prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __all__ = ['load_data', 'shape_shower', 'location_max_finder', 'differentiate', 'intensity_direction_shower', 'write_data', 'mix_pics'] import io import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') # 以防中文部分出现乱码 SIDE_LENGTH = 100 N = 256 row = np.linspace(0, SIDE_LENGTH, N).tolist() rows = np.array([row] * N) cols = rows.T def load_data(address, sheetname=0, header=None): """ 从附件中得到数据 """ return pd.read_excel(address, sheetname=sheetname, header=header).values def write_data(address, data, sheetname='page_1'): """ 将数据写入到Excel文件中 """ data_df = pd.DataFrame(data) writer =
pd.ExcelWriter(address)
pandas.ExcelWriter
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pandas as pd import requests UTAHAQ_API_BASE_URI = 'http://meso2.chpc.utah.edu/aq/cgi-bin/download_mobile_archive.cgi' UTAHAQ_API_TOKEN = os.getenv('UTAHAQ_API_TOKEN') def _utahaq_batch_get(stid: str, yr: int, mo: int, datatype: str) -> pd.DataFrame: """Queries UtahAQ API endpoint for single month of data For API reference, see http://utahaq.chpc.utah.edu/aq/cgi-bin/mobile_archive.cgi Args: stid: unique station identifier yr: year desired mo: month desired datatype: measurement dataset identifier, see reference Returns: pd.DataFrame: flattened time, stid, lat/lon, and relevant readings """ yr = str(yr).zfill(4) mo = str(mo).zfill(2) stid = stid.upper() datatype = datatype.lower() uri = ( f'{UTAHAQ_API_BASE_URI}' f'?accesskey={UTAHAQ_API_TOKEN}' f'&stid={stid}' f'&yr={yr}' f'&mo={mo}' f'&datatype={datatype}' ) try: res =
pd.read_csv(uri, skiprows=True)
pandas.read_csv
__author__ = '<NAME>' __email__ = '<EMAIL>' ######################################## # imports ######################################## import networkx as nx from tqdm.autonotebook import tqdm import pandas as pd from itertools import product ######################################## # Feature Extractor ######################################## class FeatureExtractor: def __init__(self, g): self._g = g ######################################## # edge topological features ######################################## def _friends_measure(self, neighborhood_1: set, neighborhood_2: set): """ Returns the friend measure. Counter adds 1 for: each vertex which is shared by both neighborhoods, each edge existing between the neighborhoods """ # instantiate a counter output = 0 # count each shared vertex and inter-neighborhoods edges for edge in product(neighborhood_1, neighborhood_2): if edge in self._g.edges: output += 1 return output def _get_edge_topological_features(self, u, v): """ Returns a dictionary containing edge (u, v) topological features. :param u: one of the edge's vertices. :param v: one of the edge's vertices. :return: a dictionary. """ # If edge exists, remove it and maintain a boolean to add it back later edge_removed = False if self._g.has_edge(u, v): self._g.remove_edge(u, v) edge_removed = True # vertices' neighborhoods u_neighborhood = set(self._g.neighbors(u)) v_neighborhood = set(self._g.neighbors(v)) # vertices' degrees u_deg = len(u_neighborhood) v_deg = len(v_neighborhood) # preferential attachment score preferential_attachment_score = u_deg * v_deg # friends measure friends_measure = self._friends_measure(u_neighborhood, v_neighborhood) # join vertices' neighborhoods total_friends = len(u_neighborhood | v_neighborhood) # shortest path if nx.has_path(self._g, u, v): shortest_path = len(nx.shortest_path(self._g, u, v)) - 1 else: shortest_path = -1 # instantiate a dictionary to contain edge topological features output_dict = { 'total_friends': total_friends, 'preferential_attachment_score': preferential_attachment_score, 'friends_measure': friends_measure, 'shortest_path': shortest_path, 'vertex_1_degree': u_deg, 'vertex_2_degree': v_deg } # if edge was removed, add it back if edge_removed: self._g.add_edge(u, v) return output_dict ######################################## # edge lists topological features ######################################## def _get_all_topological_features(self, pos_edges: list, neg_edges: list): """ Iterates through 2 lists of edges and extract theirs topological features. Creates a dictionary of form {(u,v): {edge_features... , u features... , v features... }}. :param pos_edges: a list of tuples, each indicating an existing edge. :param neg_edges: a list of tuples, each indicating a non-existing edge. :return: a dictionary. """ output = {} print('\nExtracting positive edges features...\n') for (u, v) in tqdm(pos_edges): edge_dict = self._get_edge_topological_features(u, v) edge_dict.update({'edge_exist': 1}) output[f'({u}, {v})'] = edge_dict print('\nExtracting negative edges features...\n') for (u, v) in tqdm(neg_edges): edge_dict = self._get_edge_topological_features(u, v) edge_dict.update({'edge_exist': 0}) output[f'({u}, {v})'] = edge_dict return output ######################################## # create train and test sets of edges' topological features ######################################## def create_topological_features_df( self, positive_edges: list, negative_edges: list, save: bool = False, save_dir_path: str = None): """ Extracts topological features of all given edge lists and returns as DataFrame. Operates on a single graph. One can provide both positive_edges list and negative_edges list or just positive edges. """ edges_dict = None if negative_edges is not None and len(negative_edges) > 0: edges_dict = self._get_all_topological_features(positive_edges, negative_edges) elif negative_edges is None or len(negative_edges) == 0: edges_dict = self._get_all_topological_features(positive_edges, []) edges_df =
pd.DataFrame.from_dict(edges_dict, orient='index')
pandas.DataFrame.from_dict
import pandas as pd import numpy as np import pycountry_convert as pc import pycountry import os from iso3166 import countries PATH_AS_RELATIONSHIPS = '../Datasets/AS-relationships/20210701.as-rel2.txt' NODE2VEC_EMBEDDINGS = '../Check_for_improvements/Embeddings/Node2Vec_embeddings.emb' DEEPWALK_EMBEDDINGS_128 = '../Check_for_improvements/Embeddings/DeepWalk_128.csv' DIFF2VEC_EMBEDDINGS_128 = '../Check_for_improvements/Embeddings/Diff2Vec_128.csv' NETMF_EMBEDDINGS_128 = '../Check_for_improvements/Embeddings/NetMF_128.csv' NODESKETCH_EMBEDDINGS_128 = '../Check_for_improvements/Embeddings/NodeSketch_128.csv' WALKLETS_EMBEDDINGS_256 = '../Check_for_improvements/Embeddings/Walklets_256.csv' NODE2VEC_EMBEDDINGS_64 = '../Check_for_improvements/Embeddings/Node2Vec_embeddings.emb' NODE2VEC_LOCAL_EMBEDDINGS_64 = '../Check_for_improvements/Embeddings/Node2Vec_p2_64.csv' NODE2VEC_GLOBAL_EMBEDDINGS_64 = '../Check_for_improvements/Embeddings/Node2Vec_q2_64.csv' DIFF2VEC_EMBEDDINGS_64 = '../Check_for_improvements/Embeddings/Diff2Vec_64.csv' NETMF_EMBEDDINGS_64 = '../Check_for_improvements/Embeddings/NetMF_64.csv' NODESKETCH_EMBEDDINGS_64 = '../Check_for_improvements/Embeddings/NodeSketch_64.csv' NODE2VEC_WL5_E3_LOCAL = '../Check_for_improvements/Embeddings/Node2Vec_64_wl5_ws2_ep3_local.csv' NODE2VEC_WL5_E3_GLOBAL = '../Check_for_improvements/Embeddings/Node2Vec_64_wl5_ws2_ep3_global.csv' NODE2VEC_64_WL5_E1_GLOBAL = '../Check_for_improvements/Embeddings/Node2Vec_64_wl5_ws2_global.csv' BGP2VEC_64 = '../Check_for_improvements/Embeddings/Node2Vec_bgp2Vec.csv' BGP2VEC_32 = '../Check_for_improvements/Embeddings/BGP2VEC_32' WALKLETS_EMBEDDINGS_128 = '../Check_for_improvements/Embeddings/Walklets_128.csv' STORE_CSV_TO_FOLDER = '../Embeddings_Visualization/StorePreprocessedEmb' def country_flag(data): """ :param data: Contains a dataframe combining 3 datasets :param list_alpha_2: Contains the 2-letter abbreviation from each country :return: Matches the acronyms with the Fullname of the countries """ list_alpha_2 = [i.alpha2 for i in list(countries)] if data['AS_rank_iso'] in list_alpha_2: return pycountry.countries.get(alpha_2=data['AS_rank_iso']).name else: return 'Unknown Code' def country_to_continent(country_name): """ This function takes as input a country name and returns the continent that the given country belongs. :param country_name: Contains the name of a country :return: The continent """ try: country_alpha2 = pc.country_name_to_country_alpha2(country_name) country_continent_code = pc.country_alpha2_to_continent_code(country_alpha2) country_continent_name = pc.convert_continent_code_to_continent_name(country_continent_code) return country_continent_name except: return np.nan def convert_country_to_continent(data): """ The function converts iso = alpha_2 (example: US) to the whole name of the country. Needs (import iso3166) :param data: Contains a dataframe combining 4 datasets :return: The continent for each country """ data['AS_rank_iso'] = data.apply(country_flag, axis=1) temp_list = [] for i in range(0, len(data)): temp_list.append(country_to_continent(data['AS_rank_iso'][i])) df = pd.DataFrame(temp_list, columns=['AS_rank_iso']) data['AS_rank_iso'] = df['AS_rank_iso'] return data['AS_rank_iso'] def merge_datasets(final_df, embeddings_df): """ :param final_df: Its the dataset that is generated in Analysis/aggregate_data folder :param embeddings_df: Contains pretrained embeddings :return: A new merged dataset (containing improvement_score and the embedding of each ASN) """ print(final_df['ASN'].isin(embeddings_df['ASN']).value_counts()) mergedStuff = pd.merge(embeddings_df, final_df, on=['ASN'], how='left') mergedStuff.replace('', np.nan, inplace=True) return mergedStuff def get_path_and_filename(model, dimensions): """ :param model: The model's name :param dimensions: The number of dimensions of the given model :return: The path where the script will be stored and its name """ file_name = 'Preprocessed' + str(model) + str(dimensions) + f'.csv' outdir = STORE_CSV_TO_FOLDER if not os.path.exists(outdir): os.mkdir(outdir) full_name = os.path.join(outdir, file_name) return full_name def read_Node2Vec_embeddings_file(): """ :return: A dataframe containing the ASNs and the embeddings of each ASn created based on Node2Vec algorithm. """ emb_df = pd.read_table(NODE2VEC_EMBEDDINGS, skiprows=1, header=None, sep=" ") # name the columns rng = range(0, 65) new_cols = ['dim_' + str(i) for i in rng] emb_df.columns = new_cols # rename first column emb_df.rename(columns={'dim_0': 'ASN'}, inplace=True) return emb_df def read_karateClub_embeddings_file(emb, dimensions): """ Karateclub library requires nodes to be named with consecutive Integer numbers. In the end gives as an output containing the embeddings in ascending order. So in this function we need to reassign each ASN to its own embedding. :param emb: A dataset containing pretrained embeddings :param dimensions: The dimensions of the given dataset :return: A dataframe containing pretrained embeddings """ if dimensions == 64: if emb == 'Diff2Vec': df = pd.read_csv(DIFF2VEC_EMBEDDINGS_64, sep=',') elif emb == 'NetMF': df = pd.read_csv(NETMF_EMBEDDINGS_64, sep=',') elif emb == 'NodeSketch': df = pd.read_csv(NODESKETCH_EMBEDDINGS_64, sep=',') elif emb == 'Walklets': df = pd.read_csv(WALKLETS_EMBEDDINGS_128, sep=',') elif emb == 'Node2Vec_Local': df = pd.read_csv(NODE2VEC_LOCAL_EMBEDDINGS_64, sep=',') elif emb == 'Node2Vec_Global': df = pd.read_csv(NODE2VEC_GLOBAL_EMBEDDINGS_64, sep=',') elif emb == 'Node2Vec_wl5_global': df = pd.read_csv(NODE2VEC_64_WL5_E1_GLOBAL, sep=',') elif emb == 'Node2Vec_wl5_e3_global': df = pd.read_csv(NODE2VEC_WL5_E3_GLOBAL, sep=',') elif emb == 'Node2Vec_wl5_e3_local': df = pd.read_csv(NODE2VEC_WL5_E3_LOCAL, sep=',') elif emb == 'bgp2vec_64': df = pd.read_csv(BGP2VEC_64, sep=',') elif emb == 'bgp2vec_32': df = pd.read_csv(BGP2VEC_32, sep=',') else: raise Exception('Not defined dataset') else: if emb == 'Diff2Vec': df = pd.read_csv(DIFF2VEC_EMBEDDINGS_128, sep=',') elif emb == 'NetMF': df = pd.read_csv(NETMF_EMBEDDINGS_128, sep=',') elif emb == 'NodeSketch': df = pd.read_csv(NODESKETCH_EMBEDDINGS_128, sep=',') elif emb == 'Walklets': df = pd.read_csv(WALKLETS_EMBEDDINGS_256, sep=',') elif emb == 'DeepWalk': df =
pd.read_csv(DEEPWALK_EMBEDDINGS_128, sep=',')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 4 10:30:17 2018 @author: avelinojaver """ from tierpsy.features.tierpsy_features.summary_stats import get_summary_stats from tierpsy.summary.helper import augment_data, add_trajectory_info from tierpsy.summary.filtering import filter_trajectories from tierpsy.helper.params import read_fps, read_microns_per_pixel from tierpsy.helper.misc import WLAB,print_flush from tierpsy.analysis.split_fov.helper import was_fov_split from tierpsy.analysis.split_fov.FOVMultiWellsSplitter import FOVMultiWellsSplitter import pandas as pd import pdb #%% def time_to_frame_nb(time_windows,time_units,fps,timestamp,fname): """ Converts the time windows to units of frame numbers (if they were defined in seconds). It also defines the end frame of a window, if the index is set to -1 (end). """ from copy import deepcopy if timestamp.empty: return time_windows_frames = deepcopy(time_windows) if time_units == 'seconds': assert fps!=-1, 'Cannot convert time windows to frame numbers. Frames per second ratio not known.' for iwin, win in enumerate(time_windows_frames): for iinterval in range(len(win)): for ilim in range(2): if time_windows_frames[iwin][iinterval][ilim]!=-1: time_windows_frames[iwin][iinterval][ilim] = \ round(time_windows_frames[iwin][iinterval][ilim]*fps) last_frame = timestamp.sort_values().iloc[-1] for iwin, win in enumerate(time_windows_frames): for iinterval in range(len(win)): # If a window ends with -1, replace with the frame number of the # last frame (or the start frame of the window+1 if window out of bounds) if time_windows_frames[iwin][iinterval][1]==-1: time_windows_frames[iwin][iinterval][1] = \ max(last_frame+1, time_windows_frames[iwin][iinterval][0]) # If a window is out of bounds, print warning if time_windows_frames[iwin][iinterval][0]>last_frame: print_flush( 'Warning: The start time of interval '+ '{}/{} '.format(iinterval+1, len(win)) + 'of window {} '.format(iwin) + 'is out of bounds of file \'{}\'.'.format(fname)) return time_windows_frames def no_attr_flush(attr, fname): if attr=='fps': out = ['seconds', 'frames_per_second', fname, 'frame numbers'] elif attr=='mpp': out = ['microns', 'microns_per_pixel', fname, 'pixels'] print_flush( """ Warning: some of the summarizer input were given in {0}, but the {1} ratio for file \'{2}\' is unknown. Give input in {3} instead. """.format(*out) ) return def _no_fps(time_units, fps, fname): if fps==-1: if time_units=='seconds': no_attr_flush('fps', fname) return True return False def _match_units(filter_params, fps, fname): """ author: EM The filtering thresholds must match the timeseries units. If the right conversion is not possible, then check_ok is False, and the feature summaries will not be calculated for this file. """ from copy import deepcopy if filter_params is None: return filter_params, True all_units = filter_params['units']+[filter_params['time_units']] cfilter_params = deepcopy(filter_params) if fps==-1: # In this case, all time-related timeseries will be in frames. # If thresholds have been defined in seconds there is no way to convert. if 'seconds' in all_units: no_attr_flush('fps', fname) return cfilter_params, False else: # In this case, all time-related timeseries will be in seconds. # We always want the time_units for traj_length in frames if filter_params['time_units']=='seconds' and \ filter_params['min_traj_length'] is not None: cfilter_params['min_traj_length'] = \ filter_params['min_traj_length']*fps # If the timeseries therholds are defined in seconds, no conversion is # necessary # If the timeseries thresholds are defined in frames, we need to convert # to seconds if 'frame_numbers' in filter_params['units']: ids = [i for i,x in enumerate(filter_params['units']) if x=='frame_numbers'] for i in ids: if filter_params['min_thresholds'][i] is not None: cfilter_params['min_thresholds'][i]= \ filter_params['min_thresholds'][i]/fps if filter_params['max_thresholds'][i] is not None: cfilter_params['max_thresholds'][i]= \ filter_params['max_thresholds'][i]/fps mpp = read_microns_per_pixel(fname) if mpp==-1: # In this case, all distance-related timeseries will be in pixels. # If thresholds have been defined in microns there is no way to convert. if 'microns' in all_units: no_attr_flush('mpp', fname) return cfilter_params, False else: # In this case, all distance-related timeseries will be in microns. # If the timeseries threholds are defined in micorns, no conversion is # necessary # If the timeseries thresholds are defined in pixels, we need to convert # to microns if filter_params['distance_units']=='pixels' and \ filter_params['min_distance_traveled'] is not None: cfilter_params['min_distance_traveled'] = \ filter_params['min_distance_traveled']*mpp if 'pixels' in filter_params['units']: ids = [i for i,x in enumerate(filter_params['units']) if x=='pixels'] for i in ids: if filter_params['min_thresholds'][i] is not None: cfilter_params['min_thresholds'][i]= \ filter_params['min_thresholds'][i]*mpp if filter_params['max_thresholds'][i] is not None: cfilter_params['max_thresholds'][i]= \ filter_params['max_thresholds'][i]*mpp return cfilter_params, True #%% def read_data(fname, filter_params, time_windows, time_units, fps, is_manual_index): """ Reads the timeseries_data and the blob_features for a given file within every time window. return: timeseries_data_list: list of timeseries_data for each time window (length of lists = number of windows) blob_features_list: list of blob_features for each time window (length of lists = number of windows) """ import numpy as np # EM: If time_units=seconds and fps is not defined, then return None with warning of no fps. # Make this check here, to avoid wasting time reading the file if _no_fps(time_units, fps, fname): return cfilter_params, check_ok = _match_units(filter_params, fps, fname) if not check_ok: return with pd.HDFStore(fname, 'r') as fid: timeseries_data = fid['/timeseries_data'] blob_features = fid['/blob_features'] if is_manual_index: #keep only data labeled as worm or worm clusters valid_labels = [WLAB[x] for x in ['WORM', 'WORMS']] trajectories_data = fid['/trajectories_data'] if not 'worm_index_manual' in