self) -> int: return self.__missed_visit_penalty @property def carers_used(self) -> int: return self.__carers_used def total_cost(self, include_vehicle_cost: bool) -> datetime.timedelta: cost = self.__travel_time.total_seconds() + self.__missed_visit_penalty * self.__visits_missed if include_vehicle_cost: cost += self.CARER_COST.total_seconds() * self.__carers_used return cost def get_schedule_cost(schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, distance_estimator: rows.plot.DistanceEstimator) -> ScheduleCost: carer_used_ids = set() visit_made_ids = set() travel_time = datetime.timedelta() for route in schedule.routes: if not route.visits: continue carer_used_ids.add(route.carer.sap_number) for visit in route.visits: visit_made_ids.add(visit.visit.key) for source, destination in route.edges(): travel_time += distance_estimator(source, destination) available_visit_ids = {visit.key for visit in problem.requested_visits(schedule.date)} return ScheduleCost(travel_time, len(carer_used_ids), len(available_visit_ids.difference(visit_made_ids)), metadata.missed_visit_penalty) def compare_schedule_cost(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSecondSolutionPath', 'SolverThirdSolutionPath']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/second_stage_c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] include_vehicle_cost = False with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) def normalize_cost(value) -> float: if isinstance(value, datetime.timedelta): value_to_use = value.total_seconds() elif isinstance(value, float) or isinstance(value, int): value_to_use = value else: return float('inf') return round(value_to_use / 3600, 2) for solver_trace, problem_data in list(zip(solver_traces, problem_data)): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_second_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSecondSolutionPath)) solver_third_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverThirdSolutionPath)) assert solver_second_schedule.date == human_schedule.date assert solver_third_schedule.date == human_schedule.date available_carers = problem.available_carers(human_schedule.date) requested_visits = problem.requested_visits(human_schedule.date) one_carer_visits = [visit for visit in requested_visits if visit.carer_count == 1] two_carer_visits = [visit for visit in requested_visits if visit.carer_count == 2] duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_third_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_second_schedule_to_use = remove_violated_visits(solver_second_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_third_schedule_to_use = remove_violated_visits(solver_third_schedule, solver_trace, problem, duration_estimator, distance_estimator) human_cost = get_schedule_cost(human_schedule_to_use, solver_trace, problem, distance_estimator) solver_second_cost = get_schedule_cost(solver_second_schedule_to_use, solver_trace, problem, distance_estimator) solver_third_cost = get_schedule_cost(solver_third_schedule_to_use, solver_trace, problem, distance_estimator) results.append(collections.OrderedDict(date=solver_trace.date, day=solver_trace.date.day, carers=len(available_carers), one_carer_visits=len(one_carer_visits), two_carer_visits=2 * len(two_carer_visits), missed_visit_penalty=normalize_cost(solver_trace.missed_visit_penalty), carer_used_penalty=normalize_cost(solver_trace.carer_used_penalty), planner_missed_visits=human_cost.visits_missed, solver_second_missed_visits=solver_second_cost.visits_missed, solver_third_missed_visits=solver_third_cost.visits_missed, planner_travel_time=normalize_cost(human_cost.travel_time), solver_second_travel_time=normalize_cost(solver_second_cost.travel_time), solver_third_travel_time=normalize_cost(solver_third_cost.travel_time), planner_carers_used=human_cost.carers_used, solver_second_carers_used=solver_second_cost.carers_used, solver_third_carers_used=solver_third_cost.carers_used, planner_total_cost=normalize_cost(human_cost.total_cost(include_vehicle_cost)), solver_second_total_cost=normalize_cost(solver_second_cost.total_cost(include_vehicle_cost)), solver_third_total_cost=normalize_cost(solver_third_cost.total_cost(include_vehicle_cost)), solver_second_time=int(math.ceil(solver_trace.best_cost_time(2).total_seconds())), solver_third_time=int(math.ceil(solver_trace.best_cost_time(3).total_seconds())))) data_frame = pandas.DataFrame(data=results) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'carers', 'one_carer_visits', 'two_carer_visits', 'missed_visit_penalty', 'planner_total_cost', 'solver_second_total_cost', 'solver_third_total_cost', 'planner_missed_visits', 'solver_second_missed_visits', 'solver_third_missed_visits', 'planner_travel_time', 'solver_second_travel_time', 'solver_third_travel_time', 'solver_second_time', 'solver_third_time']], tablefmt='latex', headers='keys', showindex=False)) def get_consecutive_visit_time_span(schedule: rows.model.schedule.Schedule, start_time_estimator): client_visits = collections.defaultdict(list) for visit in schedule.visits: client_visits[visit.visit.service_user].append(visit) for client in client_visits: visits = client_visits[client] used_keys = set() unique_visits = [] for visit in visits: date_time = start_time_estimator(visit) if date_time.hour == 0 and date_time.minute == 0: continue if visit.visit.key not in used_keys: used_keys.add(visit.visit.key) unique_visits.append(visit) unique_visits.sort(key=start_time_estimator) client_visits[client] = unique_visits client_span = collections.defaultdict(datetime.timedelta) for client in client_visits: if len(client_visits[client]) < 2: continue last_visit = client_visits[client][0] total_span = datetime.timedelta() for next_visit in client_visits[client][1:]: total_span += start_time_estimator(next_visit) - start_time_estimator(last_visit) last_visit = next_visit client_span[client] = total_span return client_span def get_carer_client_frequency(schedule: rows.model.schedule.Schedule): client_assigned_carers = collections.defaultdict(collections.Counter) for visit in schedule.visits: client_assigned_carers[int(visit.visit.service_user)][int(visit.carer.sap_number)] += 1 return client_assigned_carers def get_visits(problem: rows.model.problem.Problem, date: datetime.date): visits = set() for local_visits in problem.visits: for visit in local_visits.visits: if date != visit.date: continue visit.service_user = local_visits.service_user visits.add(visit) return visits def get_teams(problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): multiple_carer_visit_keys = set() for visit in get_visits(problem, schedule.date): if visit.carer_count > 1: multiple_carer_visit_keys.add(visit.key) client_visit_carers = collections.defaultdict(lambda: collections.defaultdict(list)) for visit in schedule.visits: if visit.visit.key not in multiple_carer_visit_keys: continue client_visit_carers[visit.visit.service_user][visit.visit.key].append(int(visit.carer.sap_number)) for client in client_visit_carers: for visit_key in client_visit_carers[client]: client_visit_carers[client][visit_key].sort() teams = set() for client in client_visit_carers: for visit_key in client_visit_carers[client]: teams.add(tuple(client_visit_carers[client][visit_key])) return teams def compare_schedule_quality(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSolutionPath']) def compare_quality(solver_trace, problem, human_schedule, solver_schedule, duration_estimator, distance_estimator): visits = get_visits(problem, solver_trace.date) multiple_carer_visit_keys = {visit.key for visit in visits if visit.carer_count > 1} clients = list({int(visit.service_user) for visit in visits}) # number of different carers assigned throughout the day human_carer_frequency = get_carer_client_frequency(human_schedule) solver_carer_frequency = get_carer_client_frequency(solver_schedule) def median_carer_frequency(client_counters): total_counters = [] for client in client_counters: # total_counters += len(client_counters[client]) total_counters.append(len(client_counters[client])) # return total_counters / len(client_counters) return numpy.median(total_counters) human_schedule_squared = [] solver_schedule_squared = [] for client in clients: if client in human_carer_frequency: human_schedule_squared.append(sum(human_carer_frequency[client][carer] ** 2 for carer in human_carer_frequency[client])) else: human_schedule_squared.append(0) if client in solver_carer_frequency: solver_schedule_squared.append(sum(solver_carer_frequency[client][carer] ** 2 for carer in solver_carer_frequency[client])) else: solver_schedule_squared.append(0) human_matching_dominates = 0 solver_matching_dominates = 0 for index in range(len(clients)): if human_schedule_squared[index] > solver_schedule_squared[index]: human_matching_dominates += 1 elif human_schedule_squared[index] < solver_schedule_squared[index]: solver_matching_dominates += 1 matching_no_diff = len(clients) - human_matching_dominates - solver_matching_dominates assert matching_no_diff >= 0 human_schedule_span = get_consecutive_visit_time_span(human_schedule, lambda visit: visit.check_in) solver_schedule_span = get_consecutive_visit_time_span(solver_schedule, lambda visit: datetime.datetime.combine(visit.date, visit.time)) human_span_dominates = 0 solver_span_dominates = 0 for client in clients: if human_schedule_span[client] > solver_schedule_span[client]: human_span_dominates += 1 elif human_schedule_span[client] < solver_schedule_span[client]: solver_span_dominates += 1 span_no_diff = len(clients) - human_span_dominates - solver_span_dominates assert span_no_diff > 0 human_teams = get_teams(problem, human_schedule) solver_teams = get_teams(problem, solver_schedule) human_schedule_frame = rows.plot.get_schedule_data_frame(human_schedule, problem, duration_estimator, distance_estimator) solver_schedule_frame = rows.plot.get_schedule_data_frame(solver_schedule, problem, duration_estimator, distance_estimator) human_visits = human_schedule_frame['Visits'].median() solver_visits = solver_schedule_frame['Visits'].median() human_total_overtime = compute_overtime(human_schedule_frame).sum() solver_total_overtime = compute_overtime(solver_schedule_frame).sum() return {'problem': str(human_schedule.date), 'visits': len(visits), 'clients': len(clients), 'human_overtime': human_total_overtime, 'solver_overtime': solver_total_overtime, 'human_visits_median': human_visits, 'solver_visits_median': solver_visits, 'human_visit_span_dominates': human_span_dominates, 'solver_visit_span_dominates': solver_span_dominates, 'visit_span_indifferent': span_no_diff, 'human_matching_dominates': human_matching_dominates, 'solver_matching_dominates': solver_matching_dominates, 'human_carer_frequency': median_carer_frequency(human_carer_frequency), 'solver_carer_frequency': median_carer_frequency(solver_carer_frequency), 'matching_indifferent': matching_no_diff, 'human_teams': len(human_teams), 'solver_teams': len(solver_teams)} simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for solver_trace, problem_data in zip(solver_traces, problem_data): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSolutionPath)) assert solver_trace.date == human_schedule.date assert solver_trace.date == solver_schedule.date duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_schedule_to_use = remove_violated_visits(solver_schedule, solver_trace, problem, duration_estimator, distance_estimator) row = compare_quality(solver_trace, problem, human_schedule_to_use, solver_schedule_to_use, duration_estimator, distance_estimator) results.append(row) data_frame = pandas.DataFrame(data=results) data_frame['human_visit_span_dominates_rel'] = data_frame['human_visit_span_dominates'] / data_frame['clients'] data_frame['human_visit_span_dominates_rel_label'] = data_frame['human_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_visit_span_dominates_rel'] = data_frame['solver_visit_span_dominates'] / data_frame['clients'] data_frame['solver_visit_span_dominates_rel_label'] = data_frame['solver_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['visit_span_indifferent_rel'] = data_frame['visit_span_indifferent'] / data_frame['clients'] data_frame['human_matching_dominates_rel'] = data_frame['human_matching_dominates'] / data_frame['clients'] data_frame['human_matching_dominates_rel_label'] = data_frame['human_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_matching_dominates_rel'] = data_frame['solver_matching_dominates'] / data_frame['clients'] data_frame['solver_matching_dominates_rel_label'] = data_frame['solver_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['matching_indifferent_rel'] = data_frame['matching_indifferent'] / data_frame['clients'] data_frame['day'] = data_frame['problem'].apply(lambda label: datetime.datetime.strptime(label, '%Y-%m-%d').date().day) data_frame['human_overtime_label'] = data_frame['human_overtime'].apply(get_time_delta_label) data_frame['solver_overtime_label'] = data_frame['solver_overtime'].apply(get_time_delta_label) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'human_visits_median', 'solver_visits_median', 'human_overtime_label', 'solver_overtime_label', 'human_carer_frequency', 'solver_carer_frequency', 'human_matching_dominates_rel_label', 'solver_matching_dominates_rel_label', 'human_teams', 'solver_teams']], tablefmt='latex', showindex=False, headers='keys')) BenchmarkData = collections.namedtuple('BenchmarkData', ['BestCost', 'BestCostTime', 'BestBound', 'ComputationTime']) class MipTrace: __MIP_HEADER_PATTERN = re.compile('^\s*Expl\s+Unexpl\s+|\s+Obj\s+Depth\s+IntInf\s+|\s+Incumbent\s+BestBd\s+Gap\s+|\s+It/Node\s+Time\s*$') __MIP_LINE_PATTERN = re.compile('^(?P<solution_flag>[\w\*]?)\s*' '(?P<explored_nodes>\d+)\s+' '(?P<nodes_to_explore>\d+)\s+' '(?P<node_relaxation>[\w\.]*)\s+' '(?P<node_depth>\d*)\s+' '(?P<fractional_variables>\w*)\s+' '(?P<incumbent>[\d\.\-]*)\s+' '(?P<lower_bound>[\d\.\-]*)\s+' '(?P<gap>[\d\.\%\-]*)\s+' '(?P<simplex_it_per_node>[\d\.\-]*)\s+' '(?P<elapsed_time>\d+)s$') __SUMMARY_PATTERN = re.compile('^Best\sobjective\s(?P<objective>[e\d\.\+]+),\s' 'best\sbound\s(?P<bound>[e\d\.\+]+),\s' 'gap\s(?P<gap>[e\d\.\+]+)\%$') class MipProgressMessage: def __init__(self, has_solution, best_cost, lower_bound, elapsed_time): self.__has_solution = has_solution self.__best_cost = best_cost self.__lower_bound = lower_bound self.__elapsed_time = elapsed_time @property def has_solution(self): return self.__has_solution @property def best_cost(self): return self.__best_cost @property def lower_bound(self): return self.__lower_bound @property def elapsed_time(self): return self.__elapsed_time def __init__(self, best_objective: float, best_bound: float, events: typing.List[MipProgressMessage]): self.__best_objective = best_objective self.__best_bound = best_bound self.__events = events @staticmethod def read_from_file(path) -> 'MipTrace': events = [] best_objective = float('inf') best_bound = float('-inf') with open(path, 'r') as fp: lines = fp.readlines() lines_it = iter(lines) for line in lines_it: if re.match(MipTrace.__MIP_HEADER_PATTERN, line): break next(lines_it, None) # read the empty line for line in lines_it: line_match = re.match(MipTrace.__MIP_LINE_PATTERN, line) if not line_match: break raw_solution_flag = line_match.group('solution_flag') raw_incumbent = line_match.group('incumbent') raw_lower_bound = line_match.group('lower_bound') raw_elapsed_time = line_match.group('elapsed_time') has_solution = raw_solution_flag == 'H' or raw_solution_flag == '*' incumbent = float(raw_incumbent) if raw_incumbent and raw_incumbent != '-' else float('inf') lower_bound = float(raw_lower_bound) if raw_lower_bound else float('-inf') elapsed_time = datetime.timedelta(seconds=int(raw_elapsed_time)) if raw_elapsed_time else datetime.timedelta() events.append(MipTrace.MipProgressMessage(has_solution, incumbent, lower_bound, elapsed_time)) next(lines_it, None) for line in lines_it: line_match = re.match(MipTrace.__SUMMARY_PATTERN, line) if line_match: raw_objective = line_match.group('objective') if raw_objective: best_objective = float(raw_objective) raw_bound = line_match.group('bound') if raw_bound: best_bound = float(raw_bound) return MipTrace(best_objective, best_bound, events) def best_cost(self): return self.__best_objective def best_cost_time(self): for event in reversed(self.__events): if event.has_solution: return event.elapsed_time return datetime.timedelta.max def best_bound(self): return self.__best_bound def computation_time(self): if self.__events: return self.__events[-1].elapsed_time return datetime.timedelta.max class DummyTrace: def __init__(self): pass def best_cost(self): return float('inf') def best_bound(self): return 0 def best_cost_time(self): return datetime.timedelta(hours=23, minutes=59, seconds=59) def compare_benchmark_table(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'Carers', 'Visits', 'Visits2', 'MipSolutionLog', 'CpTeamSolutionLog', 'CpWindowsSolutionLog']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' old_simulation_dir = '/home/pmateusz/dev/cordia/simulations/review_simulations_old' dummy_log = DummyTrace() problem_configs = [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m0c3.json'.format(day_number)), 3, 25, 0, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)] problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m5c3.json'.format(day_number)), 3, 20, 5, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m5c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_teams_v25m5c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_windows_v25m5c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m0c5.json'.format(day_number)), 5, 50, 0, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m10c5.json'.format(day_number)), 5, 40, 10, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m10c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_teams_v50m10c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_windows_v50m10c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) logs = [] for problem_config in problem_configs: with warnings.catch_warnings(): warnings.simplefilter('ignore') if os.path.exists(problem_config.CpTeamSolutionLog): cp_team_logs = read_traces(problem_config.CpTeamSolutionLog) if not cp_team_logs: warnings.warn('File {0} is empty'.format(problem_config.CpTeamSolutionLog)) cp_team_logs = dummy_log else: cp_team_log = cp_team_logs[0] else: cp_team_logs = dummy_log if os.path.exists(problem_config.CpWindowsSolutionLog): cp_window_logs = read_traces(problem_config.CpWindowsSolutionLog) if not cp_window_logs: warnings.warn('File {0} is empty'.format(problem_config.CpWindowsSolutionLog)) cp_window_logs = dummy_log else: cp_window_log = cp_window_logs[0] else: cp_window_logs = dummy_log if os.path.exists(problem_config.MipSolutionLog): mip_log = MipTrace.read_from_file(problem_config.MipSolutionLog) if not mip_log: warnings.warn('File {0} is empty'.format(problem_config.MipSolutionLog)) mip_log = dummy_log else: mip_log = dummy_log logs.append([problem_config, mip_log, cp_team_log, cp_window_log]) def get_gap(cost: float, lower_bound: float) -> float: if lower_bound == 0.0: return float('inf') return (cost - lower_bound) * 100.0 / lower_bound def get_delta(cost, cost_to_compare): return (cost - cost_to_compare) * 100.0 / cost_to_compare def get_computation_time_label(time: datetime.timedelta) -> str: return str(time.total_seconds()) data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: data.append(collections.OrderedDict( date=cp_team_log.date, visits=problem_config.Visits, visits_of_two=problem_config.Visits2, carers=cp_team_log.carers, penalty=cp_team_log.missed_visit_penalty, lower_bound=mip_log.best_bound(), mip_best_cost=mip_log.best_cost(), mip_best_gap=get_gap(mip_log.best_cost(), mip_log.best_bound()), mip_best_time=get_computation_time_label(mip_log.best_cost_time()), team_best_cost=cp_team_log.best_cost(), team_best_gap=get_gap(cp_team_log.best_cost(), mip_log.best_bound()), team_best_delta=get_gap(cp_team_log.best_cost(), mip_log.best_cost()), team_best_time=get_computation_time_label(cp_team_log.best_cost_time()), windows_best_cost=cp_window_log.best_cost(), windows_best_gap=get_gap(cp_window_log.best_cost(), mip_log.best_bound()), windows_best_delta=get_gap(cp_window_log.best_cost(), mip_log.best_cost()), windows_best_time=get_computation_time_label(cp_window_log.best_cost_time()))) data_frame = pandas.DataFrame(data=data) def get_duration_label(time_delta: datetime.timedelta) -> str: assert time_delta.days == 0 hours = int(time_delta.total_seconds() / 3600) minutes = int(time_delta.total_seconds() / 60 - hours * 60) seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) # return '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) return '{0:,.0f}'.format(time_delta.total_seconds()) def get_cost_label(cost: float) -> str: return '{0:,.0f}'.format(cost) def get_gap_label(gap: float) -> str: return '{0:,.2f}'.format(gap) def get_problem_label(problem, date: datetime.date): label = '{0:2d} {1}'.format(date.day, problem.Visits) if problem.Visits2 == 0: return label return label + '/' + str(problem.Visits2) print_data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: best_cost = min([mip_log.best_cost(), cp_team_log.best_cost(), cp_window_log.best_cost()]) print_data.append(collections.OrderedDict(Problem=get_problem_label(problem_config, cp_team_log.date), Penalty=get_cost_label(cp_team_log.missed_visit_penalty), LB=get_cost_label(mip_log.best_bound()), MIP_COST=get_cost_label(mip_log.best_cost()), MIP_GAP=get_gap_label(get_gap(mip_log.best_cost(), mip_log.best_bound())), MIP_DELTA=get_gap_label(get_delta(mip_log.best_cost(), best_cost)), MIP_TIME=get_duration_label(mip_log.best_cost_time()), TEAMS_GAP=get_gap_label(get_gap(cp_team_log.best_cost(), mip_log.best_bound())), TEAMS_DELTA=get_gap_label(get_delta(cp_team_log.best_cost(), best_cost)), TEAMS_COST=get_cost_label(cp_team_log.best_cost()), TEAMS_Time=get_duration_label(cp_team_log.best_cost_time()), WINDOWS_COST=get_cost_label(cp_window_log.best_cost()), WINDOWS_GAP=get_gap_label(get_gap(cp_window_log.best_cost(), mip_log.best_bound())), WINDOWS_DELTA=get_gap_label(get_delta(cp_window_log.best_cost(), best_cost)), WINDOWS_TIME=get_duration_label(cp_window_log.best_cost_time()) )) data_frame = pandas.DataFrame(data=print_data) print(tabulate.tabulate( data_frame[['Problem', 'Penalty', 'LB', 'MIP_COST', 'MIP_TIME', 'TEAMS_COST', 'TEAMS_Time', 'WINDOWS_COST', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) print(tabulate.tabulate( data_frame[['Problem', 'MIP_GAP', 'MIP_DELTA', 'MIP_TIME', 'TEAMS_GAP', 'TEAMS_DELTA', 'TEAMS_Time', 'WINDOWS_GAP', 'WINDOWS_DELTA', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) @functools.total_ordering class ProblemMetadata: WINDOW_LABELS = ['', 'F', 'S', 'M', 'L', 'A'] def __init__(self, case: int, visits: int, windows: int): assert visits == 20 or visits == 50 or visits == 80 assert 0 <= windows < len(ProblemMetadata.WINDOW_LABELS) self.__case = case self.__visits = visits self.__windows = windows def __eq__(self, other) -> bool: if isinstance(other, ProblemMetadata): return self.case == other.case and self.visits == other.visits and self.__windows == other.windows return False def __neq__(self, other) -> bool: return not (self == other) def __lt__(self, other) -> bool: assert isinstance(other, ProblemMetadata) if self.windows != other.windows: return self.windows < other.windows if self.visits != other.visits: return self.visits < other.visits if self.case != other.case: return self.case < other.case return False @property def label(self) -> str: return '{0:>2}{1}'.format(self.instance_number, self.windows_label) @property def windows(self) -> int: return self.__windows @property def windows_label(self) -> str: return ProblemMetadata.WINDOW_LABELS[self.__windows] @property def visits(self) -> int: return self.__visits @property def case(self) -> int: return self.__case @property def instance_number(self) -> int: if self.__visits == 20: return self.__case if self.__visits == 50: return 5 + self.__case return 8 + self.__case def compare_literature_table(args, settings): LIU2019 = 'liu2019' AFIFI2016 = 'afifi2016' DECERLE2018 = 'decerle2018' GAYRAUD2015 = 'gayraud2015' PARRAGH2018 = 'parragh2018' BREDSTROM2008 = 'bredstrom2008combined' BREDSTROM2007 = 'bredstrom2007branchandprice' InstanceConfig = collections.namedtuple('InstanceConfig', ['name', 'nickname', 'result', 'who', 'is_optimal']) instance_data = [ InstanceConfig(name='case_1_20_4_2_1', nickname='1N', result=5.13, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_1', nickname='2N', result=4.98, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_1', nickname='3N', result=5.19, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_1', nickname='4N', result=7.21, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_1', nickname='5N', result=5.37, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_1', nickname='6N', result=14.45, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_2_50_10_5_1', nickname='7N', result=13.02, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_3_50_10_5_1', nickname='8N', result=34.94, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_80_16_8_1', nickname='9N', result=43.48, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_2_80_16_8_1', nickname='10N', result=12.08, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_20_4_2_2', nickname='1S', result=3.55, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_2', nickname='2S', result=4.27, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_2', nickname='3S', result=3.63, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_2', nickname='4S', result=6.14, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_2', nickname='5S', result=3.93, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_2', nickname='6S', result=8.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_2', nickname='7S', result=8.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_50_10_5_2', nickname='8S', result=9.54, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_80_16_8_2', nickname='9S', result=11.93, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_2', nickname='10S', result=8.54, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_3', nickname='1M', result=3.55, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_3', nickname='2M', result=3.58, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_3', nickname='3M', result=3.33, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_3', nickname='4M', result=5.67, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_3', nickname='5M', result=3.53, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_3', nickname='6M', result=7.7, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_50_10_5_3', nickname='7M', result=7.48, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_3_50_10_5_3', nickname='8M', result=8.54, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_80_16_8_3', nickname='9M', result=10.92, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_3', nickname='10M', result=7.62, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_20_4_2_4', nickname='1L', result=3.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_4', nickname='2L', result=3.42, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_4', nickname='3L', result=3.29, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_4', nickname='4L', result=5.13, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_4', nickname='5L', result=3.34, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_50_10_5_4', nickname='6L', result=7.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_4', nickname='7L', result=6.88, who=BREDSTROM2007, is_optimal=False), InstanceConfig(name='case_3_50_10_5_4', nickname='8L', result=8, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_80_16_8_4', nickname='9L', result=10.43, who=LIU2019, is_optimal=False), InstanceConfig(name='case_2_80_16_8_4', nickname='10L', result=7.36, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_5', nickname='1H', result=2.95, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_20_4_2_5', nickname='2H', result=2.88, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_20_4_2_5', nickname='3H', result=2.74, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_4_20_4_2_5', nickname='4H', result=4.29, who=GAYRAUD2015, is_optimal=False), InstanceConfig(name='case_5_20_4_2_5', nickname='5H', result=2.81, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_50_10_5_5', nickname='6H', result=6.48, who=DECERLE2018, is_optimal=False), InstanceConfig(name='case_2_50_10_5_5', nickname='7H', result=5.71, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_50_10_5_5', nickname='8H', result=6.52, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_80_16_8_5', nickname='9H', result=8.51, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_80_16_8_5', nickname='10H', result=6.31, who=PARRAGH2018, is_optimal=False) ] instance_dirs = ['/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case20', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case50', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case80'] instance_dict = {instance.name: instance for instance in instance_data} print_data = [] instance_pattern = re.compile(r'case_(?P<case>\d+)_(?P<visits>\d+)_(?P<carers>\d+)_(?P<synchronized_visits>\d+)_(?P<windows>\d+)') instance_counter = 1 last_visits = None with warnings.catch_warnings(): warnings.filterwarnings('ignore') for instance_dir in instance_dirs: for instance in instance_data: instance_log_path = os.path.join(instance_dir, instance.name + '.dat.err.log') if not os.path.exists(instance_log_path): continue solver_logs = read_traces(instance_log_path) if not solver_logs: continue instance = instance_dict[instance.name] name_match = instance_pattern.match(instance.name) if not name_match: continue first_solver_logs = solver_logs[0] case = int(name_match.group('case')) visits = int(name_match.group('visits')) carers = int(name_match.group('carers')) synchronized_visits = int(name_match.group('synchronized_visits')) windows_configuration = int(name_match.group('windows')) problem_meta = ProblemMetadata(case, visits, windows_configuration) if last_visits and last_visits != visits: instance_counter = 1 normalized_result = float('inf') if first_solver_logs.best_cost(3) < 100: normalized_result = round(first_solver_logs.best_cost(3), 2) delta = round((instance.result - normalized_result) / instance.result * 100, 2) printable_literature_result = str(instance.result) if instance.is_optimal: printable_literature_result += '*' printable_literature_result += 'cite{{{0}}}'.format(instance.who) print_data.append(collections.OrderedDict( metadata=problem_meta, problem=problem_meta.label, case=instance_counter, v1=visits - 2 * synchronized_visits, v2=synchronized_visits, carers=carers, time_windows=problem_meta.windows_label, literature_result=printable_literature_result, result=normalized_result, delta=delta, time=round(first_solver_logs.best_cost_time(3).total_seconds(), 2) if normalized_result != float('inf') else float('inf') )) last_visits = visits instance_counter += 1 print_data.sort(key=lambda dict_obj: dict_obj['metadata']) print(tabulate.tabulate( pandas.DataFrame(data=print_data)[['problem', 'carers', 'v1', 'v2', 'literature_result', 'result', 'time', 'delta']], showindex=False, tablefmt='latex', headers='keys')) def compare_planner_optimizer_quality(args, settings): data_file = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file) figsize = (2.5, 5) labels = ['Planners', 'Algorithm'] data_frame['travel_time'] = data_frame['Travel Time'].apply(parse_pandas_duration) data_frame['span'] = data_frame['Span'].apply(parse_pandas_duration) data_frame['overtime'] = data_frame['Overtime'].apply(parse_pandas_duration) data_frame_planners = data_frame[data_frame['Type'] == 'Planners'] data_frame_solver = data_frame[data_frame['Type'] == 'Solver'] overtime_per_carer = [list((data_frame_planners['overtime'] / data_frame_planners['Carers']).values), list((data_frame_solver['overtime'] / data_frame_solver['Carers']).values)] def to_matplotlib_minutes(value): return value * 60 * 1000000000 fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(overtime_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Overtime per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(10), to_matplotlib_minutes(20), to_matplotlib_minutes(30)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_overtime') travel_time_per_carer = [list((data_frame_planners['travel_time'] / data_frame_planners['Carers']).values), list((data_frame_solver['travel_time'] / data_frame_solver['Carers']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(travel_time_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Travel Time per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(30), to_matplotlib_minutes(60), to_matplotlib_minutes(90), to_matplotlib_minutes(120)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_travel_time') span_per_client = [list((data_frame_planners['span'] / data_frame_planners['Clients']).values), list((data_frame_solver['span'] / data_frame_solver['Clients']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(span_per_client, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Visit Span per Client [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(6 * 60), to_matplotlib_minutes(7 * 60), to_matplotlib_minutes(8 * 60), to_matplotlib_minutes(9 * 60)]) ax.set_ylim(bottom=6 * 60 * 60 * 1000000000) fig.tight_layout() rows.plot.save_figure('quality_span') teams = [list(data_frame_planners['Teams'].values), list(data_frame_solver['Teams'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(teams, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Teams of 2 Carers') fig.tight_layout() rows.plot.save_figure('quality_teams') better_matching = [list(data_frame_planners['Better Matching'].values), list(data_frame_solver['Better Matching'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(better_matching, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Better Client-Carer Matching') fig.tight_layout() rows.plot.save_figure('quality_matching') def parse_percent(value): value_to_use = value.replace('%', '') return float(value_to_use) / 100.0 def parse_duration_seconds(value): return datetime.timedelta(seconds=value) def compare_benchmark(args, settings): data_file_path = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file_path) data_frame['relative_cost_difference'] = data_frame['Relative Cost Difference'].apply(parse_percent) data_frame['relative_gap'] = data_frame['Relative Gap'].apply(parse_percent) data_frame['time'] = data_frame['Time'].apply(parse_duration_seconds) matplotlib.rcParams.update({'font.size': 18}) labels = ['MS', 'IP'] low_labels = ['Gap', 'Delta', 'Time'] cp_frame = data_frame[data_frame['Solver'] == 'CP'] mip_frame = data_frame[data_frame['Solver'] == 'MIP'] def get_series(frame, configuration): num_visits, num_visits_of_2 = configuration filtered_frame = frame[(frame['Visits'] == num_visits) & (frame['Synchronized Visits'] == num_visits_of_2)] return [filtered_frame['relative_gap'].values, filtered_frame['relative_cost_difference'].values, filtered_frame['time'].values] def seconds(value): return value * 1000000000 def minutes(value): return 60 * seconds(value) def hours(value): return 3600 * seconds(value) limit_configurations = [[[None, minutes(1) + seconds(15)], [0, minutes(9)]], [[None, minutes(1) + seconds(30)], [0, hours(4) + minutes(30)]], [[0, minutes(3) + seconds(30)], [0, hours(4) + minutes(30)]], [[0, minutes(3) + seconds(30)], [0, hours(4) + minutes(30)]]] yticks_configurations = [ [[0, seconds(15), seconds(30), seconds(45), minutes(1)], [0, minutes(1), minutes(2), minutes(4), minutes(8)]], [[0, seconds(15), seconds(30), seconds(45), minutes(1), minutes(1) + seconds(15)], [0, hours(1), hours(2), hours(3), hours(4)]], [[0, minutes(1), minutes(2), minutes(3)], [0, hours(1), hours(2), hours(3), hours(4)]], [[0, minutes(1), minutes(2), minutes(3)], [0, hours(1), hours(2), hours(3), hours(4)]]] problem_configurations = [(25, 0), (25, 5), (50, 0), (50, 10)] def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) return '{0:01d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) def format_percent(x, pox=None): return int(x * 100.0) for index, problem_config in enumerate(problem_configurations): fig, axes = matplotlib.pyplot.subplots(1, 2) cp_gap, cp_delta, cp_time = get_series(cp_frame, problem_config) mip_gap, mip_delta, mip_time = get_series(mip_frame, problem_config) cp_time_limit, mip_time_limit = limit_configurations[index] cp_yticks, mip_yticks = yticks_configurations[index] cp_ax, mip_ax = axes first_color_config = dict(flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR), boxprops=dict(color=FOREGROUND_COLOR), whiskerprops=dict(color=FOREGROUND_COLOR), capprops=dict(color=FOREGROUND_COLOR)) second_color_config = dict(flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR2), boxprops=dict(color=FOREGROUND_COLOR2), whiskerprops=dict(color=FOREGROUND_COLOR2), capprops=dict(color=FOREGROUND_COLOR2)) cp_ax.boxplot([cp_gap, cp_delta, []], **second_color_config) cp_twinx = cp_ax.twinx() cp_twinx.boxplot([[], [], cp_time], **first_color_config) cp_twinx.