trajectories_data: #no manual index, nothing to do here return good = trajectories_data['worm_label'].isin(valid_labels) good = good & (trajectories_data['skeleton_id'] >= 0) skel_id = trajectories_data['skeleton_id'][good] timeseries_data = timeseries_data.loc[skel_id] timeseries_data['worm_index'] = trajectories_data['worm_index_manual'][good].values timeseries_data = timeseries_data.reset_index(drop=True) blob_features = blob_features.loc[skel_id].reset_index(drop=True) if timeseries_data.empty: #no data, nothing to do here return # convert time windows to frame numbers for the given file time_windows_frames = time_to_frame_nb( time_windows, time_units, fps, timeseries_data['timestamp'], fname ) # EM: Filter trajectories if cfilter_params is not None: timeseries_data, blob_features = \ filter_trajectories(timeseries_data, blob_features, **cfilter_params) if timeseries_data.empty: #no data, nothing to do here return # EM: extract the timeseries_data and blob_features corresponding to each # time window and store them in a list (length of lists = number of windows) timeseries_data_list = [] blob_features_list = [] for window in time_windows_frames: in_window = [] for interval in window: in_interval = (timeseries_data['timestamp']>=interval[0]) & \ (timeseries_data['timestamp']<interval[1]) in_window.append(in_interval.values) in_window = np.any(in_window, axis=0) timeseries_data_list.append(timeseries_data.loc[in_window, :].reset_index(drop=True)) blob_features_list.append(blob_features.loc[in_window].reset_index(drop=True)) return timeseries_data_list, blob_features_list def count_skeletons(timeseries): cols = [col for col in timeseries.columns if col.startswith('eigen')] return (~timeseries[cols].isna().any(axis=1)).sum() #%% def tierpsy_plate_summary( fname, filter_params, time_windows, time_units, only_abs_ventral=False, selected_feat=None, is_manual_index=False, delta_time=1/3): """ Calculate the plate summaries for a given file fname, within a given time window (units of start time and end time are in frame numbers). """ fps = read_fps(fname) data_in = read_data( fname, filter_params, time_windows, time_units, fps, is_manual_index) # if manual annotation was chosen and the trajectories_data does not contain # worm_index_manual, then data_in is None # if time_windows in seconds and fps is not defined (fps=-1), then data_in is None if data_in is None: return [pd.DataFrame() for iwin in range(len(time_windows))] timeseries_data, blob_features = data_in # was the fov split in wells? only use the first window to detect that, # and to extract the list of well names is_fov_tosplit = was_fov_split(fname) # is_fov_tosplit = False if is_fov_tosplit: fovsplitter = FOVMultiWellsSplitter(fname) good_wells_df = fovsplitter.wells[['well_name','is_good_well']].copy() # print(good_wells_df) # initialize list of plate summaries for all time windows plate_feats_list = [] for iwin,window in enumerate(time_windows): if is_fov_tosplit == False: plate_feats = get_summary_stats( timeseries_data[iwin], fps, blob_features[iwin], delta_time, only_abs_ventral=only_abs_ventral, selected_feat=selected_feat ) plate_feats['n_skeletons'] = count_skeletons(timeseries_data[iwin]) plate_feats_list.append(pd.DataFrame(plate_feats).T) else: # get list of well names in this time window # (maybe some wells looked empty during a whole window, # this prevents errors later on) well_names_list = list(set(timeseries_data[iwin]['well_name']) - set(['n/a'])) # create a list of well-specific, one-line long dataframes well_feats_list = [] for well_name in well_names_list: # find entries in timeseries_data[iwin] belonging to the right well idx_well = timeseries_data[iwin]['well_name'] == well_name well_feats = get_summary_stats( timeseries_data[iwin][idx_well].reset_index(), fps, blob_features[iwin][idx_well].reset_index(), delta_time, only_abs_ventral=only_abs_ventral, selected_feat=selected_feat ) well_feats['n_skeletons'] = count_skeletons(timeseries_data[iwin][idx_well]) # first prepend the well_name_s to the well_feats series, # then transpose it so it is a single-row dataframe, # and append it to the well_feats_list well_name_s = pd.Series({'well_name':well_name}) well_feats_list.append(pd.DataFrame(pd.concat([well_name_s,well_feats])).T) # check: did we find any well? if len(well_feats_list) == 0: plate_feats_list.append(pd.DataFrame()) else: # now concatenate all the single-row df in well_feats_list in a single df # and append it to the growing list (1 entry = 1 window) plate_feats = pd.concat(well_feats_list, ignore_index=True, sort=False) # import pdb; pdb.set_trace() plate_feats = plate_feats.merge(good_wells_df, on='well_name', how='left') plate_feats_list.append(plate_feats) return plate_feats_list def tierpsy_trajectories_summary( fname, filter_params, time_windows, time_units, only_abs_ventral=False, selected_feat=None, is_manual_index=False, delta_time=1/3): """ Calculate the trajectory summaries for a given file fname, within a given time window (units of start time and end time are in frame numbers). """ fps = read_fps(fname) data_in = read_data( fname, filter_params, time_windows, time_units, fps, is_manual_index) if data_in is None: return [pd.DataFrame() for iwin in range(len(time_windows))] timeseries_data, blob_features = data_in is_fov_tosplit = was_fov_split(fname) # is_fov_tosplit = False if is_fov_tosplit: fovsplitter = FOVMultiWellsSplitter(fname) good_wells_df = fovsplitter.wells[['well_name','is_good_well']].copy() # print(good_wells_df) # initialize list of summaries for all time windows all_summaries_list = [] # loop over time windows for iwin,window in enumerate(time_windows): if timeseries_data[iwin].empty: all_summary = pd.DataFrame([]) else: # initialize list of trajectory summaries for given time window all_summary = [] # loop over worm indexes (individual trajectories) for w_ind, w_ts_data in timeseries_data[iwin].groupby('worm_index'): w_blobs = blob_features[iwin].loc[w_ts_data.index] w_ts_data = w_ts_data.reset_index(drop=True) w_blobs = w_blobs.reset_index(drop=True) worm_feats = get_summary_stats( w_ts_data, fps, w_blobs, delta_time, only_abs_ventral=only_abs_ventral, selected_feat=selected_feat ) # returns empty dataframe when w_ts_data is empty worm_feats['n_skeletons'] = count_skeletons(w_ts_data) worm_feats =
pd.DataFrame(worm_feats)
pandas.DataFrame
from collections import namedtuple from pathlib import Path import logging import numpy as np import pandas as pd import scipy from . import ( ctd_plots, get_ctdcal_config, flagging, process_ctd, oxy_fitting, ) cfg = get_ctdcal_config() log = logging.getLogger(__name__) RinkoO2Cal = namedtuple("RinkoO2Cal", [*"ABCDEFGH"]) RinkoTMPCal = namedtuple("RinkoTMPCal", [*"ABCD"]) def rinko_DO(p_prime, G, H): """ Calculates the dissolved oxygen percentage. """ DO = G + H * p_prime return DO def rinko_p_prime(N, t, A, B, C, D, E, F, G, H): """ Per RinkoIII manual: 'The film sensing the water is affect by environment temperature and pressure at the depth where it is deployed. Based on experiments, an empirical algorithm as following is used to correct data dissolved oxygen.' Parameters ---------- N : array-like Raw instrument output t : array-like Temperature [degC] A-H : float Calibration parameters """ p_prime = A / (1 + D * (t - 25)) + B / ((N - F) * (1 + D * (t - 25)) + C + F) return p_prime def correct_pressure(P, d, E): """ Parameters ---------- P : array-like Temperature-corrected DO [%] d : array-like Pressure [MPa] E : float Manufacturer calibration coefficient Returns ------- P_d : array-like Temperature- and pressure-corrected DO [%] """ # TODO: check d range to make sure it's MPa # what is the dbar ~ MPa? P_d = P * (1 + E * d) return P_d def salinity_correction(DO_c, T, S): """ Oxygen optode is not able to detect salinity, so a correction is applied to account for the effect of salt on oxygen concentration. See Uchida (2010) in GO-SHIP manual (pg. 6, eq. 9) for more info. Parameters ---------- DO_c : array-like Pressure-corrected dissolved oxygen T : array-like Calibrated CTD temperature S : array-like Calibrated CTD salinity Returns ------- DO_sc : array-like Pressure- and salinity-corrected dissolved oxygen """ # solubility coefficients from <NAME> Krause (1984), # as recommended by Garcia and Gordon (1992) B0 = -6.24523e-3 B1 = -7.37614e-3 B2 = -1.03410e-2 B3 = -8.17083e-3 C0 = -4.88682e-7 # "scaled temperature" T_scaled = np.log((298.15 - T) / (273.15 + T)) # correction equation DO_sc = DO_c * np.exp( S * (B0 + (B1 * T_scaled) + (B2 * T_scaled ** 2) + (B3 * T_scaled ** 3)) + C0 * S ** 2 ) return DO_sc def _Uchida_DO_eq(coefs, inputs): """ See Uchida et. al (2008) for more info: https://doi.org/10.1175/2008JTECHO549.1 and Uchida et. al (2010) - GO-SHIP manual Parameters ---------- coefs : tuple (c0, c1, c2, d0, d1, d2, cp) inputs : tuple (raw voltage, pressure, temperature, salinity, oxygen solubility) """ c0, c1, c2, d0, d1, d2, cp = coefs V_r, P, T, S, o2_sol = inputs K_sv = c0 + (c1 * T) + (c2 * T ** 2) # Stern-Volmer constant (Tengberg et al. 2006) V0 = (1 + d0 * T) # voltage at zero oxygen (Uchida 2010, eq. 10) Vc = (d1 + d2 * V_r) # raw voltage (Uchida 2010, eq. 10) o2_sat = ((V0 / Vc) - 1) / K_sv # oxygen saturation [%] (Uchida 2010, eq. 6) DO = o2_sat * o2_sol # dissolved oxygen concentration DO_c = DO * (1 + cp * P / 1000) ** (1 / 3) # pressure compensated DO DO_sc = salinity_correction(DO_c, T, S) # salinity + pressure compensated DO return DO_sc def oxy_weighted_residual(coefs, weights, inputs, refoxy, L_norm=2): # TODO: optionally include other residual types # (abstracted from PMEL code oxygen_cal_ml.m) # unweighted L2: sum((ref - oxy)^2) # if weighted fails # unweighted L4: sum((ref - oxy)^4) # unsure of use case # unweighted L1: sum(abs(ref - oxy)) # very far from ideal # anything else? genericize with integer "norm" function input? residuals = np.sum( (weights * (refoxy - _Uchida_DO_eq(coefs, inputs)) ** 2) ) / np.sum(weights ** 2) return residuals def calibrate_oxy(btl_df, time_df, ssscc_list): """ Non-linear least squares fit oxygen optode against bottle oxygen. Note: optode data that were obtained during bottle stops can be used for calibration instead of density matching the downcast (see Uchida 2010, pg. 7). Parameters ---------- btl_df : DataFrame CTD data at bottle stops time_df : DataFrame Continuous CTD data ssscc_list : list of str List of stations to process Returns ------- """ log.info("Calibrating oxygen (RINKO)") # initialize coef df coefs_df =
pd.DataFrame(columns=["c0", "c1", "c2", "d0", "d1", "d2", "cp"])
pandas.DataFrame
''' @author : <NAME> ML model for foreign exchange prediction ''' import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import joblib def getFxRatesForPairs(pairName): df = pd.read_csv("C:\\Users\\Srivastava_Am\\PycharmProjects\\exchange-rate-prediction\\data_source\\fx_rates_aud-USD.csv") df = df.replace('ND', np.nan) df = df.dropna().reset_index(drop=True) df.isna().sum() for col in df.columns[1:]: df[col] = pd.to_numeric(df[col], errors='coerce') df['Time Series'] = pd.to_datetime(df['Time Series']) df['month'] = df['Time Series'].dt.month df['year'] = df['Time Series'].dt.year df['month_year'] = df['Time Series'].dt.to_period('M') return df.groupby('month_year').AUD_USD.mean().reset_index() def getIrdData(pairName): ir_df = pd.read_csv("C:\\Users\\Srivastava_Am\\PycharmProjects\\exchange-rate-prediction\\data_source\\aud-usd-ird.csv") ir_df = ir_df[(ir_df['Date'] >= '2016-03-01') & (ir_df['Date'] <= '2020-04-02')] ir_df = ir_df['Long Carry'].astype(str) ir_df.reindex(index=ir_df.index[::-1]) ir_df = ir_df.replace({'%': ''}, regex=True) ir_df = ir_df.astype(float) return np.array(ir_df).reshape(-1, 1) def getGdpDiff(pairName): aus_gdp = pd.read_csv("C:\\Users\\Srivastava_Am\\PycharmProjects\\exchange-rate-prediction\\data_source\\aus-gdp-rate.csv") usa_gdp = pd.read_csv("C:\\Users\\Srivastava_Am\\PycharmProjects\\exchange-rate-prediction\\data_source\\usd-gdp-rate.csv") aus_gdp['DATE'] = pd.to_datetime(aus_gdp['DATE']).dt.to_period('M') aus_gdp = aus_gdp.set_index('DATE').resample('M').interpolate() aus_gdp['month_year'] = aus_gdp.index usa_gdp['DATE'] = pd.to_datetime(usa_gdp['DATE']).dt.to_period('M') usa_gdp = usa_gdp.set_index('DATE').resample('M').interpolate() usa_gdp['month_year'] = usa_gdp.index aus_gdp = aus_gdp.rename(columns={'GDP': 'AUS_GDP'}) aus_usa_gdp =
pd.merge(aus_gdp, usa_gdp, on="month_year", how="inner")
pandas.merge
##? not sure what this is ... from numpy.core.numeric import True_ import pandas as pd import numpy as np ## this function gives detailed info on NaN values of input df from data_clean import perc_null #these functionas add a date column (x2) and correct mp season format from data_fix_dates import game_add_mp_date, bet_add_mp_date, fix_mp_season #these functions assign nhl_names eg 'NYR' to bet, mp, and game; # functions use simple dictionaries from data_fix_team_names import bet_to_nhl, mp_to_nhl, game_to_nhl ##these are two different functions for assigning game_id to df_betting, based on team, date, H/A ##one uses df_game as look up table ... other uses df_mp_teams as look up table from data_bet_add_game_id import mp_to_bet_add_game_id_no_VH ##Stage 1. Import all the files ##file paths path = "/Users/joejohns/data_bootcamp/GitHub/final_project_nhl_prediction/" Kaggle_path = "/Users/joejohns/data_bootcamp/GitHub/final_project_nhl_prediction/Data/Kaggle_Data_Ellis/" mp_path = "/Users/joejohns/data_bootcamp/GitHub/final_project_nhl_prediction/Data/Money_Puck_Data/" betting_path = "/Users/joejohns/data_bootcamp/GitHub/final_project_nhl_prediction/Data/Betting_Data/" #data_bootcamp/GitHub/final_project_nhl_prediction/Data/Betting_Data/nhl odds 2007-08.xlsx #data_bootcamp/GitHub/final_project_nhl_prediction/Data/Kaggle_Data_Ellis/ #data_bootcamp/GitHub/final_project_nhl_prediction/Data/Money_Puck_Data/ ##Kaggle files df_game = pd.read_csv(Kaggle_path+'game.csv') df_game_team_stats = pd.read_csv(Kaggle_path+'game_teams_stats.csv') df_game_skater_stats = pd.read_csv(Kaggle_path+'game_skater_stats.csv') df_game_goalie_stats = pd.read_csv(Kaggle_path+'game_goalie_stats.csv') ##more subtle Kaggle features: df_game_scratches = pd.read_csv(Kaggle_path+'game_scratches.csv') df_game_officials = pd.read_csv(Kaggle_path+'game_officials.csv') df_team_info = pd.read_csv(Kaggle_path+'team_info.csv') ## grab all the moneypuck data df_mp_teams = pd.read_csv(mp_path+'all_teams.csv') ## grab all betting data df1 = pd.read_excel(io = betting_path+'nhl odds 2007-08.xlsx') df2 = pd.read_excel(io = betting_path+'nhl odds 2008-09.xlsx') df3 = pd.read_excel(io = betting_path+'nhl odds 2009-10.xlsx') df4 =
pd.read_excel(io = betting_path+'nhl odds 2010-11.xlsx')
pandas.read_excel
''' Scripts for loading various experimental datasets. Created on Jul 6, 2017 @author: <NAME> ''' import os import re import sys import pandas as pd import numpy as np import glob from sklearn.feature_extraction.text import CountVectorizer from evaluation.experiment import Experiment def convert_argmin(x): label = x.split('-')[0] if label == 'I': return 0 if label == 'O': return 1 if label == 'B': return 2 def convert_7class_argmin(x): label = x.split('-')[0] if label == 'I': label = x.split('-')[1].split(':')[0] if label == 'MajorClaim': return 0 elif label == 'Claim': return 3 elif label == 'Premise': return 5 if label == 'O': return 1 if label == 'B': label = x.split('-')[1].split(':')[0] if label == 'MajorClaim': return 2 elif label == 'Claim': return 4 elif label == 'Premise': return 6 def convert_crowdsourcing(x): if x == 'Premise-I': return 0 elif x == 'O': return 1 elif x== 'Premise-B': return 2 else: return -1 def load_argmin_data(): path = '../../data/bayesian_sequence_combination/data/argmin/' if not os.path.isdir(path): os.mkdir(path) all_files = glob.glob(os.path.join(path, "*.dat.out")) df_from_each_file = (pd.read_csv(f, sep='\t', usecols=(0, 5, 6), converters={5:convert_argmin, 6:convert_argmin}, header=None, quoting=3) for f in all_files) concatenated = pd.concat(df_from_each_file, ignore_index=True, axis=1).as_matrix() annos = concatenated[:, 1::3] for t in range(1, annos.shape[0]): annos[t, (annos[t-1, :] == 1) & (annos[t, :] == 0)] = 2 gt = concatenated[:, 2][:, None] doc_start = np.zeros((annos.shape[0], 1)) doc_start[np.where(concatenated[:, 0] == 1)] = 1 # correct the base classifiers non_start_labels = [0] start_labels = [2] # values to change invalid I tokens to for l, label in enumerate(non_start_labels): start_annos = annos[doc_start.astype(bool).flatten(), :] start_annos[start_annos == label] = start_labels[l] annos[doc_start.astype(bool).flatten(), :] = start_annos np.savetxt('../../data/bayesian_sequence_combination/data/argmin/annos.csv', annos, fmt='%s', delimiter=',') np.savetxt('../../data/bayesian_sequence_combination/data/argmin/gt.csv', gt, fmt='%s', delimiter=',') np.savetxt('../../data/bayesian_sequence_combination/data/argmin/doc_start.csv', doc_start, fmt='%s', delimiter=',') return gt, annos, doc_start def load_argmin_7class_data(): path = '../../data/bayesian_sequence_combination/data/argmin/' if not os.path.isdir(path): os.mkdir(path) all_files = glob.glob(os.path.join(path, "*.dat.out")) df_from_each_file = (pd.read_csv(f, sep='\t', usecols=(0, 5, 6), converters={5:convert_7class_argmin, 6:convert_7class_argmin}, header=None, quoting=3) for f in all_files) concatenated = pd.concat(df_from_each_file, ignore_index=True, axis=1).as_matrix() annos = concatenated[:, 1::3] gt = concatenated[:, 2][:, None] doc_start = np.zeros((annos.shape[0], 1)) doc_start[np.where(concatenated[:, 0] == 1)] = 1 # correct the base classifiers non_start_labels = [0, 3, 5] start_labels = [2, 4, 6] # values to change invalid I tokens to for l, label in enumerate(non_start_labels): start_annos = annos[doc_start.astype(bool).flatten(), :] start_annos[start_annos == label] = start_labels[l] annos[doc_start.astype(bool).flatten(), :] = start_annos outpath = '../../data/bayesian_sequence_combination/data/argmin7/' if not os.path.isdir(outpath): os.mkdir(outpath) np.savetxt(outpath + 'annos.csv', annos, fmt='%s', delimiter=',') np.savetxt(outpath + 'gt.csv', gt, fmt='%s', delimiter=',') np.savetxt(outpath + 'doc_start.csv', doc_start, fmt='%s', delimiter=',') return gt, annos, doc_start def load_crowdsourcing_data(): path = '../../data/bayesian_sequence_combination/data/crowdsourcing/' if not os.path.isdir(path): os.mkdir(path) all_files = glob.glob(os.path.join(path, "exported*.csv")) print(all_files) convs = {} for i in range(1,50): convs[i] = convert_crowdsourcing df_from_each_file = [pd.read_csv(f, sep=',', header=None, skiprows=1, converters=convs) for f in all_files] concatenated = pd.concat(df_from_each_file, ignore_index=False, axis=1).as_matrix() concatenated = np.delete(concatenated, 25, 1); annos = concatenated[:,1:] doc_start = np.zeros((annos.shape[0],1)) doc_start[0] = 1 for i in range(1,annos.shape[0]): if '_00' in str(concatenated[i,0]): doc_start[i] = 1 np.savetxt('../../data/bayesian_sequence_combination/data/crowdsourcing/gen/annos.csv', annos, fmt='%s', delimiter=',') np.savetxt('../../data/bayesian_sequence_combination/data/crowdsourcing/gen/doc_start.csv', doc_start, fmt='%s', delimiter=',') return annos, doc_start def build_feature_vectors(text_data_arr): text_data_arr = np.array(text_data_arr).astype(str) vectorizer = CountVectorizer() count_vectors = vectorizer.fit_transform(text_data_arr) # each element can be a sentence or a single word count_vectors = count_vectors.toarray() # each row will be a sentence return count_vectors, vectorizer.get_feature_names() def _load_pico_feature_vectors_from_file(corpus): all_text = [] for docid in corpus.docs: text_d = corpus.get_doc_text(docid) all_text.append(text_d) feature_vecs, _ = build_feature_vectors(all_text) return feature_vecs def _load_bio_folder(anno_path_root, folder_name): ''' Loads one data directory out of the complete collection. :return: dataframe containing the data from this folder. ''' from data.pico.corpus import Corpus DOC_PATH = os.path.expanduser("../../data/bayesian_sequence_combination/data/bio-PICO/docs/") ANNOTYPE = 'Participants' anno_path = anno_path_root + folder_name anno_fn = anno_path + '/PICO-annos-crowdsourcing.json' gt_fn = anno_path + '/PICO-annos-professional.json' corpus = Corpus(doc_path=DOC_PATH, verbose=False) corpus.load_annotations(anno_fn, docids=None) if os.path.exists(gt_fn): corpus.load_groundtruth(gt_fn) # get a list of the docids docids = [] workerids = np.array([], dtype=str) all_data = None #all_fv = _load_pico_feature_vectors_from_file(corpus) for d, docid in enumerate(corpus.docs): docids.append(docid) annos_d = corpus.get_doc_annos(docid, ANNOTYPE) spacydoc = corpus.get_doc_spacydoc(docid) text_d = spacydoc #all_fv[d] doc_length = len(text_d) doc_data = None for workerid in annos_d: print('Processing data for doc %s and worker %s' % (docid, workerid)) if workerid not in workerids: workerids = np.append(workerids, workerid) # add the worker to the dataframe if not already there if doc_data is None or workerid not in doc_data: doc_data_w = np.ones(doc_length, dtype=int) # O tokens if doc_data is None: doc_data = pd.DataFrame(doc_data_w, columns=[workerid]) else: doc_data_w = doc_data[workerid] for span in annos_d[workerid]: start = span[0] fin = span[1] doc_data_w[start] = 2 doc_data_w[start + 1:fin] = 0 doc_data[workerid] = doc_data_w if os.path.exists(gt_fn): gold_d = corpus.get_doc_groundtruth(docid, ANNOTYPE) if 'gold' not in doc_data: doc_data['gold'] = np.ones(doc_length, dtype=int) for spans in gold_d: start = spans[0] fin = spans[1] doc_data['gold'][start] = 2 doc_data['gold'][start + 1:fin] = 0 else: doc_data['gold'] = np.zeros(doc_length, dtype=int) - 1 # -1 for missing gold values text_d = [spacytoken.text for spacytoken in text_d] doc_data['text'] = text_d doc_start = np.zeros(doc_length, dtype=int) doc_start[0] = 1 doc_gaps = doc_data['text'] == '\n\n' # sentence breaks doc_start[doc_gaps[doc_gaps].index[:-1] + 1] = 1 doc_data['doc_start'] = doc_start # doc_data = doc_data.replace(r'\n', ' ', regex=True) doc_data = doc_data[np.invert(doc_gaps)] doc_data['docid'] = docid if all_data is None: all_data = doc_data else: all_data = pd.concat([all_data, doc_data], axis=0) # print('breaking for fast debugging') # break return all_data, workerids def load_biomedical_data(regen_data_files, debug_subset_size=None): savepath = '../../data/bayesian_sequence_combination/data/bio/' if not os.path.isdir(savepath): os.mkdir(savepath) if regen_data_files or not os.path.isfile(savepath + '/annos.csv'): anno_path_root = '../../data/bayesian_sequence_combination/data/bio-PICO/annotations' # There are four folders here: # acl17-test: the only one containing 'professional' annotations. 191 docs # train: 3549 docs # dev: 500 docs # test: 500 docs # Total of 4740 is slightly fewer than the values stated in the paper. # The validation/test split in the acl17-test data is also not given. This suggests we may need to run the # HMMCrowd and LSTMCrowd methods with hyperparameter tuning on our own splits. Let's skip that tuning for now? # Cite Nils' paper about using a generic hyperparameter tuning that works well across tasks -- we need to do # this initially because we don't have gold data to optimise on. # Nguyen et al do only light tuning with a few (less than 5) values to choose from for each hyperparameter of # HMM-Crowd, LSTM-Crowd and the individual LSTMs. Not clear whether the values set in the code as default are # the chosen values -- let's assume so for now. We can re-tune later if necessary. Remember: we don't require # a validation set for tuning our methods. # We need for task1 and task2: # train, dev and test splits. # I believe the acl17-test set was split to form the dev and test sets in nguyen et al. # Task 1 does not require separate training samples -- it's trained on crowdsourced rather than professional labels. # Task 2 requires testing on separate samples (with gold labels) # from the training samples (with crowd labels). # Both tasks use all training data for training and the acl17-test set for validation/testing. # These other splits into the train, test and dev folders appear to relate to a different set of experiments # and are not relevant to nguyen et al 2017. folders_to_load = ['acl17-test', 'train', 'test', 'dev'] all_data = None all_workerids = None for folder in folders_to_load: print('Loading folder %s' % folder) folder_data, workerids = _load_bio_folder(anno_path_root, folder) if all_data is None: all_data = folder_data all_workerids = workerids else: all_data = pd.concat([all_data, folder_data]) all_workerids = np.unique(np.append(workerids.flatten(), all_workerids.flatten())) all_data.to_csv(savepath + '/annos.csv', columns=all_workerids, header=False, index=False) all_data.to_csv(savepath + '/gt.csv', columns=['gold'], header=False, index=False) all_data.to_csv(savepath + '/doc_start.csv', columns=['doc_start'], header=False, index=False) all_data.to_csv(savepath + '/text.csv', columns=['text'], header=False, index=False) print('loading annos...') annos = pd.read_csv(savepath + '/annos.csv', header=None, nrows=debug_subset_size) annos = annos.fillna(-1) annos = annos.values #np.genfromtxt(savepath + '/annos.csv', delimiter=',') print('loading text data...') text = pd.read_csv(savepath + './text.csv', skip_blank_lines=False, header=None, nrows=debug_subset_size) text = text.fillna(' ').values print('loading doc starts...') doc_start = pd.read_csv(savepath + '/doc_start.csv', header=None, nrows=debug_subset_size).values #np.genfromtxt(savepath + '/doc_start.csv') print('Loaded %i documents' % np.sum(doc_start)) print('loading ground truth labels...') gt = pd.read_csv(savepath + '/gt.csv', header=None, nrows=debug_subset_size).values # np.genfromtxt(savepath + '/gt.csv') # # debug subset # # crowd_labelled[int(np.round(0.01 * len(crowd_labelled) )):] = False # annos = pd.read_csv(savepath + './annos_debug.csv', skip_blank_lines=False, header=None) # annos = annos.fillna(-1) # annos = annos.values # # text = pd.read_csv(savepath + './text_debug.csv', skip_blank_lines=False, header=None) # text = text.fillna(' ').values # # doc_start = pd.read_csv(savepath + './doc_start_debug.csv', skip_blank_lines=False, header=None) # doc_start = doc_start.values.astype(bool) # # gt = pd.read_csv(savepath + './gt_debug.csv', skip_blank_lines=False, header=None) # gt = gt.values.astype(int) if len(text) == len(annos) - 1: # sometimes the last line of text is blank and doesn't get loaded into text, but doc_start and gt contain labels # for the newline token annos = annos[:-1] doc_start = doc_start[:-1] gt = gt[:-1] print('Creating dev/test split...') # seed = 10 # # gt_test, gt_dev, doc_start_dev, text_dev = split_dataset( # gt, doc_start, text, annos, seed # ) # # since there is no separate validation set, we split the test set ndocs = np.sum(doc_start & (gt != -1)) #testdocs = np.random.randint(0, ndocs, int(np.floor(ndocs * 0.5))) ntestdocs = int(np.floor(ndocs * 0.5)) docidxs = np.cumsum(doc_start & (gt != -1)) # gets us the doc ids # # testidxs = np.in1d(docidxs, testdocs) ntestidxs = np.argwhere(docidxs == (ntestdocs+1))[0][0] # # # devidxs = np.ones(len(gt), dtype=bool) # # devidxs[testidxs] = False # # The first half of the labelled data is used as dev, second half as test gt_test = np.copy(gt) gt_test[ntestidxs:] = -1 gt_dev = np.copy(gt) gt_dev[:ntestidxs] = -1 doc_start_dev = doc_start[gt_dev != -1] text_dev = text[gt_dev != -1] gt_task1_dev = gt_dev gt_dev = gt_dev[gt_dev != -1] return gt_test, annos, doc_start, text, gt_task1_dev, gt_dev, doc_start_dev, text_dev def _map_ner_str_to_labels(arr): arr = arr.astype(str) arr[arr == 'O'] = 1 arr[arr == 'B-ORG'] = 2 arr[arr == 'I-ORG'] = 0 arr[arr == 'B-PER'] = 4 arr[arr == 'I-PER'] = 3 arr[arr == 'B-LOC'] = 6 arr[arr == 'I-LOC'] = 5 arr[arr == 'B-MISC'] = 8 arr[arr == 'I-MISC'] = 7 arr[arr == '?'] = -1 try: arr_ints = arr.astype(int) except: print("Could not map all annotations to integers. The annotations we found were:") uannos = [] for anno in arr: if anno not in uannos: uannos.append(anno) print(uannos) # # Don't correc the training data like this as it can introduce more errors, e.g. some errors in the data are where # there is a mis-placed O in the middle of a tag. Correcting the subsequent I to a B is wrong... # I_labels = [0, 3, 5, 7] # B_labels = [2, 4, 6, 8] # for i, I in enumerate(I_labels): # arr_prev = np.zeros(arr_ints.shape) # arr_prev[1:] = arr_ints[:-1] # to_correct = (arr_ints == I) & (arr_prev != B_labels[i]) & (arr_prev != I) # # if np.sum(to_correct): # print('Correction at tokens: %s' % np.argwhere(to_correct).flatten()) # arr_ints[to_correct] = B_labels[i] # # change IOB2 to IOB # I_labels = [0, 3, 5, 7] # B_labels = [2, 4, 6, 8] # for i, I in enumerate(I_labels): # arr_prev = np.zeros(arr_ints.shape) # arr_prev[1:] = arr_ints[:-1] # to_correct = (arr_ints == B_labels[i]) & (arr_prev != I) # # if np.sum(to_correct): # print('Correction at tokens: %s' % np.argwhere(to_correct).flatten()) # arr_ints[to_correct] = I return arr_ints def _load_rodrigues_annotations(dir, worker_str, gold_char_idxs=None, gold_tokens=None, skip_imperfect_matches=False): worker_data = None for f in os.listdir(dir): if not f.endswith('.txt'): continue doc_str = f.split('.')[0] f = os.path.join(dir, f) #print('Processing %s' % f) new_data = pd.read_csv(f, names=['text', worker_str], skip_blank_lines=False, dtype={'text':str, worker_str:str}, na_filter=False, delim_whitespace=True) doc_gaps = (new_data['text'] == '') & (new_data[worker_str] == '') doc_start = np.zeros(doc_gaps.shape[0], dtype=int) doc_start[doc_gaps[:-1][doc_gaps[:-1]].index + 1] = 1 # the indexes after the gaps doc_content = new_data['text'] != '' new_data['doc_start'] = doc_start new_data = new_data[doc_content] new_data['doc_start'].iat[0] = 1 annos_to_keep = np.ones(new_data.shape[0], dtype=bool) for t, tok in enumerate(new_data['text']): if len(tok.split('/')) > 1: tok = tok.split('/')[0] new_data['text'].iat[t] = tok if len(tok) == 0: annos_to_keep[t] = False # compare the tokens in the worker annotations to the gold labels. They are misaligned in the dataset. We will # skip labels in the worker annotations that are assigned to only a part of a token in the gold dataset. char_counter = 0 gold_tok_idx = 0 skip_sentence = False sentence_start = 0 if gold_char_idxs is not None: gold_chars = np.array(gold_char_idxs[doc_str]) last_accepted_tok = '' last_accepted_idx = -1 for t, tok in enumerate(new_data['text']): if skip_imperfect_matches and skip_sentence: new_data[worker_str].iloc[t] = -1 if new_data['doc_start'].iat[t]: skip_sentence = False if new_data['doc_start'].iat[t]: sentence_start = t gold_char_idx = gold_chars[gold_tok_idx] gold_tok = gold_tokens[doc_str][gold_tok_idx] #print('tok = %s, gold_tok = %s' % (tok, gold_tok)) if not annos_to_keep[t]: continue # already marked as skippable if char_counter < gold_char_idx and \ (last_accepted_tok + tok) in gold_tokens[doc_str][gold_tok_idx-1]: print('Correcting misaligned annotations (split word in worker data): %i, %s' % (t, tok)) skip_sentence = True last_accepted_tok += tok annos_to_keep[last_accepted_idx] = False # skip the previous ones until the end # where we remove a line, assume that the last annotation in the removed line really belongs to the # line before... # new_data[worker_str].iat[t - 1] = new_data[worker_str].iat[t] # assume that the first annotation was actually correct -- I don't think we want this because the # first token was sometimes erroneously applied to only a part of the string. #new_data[worker_str].iat[t] = new_data[worker_str].iat[last_accepted_idx] new_data['text'].iat[t] = last_accepted_tok new_data['doc_start'].iat[t] = new_data['doc_start'].iat[last_accepted_idx] last_accepted_idx = t char_counter += len(tok) elif tok not in gold_tok or (tok == '' and gold_tok != ''): print('Correcting misaligned annotations (spurious text in worker data): %i, %s vs. %s' % (t, tok, gold_tok)) skip_sentence = True annos_to_keep[t] = False # skip the previous ones until the end if new_data['doc_start'].iat[t]: # now we are skipping this token but we don't want to lose the doc_start record. new_data['doc_start'].iat[t+1] = 1 elif tok == gold_tok[:len(tok)]: # needs to match the first characters in the string, not just be there somewhere gold_tok_idx += 1 if tok != gold_tok: skip_sentence = True while char_counter > gold_char_idx: print('error in text alignment between worker and gold!') len_to_skip = gold_chars[gold_tok_idx - 1] - gold_chars[gold_tok_idx - 2] # move the gold counter along to the next token because gold is behind gold_tok_idx += 1 gold_chars[gold_tok_idx:] -= len_to_skip gold_char_idx = gold_chars[gold_tok_idx] gold_char_idxs[doc_str] = gold_chars last_accepted_tok = tok last_accepted_idx = t char_counter += len(tok) else: skip_sentence = True annos_to_keep[t] = False if new_data['doc_start'].iat[t]: # now we are skipping this token but we don't want to lose the doc_start record. new_data['doc_start'].iat[t+1] = 1 # no more text in this document, but the last sentence must be skipped if skip_imperfect_matches and skip_sentence: # annos_to_keep[sentence_start:t+1] = False new_data[worker_str].iloc[sentence_start:t+1] = -1 new_data = new_data[annos_to_keep] new_data[worker_str] = _map_ner_str_to_labels(new_data[worker_str]) new_data['doc_id'] = doc_str new_data['tok_idx'] = np.arange(new_data.shape[0]) # add to data from this worker if worker_data is None: worker_data = new_data else: worker_data = pd.concat([worker_data, new_data]) return worker_data def _load_rodrigues_annotations_all_workers(annotation_data_path, gold_data, skip_dirty=False): worker_dirs = os.listdir(annotation_data_path) data = None annotator_cols = np.array([], dtype=str) char_idx_word_starts = {} chars = {} char_counter = 0 for t, tok in enumerate(gold_data['text']): if gold_data['doc_id'].iloc[t] not in char_idx_word_starts: char_counter = 0 starts = [] toks = [] char_idx_word_starts[gold_data['doc_id'].iloc[t]] = starts chars[gold_data['doc_id'].iloc[t]] = toks starts.append(char_counter) toks.append(tok) char_counter += len(tok) for widx, dir in enumerate(worker_dirs): if dir.startswith("."): continue worker_str = dir annotator_cols = np.append(annotator_cols, worker_str) dir = os.path.join(annotation_data_path, dir) print('Processing dir for worker %s (%i of %i)' % (worker_str, widx, len(worker_dirs))) worker_data = _load_rodrigues_annotations(dir, worker_str, char_idx_word_starts, chars, skip_dirty) print("Loaded a dataset of size %s" % str(worker_data.shape)) # now need to join this to other workers' data if data is None: data = worker_data else: data = data.merge(worker_data, on=['doc_id', 'tok_idx', 'text', 'doc_start'], how='outer', sort=True, validate='1:1') return data, annotator_cols def IOB_to_IOB2(seq): # test with and without this to see if we can reproduce the MV values from Nguyen et al with NER data. # It seems to make little difference. I_labels = [0, 3, 5, 7] B_labels = [2, 4, 6, 8] for i, label in enumerate(seq): if label in I_labels: typeidx = np.argwhere(I_labels == label)[0][0] if i == 0 or (seq[i-1] != B_labels[typeidx] and seq[i-1] != label): # we have I preceded by O. This needs to be changed to a B. seq[i] = B_labels[typeidx] return seq def IOB2_to_IOB(seq): I_labels = [0, 3, 5, 7] B_labels = [2, 4, 6, 8] for i, label in enumerate(seq): if label in B_labels: typeidx = np.argwhere(B_labels == label)[0][0] if i == 0 or (seq[i-1] != B_labels[typeidx] or seq[i-1] != I_labels[typeidx]): # we have I preceded by O. This needs to be changed to a B. seq[i] = I_labels[typeidx] return seq def load_ner_data(regen_data_files, skip_sen_with_dirty_data=False): # In Nguyen et al 2017, the original data has been separated out for task 1, aggregation of crowd labels. In this # task, the original training data is further split into val and test -- to make our results comparable with Nguyen # et al, we need to test on the test split for task 1, but train our model on both. # To make them comparable with Rodrigues et al. 2014, we need to test on all data (check this in their paper). # Task 2 is for prediction on a test set given a model trained on the training set and optimised on the validation # set. It would be ideal to show both these results... savepath = '../../data/bayesian_sequence_combination/data/ner/' # location to save our csv files to if not os.path.isdir(savepath): os.mkdir(savepath) # within each of these folders below is an mturk_train_data folder, containing crowd labels, and a ground_truth # folder. Rodrigues et al. have assigned document IDs that allow us to match up the annotations from each worker. # Nguyen et al. have split the training set into the val/test folders for task 1. Data is otherwise the same as in # the Rodrigues folder under mturk/extracted_data. task1_val_path = '../../data/bayesian_sequence_combination/data/crf-ma-NER-task1/val/' task1_test_path = '../../data/bayesian_sequence_combination/data/crf-ma-NER-task1/test/' # These are just two files that we use for text features + ground truth labels. task2_val_path = '../../data/bayesian_sequence_combination/data/English NER/eng.testa' task2_test_path = '../../data/bayesian_sequence_combination/data/English NER/eng.testb' if regen_data_files or not os.path.isfile(savepath + '/task1_val_annos.csv'): # Steps to load data (all steps need to map annotations to consecutive integer labels). # 1. Create an annos.csv file containing all the annotations in task1_val_path and task1_test_path. # load the gold data in the same way as the worker data gold_data = _load_rodrigues_annotations(task1_val_path + 'ground_truth/', 'gold') # load the validation data data, annotator_cols = _load_rodrigues_annotations_all_workers(task1_val_path + 'mturk_train_data/', gold_data, skip_sen_with_dirty_data) # 2. Create ground truth CSV for task1_val_path (for tuning the LSTM) # merge gold with the worker data data = data.merge(gold_data, how='outer', on=['doc_id', 'tok_idx', 'doc_start', 'text'], sort=True) num_annotations = np.zeros(data.shape[0]) # count annotations per token for col in annotator_cols: num_annotations += np.invert(data[col].isna()) for doc in np.unique(data['doc_id']): # get tokens from this doc drows = data['doc_id'] == doc # get the annotation counts for this doc counts = num_annotations[drows] # check that all tokens have same number of annotations if len(np.unique(counts)) > 1: print('Validation data: we have some misaligned labels.') print(counts) if np.any(counts.values == 0): print('Removing document %s with no annotations.' % doc) # remove any lines with no annotations annotated_idxs = num_annotations >= 1 data = data[annotated_idxs] # save the annos.csv data.to_csv(savepath + '/task1_val_annos.csv', columns=annotator_cols, index=False, float_format='%.f', na_rep=-1) # save the text in same order data.to_csv(savepath + '/task1_val_text.csv', columns=['text'], header=False, index=False) # save the doc starts data.to_csv(savepath + '/task1_val_doc_start.csv', columns=['doc_start'], header=False, index=False) # save the annos.csv data.to_csv(savepath + '/task1_val_gt.csv', columns=['gold'], header=False, index=False) # 3. Load worker annotations for test set. # load the gold data in the same way as the worker data gold_data = _load_rodrigues_annotations(task1_test_path + 'ground_truth/', 'gold') # load the test data data, annotator_cols = _load_rodrigues_annotations_all_workers(task1_test_path + 'mturk_train_data/', gold_data, skip_sen_with_dirty_data) # 4. Create ground truth CSV for task1_test_path # merge with the worker data data = data.merge(gold_data, how='outer', on=['doc_id', 'tok_idx', 'doc_start', 'text'], sort=True) num_annotations = np.zeros(data.shape[0]) # count annotations per token for col in annotator_cols: num_annotations += np.invert(data[col].isna()) for doc in np.unique(data['doc_id']): # get tokens from this doc drows = data['doc_id'] == doc # get the annotation counts for this doc counts = num_annotations[drows] # check that all tokens have same number of annotations if len(np.unique(counts)) > 1: print('Test data: we have some misaligned labels.') print(counts) if np.any(counts.values == 0): print('Removing document %s with no annotations.' % doc) # remove any lines with no annotations annotated_idxs = num_annotations >= 1 data = data[annotated_idxs] # save the annos.csv data.to_csv(savepath + '/task1_test_annos.csv', columns=annotator_cols, index=False, float_format='%.f', na_rep=-1) # save the text in same order data.to_csv(savepath + '/task1_test_text.csv', columns=['text'], header=False, index=False) # save the doc starts data.to_csv(savepath + '/task1_test_doc_start.csv', columns=['doc_start'], header=False, index=False) # save the annos.csv data.to_csv(savepath + '/task1_test_gt.csv', columns=['gold'], header=False, index=False) # 5. Create a file containing only the words for the task 2 validation set, i.e. like annos.csv with no annotations. # Create ground truth CSV for task1_val_path, task1_test_path and task2_val_path but blank out the task_1 labels # (for tuning the LSTM for task 2) import csv eng_val = pd.read_csv(task2_val_path, delimiter=' ', usecols=[0,3], names=['text', 'gold'], skip_blank_lines=True, quoting=csv.QUOTE_NONE) doc_starts = np.zeros(eng_val.shape[0]) docstart_token = eng_val['text'][0] doc_starts[1:] = (eng_val['text'] == docstart_token)[:-1] eng_val['doc_start'] = doc_starts eng_val['tok_idx'] = eng_val.index eng_val = eng_val[eng_val['text'] != docstart_token] # remove all the docstart labels eng_val['gold'] = _map_ner_str_to_labels(eng_val['gold']) eng_val['gold'] = IOB_to_IOB2(eng_val['gold'].values) eng_val.to_csv(savepath + '/task2_val_gt.csv', columns=['gold'], header=False, index=False) eng_val.to_csv(savepath + '/task2_val_text.csv', columns=['text'], header=False, index=False) eng_val.to_csv(savepath + '/task2_val_doc_start.csv', columns=['doc_start'], header=False, index=False) # 6. Create a file containing only the words for the task 2 test set, i.e. like annos.csv with no annotations. # Create ground truth CSV for task1_val_path, task1_test_path and task2_test_path but blank out the task_1 labels/ eng_test = pd.read_csv(task2_test_path, delimiter=' ', usecols=[0,3], names=['text', 'gold'], skip_blank_lines=True, quoting=csv.QUOTE_NONE) doc_starts = np.zeros(eng_test.shape[0]) docstart_token = eng_test['text'][0] doc_starts[1:] = (eng_test['text'] == docstart_token)[:-1] eng_test['doc_start'] = doc_starts eng_test['tok_idx'] = eng_test.index eng_test = eng_test[eng_test['text'] != docstart_token] # remove all the docstart labels eng_test['gold'] = _map_ner_str_to_labels(eng_test['gold']) eng_test['gold'] = IOB_to_IOB2(eng_test['gold'].values) eng_test.to_csv(savepath + '/task2_test_gt.csv', columns=['gold'], header=False, index=False) eng_test.to_csv(savepath + '/task2_test_text.csv', columns=['text'], header=False, index=False) eng_test.to_csv(savepath + '/task2_test_doc_start.csv', columns=['doc_start'], header=False, index=False) # 7. Reload the data for the current run... print('loading annos for task1 test...') annos = pd.read_csv(savepath + '/task1_test_annos.csv', skip_blank_lines=False) print('loading text data for task1 test...') text = pd.read_csv(savepath + '/task1_test_text.csv', skip_blank_lines=False, header=None) print('loading doc_starts for task1 test...') doc_start = pd.read_csv(savepath + '/task1_test_doc_start.csv', skip_blank_lines=False, header=None) print('loading ground truth for task1 test...') gt_t = pd.read_csv(savepath + '/task1_test_gt.csv', skip_blank_lines=False, header=None) print('Unique labels: ') print(np.unique(gt_t)) print(gt_t.shape) print('loading annos for task1 val...') annos_v = pd.read_csv(savepath + '/task1_val_annos.csv', skip_blank_lines=False) # remove any lines with no annotations # annotated_idxs = np.argwhere(np.any(annos_v != -1, axis=1)).flatten() # annos_v = annos_v.iloc[annotated_idxs, :] annos = pd.concat((annos, annos_v), axis=0) annos = annos.fillna(-1) annos = annos.values print('loaded annotations for %i tokens' % annos.shape[0]) print('loading text data for task1 val...') text_v = pd.read_csv(savepath + '/task1_val_text.csv', skip_blank_lines=False, header=None) # text_v = text_v.iloc[annotated_idxs] text = pd.concat((text, text_v), axis=0) text = text.fillna(' ').values print('loading doc_starts for task1 val...') doc_start_v = pd.read_csv(savepath + '/task1_val_doc_start.csv', skip_blank_lines=False, header=None) # doc_start_v = doc_start_v.iloc[annotated_idxs] doc_start = pd.concat((doc_start, doc_start_v), axis=0).values print('Loading a gold valdation set for task 1') gt_blanks = pd.DataFrame(np.zeros(gt_t.shape[0]) - 1) gt_val_task1_orig = pd.read_csv(savepath + '/task1_val_gt.csv', skip_blank_lines=False, header=None) gt_val_task1 = pd.concat((gt_blanks, gt_val_task1_orig), axis=0).values print('not concatenating ground truth for task1 val') gt_v = pd.DataFrame(np.zeros(annos_v.shape[0]) - 1) # gt_val_task1_orig# #gt = pd.DataFrame(np.zeros(gt.shape[0]) - 1) # gt_val_task1_orig# gt_v_real = pd.read_csv(savepath + '/task1_val_gt.csv', skip_blank_lines=False, header=None) #gt_v = gt_v.iloc[annotated_idxs] gt = pd.concat((gt_t, gt_v), axis=0).values gt_all = pd.concat((gt_t, gt_v_real), axis=0).values print('loaded ground truth for %i tokens' % gt.shape[0]) print('loading text data for task 2 test') text_task2 = pd.read_csv(savepath + '/task2_test_text.csv', skip_blank_lines=False, header=None) text_task2 = text_task2.fillna(' ').values print('loading doc_starts for task 2 test') doc_start_task2 = pd.read_csv(savepath + '/task2_test_doc_start.csv', skip_blank_lines=False, header=None).values print('loading ground truth for task 2 test') gt_task2 = pd.read_csv(savepath + '/task2_test_gt.csv', skip_blank_lines=False, header=None).values # validation sets for methods that predict on features only print('loading text data for task 2 val') text_val_task2 = pd.read_csv(savepath + '/task2_val_text.csv', skip_blank_lines=False, header=None) text_val_task2 = text_val_task2.fillna(' ').values print('loading doc_starts for task 2 val') doc_start_val_task2 = pd.read_csv(savepath + '/task2_val_doc_start.csv', skip_blank_lines=False, header=None).values print('loading ground truth for task 2 val') gt_val_task2 = pd.read_csv(savepath + '/task2_val_gt.csv', skip_blank_lines=False, header=None).values return gt, annos, doc_start, text, gt_task2, doc_start_task2, text_task2, \ gt_val_task1, gt_val_task2, doc_start_val_task2, text_val_task2, gt_all def split_dataset(gt, doc_start, text, annos, seed): print('Creating dev/test split...') np.random.seed(seed) # since there is no separate validation set, we split the test set ndocs = np.sum(doc_start & (gt != -1)) testdocs = np.random.randint(0, ndocs, int(np.floor(ndocs * 0.5))) docidxs = np.cumsum(doc_start & (gt != -1)) - 1 # gets us the doc ids testidxs = np.in1d(docidxs, testdocs) ntestidxs = np.sum(testidxs) devidxs = np.ones(len(gt), dtype=bool) devidxs[testidxs] = False gt_test = np.copy(gt) gt_test[devidxs] = -1 #gt_dev = np.copy(gt) #gt_dev[testidxs] = -1 gt_dev = gt[devidxs] doc_start_dev = doc_start[devidxs] text_dev = text[devidxs] return gt_test, gt_dev, doc_start_dev, text_dev if __name__ == '__main__': output_dir = '../../data/bayesian_sequence_combination/output/bio_task1_mini/' savepath = '../../data/bayesian_sequence_combination/data/bio/' print('loading annos...') annos = pd.read_csv(savepath + '/annos.csv', header=None) annos = annos.fillna(-1) annos = annos.values #np.genfromtxt(savepath + '/annos.csv', delimiter=',') #for a in range(annos.shape[1]): # annos[:, a] = IOB2_to_IOB(annos[:, a]) print('loading text data...') text =
pd.read_csv(savepath + './text.csv', skip_blank_lines=False, header=None)
pandas.read_csv
import requests import pandas as pd import world_bank_data as wb import lxml def wb_corr(data, col, indicator, change=False): pd.options.mode.chained_assignment = None # Change option within function to avoid warning of value being placed on a copy of a slice. """ Returns the relationship that an input variable has with a chosen variable or chosen variables from the World Bank data, sorted by the strength of relationship Relationship can be either the correlation between the input variable and the chosen indicator(s) or the correlation in the annual percent changes Parameters ---------- data: A pandas dataframe that contains a column of countries called "Country," a column of years called "Year," and a column of data for a variable col: The integer index of the column in which the data of your variable exists in your dataframe indicator: The indicator or list of indicators to check the relationship with the input variable. Can be a character string of the indicator ID or a list of character strings. Indicator IDs can be found through use of the World Bank APIs change: A Boolean value. When set to True, the correlation between the annual percent change of the input variable and the annual percent change of chosen indicator(s) will be found and used to order the strength of relationships Returns ---------- Pandas DataFrame A Pandas DataFrame containing the indicator names as the index and the correlation between the indicator and the input variable. If change set to True, another column including the correlation between the annual percent changes of the variables will be included. The DataFrame is ordered on the correlation if change is set to False and on the correlation of percent changes if change is set to True. The number of rows in the DataFrame will correspond to the number of indicators that were requested. The number of columns will be 1 if change is set to False and 2 if change is True. Examples ---------- >>> import ____ >>> wb_corr(my_df, 2, '3.0.Gini') #where my_df has columns Country, Year, Data |Indicator | Correlation | n -------------------------------------- |Gini Coefficient| -0.955466 | 172 >>> wb_corr(wb.get_series('SP.POP.TOTL',mrv=50).reset_index,3,['3.0.Gini','1.0.HCount.1.90usd'],True) # To compare one WB indicator with others | Indicator | Correlation | n | Correlation_change | n_change ---------------------------------------------------------------------------------------- | Poverty Headcount ($1.90 a day)| -0.001202 |172 | 0.065375 | 134 | Gini Coefficient | 0.252892 |172 | 0.000300 | 134 """ assert type(indicator)==str or type(indicator)==list, "indicator must be either a string or a list of strings" assert type(col)==int, "col must be the integer index of the column containing data on the variable of interest" assert 'Country' in data.columns, "data must have a column containing countries called 'Country'" assert 'Year' in data.columns, "Data must have a column containing years called 'Year'" assert col<data.shape[1], "col must be a column index belonging to data" assert type(change)==bool, "change must be a Boolean value (True or False)" cors=[] indicators=[] n=[] if type(indicator)==str: assert indicator in list(pd.read_xml(requests.get('http://api.worldbank.org/v2/indicator?per_page=21000').content)['id']), "indicator must be the id of an indicator in the World Bank Data. Indicators can be found using the World Bank APIs. http://api.worldbank.org/v2/indicator?per_page=21000 to see all indicators or http://api.worldbank.org/v2/topic/_/indicator? to see indicators under a chosen topic (replace _ with integer 1-21)" thing=pd.DataFrame(wb.get_series(indicator,mrv=50)) # Create a Pandas DataFrame with the data on the chosen indicator using the world_bank_data package merged=pd.merge(data,thing,how='inner',on=['Country','Year']) cors.append(merged.iloc[:,col].corr(merged.iloc[:,(merged.shape[1]-1)])) indicators.append(pd.DataFrame(wb.get_series(indicator,mrv=1)).reset_index()['Series'][0]) n.append(len(merged[merged.iloc[:,col].notnull() & merged.iloc[:,(merged.shape[1]-1)].notnull()])) if change==False: return pd.DataFrame(list(zip(indicators,cors,n)),columns=['Indicator','Correlation','n']).sort_values(by='Correlation',key=abs,ascending=False).set_index('Indicator') if change==True: mumbo=
pd.DataFrame()
pandas.DataFrame