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) cp_ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_percent)) cp_twinx.tick_params(axis='y', labelcolor=FOREGROUND_COLOR) cp_ax.set_xlabel('Multistage') cp_ax.set_xticklabels(low_labels, rotation=45) cp_ax.set_ylim(bottom=-0.05, top=1) cp_ax.set_ylabel('Delta, Gap [%]') cp_twinx.set_ylim(bottom=cp_time_limit[0], top=cp_time_limit[1]) if cp_yticks: cp_twinx.set_yticks(cp_yticks) mip_ax.boxplot([mip_gap, mip_delta, []], **second_color_config) mip_twinx = mip_ax.twinx() mip_twinx.boxplot([[], [], mip_time], **first_color_config) mip_twinx.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) mip_twinx.tick_params(axis='y', labelcolor=FOREGROUND_COLOR) mip_ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_percent)) mip_ax.set_xlabel('IP') mip_ax.set_xticklabels(low_labels, rotation=45) mip_ax.set_ylim(bottom=-0.05, top=1) mip_twinx.set_ylabel('Computation Time [H:MM:SS]', color=FOREGROUND_COLOR) mip_twinx.set_ylim(bottom=mip_time_limit[0], top=mip_time_limit[1]) if mip_yticks: mip_twinx.set_yticks(mip_yticks) fig.tight_layout(w_pad=0.0) rows.plot.save_figure('benchmark_boxplot_{0}_{1}'.format(problem_config[0], problem_config[1])) matplotlib.pyplot.cla() matplotlib.pyplot.close(fig) def old_debug(args, settings): problem = rows.plot.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) solution_file = get_or_raise(args, __SOLUTION_FILE_ARG) schedule = rows.plot.load_schedule(solution_file) schedule_date = schedule.metadata.begin carer_dairies = { carer_shift.carer.sap_number: next((diary for diary in carer_shift.diaries if diary.date == schedule_date), None) for carer_shift in problem.carers} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() data_set = [] with rows.plot.create_routing_session() as session: for route in schedule.routes(): travel_time = datetime.timedelta() for source, destination in route.edges(): source_loc = location_finder.find(source.visit.service_user) if not source_loc: logging.error('Failed to resolve location of %s', source.visit.service_user) continue destination_loc = location_finder.find(destination.visit.service_user) if not destination_loc: logging.error('Failed to resolve location of %s', destination.visit.service_user) continue distance = session.distance(source_loc, destination_loc) if distance is None: logging.error('Distance cannot be estimated between %s and %s', source_loc, destination_loc) continue travel_time += datetime.timedelta(seconds=distance) service_time = datetime.timedelta() for visit in route.visits: if visit.check_in and visit.check_out: observed_duration = visit.check_out - visit.check_in if observed_duration.days < 0: logging.error('Observed duration %s is negative', observed_duration) service_time += observed_duration else: logging.warning( 'Visit %s is not supplied with information on check-in and check-out information', visit.key) service_time += visit.duration available_time = functools.reduce(operator.add, (event.duration for event in carer_dairies[route.carer.sap_number].events)) data_set.append([route.carer.sap_number, available_time, service_time, travel_time, float(service_time.total_seconds() + travel_time.total_seconds()) / available_time.total_seconds()]) data_set.sort(key=operator.itemgetter(4)) data_frame = pandas.DataFrame(columns=['Carer', 'Availability', 'Service', 'Travel', 'Usage'], data=data_set) figure, axis = matplotlib.pyplot.subplots() indices = numpy.arange(len(data_frame.index)) time_delta_converter = rows.plot.TimeDeltaConverter() width = 0.35 travel_series = numpy.array(time_delta_converter(data_frame.Travel)) service_series = numpy.array(time_delta_converter(data_frame.Service)) idle_overtime_series = list(data_frame.Availability - data_frame.Travel - data_frame.Service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices, service_series, width, bottom=time_delta_converter.zero) travel_handle = axis.bar(indices, travel_series, width, bottom=service_series + time_delta_converter.zero_num) idle_handle = axis.bar(indices, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num) overtime_handle = axis.bar(indices, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend((travel_handle, service_handle, idle_handle, overtime_handle), ('Travel', 'Service', 'Idle', 'Overtime'), loc='upper right') matplotlib.pyplot.show() def show_working_hours(args, settings): __WIDTH = 0.25 color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) shift_file = get_or_raise(args, __FILE_ARG) shift_file_base_name, shift_file_ext = os.path.splitext(os.path.basename(shift_file)) output_file_base_name = getattr(args, __OUTPUT, shift_file_base_name) __EVENT_TYPE_OFFSET = {'assumed': 2, 'contract': 1, 'work': 0} __EVENT_TYPE_COLOR = {'assumed': color_map.colors[0], 'contract': color_map.colors[4], 'work': color_map.colors[2]} handles = {} frame = pandas.read_csv(shift_file) dates = frame['day'].unique() for current_date in dates: frame_to_use = frame[frame['day'] == current_date] carers = frame_to_use['carer'].unique() figure, axis = matplotlib.pyplot.subplots() try: current_date_to_use = datetime.datetime.strptime(current_date, '%Y-%m-%d') carer_index = 0 for carer in carers: carer_frame = frame_to_use[frame_to_use['carer'] == carer] axis.bar(carer_index + 0.25, 24 * 3600, 0.75, bottom=0, color='grey', alpha=0.3) for index, row in carer_frame.iterrows(): event_begin = datetime.datetime.strptime(row['begin'], '%Y-%m-%d %H:%M:%S') event_end = datetime.datetime.strptime(row['end'], '%Y-%m-%d %H:%M:%S') handle = axis.bar(carer_index + __EVENT_TYPE_OFFSET[row['event type']] * __WIDTH, (event_end - event_begin).total_seconds(), __WIDTH, bottom=(event_begin - current_date_to_use).total_seconds(), color=__EVENT_TYPE_COLOR[row['event type']]) handles[row['event type']] = handle carer_index += 1 axis.legend([handles['work'], handles['contract'], handles['assumed']], ['Worked', 'Available', 'Forecast'], loc='upper right') axis.grid(linestyle='dashed') axis.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_time)) axis.yaxis.set_ticks(numpy.arange(0, 24 * 3600, 2 * 3600)) axis.set_ylim(6 * 3600, 24 * 60 * 60) rows.plot.save_figure(output_file_base_name + '_' + current_date) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compute_overtime(frame): idle_overtime_series = list(frame.Availability - frame.Travel - frame.Service) idle_series = numpy.array( list(map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(list(map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) return overtime_series class Node: def __init__(self, index: int, next: int, visit: rows.model.visit.Visit, visit_start_min: datetime.datetime, visit_start_max: datetime.datetime, break_start: typing.Optional[datetime.datetime], break_duration: datetime.timedelta, travel_duration: datetime.timedelta): self.__index = index self.__next = next self.__visit = visit self.__visit_start_min = visit_start_min self.__visit_start_max = visit_start_max self.__break_start = break_start self.__break_duration = break_duration self.__travel_duration = travel_duration @property def index(self) -> int: return self.__index @property def next(self) -> int: return self.__next @property def visit_key(self) -> int: return self.__visit.key @property def visit_start(self) -> datetime.datetime: return datetime.datetime.combine(self.__visit.date, self.__visit.time) @property def visit_start_min(self) -> datetime.datetime: return self.__visit_start_min @property def visit_start_max(self) -> datetime.datetime: return self.__visit_start_max @property def carer_count(self) -> int: return self.__visit.carer_count @property def visit_duration(self) -> datetime.timedelta: return self.__visit.duration @property def break_start(self) -> datetime.datetime: return self.__break_start @property def break_duration(self) -> datetime.timedelta: return self.__break_duration @property def travel_duration(self) -> datetime.timedelta: return self.__travel_duration @property def service_user(self) -> str: return self.__visit.service_user class Mapping: def __init__(self, routes, problem, settings, time_window_span): self.__index_to_node = {} user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() local_routes = {} current_index = 0 def find_visit(item) -> rows.model.visit.Visit: current_diff = sys.maxsize visit_match = None for visit_batch in problem.visits: if visit_batch.service_user != item.service_user: continue for visit in visit_batch.visits: if visit.date != item.date or visit.tasks != item.tasks: continue if item.key == visit.key: # exact match return visit visit_total_time = visit.time.hour * 3600 + visit.time.minute * 60 item_total_time = item.time.hour * 3600 + item.time.minute * 60 diff_total_time = abs(visit_total_time - item_total_time) if diff_total_time <= time_window_span.total_seconds() and diff_total_time < current_diff: visit_match = visit current_diff = diff_total_time assert visit_match is not None return visit_match current_index = 0 with rows.plot.create_routing_session() as routing_session: for route in routes: local_route = [] previous_visit = None previous_index = None current_visit = None break_start = None break_duration = datetime.timedelta() for item in route.nodes: if isinstance(item, rows.model.past_visit.PastVisit): current_visit = item.visit if previous_visit is None: if break_start is None: diary = problem.get_diary(route.carer, current_visit.date) break_start = diary.events[0].begin - datetime.timedelta(minutes=30) node = Node(current_index, current_index + 1, rows.model.visit.Visit(date=current_visit.date, time=break_start, duration=datetime.timedelta(), service_user=current_visit.service_user), break_start, break_start, break_start, break_duration, datetime.timedelta()) self.__index_to_node[current_index] = node local_route.append(node) current_index += 1 previous_visit = current_visit previous_index = current_index break_start = None break_duration = datetime.timedelta() current_index += 1 continue previous_location = user_tag_finder.find(previous_visit.service_user) current_location = user_tag_finder.find(current_visit.service_user) travel_time = datetime.timedelta(seconds=routing_session.distance(previous_location, current_location)) previous_visit_match = find_visit(previous_visit) node = Node(previous_index, current_index, previous_visit, previous_visit_match.datetime - time_window_span, previous_visit_match.datetime + time_window_span, break_start, break_duration, travel_time) self.__index_to_node[previous_index] = node local_route.append(node) break_start = None break_duration = datetime.timedelta() previous_visit = current_visit previous_index = current_index current_index += 1 if isinstance(item, rows.model.rest.Rest): if break_start is None: break_start = item.start_time else: break_start = item.start_time - break_duration break_duration += item.duration visit_match = find_visit(previous_visit) node = Node(previous_index, -1, previous_visit, visit_match.datetime - time_window_span, visit_match.datetime + time_window_span, break_start, break_duration, datetime.timedelta()) self.__index_to_node[previous_index] = node local_route.append(node) local_routes[route.carer] = local_route self.__routes = local_routes service_user_to_index = collections.defaultdict(list) for index in self.__index_to_node: node = self.__index_to_node[index] service_user_to_index[node.service_user].append(index) self.__siblings = {} for service_user in service_user_to_index: num_indices = len(service_user_to_index[service_user]) for left_pos in range(num_indices): left_index = service_user_to_index[service_user][left_pos] left_visit = self.__index_to_node[left_index] if left_visit.carer_count == 1: continue for right_pos in range(left_pos + 1, num_indices): right_index = service_user_to_index[service_user][right_pos] right_visit = self.__index_to_node[right_index] if right_visit.carer_count == 1: continue if left_visit.visit_start_min == right_visit.visit_start_min and left_visit.visit_start_max == right_visit.visit_start_max: assert left_index != right_index self.__siblings[left_index] = right_index self.__siblings[right_index] = left_index def indices(self): return list(self.__index_to_node.keys()) def routes(self) -> typing.Dict[rows.model.carer.Carer, typing.List[Node]]: return self.__routes def node(self, index: int) -> Node: return self.__index_to_node[index] def find_index(self, visit_key: int) -> int: for index in self.__index_to_node: if self.__index_to_node[index].visit_key == visit_key: return index return None def sibling(self, index: int) -> typing.Optional[Node]: if index in self.__siblings: sibling_index = self.__siblings[index] return self.__index_to_node[sibling_index] return None def graph(self) -> networkx.DiGraph: edges = [] for carer in self.__routes: for node in self.__routes[carer]: if node.next != -1: assert node.index != node.next edges.append([node.index, node.next]) sibling_node = self.sibling(node.index) if sibling_node is not None: if node.index < sibling_node.index: assert node.index != sibling_node.index edges.append([node.index, sibling_node.index]) if node.next != -1: assert sibling_node.index != node.next edges.append([sibling_node.index, node.next]) return networkx.DiGraph(edges) def create_mapping(settings, problem, schedule) -> Mapping: mapping_time_windows_span = datetime.timedelta(minutes=90) return Mapping(schedule.routes, problem, settings, mapping_time_windows_span) class StartTimeEvaluator: def __init__(self, mapping: Mapping, problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): self.__mapping = mapping self.__problem = problem self.__schedule = schedule self.__sorted_indices = list(networkx.topological_sort(self.__mapping.graph())) self.__initial_start_times = self.__get_initial_start_times() def get_start_times(self, duration_callback) -> typing.List[datetime.datetime]: start_times = copy.copy(self.__initial_start_times) for index in self.__sorted_indices: node = self.__mapping.node(index) current_sibling_node = self.__mapping.sibling(node.index) if current_sibling_node: max_start_time = max(start_times[node.index], start_times[current_sibling_node.index]) start_times[node.index] = max_start_time if max_start_time > start_times[current_sibling_node.index]: start_times[current_sibling_node.index] = max_start_time if current_sibling_node.next is not None and current_sibling_node.next != -1: start_times[current_sibling_node.next] = self.__get_next_arrival(current_sibling_node, start_times, duration_callback) if node.next is None or node.next == -1: continue next_arrival = self.__get_next_arrival(node, start_times, duration_callback) if next_arrival > start_times[node.next]: start_times[node.next] = next_arrival return start_times def get_delays(self, start_times: typing.List[datetime.datetime]) -> typing.List[datetime.timedelta]: return [start_times[index] - self.__mapping.node(index).visit_start_max for index in self.__mapping.indices()] def __get_next_arrival(self, local_node: Node, start_times, duration_callback) -> datetime.datetime: break_done = False if local_node.break_duration is not None \ and local_node.break_start is not None \ and local_node.break_start + local_node.break_duration <= start_times[local_node.index]: break_done = True local_visit_key = self.__mapping.node(local_node.index).visit_key local_next_arrival = start_times[local_node.index] + duration_callback(local_visit_key) + local_node.travel_duration if not break_done and local_node.break_start is not None: if local_next_arrival >= local_node.break_start: local_next_arrival += local_node.break_duration else: local_next_arrival = local_node.break_start + local_node.break_duration return local_next_arrival def __get_initial_start_times(self) -> typing.List[datetime.datetime]: start_times = [self.__mapping.node(index).visit_start_min for index in self.__mapping.indices()] carer_routes = self.__mapping.routes() for carer in carer_routes: diary = self.__problem.get_diary(carer, self.__schedule.date) assert diary is not None nodes = carer_routes[carer] nodes_it = iter(nodes) first_visit_node = next(nodes_it) start_min = max(first_visit_node.visit_start_min, diary.events[0].begin - datetime.timedelta(minutes=30)) start_times[first_visit_node.index] = start_min for node in nodes_it: start_min = max(node.visit_start_min, diary.events[0].begin - datetime.timedelta(minutes=30)) start_times[node.index] = start_min return start_times class EssentialRiskinessEvaluator: def __init__(self, settings, history, problem, schedule): self.__settings = settings self.__history = history self.__problem = problem self.__schedule = schedule self.__schedule_start = datetime.datetime.combine(self.__schedule.date, datetime.time()) self.__mapping = None self.__sample = None self.__start_times = None self.__delay = None def run(self): self.__mapping = create_mapping(self.__settings, self.__problem, self.__schedule) history_time_windows_span = datetime.timedelta(hours=2) self.__sample = self.__history.build_sample(self.__problem, self.__schedule.date, history_time_windows_span) self.__start_times = [[datetime.datetime.max for _ in range(self.__sample.size)] for _ in self.__mapping.indices()] self.__delay = [[datetime.timedelta.max for _ in range(self.__sample.size)] for _ in self.__mapping.indices()] start_time_evaluator = StartTimeEvaluator(self.__mapping, self.__problem, self.__schedule) for scenario in range(self.__sample.size): def get_visit_duration(visit_key: int) -> datetime.timedelta: if visit_key is None: return datetime.timedelta() return self.__sample.visit_duration(visit_key, scenario) scenario_start_times = start_time_evaluator.get_start_times(get_visit_duration) delay = start_time_evaluator.get_delays(scenario_start_times) for index in range(len(scenario_start_times)): self.__start_times[index][scenario] = scenario_start_times[index] self.__delay[index][scenario] = delay[index] def calculate_index(self, visit_key: int) -> float: visit_index = self.__find_index(visit_key) records = [local_delay.total_seconds() for local_delay in self.__delay[visit_index]] records.sort() num_records = len(records) if records[num_records - 1] <= 0: return 0.0 total_delay = 0.0 position = num_records - 1 while position >= 0 and records[position] >= 0: total_delay += records[position] position -= 1 if position == -1: return float('inf') delay_budget = 0 while position > 0 and delay_budget + float(position + 1) * records[position] + total_delay > 0: delay_budget += records[position] position -= 1 delay_balance = delay_budget + float(position + 1) * records[position] + total_delay if delay_balance < 0: riskiness_index = min(0.0, records[position + 1]) assert riskiness_index <= 0.0 remaining_balance = total_delay + delay_budget + float(position + 1) * riskiness_index assert remaining_balance >= 0.0 riskiness_index -= math.ceil(remaining_balance / float(position + 1)) assert riskiness_index * float(position + 1) + delay_budget + total_delay <= 0.0 return -riskiness_index elif delay_balance > 0: return float('inf') else: return records[position] def get_delays(self, visit_key) -> typing.List[datetime.timedelta]: index = self.__find_index(visit_key) return self.__delay[index] def find_carer(self, visit_key: int) -> typing.Optional[rows.model.carer.Carer]: for carer in self.__mapping.routes(): for node in self.__mapping.routes()[carer]: if node.visit_key == visit_key: return carer return None def find_route(self, index: int) -> typing.Optional[typing.List[Node]]: routes = self.__mapping.routes() for carer in routes: for node in routes[carer]: if node.index == index: return routes[carer] return None def print_route_for_visit(self, visit_key): carer = self.find_carer(visit_key) self.print_route(carer) def print_route(self, carer): route = self.__mapping.routes()[carer] data = [['index', 'key', 'visit_start', 'visit_duration', 'travel_duration', 'break_start', 'break_duration']] for node in route: if node.visit_key is None: duration = 0 else: duration = int(self.__sample.visit_duration(node.visit_key, 0).total_seconds()) data.append([node.index, node.visit_key, int(self.__datetime_to_delta(self.__start_times[node.index][0]).total_seconds()), duration, int(node.travel_duration.total_seconds()), int(self.__datetime_to_delta(node.break_start).total_seconds()) if node.break_start is not None else 0, int(node.break_duration.total_seconds())]) print(tabulate.tabulate(data)) def print_start_times(self, visit_key: int): print('Start Times - Visit {0}:'.format(visit_key)) selected_index = self.__find_index(visit_key) for scenario_number in range(self.__sample.size): print('{0:<4}{1}'.format(scenario_number, int(self.__datetime_to_delta(self.__start_times[selected_index][scenario_number]).total_seconds()))) def print_delays(self, visit_key: int): print('Delays - Visit {0}:'.format(visit_key)) selected_index = self.__find_index(visit_key) for scenario_number in range(self.__sample.size): print('{0:<4}{1}'.format(scenario_number, int(self.__delay[selected_index][scenario_number].total_seconds()))) def visit_keys(self) -> typing.List[int]: visit_keys = [self.__mapping.node(index).visit_key for index in self.__mapping.indices() if self.__mapping.node(index).visit_key is not None] visit_keys.sort() return visit_keys def __find_index(self, visit_key: int) -> typing.Optional[int]: for index in self.__mapping.indices(): if self.__mapping.node(index).visit_key == visit_key: return index return None def __datetime_to_delta(self, value: datetime.datetime) -> datetime.timedelta: return value - self.__schedule_start def to_frame(self): records = [] for visit_index in self.__mapping.indices(): visit_key = self.__mapping.node(visit_index).visit_key if visit_key is None: continue for scenario_number in range(self.__sample.size): records.append({'visit': visit_key, 'scenario': scenario_number, 'delay': self.__delay[visit_index][scenario_number]}) return pandas.DataFrame(data=records) @property def mapping(self): return self.__mapping @property def start_times(self): return self.__start_times @property def delay(self): return self.__delay @staticmethod def time_to_delta(time: datetime.time) -> datetime.timedelta: seconds = time.hour * 3600 + time.minute * 60 + time.second return datetime.timedelta(seconds=seconds) def load_history(): root_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems' cached_path = os.path.join(root_dir, 'C350_history.pickle') path = os.path.join(root_dir, 'C350_history.json') import pickle if os.path.exists(cached_path): with open(cached_path, 'rb') as input_stream: return pickle.load(input_stream) with open(path, 'r') as input_stream: history = rows.model.history.History.load(input_stream) with open(cached_path, 'wb') as output_stream: pickle.dump(history, output_stream) return history def compare_delay(args, settings): compare_delay_visits_path = 'compare_delay_visits.hdf' compare_instances_path = 'compare_instances.hdf' def load_data(): root_problem_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations/solutions' problem = rows.load.load_problem('/home/pmateusz/dev/cordia/simulations/current_review_simulations/problems/C350_past.json') history = load_history() cost_schedules \ = [rows.load.load_schedule(os.path.join(root_problem_dir, 'c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15)] cost_traces = read_traces(os.path.join(root_problem_dir, 'c350past_distv90b90e30m1m1m5.err.log')) risk_schedules = [rows.load.load_schedule(os.path.join(root_problem_dir, 'c350past_riskv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15)] risk_traces = read_traces(os.path.join(root_problem_dir, 'c350past_riskv90b90e30m1m1m5.err.log')) return problem, history, cost_schedules, cost_traces, risk_schedules, risk_traces def get_visit_duration(visit_key: int) -> datetime.timedelta: if visit_key is None: return datetime.timedelta() visit = history.get_visit(visit_key) assert visit is not None return visit.real_duration def get_visit_delays(schedule: rows.model.schedule.Schedule) -> typing.Dict[int, datetime.timedelta]: mapping = create_mapping(settings, problem, schedule) delay_evaluator = StartTimeEvaluator(mapping, problem, schedule) start_times = delay_evaluator.get_start_times(get_visit_duration) delays = delay_evaluator.get_delays(start_times) return {mapping.node(index).visit_key: delays[index] for index in range(len(delays))} problem = None if os.path.exists(compare_delay_visits_path): visits_frame = pandas.read_hdf(compare_delay_visits_path) else: problem, history, cost_schedules, cost_traces, risk_schedules, risk_traces = load_data() visit_data_set = [] for index in range(len(cost_schedules)): cost_schedule = cost_schedules[index] risk_schedule = risk_schedules[index] schedule_date = cost_schedule.date assert schedule_date == risk_schedule.date cost_visit_delays = get_visit_delays(cost_schedule) risk_visit_delays = get_visit_delays(risk_schedule) visit_keys = set(cost_visit_delays.keys()) for visit_key in risk_visit_delays: visit_keys.add(visit_key) for visit_key in visit_keys: record = collections.OrderedDict(visit_key=visit_key, date=schedule_date) if visit_key in cost_visit_delays: record['cost_delay'] = cost_visit_delays[visit_key] if visit_key in risk_visit_delays: record['risk_delay'] = risk_visit_delays[visit_key] visit_data_set.append(record) visits_frame = pandas.DataFrame(data=visit_data_set) visits_frame.to_hdf(compare_delay_visits_path, key='a') if os.path.exists(compare_instances_path): instances_frame =
pandas.read_hdf(compare_instances_path)
pandas.read_hdf
from sklearn.metrics import f1_score,accuracy_score import numpy as np from utilities.tools import load_model import pandas as pd def predict_MSRP_test_data(n_models,nb_words,nlp_f,test_data_1,test_data_2,test_labels): models=[] n_h_features=nlp_f.shape[1] print('loading the models...') for i in range(n_models): models.append(load_model(i+1,nb_words,n_h_features)) preds=[] print('predicting the test data...\n') i=0 for m in models: i+=1 preds_prob=m.predict([test_data_1, test_data_2,nlp_f], batch_size=64, verbose=0) preds.append(preds_prob[:,1]) preds=np.asarray(preds) final_labels=np.zeros(len(test_data_1),dtype=int) #average the predicttion for i in range(len(test_data_1)): final_labels[i]=round(np.mean(preds[:,i])) if i%100==0: print(i ,' out of ',len(test_data_1)) print("test data accuracy: ", accuracy_score(final_labels,test_labels)) print("test data f_measure: ", f1_score(final_labels, test_labels)) submission =
pd.DataFrame({"Quality": final_labels})
pandas.DataFrame
import contextlib import json import gzip import io import logging import os.path import pickle import random import shutil import sys import tempfile import traceback import unittest import pandas COMMON_PRIMITIVES_DIR = os.path.join(os.path.dirname(__file__), 'common-primitives') # NOTE: This insertion should appear before any code attempting to resolve or load primitives, # so the git submodule version of `common-primitives` is looked at first. sys.path.insert(0, COMMON_PRIMITIVES_DIR) TEST_PRIMITIVES_DIR = os.path.join(os.path.dirname(__file__), 'data', 'primitives') sys.path.insert(0, TEST_PRIMITIVES_DIR) from common_primitives.column_parser import ColumnParserPrimitive from common_primitives.construct_predictions import ConstructPredictionsPrimitive from common_primitives.dataset_to_dataframe import DatasetToDataFramePrimitive from common_primitives.no_split import NoSplitDatasetSplitPrimitive from common_primitives.random_forest import RandomForestClassifierPrimitive from common_primitives.train_score_split import TrainScoreDatasetSplitPrimitive from test_primitives.random_classifier import RandomClassifierPrimitive from test_primitives.fake_score import FakeScorePrimitive from d3m import cli, index, runtime, utils from d3m.container import dataset as dataset_module from d3m.contrib.primitives.compute_scores import ComputeScoresPrimitive from d3m.metadata import base as metadata_base, pipeline as pipeline_module, pipeline_run as pipeline_run_module, problem as problem_module TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') PROBLEM_DIR = os.path.join(TEST_DATA_DIR, 'problems') DATASET_DIR = os.path.join(TEST_DATA_DIR, 'datasets') PIPELINE_DIR = os.path.join(TEST_DATA_DIR, 'pipelines') class TestCLIRuntime(unittest.TestCase): def setUp(self): self.test_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_dir) @classmethod def setUpClass(cls): to_register = { 'd3m.primitives.data_transformation.dataset_to_dataframe.Common': DatasetToDataFramePrimitive, 'd3m.primitives.classification.random_forest.Common': RandomForestClassifierPrimitive, 'd3m.primitives.classification.random_classifier.Test': RandomClassifierPrimitive, 'd3m.primitives.data_transformation.column_parser.Common': ColumnParserPrimitive, 'd3m.primitives.data_transformation.construct_predictions.Common': ConstructPredictionsPrimitive, 'd3m.primitives.evaluation.no_split_dataset_split.Common': NoSplitDatasetSplitPrimitive, 'd3m.primitives.evaluation.compute_scores.Test': FakeScorePrimitive, 'd3m.primitives.evaluation.train_score_dataset_split.Common': TrainScoreDatasetSplitPrimitive, # We do not have to load this primitive, but loading it here prevents the package from loading all primitives. 'd3m.primitives.evaluation.compute_scores.Core': ComputeScoresPrimitive, } # To hide any logging or stdout output. with utils.silence(): for python_path, primitive in to_register.items(): index.register_primitive(python_path, primitive) def _call_cli_runtime(self, arg): logger = logging.getLogger('d3m.runtime') with utils.silence(): with self.assertLogs(logger=logger) as cm: # So that at least one message is logged. logger.warning("Debugging.") cli.main(arg) # We skip our "debugging" message. return cm.records[1:] def _call_cli_runtime_without_fail(self, arg): try: return self._call_cli_runtime(arg) except Exception as e: self.fail(traceback.format_exc()) def _assert_valid_saved_pipeline_runs(self, pipeline_run_save_path): with open(pipeline_run_save_path, 'r') as f: for pipeline_run_dict in list(utils.yaml_load_all(f)): try: pipeline_run_module.validate_pipeline_run(pipeline_run_dict) except Exception as e: self.fail(traceback.format_exc()) def _validate_previous_pipeline_run_ids(self, pipeline_run_save_path): ids = set() prev_ids = set() with open(pipeline_run_save_path, 'r') as f: for pipeline_run_dict in list(utils.yaml_load_all(f)): ids.add(pipeline_run_dict['id']) if 'previous_pipeline_run' in pipeline_run_dict: prev_ids.add(pipeline_run_dict['previous_pipeline_run']['id']) self.assertTrue( prev_ids.issubset(ids), 'Some previous pipeline run ids {} are not in the set of pipeline run ids {}'.format(prev_ids, ids) ) def test_fit_multi_input(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() def test_fit_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') output_csv_path = os.path.join(self.test_dir, 'output.csv') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--save', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '--output', output_csv_path, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11225, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=11225, outputs_path='output.csv') def test_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-no-problem-pipeline') output_csv_path = os.path.join(self.test_dir, 'output.csv') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--save', fitted_pipeline_path, ] self._call_cli_runtime_without_fail(arg) arg = [ '', 'runtime', 'produce', '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--output', output_csv_path, '--fitted-pipeline', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-no-problem-pipeline', 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11008, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=11008, outputs_path='output.csv') def test_fit_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') output_csv_path = os.path.join(self.test_dir, 'output.csv') arg = [ '', 'runtime', 'fit-produce', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--output', output_csv_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'output.csv', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11008, outputs_path='outputs.0/data.csv') self._assert_prediction_sum(prediction_sum=11008, outputs_path='output.csv') def test_nonstandard_fit_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'semi-standard-pipeline.json'), '--save', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '--not-standard-pipeline', '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'outputs.1/data.csv', 'outputs.1/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=10710, outputs_path='outputs.0/data.csv') self._assert_nonstandard_output(outputs_name='outputs.1') def test_nonstandard_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'semi-standard-pipeline.json'), '--save', fitted_pipeline_path, '--not-standard-pipeline' ] self._call_cli_runtime_without_fail(arg) arg = [ '', 'runtime', 'produce', '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--fitted-pipeline', fitted_pipeline_path, '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'fitted-pipeline', 'outputs.0/data.csv', 'outputs.0/metadata.json', 'outputs.1/data.csv', 'outputs.1/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json' ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=12106, outputs_path='outputs.0/data.csv') self._assert_nonstandard_output(outputs_name='outputs.1') def test_nonstandard_fit_produce_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-produce', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'semi-standard-pipeline.json'), '--expose-produced-outputs', self.test_dir, '--not-standard-pipeline', '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'outputs.0/data.csv', 'outputs.0/metadata.json', 'outputs.1/data.csv', 'outputs.1/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=12106, outputs_path='outputs.0/data.csv') self._assert_nonstandard_output(outputs_name='outputs.1') def test_fit_produce_multi_input(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-produce', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'multi-input-test.json'), '--expose-produced-outputs', self.test_dir, '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self.assertEqual(utils.list_files(self.test_dir), [ 'outputs.0/data.csv', 'outputs.0/metadata.json', 'pipeline_run.yml', 'steps.0.produce/data.csv', 'steps.0.produce/metadata.json', 'steps.1.produce/data.csv', 'steps.1.produce/metadata.json', 'steps.2.produce/data.csv', 'steps.2.produce/metadata.json', ]) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) self._assert_standard_output_metadata() self._assert_prediction_sum(prediction_sum=11008, outputs_path='outputs.0/data.csv') def test_fit_score(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-score', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml'), '--scores', os.path.join(self.test_dir, 'scores.csv'), '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(os.path.join(self.test_dir, 'scores.csv')) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0]]) def test_fit_score_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit-score', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), # this argument has no effect '--metric', 'F1_MACRO', '--metric', 'ACCURACY', '--scores', os.path.join(self.test_dir, 'scores.csv'), '-O', pipeline_run_save_path, ] logging_records = self._call_cli_runtime_without_fail(arg) self.assertEqual(len(logging_records), 1) self.assertEqual(logging_records[0].msg, "Not all provided hyper-parameters for the scoring pipeline %(pipeline_id)s were used: %(unused_params)s") self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(os.path.join(self.test_dir, 'scores.csv')) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0]]) @staticmethod def _get_iris_dataset_path(): return os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json') @staticmethod def _get_iris_problem_path(): return os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json') @staticmethod def _get_random_forest_pipeline_path(): return os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml') @staticmethod def _get_no_split_data_pipeline_path(): return os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml') @staticmethod def _get_train_test_split_data_pipeline_path(): return os.path.join(PIPELINE_DIR, 'data-preparation-train-test-split.yml') def _get_pipeline_run_save_path(self): return os.path.join(self.test_dir, 'pipeline_run.yml') def _get_predictions_path(self): return os.path.join(self.test_dir, 'predictions.csv') def _get_scores_path(self): return os.path.join(self.test_dir, 'scores.csv') def _get_pipeline_rerun_save_path(self): return os.path.join(self.test_dir, 'pipeline_rerun.yml') def _get_rescores_path(self): return os.path.join(self.test_dir, 'rescores.csv') def _fit_iris_random_forest( self, *, predictions_path=None, fitted_pipeline_path=None, pipeline_run_save_path=None ): if pipeline_run_save_path is None: pipeline_run_save_path = self._get_pipeline_run_save_path() arg = [ '', 'runtime', 'fit', '--input', self._get_iris_dataset_path(), '--problem', self._get_iris_problem_path(), '--pipeline', self._get_random_forest_pipeline_path(), '-O', pipeline_run_save_path ] if predictions_path is not None: arg.append('--output') arg.append(predictions_path) if fitted_pipeline_path is not None: arg.append('--save') arg.append(fitted_pipeline_path) self._call_cli_runtime_without_fail(arg) def _fit_iris_random_classifier_without_problem(self, *, fitted_pipeline_path): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') arg = [ '', 'runtime', 'fit', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '-O', pipeline_run_save_path ] if fitted_pipeline_path is not None: arg.append('--save') arg.append(fitted_pipeline_path) self._call_cli_runtime_without_fail(arg) def test_fit(self): pipeline_run_save_path = self._get_pipeline_run_save_path() fitted_pipeline_path = os.path.join(self.test_dir, 'fitted-pipeline') self._fit_iris_random_forest( fitted_pipeline_path=fitted_pipeline_path, pipeline_run_save_path=pipeline_run_save_path ) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) self.assertTrue(os.path.isfile(pipeline_run_save_path)) def test_evaluate(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'evaluate', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--problem', os.path.join(PROBLEM_DIR, 'iris_problem_1/problemDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-forest-classifier.yml'), '--data-pipeline', os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml'), '--scores', scores_path, '--metric', 'ACCURACY', '--metric', 'F1_MACRO', '-O', pipeline_run_save_path ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed', 'fold']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0, 0], ['F1_MACRO', 1.0, 1.0, 0, 0]]) def test_evaluate_without_problem(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'evaluate', '--input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--pipeline', os.path.join(PIPELINE_DIR, 'random-classifier.yml'), '--data-pipeline', os.path.join(PIPELINE_DIR, 'data-preparation-no-split.yml'), '--scoring-pipeline', os.path.join(PIPELINE_DIR, 'fake_compute_score.yml'), # this argument has no effect '--metric', 'ACCURACY', '--scores', scores_path, '-O', pipeline_run_save_path ] logging_records = self._call_cli_runtime_without_fail(arg) self.assertEqual(len(logging_records), 1) self.assertEqual(logging_records[0].msg, "Not all provided hyper-parameters for the scoring pipeline %(pipeline_id)s were used: %(unused_params)s") self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self._validate_previous_pipeline_run_ids(pipeline_run_save_path) dataframe = pandas.read_csv(scores_path) self.assertEqual(list(dataframe.columns), ['metric', 'value', 'normalized', 'randomSeed', 'fold']) self.assertEqual(dataframe.values.tolist(), [['ACCURACY', 1.0, 1.0, 0, 0]]) def test_score(self): pipeline_run_save_path = os.path.join(self.test_dir, 'pipeline_run.yml') fitted_pipeline_path = os.path.join(self.test_dir, 'iris-pipeline') self._fit_iris_random_forest(fitted_pipeline_path=fitted_pipeline_path) self.assertTrue(os.path.isfile(fitted_pipeline_path)) scores_path = os.path.join(self.test_dir, 'scores.csv') arg = [ '', 'runtime', 'score', '--fitted-pipeline', fitted_pipeline_path, '--test-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--score-input', os.path.join(DATASET_DIR, 'iris_dataset_1/datasetDoc.json'), '--scores', scores_path, '--metric', 'F1_MACRO', '--metric', 'ACCURACY', '-O', pipeline_run_save_path, ] self._call_cli_runtime_without_fail(arg) self._assert_valid_saved_pipeline_runs(pipeline_run_save_path) self.assertTrue(os.path.isfile(scores_path), 'scores were not generated') dataframe =
pandas.read_csv(scores_path)
pandas.read_csv
""" Core implementation of :mod:`sklearndf.transformation.wrapper` """ import logging from abc import ABCMeta, abstractmethod from typing import Any, Generic, List, Optional, TypeVar, Union import numpy as np import pandas as pd from sklearn.base import TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.impute import MissingIndicator, SimpleImputer from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.manifold import Isomap from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder, PolynomialFeatures from pytools.api import AllTracker from ... import TransformerDF from ...wrapper import TransformerWrapperDF log = logging.getLogger(__name__) __all__ = [ "BaseDimensionalityReductionWrapperDF", "BaseMultipleInputsPerOutputTransformerWrapperDF", "ColumnPreservingTransformerWrapperDF", "ColumnSubsetTransformerWrapperDF", "ComponentsDimensionalityReductionWrapperDF", "FeatureSelectionWrapperDF", "NComponentsDimensionalityReductionWrapperDF", "NumpyTransformerWrapperDF", "ColumnTransformerWrapperDF", "IsomapWrapperDF", "ImputerWrapperDF", "MissingIndicatorWrapperDF", "AdditiveChi2SamplerWrapperDF", "KBinsDiscretizerWrapperDF", "PolynomialFeaturesWrapperDF", "OneHotEncoderWrapperDF", ] # # type variables # T_Transformer = TypeVar("T_Transformer", bound=TransformerMixin) # T_Imputer is needed because sklearn's _BaseImputer only exists from v0.22 onwards. # Once we drop support for sklearn 0.21, _BaseImputer can be used instead. # The following TypeVar helps to annotate availability of "add_indicator" and # "missing_values" attributes on an imputer instance for ImputerWrapperDF below # noinspection PyProtectedMember from sklearn.impute._iterative import IterativeImputer T_Imputer = TypeVar("T_Imputer", SimpleImputer, IterativeImputer) # # Ensure all symbols introduced below are included in __all__ # __tracker = AllTracker(globals()) # # wrapper classes for transformers # class NumpyTransformerWrapperDF( TransformerWrapperDF[T_Transformer], Generic[T_Transformer], metaclass=ABCMeta ): """ Abstract base class of DF wrappers for transformers that only accept numpy arrays. Converts data frames to numpy arrays before handing off to the native transformer. Implementations must define :meth:`_get_features_original`. """ # noinspection PyPep8Naming def _adjust_X_type_for_delegate( self, X: pd.DataFrame, *, to_numpy: Optional[bool] = None ) -> np.ndarray: assert to_numpy is not False, "X must be converted to a numpy array" return super()._adjust_X_type_for_delegate(X, to_numpy=True) def _adjust_y_type_for_delegate( self, y: Optional[Union[pd.Series, pd.DataFrame]], *, to_numpy: Optional[bool] = None, ) -> Optional[np.ndarray]: assert to_numpy is not False, "y must be converted to a numpy array" return super()._adjust_y_type_for_delegate(y, to_numpy=True) class ColumnSubsetTransformerWrapperDF( TransformerWrapperDF[T_Transformer], Generic[T_Transformer], metaclass=ABCMeta ): """ Abstract base class of DF wrappers for transformers that do not change column names, but that may remove one or more columns. Implementations must define :meth:`_get_features_out`. """ @abstractmethod def _get_features_out(self) -> pd.Index: # return column labels for arrays returned by the fitted transformer. pass def _get_features_original(self) -> pd.Series: # return the series with output columns in index and output columns as values features_out = self._get_features_out() return pd.Series(index=features_out, data=features_out.values) class ColumnPreservingTransformerWrapperDF( ColumnSubsetTransformerWrapperDF[T_Transformer], Generic[T_Transformer], ): """ DF wrapper for transformers whose output columns match the input columns. The native transformer must not add, remove, reorder, or rename any of the input columns. """ def _get_features_out(self) -> pd.Index: return self.feature_names_in_ class BaseMultipleInputsPerOutputTransformerWrapperDF( TransformerWrapperDF[T_Transformer], Generic[T_Transformer] ): """ DF wrapper for transformers mapping multiple input columns to individual output columns. """ @abstractmethod def _get_features_out(self) -> pd.Index: # make this method abstract to ensure subclasses override the default # behaviour, which usually relies on method ``_get_features_original`` pass def _get_features_original(self) -> pd.Series: raise NotImplementedError( f"{type(self.native_estimator).__name__} transformers map multiple " "inputs to individual output columns; current sklearndf implementation " "only supports many-to-1 mappings from output columns to input columns" ) class BaseDimensionalityReductionWrapperDF( BaseMultipleInputsPerOutputTransformerWrapperDF[T_Transformer], Generic[T_Transformer], metaclass=ABCMeta, ): """ Base class of DF wrappers for dimensionality-reducing transformers. The native transformer is considered to map all input columns to each output column. """ @property @abstractmethod def _n_components_(self) -> int: pass def _get_features_out(self) -> pd.Index: return pd.Index([f"x_{i}" for i in range(self._n_components_)]) class NComponentsDimensionalityReductionWrapperDF( BaseDimensionalityReductionWrapperDF[T_Transformer], Generic[T_Transformer], metaclass=ABCMeta, ): """ Base class of DF wrappers for dimensionality-reducing transformers supporting the :attr:`n_components` attribute. Subclasses must implement :meth:`_get_features_original`. """ _ATTR_N_COMPONENTS = "n_components" def _validate_delegate_estimator(self) -> None: self._validate_delegate_attribute(attribute_name=self._ATTR_N_COMPONENTS) @property def _n_components_(self) -> int: return getattr(self.native_estimator, self._ATTR_N_COMPONENTS) class ComponentsDimensionalityReductionWrapperDF( BaseDimensionalityReductionWrapperDF[T_Transformer], Generic[T_Transformer], metaclass=ABCMeta, ): """ Base class of DF wrappers for dimensionality-reducing transformers supporting the ``components_`` attribute. The native transformer must provide a ``components_`` attribute once fitted, as an array of shape (n_components, n_features). """ _ATTR_COMPONENTS = "components_" # noinspection PyPep8Naming def _post_fit( self, X: pd.DataFrame, y: Optional[pd.Series] = None, **fit_params ) -> None: # noinspection PyProtectedMember super()._post_fit(X, y, **fit_params) self._validate_delegate_attribute(attribute_name=self._ATTR_COMPONENTS) @property def _n_components_(self) -> int: return len(getattr(self.native_estimator, self._ATTR_COMPONENTS)) class FeatureSelectionWrapperDF( ColumnSubsetTransformerWrapperDF[T_Transformer], Generic[T_Transformer], metaclass=ABCMeta, ): """ DF wrapper for feature selection transformers. The native transformer must implement a ``get_support`` method, providing the indices of the selected input columns """ _ATTR_GET_SUPPORT = "get_support" def _validate_delegate_estimator(self) -> None: self._validate_delegate_attribute(attribute_name=self._ATTR_GET_SUPPORT) def _get_features_out(self) -> pd.Index: get_support = getattr(self.native_estimator, self._ATTR_GET_SUPPORT) return self.feature_names_in_[get_support()] class ColumnTransformerWrapperDF( TransformerWrapperDF[ColumnTransformer], metaclass=ABCMeta ): """ DF wrapper for :class:`sklearn.compose.ColumnTransformer`. Requires all transformers passed as the ``transformers`` parameter to implement :class:`.TransformerDF`. """ __DROP = "drop" __PASSTHROUGH = "passthrough" __SPECIAL_TRANSFORMERS = (__DROP, __PASSTHROUGH) def _validate_delegate_estimator(self) -> None: column_transformer: ColumnTransformer = self.native_estimator if ( column_transformer.remainder not in ColumnTransformerWrapperDF.__SPECIAL_TRANSFORMERS ): raise ValueError( f"unsupported value for arg remainder: ({column_transformer.remainder})" ) non_compliant_transformers: List[str] = [ type(transformer).__name__ for _, transformer, _ in column_transformer.transformers if not ( isinstance(transformer, TransformerDF) or transformer in ColumnTransformerWrapperDF.__SPECIAL_TRANSFORMERS ) ] if non_compliant_transformers: from .. import ColumnTransformerDF raise ValueError( f"{ColumnTransformerDF.__name__} only accepts instances of " f"{TransformerDF.__name__} or special values " f'"{" and ".join(ColumnTransformerWrapperDF.__SPECIAL_TRANSFORMERS)}" ' "as valid transformers, but " f'also got: {", ".join(non_compliant_transformers)}' ) def _get_features_original(self) -> pd.Series: """ Return the series mapping output column names to original columns names. :return: the series with index the column names of the output dataframe and values the corresponding input column names. """ def _features_original(df_transformer: TransformerDF, columns: List[Any]): if df_transformer == ColumnTransformerWrapperDF.__PASSTHROUGH: # we may get positional indices for columns selected by the # 'passthrough' transformer, and in that case so need to look up the # associated column names if all(isinstance(column, int) for column in columns): column_names = self._get_features_in()[columns] else: column_names = columns return
pd.Series(index=column_names, data=column_names)
pandas.Series
"""Plotting functions for AnnData. """ import os import numpy as np import pandas as pd from pandas.api.types import is_categorical_dtype from matplotlib import pyplot as pl from matplotlib import rcParams from matplotlib.colors import is_color_like import seaborn as sns from .. import settings from .. import logging as logg from . import utils from .utils import scatter_base, scatter_group, setup_axes from ..utils import sanitize_anndata, doc_params from .docs import doc_scatter_bulk, doc_show_save_ax VALID_LEGENDLOCS = { 'none', 'right margin', 'on data', 'on data export', 'best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center' } @doc_params(scatter_bulk=doc_scatter_bulk, show_save_ax=doc_show_save_ax) def scatter( adata, x=None, y=None, color=None, use_raw=None, layers='X', sort_order=True, alpha=None, basis=None, groups=None, components=None, projection='2d', legend_loc='right margin', legend_fontsize=None, legend_fontweight=None, color_map=None, palette=None, frameon=None, right_margin=None, left_margin=None, size=None, title=None, show=None, save=None, ax=None): """\ Scatter plot along observations or variables axes. Color the plot using annotations of observations (`.obs`), variables (`.var`) or expression of genes (`.var_names`). Parameters ---------- adata : :class:`~anndata.AnnData` Annotated data matrix. x : `str` or `None` x coordinate. y : `str` or `None` y coordinate. color : string or list of strings, optional (default: `None`) Keys for annotations of observations/cells or variables/genes, e.g., `'ann1'` or `['ann1', 'ann2']`. use_raw : `bool`, optional (default: `None`) Use `raw` attribute of `adata` if present. layers : `str` or tuple of strings, optional (default: `X`) Use the `layers` attribute of `adata` if present: specify the layer for `x`, `y` and `color`. If `layers` is a string, then it is expanded to `(layers, layers, layers)`. basis : {{'pca', 'tsne', 'umap', 'diffmap', 'draw_graph_fr', etc.}} String that denotes a plotting tool that computed coordinates. {scatter_bulk} {show_save_ax} Returns ------- If `show==False` a `matplotlib.Axis` or a list of it. """ if basis is not None: axs = _scatter_obs( adata=adata, x=x, y=y, color=color, use_raw=use_raw, layers=layers, sort_order=sort_order, alpha=alpha, basis=basis, groups=groups, components=components, projection=projection, legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight, color_map=color_map, palette=palette, frameon=frameon, right_margin=right_margin, left_margin=left_margin, size=size, title=title, show=show, save=save, ax=ax) elif x is not None and y is not None: if ((x in adata.obs.keys() or x in adata.var.index) and (y in adata.obs.keys() or y in adata.var.index) and (color is None or color in adata.obs.keys() or color in adata.var.index)): axs = _scatter_obs( adata=adata, x=x, y=y, color=color, use_raw=use_raw, layers=layers, sort_order=sort_order, alpha=alpha, basis=basis, groups=groups, components=components, projection=projection, legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight, color_map=color_map, palette=palette, frameon=frameon, right_margin=right_margin, left_margin=left_margin, size=size, title=title, show=show, save=save, ax=ax) elif ((x in adata.var.keys() or x in adata.obs.index) and (y in adata.var.keys() or y in adata.obs.index) and (color is None or color in adata.var.keys() or color in adata.obs.index)): axs = _scatter_var( adata=adata, x=x, y=y, color=color, use_raw=use_raw, layers=layers, sort_order=sort_order, alpha=alpha, basis=basis, groups=groups, components=components, projection=projection, legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight, color_map=color_map, palette=palette, frameon=frameon, right_margin=right_margin, left_margin=left_margin, size=size, title=title, show=show, save=save, ax=ax) else: raise ValueError( '`x`, `y`, and potential `color` inputs must all come from either `.obs` or `.var`') else: raise ValueError('Either provide a `basis` or `x` and `y`.') return axs def _scatter_var( adata, x=None, y=None, color=None, use_raw=None, layers='X', sort_order=True, alpha=None, basis=None, groups=None, components=None, projection='2d', legend_loc='right margin', legend_fontsize=None, legend_fontweight=None, color_map=None, palette=None, frameon=None, right_margin=None, left_margin=None, size=None, title=None, show=None, save=None, ax=None): adata_T = adata.T axs = _scatter_obs( adata=adata_T, x=x, y=y, color=color, use_raw=use_raw, layers=layers, sort_order=sort_order, alpha=alpha, basis=basis, groups=groups, components=components, projection=projection, legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight, color_map=color_map, palette=palette, frameon=frameon, right_margin=right_margin, left_margin=left_margin, size=size, title=title, show=show, save=save, ax=ax) # store .uns annotations that were added to the new adata object adata.uns = adata_T.uns return axs def _scatter_obs( adata, x=None, y=None, color=None, use_raw=None, layers='X', sort_order=True, alpha=None, basis=None, groups=None, components=None, projection='2d', legend_loc='right margin', legend_fontsize=None, legend_fontweight=None, color_map=None, palette=None, frameon=None, right_margin=None, left_margin=None, size=None, title=None, show=None, save=None, ax=None): """See docstring of scatter.""" sanitize_anndata(adata) from scipy.sparse import issparse if use_raw is None and adata.raw is not None: use_raw = True # process layers if layers is None: layers = 'X' if isinstance(layers, str) and (layers == 'X' or layers in adata.layers.keys()): layers = (layers, layers, layers) elif isinstance(layers, (tuple, list)) and len(layers) == 3: for layer in layers: if layer not in adata.layers.keys() and layer != 'X': raise ValueError( '`layers` should have elements that are either \'X\' or in adata.layers.keys().') else: raise ValueError('`layers` should be a string or a list/tuple of length 3.') if use_raw and (layers != ('X', 'X', 'X') or layers != ['X', 'X', 'X']): ValueError('`use_raw` must be `False` if layers other than \'X\' are used.') if legend_loc not in VALID_LEGENDLOCS: raise ValueError( 'Invalid `legend_loc`, need to be one of: {}.'.format(VALID_LEGENDLOCS)) if components is None: components = '1,2' if '2d' in projection else '1,2,3' if isinstance(components, str): components = components.split(',') components = np.array(components).astype(int) - 1 keys = ['grey'] if color is None else [color] if isinstance(color, str) else color if title is not None and isinstance(title, str): title = [title] highlights = adata.uns['highlights'] if 'highlights' in adata.uns else [] if basis is not None: try: # ignore the '0th' diffusion component if basis == 'diffmap': components += 1 Y = adata.obsm['X_' + basis][:, components] # correct the component vector for use in labeling etc. if basis == 'diffmap': components -= 1 except KeyError: raise KeyError('compute coordinates using visualization tool {} first' .format(basis)) elif x is not None and y is not None: x_arr = adata._get_obs_array(x, use_raw=use_raw, layer=layers[0]) y_arr = adata._get_obs_array(y, use_raw=use_raw, layer=layers[1]) x_arr = x_arr.toarray().flatten() if issparse(x_arr) else x_arr y_arr = y_arr.toarray().flatten() if issparse(y_arr) else y_arr Y = np.c_[x_arr[:, None], y_arr[:, None]] else: raise ValueError('Either provide a `basis` or `x` and `y`.') if size is None: n = Y.shape[0] size = 120000 / n if legend_loc.startswith('on data') and legend_fontsize is None: legend_fontsize = rcParams['legend.fontsize'] elif legend_fontsize is None: legend_fontsize = rcParams['legend.fontsize'] palette_was_none = False if palette is None: palette_was_none = True if isinstance(palette, list): if not is_color_like(palette[0]): palettes = palette else: palettes = [palette] else: palettes = [palette for i in range(len(keys))] for i, palette in enumerate(palettes): palettes[i] = utils.default_palette(palette) if basis is not None: component_name = ( 'DC' if basis == 'diffmap' else 'tSNE' if basis == 'tsne' else 'UMAP' if basis == 'umap' else 'PC' if basis == 'pca' else basis.replace('draw_graph_', '').upper() if 'draw_graph' in basis else basis) else: component_name = None axis_labels = (x, y) if component_name is None else None show_ticks = True if component_name is None else False # generate the colors color_ids = [] categoricals = [] colorbars = [] for ikey, key in enumerate(keys): c = 'white' categorical = False # by default, assume continuous or flat color colorbar = None # test whether we have categorial or continuous annotation if key in adata.obs_keys(): if is_categorical_dtype(adata.obs[key]): categorical = True else: c = adata.obs[key] # coloring according to gene expression elif (use_raw and adata.raw is not None and key in adata.raw.var_names): c = adata.raw[:, key].X elif key in adata.var_names: c = adata[:, key].X if layers[2] == 'X' else adata[:, key].layers[layers[2]] c = c.toarray().flatten() if issparse(c) else c elif is_color_like(key): # a flat color c = key colorbar = False else: raise ValueError( 'key \'{}\' is invalid! pass valid observation annotation, ' 'one of {} or a gene name {}' .format(key, adata.obs_keys(), adata.var_names)) if colorbar is None: colorbar = not categorical colorbars.append(colorbar) if categorical: categoricals.append(ikey) color_ids.append(c) if right_margin is None and len(categoricals) > 0: if legend_loc == 'right margin': right_margin = 0.5 if title is None and keys[0] is not None: title = [key.replace('_', ' ') if not is_color_like(key) else '' for key in keys] axs = scatter_base(Y, title=title, alpha=alpha, component_name=component_name, axis_labels=axis_labels, component_indexnames=components + 1, projection=projection, colors=color_ids, highlights=highlights, colorbars=colorbars, right_margin=right_margin, left_margin=left_margin, sizes=[size for c in keys], color_map=color_map, show_ticks=show_ticks, ax=ax) def add_centroid(centroids, name, Y, mask): Y_mask = Y[mask] if Y_mask.shape[0] == 0: return median = np.median(Y_mask, axis=0) i = np.argmin(np.sum(np.abs(Y_mask - median), axis=1)) centroids[name] = Y_mask[i] # loop over all categorical annotation and plot it for i, ikey in enumerate(categoricals): palette = palettes[i] key = keys[ikey] utils.add_colors_for_categorical_sample_annotation( adata, key, palette, force_update_colors=not palette_was_none) # actually plot the groups mask_remaining = np.ones(Y.shape[0], dtype=bool) centroids = {} if groups is None: for iname, name in enumerate(adata.obs[key].cat.categories): if name not in settings.categories_to_ignore: mask = scatter_group(axs[ikey], key, iname, adata, Y, projection, size=size, alpha=alpha) mask_remaining[mask] = False if legend_loc.startswith('on data'): add_centroid(centroids, name, Y, mask) else: groups = [groups] if isinstance(groups, str) else groups for name in groups: if name not in set(adata.obs[key].cat.categories): raise ValueError('"' + name + '" is invalid!' + ' specify valid name, one of ' + str(adata.obs[key].cat.categories)) else: iname = np.flatnonzero(adata.obs[key].cat.categories.values == name)[0] mask = scatter_group(axs[ikey], key, iname, adata, Y, projection, size=size, alpha=alpha) if legend_loc.startswith('on data'): add_centroid(centroids, name, Y, mask) mask_remaining[mask] = False if mask_remaining.sum() > 0: data = [Y[mask_remaining, 0], Y[mask_remaining, 1]] if projection == '3d': data.append(Y[mask_remaining, 2]) axs[ikey].scatter(*data, marker='.', c='lightgrey', s=size, edgecolors='none', zorder=-1) legend = None if legend_loc.startswith('on data'): if legend_fontweight is None: legend_fontweight = 'bold' for name, pos in centroids.items(): axs[ikey].text(pos[0], pos[1], name, weight=legend_fontweight, verticalalignment='center', horizontalalignment='center', fontsize=legend_fontsize) all_pos = np.zeros((len(adata.obs[key].cat.categories), 2)) for iname, name in enumerate(adata.obs[key].cat.categories): if name in centroids: all_pos[iname] = centroids[name] else: all_pos[iname] = [np.nan, np.nan] utils._tmp_cluster_pos = all_pos if legend_loc == 'on data export': filename = settings.writedir + 'pos.csv' logg.msg('exporting label positions to {}'.format(filename), v=1) if settings.writedir != '' and not os.path.exists(settings.writedir): os.makedirs(settings.writedir) np.savetxt(filename, all_pos, delimiter=',') elif legend_loc == 'right margin': legend = axs[ikey].legend( frameon=False, loc='center left', bbox_to_anchor=(1, 0.5), ncol=(1 if len(adata.obs[key].cat.categories) <= 14 else 2 if len(adata.obs[key].cat.categories) <= 30 else 3), fontsize=legend_fontsize) elif legend_loc != 'none': legend = axs[ikey].legend( frameon=False, loc=legend_loc, fontsize=legend_fontsize) if legend is not None: for handle in legend.legendHandles: handle.set_sizes([300.0]) # draw a frame around the scatter frameon = settings._frameon if frameon is None else frameon if not frameon: for ax in axs: ax.set_xlabel('') ax.set_ylabel('') ax.set_frame_on(False) utils.savefig_or_show('scatter' if basis is None else basis, show=show, save=save) if show == False: return axs if len(keys) > 1 else axs[0] def ranking(adata, attr, keys, dictionary=None, indices=None, labels=None, color='black', n_points=30, log=False, show=None): """Plot rankings. See, for example, how this is used in pl.pca_ranking. Parameters ---------- adata : AnnData The data. attr : {'var', 'obs', 'uns', 'varm', 'obsm'} The attribute of AnnData that contains the score. keys : str or list of str The scores to look up an array from the attribute of adata. Returns ------- Returns matplotlib gridspec with access to the axes. """ if isinstance(keys, str) and indices is not None: scores = getattr(adata, attr)[keys][:, indices] keys = ['{}{}'.format(keys[:-1], i+1) for i in indices] else: if dictionary is None: scores = getattr(adata, attr)[keys] else: scores = getattr(adata, attr)[dictionary][keys] n_panels = len(keys) if isinstance(keys, list) else 1 if n_panels == 1: scores, keys = scores[:, None], [keys] if log: scores = np.log(scores) if labels is None: labels = adata.var_names if attr in {'var', 'varm'} else np.arange(scores.shape[0]).astype(str) if isinstance(labels, str): labels = [labels + str(i+1) for i in range(scores.shape[0])] from matplotlib import gridspec if n_panels <= 5: n_rows, n_cols = 1, n_panels else: n_rows, n_cols = 2, int(n_panels/2 + 0.5) fig = pl.figure(figsize=(n_cols * rcParams['figure.figsize'][0], n_rows * rcParams['figure.figsize'][1])) left, bottom = 0.2/n_cols, 0.13/n_rows gs = gridspec.GridSpec(nrows=n_rows, ncols=n_cols, wspace=0.2, left=left, bottom=bottom, right=1-(n_cols-1)*left-0.01/n_cols, top=1-(n_rows-1)*bottom-0.1/n_rows) for iscore, score in enumerate(scores.T): pl.subplot(gs[iscore]) indices = np.argsort(score)[::-1][:n_points+1] for ig, g in enumerate(indices): pl.text(ig, score[g], labels[g], color=color, rotation='vertical', verticalalignment='bottom', horizontalalignment='center', fontsize=8) pl.title(keys[iscore].replace('_', ' ')) if n_panels <= 5 or count > n_cols: pl.xlabel('ranking') pl.xlim(-0.9, ig + 0.9) score_min, score_max = np.min(score[indices]), np.max(score[indices]) pl.ylim((0.95 if score_min > 0 else 1.05) * score_min, (1.05 if score_max > 0 else 0.95) * score_max) if show == False: return gs @doc_params(show_save_ax=doc_show_save_ax) def violin(adata, keys, groupby=None, log=False, use_raw=None, stripplot=True, jitter=True, size=1, scale='width', order=None, multi_panel=None, show=None, xlabel='', rotation=None, save=None, ax=None, **kwds): """\ Violin plot. Wraps `seaborn.violinplot` for :class:`~anndata.AnnData`. Parameters ---------- adata : :class:`~anndata.AnnData` Annotated data matrix. keys : `str` or list of `str` Keys for accessing variables of `.var_names` or fields of `.obs`. groupby : `str` or `None`, optional (default: `None`) The key of the observation grouping to consider. log : `bool`, optional (default: `False`) Plot on logarithmic axis. use_raw : `bool`, optional (default: `None`) Use `raw` attribute of `adata` if present. multi_panel : `bool`, optional (default: `False`) Display keys in multiple panels also when `groupby is not None`. stripplot : `bool` optional (default: `True`) Add a stripplot on top of the violin plot. See `seaborn.stripplot`. jitter : `float` or `bool`, optional (default: `True`) Add jitter to the stripplot (only when stripplot is True) See `seaborn.stripplot`. size : int, optional (default: 1) Size of the jitter points. order : list of str, optional (default: `True`) Order in which to show the categories. scale : {{'area', 'count', 'width'}}, optional (default: 'width') The method used to scale the width of each violin. If 'area', each violin will have the same area. If 'count', the width of the violins will be scaled by the number of observations in that bin. If 'width', each violin will have the same width. xlabel : `str`, optional (default: `''`) Label of the x axis. Defaults to `groupby` if `rotation` is `None`, otherwise, no label is shown. rotation : `float`, optional (default: `None`) Rotation of xtick labels. {show_save_ax} **kwds : keyword arguments Are passed to `seaborn.violinplot`. Returns ------- A `matplotlib.Axes` object if `ax` is `None` else `None`. """ sanitize_anndata(adata) if use_raw is None and adata.raw is not None: use_raw = True if isinstance(keys, str): keys = [keys] obs_keys = False for key in keys: if key in adata.obs_keys(): obs_keys = True if obs_keys and key not in set(adata.obs_keys()): raise ValueError( 'Either use observation keys or variable names, but do not mix. ' 'Did not find {} in adata.obs_keys().'.format(key)) if obs_keys: obs_df = adata.obs else: if groupby is None: obs_df = pd.DataFrame() else: obs_df = pd.DataFrame(adata.obs[groupby]) for key in keys: if adata.raw is not None and use_raw: X_col = adata.raw[:, key].X else: X_col = adata[:, key].X obs_df[key] = X_col if groupby is None: obs_tidy = pd.melt(obs_df, value_vars=keys) x = 'variable' ys = ['value'] else: obs_tidy = obs_df x = groupby ys = keys if multi_panel: if groupby is None and len(ys) == 1: # This is a quick and dirty way for adapting scales across several # keys if groupby is None. y = ys[0] g = sns.FacetGrid(obs_tidy, col=x, col_order=keys, sharey=False) # don't really know why this gives a warning without passing `order` g = g.map(sns.violinplot, y, inner=None, orient='vertical', scale=scale, order=keys, **kwds) if stripplot: g = g.map(sns.stripplot, y, orient='vertical', jitter=jitter, size=size, order=keys, color='black') if log: g.set(yscale='log') g.set_titles(col_template='{col_name}').set_xlabels('') if rotation is not None: for ax in g.axes[0]: ax.tick_params(labelrotation=rotation) else: if ax is None: axs, _, _, _ = setup_axes( ax=ax, panels=['x'] if groupby is None else keys, show_ticks=True, right_margin=0.3) else: axs = [ax] for ax, y in zip(axs, ys): ax = sns.violinplot(x, y=y, data=obs_tidy, inner=None, order=order, orient='vertical', scale=scale, ax=ax, **kwds) if stripplot: ax = sns.stripplot(x, y=y, data=obs_tidy, order=order, jitter=jitter, color='black', size=size, ax=ax) if xlabel == '' and groupby is not None and rotation is None: xlabel = groupby.replace('_', ' ') ax.set_xlabel(xlabel) if log: ax.set_yscale('log') if rotation is not None: ax.tick_params(labelrotation=rotation) utils.savefig_or_show('violin', show=show, save=save) if show is False: if multi_panel: return g elif len(axs) == 1: return axs[0] else: return axs @doc_params(show_save_ax=doc_show_save_ax) def clustermap( adata, obs_keys=None, use_raw=None, show=None, save=None, **kwds): """\ Hierarchically-clustered heatmap. Wraps `seaborn.clustermap <https://seaborn.pydata.org/generated/seaborn.clustermap.html>`__ for :class:`~anndata.AnnData`. Parameters ---------- adata : :class:`~anndata.AnnData` Annotated data matrix. obs_keys : `str` Categorical annotation to plot with a different color map. Currently, only a single key is supported. use_raw : `bool`, optional (default: `None`) Use `raw` attribute of `adata` if present. {show_save_ax} **kwds : keyword arguments Keyword arguments passed to `seaborn.clustermap <https://seaborn.pydata.org/generated/seaborn.clustermap.html>`__. Returns ------- If `show == False`, a `seaborn.ClusterGrid` object. Notes ----- The returned object has a savefig() method that should be used if you want to save the figure object without clipping the dendrograms. To access the reordered row indices, use: clustergrid.dendrogram_row.reordered_ind Column indices, use: clustergrid.dendrogram_col.reordered_ind Examples -------- Soon to come with figures. In the meanwile, see https://seaborn.pydata.org/generated/seaborn.clustermap.html. >>> import scanpy.api as sc >>> adata = sc.datasets.krumsiek11() >>> sc.pl.clustermap(adata, obs_keys='cell_type') """ if not isinstance(obs_keys, (str, type(None))): raise ValueError('Currently, only a single key is supported.') sanitize_anndata(adata) if use_raw is None and adata.raw is not None: use_raw = True X = adata.raw.X if use_raw else adata.X df =