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' #%% Change working directory from the workspace root to the ipynb file location. Turn this addition off with the DataScience.changeDirOnImportExport setting # ms-python.python added import os try: os.chdir(os.path.join(os.getcwd(), 'assessment')) print(os.getcwd()) except: pass #%% [markdown] # ### *IPCC SR15 scenario assessment* # # <img style="float: right; height: 120px; margin-top: 10px;" src="../_static/IIASA_logo.png"> # <img style="float: right; height: 100px;" src="../_static/IAMC_logo.jpg"> # # # Scenario categorization and indicators # # This notebook assigns the categorization by warming outcome and computes a range of descriptive indicators # for the scenario assessment of the IPCC's _"Special Report on Global Warming of 1.5°C"_. # It generates a `sr15_metadata_indicators.xlsx` spreadsheet, which is used in other notebooks for this assessment # for categorization and extracting descriptive indicators. # # ## Scenario ensemble data # # The scenario data used in this analysis can be accessed and downloaded at [https://data.ene.iiasa.ac.at/iamc-1.5c-explorer](https://data.ene.iiasa.ac.at/iamc-1.5c-explorer). # # Bibliographic details of the scenario ensemble and all studies that contributed scenarios to the ensemble # are included in this repository # as [Endnote (enl)](../bibliography/iamc_1.5c_scenario_data.enl), # [Reference Manager (ris)](../bibliography/iamc_1.5c_scenario_data.ris), # and [BibTex (bib)](../bibliography/iamc_1.5c_scenario_data.bib) format. # # ## License and recommended citation # # This notebook is licensed under the Apache License, Version 2.0. # # Please refer to the [README](../README.md) for the recommended citation of the scenario ensemble and the notebooks in this repository. # # *** #%% [markdown] # ## Import dependencies and define general notebook settings #%% import math import io import yaml import re import pandas as pd import numpy as np from IPython.display import display #%% [markdown] # ### Introduction and tutorial for the `pyam` package # # This notebook (and all other analysis notebooks in this repository) uses the `pyam` package, # an open-source Python package for IAM scenario analysis and visualization # ([https://software.ene.iiasa.ac.at/pyam/](http://software.ene.iiasa.ac.at/pyam/)). # # For an introduction of the notation and features of the `pyam` package, # please refer to [this tutorial](https://github.com/IAMconsortium/pyam/blob/master/doc/source/tutorials/pyam_first_steps.ipynb). # It will take you through the basic functions and options used here, # and provide further introduction and guidelines. #%% import pyam logger = pyam.logger() #%% [markdown] # ### Import Matplotlib and set figure layout defaults in line with SR1.5 guidelines #%% import matplotlib.pyplot as plt plt.style.use('style_sr15.mplstyle') #%% [markdown] # ## Import scenario snapshot and define auxiliary dictionaries # # This notebook only assigns indicator based on global timeseries data. # # The dictionary `meta_tables` is used to collect definitions # of categories and secondary scenario classification throughout this script. # These definitions are exported to the metadata/categorization Excel workbook # at the end of the script for completeness. # The dictionary `meta_docs` collects definitions used for the documentation tags # in the online scenario explorer. # # The dictionary `specs` collects lists and the run control specifications to be exported to JSON # and used by other notebooks for the SR1.5 scenario analysis. # # The `plotting_args` dictionary assigns the default plotting arguemnts in this notebook. #%% sr1p5 = pyam.IamDataFrame(data='../data/iamc15_scenario_data_world_r1.1.xlsx') #%% meta_tables = {} meta_docs = {} #%% specs = {} #%% plotting_args = {'color': 'category', 'linewidth': 0.2} specs['plotting_args'] = plotting_args #%% [markdown] # ## Verify completeness of scenario submissions for key variables # # Verify that every scenario except for *Shell Sky* and the historical reference scenarios reports CO2 Emissions in 2030. #%% sr1p5.require_variable(variable='Emissions|CO2', year=2030, exclude_on_fail=False) #%% [markdown] # ## Check MAGICC postprocessing prior to categorization # # Assign scenarios that could not be postprocessed by probabilistic MAGICC to respective categories: # - data not available for full century # - insufficient reporting of emission species # - reference scenario #%% sr1p5.set_meta(name='category', meta= 'uncategorized') #%% reference = sr1p5.filter(model='Reference') pd.DataFrame(index=reference.meta.index) #%% sr1p5.set_meta(meta='reference', name='category', index=reference) #%% no_climate_assessment = ( sr1p5.filter(category='uncategorized').meta.index .difference(sr1p5.filter(year=2100, variable='Emissions|CO2').meta.index) ) pd.DataFrame(index=no_climate_assessment) #%% sr1p5.set_meta(meta='no-climate-assessment', name='category', index=no_climate_assessment) #%% [markdown] # ## Categorization of scenarios # # This section applies the categorization of scenario as defined in Chapter 2 of the Special Report # for unique assignment of scenarios. # # The category specification as agreed upon at LAM 3 in Malmö is repeated here for easier reference. # # The term $P_{x°C}$ refers to the probability of exceeding warming of $x°C$ throughout the century in at least one year # and $P_{x°C}(y)$ refers to the probability of exceedance in a specific year $y$. # # |**Categories** |**Subcategories**|**Probability to exceed warming threshold**|**Acronym** |**Color** | # |---------------|-----------------|-------------------------------------------|-----------------|----------------| # | Below 1.5°C | Below 1.5°C (I) | $P_{1.5°C} \leq 0.34$ | Below 1.5C (I) | xkcd:baby blue | # | | Below 1.5°C (II)| $0.34 < P_{1.5°C} \leq 0.50$ | Below 1.5C (II) | | # | 1.5°C return with low OS | Lower 1.5°C return with low OS | $0.50 < P_{1.5°C} \leq 0.67$ and $P_{1.5°C}(2100) \leq 0.34$ |(Lower) 1.5C low OS | xkcd:bluish | # | | Higher 1.5°C return with low OS | $0.50 < P_{1.5°C} \leq 0.67$ and $0.34 < P_{1.5°C}(2100) \leq 0.50$ |(Higher) 1.5C low OS | | # | 1.5°C return with high OS | Lower 1.5°C return with high OS | $0.67 < P_{1.5°C}$ and $P_{1.5°C}(2100) \leq 0.34$ | (Lower) 1.5C high OS | xkcd:darkish blue | # | | Higher 1.5°C return with high OS | $0.67 < P_{1.5°C}$ and $0.34 < P_{1.5°C}(2100) \leq 0.50$ | (Higher) 1.5C high OS | | # | Lower 2.0°C | | $P_{2.0°C} \leq 0.34$ (excluding above) | Lower 2C | xkcd:orange | # | Higher 2.0°C | | $0.34 < P_{2.0°C} \leq 0.50$ (excluding above) | Higher 2C | xkcd:red | # | Above 2.0°C | | $P_{2.0°C} > 0.50$ for at least 1 year | Above 2C | darkgrey | #%% [markdown] # ### Category definitions to Excel # # The following dictionary repeats the category definitions from the table above # and saves them as a `pandas.DataFrame` to a dictionary `meta_tables`. # Throughout the notebook, this dictionary is used to collect definitions # of categories and secondary scenario classification. # These definitions are exported to the metadata/categorization Excel workbook # at the end of the script for easy reference. #%% dct = {'Categories of scenarios': ['Below 1.5°C', '', '1.5°C return with low overshoot', '', '1.5°C return with high overshoot', '', 'Lower 2.0°C', 'Higher 2.0°C', 'Above 2.0°C'], 'Subcategories': ['Below 1.5°C (I)', 'Below 1.5°C (II)', 'Lower 1.5°C return with low overshoot', 'Higher 1.5°C return with low overshoot', 'Lower 1.5°C return with high overshoot', 'Higher 1.5°C return with high overshoot', '', '', ''], 'Criteria for assignment to category': ['P1.5°C ≤ 0.34', '0.34 < P1.5°C ≤ 0.50', '0.50 < P1.5°C ≤ 0.67 and P1.5°C(2100) ≤ 0.34', '0.50 < P1.5°C ≤ 0.67 and 0.34 < P1.5°C(2100) ≤ 0.50', '0.67 < P1.5°C and P1.5°C(2100) ≤ 0.34', '0.67 < P1.5°C and 0.34 < P1.5°C(2100) ≤ 0.50', 'P2.0°C ≤ 0.34 (excluding above)', '0.34 < P2.0°C ≤ 0.50 (excluding above)', 'P2.0°C > 0.50 during at least 1 year' ], 'Acronym': ['Below 1.5C (I)', 'Below 1.5C (II)', 'Lower 1.5C low overshoot', 'Higher 1.5C low overshoot', 'Lower 1.5C high overshoot', 'Higher 1.5C high overshoot', 'Lower 2C', 'Higher 2C', 'Above 2C'], 'Color': ['xkcd:baby blue', '', 'xkcd:bluish', '', 'xkcd:darkish blue', '', 'xkcd:orange', 'xkcd:red', 'darkgrey'] } cols = ['Categories of scenarios', 'Subcategories', 'Criteria for assignment to category', 'Acronym', 'Color'] categories_doc = pd.DataFrame(dct)[cols] meta_tables['categories'] = categories_doc meta_docs['category'] = 'Categorization of scenarios by global warming impact' meta_docs['subcategory'] = 'Sub-categorization of scenarios by global warming impact' #%% other_cats = ['no-climate-assessment', 'reference'] cats = ['Below 1.5C', '1.5C low overshoot', '1.5C high overshoot', 'Lower 2C', 'Higher 2C', 'Above 2C'] all_cats = cats + other_cats subcats = dct['Acronym'] all_subcats = subcats + other_cats #%% specs['cats'] = cats specs['all_cats'] = all_cats specs['subcats'] = subcats specs['all_subcats'] = all_subcats #%% [markdown] # ### Subcategory assignment # # We first assign the subcategories, then aggregate those assignment to the main categories. # The categories assigned above to indicate reasons for non-processing by MAGICC are copied over to the subcategories. # # Keep in mind that setting a category will re-assign scenarios (in case they have already been assigned). # So in case of going back and forth in this notebook (i.e., not executing the cells in the correct order), # make sure to reset the categorization. #%% def warming_exccedance_prob(x): return 'AR5 climate diagnostics|Temperature|Exceedance Probability|{} °C|MAGICC6'.format(x) expected_warming = 'AR5 climate diagnostics|Temperature|Global Mean|MAGICC6|Expected value' median_warming = 'AR5 climate diagnostics|Temperature|Global Mean|MAGICC6|MED' #%% sr1p5.set_meta(meta=sr1p5['category'], name='subcategory') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Below 1.5C (I)', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.34}}, color='xkcd:baby blue') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Below 1.5C (II)', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.50}}, color='xkcd:baby blue') #%% [markdown] # To categorize by a variable using multiple filters (here: less than 66% probability of exceeding 1.5°C at any point during the century and less than 34% probability of exceeding that threshold in 2100) requires to perform the assignment in three steps - first, categorize to an intermediate `low OS` category and, in a second step, assign to the category in question. The third step resets all scenarios still categorized as intermediate after the second step back to `uncategorized`. #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='low overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.67}}) #%% pyam.categorize(sr1p5, exclude=False, subcategory='low overshoot', value='Lower 1.5C low overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.34, 'year': 2100}}, color='xkcd:bluish') #%% pyam.categorize(sr1p5, exclude=False, subcategory='low overshoot', value='Higher 1.5C low overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.50, 'year': 2100}}, color='xkcd:bluish') #%% [markdown] # Display scenarios that satisfy the `low overshoot` criterion # but are not assigned to `Lower 1.5C lower overshoot` or `Higher 1.5C lower overshoot`. # Then, reset them to uncategorized. #%% sr1p5.filter(subcategory='low overshoot').meta #%% sr1p5.set_meta(meta='uncategorized', name='subcategory', index=sr1p5.filter(subcategory='low overshoot')) #%% [markdown] # Determine all scenarios with a probability to exceed 1.5°C greater than 66% in any year throughout the century. # The function `categorize()` cannot be used for this selection, because it would either check for the criteria being true for all years or for a particular year. #%% df = sr1p5.filter(exclude=False, subcategory='uncategorized', variable=warming_exccedance_prob(1.5)).timeseries() sr1p5.set_meta(meta='high overshoot', name='subcategory', index=df[df.apply(lambda x: max(x), axis=1) > 0.66].index) #%% pyam.categorize(sr1p5, exclude=False, subcategory='high overshoot', value='Lower 1.5C high overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.34, 'year': 2100}}, color='xkcd:darkish blue') #%% pyam.categorize(sr1p5, exclude=False, subcategory='high overshoot', value='Higher 1.5C high overshoot', name='subcategory', criteria={warming_exccedance_prob(1.5): {'up': 0.50, 'year': 2100}}, color='xkcd:darkish blue') #%% [markdown] # Reset scenarios that satisfy the `high overshoot` criterion # but are not assigned to `Lower 1.5C high overshoot` or `Higher 1.5C high overshoot`. #%% sr1p5.set_meta(meta='uncategorized', name='subcategory', index=sr1p5.filter(subcategory='high overshoot')) #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Lower 2C', name='subcategory', criteria={warming_exccedance_prob(2.0): {'up': 0.34}}, color='xkcd:orange') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Higher 2C', name='subcategory', criteria={warming_exccedance_prob(2.0): {'up': 0.50}}, color='xkcd:red') #%% pyam.categorize(sr1p5, exclude=False, subcategory='uncategorized', value='Above 2C', name='subcategory', criteria={warming_exccedance_prob(2.0): {'up': 1.0}}, color='darkgrey') #%% [markdown] # ### Aggregation of subcategories to categories #%% rc = pyam.run_control() def assign_rc_color_from_sub(cat, sub): rc.update({'color': {'category': {cat: rc['color']['subcategory'][sub]}}}) #%% sr1p5.set_meta(meta='Below 1.5C', name='category', index=sr1p5.filter(subcategory=['Below 1.5C (I)', 'Below 1.5C (II)']).meta.index) assign_rc_color_from_sub('Below 1.5C', 'Below 1.5C (II)') #%% sr1p5.set_meta(meta='1.5C low overshoot', name='category', index=sr1p5.filter(subcategory=['Lower 1.5C low overshoot', 'Higher 1.5C low overshoot'])) assign_rc_color_from_sub('1.5C low overshoot', 'Lower 1.5C low overshoot') #%% sr1p5.set_meta(meta='1.5C high overshoot', name='category', index=sr1p5.filter(subcategory=['Lower 1.5C high overshoot', 'Higher 1.5C high overshoot'])) assign_rc_color_from_sub('1.5C high overshoot', 'Lower 1.5C high overshoot') #%% cats_non15 = ['Lower 2C', 'Higher 2C', 'Above 2C'] df_2c = sr1p5.filter(subcategory=cats_non15) sr1p5.set_meta(meta=df_2c['subcategory'], name='category') for c in cats_non15: assign_rc_color_from_sub(c, c) #%% [markdown] # ### Additional assessment of categorization # # Check whether there are any scenarios that return to 1.5°C by the end of the century and exceed the 2°C threshold with a likelyhood higher than 34% or 50% (i.e., the `Lower 2C` or the `Higher 2C` categories respectively). Having scenario categorized as `1.5C` but with a higher-than-50% probability of exceeding 2°C at some point in the century may need to be considered separately in subsequent assessment. #%% cats_15 = ['Below 1.5C', '1.5C low overshoot', '1.5C high overshoot'] specs['cats_15'] = cats_15 #%% cats_15_no_lo = ['Below 1.5C', '1.5C low overshoot'] specs['cats_15_no_lo'] = cats_15_no_lo #%% cats_2 = ['Lower 2C', 'Higher 2C'] specs['cats_2'] = cats_2 #%% df = sr1p5.filter(exclude=False, category=cats_15, variable=warming_exccedance_prob(2.0)).timeseries() ex_prob_2 = df.apply(lambda x: max(x)) #%% if max(ex_prob_2) > 0.34: logger.warning('The following 1.5C-scenarios are not `Lower 2C` scenarios:') display(df[df.apply(lambda x: max(x), axis=1) > 0.34]) #%% if max(ex_prob_2) > 0.50: logger.warning('The following 1.5C-scenarios are not `2C` scenarios:') display(df[df.apply(lambda x: max(x), axis=1) > 0.50]) #%% [markdown] # ### Counting and evaluation of scenario assignment categories # # Count the number of scenarios assigned to each category. # # This table is the basis for **Tables 2.1 and 2.A.11** in the SR1.5. #%% lst = sr1p5.meta.groupby(['category', 'subcategory']).count() ( lst .reindex(all_cats, axis='index', level=0) .reindex(all_subcats, axis='index', level=1) .rename(columns={'exclude': 'count'}) ) #%% [markdown] # Check whether any scenarios are still marked as `uncategorized`. This may be due to missing MAGICC postprocessing. #%% if any(sr1p5['category'] == 'uncategorized'): logger.warning('There are scenarios that are no yet categorized!') display(sr1p5.filter(category='uncategorized').meta) #%% [markdown] # ## Validation of Kyoto GHG emissions range (SAR-GWP100) # # Validate all scenarios whther aggregate Kyoto gases are outside the range as assessed by the Second Assessment Report (SAR) using the Global Warming Potential over 100 years (GWP100). These scenarios are excluded from some figures and tables in the assessment. #%% invalid_sar_gwp = sr1p5.validate(criteria={'Emissions|Kyoto Gases (SAR-GWP100)': {'lo': 44500, 'up': 53500, 'year':2010}}, exclude_on_fail=False) #%% name='Kyoto-GHG|2010 (SAR)' sr1p5.set_meta(meta='in range', name=name) sr1p5.set_meta(meta='exclude', name=name, index=invalid_sar_gwp) meta_docs[name] = 'Indicator whether 2010 Kyoto-GHG reported by the scenario (as assessed by IPCC SAR) are in the valid range' #%% [markdown] # ## Assignment of baseline scenarios # # This section assigns a `baseline` reference for scenarios from selected model intercomparison projects and indivitual submissions. #%% def set_baseline_reference(x): m, s = (x.name[0], x.name[1]) b = None if s.startswith('SSP') and not 'Baseline' in s: b = '{}Baseline'.format(s[0:5]) if s.startswith('CD-LINKS') and not 'NoPolicy' in s: b = '{}NoPolicy'.format(s[0:9]) if s.startswith('EMF33') and not 'Baseline' in s: b = '{}Baseline'.format(s[0:6]) if s.startswith('ADVANCE') and not 'NoPolicy' in s: b = '{}NoPolicy'.format(s[0:8]) if s.startswith('GEA') and not 'base' in s: b = '{}base'.format(s[0:8]) if s.startswith('TERL') and not 'Baseline' in s: b = s.replace('15D', 'Baseline').replace('2D', 'Baseline') if s.startswith('SFCM') and not 'Baseline' in s: b = s.replace('1p5Degree', 'Baseline').replace('2Degree', 'Baseline') if s.startswith('CEMICS') and not s == 'CEMICS-Ref': b = 'CEMICS-Ref' if s.startswith('SMP') and not 'REF' in s: if s.endswith('Def') or s.endswith('regul'): b = 'SMP_REF_Def' else: b = 'SMP_REF_Sust' if s.startswith('DAC'): b = 'BAU' # check that baseline scenario exists for specific model `m` if (m, b) in sr1p5.meta.index: return b # else (or if scenario name not in list above), return None return None #%% name = 'baseline' sr1p5.set_meta(sr1p5.meta.apply(set_baseline_reference, raw=True, axis=1), name) meta_docs[name] = 'Name of the respective baseline (or reference/no-policy) scenario' #%% [markdown] # ## Assignent of marker scenarios # # The following scenarios are used as marker throughout the analysis and visualization, cf. Figure 2.7 (SOD): # # |**Marker** |**Model & scenario name** |**Reference** | **Symbol** | # |------------|--------------------------------|-------------------------------|-----------------| # | *S1* | AIM/CGE 2.0 / SSP1-19 | Fujimori et al., 2017 | `white square` | # | *S2* | MESSAGE-GLOBIOM 1.0 / SSP2-19 | Fricko et al., 2017 | `yellow square` | # | *S5* | REMIND-MAgPIE 1.5 / SSP5-19 | Kriegler et al., 2017 | `black square` | # | *LED* | MESSAGEix-GLOBIOM 1.0 / LowEnergyDemand | Grubler et al., 2018 | `white circle` | #%% dct = {'Marker': ['S1', 'S2', 'S5', 'LED'], 'Model and scenario name': ['AIM/CGE 2.0 / SSP1-19', 'MESSAGE-GLOBIOM 1.0 / SSP2-19', 'REMIND-MAgPIE 1.5 / SSP5-19', 'MESSAGEix-GLOBIOM 1.0 / LowEnergyDemand'], 'Reference': ['Fujimori et al., 2017', 'Fricko et al., 2017', 'Kriegler et al., 2017', 'Grubler et al., 2018'], 'Symbol': ['white square', 'yellow square', 'black square', 'white circle'] } cols = ['Marker', 'Model and scenario name', 'Reference', 'Symbol'] markers_doc = pd.DataFrame(dct)[cols] meta_tables['marker scenarios'] = markers_doc meta_docs['marker'] = 'Illustrative pathways (marker scenarios)' #%% specs['marker'] = ['S1', 'S2', 'S5', 'LED'] #%% sr1p5.set_meta('', 'marker') rc.update({'marker': {'marker': {'': None}}}) #%% m = 'S1' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='AIM/CGE 2.0', scenario='SSP1-19')) rc.update({'marker': {'marker': {m: 's'}}, 'c': {'marker': {m: 'white'}}, 'edgecolors': {'marker': {m: 'black'}}} ) #%% m = 'S2' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='MESSAGE-GLOBIOM 1.0', scenario='SSP2-19')) rc.update({'marker': {'marker': {m: 's'}}, 'c': {'marker': {m: 'yellow'}}, 'edgecolors': {'marker': {m: 'black'}}}) #%% m = 'S5' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='REMIND-MAgPIE 1.5', scenario='SSP5-19')) rc.update({'marker': {'marker': {m: 's'}}, 'c': {'marker': {m: 'black'}}, 