pd.DataFrame(X, index=adata.obs_names, columns=adata.var_names)
pandas.DataFrame
import json import networkx as nx import numpy as np import os import pandas as pd from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from config import logger, config def read_profile_data(): profile_na = np.zeros(67) profile_na[0] = -1 profile_na = pd.DataFrame(profile_na.reshape(1, -1)) profile_df = pd.read_csv(config.profile_file) profile_na.columns = profile_df.columns profile_df = profile_df.append(profile_na) return profile_df def merge_raw_data(): tr_queries = pd.read_csv(config.train_query_file, parse_dates=['req_time']) te_queries = pd.read_csv(config.test_query_file, parse_dates=['req_time']) tr_plans = pd.read_csv(config.train_plan_file, parse_dates=['plan_time']) te_plans = pd.read_csv(config.test_plan_file, parse_dates=['plan_time']) tr_click = pd.read_csv(config.train_click_file) trn = tr_queries.merge(tr_click, on='sid', how='left') trn = trn.merge(tr_plans, on='sid', how='left') trn = trn.drop(['click_time'], axis=1) trn['click_mode'] = trn['click_mode'].fillna(0) tst = te_queries.merge(te_plans, on='sid', how='left') tst['click_mode'] = -1 df = pd.concat([trn, tst], axis=0, sort=False) df = df.drop(['plan_time'], axis=1) df = df.reset_index(drop=True) df['weekday'] = df['req_time'].dt.weekday df['day'] = df['req_time'].dt.day df['hour'] = df['req_time'].dt.hour df = df.drop(['req_time'], axis=1) logger.info('total data size: {}'.format(df.shape)) logger.info('data columns: {}'.format(', '.join(df.columns))) return df def extract_plans(df): plans = [] for sid, plan in tqdm(zip(df['sid'].values, df['plans'].values)): try: p = json.loads(plan) for x in p: x['sid'] = sid plans.extend(p) except: pass return pd.DataFrame(plans) def generate_od_features(df): feat = df[['o','d']].drop_duplicates() feat = feat.merge(df.groupby('o')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='o') feat.rename(columns={'day': 'o_nunique_day', 'hour': 'o_nunique_hour', 'pid': 'o_nunique_pid', 'click_mode': 'o_nunique_click'}, inplace=True) feat = feat.merge(df.groupby('d')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='d') feat.rename(columns={'day': 'd_nunique_day', 'hour': 'd_nunique_hour', 'pid': 'd_nunique_pid', 'click_mode': 'd_nunique_click'}, inplace=True) feat = feat.merge(df.groupby(['o', 'd'])[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on=['o', 'd']) feat.rename(columns={'day': 'od_nunique_day', 'hour': 'od_nunique_hour', 'pid': 'od_nunique_pid', 'click_mode': 'od_nunique_click'}, inplace=True) return feat def generate_pid_features(df): feat = df.groupby('pid')[['hour', 'day']].nunique().reset_index() feat.rename(columns={'hour': 'pid_nunique_hour', 'day': 'pid_nunique_day'}, inplace=True) feat['nunique_hour_d_nunique_day'] = feat['pid_nunique_hour'] / feat['pid_nunique_day'] feat = feat.merge(df.groupby('pid')[['o', 'd']].nunique().reset_index(), how='left', on='pid') feat.rename(columns={'o': 'pid_nunique_o', 'd': 'pid_nunique_d'}, inplace=True) feat['nunique_o_d_nunique_d'] = feat['pid_nunique_o'] / feat['pid_nunique_d'] return feat def generate_od_cluster_features(df): G = nx.Graph() G.add_nodes_from(df['o'].unique().tolist()) G.add_nodes_from(df['d'].unique().tolist()) edges = df[['o','d']].apply(lambda x: (x[0],x[1]), axis=1).tolist() G.add_edges_from(edges) cluster = nx.clustering(G) cluster_df = pd.DataFrame([{'od': key, 'cluster': cluster[key]} for key in cluster.keys()]) return cluster_df def gen_od_feas(data): data['o1'] = data['o'].apply(lambda x: float(x.split(',')[0])) data['o2'] = data['o'].apply(lambda x: float(x.split(',')[1])) data['d1'] = data['d'].apply(lambda x: float(x.split(',')[0])) data['d2'] = data['d'].apply(lambda x: float(x.split(',')[1])) data = data.drop(['o', 'd'], axis=1) return data def gen_plan_feas(data): n = data.shape[0] mode_list_feas = np.zeros((n, 12)) max_dist, min_dist, mean_dist, std_dist = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_price, min_price, mean_price, std_price = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_eta, min_eta, mean_eta, std_eta = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) min_dist_mode, max_dist_mode, min_price_mode, max_price_mode, min_eta_mode, max_eta_mode, first_mode = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) mode_texts = [] for i, plan in tqdm(enumerate(data['plans'].values)): try: cur_plan_list = json.loads(plan) except: cur_plan_list = [] if len(cur_plan_list) == 0: mode_list_feas[i, 0] = 1 first_mode[i] = 0 max_dist[i] = -1 min_dist[i] = -1 mean_dist[i] = -1 std_dist[i] = -1 max_price[i] = -1 min_price[i] = -1 mean_price[i] = -1 std_price[i] = -1 max_eta[i] = -1 min_eta[i] = -1 mean_eta[i] = -1 std_eta[i] = -1 min_dist_mode[i] = -1 max_dist_mode[i] = -1 min_price_mode[i] = -1 max_price_mode[i] = -1 min_eta_mode[i] = -1 max_eta_mode[i] = -1 mode_texts.append('word_null') else: distance_list = [] price_list = [] eta_list = [] mode_list = [] for tmp_dit in cur_plan_list: distance_list.append(int(tmp_dit['distance'])) if tmp_dit['price'] == '': price_list.append(0) else: price_list.append(int(tmp_dit['price'])) eta_list.append(int(tmp_dit['eta'])) mode_list.append(int(tmp_dit['transport_mode'])) mode_texts.append( ' '.join(['word_{}'.format(mode) for mode in mode_list])) distance_list = np.array(distance_list) price_list = np.array(price_list) eta_list = np.array(eta_list) mode_list = np.array(mode_list, dtype='int') mode_list_feas[i, mode_list] = 1 distance_sort_idx = np.argsort(distance_list) price_sort_idx = np.argsort(price_list) eta_sort_idx = np.argsort(eta_list) max_dist[i] = distance_list[distance_sort_idx[-1]] min_dist[i] = distance_list[distance_sort_idx[0]] mean_dist[i] = np.mean(distance_list) std_dist[i] = np.std(distance_list) max_price[i] = price_list[price_sort_idx[-1]] min_price[i] = price_list[price_sort_idx[0]] mean_price[i] = np.mean(price_list) std_price[i] = np.std(price_list) max_eta[i] = eta_list[eta_sort_idx[-1]] min_eta[i] = eta_list[eta_sort_idx[0]] mean_eta[i] = np.mean(eta_list) std_eta[i] = np.std(eta_list) first_mode[i] = mode_list[0] max_dist_mode[i] = mode_list[distance_sort_idx[-1]] min_dist_mode[i] = mode_list[distance_sort_idx[0]] max_price_mode[i] = mode_list[price_sort_idx[-1]] min_price_mode[i] = mode_list[price_sort_idx[0]] max_eta_mode[i] = mode_list[eta_sort_idx[-1]] min_eta_mode[i] = mode_list[eta_sort_idx[0]] feature_data = pd.DataFrame(mode_list_feas) feature_data.columns = ['mode_feas_{}'.format(i) for i in range(12)] feature_data['max_dist'] = max_dist feature_data['min_dist'] = min_dist feature_data['mean_dist'] = mean_dist feature_data['std_dist'] = std_dist feature_data['max_price'] = max_price feature_data['min_price'] = min_price feature_data['mean_price'] = mean_price feature_data['std_price'] = std_price feature_data['max_eta'] = max_eta feature_data['min_eta'] = min_eta feature_data['mean_eta'] = mean_eta feature_data['std_eta'] = std_eta feature_data['max_dist_mode'] = max_dist_mode feature_data['min_dist_mode'] = min_dist_mode feature_data['max_price_mode'] = max_price_mode feature_data['min_price_mode'] = min_price_mode feature_data['max_eta_mode'] = max_eta_mode feature_data['min_eta_mode'] = min_eta_mode feature_data['first_mode'] = first_mode logger.info('mode tfidf...') tfidf_enc = TfidfVectorizer(ngram_range=(1, 2)) tfidf_vec = tfidf_enc.fit_transform(mode_texts) svd_enc = TruncatedSVD(n_components=10, n_iter=20, random_state=2019) mode_svd = svd_enc.fit_transform(tfidf_vec) mode_svd = pd.DataFrame(mode_svd) mode_svd.columns = ['svd_mode_{}'.format(i) for i in range(10)] data = pd.concat([data, feature_data, mode_svd], axis=1) data = data.drop(['plans'], axis=1) return data def gen_profile_feas(data): profile_data = read_profile_data() x = profile_data.drop(['pid'], axis=1).values svd = TruncatedSVD(n_components=20, n_iter=20, random_state=2019) svd_x = svd.fit_transform(x) svd_feas = pd.DataFrame(svd_x) svd_feas.columns = ['svd_fea_{}'.format(i) for i in range(20)] svd_feas['pid'] = profile_data['pid'].values data['pid'] = data['pid'].fillna(-1) data = data.merge(svd_feas, on='pid', how='left') return data def group_weekday_and_hour(row): if row['weekday'] == 0 or row['weekday'] == 6: w = 0 else: w = row['weekday'] if row['hour'] > 7 and row['hour'] < 18: # 7:00 - 18:00 h = row['hour'] elif row['hour'] >= 18 and row['hour'] < 21: # 18:00 - 21:00 h = 1 elif row['hour'] >= 21 or row['hour'] < 6: # 21:00 - 6:00 h = 0 else: # 6:00 - 7:00 h = 2 return str(w) + '_' + str(h) def gen_ratio_feas(data): data['dist-d-eta'] = data['mean_dist'] / data['mean_eta'] data['price-d-dist'] = data['mean_price'] / data['mean_dist'] data['price-d-eta'] = data['mean_price'] / data['mean_eta'] data['o1-d-d1'] = data['o1'] / data['d1'] data['o2-d-d2'] = data['o2'] / data['d2'] return data def gen_fly_dist_feas(data): data['fly-dist'] = ((data['d1'] - data['o1'])**2 + (data['d2'] - data['o2'])**2)**0.5 data['fly-dist-d-dist'] = data['fly-dist'] / data['mean_dist'] data['fly-dist-d-eta'] = data['fly-dist'] / data['mean_eta'] data['price-d-fly-dist'] = data['mean_price'] / data['fly-dist'] return data def gen_aggregate_profile_feas(data): aggr = data.groupby('pid')['sid'].agg(['count']) aggr.columns = ['%s_%s' % ('sid', col) for col in aggr.columns.values] aggr = aggr.reset_index() aggr.loc[aggr['pid'] == -1.0,'sid_count'] = 0 # reset in case pid == -1 data = data.merge(aggr, how='left', on=['pid']) return data def gen_pid_feat(data): feat = pd.read_csv(config.pid_feature_file) data = data.merge(feat, how='left', on='pid') return data def gen_od_feat(data): feat = pd.read_csv(config.od_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) logger.info('sid shape={}'.format(sid.shape)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) logger.info('feature shape={}'.format(feat.shape)) logger.info('feature columns={}'.format(feat.columns)) data = data.merge(feat, how='left', on='sid') click_cols = [c for c in feat.columns if c.endswith('click')] data.drop(click_cols, axis=1, inplace=True) return data def gen_od_cluster_feat(data): feat = pd.read_csv(config.od_cluster_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) f = feat.copy() feat = sid.merge(feat, how='left', left_on='o', right_on='od').drop(['od','o'], axis=1) feat.rename(columns={'cluster': 'o_cluster'}, inplace=True) feat = feat.merge(f, how='left', left_on='d', right_on='od').drop(['od','d'], axis=1) feat.rename(columns={'cluster': 'd_cluster'}, inplace=True) data = data.merge(feat, how='left', on='sid') return data def gen_od_eq_feat(data): data['o1-eq-d1'] = (data['o1'] == data['d1']).astype(int) data['o2-eq-d2'] = (data['o2'] == data['d2']).astype(int) data['o-eq-d'] = data['o1-eq-d1']*data['o2-eq-d2'] data['o1-m-o2'] = np.abs(data['o1'] - data['o2']) data['d1-m-d2'] = np.abs(data['d1'] - data['d2']) data['od_area'] = data['o1-m-o2']*data['d1-m-d2'] data['od_ratio'] = data['o1-m-o2']/data['d1-m-d2'] return data def gen_od_mode_cnt_feat(data): feat = pd.read_csv(config.od_mode_cnt_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) data = data.merge(feat, how='left', on='sid') return data def gen_weekday_hour_cnt_feat(data): feat = pd.read_csv(config.weekday_hour_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','req_time']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','req_time']) sid = pd.concat((tr_sid, te_sid)) sid['req_time'] = pd.to_datetime(sid['req_time']) sid['hour'] = sid['req_time'].map(lambda x: x.hour) sid['weekday'] = sid['req_time'].map(lambda x: x.weekday()) feat = sid.merge(feat, how='left', on=['hour','weekday']).drop(['hour','weekday','req_time'], axis=1) data = data.merge(feat, how='left', on='sid') return data def gen_od_plan_agg_feat(data): #feat = pd.read_csv(config.od_plan_agg_feature_file) #tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d','req_time']) #te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d', 'req_time']) #sid = pd.concat((tr_sid, te_sid)) #sid['req_time'] = pd.to_datetime(sid['req_time']) #sid['hour'] = sid['req_time'].map(lambda x: x.hour) #feat = sid.merge(feat, how='left', on=['o','d','hour']).drop(['o','d','hour','req_time'], axis=1) feat = pd.read_csv(config.od_plan_agg_feature_file) data = data.merge(feat, how='left', on='sid') return data def gen_mode_feat(data): feat = pd.read_csv(config.mode_feature_file) data = data.merge(feat, how='left', on='sid') return data def gen_mode_stats_feat(data): feat = pd.read_csv(config.od_stats_file) data = data.merge(feat, how='left', on='sid') return data def gen_daily_plan_feat(data): feat = pd.read_csv(config.daily_plan_file) data = data.merge(feat, how='left', on='sid') return data def gen_weather_feat(data): feat = pd.read_csv(config.weather_file) data = data.merge(feat, how='left', on='sid') return data def gen_od_pid_count_feat(data): feat = pd.read_csv(config.od_pid_count_file) data = data.merge(feat, how='left', on='sid') return data def gen_plan_ratio_feat(data): feat = pd.read_csv(config.plan_ratio_file) data = data.merge(feat, how='left', on='sid') return data def generate_f1(df): trn_feat_name, tst_feat_name = config.get_feature_name('f1') if os.path.exists(trn_feat_name) and os.path.exists(tst_feat_name): logger.info('loading the training and test features from files.') trn = pd.read_csv(trn_feat_name) tst = pd.read_csv(tst_feat_name) else: df = gen_od_feas(df) df = gen_plan_feas(df) df = gen_profile_feas(df) df = gen_ratio_feas(df) df = gen_fly_dist_feas(df) df = gen_aggregate_profile_feas(df) # 0.6759966661470926 df = gen_pid_feat(df) # 0.6762996872664375 df = gen_od_feat(df) # without click count: 0.6780576865566392; with click count: 0.6795810670221226 df = gen_od_cluster_feat(df) # 0.6796523605372234 df = gen_od_eq_feat(df) trn = df[df['click_mode'] != -1] tst = df[df['click_mode'] == -1] return trn, tst def generate_f2(df): trn_feat_name, tst_feat_name = config.get_feature_name('f2') if os.path.exists(trn_feat_name) and os.path.exists(tst_feat_name): logger.info('loading the training and test features from files.') trn = pd.read_csv(trn_feat_name) tst = pd.read_csv(tst_feat_name) else: trn, tst = generate_f1(df) df = pd.concat((trn, tst)) df = gen_od_mode_cnt_feat(df) # [+] fold #0: 0.6835031183515229 df = gen_weekday_hour_cnt_feat(df) df = gen_od_plan_agg_feat(df) df = gen_mode_feat(df) #df = gen_mode_stats_feat(df) ## df = gen_weather_feat(df) #df = gen_daily_plan_feat(df) #df = gen_od_pid_count_feat(df) ## df = gen_plan_ratio_feat(df) trn = df[df['click_mode'] != -1] tst = df[df['click_mode'] == -1] return trn, tst def generate_f3(df): trn_feat_name, tst_feat_name = config.get_feature_name('f1') if os.path.exists(trn_feat_name) and os.path.exists(tst_feat_name): logger.info('loading the training and test features from files.') trn = pd.read_csv(trn_feat_name) tst = pd.read_csv(tst_feat_name) else: trn, tst = generate_f2(df) df = pd.concat((trn, tst)) #df = gen_mode_stats_feat(df) ## df = gen_weather_feat(df) #df = gen_daily_plan_feat(df) #df = gen_od_pid_count_feat(df) ## df = gen_plan_ratio_feat(df) trn = df[df['click_mode'] != -1] tst = df[df['click_mode'] == -1] return trn, tst def get_train_test_features(): config.set_feature_name('f1') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f1.') trn, tst = generate_f1(df) logger.info('saving the training and test f1 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features2(): config.set_feature_name('f2') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f2.') trn, tst = generate_f2(df) logger.info('saving the training and test f2 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features2a(): config.set_feature_name('f2') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f2.') trn, tst = generate_f2(df) logger.info('saving the training and test f2 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() feat = pd.read_csv('/home/ubuntu/projects/kddcup2019track1/build/feature/od_coord_feature.csv') trn = trn.merge(feat, how='left', on='sid') tst = tst.merge(feat, how='left', on='sid') feat = pd.read_csv('/home/ubuntu/projects/kddcup2019track1/input/data_set_phase1/var_dist_time.csv') trn = trn.merge(feat, how='left', on='sid') tst = tst.merge(feat, how='left', on='sid') feat = pd.read_csv('/home/ubuntu/projects/kddcup2019track1/input/data_set_phase1/var_dist_min.csv') trn = trn.merge(feat, how='left', on='sid') tst = tst.merge(feat, how='left', on='sid') trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features3(): config.set_feature_name('f3') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f3.') trn, tst = generate_f3(df) logger.info('saving the training and test f3 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features4(): config.set_feature_name('f4') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features0(): config.set_feature_name('f0') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) y = trn['click_mode'].values sub = tst[['sid']].copy() feat =
pd.read_csv('/home/ubuntu/projects/kddcup2019track1/build/feature/od_coord_feature.csv')
pandas.read_csv
# %% imports import numpy as np import pandas as pd import config as cfg from src.utils.data_processing import hours_in_year, medea_path # --------------------------------------------------------------------------- # # %% settings and initializing # --------------------------------------------------------------------------- # STATIC_FNAME = medea_path('data', 'processed', 'data_static.xlsx') idx = pd.IndexSlice # --------------------------------------------------------------------------- # # %% read in data # --------------------------------------------------------------------------- # static_data = { 'CAP_R': pd.read_excel(STATIC_FNAME, 'INITIAL_CAP_R', header=[0], index_col=[0, 1]), 'CAPCOST_R': pd.read_excel(STATIC_FNAME, 'CAPITALCOST_R', header=[0], index_col=[0, 1]), 'potentials': pd.read_excel(STATIC_FNAME, 'potentials', header=[0], index_col=[0]), 'tec': pd.read_excel(STATIC_FNAME, 'parameters_G'), 'feasops': pd.read_excel(STATIC_FNAME, 'FEASIBLE_INPUT-OUTPUT'), 'cost_transport': pd.read_excel(STATIC_FNAME, 'COST_TRANSPORT', header=[0], index_col=[0]), 'CAPCOST_K': pd.read_excel(STATIC_FNAME, 'CAPITALCOST_S', header=[0], index_col=[0, 1]), 'CAP_X': pd.read_excel(STATIC_FNAME, 'ATC', index_col=[0]), 'DISTANCE': pd.read_excel(STATIC_FNAME, 'KM', index_col=[0]), 'AIR_POLLUTION': pd.read_excel(STATIC_FNAME, 'AIR_POLLUTION', index_col=[0]) } # -------------------------------------------------------------------------------------------------------------------- plant_data = { 'hydro': pd.read_excel(medea_path('data', 'processed', 'plant-list_hydro.xlsx'), 'opsd_hydro'), 'conventional': pd.read_excel(medea_path('data', 'processed', 'power_plant_db.xlsx')) } ts_data = { 'timeseries': pd.read_csv(medea_path('data', 'processed', 'medea_regional_timeseries.csv')) } # --------------------------------------------------------------------------- # # %% prepare set data # --------------------------------------------------------------------------- # dict_sets = { 'f': { 'Nuclear': [10], 'Lignite': [20], 'Coal': [30], 'Gas': [40], 'Oil': [50], 'Hydro': [60], 'Biomass': [70], 'Solar': [80], 'Wind': [90], 'Power': [100], 'Heat': [110], 'Syngas': [120] }, 'l': {f'l{x}': [True] for x in range(1, 5)}, 'm': { 'el': True, 'ht': True }, 'n': { 'pv': [True], 'ror': [True], 'wind_on': [True], 'wind_off': [True] }, 'k': { 'psp_day': [True], 'psp_week': [True], 'psp_season': [True], 'res_day': [True], 'res_week': [True], 'res_season': [True], 'battery': [True] }, 't': {f't{hour}': [True] for hour in range(1, hours_in_year(cfg.year) + 1)}, 'z': {zone: [True] for zone in cfg.zones} } # convert to DataFrames for key, value in dict_sets.items(): dict_sets.update({key: pd.DataFrame.from_dict(dict_sets[key], orient='index', columns=['Value'])}) # --------------------------------------------------------------------------- # # %% prepare static data # --------------------------------------------------------------------------- # # Source 'CO2_INTENSITY': CO2 Emission Factors for Fossil Fuels, UBA, 2016 dict_static = { 'CO2_INTENSITY': { 'Nuclear': [0], 'Lignite': [0.399], 'Coal': [0.337], 'Gas': [0.201], 'Oil': [0.266], 'Hydro': [0], 'Biomass': [0], 'Solar': [0], 'Wind': [0], 'Power': [0], 'Heat': [0], 'Syngas': [0] }, 'eta': { 'nuc': [0.34], 'lig_stm': [0.31], 'lig_stm_chp': [0.31], 'lig_boa': [0.43], 'lig_boa_chp': [0.43], 'coal_sub': [0.32], 'coal_sub_chp': [0.32], 'coal_sc': [0.41], 'coal_sc_chp': [0.41], 'coal_usc': [0.44], 'coal_usc_chp': [0.44], 'coal_igcc': [0.55], 'ng_stm': [0.40], 'ng_stm_chp': [0.40], 'ng_cbt_lo': [0.34], 'ng_cbt_lo_chp': [0.34], 'ng_cbt_hi': [0.40], 'ng_cbt_hi_chp': [0.40], 'ng_cc_lo': [0.38], 'ng_cc_lo_chp': [0.38], 'ng_cc_hi': [0.55], 'ng_cc_hi_chp': [0.55], 'ng_mtr': [0.40], 'ng_mtr_chp': [0.40], 'ng_boiler_chp': [0.90], 'oil_stm': [0.31], 'oil_stm_chp': [0.31], 'oil_cbt': [0.35], 'oil_cbt_chp': [0.35], 'oil_cc': [0.42], 'oil_cc_chp': [0.42], 'bio': [0.35], 'bio_chp': [0.35], 'heatpump_pth': [3.0] }, 'map_name2fuel': { 'nuc': 'Nuclear', 'lig': 'Lignite', 'coal': 'Coal', 'ng': 'Gas', 'oil': 'Oil', 'bio': 'Biomass', 'heatpump': 'Power' }, 'CAPCOST_X': { 'AT': [1250], 'DE': [1250] }, 'VALUE_NSE': { 'AT': [12500], 'DE': [12500] }, 'LAMBDA': [0.125], 'SIGMA': [0.175] } dict_additions = { 'boilers': { # 'medea_type': [49.5], 'set_element': 'ng_boiler_chp', ('cap', 'AT'): [4.5], ('cap', 'DE'): [25.5], ('eta', 'AT'): [0.9], ('eta', 'DE'): [0.9] # ('count', 'AT'): [15], # ('count', 'DE'): [85], # ('num', 'AT'): [85], # ('num', 'DE'): [255] }, 'heatpumps': { # 'medea_type': [100], 'set_element': 'heatpump_pth', ('cap', 'AT'): [0.1], ('cap', 'DE'): [0.1], ('eta', 'AT'): [3.0], ('eta', 'DE'): [3.0] # ('count', 'AT'): [1], # ('count', 'DE'): [1], # ('num', 'AT'): [1], # ('num', 'DE'): [1] }, 'batteries': { 'power_in': [0], 'power_out': [0], 'energy_max': [0], 'efficiency_in': [0.96], 'efficiency_out': [0.96], 'cost_power': [static_data['CAPCOST_K'].loc[('AT', 'battery'), 'annuity-power'].round(4)], 'cost_energy': [static_data['CAPCOST_K'].loc[('AT', 'battery'), 'annuity-energy'].round(4)], 'inflow_factor': [0] } } dict_instantiate = {'CO2_INTENSITY': pd.DataFrame.from_dict(dict_static['CO2_INTENSITY'], orient='index', columns=['Value'])} dict_instantiate.update({'efficiency': pd.DataFrame.from_dict(dict_static['eta'], orient='index', columns=['l1'])}) dict_instantiate['efficiency']['product'] = 'el' dict_instantiate['efficiency'].loc[dict_instantiate['efficiency'].index.str.contains('pth'), 'product'] = 'ht' dict_instantiate['efficiency'].loc['ng_boiler_chp', 'product'] = 'ht' dict_instantiate['efficiency']['fuel'] = dict_instantiate['efficiency'].index.to_series().str.split('_').str.get( 0).replace(dict_static['map_name2fuel']) dict_instantiate['efficiency'].set_index(['product', 'fuel'], append=True, inplace=True) dict_instantiate['efficiency'].index.set_names(['medea_type', 'product', 'fuel_name'], inplace=True) for i in range(1, 6): dict_instantiate['efficiency'][f'l{i}'] = dict_instantiate['efficiency']['l1'] dict_instantiate.update({'CAP_R': static_data['CAP_R'].loc[idx[:, cfg.year], :]}) dict_instantiate.update({'CAP_X': static_data['CAP_X'].loc[ static_data['CAP_X'].index.str.contains('|'.join(cfg.zones)), static_data['CAP_X'].columns.str.contains('|'.join(cfg.zones))] / 1000}) dict_instantiate.update({'DISTANCE': static_data['DISTANCE'].loc[static_data['DISTANCE'].index.str.contains( '|'.join(cfg.zones)), static_data['DISTANCE'].columns.str.contains('|'.join(cfg.zones))]}) static_data.update({'CAPCOST_X': pd.DataFrame.from_dict(dict_static['CAPCOST_X'], orient='index', columns=['Value'])}) static_data.update({'VALUE_NSE': pd.DataFrame.from_dict(dict_static['VALUE_NSE'], orient='index', columns=['Value'])}) static_data.update({'LAMBDA': pd.DataFrame(dict_static['LAMBDA'], columns=['Value'])}) static_data.update({'SIGMA': pd.DataFrame(dict_static['SIGMA'], columns=['Value'])}) # --------------------------------------------------------------------------- # # %% preprocessing plant data # --------------------------------------------------------------------------- # # dispatchable (thermal) plants # filter active thermal plants plant_data.update({'active': plant_data['conventional'].loc[ (plant_data['conventional']['UnitOperOnlineDate'] < pd.Timestamp(cfg.year, 1, 1)) & (plant_data['conventional']['UnitOperRetireDate'] > pd.Timestamp(cfg.year, 12, 31)) | np.isnat(plant_data['conventional']['UnitOperRetireDate'])]}) # exclude hydro power plant plant_data['active'] = plant_data['active'].loc[(plant_data['active']['MedeaType'] < 60) | (plant_data['active']['MedeaType'] >= 70)] # capacities by country in GW prop_g = plant_data['active'].groupby(['MedeaType', 'PlantCountry'])['UnitNameplate'].sum().to_frame() / 1000 prop_g['eta'] = plant_data['active'].groupby(['MedeaType', 'PlantCountry'])['Eta'].mean().to_frame() # prop_g['count'] = plant_data['active'].groupby(['MedeaType'])['PlantCountry'].value_counts().to_frame(name='count') # prop_g['num'] = (prop_g['UnitNameplate'].round(decimals=1) * 10).astype(int) prop_g.rename(index={'Germany': 'DE', 'Austria': 'AT'}, columns={'UnitNameplate': 'cap'}, inplace=True) prop_g = prop_g.unstack(-1) prop_g.drop(0.0, axis=0, inplace=True) # index by plant element names instead of medea_type-numbers prop_g.index = prop_g.index.map(pd.Series(static_data['tec']['set_element'].values, index=static_data['tec']['medea_type'].values).to_dict()) # update 'empirical' efficiencies with generic efficiencies for zone in cfg.zones: prop_g.loc[:, idx['eta', zone]].update(pd.DataFrame.from_dict(dict_static['eta'], orient='index', columns=['eta']).iloc[:, 0]) # add data for heat boilers prop_g = prop_g.append(pd.DataFrame.from_dict(dict_additions['boilers']).set_index('set_element')) # add data for heatpumps prop_g = prop_g.append(pd.DataFrame.from_dict(dict_additions['heatpumps']).set_index('set_element')) # remove non-existent plant prop_g = prop_g.stack(-1).swaplevel(axis=0) prop_g = prop_g.dropna() # update instantiation dictionary dict_instantiate.update({'tec_props': prop_g}) # add 'tec'-set to dict_sets dict_sets.update({'i': pd.DataFrame(data=True, index=prop_g.index.get_level_values(1).unique().values, columns=['Value'])}) static_data['feasops']['fuel_name'] = (static_data['feasops']['medea_type'] / 10).apply(np.floor) * 10 static_data['feasops']['fuel_name'].replace({y: x for x, y in dict_sets['f'].itertuples()}, inplace=True) static_data['feasops']['set_element'] = static_data['feasops']['medea_type'] static_data['feasops']['set_element'].replace( {x: y for x, y in static_data['tec'][['medea_type', 'set_element']].values}, inplace=True) static_data['feasops'].dropna(inplace=True) static_data['feasops'].set_index(['set_element', 'l', 'fuel_name'], inplace=True) # following line produces memory error (0xC00000FD) --> workaround with element-wise division # df_feasops['fuel_need'] = df_feasops['fuel']/ df_eff # TODO: PerformanceWarning: indexing past lexsort depth may impact performance (3 times) static_data['feasops']['fuel_need'] = np.nan for typ in static_data['feasops'].index.get_level_values(0).unique(): for lim in static_data['feasops'].index.get_level_values(1).unique(): static_data['feasops'].loc[idx[typ, lim], 'fuel_need'] = static_data['feasops'].loc[ idx[typ, lim], 'fuel'].mean() / \ dict_static['eta'][typ][0] # adjust static_data['tec'] to reflect modelled power plants static_data['tec'].set_index('set_element', inplace=True) static_data['tec'] = static_data['tec'].loc[static_data['tec'].index.isin(dict_sets['i'].index), :] dict_instantiate['efficiency'] = \ dict_instantiate['efficiency'].loc[ dict_instantiate['efficiency'].index.get_level_values(0).isin(dict_sets['i'].index), :] static_data['feasops'] = \ static_data['feasops'].loc[static_data['feasops'].index.get_level_values(0).isin(dict_sets['i'].index), :] # --------------------------------------------------------------------------- # # hydro storage data # drop all ror data plant_data['hydro'].drop(plant_data['hydro'][plant_data['hydro'].technology == 'Run-of-river'].index, inplace=True) # filter out data without reservoir size in GWh plant_data['hydro'].dropna(subset=['energy_max', 'power_in'], inplace=True) # calculate duration of generation from full reservoir plant_data['hydro']['max_duration'] = plant_data['hydro']['energy_max'] / plant_data['hydro']['power_out'] * 1000 / 24 plant_data['hydro']['count'] = 1 plant_data.update({'hydro_clusters': plant_data['hydro'].groupby(['technology', 'country', pd.cut(plant_data['hydro']['max_duration'], [0, 2, 7, 75])]).sum()}) plant_data['hydro_clusters']['efficiency_in'] = plant_data['hydro_clusters']['efficiency_in'] / \ plant_data['hydro_clusters']['count'] plant_data['hydro_clusters']['efficiency_out'] = plant_data['hydro_clusters']['efficiency_out'] / \ plant_data['hydro_clusters']['count'] plant_data['hydro_clusters']['cost_power'] = np.nan plant_data['hydro_clusters']['cost_energy'] = np.nan # assign technology and zone index to rows plant_data['hydro_clusters']['country'] = plant_data['hydro_clusters'].index.get_level_values(1) plant_data['hydro_clusters']['category'] = plant_data['hydro_clusters'].index.get_level_values(2).rename_categories( ['day', 'week', 'season']).astype(str) plant_data['hydro_clusters']['tech'] = plant_data['hydro_clusters'].index.get_level_values(0) plant_data['hydro_clusters']['tech'] = plant_data['hydro_clusters']['tech'].replace(['Pumped Storage', 'Reservoir'], ['psp', 'res']) plant_data['hydro_clusters']['set_elem'] = plant_data['hydro_clusters']['tech'] + '_' + plant_data['hydro_clusters'][ 'category'] plant_data['hydro_clusters'] = plant_data['hydro_clusters'].set_index(['set_elem', 'country']) plant_data['hydro_clusters'].fillna(0, inplace=True) plant_data['hydro_clusters']['power_out'] = plant_data['hydro_clusters']['power_out'] / 1000 # conversion from MW to GW plant_data['hydro_clusters']['power_in'] = plant_data['hydro_clusters']['power_in'] / 1000 # conversion from MW to GW plant_data['hydro_clusters']['inflow_factor'] = ( plant_data['hydro_clusters']['energy_max'] / plant_data['hydro_clusters']['energy_max'].sum()) plant_data['hydro_clusters'] = plant_data['hydro_clusters'].loc[:, ['power_in', 'power_out', 'energy_max', 'efficiency_in', 'efficiency_out', 'cost_power', 'cost_energy', 'inflow_factor']].copy() # append battery data bat_idx = pd.MultiIndex.from_product([['battery'], list(cfg.zones)]) df_battery = pd.DataFrame(np.nan, bat_idx, dict_additions['batteries'].keys()) for zone in list(cfg.zones): for key in dict_additions['batteries'].keys(): df_battery.loc[('battery', zone), key] = dict_additions['batteries'][key][0] plant_data['storage_clusters'] = plant_data['hydro_clusters'].append(df_battery) # --------------------------------------------------------------------------- # # %% process time series data # --------------------------------------------------------------------------- # ts_data['timeseries']['DateTime'] = pd.to_datetime(ts_data['timeseries']['DateTime']) ts_data['timeseries'].set_index('DateTime', inplace=True) # constrain data to scenario year ts_data['timeseries'] = ts_data['timeseries'].loc[ (pd.Timestamp(cfg.year, 1, 1, 0, 0).tz_localize('UTC') <= ts_data['timeseries'].index) & ( ts_data['timeseries'].index <= pd.Timestamp(cfg.year, 12, 31, 23, 0).tz_localize('UTC'))] # drop index and set index of df_time instead if len(ts_data['timeseries']) == len(dict_sets['t']): ts_data['timeseries'].set_index(dict_sets['t'].index, inplace=True) else: raise ValueError('Mismatch of time series data and model time resolution. Is cfg.year wrong?') ts_data['timeseries']['DE-power-load'] = ts_data['timeseries']['DE-power-load'] / 0.91 # for 0.91 scaling factor see # https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/Load_and_Consumption_Data.pdf # create price time series incl transport cost ts_data['timeseries']['Nuclear'] = 3.5 ts_data['timeseries']['Lignite'] = 4.5 ts_data['timeseries']['Biomass'] = 6.5 # subset of zonal time series ts_data['zonal'] = ts_data['timeseries'].loc[:, ts_data['timeseries'].columns.str.startswith(('AT', 'DE'))].copy() ts_data['zonal'].columns = ts_data['zonal'].columns.str.split('-', expand=True) # adjust column naming to reflect proper product names ('el' and 'ht') ts_data['zonal'] = ts_data['zonal'].rename(columns={'power': 'el', 'heat': 'ht'}) model_prices = ['Coal', 'Oil', 'Gas', 'EUA', 'Nuclear', 'Lignite', 'Biomass', 'price_day_ahead'] ts_data['price'] = pd.DataFrame(index=ts_data['timeseries'].index, columns=pd.MultiIndex.from_product([model_prices, cfg.zones])) for zone in cfg.zones: for fuel in model_prices: if fuel in static_data['cost_transport'].index: ts_data['price'][(fuel, zone)] = ts_data['timeseries'][fuel] + static_data['cost_transport'].loc[fuel, zone] else: ts_data['price'][(fuel, zone)] = ts_data['timeseries'][fuel] ts_inflows = pd.DataFrame(index=list(ts_data['zonal'].index), columns=pd.MultiIndex.from_product([cfg.zones, dict_sets['k'].index])) for zone in list(cfg.zones): for strg in dict_sets['k'].index: if 'battery' not in strg: ts_inflows.loc[:, (zone, strg)] = ts_data['zonal'].loc[:, idx[zone, 'inflows', 'reservoir']] * \ plant_data['storage_clusters'].loc[(strg, zone), 'inflow_factor'] ts_data.update({'inflows': ts_inflows}) dict_instantiate.update({'ancil': ts_data['zonal'].loc[:, idx[:, 'el', 'load']].max().unstack((1, 2)).squeeze() * 0.125 + dict_instantiate['CAP_R'].unstack(1).drop('ror', axis=1).sum(axis=1) * 0.075}) dict_instantiate.update({'PEAK_LOAD': ts_data['zonal'].loc[:, idx[:, 'el', 'load']].max().unstack((1, 2)).squeeze()}) dict_instantiate.update({'PEAK_PROFILE': ts_data['zonal'].loc[:, idx[:, :, 'profile']].max().unstack(2).drop( 'ror', axis=0, level=1)}) # drop rows with all zeros plant_data['storage_clusters'] = \ plant_data['storage_clusters'].loc[~(plant_data['storage_clusters'] == 0).all(axis=1), :].copy() # --------------------------------------------------------------------------- # # %% limits on investment - long-run vs short-run & # TODO: potentials # --------------------------------------------------------------------------- # invest_limits = {} lim_invest_thermal = pd.DataFrame([0]) if cfg.invest_conventionals: lim_invest_thermal = pd.DataFrame([float('inf')]) invest_limits.update({'thermal': lim_invest_thermal}) # dimension lim_invest_itm[r, tec_itm] lim_invest_itm = pd.DataFrame(data=0, index=cfg.zones, columns=dict_sets['n'].index) if cfg.invest_renewables: for zone in cfg.zones: for itm in lim_invest_itm.columns: lim_invest_itm.loc[zone, itm] = float(static_data['potentials'].loc[itm, zone]) invest_limits.update({'intermittent': lim_invest_itm}) # dimension lim_invest_storage[r, tec_strg] lim_invest_storage =
pd.DataFrame(data=0, index=cfg.zones, columns=dict_sets['k'].index)
pandas.DataFrame
from english_words import english_words_set import pandas as pd import numpy as np # make a list of 5 lenght words without non-alphas, and no proper nouns words5 = [] for word in english_words_set: if len(word) == 5 and word[0].islower() and word.isalpha(): words5.append(word) df_words = pd.DataFrame(words5) df_words.columns=['words'] df_words['first'] = df_words['words'].str.slice(0,1) df_words['second'] = df_words['words'].str.slice(1,2) df_words['third'] = df_words['words'].str.slice(2,3) df_words['fourth'] = df_words['words'].str.slice(3,4) df_words['fifth'] = df_words['words'].str.slice(4,5) aplhas = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] dfalpha = pd.DataFrame(aplhas) dfalpha.columns = ['letters'] dfalpha.set_index('letters', inplace=True) # build the frequerncy table from each smaller dataframe df_counts = df_words['first'].value_counts() df_counts_second = df_words['second'].value_counts() df_counts_third = df_words['third'].value_counts() df_counts_fourth = df_words['fourth'].value_counts() df_counts_fifth = df_words['fifth'].value_counts() dfranks = pd.concat([dfalpha, df_counts], axis=1) dfranks = pd.concat([dfranks, df_counts_second], axis=1) dfranks = pd.concat([dfranks, df_counts_third], axis=1) dfranks = pd.concat([dfranks, df_counts_fourth], axis=1) dfranks = pd.concat([dfranks, df_counts_fifth], axis=1) def freq_ranking(word): val = dfranks['first'][word[0]] + dfranks['second'][word[1]] +dfranks['third'][word[2]] + dfranks['fourth'][word[3]] +dfranks['fifth'][word[4]] return val df_word_ranks =
pd.DataFrame({'word' : [],'value':[]})
pandas.DataFrame
# Let's start off by loading in Jeff's CDR3's import numpy as np import pandas def getBunker(): total_Abs=pandas.read_csv('app_data/mouse_IgA.dat',sep='\s+',header=None,names=['cdrL1_aa','cdrL2_aa','cdrL3_aa','cdrH1_aa','cdrH2_aa','cdrH3_aa','react']) total_abs1 = total_Abs.where((pandas.notnull(total_Abs)), '') # Remove X's in sequences... Should actually get a count of these at some point... total_abs2=total_abs1[~total_abs1['cdrL1_aa'].str.contains("X")] total_abs3=total_abs2[~total_abs2['cdrL2_aa'].str.contains("X")] total_abs4=total_abs3[~total_abs3['cdrL3_aa'].str.contains("X")] total_abs5=total_abs4[~total_abs4['cdrH1_aa'].str.contains("X")] total_abs6=total_abs5[~total_abs5['cdrH2_aa'].str.contains("X")] total_abs7=total_abs6[~total_abs6['cdrH3_aa'].str.contains("X")] mono_all=total_abs7[total_abs7['react'].isin([0.0,1.0])].values poly_all=total_abs7[total_abs7['react'].isin([2.0,3.0,4.0,5.0,6.0,7.0])].values mono=total_abs7[total_abs7['react'].isin([0.0])].values poly=total_abs7[total_abs7['react'].isin([5.0,6.0,7.0])].values a=0 del_these=[] for i in np.arange(len(mono_all[:,5])): if mono_all[i,5] == '' or mono_all[i,4] == '' or mono_all[i,3] == '' or mono_all[i,2] == '' or mono_all[i,1] == '' or mono_all[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 mono_all2=np.delete(mono_all,del_these,axis=0) a=0 del_these=[] for i in np.arange(len(poly_all[:,5])): if poly_all[i,5] == '' or poly_all[i,4] == '' or poly_all[i,3] == '' or poly_all[i,2] == '' or poly_all[i,1] == '' or poly_all[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 poly_all2=np.delete(poly_all,del_these,axis=0) a=0 del_these=[] for i in np.arange(len(mono[:,5])): if mono[i,5] == '' or mono[i,4] == '' or mono[i,3] == '' or mono[i,2] == '' or mono[i,1] == '' or mono[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 mono2=np.delete(mono,del_these,axis=0) a=0 del_these=[] for i in np.arange(len(poly[:,5])): if poly[i,5] == '' or poly[i,4] == '' or poly[i,3] == '' or poly[i,2] == '' or poly[i,1] == '' or poly[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 poly2=np.delete(poly,del_these,axis=0) return(np.transpose(mono_all2[:,0:6]),np.transpose(poly_all2[:,0:6]),np.transpose(mono2[:,0:6]),np.transpose(poly2[:,0:6])) ##################################################################################### def getJenna(): total_Abs=pandas.read_csv('app_data/flu_IgG.dat',sep='\s+',header=None, names=['cdrL1_aa','cdrL2_aa','cdrL3_aa','cdrH1_aa','cdrH2_aa','cdrH3_aa','react']) total_abs1 = total_Abs.where((pandas.notnull(total_Abs)), '') # Remove X's in sequences... Should actually get a count of these at some point... total_abs2=total_abs1[~total_abs1['cdrL1_aa'].str.contains("X")] total_abs3=total_abs2[~total_abs2['cdrL2_aa'].str.contains("X")] total_abs4=total_abs3[~total_abs3['cdrL3_aa'].str.contains("X")] total_abs5=total_abs4[~total_abs4['cdrH1_aa'].str.contains("X")] total_abs6=total_abs5[~total_abs5['cdrH2_aa'].str.contains("X")] total_abs7=total_abs6[~total_abs6['cdrH3_aa'].str.contains("X")] # Having this and the above lines as "if" options could make this loader more generalizable... mono_all=total_abs7[total_abs7['react'].isin([0,1])].values poly_all=total_abs7[total_abs7['react'].isin([2,3,4,5,6,7])].values mono=total_abs7[total_abs7['react'].isin([0])].values poly=total_abs7[total_abs7['react'].isin([5,6,7])].values a=0 del_these=[] for i in np.arange(len(mono_all[:,5])): if mono_all[i,5] == '' or mono_all[i,4] == '' or mono_all[i,3] == '' or mono_all[i,2] == '' or mono_all[i,1] == '' or mono_all[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 mono_all2=np.delete(mono_all,del_these,axis=0) a=0 del_these=[] for i in np.arange(len(poly_all[:,5])): if poly_all[i,5] == '' or poly_all[i,4] == '' or poly_all[i,3] == '' or poly_all[i,2] == '' or poly_all[i,1] == '' or poly_all[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 poly_all2=np.delete(poly_all,del_these,axis=0) a=0 del_these=[] for i in np.arange(len(mono[:,5])): if mono[i,5] == '' or mono[i,4] == '' or mono[i,3] == '' or mono[i,2] == '' or mono[i,1] == '' or mono[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 mono2=np.delete(mono,del_these,axis=0) a=0 del_these=[] for i in np.arange(len(poly[:,5])): if poly[i,5] == '' or poly[i,4] == '' or poly[i,3] == '' or poly[i,2] == '' or poly[i,1] == '' or poly[i,0] == '': if a == 0: del_these=i else: del_these=np.vstack((del_these,i)) a=a+1 poly2=np.delete(poly,del_these,axis=0) return(np.transpose(mono_all2[:,0:6]),np.transpose(poly_all2[:,0:6]),np.transpose(mono2[:,0:6]),np.transpose(poly2[:,0:6])) def getHugo(): my_heavy=pandas.read_csv('app_data/hiv_igg_data/gut_heavy_aa.dat',sep='\s+') my_light=pandas.read_csv('app_data/hiv_igg_data/gut_light_aa.dat',sep='\s+') poly_YN=pandas.read_csv('app_data/hiv_igg_data/gut_num_react.dat',sep='\s+',header=None,names=['react']) total_abs=
pandas.concat([my_light,my_heavy,poly_YN],axis=1)
pandas.concat
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import power_transform from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import os import datetime import numpy as np import seaborn as sns from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Imputer #Garbage Collector import gc os.getcwd() os.chdir('C:/Users/Mann-A2/Documents/Python Repository/IEEE Fraud Detection - Kaggle/ieee-fraud-detection') from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" train_identity = pd.read_csv('train_identity.csv') train_transaction = pd.read_csv('train_transaction.csv') test_identity = pd.read_csv('test_identity.csv') test_transaction = pd.read_csv('test_transaction.csv') # function to reduce size def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df #split function def id_split(dataframe): dataframe['device_name'] = dataframe['DeviceInfo'].str.split('/', expand=True)[0] dataframe['device_version'] = dataframe['DeviceInfo'].str.split('/', expand=True)[1] dataframe['OS_id_30'] = dataframe['id_30'].str.split(' ', expand=True)[0] dataframe['version_id_30'] = dataframe['id_30'].str.split(' ', expand=True)[1] dataframe['browser_id_31'] = dataframe['id_31'].str.split(' ', expand=True)[0] dataframe['version_id_31'] = dataframe['id_31'].str.split(' ', expand=True)[1] dataframe['screen_width'] = dataframe['id_33'].str.split('x', expand=True)[0] dataframe['screen_height'] = dataframe['id_33'].str.split('x', expand=True)[1] dataframe['id_34'] = dataframe['id_34'].str.split(':', expand=True)[1] dataframe['id_23'] = dataframe['id_23'].str.split(':', expand=True)[1] dataframe.loc[dataframe['device_name'].str.contains('SM', na=False), 'device_name'] = 'Samsung' dataframe.loc[dataframe['device_name'].str.contains('SAMSUNG', na=False), 'device_name'] = 'Samsung' dataframe.loc[dataframe['device_name'].str.contains('GT-', na=False), 'device_name'] = 'Samsung' dataframe.loc[dataframe['device_name'].str.contains('Moto G', na=False), 'device_name'] = 'Motorola' dataframe.loc[dataframe['device_name'].str.contains('Moto', na=False), 'device_name'] = 'Motorola' dataframe.loc[dataframe['device_name'].str.contains('moto', na=False), 'device_name'] = 'Motorola' dataframe.loc[dataframe['device_name'].str.contains('LG-', na=False), 'device_name'] = 'LG' dataframe.loc[dataframe['device_name'].str.contains('rv:', na=False), 'device_name'] = 'RV' dataframe.loc[dataframe['device_name'].str.contains('HUAWEI', na=False), 'device_name'] = 'Huawei' dataframe.loc[dataframe['device_name'].str.contains('ALE-', na=False), 'device_name'] = 'Huawei' dataframe.loc[dataframe['device_name'].str.contains('-L', na=False), 'device_name'] = 'Huawei' dataframe.loc[dataframe['device_name'].str.contains('Blade', na=False), 'device_name'] = 'ZTE' dataframe.loc[dataframe['device_name'].str.contains('BLADE', na=False), 'device_name'] = 'ZTE' dataframe.loc[dataframe['device_name'].str.contains('Linux', na=False), 'device_name'] = 'Linux' dataframe.loc[dataframe['device_name'].str.contains('XT', na=False), 'device_name'] = 'Sony' dataframe.loc[dataframe['device_name'].str.contains('HTC', na=False), 'device_name'] = 'HTC' dataframe.loc[dataframe['device_name'].str.contains('ASUS', na=False), 'device_name'] = 'Asus' dataframe.loc[dataframe.device_name.isin(dataframe.device_name.value_counts()[dataframe.device_name.value_counts() < 200].index), 'device_name'] = "Others" dataframe['had_id'] = 1 gc.collect() return dataframe train_identity = id_split(train_identity) test_identity = id_split(test_identity) #Data joining train = pd.merge(train_transaction, train_identity, on='TransactionID', how='left', left_index=True, right_index=True) test = pd.merge(test_transaction, test_identity, on='TransactionID', how='left', left_index=True, right_index=True) print('Data was successfully merged!\n') del train_identity, train_transaction, test_identity, test_transaction print(f'Train dataset has {train.shape[0]} rows and {train.shape[1]} columns.') print(f'Test dataset has {test.shape[0]} rows and {test.shape[1]} columns.\n') #============================================================================ useful_features = ['isFraud', 'TransactionDT', 'TransactionAmt', 'ProductCD', 'card1', 'card2', 'card3', 'card4', 'card5', 'card6', 'addr1', 'addr2', 'dist1', 'P_emaildomain', 'R_emaildomain', 'C1', 'C2', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11', 'C12', 'C13', 'C14', 'D1', 'D2', 'D3', 'D4', 'D5', 'D10', 'D11', 'D15', 'M2', 'M3', 'M4', 'M5', 'M6', 'M7', 'M8', 'M9', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V17', 'V19', 'V20', 'V29', 'V30', 'V33', 'V34', 'V35', 'V36', 'V37', 'V38', 'V40', 'V44', 'V45', 'V46', 'V47', 'V48', 'V49', 'V51', 'V52', 'V53', 'V54', 'V56', 'V58', 'V59', 'V60', 'V61', 'V62', 'V63', 'V64', 'V69', 'V70', 'V71', 'V72', 'V73', 'V74', 'V75', 'V76', 'V78', 'V80', 'V81', 'V82', 'V83', 'V84', 'V85', 'V87', 'V90', 'V91', 'V92', 'V93', 'V94', 'V95', 'V96', 'V97', 'V99', 'V100', 'V126', 'V127', 'V128', 'V130', 'V131', 'V138', 'V139', 'V140', 'V143', 'V145', 'V146', 'V147', 'V149', 'V150', 'V151', 'V152', 'V154', 'V156', 'V158', 'V159', 'V160', 'V161', 'V162', 'V163', 'V164', 'V165', 'V166', 'V167', 'V169', 'V170', 'V171', 'V172', 'V173', 'V175', 'V176', 'V177', 'V178', 'V180', 'V182', 'V184', 'V187', 'V188', 'V189', 'V195', 'V197', 'V200', 'V201', 'V202', 'V203', 'V204', 'V205', 'V206', 'V207', 'V208', 'V209', 'V210', 'V212', 'V213', 'V214', 'V215', 'V216', 'V217', 'V219', 'V220', 'V221', 'V222', 'V223', 'V224', 'V225', 'V226', 'V227', 'V228', 'V229', 'V231', 'V233', 'V234', 'V238', 'V239', 'V242', 'V243', 'V244', 'V245', 'V246', 'V247', 'V249', 'V251', 'V253', 'V256', 'V257', 'V258', 'V259', 'V261', 'V262', 'V263', 'V264', 'V265', 'V266', 'V267', 'V268', 'V270', 'V271', 'V272', 'V273', 'V274', 'V275', 'V276', 'V277', 'V278', 'V279', 'V280', 'V282', 'V283', 'V285', 'V287', 'V288', 'V289', 'V291', 'V292', 'V294', 'V303', 'V304', 'V306', 'V307', 'V308', 'V310', 'V312', 'V313', 'V314', 'V315', 'V317', 'V322', 'V323', 'V324', 'V326', 'V329', 'V331', 'V332', 'V333', 'V335', 'V336', 'V338', 'id_01', 'id_02', 'id_05', 'id_06', 'id_11', 'id_12', 'id_13', 'id_15', 'id_17', 'id_19', 'id_20', 'id_31', 'id_36', 'id_37', 'id_38', 'DeviceType', 'DeviceInfo', 'device_name', 'device_version', 'OS_id_30', 'version_id_30', 'browser_id_31', 'version_id_31', 'screen_width', 'screen_height', 'had_id'] cols_to_drop = [col for col in train.columns if col not in useful_features] train = train.drop(cols_to_drop, axis=1) test = test.drop(cols_to_drop, axis=1) #Merging email columns train.P_emaildomain.fillna(train.R_emaildomain, inplace=True) del train['R_emaildomain'] test.P_emaildomain.fillna(test.R_emaildomain, inplace=True) del test['R_emaildomain'] # New feature - log of transaction amount. () train['TransactionAmt_Log'] = np.log(train['TransactionAmt']) test['TransactionAmt_Log'] = np.log(test['TransactionAmt']) # New feature - decimal part of the transaction amount. train['TransactionAmt_decimal'] = ((train['TransactionAmt'] - train['TransactionAmt'].astype(int)) * 1000).astype(int) test['TransactionAmt_decimal'] = ((test['TransactionAmt'] - test['TransactionAmt'].astype(int)) * 1000).astype(int) # New feature - day of week in which a transaction happened. train['Transaction_day_of_week'] = np.floor((train['TransactionDT'] / (3600 * 24) - 1) % 7) test['Transaction_day_of_week'] = np.floor((test['TransactionDT'] / (3600 * 24) - 1) % 7) # New feature - hour of the day in which a transaction happened. train['Transaction_hour'] = np.floor(train['TransactionDT'] / 3600) % 24 test['Transaction_hour'] = np.floor(test['TransactionDT'] / 3600) % 24 del train['TransactionAmt'], train['TransactionDT'] del test['TransactionAmt'], test['TransactionDT'] #handling missing values -- replacing with -999 train.replace(np.nan, -999, inplace=True) test.replace(np.nan, -999, inplace=True) train.isnull().sum() test.isnull().sum() #===================== #You can use isnull with mean for treshold and then remove columns by boolean # indexing with loc (because remove columns), also need invert condition - # so <.8 means remove all columns >=0.8: # #df = df.loc[:, df.isnull().mean() < .8] #Label Encoding # Encoding - count encoding for both train and test for feature in ['card1', 'card2', 'card3', 'card4', 'card5', 'card6', 'id_36']: train[feature + '_count_full'] = train[feature].map(pd.concat([train[feature], test[feature]], ignore_index=True).value_counts(dropna=False)) test[feature + '_count_full'] = test[feature].map(pd.concat([train[feature], test[feature]], ignore_index=True).value_counts(dropna=False)) # Encoding - count encoding separately for train and test for feature in ['id_01', 'id_31', 'id_36']: train[feature + '_count_dist'] = train[feature].map(train[feature].value_counts(dropna=False)) test[feature + '_count_dist'] = test[feature].map(test[feature].value_counts(dropna=False)) for col in train.columns: if train[col].dtype == 'object': le = LabelEncoder() le.fit(list(train[col].astype(str).values) + list(test[col].astype(str).values)) train[col] = le.transform(list(train[col].astype(str).values)) test[col] = le.transform(list(test[col].astype(str).values)) train.to_csv('training_set.csv', index = None, header=True) test.to_csv('testing_set.csv', index = None, header=True) print("\nData successfully prepared") #======================================================================================================================= #Model Building import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import power_transform from sklearn.preprocessing import MinMaxScaler from sklearn import metrics from sklearn.metrics import cohen_kappa_score, make_scorer from lightgbm import LGBMClassifier from catboost import CatBoostClassifier from xgboost import XGBClassifier from pystacknet.pystacknet import StackNetClassifier #pip install lightgbm #pip install catboost #pip install pystacknet-master import matplotlib.pyplot as plt import os import datetime import numpy as np import seaborn as sns os.getcwd() os.chdir('C:/Users/Mann-A2/Documents/Python Repository/IEEE Fraud Detection - Kaggle/ieee-fraud-detection - worked') train = pd.read_csv('training_set.csv') test = pd.read_csv('testing_set.csv') train = reduce_mem_usage(train) test = reduce_mem_usage(test) X_train = train.drop(['isFraud'], axis=1) y_train = train['isFraud'] X_test = test #LR #0.8052 from sklearn.linear_model import LogisticRegression clf = LogisticRegression(random_state=123,solver = 'liblinear') clf.fit(X_train, y_train) y_pred = clf.predict_proba(X_test) pd.DataFrame(y_pred, columns=['predictions','isFraud']).to_csv('prediction LR.csv') #RF #0.9119 from sklearn.ensemble import RandomForestRegressor clf = RandomForestRegressor( n_estimators=200, max_features=0.4, min_samples_split=50, min_samples_leaf=100, n_jobs=-1, verbose=2) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) pd.DataFrame(y_pred).to_csv('prediction RF.csv') #Simple -- XGB #0.9342 clf = XGBClassifier(n_estimators=500, n_jobs=4, max_depth=9, learning_rate=0.05, subsample=0.9, colsample_bytree=0.9, missing=-999) clf.fit(X_train, y_train) y_pred = clf.predict_proba(X_test) pd.DataFrame(y_pred, columns=['predictions','isFraud']).to_csv('prediction XGB.csv') #**StackNet Model**-============== # LGBMClassifier without GPU clf_lgb = LGBMClassifier( max_bin=63, num_leaves=255, num_iterations=1000, learning_rate=0.01, tree_learner="serial", task="train", is_training_metric=False, min_data_in_leaf=1, min_sum_hessian_in_leaf=100, sparse_threshold=1.0, num_thread=-1, save_binary=True, seed=42, feature_fraction_seed=42, bagging_seed=42, drop_seed=42, data_random_seed=42, objective="binary", boosting_type="gbdt", verbose=1, metric="auc", is_unbalance=True, boost_from_average=False, ) clf_lgb.fit(X_train, y_train) y_pred = clf_lgb.predict_proba(X_test) pd.DataFrame(y_pred, columns=['predictions','isFraud']).to_csv('prediction LGBMClassifier.csv') # XGBClassifier without GPU clf_xgb = XGBClassifier( n_estimators=1000, max_depth=9, learning_rate=0.05, subsample=0.9, colsample_bytree=0.9, missing=-999, n_jobs=-1, random_state=42, ) clf_xgb.fit(X_train, y_train) y_pred = clf_xgb.predict_proba(X_test) pd.DataFrame(y_pred, columns=['predictions','isFraud']).to_csv('prediction XGBClassifier.csv') # CatBoostClassifier without GPU param_cb = { 'learning_rate': 0.2, 'bagging_temperature': 0.1, 'l2_leaf_reg': 30, 'depth': 12, 'max_bin':255, 'iterations' : 1000, 'loss_function' : "Logloss", 'objective':'CrossEntropy', 'eval_metric' : "AUC", 'bootstrap_type' : 'Bayesian', 'random_seed':42, 'early_stopping_rounds' : 100, } clf_ctb = CatBoostClassifier(silent=True, **param_cb) clf_ctb.fit(X_train, y_train) y_pred = clf_ctb.predict_proba(X_test)
pd.DataFrame(y_pred, columns=['predictions','isFraud'])
pandas.DataFrame
def get_files_in_path(path, ext="wav"): """ Get files in a path exampe : files = get_files_in_path("./audioFiles") """ import os, glob path = os.path.join(path, "*."+ext) theFiles = glob.glob(path, recursive=True) return theFiles def find_last_slash_pos_in_path(path): """ Find last slash position in a path exampe : files = find_last_slash_pos_in_path("./audioFiles/abc.wav") output : integer the value that is the position of the last slash """ import os LastSlashPos = path.rfind(os.path.split(path)[-1]) - 1 return LastSlashPos def search_csv(csv_file, search_term, colomn_searched, colomn_out): ''' Search a string in a csv file and a colomn and get it's corresponding value for a different colomn. example : valenz = search_csv('labels-sorted.csv', '001_01.wav', 'Laufnummer', 'Valenz') ''' import pandas as pd df = pd.read_csv(csv_file) out = df[df[colomn_searched] == search_term][colomn_out] ret = out.values if len(ret) == 1: return ret[0] else: return -1 def writeLineToCSV(csvPath, headers, values): ''' Write one line to CSV example : writeLineToCSV("test.csv", ["a", "b", "c"], ["something",16,34]) ''' import pandas as pd import os LastSlashPos = csvPath.rfind(os.path.split(csvPath)[-1]) - 1 if not os.path.exists(csvPath[:LastSlashPos]): os.makedirs(csvPath[:LastSlashPos]) dic = {} for i, header in enumerate(headers): dic[header] = values[i] data = [dic] if os.path.exists(csvPath): df = pd.read_csv(csvPath) df = df.append(data, ignore_index=True, sort=False) else: df = pd.DataFrame(data, columns = headers) df.to_csv(csvPath, index=False) def arff2csv(arff_path, csv_path=None, _encoding='utf8'): """ This function was copied from https://github.com/Hutdris/arff2csv/blob/master/arff2csv.py It turns .arff files into csvs. """ with open(arff_path, 'r', encoding=_encoding) as fr: attributes = [] if csv_path is None: csv_path = arff_path[:-4] + 'csv' # *.arff -> *.csv write_sw = False with open(csv_path, 'w', encoding=_encoding) as fw: for line in fr.readlines(): if write_sw: if line == "": print("emp") fw.write(line) elif '@data' in line: fw.write(','.join(attributes) + '\n') write_sw = True elif '@attribute' in line: attributes.append(line.split()[1]) # @attribute attribute_tag numeric print("Convert {} to {}.".format(arff_path, csv_path)) def divide_list(list, perc=0.5): """ Divide a list into two new lists. perc is the first list's share. If perc=0.6 then the first new list will have 60 percent of the original list. example : f,s = divide_list([1,2,3,4,5,6,7], perc=0.7) """ origLen = len(list) lim = int(perc*origLen) firstList = list[:lim] secondList = list[lim:] return firstList, secondList def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = "fit", fill = '█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ import os rows, columns = os.popen('stty size', 'r').read().split() if length=="fit": length = int(columns) // 2 percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r') # Print New Line on Complete if iteration == total: print() def csvReader(fullPath, headers, standardize=False): import pandas as pd import numpy as np # print(fullPath) df =
pd.read_csv(fullPath)
pandas.read_csv
''' OOPitch brings Object-Oriented programming to football analytics. It is based on the most common data-analysis libraries -- numpy (scipy), pandas and matplotlib -- and it extends the computational geometry library shapely to account for the necessities of football analytics. ''' import numpy as np from scipy.signal import savgol_filter from shapely.geometry import Polygon, LineString, MultiPoint, MultiPolygon import shapely.wkt as wkt from shapely_football import Point, SubPitch # We use geopandas most as a plotter. This will go away in more mature versions import geopandas as gpd import pandas as pd import matplotlib.pyplot as plt import matplotlib.animation as animation from scipy.stats import norm import pickle as pkl from copy import copy meters_per_yard = 0.9144 # unit conversion from yards to meters class ObejctOnPitch: ''' Base class. Define main attributes and methods for ball and players ''' def __init__(self, id, positions=None, hertz=None, smoothing=True, filter_='Savitzky-Golay', window_length=7, max_speed=12, **kwargs): self.__id = id # Set positions if positions is not None: if hertz is None: raise ValueError("If positions is specified, you need to indicate hertz as well.") self.create_positions(positions) self.calculate_velocities(hertz, smoothing=smoothing, filter_=filter_, window_length=window_length, max_speed=max_speed, **kwargs) else: self.__positions = np.nan self.__velocity = np.nan self.__smoothing = None self.__filter_par = None self.__total_distance = np.nan # Define state methods for pickling def __getstate__(self): state = copy(self.__dict__) # Pickling geo-series is impossible. we get around it by saving the geo-series in a wkt format if self.__positions is not None: # Fill nas, otherwise we trigger an error when creating pos pos = self.__positions.copy().fillna(value=Point([-999, -999])) # Save positions as wkt pos = MultiPoint(pos.geometry.to_list()) # We save frames for reference state['_ObejctOnPitch__frames'] = self.__positions.index.values state['_ObejctOnPitch__positions'] = pos.wkt else: state['_ObejctOnPitch__frames'] = None return state def __setstate__(self, state): # Load positions from wkt if necessary if state['_ObejctOnPitch__positions'] is not None: pos = wkt.loads(state['_ObejctOnPitch__positions']) pos = gpd.GeoSeries([Point(p) for p in pos.geoms]) pos.loc[pos == Point([-999, -999])] = None pos.index = state['_ObejctOnPitch__frames'] state['_ObejctOnPitch__positions'] = pos del state['_ObejctOnPitch__frames'] self.__dict__.update(state) def calculate_velocities(self, hertz, smoothing=True, filter_='Savitzky-Golay', window_length=7, max_speed=12, **kwargs): ''' Calculate velocities of an object based on a GeoSeries of Positions. :param hertz: The tracking frequency per second :param maxspeed: Max speed after which we consider the position to be in error :param smoothing: Should a smoothing be applied? :param filter_: If a smoothing is applied, which filter should be used? Either 'Savitzky-Golay' or 'linear' :param kwargs: Arguments passed to the filter. ''' if np.all(pd.isna(self.__positions)): print("No valid positions to calculate velocity") return None self.__velocity_par = {'filter': None, 'hertz': hertz, 'max_speed': max_speed} # Velocity is a Dataframe containing the x,y components as two columns velocity_x = (self.__positions.x - self.__positions.shift(-1).x) * hertz # Last point has no velocity velocity_x.loc[self.__positions.index[-1]] = np.nan velocity_y = (self.__positions.y - self.__positions.shift(-1).y) * hertz # Last point has no velocity velocity_y.loc[self.__positions.index[-1]] = np.nan velocity = pd.DataFrame(np.array([velocity_x, velocity_y], dtype=np.float32).T) velocity = velocity.rename(columns={0: 'x', 1: 'y'}) velocity['speed'] = np.linalg.norm(velocity.to_numpy(), axis=1) self.__smoothing = False # remove unsmoothed data points that exceed the maximum speed (these are most likely position errors) if max_speed is not None and max_speed > 0: velocity.loc[velocity['speed'] > max_speed, ['x', 'y', 'speed']] = np.nan if smoothing: if filter_ == 'Savitzky-Golay': self.__velocity_par['filter'] = 'Savitzky-Golay' self.__smoothing = savgol_filter # This works as default if 'polyorder' not in kwargs.keys(): kwargs['polyorder'] = 1 # save for later kwargs['window_length'] = window_length velocity['x'] = savgol_filter(velocity['x'], **kwargs) velocity['y'] = savgol_filter(velocity['y'], **kwargs) elif filter_ == 'moving_average': self.__velocity_par['filter'] = 'moving_average' self.__smoothing = pd.DataFrame.rolling # save for later kwargs['window'] = window_length if 'min_periods' not in kwargs: kwargs['min_periods'] = 1 if 'center' not in kwargs: kwargs['center'] = True velocity['x'] = velocity['x'].rolling(**kwargs).mean() velocity['y'] = velocity['y'].rolling(**kwargs).mean() else: raise NotImplementedError("Savitzky-Golay and moving_average are the only options for smoothing.") self.__filter_par = kwargs # After filtering, recalculate total speed velocity['speed'] = np.linalg.norm(velocity[['x', 'y']].to_numpy(), axis=1) velocity.index = self.__positions.index self.__velocity = velocity def create_positions(self, positions): ''' Register and save the positions of the player during the 90 minutes. Most of the function is actually about creating velocity and acceleration estimates. :param positions: A Series containing Points ''' # A geoseries actually speeds up some operations self.__positions = gpd.GeoSeries(positions) # It turns out GeoSeries transforms np.nan in None self.__positions.loc[self.__positions.isnull()] = np.nan def correct_speed(self, halves, hertz): ''' The calculate_speed function does not take into accout the end of the Periods within a game. This means that there will be aberration in the speed calculation immediately after the second period (or extra-time) start. This function will correct for those aberration. :param halves: The frame where new halves start ''' if np.all(pd.isna(self.__velocity)): print("No valid velocity. Have you called calculate_velocities") return None for half in halves: # Set the velocity of the last frame of an half to 0 for calculations if self.__smoothing: # There should be a window or window_length in the kwargs try: window = self.__filter_par['window_length'] self.__velocity.loc[(half - 1), ['x', 'y', 'speed']] = 0 except KeyError: window = self.__filter_par['window'] self.__velocity.loc[(half - 1), ['x', 'y', 'speed']] = np.nan # calculate the x, y components again for those frames that are affected for col in ['x', 'y']: before_half = np.array(range((half - 1 - window * 2), (half - 1))) after_half = np.array(range(half, (half + window * 2))) self.__velocity.loc[before_half, col] = (self.__positions.x.loc[before_half[1:]].to_numpy() - self.__positions.x.loc[before_half[:-1]]) * hertz self.__velocity.loc[before_half, col] = self.__smoothing(self.__velocity.loc[before_half, col], **self.__filter_par).mean() self.__velocity.loc[after_half, col] = (self.__positions.x.loc[after_half[1:]].to_numpy() - self.__positions.x.loc[after_half[:-1]]) * hertz self.__velocity.loc[after_half, col] = self.__smoothing(self.__velocity.loc[after_half, col], **self.__filter_par).mean() # Recalculate speed self.__velocity.loc[(half - 1 - window * 2):(half + window * 2), 'speed'] = np.linalg.norm( self.__velocity.loc[(half - 1 - window * 2):(half + window * 2), ['x', 'y']].to_numpy(), axis=1) # Set the velocity of the last frame of an half to nan self.__velocity.loc[(half - 1), ['x', 'y', 'speed']] = np.nan @property def positions(self): return self.__positions @positions.setter def positions(self, positions): self.create_positions(positions) kwargs = copy(self.__filter_par) try: window = kwargs['window_length'] del kwargs['window_length'] except KeyError: window = kwargs['window'] del kwargs['window'] self.calculate_velocities(hertz=self.__velocity_par['hertz'], smoothing=self.__smoothing, filter_=self.__velocity_par['filter'], max_speed=self.__velocity_par['max_speed'], window_length=window, **kwargs) @property def id(self): return (self.__id) @property def velocity(self): return (self.__velocity) @property def total_distance(self): ''' Total distance covered in the match ''' if np.isnan(self.__total_distance): self.__total_distance = LineString(self.positions.to_list()).length return(self.__total_distance) def plot(self, frames, pitch = None, figax = None, color='red', player_marker_size=10, player_alpha=0.7): ''' Plot the positions of a player over a pitch. Return the used axis if needed :param frames: Which frames should be plotted :param pitch: A Pitch object, where the player is moving :param figax: A figure, axis couple. This is an alternative to the pitch :param color: The color of the player's marker :param player_marker_size: How big the marker should be :param player_alpha: The alpha for the plaeyer marker :return: The axis that has just been modified ''' if pitch is None and figax is None: raise AttributeError("Exactly one among pitch and figax must be specified") if pitch is not None: figax = pitch.plot() fig, ax = figax ax.text(self.__positions.loc[frames[0]].x + 0.5, self.__positions.loc[frames[0]].y + 0.5, self.__id, fontsize=10, color=color) ax = self.__positions.loc[frames].plot(ax=ax, color=color, markersize=player_marker_size, alpha=player_alpha) return ax class Player(ObejctOnPitch): ''' Define players and all their methods/attributes ''' def __init__(self, player_id, team, number=None, positions=None, name=None, hertz=None, smoothing=True, filter_='Savitzky-Golay', window_length=7, max_speed=12, **kwargs): super().__init__(player_id, positions=positions, hertz=hertz, smoothing=smoothing, filter_=filter_, window_length=window_length, max_speed=max_speed, **kwargs) self.__team = team # Set number if number is not None: self.__number = number else: self.__number = np.nan # Set name if name is not None: self.__name = name else: self.__name = np.nan #Without data from other players it is impossible to know if a player is a GK self.__is_goalkeeper = np.nan @property def number(self): return (self.__number) @property def name(self): return self.__name @property def team(self): return self.__team @team.setter def team(self, new_team): self.__team = new_team @property def GK(self): return self.__is_goalkeeper @GK.setter def GK(self, value): if isinstance(True, bool): self.__is_goalkeeper = value else: raise TypeError("The value of Player.GK is either True or False.") class Ball(ObejctOnPitch): ''' Define the ball and its property ''' def __init__(self, positions=None, hertz=None, smoothing=True, filter_='Savitzky-Golay', window_length=7, max_speed=12, in_play=None, **kwargs): super().__init__('ball', positions=positions, hertz=hertz, smoothing=smoothing, filter_=filter_, window_length=window_length, max_speed=max_speed, **kwargs) # DataFrame containing whether the ball is 'alive' or 'dead' if in_play is not None: assert self.positions is not None assert in_play.shape[0] == super().positions.shape[0] self.__in_play = in_play @property def in_play(self): return self.__in_play @in_play.setter def in_play(self, in_play): assert self.positions is not None assert in_play.shape[0] == self.positions.shape[0] self.__in_play = in_play class Pitch: ''' Define the Pitch where the game happens. Divide it in SubPitches for analysis sake. We follow the convention of making the center of the field the 0,0 point and have negative values on the bottom left (as a standard cartesian plane) field_dimension: iterable of length 2. The field dimension. Should be in meter. n_grid_cells_x: int. Regulates in how many SubPitch the Pitch is sub-divided into. ''' def __init__(self, pitch_dimen=(106.0, 68.0), n_grid_cells_x=None): self.__dimension = pitch_dimen # Create one polygon representing the entire pitch. May be helpful for spatial operation (like, is a player # on the pitch? Is the ball in play?) self.__polygon = Polygon([(-self.__dimension[1] / 2, -self.__dimension[0] / 2), (self.