'edgecolors': {'marker': {m: 'black'}}}) #%% m = 'LED' sr1p5.set_meta(m, 'marker', sr1p5.filter(model='MESSAGEix-GLOBIOM 1.0', scenario='LowEnergyDemand')) rc.update({'marker': {'marker': {m: 'o'}}, 'c': {'marker': {m: 'white'}}, 'edgecolors': {'marker': {m: 'black'}}}) #%% [markdown] # ## Visual analysis of emission and temperature pathways by category # # First, we plot all carbon dioxide emissions trajectories colored by category and the CO2 emissions from the AFOLU sector. Then, show the warming trajectories by category. #%% horizon = list(range(2000, 2020, 5)) + list(range(2020, 2101, 10)) df = sr1p5.filter(year=horizon) #%% df.filter(exclude=False, variable='Emissions|CO2').line_plot(**plotting_args, marker='marker') #%% df.filter(exclude=False, variable='Emissions|CO2|AFOLU').line_plot(**plotting_args, marker='marker') #%% df.filter(exclude=False, variable=expected_warming).line_plot(**plotting_args, marker='marker') #%% [markdown] # ## Import scientific references and publication status # The following block reads in an Excel table with the details of the scientific references for each scenario. # # The main cell of this section loops over all entries in this Excel table, filters for the relevant scenarios, # and assigns a short reference and the publication status. If multiple references are relevant for a scenario, the references are compiled, and the 'highest' publication status is written to the metadata. #%% ref_cols = ['project', 'model', 'scenario', 'reference', 'doi', 'bibliography'] #%% sr1p5.set_meta('undefined', 'reference') sr1p5.set_meta('unknown', 'project') #%% refs = pd.read_csv('../bibliography/scenario_references.csv', encoding='iso-8859-1') _refs = {'index': []} for i in ref_cols: _refs.update({i.title(): []}) #%% for cols in refs.iterrows(): c = cols[1] filters = {} # check that filters are defined if c.model is np.NaN and c.scenario is np.NaN: logger.warn('project `{}` on line {} has no filters assigned' .format(c.project, cols[0])) continue # filter for scenarios to apply the project and publication tags filters = {} for i in ['model', 'scenario']: if c[i] is not np.NaN: if ";" in c[i]: filters.update({i: re.sub(";", "", c[i]).split()}) else: filters.update({i: c[i]}) df = sr1p5.filter(**filters) if df.scenarios().empty: logger.warn('no scenarios satisfy filters for project `{}` on line {} ({})' .format(c.project, cols[0], filters)) continue # write to meta-tables dictionary _refs['index'].append(cols[0]) for i in ref_cols: _refs[i.title()].append(c[i]) sr1p5.meta.loc[df.meta.index, 'project'] = c['project'] for i in df.meta.index: r = c['reference'] sr1p5.meta.loc[i, 'reference'] = r if sr1p5.meta.loc[i, 'reference'] == 'undefined' else '{}; {}'.format(sr1p5.meta.loc[i, 'reference'], r) #%% cols = [i.title() for i in ref_cols] meta_tables['references'] = pd.DataFrame(_refs)[cols] meta_docs['reference'] = 'Scientific references' meta_docs['project'] = 'Project identifier contributing the scenario' #%% [markdown] # ## Peak warming and indicator of median global warming peak-and-decline # # Determine peak warming (relative to pre-industrial temperature) and end-of century warming # and add this to the scenario metadata. # Then, compute the "peak-and-decline" indicator as the difference between peak warming and warming in 2100. #%% def peak_warming(x, return_year=False): peak = x[x == x.max()] if return_year: return peak.index[0] else: return float(max(peak)) #%% median_temperature = sr1p5.filter(variable=median_warming).timeseries() #%% name = 'median warming at peak (MAGICC6)' sr1p5.set_meta(median_temperature.apply(peak_warming, raw=False, axis=1), name) meta_docs[name] = 'median warming above pre-industrial temperature at peak (°C) as computed by MAGICC6' #%% name = 'year of peak warming (MAGICC6)' sr1p5.set_meta(median_temperature.apply(peak_warming, return_year=True, raw=False, axis=1), name) meta_docs[name] = 'year of peak median warming as computed by MAGICC6' #%% name = 'median warming in 2100 (MAGICC6)' sr1p5.set_meta(median_temperature[2100], name) meta_docs[name] = 'median warming above at peak above pre-industrial temperature as computed by MAGICC6' #%% name = 'median warming peak-and-decline (MAGICC6)' peak_decline = sr1p5['median warming at peak (MAGICC6)'] - sr1p5['median warming in 2100 (MAGICC6)'] sr1p5.set_meta(peak_decline, name) meta_docs[name] = 'median warming peak-and-decline from peak to temperature in 2100 (°C) as computed by MAGICC6' #%% [markdown] # ### Add mean temperature at peak from 'FAIR' model diagnostics #%% median_temperature_fair = sr1p5.filter(variable='AR5 climate diagnostics|Temperature|Global Mean|FAIR|MED') .timeseries() #%% name = 'median warming at peak (FAIR)' sr1p5.set_meta(median_temperature_fair.apply(peak_warming, raw=False, axis=1), name) meta_docs[name] = 'median warming above pre-industrial temperature at peak (°C) as computed by FAIR' #%% name = 'year of peak warming (FAIR)' sr1p5.set_meta(median_temperature_fair.apply(peak_warming, return_year=True, raw=False, axis=1), name) meta_docs[name] = 'year of peak median warming as computed by FAIR' #%% fig, ax = plt.subplots() sr1p5.filter(category=cats).scatter(ax=ax, x='median warming at peak (MAGICC6)', y='median warming at peak (FAIR)', color='category') ax.plot(ax.get_xlim(), ax.get_xlim()) #%% import matplotlib matplotlib.__version__ #%% fig, ax = plt.subplots() sr1p5.scatter(ax=ax, x='year of peak warming (MAGICC6)', y='year of peak warming (FAIR)', color='category') ax.plot(ax.get_xlim(), ax.get_xlim()) #%% [markdown] # ## Computation of threshold exceedance year and 'overshoot' year count # # Determine the year when a scenario exceeds a specific temperature threshold, # and for how many years the threshold is exceeded. # # This section uses the function ``exceedance()`` to determine the exceedance and return years. # The function ``overshoot_severity()`` computes the cumulative exceedance of the 1.5°C threshold # (i.e., the sum of temperature-years above the threshold). #%% def exceedance(temperature, years, threshold): exceedance_yr = None return_yr = None overshoot_yr_count = None prev_temp = 0 prev_yr = None for yr, curr_temp in zip(years, temperature): if np.isnan(curr_temp): continue if exceedance_yr is None and curr_temp > threshold: x = (curr_temp - prev_temp) / (yr - prev_yr) # temperature change per year exceedance_yr = prev_yr + int((threshold - prev_temp) / x) + 1 # add one because int() rounds down if exceedance_yr is not None and return_yr is None and curr_temp < threshold: x = (prev_temp - curr_temp) / (yr - prev_yr) # temperature change per year return_yr = prev_yr + int((prev_temp - threshold) / x) + 1 prev_temp = curr_temp prev_yr = yr if return_yr is not None and exceedance_yr is not None: overshoot_yr_count = int(return_yr - exceedance_yr) if exceedance_yr is not None: exceedance_yr = int(exceedance_yr) if return_yr is not None: return_yr = int(return_yr) return [exceedance_yr, return_yr, overshoot_yr_count] #%% exceedance_meta = median_temperature.apply(exceedance, axis=1, raw=True, years=median_temperature.columns, threshold=1.5) #%% name = 'exceedance year|1.5°C' sr1p5.set_meta(exceedance_meta.apply(lambda x: x[0]), name) meta_docs[name] = 'year in which the 1.5°C median warming threshold is exceeded' name = 'return year|1.5°C' sr1p5.set_meta(exceedance_meta.apply(lambda x: x[1]), name) meta_docs[name] = 'year in which median warming returns below the 1.5°C threshold' name = 'overshoot years|1.5°C' sr1p5.set_meta(exceedance_meta.apply(lambda x: x[2]), name) meta_docs[name] = 'number of years where 1.5°C median warming threshold is exceeded' #%% def overshoot_severity(x, meta): exceedance_yr = meta.loc[x.name[0:2]]['exceedance year|1.5°C'] return_yr = meta.loc[x.name[0:2]]['return year|1.5°C'] - 1 # do not include year in which mean temperature returns to below 1.5 if exceedance_yr > 0 and return_yr > 0: return pyam.cumulative(x, exceedance_yr, return_yr) - (return_yr - exceedance_yr + 1) * 1.5 #%% name = 'exceedance severity|1.5°C' sr1p5.set_meta(median_temperature.apply(overshoot_severity, axis=1, raw=False, meta=sr1p5.meta), name) meta_docs[name] = 'sum of median temperature exceeding the 1.5°C threshold' #%% exceedance_meta = median_temperature.apply(exceedance, axis=1, raw=True, years=median_temperature.columns, threshold=2) #%% name = 'exceedance year|2.0°C' sr1p5.set_meta(exceedance_meta.apply(lambda x: x[0]), name) meta_docs[name] = 'year in which the 2.0°C median warming threshold is exceeded' name = 'return year|2.0°C' sr1p5.set_meta(exceedance_meta.apply(lambda x: x[1]), name) meta_docs[name] = 'year in which median warming returns below the 2.0°C threshold' name = 'overshoot years|2.0°C' sr1p5.set_meta(exceedance_meta.apply(lambda x: x[2]), name) meta_docs[name] = 'number of years where 2.0°C median warming threshold is exceeded' #%% [markdown] # ## Secondary categorization and meta-data assignment according to CO2 emissions #%% [markdown] # ### Defining the range for cumulative indicators and units # # All cumulative indicators are computed over the time horizon 2016-2100 (including the year 2100 in every summation). #%% baseyear = 2016 lastyear = 2100 #%% def filter_and_convert(variable): return (sr1p5 .filter(variable=variable) .convert_unit({'Mt CO2/yr': ('Gt CO2/yr', 0.001)}) .timeseries() ) unit = 'Gt CO2/yr' cumulative_unit = 'Gt CO2' #%% co2 = filter_and_convert('Emissions|CO2') #%% name = 'minimum net CO2 emissions ({})'.format(unit) sr1p5.set_meta(co2.apply(np.nanmin, axis=1), name) meta_docs[name] = 'Minimum of net CO2 emissions over the century ({})'.format(unit) #%% [markdown] # ### Indicators from cumulative CO2 emissions over the entire century (2016-2100) # # Compute the total cumulative CO2 emissions for secondary categorization of scenarios. # Cumulative CO2 emissions are a first-order proxy for global mean temperature change. # Emissions are interpolated linearly between years. The `last_year` value is included in the summation. # # The function `pyam.cumulative()` defined below aggregates timeseries values from `first_year` until `last_year`, # including both first and last year in the total. The function assumes linear interpolation for years where no values are provided. #%% name = 'cumulative CO2 emissions ({}-{}, {})'.format(baseyear, lastyear, cumulative_unit) sr1p5.set_meta(co2.apply(pyam.cumulative, raw=False, axis=1, first_year=baseyear, last_year=lastyear), name) meta_docs[name] = 'Cumulative net CO2 emissions from {} until {} (including the last year, {})'.format( baseyear, lastyear, cumulative_unit) #%% ccs = filter_and_convert('Carbon Sequestration|CCS') #%% cum_ccs_label = 'cumulative CCS ({}-{}, {})'.format(baseyear, lastyear, cumulative_unit) sr1p5.set_meta(ccs.apply(pyam.cumulative, raw=False, axis=1, first_year=baseyear, last_year=lastyear), cum_ccs_label) meta_docs[cum_ccs_label] = 'Cumulative carbon capture and sequestration from {} until {} (including the last year, {})' .format(baseyear, lastyear, cumulative_unit) #%% beccs = filter_and_convert('Carbon Sequestration|CCS|Biomass') #%% cum_beccs_label = 'cumulative BECCS ({}-{}, {})'.format(baseyear, lastyear, cumulative_unit) sr1p5.set_meta(beccs.apply(pyam.cumulative, raw=False, axis=1, first_year=baseyear, last_year=lastyear), cum_beccs_label) meta_docs[cum_beccs_label] = 'Cumulative carbon capture and sequestration from bioenergy from {} until {} (including the last year, {})'.format( baseyear, lastyear, cumulative_unit) #%% [markdown] # Issue [#9](https://github.com/iiasa/ipcc_sr15_scenario_analysis/issues/9) requested to add the data for scenario where timeseries data for bioenergy with CCS was not provided explicitly (and hence not captured by the computation above) but could implicitly by assessed from the CCS timeseries data. #%% filled_ccs = sr1p5.meta[sr1p5.meta[cum_ccs_label] == 0][cum_beccs_label] #%% sr1p5.set_meta(name=cum_beccs_label, meta=0, index=filled_ccs[filled_ccs.isna()].index) #%% seq_lu = filter_and_convert('Carbon Sequestration|Land Use') #%% name = 'cumulative sequestration land-use ({}-{}, {})'.format(baseyear, lastyear, cumulative_unit) sr1p5.set_meta(seq_lu.apply(pyam.cumulative, raw=False, axis=1, first_year=baseyear, last_year=lastyear), name) meta_docs[name] = 'Cumulative carbon sequestration from land use from {} until {} (including the last year, {})'.format( baseyear, lastyear, cumulative_unit) #%% [markdown] # ### Cumulative CO2 emissions until peak warming #%% def get_from_meta_column(df, x, col): val = df.meta.loc[x.name[0:2], col] return val if val < np.inf else max(x.index) #%% name = 'cumulative CO2 emissions ({} to peak warming, {})'.format(baseyear, cumulative_unit) sr1p5.set_meta(co2.apply(lambda x: pyam.cumulative(x, first_year=baseyear, last_year=get_from_meta_column(sr1p5, x, 'year of peak warming (MAGICC6)')), raw=False, axis=1), name) meta_docs[name] = 'cumulative net CO2 emissions from {} until the year of peak warming as computed by MAGICC6 (including the year of peak warming, {})'.format( baseyear, cumulative_unit) #%% ( sr1p5 .filter(category=cats) .scatter(x='cumulative CO2 emissions (2016 to peak warming, {})'.format(cumulative_unit), y='median warming at peak (MAGICC6)', color='category') ) #%% [markdown] # ### Cumulative CO2 emissions until net-zero of total emissions #%% def year_of_net_zero(data, years, threshold): prev_val = 0 prev_yr = np.nan for yr, val in zip(years, data): if np.isnan(val): continue if val < threshold: x = (val - prev_val) / (yr - prev_yr) # absolute change per year return prev_yr + int((threshold - prev_val) / x) + 1 # add one because int() rounds down prev_val = val prev_yr = yr return np.inf #%% name = 'year of netzero CO2 emissions' sr1p5.set_meta(co2.apply(year_of_net_zero, years=co2.columns, threshold=0, axis=1), name) meta_docs[name] = 'year in which net CO2 emissions reach zero' #%% name = 'cumulative CO2 emissions ({} to netzero, {})'.format(baseyear, cumulative_unit) sr1p5.set_meta(co2.apply(lambda x: pyam.cumulative(x, first_year=baseyear, last_year=get_from_meta_column(sr1p5, x, 'year of netzero CO2 emissions')), raw=False, axis=1), name) meta_docs[name] = 'net CO2 emissions from {} until the year of peak warming (including the last year, {})'.format( baseyear, cumulative_unit) #%% name = 'warming at netzero (MAGICC6)' sr1p5.set_meta(median_temperature.apply(lambda x: x[get_from_meta_column(sr1p5, x, 'year of netzero CO2 emissions')], raw=False, axis=1), name) meta_docs[name] = 'median warming above pre-industrial temperatures in the year of net-zero CO2 emission (MAGICC, °C)'.format( baseyear, cumulative_unit) #%% ( sr1p5 .scatter(x='cumulative CO2 emissions (2016 to netzero, {})'.format(cumulative_unit), y='warming at netzero (MAGICC6)', color='category') ) #%% fig, ax = plt.subplots() ( sr1p5 .scatter(ax=ax, x='cumulative CO2 emissions (2016 to peak warming, {})'.format(cumulative_unit), y='cumulative CO2 emissions (2016 to netzero, {})'.format(cumulative_unit), color='category') ) ax.plot(ax.get_xlim(), ax.get_xlim()) #%% fig, ax = plt.subplots() ( sr1p5 .scatter(ax=ax, x='median warming at peak (MAGICC6)', y='warming at netzero (MAGICC6)', color='category') ) x = np.linspace(*ax.get_xlim()) ax.plot(ax.get_xlim(), ax.get_xlim()) #%% fig, ax = plt.subplots() ( sr1p5 .scatter(ax=ax, x='median warming in 2100 (MAGICC6)', y='warming at netzero (MAGICC6)', color='category') ) x = np.linspace(*ax.get_xlim()) ax.plot(ax.get_xlim(), ax.get_xlim()) #%% [markdown] # ## Categorization and meta-data assignment according to final energy demand # # Add a categorization column to the metadata categorization based on final energy demand at the end of the century. #%% horizon = list(range(2000, 2020, 5)) + list(range(2020, 2101, 10)) df = sr1p5.filter(year=horizon) #%% fe_df = df.filter(variable='Final Energy') fe_df.line_plot(**plotting_args, marker='marker') #%% fe = fe_df.timeseries() #%% name = 'final energy|2100' sr1p5.set_meta(fe[2100], name) meta_docs[name] = 'Final energy demand at the end of the century (EJ/yr)' #%% [markdown] # ## Indicators on carbon price development # # Retrieve the carbon price timeseries and derive the following indicators: # - carbon price in 2030, 2050, and 2100 given both in 2010$ as reported by models and as NPV # - simple average of NPV (2030-2100) # - annual compounded NPV (2030-2100) # - continuously compounded NPV (2030-2100) # # All net present values (NPV) are given relative to the year 2020. # They are calculated assuming a 5% discount rate. #%% dct = {'Indicator type': ['Price by year', 'Price by year (as NPV)', 'Average (Avg) NPV', 'Annual compounded (AC) NPV)', 'Continuously compounded (CC) NPV', '', 'Note on NPV' ], 'Description': ['Global carbon price as reported by each scenario', 'Global carbon price as reported by each scenario discounted to 2020 NPV', 'Cumulative NPV carbon price from 2030 until 2100 divided by number of years (71)', 'Annual compounded NPV carbon price from 2030 until 2100 divided by number of years (71)', 'Continuously compounded NPV carbon price from 2030 until 2100 divided by number of years (71)', '', 'All NPV indicators are discounted to 2020 using a 5% discount rate' ] } meta_tables['carbon_price'] =
pd.DataFrame(dct)
pandas.DataFrame