__dimension[1] / 2, -self.__dimension[0] / 2), (self.__dimension[1] / 2, self.__dimension[0] / 2), (-self.__dimension[1] / 2, self.__dimension[0] / 2)]) # Create patches for the subpitch if n_grid_cells_x is not None: self.__n_grid_cells_x = np.int(n_grid_cells_x) self.create_subpitch(self.__n_grid_cells_x) else: self.__n_grid_cells_x = None self.__n_grid_cells_y = None self.__subpitch = None self.__sub_centroids = None # Define state methods for pickling def __getstate__(self): state = copy(self.__dict__) state['_Pitch__polygon'] = state['_Pitch__polygon'].wkt # Pickling geo-series is impossible. we get around it by saving the geo-series in a wkt format if state['_Pitch__n_grid_cells_x'] is not None: # Save subpitches as wkt state['_Pitch__subpitch_inds'] = state['_Pitch__subpitch'].index.values subp = MultiPolygon(state['_Pitch__subpitch'].geometry.to_list()) state['_Pitch__subpitch'] = subp.wkt # Save centroids as wkt state['_Pitch__sub_centroids_inds'] = state['_Pitch__sub_centroids'].index.values cents = MultiPoint( state['_Pitch__sub_centroids'].geometry.to_list() ) state['_Pitch__sub_centroids'] = cents.wkt else: state['_Pitch__sub_centroids_inds'] = None state['_Pitch__subpitch_inds'] = None return state def __setstate__(self, state): state['_Pitch__polygon'] = wkt.loads(state['_Pitch__polygon']) # Load sub-pitches and their centroids from wkt if necessary if state['_Pitch__subpitch_inds'] is not None: subp = wkt.loads(state['_Pitch__subpitch']) subp = gpd.GeoSeries([SubPitch(p) for p in subp.geoms]) subp.index = state['_Pitch__subpitch_inds'] state['_Pitch__subpitch'] = subp cents = wkt.loads(state['_Pitch__sub_centroids']) cents = gpd.GeoSeries([Point(p) for p in cents.geoms]) cents.index = state['_Pitch__sub_centroids_inds'] state['_Pitch__sub_centroids'] = cents del state['_Pitch__subpitch_inds'] del state['_Pitch__sub_centroids_inds'] self.__dict__.update(state) def create_subpitch(self, n_grid_cells_x): # break the pitch down into a grid n_grid_cells_y = np.int(np.ceil((n_grid_cells_x + 1) * self.__dimension[1] / self.__dimension[0])) # These are the extremes of each grid cell xgrid = np.linspace(-self.__dimension[0] / 2., self.__dimension[0] / 2., n_grid_cells_x + 1) ygrid = np.linspace(-self.__dimension[1] / 2., self.__dimension[1] / 2., n_grid_cells_y + 1) self.__n_grid_cells_y = np.int(ygrid.shape[0] - 1) subpitch = [] # navigate the grid to create subpitches for i in range(xgrid.shape[0] - 1): for j in range(ygrid.shape[0] - 1): # Coordinate of this subpitch coords = [(xgrid[i], ygrid[j]), (xgrid[i + 1], ygrid[j]), (xgrid[i + 1], ygrid[j + 1]), (xgrid[i], ygrid[j + 1])] subpitch.append(SubPitch(coords)) self.__subpitch = gpd.GeoSeries(subpitch) # Create centroids as well self.__sub_centroids = self.__subpitch.apply(lambda x: x.centroid) @property def dimension(self): return self.__dimension @dimension.setter def dimension(self, dimension): self.__dimension = dimension if self.__n_grid_cells_x is not None: self.create_subpitch(self.__n_grid_cells_x) @property def n_grid_cells_x(self): return self.__n_grid_cells_x @n_grid_cells_x.setter def n_grid_cells_x(self, n_grid_cells_x): if n_grid_cells_x is None: self.__subpitch = None self.__n_grid_cells_x = None self.__sub_centroids = None else: self.__n_grid_cells_x = np.int(n_grid_cells_x) self.create_subpitch(self.__n_grid_cells_x) @property def n_grid_cells_y(self): return self.__n_grid_cells_y @n_grid_cells_y.setter def n_grid_cells_y(self, n_grid_cells_y): raise NotImplementedError("At the moment, the only way to change the subpitch grid is to change n_grid_cells_x") # # @property # def sub_pitch(self): # return(self.__subpitch) @property def sub_pitch_area(self): return(np.round(self.__subpitch.iloc[0].area, 3)) def plot(self, field_color='green', linewidth=2, markersize=20, fig_ax=None, grid=False, grid_alpha=1, grid_col='black'): """ Plots a soccer pitch. Most of this code comes from <NAME> Parameters ----------- field_color: color of field. options are {'green','white'} linewidth : width of lines. default = 2 markersize : size of markers (e.g. penalty spot, centre spot, posts). default = 20 fig_ax: figure, axis from matplotlib. default = None grid: Boolean. Should the subpitch grid be plotted? Plots nothing if the pitch has no subpitch. grid_alpha: float in [0,1]. What alpha should the grid have grid_col: Color to be passed to matplotlib Returns ----------- fig,ax : figure and aixs objects (so that other data can be plotted onto the pitch) """ if fig_ax is None: fig, ax = plt.subplots(figsize=(12, 8)) # create a figure else: fig, ax = fig_ax # decide what color we want the field to be. Default is green, but can also choose white if field_color == 'green': ax.set_facecolor('mediumseagreen') lc = 'whitesmoke' # line color pc = 'w' # 'spot' colors elif field_color == 'white': lc = 'k' pc = 'k' # ALL DIMENSIONS IN m border_dimen = (3, 3) # include a border arround of the field of width 3m half_pitch_length = self.__dimension[0] / 2. # length of half pitch half_pitch_width = self.__dimension[1] / 2. # width of half pitch signs = [-1, 1] # Soccer field dimensions typically defined in yards, so we need to convert to meters goal_line_width = 8 * meters_per_yard box_width = 20 * meters_per_yard box_length = 6 * meters_per_yard area_width = 44 * meters_per_yard area_length = 18 * meters_per_yard penalty_spot = 12 * meters_per_yard corner_radius = 1 * meters_per_yard D_length = 8 * meters_per_yard D_radius = 10 * meters_per_yard D_pos = 12 * meters_per_yard centre_circle_radius = 10 * meters_per_yard # plot half way line # center circle ax.plot([0, 0], [-half_pitch_width, half_pitch_width], lc, linewidth=linewidth) ax.scatter(0.0, 0.0, marker='o', facecolor=lc, linewidth=0, s=markersize) y = np.linspace(-1, 1, 50) * centre_circle_radius x = np.sqrt(centre_circle_radius ** 2 - y ** 2) ax.plot(x, y, lc, linewidth=linewidth) ax.plot(-x, y, lc, linewidth=linewidth) for s in signs: # plots each line seperately # plot pitch boundary ax.plot([-half_pitch_length, half_pitch_length], [s * half_pitch_width, s * half_pitch_width], lc, linewidth=linewidth) ax.plot([s * half_pitch_length, s * half_pitch_length], [-half_pitch_width, half_pitch_width], lc, linewidth=linewidth) # goal posts & line ax.plot([s * half_pitch_length, s * half_pitch_length], [-goal_line_width / 2., goal_line_width / 2.], pc + 's', markersize=6 * markersize / 20., linewidth=linewidth) # 6 yard box ax.plot([s * half_pitch_length, s * half_pitch_length - s * box_length], [box_width / 2., box_width / 2.], lc, linewidth=linewidth) ax.plot([s * half_pitch_length, s * half_pitch_length - s * box_length], [-box_width / 2., -box_width / 2.], lc, linewidth=linewidth) ax.plot([s * half_pitch_length - s * box_length, s * half_pitch_length - s * box_length], [-box_width / 2., box_width / 2.], lc, linewidth=linewidth) # penalty area ax.plot([s * half_pitch_length, s * half_pitch_length - s * area_length], [area_width / 2., area_width / 2.], lc, linewidth=linewidth) ax.plot([s * half_pitch_length, s * half_pitch_length - s * area_length], [-area_width / 2., -area_width / 2.], lc, linewidth=linewidth) ax.plot([s * half_pitch_length - s * area_length, s * half_pitch_length - s * area_length], [-area_width / 2., area_width / 2.], lc, linewidth=linewidth) # penalty spot ax.scatter(s * half_pitch_length - s * penalty_spot, 0.0, marker='o', facecolor=lc, linewidth=0, s=markersize) # corner flags y = np.linspace(0, 1, 50) * corner_radius x = np.sqrt(corner_radius ** 2 - y ** 2) ax.plot(s * half_pitch_length - s * x, -half_pitch_width + y, lc, linewidth=linewidth) ax.plot(s * half_pitch_length - s * x, half_pitch_width - y, lc, linewidth=linewidth) # draw the D y = np.linspace(-1, 1, 50) * D_length # D_length is the chord of the circle that defines the D x = np.sqrt(D_radius ** 2 - y ** 2) + D_pos ax.plot(s * half_pitch_length - s * x, y, lc, linewidth=linewidth) # remove axis labels and ticks ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xticks([]) ax.set_yticks([]) # set axis limits xmax = self.__dimension[0] / 2. + border_dimen[0] ymax = self.__dimension[1] / 2. + border_dimen[1] ax.set_xlim([-xmax, xmax]) ax.set_ylim([-ymax, ymax]) ax.set_axisbelow(True) ax.set_aspect('equal') if self.__n_grid_cells_x is not None and grid: self.__subpitch.plot(ax=ax, facecolor="none", edgecolor=grid_col, alpha=grid_alpha) return fig, ax class Match: ''' Contain all information about one match. It needs two iterables containing home and away Players, a Ball object, a Pitch object, an event dataset. Hertz shows the frequency (per second) of the tracking data. Other attributes will be specified in the future. :param home_tracking: :param away_tracking: :param ball: :param events: A DataFrame of events data. Its first column should be a frame reference -- even if no tracking data is passed :param pitch: :param halves: :param home_name: :param away_name: :param hertz: ''' def __init__(self, home_tracking, away_tracking, ball, events, pitch, halves, home_name='home', away_name='away', hertz=25, colors=('red', 'blue'), calculate_possession=False, possession_kwords={}): self.__player_ids = [p.id for p in home_tracking] + [p.id for p in away_tracking] self.__home_tracking = {p.id: p for p in home_tracking} self.__pitch = pitch self.__away_tracking = {p.id: p for p in away_tracking} self.__ball = ball self.__events = events self.__hertz = hertz self.__home_name = home_name self.__away_name = away_name self.__pitch_dimension = pitch.dimension self.__team_names = (home_name, away_name) self.__colors = {team:color for team, color in zip(self.__team_names, colors)} self.__possession_pars = possession_kwords # First frame new half self.__halves_frame = halves if not calculate_possession: self.__possession = None else: self.assign_possesion(**possession_kwords) # Correct speed at the end/start of an half # for player in self.__home_tracking.values(): # print(f"Correcting Velocity for Player {player.id}.") # player.correct_speed(halves, hertz) # for player in self.away_tracking.values(): # print(f"Correcting Velocity for Player {player.id}.") # player.correct_speed(halves, hertz) # print(f"Correcting Velocity for Ball.") # ball.correct_speed(halves, hertz) # TODO This will only work if we have tracking data for the players self.get_GKs() # Define state methods for pickling def __getstate__(self): state = copy(self.__dict__) # We need to makes sure we can pickle the players, the ball, the pitch and the events # Start with the ball state['_Match__ball'] = (state['_Match__ball'].__class__, state['_Match__ball'].__getstate__()) # Continue with player state['_Match__away_tracking'] = {p_id: (p_obj.__class__, p_obj.__getstate__()) for p_id, p_obj in state['_Match__away_tracking'].items()} state['_Match__home_tracking'] = {p_id: (p_obj.__class__, p_obj.__getstate__()) for p_id, p_obj in state['_Match__home_tracking'].items()} # Then the pitch state['_Match__pitch'] = (state['_Match__pitch'].__class__, state['_Match__pitch'].__getstate__()) # Finally, the events # Check which columns are geometries state['_Match__event_geometry'] = {} events = self.__events.copy() state['_Match__event_orders'] = events.columns.values.copy() for col, dtype in zip(events.columns, events.dtypes): # Save the geometry columns as wkt if dtype == 'object' and isinstance(events.loc[~events[col].isna(), col].iloc[0], Point): # Pandas have a strange behavior with fillna or simple assignment g_col = events[col].apply(lambda x: Point([-999, -999]) if pd.isna(x) else x) state['_Match__event_geometry'][col] = MultiPoint(g_col.to_list()).wkt events = events.drop(columns=[col]) state['_Match__events'] = events return state def __setstate__(self, state): # We need to rebuild the objects containing geometries # Start with the ball cls = state['_Match__ball'][0] ball = cls.__new__(cls) ball.__setstate__(state['_Match__ball'][1]) state['_Match__ball'] = ball # Continue with players away_tracking = {} home_tracking = {} for p_id, obj in state['_Match__away_tracking'].items(): cls = obj[0] p = cls.__new__(cls) p.__setstate__(obj[1]) away_tracking[p_id] = p state['_Match__away_tracking'] = away_tracking for p_id, obj in state['_Match__home_tracking'].items(): cls = obj[0] p = cls.__new__(cls) p.__setstate__(obj[1]) home_tracking[p_id] = p state['_Match__home_tracking'] = home_tracking # Then the pitch cls = state['_Match__pitch'][0] pitch = cls.__new__(cls) pitch.__setstate__(state['_Match__pitch'][1]) state['_Match__pitch'] = pitch # Now the events for col, geoms in state['_Match__event_geometry'].items(): # Make a series geoms = pd.Series([Point(p) for p in wkt.loads(geoms).geoms]) geoms.index = state['_Match__events'].index # Get the Nans back geoms[geoms == Point([-999., -999.])] = np.nan state['_Match__events'][col] = geoms state['_Match__events'] = state['_Match__events'][state['_Match__event_orders']] del state['_Match__event_orders'], state['_Match__event_geometry'] self.__dict__.update(state) def save(self, save_path, protocol=pkl.DEFAULT_PROTOCOL): with open(save_path, 'wb') as fl: pkl.dump(self, fl, protocol=protocol) @property def pitch(self): return self.__pitch @property def player_ids(self): return self.__player_ids @property def home_tracking(self): return self.__home_tracking @property def away_tracking(self): return self.__away_tracking @property def ball(self): return self.__ball @property def events(self): return self.__events @property def hertz(self): return self.__hertz @property def home_team(self): return (self.__home_name) @property def away_team(self): return (self.__away_name) @property def teams(self): return (self.__team_names) @property def halves(self): return (self.__halves_frame) @property def team_colors(self): return(self.__colors) @team_colors.setter def team_colors(self, colors): ''' Change the colors of the team :param colors: an iterable of length 2 containing the colors. Also a dictionary The colors must be specified in a way that matplotlib understads. ''' if not isinstance(colors, dict): self.__colors = {team: color for team, color in zip(self.__team_names, colors)} else: ks = set(k for k in colors.keys()) if ks == set(team for team in self.__team_names): self.__colors = colors else: raise KeyError("The key of the dictionary match the teams' name of the match object.") @teams.setter def teams(self, team_names): ''' Change the team names. The names must be ordered, first home then away :param new_team: A 2-element iterable of containing strings ''' # If we change the team names, we want to change those in every player as well self.__team_names = (team for team in team_names) for player in self.__home_tracking.values(): player.team = self.__team_names[0] for player in self.__away_tracking.values(): player.team = self.__team_names[1] @property def GKs(self): return({k:p.id for k, p in self.__GKs.items()}) @property def attack_directions(self): ''' :return: Sign of the attacking direction ''' return(self.__attack_dir) def invert_attack_directions(self): ''' Invert the attacking directions in the Match object ''' for team in [self.__home_tracking, self.__away_tracking]: for p_id, p in team.items(): print(f"Inverting: {p_id}") p._ObejctOnPitch__positions = p._ObejctOnPitch__positions.geometry.affine_transform([-1, 0, 0, -1, 0, 0]) # Velocity is registered in floats, so we can simply multiply by -1 p._ObejctOnPitch__velocity[['x','y']] = p._ObejctOnPitch__velocity[['x', 'y']] * (-1) print("Inverting ball") self.__ball._ObejctOnPitch__positions = \ self.__ball._ObejctOnPitch__positions.geometry.affine_transform([-1, 0, 0, -1, 0, 0]) self.__ball._ObejctOnPitch__velocity[['x', 'y']] = self.__ball._ObejctOnPitch__velocity[['x', 'y']] * (-1) for k in self.__attack_dir.keys(): self.__attack_dir[k] = self.__attack_dir[k] * (-1) @property def possession(self): ''' Possession spells. Calculate them if not already calculated ''' if self.__possession is None: self.assign_possesion(**self.__possession_pars) return self.__possession @property def possession_parameters(self): ''' Parameters used in the calculation of possession ''' return self.__possession_pars @possession_parameters.setter def possession_parameters(self, new_pars): ''' Parameters used in the calculation of possession. May contain a partial change (no need to set all parameters all the time) ''' self.__possession_pars.update(new_pars) def __getitem__(self, item): ''' Quick ways to get tracking data or events ''' if item in self.__player_ids: try: return self.__home_tracking[item] except KeyError: return self.__away_tracking[item] elif item == 'ball': return self.__ball elif item == 'events': return self.__events raise KeyError(f"{item} is not `ball`, `events` or any of the players' id.") def get_GKs(self): ''' This function infers which player is the GK based on position at kick-off. It also calculates the attack sides. ''' attack_sides = {team:0 for team in self.__team_names} GKs = {team:np.nan for team in self.__team_names} koff_frame = self.__events.iloc[0].name # We infer attack direction based on the kickoff positions for team_name, team in zip(self.__team_names, [self.__home_tracking, self.__away_tracking]): _ = [p for p in team.values() if isinstance(p.positions.loc[koff_frame], Point)] att_side = np.array([p.positions[koff_frame].x for p in _]) # This is the defense side of the team attack_sides[team_name] = -np.sign(att_side.mean()) gk_pos = (attack_sides[team_name] * att_side).argmin() GKs[team_name] = _[gk_pos] for i, p in enumerate(_): if i != gk_pos: p.GK = False else: p.GK = True self.__GKs = GKs self.__attack_dir = attack_sides def plot_frame(self, frame, figax=None, include_player_velocities=False, PlayerMarkerSize=10, PlayerAlpha=0.7, annotate=False): """ plot_frame( hometeam, awayteam ) Plots a frame of Metrica tracking data (player positions and the ball) on a football pitch. All distances should be in meters. Parameters ----------- hometeam: row (i.e. instant) of the home team tracking data frame awayteam: row of the away team tracking data frame fig,ax: Can be used to pass in the (fig,ax) objects of a previously generated pitch. Set to (fig,ax) to use an existing figure, or None (the default) to generate a new pitch plot, team_colors: Tuple containing the team colors of the home & away team. Default is 'r' (red, home team) and 'b' (blue away team) field_dimen: tuple containing the length and width of the pitch in meters. Default is (106,68) include_player_velocities: Boolean variable that determines whether player velocities are also plotted (26500 quivers). Default is False PlayerMarkerSize: size of the individual player marlers. Default is 10 PlayerAlpha: alpha (transparency) of player markers. Defaault is 0.7 annotate: Boolean variable that determines with player jersey numbers are added to the plot (default is False) Returns ----------- fig,ax : figure and aixs objects (so that other data can be plotted onto the pitch) """ if figax is None: # create new pitch fig, ax = self.pitch.plot() else: # overlay on a previously generated pitch fig, ax = figax # unpack tuple # plot home & away teams in order relevant_players = {} for team_name, team in zip(self.__team_names, [self.__home_tracking, self.__away_tracking]): print(f"TEAM: {team_name}") color = self.__colors[team_name] _ = [p for p in team.values() if isinstance(p.positions.loc[frame], Point)] relevant_players[team_name] = _ # X and Y position for the home/away team Xs = [p.positions.loc[frame].x for p in _] Ys = [p.positions.loc[frame].y for p in _] # plot player positions ax.plot(Xs, Ys, color=color, marker='o', markersize=PlayerMarkerSize, alpha=PlayerAlpha, linestyle="") if include_player_velocities: vx = [p.velocity.loc[frame, 'x'] for p in relevant_players[team_name]] # X component of the speed vector vy = [p.velocity.loc[frame, 'y'] for p in relevant_players[team_name]] # Y component of the speed vector ax.quiver(Xs, Ys, vx, vy, color=color, scale_units='inches', scale=10., width=0.0015, headlength=5, headwidth=3, alpha=PlayerAlpha) if annotate: for i, player in enumerate(relevant_players[team_name]): ax.text(Xs[i] + 0.5, Ys[i] + 0.5, player.id, fontsize=10, color=color) # plot ball if isinstance(self.__ball.positions.loc[frame], Point): ax.plot(self.__ball.positions.loc[frame].x, self.__ball.positions.loc[frame].y, markersize=6, marker='o', alpha=1.0, linewidth=0, color='white', linestyle="") return fig, ax def save_match_clip(self, sequence, path, figax=None, field_dimen=(106.0, 68.0), include_player_velocities=False, PlayerMarkerSize=10, PlayerAlpha=0.7, annotate=False, frame_timing=False): """ save_match_clip( hometeam, awayteam, fpath ) Generates a movie from Metrica tracking data, saving it in the 'fpath' directory with name 'fname' Parameters ----------- path: path to the output file fname: movie filename. Default is 'clip_test.mp4' fig,ax: Can be used to pass in the (fig,ax) objects of a previously generated pitch. Set to (fig,ax) to use an existing figure, or None (the default) to generate a new pitch plot, frames_per_second: frames per second to assume when generating the movie. Default is 25. team_colors: Tuple containing the team colors of the home & away team. Default is 'r' (red, home team) and 'b' (blue away team) field_dimen: tuple containing the length and width of the pitch in meters. Default is (106,68) include_player_velocities: Boolean variable that determines whether player velocities are also plotted (as quivers). Default is False PlayerMarkerSize: size of the individual player marlers. Default is 10 PlayerAlpha: alpha (transparency) of player markers. Defaault is 0.7 Returns ----------- fig,ax : figure and aixs objects (so that other data can be plotted onto the pitch) """ # check that indices match first # assert np.all(hometeam.index == awayteam.index), "Home and away team Dataframe indices must be the same" # in which case use home team index # index = self.__home_tracking[0].positions.index # Set figure and movie settings FFMpegWriter = animation.writers['ffmpeg'] metadata = dict(title='Tracking Data', artist='Matplotlib', comment='Metrica tracking data clip') writer = FFMpegWriter(fps=self.__hertz, metadata=metadata) if path[-4:] != '.mp4': path += '.mp4' # fname = fpath + '/' + fname + '.mp4' # path and filename # create football pitch if figax is None: fig, ax = self.pitch.plot() else: fig, ax = figax fig.set_tight_layout(True) # Generate movie print("Generating movie...", end='') with writer.saving(fig, path, 100): for frame in sequence: figobjs = [] # this is used to collect up all the axis objects so that they can be deleted after each iteration relevant_players = {} for team_name, team in zip(self.__team_names, [self.__home_tracking, self.__away_tracking]): color = self.__colors[team_name] # Get players on the pitch _ = [p for p in team.values() if isinstance(p.positions.loc[frame], Point)] relevant_players[team_name] = _ Xs = [p.positions.loc[frame].x for p in _] Ys = [p.positions.loc[frame].y for p in _] # Plot players position objs, = ax.plot(Xs, Ys, color=color, marker='o', markersize=PlayerMarkerSize, alpha=PlayerAlpha, linestyle="") figobjs.append(objs) if include_player_velocities: vx = [p.velocity.loc[frame, 'x'] for p in relevant_players[team_name]] # X component of the speed vector vy = [p.velocity.loc[frame, 'y'] for p in relevant_players[team_name]] # Y component of the speed vector # vy_columns = -1 * np.array(vy_columns) objs = ax.quiver(Xs, Ys, vx, vy, color=color, scale_units='inches', scale=10., width=0.0015, headlength=5, headwidth=3, alpha=PlayerAlpha) figobjs.append(objs) if annotate: for i, player in enumerate(relevant_players[team_name]): objs = ax.text(Xs[i] + 0.5, Ys[i] + 0.5, player.id, fontsize=10, color=color) figobjs.append(objs) # plot ball if isinstance(self.__ball.positions.loc[frame], Point): objs, = ax.plot(self.__ball.positions.loc[frame].x, self.__ball.positions.loc[frame].y, marker='o', markersize=6, alpha=1.0, linewidth=0, color='white', linestyle="") # objs, = ax.plot(team['ball_x'], team['ball_y'], 'ko', MarkerSize=6, alpha=1.0, LineWidth=0) figobjs.append(objs) # include time reference at the top if not frame_timing: frame_minute = np.int(frame / (60 * 25)) frame_second = np.int( np.floor((frame / (60 * 25) - frame_minute) * 60.)) timestring = f"{frame_minute}:{frame_second}" else: timestring = f"{frame}" objs = ax.text(-2.5, field_dimen[1] / 2. + 1., timestring, fontsize=14) figobjs.append(objs) writer.grab_frame() # Delete all axis objects (other than pitch lines) in preperation for next frame for figobj in figobjs: figobj.remove() print("done") plt.clf() plt.close(fig) def plot_events(self, event_ids, figax=None, indicators=['Marker', 'Arrow'], marker_style='o', alpha=0.5, annotate=False): """ plot_events( events ) Plots Metrica event positions on a football pitch. event data can be a single or several rows of a data frame. All distances should be in meters. Parameters ----------- event_ids: index (or indices) for the event in the event dataframe of the match object fig,ax: Can be used to pass in the (fig,ax) objects of a previously generated pitch. Set to (fig,ax) to use an existing figure, or None (the default) to generate a new pitch plot, field_dimen: tuple containing the length and width of the pitch in meters. Default is (106,68) indicators: List containing choices on how to plot the event. 'Marker' places a marker at the 'Start X/Y' location of the event; 'Arrow' draws an arrow from the start to end locations. Can choose one or both. marker_style: Marker type used to indicate the event position. Default is 'o' (filled ircle). alpha: alpha of event marker. Default is 0.5 annotate: Boolean determining whether text annotation from event data 'Type' and 'From' fields is shown on plot. Default is False. Returns ----------- fig,ax : figure and aixs objects (so that other data can be plotted onto the pitch) """ if figax is None: # create new pitch fig, ax = self.__pitch.plot() else: # overlay on a previously generated pitch fig, ax = figax events = self.__events.loc[event_ids, :] for i, row in events.iterrows(): color = self.__colors[row['Team'].casefold()] if not pd.isna(row['Start']): if 'Marker' in indicators: ax.plot(row['Start'].x, row['Start'].y, color=color, marker=marker_style, alpha=alpha) if 'Arrow' in indicators: if not pd.isna(row['End']): ax.annotate("", xy=row['End'].xy, xytext=row['Start'].xy, alpha=alpha, arrowprops=dict(alpha=alpha, width=0.5, headlength=4.0, headwidth=4.0, color=color), annotation_clip=False) if annotate: text_string = row['event'] + ': ' + row['From'] ax.text(row['Start'].x, row['Start'].y, text_string, fontsize=10, color=color) return fig, ax def plot_pitchcontrol_for_event(self, event_id, PPCF, alpha=0.7, include_player_velocities=True, annotate=False): """ plot_pitchcontrol_for_event( event_id, events, tracking_home, tracking_away, PPCF ) Plots the pitch control surface at the instant of the event given by the event_id. Player and ball positions are overlaid. Parameters ----------- event_id: Index (not row) of the event that describes the instant at which the pitch control surface should be calculated events: Dataframe containing the event data tracking_home: (entire) tracking DataFrame for the Home team tracking_away: (entire) tracking DataFrame for the Away team PPCF: Pitch control surface (dimen (n_grid_cells_x,n_grid_cells_y) ) containing pitch control probability for the attcking team (as returned by the generate_pitch_control_for_event in Metrica_PitchControl) alpha: alpha (transparency) of player markers. Default is 0.7 include_player_velocities: Boolean variable that determines whether player velocities are also plotted (as quivers). Default is False annotate: Boolean variable that determines with player jersey numbers are added to the plot (default is False) field_dimen: tuple containing the length and width of the pitch in meters. Default is (106,68) NB: this function no longer requires xgrid and ygrid as an input Returrns ----------- fig,ax : figure and aixs objects (so that other data can be plotted onto the pitch) """ # pick a pass at which to generate the pitch control surface pass_frame = self.__events.loc[event_id, 'Start Frame'] pass_team = self.__events.loc[event_id, 'Team'] # plot frame and event fig, ax = self.__pitch.plot(field_color='white') self.plot_frame(pass_frame, figax=(fig, ax), PlayerAlpha=alpha, include_player_velocities=include_player_velocities, annotate=annotate) self.plot_events(self.__events.loc[event_id:event_id], figax=(fig, ax), indicators=['Marker', 'Arrow'], annotate=False, alpha=1) # plot pitch control surface if pass_team == 'Home': cmap = 'bwr' else: cmap = 'bwr_r' ax.imshow(np.flipud(PPCF), extent=(-self.__pitch_dimension[0] / 2., self.__pitch_dimension[0] / 2., -self.__pitch_dimension[1] / 2., self.__pitch_dimension[1] / 2.), interpolation='spline36', vmin=0.0, vmax=1.0, cmap=cmap, alpha=0.5) return fig, ax def assign_possesion(self, sd=0.4, modify_event=True, min_speed_passage=0.12, max_recaliber=1.5, filter_spells=True, filter_tol=4): ''' A simple function to find possession spells during the game based on the position of the ball and the players. Substantially select the closest player to the ball as the one having possession, but also filters for dead balls and passess. Uses a lot of information from the event data, substantially making the assumption that any possession spell must leave a mark in the events. If modify_event is True, we use the possession data to input the frame of the events in the event data -- this on average augments the quality of the f24 Opta data. :param self: :param sd: :param modify_event: :param min_speed_passage: :param max_recaliber: :param filter_spells: :param filter_tol: :return: ''' # [range(half - 5, half + 5) for half in self.__halves_frame] voluntary_toss = ['pass', 'clearance', 'short free-kick', 'crossed free-kick', 'throw-in', 'other free-kick', 'cross', 'shot', 'crossed corner', 'free-kick shot', 'keeper punch', 'goal kick'] if filter_tol <1: filter_tol = 1 events = self.__events.copy() events['recalibrated'] = False events['frame_safe'] = events['frame'].copy() # Useful for re-calibrating the events' frame distances = [[], []] ids = [[], []] # for i, team in enumerate([match._Match__home_tracking, match._Match__away_tracking]): # print(f"Calculating possession for team {[match._Match__home_name, match._Match__away_name][i]}") # for p_id, p in team.items(): # print(f"Calculating possession for player {p_id}") # ids[i].append(p_id) # temp = pd.concat([p.positions, match._Match__ball.positions], axis=1) # temp.columns = ['player', 'ball'] # temp = temp.loc[(~pd.isna(temp['player'])) & (~pd.isna(temp['ball']))] # distances[i].append(temp['ball'].distance(temp['player'])) # Calculate the distance of every player from the ball at every frame. Takes time for i, team in enumerate([self.__home_tracking, self.__away_tracking]): print(f"Calculating possession for team {[self.__home_name, self.__away_name][i]}") for p_id, p in team.items(): print(f"Calculating possession for player {p_id}") ids[i].append(p_id) temp = pd.concat([p.positions, self.__ball.positions], axis=1) temp.columns = ['player', 'ball'] temp = temp.loc[(~
pd.isna(temp['player'])
pandas.isna
import os import sys import math import pandas as pd import numpy as np from sklearn.datasets import make_classification from keras import backend as K from keras import initializers, layers from keras.utils import to_categorical from keras.constraints import non_neg, max_norm from keras.initializers import Zeros from keras.constraints import Constraint from keras import regularizers import tensorflow as tf from decision_tree import * from datetime import datetime time_cb = TimingCallback() X, y_ = make_classification() # may want to increase complexity here y = to_categorical(y_) # make sure you do a test validation split! tree = Tree() # this keeps the state of the current decision tree... input_dim = 20 dim_size = 20 nepochs = 5 # we use nepochs=20 in paper num_class = 2 num_trees = 5 num_rounds = 3 save_dir = "temp" if not os.path.isdir(save_dir): os.makedirs(save_dir) def gen_states(tree, tree_list=[0], target_idx=None, return_tree_list=False): def size_0(dct): for key, val in dct.items(): if len(val) > 0: return False return True tree_index = max(tree_list) if target_idx is None: curr_list = [tree_index+1, tree_index+2, tree_index+3] else: curr_list = [tree_index+1, target_idx, tree_index+2] tree_list.extend(curr_list) d0, s0 = tree.prune() d1 = tree.tree.copy() d2, s2 = tree.graft() if size_0(d0): # reset d0 = Tree().tree.copy() state_info = {'prune': (d0, curr_list[0]), 'base': (d1, curr_list[1]), 'graft': (d2, curr_list[2]), 'state': { 'prune': s0, 'graft': s2 }} if return_tree_list: return state_info, tree_list, curr_list else: return state_info def outputshape(input_shape): return [(input_shape[0], input_shape[1]) for _ in range(input_shape[2])] def normalise_pred(x): x = tf.stack(x) x = tf.transpose(x, [1, 0, 2]) return x def normalise_pred_shape(input_shape): shape = list(input_shape[0]) num_trees = len(input_shape) return tuple([shape[0], num_trees, shape[1]]) def softmax_tau(proba, tau=0.1): """ This is a softmax which goes towards one-hot encoding overtime. We want to decay tau from 1.0 to 0.1 roughly """ from scipy.special import logit, expit out = expit(logit(proba)/tau) return out/np.sum(out) def get_layer_weights(model, name='hwy', sample=False, tau=1.0): out = K.eval([x for x in model.layers if x.name == name][0].weights[0]).flatten() return normalise_weights(out, sample, tau) def normalise_weights(out, sample=False, tau=1.0): out = np.abs(out) out = out/np.sum(out) if sample and tau >= 1.0: draw = np.random.choice(range(out.shape[0]), 1, p=out) return draw[0] elif sample: draw = np.random.choice(range(out.shape[0]), 1, p=softmax_tau(out, tau)) return draw[0] elif tau >= 1.0: return out else: return softmax_tau(out, tau) def calculate_routes(adj_list=None): """ Calculates routes given a provided adjancency list, assume that root node is always 0. Assume this is a binary tree as well... Test cases: {0:[1, 2], 1:[], 2:[]} --> [(0, 0), (1, 0), (0, 0), (1, 1), (0, 1), (2, 0), (0, 1), (2, 1)] {0:[1], 1:[2], 2:[]} --> [(0, 0), (1, 0), (2, 0), (0, 0), (1, 0), (2, 1), (0, 0), (1, 1), (0, 1)] calculate_routes({0:[1,2], 1:[], 2:[]}) calculate_routes({0:[1], 1:[2], 2:[]}) """ if adj_list is None: raise Exception("Adj_list cannot be none") def get_next(path): next_paths = adj_list[path[-1]] if len(next_paths) > 0: for p in next_paths: get_next(path + [p]) else: all_paths.append(path) all_paths = [] get_next([0]) # convert paths to indices... path_indx = [] for path in all_paths: cur_path = [] for cur_node, nxt_node in zip(path, path[1:]+[None]): # print(cur_node, nxt_node) pos_dir = np.array(sorted(adj_list[cur_node])) pos_idx = np.argwhere(pos_dir==nxt_node).flatten().tolist() if len(pos_idx) > 0 and len(pos_dir) == 2: # i.e. has 2 children cur_path.append((cur_node, pos_idx[0])) elif len(pos_idx) > 0 and len(pos_dir) == 1: # i.e. has 1 child path_indx.append(cur_path + [(cur_node, 1)]) # then it will have a leaf! cur_path.append((cur_node, pos_idx[0])) elif nxt_node is not None: cur_path.append((cur_node, pos_dir.shape[0])) else: path_indx.append(cur_path + [(cur_node, 0)]) path_indx.append(cur_path + [(cur_node, 1)]) return path_indx def build_tree(main_input, tree, tree_list, indx, tree_number=0): """ Builds a single decision tree, returns all the specs needed to preserve tree state... """ tree_state, tree_list, curr_list = gen_states(tree, tree_list[:], indx, True) route0 = calculate_routes(tree_state['prune'][0]) route1 = calculate_routes(tree_state['base'][0]) route2 = calculate_routes(tree_state['graft'][0]) nodes0 = list(tree_state['prune'][0].keys()) nodes1 = list(tree_state['base'][0].keys()) nodes2 = list(tree_state['graft'][0].keys()) all_nodes = list(set(nodes0 + nodes1 + nodes2)) tree_nodes_list = len(all_nodes) route_name0 = "t{}_tree_route{}".format(tree_number, tree_state['prune'][1]) route_name1 = "t{}_tree_route{}".format(tree_number, tree_state['base'][1]) route_name2 = "t{}_tree_route{}".format(tree_number, tree_state['graft'][1]) pred_name0 = "t{}_pred_route{}".format(tree_number, tree_state['prune'][1]) pred_name1 = "t{}_pred_route{}".format(tree_number, tree_state['base'][1]) pred_name2 = "t{}_pred_route{}".format(tree_number, tree_state['graft'][1]) # create custom regularization weights based on the routes that it will be taking... def l1_reg(weight_matrix, nodes=[nodes0, nodes1, nodes2]): # weight matrix is shape (2, feats, nodes) unweighted_reg = 0.02 * K.sum(K.abs(weight_matrix)) if len(nodes) == 0: return unweighted_reg else: # determine weights by the routing logic... base_weight = 0.01/len(nodes) running_weight = 0.0 for nds in nodes: normalizer = base_weight * (1.0/len(nds)) * (math.sqrt(len(nds))/math.sqrt(7)) for nd in nds: running_weight += normalizer * K.sum(K.abs(weight_matrix[:, :, nd])) return unweighted_reg-running_weight tree_nodes = DecisionTreeNode(nodes=tree_nodes_list, regularizer=l1_reg)(main_input) tree_r0 = DecisionTreeRouting(route=route0, name=route_name0)([main_input, tree_nodes]) tree_r1 = DecisionTreeRouting(route=route1, name=route_name1)([main_input, tree_nodes]) tree_r2 = DecisionTreeRouting(route=route2, name=route_name2)([main_input, tree_nodes]) leaf_layers0 = layers.Lambda(lambda x: [tf.squeeze(y) for y in tf.split(x, [1 for _ in range(K.int_shape(x)[2])], axis=2)], output_shape=outputshape)(tree_r0) leaf_layers1 = layers.Lambda(lambda x: [tf.squeeze(y) for y in tf.split(x, [1 for _ in range(K.int_shape(x)[2])], axis=2)], output_shape=outputshape)(tree_r1) leaf_layers2 = layers.Lambda(lambda x: [tf.squeeze(y) for y in tf.split(x, [1 for _ in range(K.int_shape(x)[2])], axis=2)], output_shape=outputshape)(tree_r2) # As part of this step, we need to understand how we can general all leaf nodes; for all models, and identify leaf nodes which are shared and which ones are not. def get_leafs(tree_info): ''' retrieves the name of the leafs, which are: name of the parent + name of the route (left or right) we add random datetime so that they are retrained everyrun - it doesn't make sense that it is updated in tandem ''' tree = Tree(tree=tree_info) leaves = tree.get_leaves() parent_leaves = ["p{}_l{}_t{}_{}".format(tree.get_parent(idx), idx, tree_number, datetime.now().strftime("%H%M%S")) for idx in leaves] return parent_leaves leaf_names0 = get_leafs(tree_state['prune'][0]) leaf_names1 = get_leafs(tree_state['base'][0]) leaf_names2 = get_leafs(tree_state['graft'][0]) leaf_names_all = set(leaf_names0 + leaf_names1 + leaf_names2) pred_layer = {nm:Dense(num_class, activation='softmax', name=nm) for nm in leaf_names_all} pred_layer_tree0 = [pred_layer[nm](x) for nm, x in zip(leaf_names0, leaf_layers0)] pred_layer_tree1 = [pred_layer[nm](x) for nm, x in zip(leaf_names1, leaf_layers1)] pred_layer_tree2 = [pred_layer[nm](x) for nm, x in zip(leaf_names2, leaf_layers2)] stack_pred0 = layers.Lambda(normalise_pred, output_shape=normalise_pred_shape)(pred_layer_tree0) stack_pred1 = layers.Lambda(normalise_pred, output_shape=normalise_pred_shape)(pred_layer_tree1) stack_pred2 = layers.Lambda(normalise_pred, output_shape=normalise_pred_shape)(pred_layer_tree2) tree_d0 = DecisionPredRouting(route=route0)([stack_pred0, tree_nodes]) tree_d1 = DecisionPredRouting(route=route1)([stack_pred1, tree_nodes]) tree_d2 = DecisionPredRouting(route=route2)([stack_pred2, tree_nodes]) highway_layer = HighwayWeights(output_dim=3, name='hwy{}'.format(tree_number))([tree_d0, tree_d1, tree_d2]) return highway_layer, tree_state, tree_list, curr_list tree_index = 0 forest = [Tree() for idx in range(num_trees)] main_input = Input(shape=(dim_size,), name='main_input') tree_listing = [build_tree(main_input, forest[idx], [0], None, idx) for idx in range(num_trees)] #t0, tree_state0, tree_list0, curr_list0 = build_tree(main_input, forest[0], [0], None, 0) #t1, tree_state1, tree_list1, curr_list1 = build_tree(main_input, forest[1], [0], None, 1) #t2, tree_state2, tree_list2, curr_list2 = build_tree(main_input, forest[2], [0], None, 2) #t3, tree_state3, tree_list3, curr_list3 = build_tree(main_input, forest[3], [0], None, 3) #t4, tree_state4, tree_list4, curr_list4 = build_tree(main_input, forest[4], [0], None, 4) def normalise_pred2(x): x = tf.stack(x) x = tf.transpose(x, [1, 0, 2]) cl = K.sum(x, axis=1) cl = cl/tf.norm(cl, ord=1, axis=1, keepdims=True) return cl def normalise_pred_shape2(input_shape): shape = list(input_shape[0]) return tuple([shape[0], num_class]) stack_pred = layers.Lambda(normalise_pred2, output_shape=normalise_pred_shape2)([tl[0] for tl in tree_listing]) model = Model(inputs=[main_input], outputs=[stack_pred]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) hist = model.fit(X, y, epochs=nepochs, verbose=0) hist_df = pd.DataFrame(hist.history) print(pd.DataFrame(hist.history).iloc[-1]) model.save_weights(os.path.join(save_dir, 'temp_model_s.h5')) tau = 1.0 discount = 0.99 for iters in range(num_rounds): print("\n\nCurrent Iter: {}".format(iters)) try: tau = tau * discount next_idx = [get_layer_weights(model, name='hwy{}'.format(idx), tau=tau, sample=True) for idx in range(num_trees)] #next_idx0 = get_layer_weights(model, name='hwy0', tau=tau, sample=True) #next_idx1 = get_layer_weights(model, name='hwy1', tau=tau, sample=True) #next_idx2 = get_layer_weights(model, name='hwy2', tau=tau, sample=True) #next_idx3 = get_layer_weights(model, name='hwy3', tau=tau, sample=True) #next_idx4 = get_layer_weights(model, name='hwy4', tau=tau, sample=True) actions = ['prune', 'base', 'graft'] #print("Next idx: {}, action: {}".format(curr_list[next_idx], actions[next_idx])) #tree0 = Tree(tree=tree_state0[actions[next_idx0]][0]) #tree1 = Tree(tree=tree_state1[actions[next_idx1]][0]) #tree2 = Tree(tree=tree_state2[actions[next_idx2]][0]) #tree3 = Tree(tree=tree_state3[actions[next_idx3]][0]) #tree4 = Tree(tree=tree_state4[actions[next_idx4]][0]) forest = [Tree(tree=tree_listing[idx][1][actions[next_idx[idx]]][0]) for idx in range(num_trees)] main_input = Input(shape=(dim_size,), name='main_input') tree_listing = [build_tree(main_input, forest[idx], tree_listing[idx][2], tree_listing[idx][3][next_idx[idx]], idx) for idx in range(num_trees)] #t0, tree_state0, tree_list0, curr_list0 = build_tree(main_input, tree0, tree_list0, curr_list0[next_idx0], 0) #t1, tree_state1, tree_list1, curr_list1 = build_tree(main_input, tree1, tree_list1, curr_list1[next_idx1], 1) #t2, tree_state2, tree_list2, curr_list2 = build_tree(main_input, tree2, tree_list2, curr_list2[next_idx2], 2) #t3, tree_state3, tree_list3, curr_list3 = build_tree(main_input, tree3, tree_list3, curr_list3[next_idx3], 3) #t4, tree_state4, tree_list4, curr_list4 = build_tree(main_input, tree4, tree_list4, curr_list4[next_idx4], 4) stack_pred = layers.Lambda(normalise_pred2, output_shape=normalise_pred_shape2)([tl[0] for tl in tree_listing]) model = Model(inputs=[main_input], outputs=[stack_pred]) model.load_weights(os.path.join(save_dir, 'temp_model_s.h5'), by_name=True) for idx in range(num_trees): model.get_layer('hwy{}'.format(idx)).set_weights([np.array([[0.25, 0.5, 0.25]])]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) hist = model.fit(X, y, epochs=nepochs, verbose=0) pd_temp = pd.DataFrame(hist.history) print(pd.DataFrame(hist.history).iloc[-1]) hist_df =
pd.concat([hist_df, pd_temp])
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float')
tm.assert_equal(expected.C.dtype, 'float')
pandas.util.testing.assert_equal
import numpy as np import matplotlib.pyplot as plt import pandas as pd from matplotlib.colors import LinearSegmentedColormap import scipy as sp from scipy import interpolate import patsy import logging from time import time import warnings from scipy import optimize from scipy import linalg from scipy import stats from scipy.misc import derivative from scipy.special import logsumexp from tqdm import tqdm def plotgene(X,mtx,draw_list,result,sp=10,lw=0.2,N=5,plotsize=5): n = len(draw_list) rownum = n//N + 1 plt.figure(figsize=(N*(plotsize+2),plotsize*rownum)) cmap = LinearSegmentedColormap.from_list('mycmap', ['blue','white','red']) for i in range(n): if draw_list[i] in list(mtx.T): plt.subplot(rownum,N,i+1) plt.scatter(X[:,0], X[:,1], c=mtx.T[draw_list[i]],cmap=cmap,s=sp,linewidths=lw,edgecolors='black') plt.colorbar() if hasattr(result, 'g'): plt.title(draw_list[i]+' qval:'+str(round(result[result.g==draw_list[i]].qval.values[0],2))) else: plt.title(draw_list[i]) else: print('not contain '+str(draw_list[i])) def draw_agree(intersection,r1,r2,verbose=False,N=5): r1br2=[] r2br1=[] all_g=[] m1=0 m2=0 for i in intersection: x1 = r1.index(i) x2 = r2.index(i) if (abs(x1-x2)>100)&verbose: continue plt.scatter(x1,x2) m1 = max(m1,x1) m2 = max(m2,x2) if (x1-x2)>N: r2br1.append(i) elif (x2-x1)>N: r1br2.append(i) else: all_g.append(i) plt.annotate("(%s,%s) " %(x1,x2)+str(i), xy=(x1,x2), xytext=(-20, 10), textcoords='offset points') plt.plot([0,m2],[N,m2+N],linestyle='-.',color='r') plt.plot([N,m2+N],[0,m2],linestyle='-.',color='r') plt.plot([0,m2],[10,m2+10],linestyle='-.',color='b') plt.plot([10,m2+10],[0,m2],linestyle='-.',color='b') plt.xlabel('original') plt.xlim(0, m1+10) plt.ylim(0, m2+10) plt.ylabel('SOM') plt.title('Rank 50'+' left_top:'+str(len(r1br2))+' right_down:'+str(len(r2br1))+' all:'+str(len(intersection))) return r1br2,r2br1,all_g def draw_agree_log(intersection,r1,r2,label,verbose=False,N=5,al=1000): r1br2=[] r2br1=[] all_g=[] m1=0 m2=0 x_list=[] y_list=[] diff=[] plt.yscale('log') plt.xscale('log') plt.axis([1, al, 1, al]) for i in intersection: x1 = r1.index(i)+1 x2 = r2.index(i)+1 x_list.append(x1) y_list.append(x2) diff.append(abs(x1-x2)) m1 = max(m1,x1) m2 = max(m2,x2) if (x1-x2)>N: r2br1.append(i) elif (x2-x1)>N: r1br2.append(i) else: all_g.append(i) if x1<10 and x2<10: plt.annotate("(%s,%s) " %(x1,x2)+str(i), xy=(x1,x2), xytext=(-20, 10), textcoords='offset points') plt.scatter(x_list,y_list,c=diff,alpha=0.5,vmin=0,vmax=400) print(min(diff),max(diff)) plt.xlabel(label[0]) plt.ylabel(label[1]) plt.colorbar() plt.title(label[0]+' VS '+label[1]+' all:'+str(len(intersection))) return r1br2,r2br1,all_g def qvalue(pv, pi0=None): assert(pv.min() >= 0 and pv.max() <= 1), "p-values should be between 0 and 1" original_shape = pv.shape pv = pv.ravel() # flattens the array in place, more efficient than flatten() m = float(len(pv)) # if the number of hypotheses is small, just set pi0 to 1 if len(pv) < 100 and pi0 is None: pi0 = 1.0 elif pi0 is not None: pi0 = pi0 else: # evaluate pi0 for different lambdas pi0 = [] lam = sp.arange(0, 0.90, 0.01) counts = sp.array([(pv > i).sum() for i in sp.arange(0, 0.9, 0.01)]) for l in range(len(lam)): pi0.append(counts[l]/(m*(1-lam[l]))) pi0 = sp.array(pi0) # fit natural cubic spline tck = interpolate.splrep(lam, pi0, k=3) pi0 = interpolate.splev(lam[-1], tck) if pi0 > 1: pi0 = 1.0 assert(pi0 >= 0 and pi0 <= 1), "pi0 is not between 0 and 1: %f" % pi0 p_ordered = sp.argsort(pv) pv = pv[p_ordered] qv = pi0 * m/len(pv) * pv qv[-1] = min(qv[-1], 1.0) for i in range(len(pv)-2, -1, -1): qv[i] = min(pi0*m*pv[i]/(i+1.0), qv[i+1]) # reorder qvalues qv_temp = qv.copy() qv = sp.zeros_like(qv) qv[p_ordered] = qv_temp # reshape qvalues qv = qv.reshape(original_shape) return qv def get_l_limits(X): Xsq = np.sum(np.square(X), 1) R2 = -2. * np.dot(X, X.T) + (Xsq[:, None] + Xsq[None, :]) R2 = np.clip(R2, 0, np.inf) R_vals = np.unique(R2.flatten()) R_vals = R_vals[R_vals > 1e-8] l_min = np.sqrt(R_vals.min()) / 2. l_max = np.sqrt(R_vals.max()) * 2. return l_min, l_max ## Kernels ## def SE_kernel(X, l): Xsq = np.sum(np.square(X), 1) R2 = -2. * np.dot(X, X.T) + (Xsq[:, None] + Xsq[None, :]) R2 = np.clip(R2, 1e-12, np.inf) return np.exp(-R2 / (2 * l ** 2)) def linear_kernel(X): K = np.dot(X, X.T) return K / K.max() def cosine_kernel(X, p): ''' Periodic kernel as l -> oo in [Lloyd et al 2014] Easier interpretable composability with SE? ''' Xsq = np.sum(np.square(X), 1) R2 = -2. * np.dot(X, X.T) + (Xsq[:, None] + Xsq[None, :]) R2 = np.clip(R2, 1e-12, np.inf) return np.cos(2 * np.pi * np.sqrt(R2) / p) def gower_scaling_factor(K): ''' Gower normalization factor for covariance matric K Based on https://github.com/PMBio/limix/blob/master/limix/utils/preprocess.py ''' n = K.shape[0] P = np.eye(n) - np.ones((n, n)) / n KP = K - K.mean(0)[:, np.newaxis] trPKP = np.sum(P * KP) return trPKP / (n - 1) def factor(K): S, U = np.linalg.eigh(K) # .clip removes negative eigenvalues return U, np.clip(S, 1e-8, None) def get_UT1(U): return U.sum(0) def get_UTy(U, y): return y.dot(U) def mu_hat(delta, UTy, UT1, S, n, Yvar=None): ''' ML Estimate of bias mu, function of delta. ''' if Yvar is None: Yvar = np.ones_like(S) UT1_scaled = UT1 / (S + delta * Yvar) sum_1 = UT1_scaled.dot(UTy) sum_2 = UT1_scaled.dot(UT1) return sum_1 / sum_2 def s2_t_hat(delta, UTy, S, n, Yvar=None): ''' ML Estimate of structured noise, function of delta ''' if Yvar is None: Yvar = np.ones_like(S) UTy_scaled = UTy / (S + delta * Yvar) return UTy_scaled.dot(UTy) / n def LL(delta, UTy, UT1, S, n, Yvar=None): ''' Log-likelihood of GP model as a function of delta. The parameter delta is the ratio s2_e / s2_t, where s2_e is the observation noise and s2_t is the noise explained by covariance in time or space. ''' mu_h = mu_hat(delta, UTy, UT1, S, n, Yvar) if Yvar is None: Yvar = np.ones_like(S) sum_1 = (np.square(UTy - UT1 * mu_h) / (S + delta * Yvar)).sum() sum_2 = np.log(S + delta * Yvar).sum() with np.errstate(divide='ignore'): return -0.5 * (n * np.log(2 * np.pi) + n * np.log(sum_1 / n) + sum_2 + n) def logdelta_prior_lpdf(log_delta): s2p = 100. return -np.log(np.sqrt(2 * np.pi * s2p)) - np.square(log_delta - 20.) / (2 * s2p) def make_objective(UTy, UT1, S, n, Yvar=None): def LL_obj(log_delta): return -LL(np.exp(log_delta), UTy, UT1, S, n, Yvar) return LL_obj def brent_max_LL(UTy, UT1, S, n): LL_obj = make_objective(UTy, UT1, S, n) o = optimize.minimize_scalar(LL_obj, bounds=[-10, 10], method='bounded', options={'maxiter': 32}) max_ll = -o.fun max_delta = np.exp(o.x) max_mu_hat = mu_hat(max_delta, UTy, UT1, S, n) max_s2_t_hat = s2_t_hat(max_delta, UTy, S, n) return max_ll, max_delta, max_mu_hat, max_s2_t_hat def lbfgsb_max_LL(UTy, UT1, S, n, Yvar=None): LL_obj = make_objective(UTy, UT1, S, n, Yvar) min_boundary = -10 max_boundary = 20. x, f, d = optimize.fmin_l_bfgs_b(LL_obj, 0., approx_grad=True, bounds=[(min_boundary, max_boundary)], maxfun=64, factr=1e12, epsilon=1e-4) max_ll = -f max_delta = np.exp(x[0]) boundary_ll = -LL_obj(max_boundary) if boundary_ll > max_ll: max_ll = boundary_ll max_delta = np.exp(max_boundary) boundary_ll = -LL_obj(min_boundary) if boundary_ll > max_ll: max_ll = boundary_ll max_delta = np.exp(min_boundary) max_mu_hat = mu_hat(max_delta, UTy, UT1, S, n, Yvar) max_s2_t_hat = s2_t_hat(max_delta, UTy, S, n, Yvar) s2_logdelta = 1. / (derivative(LL_obj, np.log(max_delta), n=2) ** 2) return max_ll, max_delta, max_mu_hat, max_s2_t_hat, s2_logdelta def search_max_LL(UTy, UT1, S, n, num=32): ''' Search for delta which maximizes log likelihood. ''' min_obj = np.inf max_log_delta = np.nan LL_obj = make_objective(UTy, UT1, S, n) for log_delta in np.linspace(start=-10, stop=20, num=num): cur_obj = LL_obj(log_delta) if cur_obj < min_obj: min_obj = cur_obj max_log_delta = log_delta max_delta = np.exp(max_log_delta) max_mu_hat = mu_hat(max_delta, UTy, UT1, S, n) max_s2_t_hat = s2_t_hat(max_delta, UTy, S, n) max_ll = -min_obj return max_ll, max_delta, max_mu_hat, max_s2_t_hat def make_FSV(UTy, S, n, Gower): def FSV(log_delta): s2_t = s2_t_hat(np.exp(log_delta), UTy, S, n) s2_t_g = s2_t * Gower return s2_t_g / (s2_t_g + np.exp(log_delta) * s2_t) return FSV def lengthscale_fits(exp_tab, U, UT1, S, Gower, num=64): ''' Fit GPs after pre-processing for particular lengthscale ''' results = [] n, G = exp_tab.shape for g in tqdm(range(G), leave=False): y = exp_tab.iloc[:, g] UTy = get_UTy(U, y) t0 = time() max_reg_ll, max_delta, max_mu_hat, max_s2_t_hat, s2_logdelta = lbfgsb_max_LL(UTy, UT1, S, n) max_ll = max_reg_ll t = time() - t0 # Estimate standard error of Fraction Spatial Variance FSV = make_FSV(UTy, S, n, Gower) s2_FSV = derivative(FSV, np.log(max_delta), n=1) ** 2 * s2_logdelta results.append({ 'g': exp_tab.columns[g], 'max_ll': max_ll, 'max_delta': max_delta, 'max_mu_hat': max_mu_hat, 'max_s2_t_hat': max_s2_t_hat, 'time': t, 'n': n, 'FSV': FSV(np.log(max_delta)), 's2_FSV': s2_FSV, 's2_logdelta': s2_logdelta }) return
pd.DataFrame(results)
pandas.DataFrame
import pandas as pd from evaluate.calculator import ( RecallCalculator, PrecisionCalculator, EmptyReportError, ) import pytest from unittest.mock import patch, Mock from evaluate.report import ( Report, PrecisionReport, RecallReport ) from tests.common import create_precision_report_row from io import StringIO class TestPrecisionCalculator: def test_calculatePrecision_NoReportsRaisesEmptyReportError(self): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame(columns=columns) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) with pytest.raises(EmptyReportError): calculator._calculate_precision_for_a_given_confidence() def test_calculatePrecision_OneReportWithOneRowCompletelyCorrectReturnsOne(self): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame( data=[create_precision_report_row(1.0, gt_conf=100)], columns=columns ) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) actual = calculator._calculate_precision_for_a_given_confidence() assert actual.precision == 1.0 assert actual.true_positives == 1.0 assert actual.total == 1.0 def test_calculatePrecision_OneReportWithOneRowCompletelyIncorrectReturnsZero(self): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame( data=[create_precision_report_row(0.0, gt_conf=100)], columns=columns ) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) actual = calculator._calculate_precision_for_a_given_confidence() assert actual.precision == 0.0 assert actual.true_positives == 0.0 assert actual.total == 1.0 def test_calculatePrecision_OneReportWithOneRowCompletelyCorrectBelowConfThreasholdRaisesEmptyReportError( self ): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame( data=[create_precision_report_row(1.0, gt_conf=10)], columns=columns ) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) confidence_threshold = 60 with pytest.raises(EmptyReportError): calculator._calculate_precision_for_a_given_confidence(confidence_threshold) def test_calculatePrecision_OneReportWithOneRowCompletelyCorrectEqualConfThreasholdReturnsOne( self ): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame( data=[create_precision_report_row(1.0, gt_conf=60)], columns=columns ) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) confidence_threshold = 60 actual = calculator._calculate_precision_for_a_given_confidence(confidence_threshold) assert actual.precision == 1.0 assert actual.true_positives == 1.0 assert actual.total == 1.0 def test_calculatePrecision_OneReportWithTwoRowsPartiallyCorrect(self): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame( data=[ create_precision_report_row(0.5, gt_conf=100), create_precision_report_row(0.7, gt_conf=100), ], columns=columns, ) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) actual = calculator._calculate_precision_for_a_given_confidence() assert actual.precision == 1.2/2 assert actual.true_positives == 1.2 assert actual.total == 2.0 def test_calculatePrecision_OneReportWithThreeRowsTwoPartiallyCorrectOneBelowThreshold( self ): columns = ["sample", "query_probe_header", "ref_probe_header", "classification"] df = pd.DataFrame( data=[ create_precision_report_row(0.4, gt_conf=100), create_precision_report_row(0.8, gt_conf=20), create_precision_report_row(0.3, gt_conf=100), ], columns=columns, ) report = PrecisionReport([df]) calculator = PrecisionCalculator(report) confidence_threshold = 80 actual = calculator._calculate_precision_for_a_given_confidence(confidence_threshold) assert actual.precision == 0.7/2.0 assert actual.true_positives == 0.7 assert actual.total == 2.0 class TestRecallCalculator: @patch.object(Report, Report.get_classifications_as_list.__name__, return_value=[ "unmapped", "partially_mapped", "primary_correct", "primary_incorrect", "secondary_correct", "secondary_incorrect", "supplementary_correct", "supplementary_incorrect" ]) @patch.object(RecallReport, RecallReport._create_helper_columns.__name__) @patch.object(RecallReport, RecallReport.assure_there_are_no_duplicated_evaluation.__name__) @patch.object(RecallReport, RecallReport.get_number_of_truth_probes.__name__, return_value=8) def test____calculate_info_wrt_truth_probes___one_classification_of_each(self, *mocks): report = RecallReport([pd.DataFrame()], False) true_positives, number_of_truth_probes = RecallCalculator._calculate_info_wrt_truth_probes(report) assert true_positives==3 and number_of_truth_probes==8 @patch.object(Report, Report.get_classifications_as_list.__name__, return_value=[ "unmapped", "partially_mapped", "primary_correct", "primary_incorrect", "secondary_correct", "secondary_incorrect", "supplementary_correct", "supplementary_incorrect", "partially_mapped", "partially_mapped", "primary_correct", "primary_correct", "primary_correct", "supplementary_incorrect", "supplementary_incorrect", "supplementary_incorrect", "unmapped", "unmapped", "unmapped", ]) @patch.object(RecallReport, RecallReport._create_helper_columns.__name__) @patch.object(RecallReport, RecallReport.assure_there_are_no_duplicated_evaluation.__name__) @patch.object(RecallReport, RecallReport.get_number_of_truth_probes.__name__, return_value=19) def test____calculate_info_wrt_truth_probes___some_duplicated_classifications(self, *mocks): report = RecallReport([pd.DataFrame()], False) true_positives, number_of_truth_probes = RecallCalculator._calculate_info_wrt_truth_probes(report) assert true_positives == 6 and number_of_truth_probes == 19 @patch.object(RecallReport, RecallReport.get_proportion_of_allele_seqs_found_for_each_variant.__name__, return_value=[1.0, 0.5, 0.8, 1.0, 0.9, 1.0, 0.0, 0.1, 1.0]) @patch.object(RecallReport, RecallReport.get_proportion_of_alleles_found_for_each_variant.__name__, return_value=[0.0, 0.1, 0.2, 0.3, 1.0, 0.9, 0.8, 0.7, 0.6]) @patch.object(RecallReport, RecallReport.get_number_of_variants.__name__, return_value=20) @patch.object(RecallReport, RecallReport._create_helper_columns.__name__) @patch.object(RecallReport, RecallReport.assure_there_are_no_duplicated_evaluation.__name__) def test____calculate_info_wrt_variants(self, *mocks): report = RecallReport([pd.DataFrame()], False) nb_variants_where_all_allele_seqs_were_found, nb_variants_found_wrt_alleles, variants_total = \ RecallCalculator._calculate_info_wrt_variants(report) assert nb_variants_where_all_allele_seqs_were_found == 6.3 and \ nb_variants_found_wrt_alleles == 4.6 and \ variants_total == 20 @patch.object(RecallReport, RecallReport._create_helper_columns.__name__) @patch.object(RecallReport, RecallReport.assure_there_are_no_duplicated_evaluation.__name__) @patch.object(Report, Report.get_report_satisfying_confidence_threshold.__name__) @patch.object(RecallCalculator, RecallCalculator._calculate_info_wrt_truth_probes.__name__, return_value=(5, 10)) @patch.object(RecallCalculator, RecallCalculator._calculate_info_wrt_variants.__name__, return_value=(4, 8, 10)) def test____calculate_recall_for_a_given_confidence(self, calculate_info_wrt_variants_mock, calculate_info_wrt_truth_probes_mock, get_report_satisfying_confidence_threshold_mock, *other_mocks): # setup report_satisfying_confidence_threshold_mock = Mock() get_report_satisfying_confidence_threshold_mock.return_value = report_satisfying_confidence_threshold_mock report = RecallReport([pd.DataFrame()], False) calculator = RecallCalculator(report) recall_info_actual = calculator._calculate_recall_for_a_given_confidence(100) get_report_satisfying_confidence_threshold_mock.assert_called_once_with(100) calculate_info_wrt_truth_probes_mock.assert_called_once_with(report_satisfying_confidence_threshold_mock) calculate_info_wrt_variants_mock.assert_called_once_with(report_satisfying_confidence_threshold_mock) assert recall_info_actual.truth_probes_true_positives == 5 assert recall_info_actual.truth_probes_total == 10 assert recall_info_actual.nb_variants_where_all_allele_seqs_were_found == 4 assert recall_info_actual.nb_variants_found_wrt_alleles == 8 assert recall_info_actual.variants_total == 10 assert recall_info_actual.recall_wrt_truth_probes == 0.5 assert recall_info_actual.recall_wrt_variants_where_all_allele_seqs_were_found == 0.4 assert recall_info_actual.recall_wrt_variants_found_wrt_alleles == 0.8 @patch.object(RecallReport, RecallReport.get_proportion_of_allele_seqs_found_for_each_variant_with_nb_of_samples.__name__, return_value= pd.read_csv(StringIO( """PVID,proportion_of_allele_seqs_found_binary,NB_OF_SAMPLES 0,1,3 1,0,5 2,0,7 3,1,5 4,0,5 5,1,3 6,0,5 """ ), index_col="PVID")) @patch.object(RecallReport, RecallReport._create_helper_columns.__name__) @patch.object(RecallReport, RecallReport.assure_there_are_no_duplicated_evaluation.__name__) def test___get_recall_allele_seqs_vs_nb_of_samples_report(self, *mocks): report = RecallReport([
pd.DataFrame()
pandas.DataFrame
#/Library/Frameworks/Python.framework/Versions/3.6/bin/python3 # # Author: <NAME> # Date: 2018-09-26 # # This script runs all the models on Baxter Dataset subset of onlt cancer and normal samples to predict diagnosis based on OTU data only. This script only evaluates generalization performance of the model. # ############################# IMPORT MODULES ################################## import matplotlib matplotlib.use('Agg') #use Agg backend to be able to use Matplotlib in Flux import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sympy from scipy import interp from sklearn.metrics import roc_curve, auc from sklearn.model_selection import GridSearchCV from sklearn.externals import joblib from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from timeit import default_timer as timer ################################################################################# ############################# PRE-PROCESS DATA ################################## # Import the module I wrote preprocess_data # In this case we will only need the function process_multidata which preprocesses shared and subsampled mothur generated OTU table and the metadata.This function will give us OTUs and FIT as features, diagnosis as labels. # If we wanted to use only OTUs and not FIT as a feature, import the function process_data and use that. ################################################################################# from preprocess_data import process_SRNdata shared = pd.read_table("data/baxter.0.03.subsample.shared") meta =
pd.read_table("data/metadata.tsv")
pandas.read_table
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Aug 3 12:15:41 2018 @author: nmei """ import pandas as pd from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm from statsmodels.graphics.factorplots import interaction_plot import matplotlib.pyplot as plt from scipy import stats from utils import post_processing2,eta_squared,omega_squared,multiple_pairwise_comparison import os working_dir = '../results/' pd.options.mode.chained_assignment = None pos = pd.read_csv('../results/Pos_control.csv') att =
pd.read_csv('../results/ATT_control.csv')
pandas.read_csv
from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys import requests import time from datetime import datetime import pandas as pd from urllib import parse from config import ENV_VARIABLE from os.path import getsize fold_path = "./crawler_data/" page_Max = 100 def stripID(url, wantStrip): loc = url.find(wantStrip) length = len(wantStrip) return url[loc+length:] def Kklee(): shop_id = 13 name = 'kklee' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.kklee.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='col-xs-12 ProductList-list']/a[%i]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//a[%i]/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[3]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Wishbykorea(): shop_id = 14 name = 'wishbykorea' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.wishbykorea.com/collection-727&pgno=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) print(url) except: break time.sleep(1) i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div/div/label" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/a[@href]" % (i,)).get_attribute('href') page_id = page_link.replace("https://www.wishbykorea.com/collection-view-", "").replace("&ca=727", "") find_href = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/a/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip('")') except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div[@class='collection_item_info']/div[2]/label" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div[@class='collection_item_info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 17): p += 1 continue if(sale_price == "0"): i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Aspeed(): shop_id = 15 name = 'aspeed' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.aspeed.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=72" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 73): try: title = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 73): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 73): p += 1 continue i += 1 if(i == 73): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Openlady(): shop_id = 17 name = 'openlady' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python import argparse from collections import OrderedDict from copy import deepcopy from glob import glob import itertools import os.path as op from os import environ import sys import matplotlib.pyplot as plt from matplotlib.lines import Line2D import numpy as np import pandas as pd from scipy.signal import ( butter, filtfilt, ) from scipy.io import loadmat from scipy.spatial import distance import seaborn as sns from sklearn.metrics import cohen_kappa_score from datalad.api import get as datalad_get from remodnav import ( EyegazeClassifier, clf as CLF, ) from remodnav.tests import utils as ut # configure matplotlib for deterministically named SVG identifiers. from matplotlib import rcParams rcParams['svg.hashsalt'] = 43 #from remodnav.tests.test_labeled import load_data as load_anderson def load_anderson(category, name): fname = op.join(*( ('remodnav', 'remodnav', 'tests', 'data', 'anderson_etal', 'annotated_data') + \ (('fix_by_Zemblys2018',) if name == 'UH29_img_Europe_labelled_FIX_MN.mat' else ('data used in the article', category) ) + \ (name + ('' if name.endswith('.mat') else '.mat'),)) ) datalad_get(fname) m = loadmat(fname) # viewing distance vdist = m['ETdata']['viewDist'][0][0][0][0] screen_width = m['ETdata']['screenDim'][0][0][0][0] screen_res = m['ETdata']['screenRes'][0][0][0][0] px2deg = CLF.deg_per_pixel(screen_width, vdist, screen_res) sr = float(m['ETdata']['sampFreq'][0][0][0][0]) data = np.rec.fromarrays([ m['ETdata']['pos'][0][0][:, 3], m['ETdata']['pos'][0][0][:, 4]], names=('x', 'y')) data[np.logical_and(data['x'] == 0, data['y'] == 0)] = (np.nan, np.nan) labels = m['ETdata']['pos'][0][0][:, 5] label_remap = { 1: 'FIXA', 2: 'SACC', 3: 'PSO', 4: 'PURS', } events = [] ev_type = None ev_start = None for i in range(len(labels)): s = labels[i] if ev_type is None and s in label_remap.keys(): ev_type = s ev_start = i elif ev_type is not None and s != ev_type: events.append(dict( id=len(events), label=label_remap.get(ev_type), start_time=0.0 if ev_start is None else float(ev_start) / sr, end_time=float(i) / sr, )) ev_type = s if s in label_remap.keys() else None ev_start = i if ev_type is not None: events.append(dict( id=len(events), label=label_remap.get(ev_type), start_time=0.0 if ev_start is None else float(ev_start) / sr, end_time=float(i) / sr, )) return data, labels, events, px2deg, sr labeled_files = { 'dots': [ 'TH20_trial1_labelled_{}.mat', 'TH38_trial1_labelled_{}.mat', 'TL22_trial17_labelled_{}.mat', 'TL24_trial17_labelled_{}.mat', 'UH21_trial17_labelled_{}.mat', 'UH21_trial1_labelled_{}.mat', 'UH25_trial1_labelled_{}.mat', 'UH33_trial17_labelled_{}.mat', 'UL27_trial17_labelled_{}.mat', 'UL31_trial1_labelled_{}.mat', 'UL39_trial1_labelled_{}.mat', ], 'img': [ 'TH34_img_Europe_labelled_{}.mat', 'TH34_img_vy_labelled_{}.mat', 'TL20_img_konijntjes_labelled_{}.mat', 'TL28_img_konijntjes_labelled_{}.mat', 'UH21_img_Rome_labelled_{}.mat', 'UH27_img_vy_labelled_{}.mat', 'UH29_img_Europe_labelled_{}.mat', 'UH33_img_vy_labelled_{}.mat', 'UH47_img_Europe_labelled_{}.mat', 'UL23_img_Europe_labelled_{}.mat', 'UL31_img_konijntjes_labelled_{}.mat', 'UL39_img_konijntjes_labelled_{}.mat', 'UL43_img_Rome_labelled_{}.mat', 'UL47_img_konijntjes_labelled_{}.mat', ], 'video': [ 'TH34_video_BergoDalbana_labelled_{}.mat', 'TH38_video_dolphin_fov_labelled_{}.mat', 'TL30_video_triple_jump_labelled_{}.mat', 'UH21_video_BergoDalbana_labelled_{}.mat', 'UH29_video_dolphin_fov_labelled_{}.mat', 'UH47_video_BergoDalbana_labelled_{}.mat', 'UL23_video_triple_jump_labelled_{}.mat', 'UL27_video_triple_jump_labelled_{}.mat', 'UL31_video_triple_jump_labelled_{}.mat', ], } #make label_map global - we need it twice label_map = { 'FIXA': 'FIX', 'FIX': 'FIX', 'SACC': 'SAC', 'ISAC': 'SAC', 'HPSO': 'PSO', 'IHPS': 'PSO', 'LPSO': 'PSO', 'ILPS': 'PSO', 'PURS': 'PUR', } # we need the distribution parameters of all algorithms and human coders # in tables 3, 4, 5, 6 from Andersson et al., 2017. Well worth double-checking, # I needed to hand-copy-paste from the paper. The summary statistics were made # publicly available in the file # matlab_analysis_code/20150807.mat in the # original authors GitHub repository # (https://github.com/richardandersson/EyeMovementDetectorEvaluation/blob/0e6f82708e10b48039763aa1078696e802260674/matlab_analysis_code/20150807.mat). # The first two entries within each value-list belong to human coders image_params = { "FIX": { 'alg': ['MN', 'RA', 'CDT', 'IDT', 'IKF', 'IMST', 'IHMM', 'IVT', 'NH', 'BIT'], 'mn': [248, 242, 397, 399, 174, 304, 133, 114, 258, 209], 'sd': [271, 273, 559, 328, 239, 293, 216, 204, 299, 136], 'no': [380, 369, 251, 242, 513, 333, 701, 827, 292, 423] }, "SAC": { 'alg': ['MN', 'RA', 'EM', 'IDT', 'IKF', 'IMST', 'IHMM', 'IVT', 'NH', 'LNS'], 'mn': [30, 31, 25, 35, 62, 17, 48, 41, 50, 29], 'sd': [17, 15, 22, 15, 37, 10, 26, 22, 20, 12], 'no': [376, 372, 787, 258, 353, 335, 368, 373, 344, 390] }, "PSO" : { 'alg': ['MN', 'RA', 'NH', 'LNS'], 'mn': [21, 21, 28, 25], 'sd': [11, 9, 13, 9], 'no': [312, 309, 237, 319] }, "PUR": { 'alg': ['MN', 'RA'], 'mn': [363, 305], 'sd': [187, 184], 'no': [3, 16] } } dots_params = { "FIX": { 'alg': ['MN', 'RA', 'CDT', 'IDT', 'IKF', 'IMST', 'IHMM', 'IVT', 'NH', 'BIT'], 'mn': [161, 131, 60, 323, 217, 268, 214, 203, 380, 189], 'sd': [30, 99, 127, 146, 184, 140, 286, 282, 333, 113], 'no': [2, 13, 165, 8, 72, 12, 67, 71, 30, 67] }, "SAC": { 'alg': ['MN', 'RA', 'EM', 'IDT', 'IKF', 'IMST', 'IHMM', 'IVT', 'NH', 'LNS'], 'mn': [23, 22, 17, 32, 60, 13, 41, 36, 43, 26], 'sd': [10, 11, 14, 14, 26, 5, 17, 14, 16, 11], 'no': [47, 47, 93, 10, 29, 18, 27, 28, 42, 53] }, "PSO" : { 'alg': ['MN', 'RA', 'NH', 'LNS'], 'mn': [15, 15, 24, 20], 'sd': [5, 8, 12, 9], 'no': [33, 28, 17, 31] }, "PUR": { 'alg': ['MN', 'RA'], 'mn': [375, 378], 'sd': [256, 364], 'no': [37, 33] } } video_params = { "FIX": { 'alg': ['MN', 'RA', 'CDT', 'IDT', 'IKF', 'IMST', 'IHMM', 'IVT', 'NH', 'BIT'], 'mn': [318, 240, 213, 554, 228, 526, 234, 202, 429, 248], 'sd': [289, 189, 297, 454, 296, 825, 319, 306, 336, 215], 'no': [67, 67, 211, 48, 169, 71, 194, 227, 83, 170] }, "SAC": { 'alg': ['MN', 'RA', 'EM', 'IDT', 'IKF', 'IMST', 'IHMM', 'IVT', 'NH', 'LNS'], 'mn': [26, 25, 20, 24, 55, 18, 42, 36, 44, 28], 'sd': [13, 12, 16, 53, 20, 10, 18, 16, 18, 12], 'no': [116, 126, 252, 41, 107, 76, 109, 112, 1104, 122] }, "PSO" : { 'alg': ['MN', 'RA', 'NH', 'LNS'], 'mn': [20, 17, 28, 24], 'sd': [11, 8, 13, 10], 'no': [97, 89, 78, 87] }, "PUR": { 'alg': ['MN', 'RA'], 'mn': [521, 472], 'sd': [347, 319], 'no': [50, 68] } } mri_ids = ['01', '02', '03', '04', '05', '06', '09', '10', '14', '15', '16', '17', '18', '19', '20'] lab_ids = ['22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36'] # this used to be within confusion(), is global now because we also need it for Kappa() # --> defines mapping between remodnav labels (strings) and andersson labels (ints) anderson_remap = { 'FIX': 1, 'SAC': 2, 'PSO': 3, 'PUR': 4, } def get_durations(events, evcodes): events = [e for e in events if e['label'] in evcodes] # TODO minus one sample at the end? durations = [e['end_time'] - e['start_time'] for e in events] return durations def confusion(refcoder, coder, figures, stats): conditions = ['FIX', 'SAC', 'PSO', 'PUR'] #conditions = ['FIX', 'SAC', 'PSO'] plotter = 1 # initialize a maximum misclassification rate, to later automatically reference, max_mclf = 0 # coders are in axis labels too #plt.suptitle('Jaccard index for movement class labeling {} vs. {}'.format( # refcoder, coder)) for stimtype, stimlabel in ( ('img', 'Images'), ('dots', 'Dots'), ('video', 'Videos')): conf = np.zeros((len(conditions), len(conditions)), dtype=float) jinter = np.zeros((len(conditions), len(conditions)), dtype=float) junion = np.zeros((len(conditions), len(conditions)), dtype=float) for fname in labeled_files[stimtype]: labels = [] data = None px2deg = None sr = None for src in (refcoder, coder): if src in ('RA', 'MN'): finame = fname.format(src) if finame == 'UH29_img_Europe_labelled_MN.mat': # pick up Zemblys fix finame = 'UH29_img_Europe_labelled_FIX_MN.mat' data, target_labels, target_events, px2deg, sr = \ load_anderson(stimtype, finame) labels.append(target_labels.astype(int)) else: clf = EyegazeClassifier( px2deg=px2deg, sampling_rate=sr, ) p = clf.preproc(data) events = clf(p) # convert event list into anderson-style label array l = np.zeros(labels[0].shape, labels[0].dtype) for ev in events: l[int(ev['start_time'] * sr):int((ev['end_time']) * sr)] = \ anderson_remap[label_map[ev['label']]] labels.append(l) nlabels = [len(l) for l in labels] if len(np.unique(nlabels)) > 1: rsout( "% #\n% # %INCONSISTENCY Found label length mismatch " "between coders ({}, {}) for: {}\n% #\n".format( refcoder, coder, fname)) rsout('% Truncate labels to shorter sample: {}'.format( nlabels)) order_idx = np.array(nlabels).argsort() labels[order_idx[1]] = \ labels[order_idx[1]][:len(labels[order_idx[0]])] for c1, c1label in enumerate(conditions): for c2, c2label in enumerate(conditions): intersec = np.sum(np.logical_and( labels[0] == anderson_remap[c1label], labels[1] == anderson_remap[c2label])) union = np.sum(np.logical_or( labels[0] == anderson_remap[c1label], labels[1] == anderson_remap[c2label])) jinter[c1, c2] += intersec junion[c1, c2] += union #if c1 == c2: # continue conf[c1, c2] += np.sum(np.logical_and( labels[0] == anderson_remap[c1label], labels[1] == anderson_remap[c2label])) nsamples = np.sum(conf) nsamples_nopurs = np.sum(conf[:3, :3]) # zero out diagonal for bandwidth conf *= ((np.eye(len(conditions)) - 1) * -1) if figures: plt.subplot(1, 3, plotter) sns.heatmap( #(conf / nsamples) * 100, jinter / junion, square=True, annot=True, cmap=sns.cm.rocket_r, xticklabels=conditions, yticklabels=conditions, vmin=0.0, vmax=1.0, ) plt.xlabel('{} labeling'.format(refcoder)) plt.ylabel('{} labeling'.format(coder)) # stats are given proper below #plt.title('"{}" (glob. misclf-rate): {:.1f}% (w/o pursuit: {:.1f}%)'.format( # stimtype, # (np.sum(conf) / nsamples) * 100, # (np.sum(conf[:3, :3]) / nsamples_nopurs) * 100)) plt.title(stimlabel) plotter += 1 msclf_refcoder = dict(zip(conditions, conf.sum(axis=1)/conf.sum() * 100)) msclf_coder = dict(zip(conditions, conf.sum(axis=0)/conf.sum() * 100)) if stats: # print results as LaTeX commands label_prefix = '{}{}{}'.format(stimtype, refcoder, coder) for key, format, value in ( ('MCLF', '%.1f', (np.sum(conf) / nsamples) * 100), ('MclfWOP', '%.1f', (np.sum(conf[:3, :3]) / nsamples_nopurs) * 100), ('FIXref', '%.0f', msclf_refcoder['FIX']), ('SACref', '%.0f', msclf_refcoder['SAC']), ('PSOref', '%.0f', msclf_refcoder['PSO']), ('SPref', '%.0f', msclf_refcoder['PUR']), ('FIXcod', '%.0f', msclf_coder['FIX']), ('SACcod', '%.0f', msclf_coder['SAC']), ('PSOcod', '%.0f', msclf_coder['PSO']), ('SPcod', '%.0f', msclf_coder['PUR'])): rsout('\\newcommand{\\%s%s}{%s}' % (label_prefix, key, format % value)) # update classification performance only if there sth worse if (np.sum(conf[:3, :3]) / nsamples_nopurs * 100) > max_mclf: max_mclf = (np.sum(conf[:3, :3]) / nsamples_nopurs * 100) # print original outputs, but make them LaTeX-safe with '%'. This # should make it easier to check correct placements of stats in the # table rsout('% ### {}'.format(stimtype)) rsout('% Comparison | MCLF | MCLFw/oP | Method | Fix | Sacc | PSO | SP') rsout('% --- | --- | --- | --- | --- | --- | --- | ---') rsout('% {} v {} | {:.1f} | {:.1f} | {} | {:.0f} | {:.0f} | {:.0f} | {:.0f}'.format( refcoder, coder, (np.sum(conf) / nsamples) * 100, (np.sum(conf[:3, :3]) / nsamples_nopurs) * 100, refcoder, msclf_refcoder['FIX'], msclf_refcoder['SAC'], msclf_refcoder['PSO'], msclf_refcoder['PUR'], )) rsout('% -- | -- | -- | {} | {:.0f} | {:.0f} | {:.0f} | {:.0f}'.format( coder, msclf_coder['FIX'], msclf_coder['SAC'], msclf_coder['PSO'], msclf_coder['PUR'], )) return max_mclf def mk_confusion_figures(fig, stat): """ small helper function to save all confusion matrices """ max_mclf = 0 for pair in itertools.combinations(['MN', 'RA', 'AL'], 2): plt.figure( # fake size to get the font size down in relation figsize=(14, 3), dpi=120, frameon=False) cur_max_mclf = confusion(pair[0], pair[1], fig, stat) plt.savefig( op.join('img', 'confusion_{}_{}.svg'.format(*pair)), transparent=True, bbox_inches="tight", metadata={'Date': None}) plt.close() if cur_max_mclf > max_mclf: max_mclf = cur_max_mclf if stat: rsout('\\newcommand{\\maxmclf}{%s}' % ('%.1f' % max_mclf)) def quality_stats(): """ Computes the percent of signal loss in raw data Note: takes a while to run (30 subj. x 8 runs x 15 min rec with 1000Hz sr), therefore, I'm just adding results here for now and save the resulting histogram to the repository. \newcommand{\avglosslab}{0.041005777923189775} \newcommand{\avglossmri}{0.1507901497174581} To include this computation in a run with Make, add this function to the list of command invocations if the script is ran from the command line at the end of the script. """ datapath_mri = op.join('data', 'raw_eyegaze', 'sub-*', 'ses-movie', 'func', 'sub-*_ses-movie_task-movie_run-*_recording-eyegaze_physio.tsv.gz') datapath_lab = op.join('data', 'raw_eyegaze', 'sub-*', 'beh', 'sub-*_task-movie_run-*_recording-eyegaze_physio.tsv.gz') for (data, assoc) in [(datapath_lab, 'lab'), (datapath_mri, 'mri')]: infiles = glob(data) for f in infiles: datalad_get(f) # make sure we have 15 subjects' data assert len(infiles) == 120 print("Currently processing data from {} sample".format(assoc)) # set sampling rate and px2deg px2deg = 0.0266711972026 if assoc == 'lab' else 0.0185581232561 sr = 1000 # calculate percent signal loss across subjects and runs losses = [] vels = [] for f in infiles: data = np.recfromcsv(f, delimiter='\t', names=['x', 'y', 'pupil', 'frame']) # all periods of signal loss are marked as nan in the data signal_loss = np.sum(np.isnan(data['x'])) / len(data['x']) losses.append(signal_loss) velocities = cal_velocities(data=data, px2deg=px2deg, sr=sr) vels.append(velocities) print("Calculated velocities and losses for {} sample".format(assoc)) # average across signal losses in sample (mri or lab) loss = np.nanmean(losses) # print results as Latex command using 'assoc' as sample identifier in name label_loss = 'avgloss{}'.format(assoc) rsout('\\newcommand{\\%s}{%s}' % (label_loss, loss)) # vels is a list of arrays atm v = np.concatenate(vels).ravel() if assoc == 'lab': v_lab = v elif assoc == 'mri': v_mri = v # plot velocities in a histogram on logscale # create non-linear non-equal bin sizes, as x axis will be log hist, bins, _ = plt.hist(v[~np.isnan(v)], bins=40) plt.close() logbins = np.logspace(1, # don't start with 0, does not make sense in logspace np.log10(bins[-1]), len(bins)) fig, ax = plt.subplots() fig.set_figheight(3) fig.set_figwidth(5) ax.set_ylabel('frequency') ax.set_xlabel('velocities (deg/s)') plt.hist(v_mri[~np.isnan(v_mri)], weights=np.zeros_like(v_mri[~np.isnan(v_mri)]) + 1. / (v_mri[~np.isnan(v_mri)]).size, bins=logbins, histtype='bar', color='orangered', alpha=0.5, label='mri') plt.hist(v_lab[~np.isnan(v_lab)], weights=np.zeros_like(v_lab[~np.isnan(v_lab)]) + 1. / (v_lab[~np.isnan(v_lab)]).size, bins=logbins, histtype='bar', color='darkslategrey', alpha=0.5, label='lab') plt.legend(loc='upper right') plt.xscale('log') plt.savefig(op.join('img', 'velhist.svg'), transparent=True, bbox_inches="tight", metadata={'Date': None}) def S2SRMS(): """ A function to compute sample-to-sample RMS following the approach in Hooge et al., 2017 (https://link.springer.com/content/pdf/10.3758/s13428-017-0955-x.pdf), as requested by reviewer 2. The idea behind the approach is to chunk the entire signal into windows and to compute sample to sample root mean squared distances for all the windows. Procedurally, in each window S2S-RMS are computed as the root average of squared distances between consecutive samples. After the window-wise computation, the median S2S-RMS within each "trial" (here: 15min run) is taken, and all median values are averaged. Windows in our context were 1000ms/1000 samples. The code below provides an implementation of this request, and the results. As we lay out in our response to the editor and the reviewer, though, we believe that the method reviewer 2 suggests, a precision estimation based on sample-to-sample distances in the entire signal, is a misguided method for professionally produced Hollywood movies. The substantial gaze control exerted by professionally produced movies (lightning, editing, deliberate composition; Dorr et al., 2010), and the limited spatial spread of gazes due to the fact that Hollywood movies center the viewers gaze in the middle of the screen (Goldstein et al., 2007) creates spatial closeness between successive samples that is artificially elevated. The resulting precision value underestimates the true noise, and misleads and distracts from the other noise estimations we have provided: Raw gaze samples, velocity distributions, percent signal loss, and references/citations of precision estimates that are based on 13 point calibration task validations under both MRI and lab conditions (i.e., precision estimates from dedicated precision assessments, not from the eyetracking signal acquired during moving watching). The results of this computation are included below. It should be obvious that the resulting numerical precision estimates seem implausible, especially given the obviously more unstable eyetracking signal plotted in the publication and the about 10 times higher precision estimates (i.e., 10 times worse) computed in the original studyforrest data publication from 13 point calibration procedures: OUTPUT: Currently processing data from lab sample \newcommand{\RMSlab}{0.05849002328619968} Currently processing data from mri sample \newcommand{\RMSmri}{0.061214090261903865} Results when computing the mean instead of the median OUTPUT: Currently processing data from lab sample \newcommand{\RMSlab}{0.08485199260774937} Currently processing data from mri sample \newcommand{\RMSmri}{0.10376796578456919} References: <NAME>., <NAME>., <NAME>., & <NAME>. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of vision , 10 (10). https://doi.org/10.1167/10.10.28 <NAME>., <NAME>., & <NAME>. (2007). Where people look when watching movies: Do all viewers look at the same place? 37 (7), Computers in biology and medicine, 957-964. 10.1016/j.compbiomed.2006.08.018 <NAME>., <NAME>., <NAME>. et al. (2016) A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation. Sci Data 3, 160092. https://doi.org/10.1038/sdata.2016.92 """ # globs for all data for MRI and Lab datapath_mri = op.join('data', 'raw_eyegaze', 'sub-*', 'ses-movie', 'func', 'sub-*_ses-movie_task-movie_run-*_recording-eyegaze_physio.tsv.gz') datapath_lab = op.join('data', 'raw_eyegaze', 'sub-*', 'beh', 'sub-*_task-movie_run-*_recording-eyegaze_physio.tsv.gz') # compute results for both groups sequentially, first lab, then MRI for (data, assoc) in [(datapath_lab, 'lab'), (datapath_mri, 'mri')]: infiles = glob(data) # make sure we have 15 subjects' data assert len(infiles) == 120 print("Currently processing data from {} sample".format(assoc)) # set px2deg for conversion to visual angles and window size (chose 1000 # as a middle ground between "still computes withing a few hours" and # "create a lot of windows" (about 900 per 15 min segment). px2deg = 0.0266711972026 if assoc == 'lab' else 0.0185581232561 window = 1000 median_distances = [] for f in infiles: datalad_get(f) data = np.genfromtxt(f, delimiter='\t', usecols=(0, 1) # get only x and y column ) # chunk into windows datachunks = np.array_split(data, window) distances = [] for chunk in datachunks: # calculate window-wise S2S-RSM, based on euclidean distance between # consecutive x-y-coordinates, and convert them into visual angles dist = distance.cdist(chunk, chunk, 'euclidean').diagonal(1) * px2deg # square the distances, average them, and square-root them RMS = np.sqrt(np.nanmean(np.square(dist))) distances.append(RMS) # calculate median RMS per run (~15 minute recording, i.e., median over # about 900 RMS values) median = np.median(distances) median_distances.append(median) # average the resulting 8 median RMSs across all subjects meanRMS = np.nanmean(median_distances) # print results as Latex command using 'assoc' as sample identifier in name label_RMS = 'RMS{}'.format(assoc) rsout('\\newcommand{\\%s}{%s}' % (label_RMS, meanRMS)) # save the results in variables if assoc == 'lab': RMS_lab = meanRMS elif assoc == 'mri': RMS_mri = meanRMS def flowchart_figs(): """ Just for future reference: This is the subset of preprocessed and raw data used for the flowchart of the algorithm. Not to be executed. """ datapath = op.join('data', 'raw_eyegaze', 'sub-32', 'beh', 'sub-32_task-movie_run-1_recording-eyegaze_physio.tsv.gz') data = np.recfromcsv(datapath, delimiter='\t', names=['x', 'y', 'pupil', 'frame']) clf = EyegazeClassifier( px2deg=0.0266711972026, sampling_rate=1000.0) velocities = cal_velocities(data=data, sr=1000, px2deg=0.0266711972026) vel_subset_unfiltered = velocities[15200:17500] p = clf.preproc(data) # this is to illustrate PTn estimation and chunking vel_subset = p['vel'][15200:17500] fig, ax1 = plt.subplots() fig.set_figheight(2) fig.set_figwidth(7) fig.set_dpi(120) ax1.plot( vel_subset, color='black', lw=0.5) plt.close() # this is to illustrate preprocessing fig, ax1 = plt.subplots() fig.set_figheight(2) fig.set_figwidth(7) fig.set_dpi(120) ax1.plot( vel_subset, color='black', lw=0.5) ax1.plot( vel_subset_unfiltered, color='darkorange', ls='dotted', lw=0.5) plt.close() def _butter_lowpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter( order, normal_cutoff, btype='low', analog=False) return b, # Here is fixation and pursuit detection on Butterworth filtered subsets lp_cutoff_freq = 4.0 sr=1000 # let's get a data sample with no saccade win_data = p[16600:17000] b, a = _butter_lowpass(lp_cutoff_freq, sr) win_data['x'] = filtfilt(b, a, win_data['x'], method='gust') win_data['y'] = filtfilt(b, a, win_data['y'], method='gust') filtered_vels = cal_velocities(data=win_data, sr=1000, px2deg=0.0266711972026) fig, ax1 = plt.subplots() fig.set_figheight(2) fig.set_figwidth(7) fig.set_dpi(120) ax1.plot( filtered_vels, color='black', lw=0.5) plt.close() def cal_velocities(data, sr, px2deg): """Helper to calculate velocities sr: sampling rate px2deg: conversion factor from pixel to degree """ velocities = (np.diff(data['x']) ** 2 + np.diff( data['y']) ** 2) ** 0.5 velocities *= px2deg * sr return velocities def mk_raw_vel_trace_figures(): """ Small helper function to plot raw velocity traces, as requested by reviewer 2 in the second revision. """ # use the same data as in mk_eyegaze_classification_figures() # (no need for file retrieval, should be there) datalad_get(op.join('data', 'raw_eyegaze'), get_data=False) infiles = [ op.join( 'data', 'raw_eyegaze', 'sub-32', 'beh', 'sub-32_task-movie_run-5_recording-eyegaze_physio.tsv.gz'), op.join( 'data', 'raw_eyegaze', 'sub-02', 'ses-movie', 'func', 'sub-02_ses-movie_task-movie_run-5_recording-eyegaze_physio.tsv.gz' ), ] # we need the sampling rate for plotting in seconds and velocity calculation sr = 1000 # load data for i, f in enumerate(infiles): # read data datalad_get(f) data = np.recfromcsv(f, delimiter='\t', names=['x', 'y', 'pupil', 'frame']) # subset data. Hessels et al., 2017 display different noise levels on 4 # second time series (ref. Fig 10). That still looks a bit dense, so we # go with 2 seconds, from start of 10sec excerpt to make it easier to # associate the 2 sec excerpt in to its place in the 10 sec excerpt # above data_subset = data[15000:17000] px2deg, ext = (0.0266711972026, 'lab') if '32' in f \ else (0.0185581232561, 'mri') # take raw data and convert it to velocity: euclidean distance between # successive coordinate samples. Note: no entry for first datapoint! # Will plot all but first data point in other time series velocities = cal_velocities(data_subset, sr, px2deg) vel_color = 'xkcd:gunmetal' # prepare plotting - much manual setup, quite ugly - sorry fig, ax1 = plt.subplots() fig.set_figheight(2) fig.set_figwidth(7) fig.set_dpi(120) time_idx = np.linspace(0, len(data_subset) / sr, len(data_subset))[1:] max_x = float(len(data_subset) / sr) ax1.set_xlim(0, max_x) ax1.set_xlabel('time (seconds)') ax1.set_ylabel('coordinates') # left y axis set to max screensize in px ax1.set_ylim(0, 1280) # plot gaze trajectories (not preprocessed) ax1.plot(time_idx, data_subset['x'][1:], color='black', lw=1) ax1.plot( time_idx, data_subset['y'][1:], color='black', lw=1) # right y axis shows velocity "as is" (not preprocessed) ax2 = ax1.twinx() ax2.set_ylabel('velocity (deg/sec)', color=vel_color) ax2.tick_params(axis='y', labelcolor=vel_color) #ax2.set_yscale('log') ## TODO: Log scale or not? ax2.set_ylim(1, 2000) ax2.plot(time_idx, velocities, color=vel_color, lw=1) plt.savefig( op.join('img', 'rawtrace_{}.svg'.format(ext)), transparent=True, bbox_inches="tight", metadata={'Date': None}) plt.close() def mk_eyegaze_classification_figures(): """ small function to generate and save remodnav classification figures """ # use two examplary files (lab + MRI) used during testing as well # hardcoding those, as I see no reason for updating them infiles = [ op.join( 'data', 'raw_eyegaze', 'sub-32', 'beh', 'sub-32_task-movie_run-5_recording-eyegaze_physio.tsv.gz'), op.join( 'data', 'raw_eyegaze', 'sub-02', 'ses-movie', 'func', 'sub-02_ses-movie_task-movie_run-5_recording-eyegaze_physio.tsv.gz' ), ] # one call per file due to https://github.com/datalad/datalad/issues/3356 for f in infiles: datalad_get(f) for f in infiles: # read data data = np.recfromcsv(f, delimiter='\t', names=['x', 'y', 'pupil', 'frame']) # adjust px2deg conversion factor according to datafile pxdeg, ext = (0.0266711972026, 'lab') if '32' in f \ else (0.0185581232561, 'mri') clf = EyegazeClassifier( px2deg=pxdeg, sampling_rate=1000.0) p = clf.preproc(data) # lets go with 10 seconds to actually see details. This particular time # window is within the originally plotted 50s and contains missing data # for both data types (lab & mri) events = clf(p[15000:25000]) # we remove plotting of details in favor of plotting raw gaze and # velocity traces with mk_raw_vel_trace_figures() as requested by reviewer 2 # in the second round of revision #events_detail = clf(p[24500:24750]) fig = plt.figure( # fake size to get the font size down in relation figsize=(14, 2), dpi=120, frameon=False) ut.show_gaze( pp=p[15000:25000], events=events, sampling_rate=1000.0, show_vels=True, coord_lim=(0, 1280), vel_lim=(0.001, 1000)) plt.savefig( op.join('img', 'remodnav_{}.svg'.format(ext)), transparent=True, bbox_inches="tight", metadata={'Date': None}) plt.close() # plot details fig = plt.figure( # fake size to get the font size down in relation figsize=(7, 2), dpi=120, frameon=False) #ut.show_gaze( # pp=p[24500:24750], # events=events_detail, # sampling_rate=1000.0, # show_vels=True, # coord_lim=(0, 1280), # vel_lim=(0, 1000)) #plt.savefig( # op.join('img', 'remodnav_{}_detail.svg'.format(ext)), # transparent=True, # bbox_inches="tight") #plt.close() def mk_mainseq_figures(s_mri, s_lab): """ plot main sequences from movie data for lab and mri subjects. """ datapath = op.join('data', 'studyforrest-data-eyemovementlabels', 'sub*', # limit to a single run, otherwise the resulting # figure becomes so complex that it needs >16GB # RAM to turn into an image for the manuscript, # while the visible content hardly changes '*run-2*.tsv') data = sorted(glob(datapath)) datalad_get(path=data) # create dataframes for mri and lab subjects to plot in separate plots for (ids, select_sub, ext) in [ (mri_ids, s_mri, 'mri'), (lab_ids, s_lab, 'lab')]: # load data from any file matching any of the subject IDs dfs = [ pd.read_csv(f, header=0, delim_whitespace=True) for f in data if any('sub-{}'.format(i) in f for i in ids) ] df = pd.concat(dfs) # also create a dataframe for an individual subjects run sub = op.join('data', 'studyforrest-data-eyemovementlabels', select_sub, '{}_task-movie_run-2_events.tsv'.format(select_sub)) sub_df = pd.read_csv(sub, header=0, delim_whitespace=True) for d, label in ( (df, ''), (sub_df, '_sub')): # extract relevant event types SACCs = d[(d.label == 'SACC') | (d.label == 'ISAC')] PSOs = d[(d.label == 'HPSO') | (d.label == 'IHPS') | (d.label == 'LPSO') | (d.label == 'ILPS')] fig = plt.figure( # fake size to get the font size down in relation figsize=(6, 4), dpi=120, frameon=False) for ev, sym, color in ( (SACCs, '.', 'red'), (PSOs, '+', 'darkblue'), ): plt.loglog( ev['amp'], ev['peak_vel'], sym, # scale alpha down with increasing number of data points alpha=min(0.1, 1.0 / max(0.0001, 0.002 * len(ev))), color=color, lw = 1, rasterized=True ) # cheat: custom legend to not propagate alpha into legend markers custom_legend = [ Line2D([0], [0], marker='.', color='w', markerfacecolor='red', label='Saccade', markersize=10), Line2D([0], [0], marker='P', color='w', markerfacecolor='darkblue', label='PSO', #label='Low velocity PSOs', markersize=10), ] plt.ylim((10.0, 1000)) plt.xlim((0.01, 40.0)) plt.legend(handles=custom_legend, loc=4) plt.ylabel('peak velocities (deg/s)') plt.xlabel('amplitude (deg)') plt.savefig( op.join( 'img', 'mainseq{}_{}.svg'.format( label, ext)), transparent=True, bbox_inches="tight", metadata={'Date': None}) plt.close() def RMSD(mn, sd, no): """ Compute our interpretation of the RMSD, following equation 2 in Andersson et al., 2017 Parameters ---------- mn, sd, no lists with mean, standard deviation, and number of events for a given event type and stimulus type for all available algorithms. Returns ------- 1d-array RMSD score per "algorithm". The first two values represent the human coders.""" per_param = [] # convert params to array mn, sd, no = np.array(mn), np.array(sd), np.array(no) # compute the root mean square difference between algorithm and mean # of coders per parameter and algorithm for l in [mn, sd, no]: l_scaled = l / float(np.max(l)) l_alg = np.sqrt(( # all scores # minus the average of the humans l_scaled - np.mean(l_scaled[:2])) ** 2 ) per_param.append(l_alg) # sum the root mean square differences per algorithm across parameters # also give the human rater performance as the first two values # argsorting twice gets us the ranks return np.array(per_param).sum(axis=0).argsort().argsort() def get_remodnav_params(stim_type): """ Function to generate distribution parameters for event types. Used for the RMSD computation. Parameters ---------- stim_type = one str of 'img', 'dots', 'video' Returns ------- a dictionary with distribution parameters for all events for the given stim_type """ # iterate through stim_types events = [] # the data files exist twice (one per coder). The raw eye gaze data in corresponding # files should be the same, so I assume its safe to just take one coders files. src = 'RA' for fname in labeled_files[stim_type]: data, target_labels, target_events, px2deg, sr = \ load_anderson(stim_type, fname.format(src)) clf = EyegazeClassifier( px2deg=px2deg, sampling_rate=sr, ) p = clf.preproc(data) events.extend(clf(p)) for ev in events: ev['label'] = label_map[ev['label']] durs = OrderedDict() durs['event']=[] durs['alg']=[] durs['mn']=[] durs['sd']=[] durs['no']=[] # iterate through relabeled event types for ev_type in ['FIX', 'SAC', 'PUR', 'PSO']: durations = get_durations(events, ev_type) durs['event'].append(ev_type) durs['mn'].append(int(np.nanmean(durations) * 1000)) durs['sd'].append(int(np.nanstd(durations) * 1000)) durs['no'].append(len(durations)) durs['alg'].append('RE') return durs def print_RMSD(): """ Function to generate tables 3, 4, 5, partial 6 from Andersson et al., 2017 for use in main.tex. """ # I don't want to overwrite the original dicts img = deepcopy(image_params) dots = deepcopy(dots_params) video = deepcopy(video_params) event_types = ['FIX', 'SAC', 'PSO', 'PUR'] for stim in ['img', 'dots', 'video']: durs = get_remodnav_params(stim) dic = [img if stim == 'img' else dots if stim == 'dots' else video] # append the parameters produced by remodnav to the other algorithms' for ev in event_types: for p in ['mn', 'sd', 'no', 'alg']: # unfortunately, dic is a list now...thats why [0] is there. # index the dicts with the position of the respective event type dic[0][ev][p].append(durs[p][durs['event'].index(ev)]) # print results as LaTeX commands # within a stim_type, we iterate over keys (events and params) in the nested dicts for par in ['mn', 'sd', 'no']: # index the values of the dist params in the nested dicts with the position # of the respective algorithm. for alg in dic[0][ev]['alg']: label_prefix = '{}{}{}{}'.format(ev, stim, par, alg) # take the value of the event and param type by indexing the dict with the position of # the current algorithm rsout('\\newcommand{\\%s}{%s}' %(label_prefix, dic[0][ev][par][dic[0][ev]['alg'].index(alg)])) # compute RMSDs for every stimulus category for ev in event_types: rmsd = RMSD(dic[0][ev]['mn'], dic[0][ev]['sd'], dic[0][ev]['no']) # print results as LaTeX commands algo = dic[0][ev]['alg'] for i in range(len(rmsd)): label = 'rank{}{}{}'.format(ev, stim, algo[i]) rsout('\\newcommand{\\%s}{%s}' %(label, rmsd[i])) def mk_event_duration_histograms(figures): """ Plot the events duration distribution per movie run, per data set. """ # do nothing if we don't want to plot if not figures: return datalad_get(op.join('data', 'studyforrest-data-eyemovementlabels')) datapath = op.join('data', 'studyforrest-data-eyemovementlabels', 'sub*', '*.tsv') data = sorted(glob(datapath)) datalad_get(path=data, get_data=False) for ds, ds_name in [(mri_ids, 'mri'), (lab_ids, 'lab')]: dfs = [ pd.read_csv(f, header=0, delim_whitespace=True) for f in data if any('sub-{}'.format(i) in f for i in ds) ] df =
pd.concat(dfs)
pandas.concat
""" Experiment 1: swarm tec correlation - for various background estimation sizes and artifact keys: - collect random days - get dtec prof - interpolate swarm dne at the profile points - estimate mean and covariance between the two """ import numpy as np import pandas from ttools import io, rbf_inversion, swarm, utils, config, convert LW = 9 def run_experiment(n, bg_est_shape, artifact_key): start_date = np.datetime64("2014-01-01") end_date = np.datetime64("2020-01-01") time_range_days = (end_date - start_date).astype('timedelta64[D]').astype(int) offsets = np.random.randint(0, time_range_days, n) dates = start_date + offsets.astype('timedelta64[D]') x = [] dne = [] mlat_x = [] mlat_dne = [] for date in dates: _x, _dne, _mlat_x, _mlat_dne = run_day(date, bg_est_shape, artifact_key) x += _x dne += _dne mlat_x += _mlat_x mlat_dne += _mlat_dne x = np.concatenate(x, axis=0) dne = np.concatenate(dne, axis=0) mlat_x = np.array(mlat_x) mlat_dne = np.array(mlat_dne) data = np.column_stack((x, dne)) mean = np.nanmean(data, axis=0) cov =
pandas.DataFrame(data=data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[2]: get_ipython().system('pip install numpy') get_ipython().system('pip install pandas') get_ipython().system('pip install matplotlib') get_ipython().system('pip install seaborn') get_ipython().system('pip install pandas-profiling') get_ipython().getoutput('pip install scikit-learn') # In[31]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # In[32]: path = "https://raw.githubusercontent.com/reddyprasade/Machine-Learning-Problems-DataSets/master/Classification/Breast%20cancer%20wisconsin.csv" # In[33]: data = pd.read_csv(path); print("\n \t The data frame has {0[0]} rows and {0[1]} columns. \n".format(data.shape)) # In[34]: data.head() # In[35]: data.tail() # In[36]: data.drop(['Unnamed: 0'],axis =1, inplace =True) # In[37]: data.info() # In[38]: diagnosis_all = list(data.shape)[0] diagnosis_categories = list(data['diagnosis'].value_counts()) print("\n \t The data has {} Rows I ahAve among diagnosis, {} malignant and {} benign.".format(diagnosis_all, diagnosis_categories[0], diagnosis_categories[1])) # In[39]: sns.countplot(diagnosis_categories) # In[40]: features_mean= list(data.columns[1:11]) features_mean # In[41]: plt.figure(figsize=(30,15)) sns.heatmap(data[features_mean].corr(),annot=True,square=True,cmap="coolwarm") # In[42]: from pandas.plotting import scatter_matrix # In[43]: color_dir = {"M":'green','B':'blue'} colors = data['diagnosis'].map(lambda x:color_dir.get(x))
scatter_matrix(data[features_mean],c=colors,alpha=0.9,figsize=(20,20))
pandas.plotting.scatter_matrix
# -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd import platform import unittest from itertools import combinations, combinations_with_replacement, product from numba.core.config import IS_32BITS from numba.core.errors import TypingError from sdc.tests.test_base import TestCase from sdc.tests.test_utils import (skip_numba_jit, _make_func_from_text, gen_frand_array) def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) class TestSeries_ops(TestCase): def test_series_operators_int(self): """Verifies using all various Series arithmetic binary operators on two integer Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): # integers to negative powers are not allowed if (operator == '**' and np.any(data_right < 0)): data_right = np.abs(data_right) with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_int_scalar(self): """Verifies using all various Series arithmetic binary operators on an integer Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.int32), np.ones(n + 3, dtype=np.int32), np.random.randint(-5, 5, n + 7)] scalar_values = [1, -1, 0, 3, 7, -5] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) # integers to negative powers are not allowed if (operator == '**' and np.any(right < 0)): right = abs(right) with self.subTest(left=left, right=right, operator=operator): # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(left, right), test_impl(left, right), check_dtype=False) def test_series_operators_float(self): """Verifies using all various Series arithmetic binary operators on two float Series with default indexes""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data_left, data_right in combinations_with_replacement(data_to_test, 2): with self.subTest(left=data_left, right=data_right, operator=operator): S1 = pd.Series(data_left) S2 = pd.Series(data_right) # check_dtype=False because SDC implementation always returns float64 Series pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2), check_dtype=False) def test_series_operators_float_scalar(self): """Verifies using all various Series arithmetic binary operators on a float Series with default index and a scalar value""" n = 11 np.random.seed(0) data_to_test = [np.arange(-5, -5 + n, dtype=np.float32), np.ones(n + 3, dtype=np.float32), np.random.ranf(n + 7)] scalar_values = [1., -1., 0., -0., 7., -5.] arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for data, scalar, swap_operands in product(data_to_test, scalar_values, (False, True)): S = pd.Series(data) left, right = (S, scalar) if swap_operands else (scalar, S) with self.subTest(left=left, right=right, operator=operator): pd.testing.assert_series_equal(hpat_func(S, scalar), test_impl(S, scalar), check_dtype=False) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 A1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') A2 = A1.copy(deep=True) B = pd.Series(np.ones(n - 1), name='B') hpat_func(A1, B) test_impl(A2, B) pd.testing.assert_series_equal(A1, A2) @skip_numba_jit('Not implemented in new-pipeline yet') def test_series_operators_inplace_scalar(self): arithmetic_binops = ('+=', '-=', '*=', '/=', '//=', '%=', '**=') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = self.jit(test_impl) # TODO: extend to test arithmetic operations between numeric Series of different dtypes n = 11 S1 = pd.Series(np.arange(1, n, dtype=np.float64), name='A') S2 = S1.copy(deep=True) hpat_func(S1, 1) test_impl(S2, 1) pd.testing.assert_series_equal(S1, S2) @skip_numba_jit('operator.neg for SeriesType is not implemented in yet') def test_series_operator_neg(self): def test_impl(A): return -A hpat_func = self.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_operators_comp_numeric(self): """Verifies using all various Series comparison binary operators on two integer Series with various indexes""" n = 11 data_left = [1, 2, -1, 3, 4, 2, -3, 5, 6, 6, 0] data_right = [3, 2, -2, 1, 4, 1, -5, 6, 6, 3, -1] dtype_to_index = {'None': None, 'int': np.arange(n, dtype='int'), 'float': np.arange(n, dtype='float'), 'string': ['aa', 'aa', '', '', 'b', 'b', 'cccc', None, 'dd', 'ddd', None]} comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = self.jit(test_impl) for dtype, index_data in dtype_to_index.items(): with self.subTest(operator=operator, index_dtype=dtype, index=index_data): A = pd.Series(data_left, index=index_data) B =
pd.Series(data_right, index=index_data)
pandas.Series