import numpy as np import anndata as ad import pandas as pd def load_met_noimput(matrix_file, path='', save=False): """ read the raw count matrix and convert it into an AnnData object. write down the matrix as .h5ad (AnnData object) if save = True. Return AnnData object """ matrix = [] cell_names = [] feature_names = [] with open(path+matrix_file) as f: line = f.readline()[:-2].split('\t') if line[0] == 'sample_name': feature_names = line[1:] else: matrix.append(line[1:]) cell_names.append(line[0]) if matrix == []: line = f.readline()[:-2].split('\t') matrix.append(line[1:]) cell_names.append(line[0]) for line in f: line = line[:-2].split('\t') matrix.append(line[1:]) cell_names.append(line[0]) matrix = np.array(matrix) if feature_names != []: adata = ad.AnnData(matrix, obs=pd.DataFrame(index=cell_names), var=pd.DataFrame(index=feature_names)) else: adata = ad.AnnData(matrix, obs=pd.DataFrame(index=cell_names)) adata.uns['omic'] = 'methylation' adata.uns['imputation'] = 'no_imputation' if save: adata.write("".join([".".split(matrix_file)[0],'.h5ad'])) return(adata) def imputation_met(adata, number_cell_covered=10, imputation_value='mean', save=None, copy=False): """ Impute missing values in methyaltion level matrices. The imputsation is based on the average methylation value of the given variable. It also filter out variables that are covered in an unsufficient number of cells in order to reduce the feature space to meaningful variables and discard potential coverage biases. Parameters ---------- adata: AnnData object containing 'nan' number_cell_covered: minimum number of cells to be covered in order to retain a variable imputation_value: imputation of the missing value can be made either on the mean or the median Return ------ Return a new AnnData object """ # This step need to be sped up and could be multithread. # Only the mean available for now. And only the minimum number of cells covered and not the variety of the # methylation levels # also, it odes not return the variable annoations and force to add 2 values old_features = adata.var_names.tolist() new_matrix = [] new_features_name = [] means = [] medians = [] feat_nb = 0 length1 = len(adata.X[0,:]) length2 = len(adata.X[:,0]) adata.obs['coverage_cells'] = [length1 - np.isnan(line).sum() for line in adata.X] adata.obs['mean_cell_methylation'] = [np.nansum(line)/length1 for line in adata.X] adata.var['coverage_feature'] = [length2 - np.isnan(line).sum() for line in adata.X.T] adata.var['mean_feature_methylation'] = [np.nansum(line)/length2 for line in adata.X.T] adata2 = adata[:, adata.var['coverage_feature']>=number_cell_covered].copy() for index in range(len(adata2.var_names.tolist())): adata2.X[:,index] = np.nan_to_num(adata2.X[:,index], nan=adata2.var['mean_feature_methylation'][index]) if save!= None: adata2.write(save.rstrip('.h5ad')+'.h5ad') if copy==False: adata = adata2.copy() else: return(adata2) def readandimputematrix(file_name, min_coverage=1): """ Temporary function to load and impute methyaltion count matrix into an AnnData object Parameters ---------- file_name : file name to read and load min_coverage : minimum number of cells covered for which we keep and impute a variable Returns ------- adata : :class:`~anndata.AnnData` Annotated data matrix. """ with open(file_name) as f: file = f.readlines() # separate annotation from data head_var = file[0] head_var = head_var.split('\t') # Then, extract the sample names sample_names = [] data_raw = [] for l in file[1:]: l = l.split('\t') sample_names.append(l[0]) data_raw.append(l[1:]) # clear memory of useless variables del file ########################################## # now, removing empty columns empties = [] partial = [] full = [] for index in range(1, len(data_raw[0])): column = [element[index] for element in data_raw] if len(list(set(column))) == 1: empties.append(index) elif len(list(set(column))) <= min_coverage: partial.append(index) else: full.append(index) ########################################## intermed_matrix = [] name_windows_covered = [] # let's remove the compltetly uninformative columns for index in range(1, len(head_var[1:])): if index in full: intermed_matrix.append([element[index] for element in data_raw]) name_windows_covered.append(head_var[index]) ######################################## # imputing values. imputed_matrix = [] for row in intermed_matrix: imputed_row = [] if "nan" in row: mean = np.mean([float(e) for e in row if e != "nan"]) for element in row: if element == "nan": imputed_row.append(str(mean)) else: imputed_row.append(element) imputed_matrix.append(imputed_row) else: imputed_matrix.append(row) imputed_matrix = np.matrix(imputed_matrix).transpose() return(ad.AnnData(imputed_matrix, obs=pd.DataFrame(index=sample_names), var=
pd.DataFrame(index=name_windows_covered)
pandas.DataFrame
from __future__ import division import configparser import logging import os import re import time from collections import OrderedDict import numpy as np import pandas as pd import scipy.interpolate as itp from joblib import Parallel from joblib import delayed from matplotlib import pyplot as plt from pyplanscoring.core.dicomparser import ScoringDicomParser from pyplanscoring.core.dosimetric import read_scoring_criteria, constrains, Competition2016 from pyplanscoring.core.dvhcalculation import Structure, prepare_dvh_data, calc_dvhs_upsampled, save_dicom_dvhs, load from pyplanscoring.core.dvhdoses import get_dvh_max from pyplanscoring.core.geometry import get_axis_grid, get_interpolated_structure_planes from pyplanscoring.core.scoring import DVHMetrics, Scoring, Participant # TODO extract constrains from analytical curves class CurveCompare(object): """ Statistical analysis of the DVH volume (%) error histograms. volume (cm 3 ) differences (numerical–analytical) were calculated for points on the DVH curve sampled at every 10 cGy then normalized to the structure's total volume (cm 3 ) to give the error in volume (%) """ def __init__(self, a_dose, a_dvh, calc_dose, calc_dvh, structure_name='', dose_grid='', gradient=''): self.calc_data = '' self.ref_data = '' self.a_dose = a_dose self.a_dvh = a_dvh self.cal_dose = calc_dose self.calc_dvh = calc_dvh self.sampling_size = 10/100.0 self.dose_samples = np.arange(0, len(calc_dvh)/100, self.sampling_size) # The DVH curve sampled at every 10 cGy self.ref_dvh = itp.interp1d(a_dose, a_dvh, fill_value='extrapolate') self.calc_dvh = itp.interp1d(calc_dose, calc_dvh, fill_value='extrapolate') self.delta_dvh = self.calc_dvh(self.dose_samples) - self.ref_dvh(self.dose_samples) self.delta_dvh_pp = (self.delta_dvh / a_dvh[0]) * 100 # prepare data dict # self.calc_dvh_dict = _prepare_dvh_data(self.dose_samples, self.calc_dvh(self.dose_samples)) # self.ref_dvh_dict = _prepare_dvh_data(self.dose_samples, self.ref_dvh(self.dose_samples)) # title data self.structure_name = structure_name self.dose_grid = dose_grid self.gradient = gradient def stats(self): df =
pd.DataFrame(self.delta_dvh_pp, columns=['delta_pp'])
pandas.DataFrame
import gc import warnings import numpy as np import pandas as pd warnings.simplefilter(action='ignore', category=FutureWarning) # One-hot encoding for categorical columns with get_dummies def one_hot_encoder(df, nan_as_category=True): original_columns = list(df.columns) categorical_columns = [col for col in df.columns if df[col].dtype == 'object'] df = pd.get_dummies(df, columns=categorical_columns, dummy_na=nan_as_category) new_columns = [c for c in df.columns if c not in original_columns] return df, new_columns # Preprocess application_train.csv and application_test.csv def application_train_test(num_rows=None, nan_as_category=False): # Read data and merge df = pd.read_csv('data/application_train.csv', nrows=num_rows) test_df = pd.read_csv('data/application_test.csv', nrows=num_rows) print("Train samples: {}, test samples: {}".format(len(df), len(test_df))) df = df.append(test_df).reset_index() # Optional: Remove 4 applications with XNA CODE_GENDER (train set) df = df[df['CODE_GENDER'] != 'XNA'] docs = [_f for _f in df.columns if 'FLAG_DOC' in _f] live = [_f for _f in df.columns if ('FLAG_' in _f) & ('FLAG_DOC' not in _f) & ('_FLAG_' not in _f)] # NaN values for DAYS_EMPLOYED: 365.243 -> nan df['DAYS_EMPLOYED'].replace(365243, np.nan, inplace=True) inc_by_org = df[['AMT_INCOME_TOTAL', 'ORGANIZATION_TYPE']].groupby('ORGANIZATION_TYPE').median()['AMT_INCOME_TOTAL'] df['NEW_CREDIT_TO_ANNUITY_RATIO'] = df['AMT_CREDIT'] / df['AMT_ANNUITY'] df['NEW_CREDIT_TO_GOODS_RATIO'] = df['AMT_CREDIT'] / df['AMT_GOODS_PRICE'] df['NEW_DOC_IND_AVG'] = df[docs].mean(axis=1) df['NEW_DOC_IND_STD'] = df[docs].std(axis=1) df['NEW_DOC_IND_KURT'] = df[docs].kurtosis(axis=1) df['NEW_LIVE_IND_SUM'] = df[live].sum(axis=1) df['NEW_LIVE_IND_STD'] = df[live].std(axis=1) df['NEW_LIVE_IND_KURT'] = df[live].kurtosis(axis=1) df['NEW_INC_PER_CHLD'] = df['AMT_INCOME_TOTAL'] / (1 + df['CNT_CHILDREN']) df['NEW_INC_BY_ORG'] = df['ORGANIZATION_TYPE'].map(inc_by_org) df['NEW_EMPLOY_TO_BIRTH_RATIO'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH'] df['NEW_ANNUITY_TO_INCOME_RATIO'] = df['AMT_ANNUITY'] / (1 + df['AMT_INCOME_TOTAL']) df['NEW_SOURCES_PROD'] = df['EXT_SOURCE_1'] * df['EXT_SOURCE_2'] * df['EXT_SOURCE_3'] df['NEW_EXT_SOURCES_MEAN'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].mean(axis=1) df['NEW_SCORES_STD'] = df[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']].std(axis=1) df['NEW_SCORES_STD'] = df['NEW_SCORES_STD'].fillna(df['NEW_SCORES_STD'].mean()) df['NEW_CAR_TO_BIRTH_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_BIRTH'] df['NEW_CAR_TO_EMPLOY_RATIO'] = df['OWN_CAR_AGE'] / df['DAYS_EMPLOYED'] df['NEW_PHONE_TO_BIRTH_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_BIRTH'] df['NEW_PHONE_TO_EMPLOY_RATIO'] = df['DAYS_LAST_PHONE_CHANGE'] / df['DAYS_EMPLOYED'] df['NEW_CREDIT_TO_INCOME_RATIO'] = df['AMT_CREDIT'] / df['AMT_INCOME_TOTAL'] # Categorical features with Binary encode (0 or 1; two categories) for bin_feature in ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY']: df[bin_feature], uniques =
pd.factorize(df[bin_feature])
pandas.factorize
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51": pandas.StringDtype(), "bitErrBucketArray52": pandas.StringDtype(), "bitErrBucketArray53": pandas.StringDtype(), "bitErrBucketArray54": pandas.StringDtype(), "bitErrBucketArray55": pandas.StringDtype(), "bitErrBucketArray56": pandas.StringDtype(), "bitErrBucketArray57": pandas.StringDtype(), "bitErrBucketArray58": pandas.StringDtype(), "bitErrBucketArray59": pandas.StringDtype(), "bitErrBucketArray60": pandas.StringDtype(), "bitErrBucketArray61": pandas.StringDtype(), "bitErrBucketArray62": pandas.StringDtype(), "bitErrBucketArray63": pandas.StringDtype(), "bitErrBucketArray64": pandas.StringDtype(), "bitErrBucketArray65": pandas.StringDtype(), "bitErrBucketArray66": pandas.StringDtype(), "bitErrBucketArray67": pandas.StringDtype(), "bitErrBucketArray68": pandas.StringDtype(), "bitErrBucketArray69": pandas.StringDtype(), "bitErrBucketArray70": pandas.StringDtype(), "bitErrBucketArray71": pandas.StringDtype(), "bitErrBucketArray72": pandas.StringDtype(), "bitErrBucketArray73": pandas.StringDtype(), "bitErrBucketArray74": pandas.StringDtype(), "bitErrBucketArray75": pandas.StringDtype(), "bitErrBucketArray76": pandas.StringDtype(), "bitErrBucketArray77": pandas.StringDtype(), "bitErrBucketArray78": pandas.StringDtype(), "bitErrBucketArray79": pandas.StringDtype(), "bitErrBucketArray80": pandas.StringDtype(), "mrr_successDistribution1": pandas.StringDtype(), "mrr_successDistribution2": pandas.StringDtype(), "mrr_successDistribution3": pandas.StringDtype(), "mrr_successDistribution4": pandas.StringDtype(), "mrr_successDistribution5": pandas.StringDtype(), "mrr_successDistribution6": pandas.StringDtype(), "mrr_successDistribution7": pandas.StringDtype(), "mrr_successDistribution8": pandas.StringDtype(), "mrr_successDistribution9": pandas.StringDtype(), "mrr_successDistribution10": pandas.StringDtype(), "mrr_successDistribution11": pandas.StringDtype(), "mrr_successDistribution12": pandas.StringDtype(), "mrr_successDistribution13": pandas.StringDtype(), "mrr_successDistribution14": pandas.StringDtype(), "mrr_successDistribution15": pandas.StringDtype(), "mrr_successDistribution16": pandas.StringDtype(), "mrr_successDistribution17": pandas.StringDtype(), "mrr_successDistribution18": pandas.StringDtype(), "mrr_successDistribution19": pandas.StringDtype(), "mrr_successDistribution20": pandas.StringDtype(), "mrr_successDistribution21": pandas.StringDtype(), "mrr_successDistribution22": pandas.StringDtype(), "mrr_successDistribution23": pandas.StringDtype(), "mrr_successDistribution24": pandas.StringDtype(), "mrr_successDistribution25": pandas.StringDtype(), "mrr_successDistribution26": pandas.StringDtype(), "mrr_successDistribution27": pandas.StringDtype(), "mrr_successDistribution28": pandas.StringDtype(), "mrr_successDistribution29": pandas.StringDtype(), "mrr_successDistribution30": pandas.StringDtype(), "mrr_successDistribution31": pandas.StringDtype(), "mrr_successDistribution32": pandas.StringDtype(), "mrr_successDistribution33": pandas.StringDtype(), "mrr_successDistribution34": pandas.StringDtype(), "mrr_successDistribution35": pandas.StringDtype(), "mrr_successDistribution36": pandas.StringDtype(), "mrr_successDistribution37": pandas.StringDtype(), "mrr_successDistribution38": pandas.StringDtype(), "mrr_successDistribution39": pandas.StringDtype(), "mrr_successDistribution40": pandas.StringDtype(), "mrr_successDistribution41": pandas.StringDtype(), "mrr_successDistribution42": pandas.StringDtype(), "mrr_successDistribution43": pandas.StringDtype(), "mrr_successDistribution44": pandas.StringDtype(), "mrr_successDistribution45": pandas.StringDtype(), "mrr_successDistribution46": pandas.StringDtype(), "mrr_successDistribution47": pandas.StringDtype(), "mrr_successDistribution48": pandas.StringDtype(), "mrr_successDistribution49": pandas.StringDtype(), "mrr_successDistribution50": pandas.StringDtype(), "mrr_successDistribution51": pandas.StringDtype(), "mrr_successDistribution52": pandas.StringDtype(), "mrr_successDistribution53": pandas.StringDtype(), "mrr_successDistribution54": pandas.StringDtype(), "mrr_successDistribution55": pandas.StringDtype(), "mrr_successDistribution56": pandas.StringDtype(), "mrr_successDistribution57": pandas.StringDtype(), "mrr_successDistribution58": pandas.StringDtype(), "mrr_successDistribution59": pandas.StringDtype(), "mrr_successDistribution60": pandas.StringDtype(), "mrr_successDistribution61": pandas.StringDtype(), "mrr_successDistribution62": pandas.StringDtype(), "mrr_successDistribution63": pandas.StringDtype(), "mrr_successDistribution64": pandas.StringDtype(), "blDowngradeCount": pandas.StringDtype(), "snapReads": pandas.StringDtype(), "pliCapTestTime": pandas.StringDtype(), "currentTimeToFreeSpaceRecovery": pandas.StringDtype(), "worstTimeToFreeSpaceRecovery": pandas.StringDtype(), "rspnandReads": pandas.StringDtype(), "cachednandReads": pandas.StringDtype(), "spnandReads": pandas.StringDtype(), "dpnandReads": pandas.StringDtype(), "qpnandReads": pandas.StringDtype(), "verifynandReads": pandas.StringDtype(), "softnandReads": pandas.StringDtype(), "spnandWrites": pandas.StringDtype(), "dpnandWrites": pandas.StringDtype(), "qpnandWrites": pandas.StringDtype(), "opnandWrites": pandas.StringDtype(), "xpnandWrites": pandas.StringDtype(), "unalignedHostWriteCmd": pandas.StringDtype(), "randomReadCmd": pandas.StringDtype(), "randomWriteCmd": pandas.StringDtype(), "secVenCmdCount": pandas.StringDtype(), "secVenCmdCountFails": pandas.StringDtype(), "mrrFailOnSlcOtfPages": pandas.StringDtype(), "mrrFailOnSlcOtfPageMarkedAsMBPD": pandas.StringDtype(), "lcorParitySeedErrors": pandas.StringDtype(), "fwDownloadFails": pandas.StringDtype(), "fwAuthenticationFails": pandas.StringDtype(), "fwSecurityRev": pandas.StringDtype(), "isCapacitorHealthly": pandas.StringDtype(), "fwWRCounter": pandas.StringDtype(), "sysAreaEraseFailCount": pandas.StringDtype(), "iusDefragRelocated4DataRetention": pandas.StringDtype(), "I2CTemp": pandas.StringDtype(), "lbaMismatchOnNandReads": pandas.StringDtype(), "currentWriteStreamsCount": pandas.StringDtype(), "nandWritesPerStream1": pandas.StringDtype(), "nandWritesPerStream2": pandas.StringDtype(), "nandWritesPerStream3": pandas.StringDtype(), "nandWritesPerStream4": pandas.StringDtype(), "nandWritesPerStream5": pandas.StringDtype(), "nandWritesPerStream6": pandas.StringDtype(), "nandWritesPerStream7": pandas.StringDtype(), "nandWritesPerStream8": pandas.StringDtype(), "nandWritesPerStream9": pandas.StringDtype(), "nandWritesPerStream10": pandas.StringDtype(), "nandWritesPerStream11": pandas.StringDtype(), "nandWritesPerStream12": pandas.StringDtype(), "nandWritesPerStream13": pandas.StringDtype(), "nandWritesPerStream14": pandas.StringDtype(), "nandWritesPerStream15": pandas.StringDtype(), "nandWritesPerStream16": pandas.StringDtype(), "nandWritesPerStream17": pandas.StringDtype(), "nandWritesPerStream18": pandas.StringDtype(), "nandWritesPerStream19": pandas.StringDtype(), "nandWritesPerStream20": pandas.StringDtype(), "nandWritesPerStream21": pandas.StringDtype(), "nandWritesPerStream22": pandas.StringDtype(), "nandWritesPerStream23": pandas.StringDtype(), "nandWritesPerStream24": pandas.StringDtype(), "nandWritesPerStream25": pandas.StringDtype(), "nandWritesPerStream26": pandas.StringDtype(), "nandWritesPerStream27": pandas.StringDtype(), "nandWritesPerStream28": pandas.StringDtype(), "nandWritesPerStream29": pandas.StringDtype(), "nandWritesPerStream30": pandas.StringDtype(), "nandWritesPerStream31": pandas.StringDtype(), "nandWritesPerStream32": pandas.StringDtype(), "hostSoftReadSuccess": pandas.StringDtype(), "xorInvokedCount": pandas.StringDtype(), "comresets": pandas.StringDtype(), "syncEscapes": pandas.StringDtype(), "rErrHost": pandas.StringDtype(), "rErrDevice": pandas.StringDtype(), "iCrcs": pandas.StringDtype(), "linkSpeedDrops": pandas.StringDtype(), "mrrXtrapageEvents": pandas.StringDtype(), "mrrToppageEvents": pandas.StringDtype(), "hostXorSuccessCount": pandas.StringDtype(), "hostXorFailCount": pandas.StringDtype(), "nandWritesWithPreReadPerStream1": pandas.StringDtype(), "nandWritesWithPreReadPerStream2": pandas.StringDtype(), "nandWritesWithPreReadPerStream3": pandas.StringDtype(), "nandWritesWithPreReadPerStream4": pandas.StringDtype(), "nandWritesWithPreReadPerStream5": pandas.StringDtype(), "nandWritesWithPreReadPerStream6": pandas.StringDtype(), "nandWritesWithPreReadPerStream7": pandas.StringDtype(), "nandWritesWithPreReadPerStream8": pandas.StringDtype(), "nandWritesWithPreReadPerStream9": pandas.StringDtype(), "nandWritesWithPreReadPerStream10": pandas.StringDtype(), "nandWritesWithPreReadPerStream11": pandas.StringDtype(), "nandWritesWithPreReadPerStream12": pandas.StringDtype(), "nandWritesWithPreReadPerStream13": pandas.StringDtype(), "nandWritesWithPreReadPerStream14": pandas.StringDtype(), "nandWritesWithPreReadPerStream15": pandas.StringDtype(), "nandWritesWithPreReadPerStream16": pandas.StringDtype(), "nandWritesWithPreReadPerStream17": pandas.StringDtype(), "nandWritesWithPreReadPerStream18": pandas.StringDtype(), "nandWritesWithPreReadPerStream19": pandas.StringDtype(), "nandWritesWithPreReadPerStream20": pandas.StringDtype(), "nandWritesWithPreReadPerStream21": pandas.StringDtype(), "nandWritesWithPreReadPerStream22": pandas.StringDtype(), "nandWritesWithPreReadPerStream23": pandas.StringDtype(), "nandWritesWithPreReadPerStream24": pandas.StringDtype(), "nandWritesWithPreReadPerStream25": pandas.StringDtype(), "nandWritesWithPreReadPerStream26": pandas.StringDtype(), "nandWritesWithPreReadPerStream27": pandas.StringDtype(), "nandWritesWithPreReadPerStream28": pandas.StringDtype(), "nandWritesWithPreReadPerStream29": pandas.StringDtype(), "nandWritesWithPreReadPerStream30": pandas.StringDtype(), "nandWritesWithPreReadPerStream31": pandas.StringDtype(), "nandWritesWithPreReadPerStream32": pandas.StringDtype(), "dramCorrectables8to1": pandas.StringDtype(), "driveRecoveryCount": pandas.StringDtype(), "mprLiteReads": pandas.StringDtype(), "eccErrOnMprLiteReads": pandas.StringDtype(), "readForwardingXpPreReadCount": pandas.StringDtype(), "readForwardingUpPreReadCount": pandas.StringDtype(), "readForwardingLpPreReadCount": pandas.StringDtype(), "pweDefectCompensationCredit": pandas.StringDtype(), "planarXorRebuildFailure": pandas.StringDtype(), "itgXorRebuildFailure": pandas.StringDtype(), "planarXorRebuildSuccess": pandas.StringDtype(), "itgXorRebuildSuccess": pandas.StringDtype(), "xorLoggingSkippedSIcBand": pandas.StringDtype(), "xorLoggingSkippedDieOffline": pandas.StringDtype(), "xorLoggingSkippedDieAbsent": pandas.StringDtype(), "xorLoggingSkippedBandErased": pandas.StringDtype(), "xorLoggingSkippedNoEntry": pandas.StringDtype(), "xorAuditSuccess": pandas.StringDtype(), "maxSuspendCount": pandas.StringDtype(), "suspendLimitPerPrgm": pandas.StringDtype(), "psrCountStats": pandas.StringDtype(), "readNandBuffCount": pandas.StringDtype(), "readNandBufferRspErrorCount": pandas.StringDtype(), "ddpNandWrites": pandas.StringDtype(), "totalDeallocatedSectorsInCore": pandas.StringDtype(), "prefetchHostReads": pandas.StringDtype(), "hostReadtoDSMDCount": pandas.StringDtype(), "hostWritetoDSMDCount": pandas.StringDtype(), "snapReads4k": pandas.StringDtype(), "snapReads8k": pandas.StringDtype(), "snapReads16k": pandas.StringDtype(), "xorLoggingTriggered": pandas.StringDtype(), "xorLoggingAborted": pandas.StringDtype(), "xorLoggingSkippedHistory": pandas.StringDtype(), "deckDisturbRelocationUD": pandas.StringDtype(), "deckDisturbRelocationMD": pandas.StringDtype(), "deckDisturbRelocationLD": pandas.StringDtype(), "bbdProactiveReadRetry": pandas.StringDtype(), "statsRestoreRequired": pandas.StringDtype(), "statsAESCount": pandas.StringDtype(), "statsHESCount": pandas.StringDtype(), "psrCountStats1": pandas.StringDtype(), "psrCountStats2": pandas.StringDtype(), "psrCountStats3": pandas.StringDtype(), "psrCountStats4": pandas.StringDtype(), "psrCountStats5": pandas.StringDtype(), "psrCountStats6": pandas.StringDtype(), "psrCountStats7": pandas.StringDtype(), "psrCountStats8": pandas.StringDtype(), "psrCountStats9": pandas.StringDtype(), "psrCountStats10": pandas.StringDtype(), "psrCountStats11": pandas.StringDtype(), "psrCountStats12": pandas.StringDtype(), "psrCountStats13": pandas.StringDtype(), "psrCountStats14": pandas.StringDtype(), "psrCountStats15": pandas.StringDtype(), "psrCountStats16": pandas.StringDtype(), "psrCountStats17": pandas.StringDtype(), "psrCountStats18": pandas.StringDtype(), "psrCountStats19": pandas.StringDtype(), "psrCountStats20": pandas.StringDtype(), "psrCountStats21": pandas.StringDtype(), "psrCountStats22": pandas.StringDtype(), "psrCountStats23": pandas.StringDtype(), "psrCountStats24": pandas.StringDtype(), "psrCountStats25": pandas.StringDtype(), "psrCountStats26": pandas.StringDtype(), "psrCountStats27": pandas.StringDtype(), "psrCountStats28": pandas.StringDtype(), "psrCountStats29": pandas.StringDtype(), "psrCountStats30": pandas.StringDtype(), "psrCountStats31": pandas.StringDtype(), "psrCountStats32": pandas.StringDtype(), "psrCountStats33": pandas.StringDtype(), "psrCountStats34": pandas.StringDtype(), "psrCountStats35": pandas.StringDtype(), "psrCountStats36": pandas.StringDtype(), "psrCountStats37":
pandas.StringDtype()
pandas.StringDtype
"""Miscellaneous internal PyJanitor helper functions.""" import functools import os import sys import warnings from typing import Callable, Dict, List, Union import numpy as np import pandas as pd from .errors import JanitorError def check(varname: str, value, expected_types: list): """ One-liner syntactic sugar for checking types. Should be used like this:: check('x', x, [int, float]) :param varname: The name of the variable. :param value: The value of the varname. :param expected_types: The types we expect the item to be. :returns: TypeError if data is not the expected type. """ is_expected_type = False for t in expected_types: if isinstance(value, t): is_expected_type = True break if not is_expected_type: raise TypeError( "{varname} should be one of {expected_types}".format( varname=varname, expected_types=expected_types ) ) def _clean_accounting_column(x: str) -> float: """ Perform the logic for the `cleaning_style == "accounting"` attribute. This is a private function, not intended to be used outside of ``currency_column_to_numeric``. It is intended to be used in a pandas `apply` method. :returns: An object with a cleaned column. """ y = x.strip() y = y.replace(",", "") y = y.replace(")", "") y = y.replace("(", "-") if y == "-": return 0.00 return float(y) def _currency_column_to_numeric(x, cast_non_numeric=None) -> str: """ Perform logic for changing cell values. This is a private function intended to be used only in ``currency_column_to_numeric``. It is intended to be used in a pandas `apply` method, after being passed through `partial`. """ acceptable_currency_characters = { "-", ".", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", } if len(x) == 0: return "ORIGINAL_NA" if cast_non_numeric: if x in cast_non_numeric.keys(): check( "{%r: %r}" % (x, str(cast_non_numeric[x])), cast_non_numeric[x], [int, float], ) return cast_non_numeric[x] else: return "".join(i for i in x if i in acceptable_currency_characters) else: return "".join(i for i in x if i in acceptable_currency_characters) def _replace_empty_string_with_none(column_series): column_series.loc[column_series == ""] = None return column_series def _replace_original_empty_string_with_none(column_series): column_series.loc[column_series == "ORIGINAL_NA"] = None return column_series def _strip_underscores( df: pd.DataFrame, strip_underscores: Union[str, bool] = None ) -> pd.DataFrame: """ Strip underscores from DataFrames column names. Underscores can be stripped from the beginning, end or both. .. code-block:: python df = _strip_underscores(df, strip_underscores='left') :param df: The pandas DataFrame object. :param strip_underscores: (optional) Removes the outer underscores from all column names. Default None keeps outer underscores. Values can be either 'left', 'right' or 'both' or the respective shorthand 'l', 'r' and True. :returns: A pandas DataFrame with underscores removed. """ df = df.rename( columns=lambda x: _strip_underscores_func(x, strip_underscores) ) return df def _strip_underscores_func( col: str, strip_underscores: Union[str, bool] = None ) -> pd.DataFrame: """Strip underscores from a string.""" underscore_options = [None, "left", "right", "both", "l", "r", True] if strip_underscores not in underscore_options: raise JanitorError( f"strip_underscores must be one of: {underscore_options}" ) if strip_underscores in ["left", "l"]: col = col.lstrip("_") elif strip_underscores in ["right", "r"]: col = col.rstrip("_") elif strip_underscores == "both" or strip_underscores is True: col = col.strip("_") return col def import_message( submodule: str, package: str, conda_channel: str = None, pip_install: bool = False, ): """ Return warning if package is not found. Generic message for indicating to the user when a function relies on an optional module / package that is not currently installed. Includes installation instructions. Used in `chemistry.py` and `biology.py`. :param submodule: pyjanitor submodule that needs an external dependency. :param package: External package this submodule relies on. :param conda_channel: Conda channel package can be installed from, if at all. :param pip_install: Whether package can be installed via pip. """ is_conda = os.path.exists(os.path.join(sys.prefix, "conda-meta")) installable = True if is_conda: if conda_channel is None: installable = False installation = f"{package} cannot be installed via conda" else: installation = f"conda install -c {conda_channel} {package}" else: if pip_install: installation = f"pip install {package}" else: installable = False installation = f"{package} cannot be installed via pip" print( f"To use the janitor submodule {submodule}, you need to install " f"{package}." ) print() if installable: print("To do so, use the following command:") print() print(f" {installation}") else: print(f"{installation}") def idempotent(func: Callable, df: pd.DataFrame, *args, **kwargs): """ Raises error if a function operating on a `DataFrame` is not idempotent, that is, `func(func(df)) = func(df)` is not true for all `df`. :param func: A python method. :param df: A pandas `DataFrame`. :param args: Positional arguments supplied to the method. :param kwargs: Keyword arguments supplied to the method. :raises ValueError: If `func` is found to not be idempotent for the given `DataFrame` `df`. """ if not func(df, *args, **kwargs) == func( func(df, *args, **kwargs), *args, **kwargs ): raise ValueError( "Supplied function is not idempotent for the given " "DataFrame." ) def deprecated_alias(**aliases) -> Callable: """ Used as a decorator when deprecating old function argument names, while keeping backwards compatibility. Implementation is inspired from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/49802412/how-to-implement-deprecation-in-python-with-argument-alias Functional usage example: .. code-block:: python @deprecated_alias(a='alpha', b='beta') def simple_sum(alpha, beta): return alpha + beta :param aliases: Dictionary of aliases for a function's arguments. :return: Your original function wrapped with the kwarg redirection function. """ # noqa: E501 def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): rename_kwargs(func.__name__, kwargs, aliases) return func(*args, **kwargs) return wrapper return decorator def refactored_function(message: str) -> Callable: """Used as a decorator when refactoring functions Implementation is inspired from `Hacker Noon`_. .. Hacker Noon: https://hackernoon.com/why-refactoring-how-to-restructure-python-package-51b89aa91987 Functional usage example: .. code-block:: python @refactored_function( message="simple_sum() has been refactored. Use hard_sum() instead." ) def simple_sum(alpha, beta): return alpha + beta :param message: Message to use in warning user about refactoring. :return: Your original function wrapped with the kwarg redirection function. """ # noqa: E501 def decorator(func): def emit_warning(*args, **kwargs): warnings.warn(message, FutureWarning) return func(*args, **kwargs) return emit_warning return decorator def rename_kwargs(func_name: str, kwargs: Dict, aliases: Dict): """ Used to update deprecated argument names with new names. Throws a TypeError if both arguments are provided, and warns if old alias is used. Implementation is inspired from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/49802412/how-to-implement-deprecation-in-python-with-argument-alias :param func_name: name of decorated function. :param kwargs: Arguments supplied to the method. :param aliases: Dictionary of aliases for a function's arguments. :return: Nothing; the passed `kwargs` are modified directly. """ # noqa: E501 for old_alias, new_alias in aliases.items(): if old_alias in kwargs: if new_alias in kwargs: raise TypeError( f"{func_name} received both {old_alias} and {new_alias}" ) warnings.warn( f"{old_alias} is deprecated; use {new_alias}", DeprecationWarning, ) kwargs[new_alias] = kwargs.pop(old_alias) def check_column( df: pd.DataFrame, old_column_names: List, present: bool = True ): """ One-liner syntactic sugar for checking the presence or absence of a column. Should be used like this:: check(df, ['a', 'b'], present=True) :param df: The name of the variable. :param old_column_names: A list of column names we want to check to see if present (or absent) in df. :param present: If True (default), checks to see if all of old_column_names are in df.columns. If False, checks that none of old_column_names are in df.columns. :returns: ValueError if data is not the expected type. """ for column_name in old_column_names: if present: if column_name not in df.columns: raise ValueError( f"{column_name} not present in dataframe columns!" ) else: # Tests for exclusion if column_name in df.columns: raise ValueError( f"{column_name} already present in dataframe columns!" ) def skipna(f: Callable) -> Callable: """ Decorator for escaping np.nan and None in a function Should be used like this:: df[column].apply(skipna(transform)) or:: @skipna def transform(x): pass :param f: the function to be wrapped :returns: _wrapped, the wrapped function """ def _wrapped(x, *args, **kwargs): if (type(x) is float and np.isnan(x)) or x is None: return np.nan else: return f(x, *args, **kwargs) return _wrapped def skiperror( f: Callable, return_x: bool = False, return_val=np.nan ) -> Callable: """ Decorator for escaping errors in a function Should be used like this:: df[column].apply( skiperror(transform, return_val=3, return_x=False)) or:: @skiperror(return_val=3, return_x=False) def transform(x): pass :param f: the function to be wrapped :param return_x: whether or not the original value that caused error should be returned :param return_val: the value to be returned when an error hits. Ignored if return_x is True :returns: _wrapped, the wrapped function """ def _wrapped(x, *args, **kwargs): try: return f(x, *args, **kwargs) except Exception: if return_x: return x return return_val return _wrapped def _check_instance(entry: Dict): """ Function to check instances in the expand_grid function. This checks if entry is a dictionary, checks the instance of value in key:value pairs in entry, and makes changes to other types as deemed necessary. Additionally, type-specific errors are raised if unsupported data types are passed in as values in the entry dictionary. How each type is handled, and their associated exceptions, are pretty clear from the code. """ # dictionary should not be empty if not entry: raise ValueError("passed dictionary cannot be empty") # If it is a NoneType, number, Boolean, or string, # then wrap in a list entry = { key: [value] if isinstance(value, (type(None), int, float, bool, str)) else value for key, value in entry.items() } # Convert to list if value is a set|tuple|range entry = { key: list(value) if isinstance(value, (set, tuple, range)) else value for key, value in entry.items() } # collect dataframes here dfs = [] # collect non dataframes here, proper dicts dicts = {} for key, value in entry.items(): # exclude dicts: if isinstance(value, dict): raise TypeError("Nested dictionaries are not allowed") # process arrays if isinstance(value, np.ndarray): if value.size == 0: raise ValueError("array cannot be empty") if value.ndim == 1: dfs.append(pd.DataFrame(value, columns=[key])) elif value.ndim == 2: dfs.append(
pd.DataFrame(value)
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_union(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = Int64Index(np.arange(10, 30, 2)) result = i1.union(i2) expected = Int64Index(np.arange(0, 30, 2)) self.assert_numpy_array_equal(result, expected) def test_union_with_DatetimeIndex(self): i1 = Int64Index(np.arange(0, 20, 2)) i2 = DatetimeIndex(start='2012-01-03 00:00:00', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_time(self): rng = pd.date_range('1/1/2000', freq='12min', periods=10) result = pd.Index(rng).time expected = [t.time() for t in rng] self.assertTrue((result == expected).all()) def test_date(self): rng = pd.date_range('1/1/2000', freq='12H', periods=10) result = pd.Index(rng).date expected = [t.date() for t in rng] self.assertTrue((result == expected).all()) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='dt') cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) assert_array_equal(cols.values, joined.values) def test_slice_keeps_name(self): # GH4226 st = pd.Timestamp('2013-07-01 00:00:00', tz='America/Los_Angeles') et = pd.Timestamp('2013-07-02 00:00:00', tz='America/Los_Angeles') dr = pd.date_range(st, et, freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = date_range('1/1/2000', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def assert_index_parameters(self, index): assert index.freq == '40960N' assert index.inferred_freq == '40960N' def test_ns_index(self): if _np_version_under1p7: raise nose.SkipTest nsamples = 400 ns = int(1e9 / 24414) dtstart = np.datetime64('2012-09-20T00:00:00') dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns') freq = ns * pd.datetools.Nano() index = pd.DatetimeIndex(dt, freq=freq, name='time') self.assert_index_parameters(index) new_index = pd.DatetimeIndex(start=index[0], end=index[-1], freq=index.freq) self.assert_index_parameters(new_index) def test_join_with_period_index(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:5, 0] joins = 'left', 'right', 'inner', 'outer' for join in joins: with tm.assertRaisesRegexp(ValueError, 'can only call with other ' 'PeriodIndex-ed objects'): df.columns.join(s.index, how=join) def test_factorize(self): idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # tz must be preserved idx1 = idx1.tz_localize('Asia/Tokyo') exp_idx = exp_idx.tz_localize('Asia/Tokyo') arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01']) exp_arr = np.array([2, 2, 1, 0, 2, 0]) exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03']) arr, idx = idx2.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) exp_arr = np.array([0, 0, 1, 2, 0, 2]) exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01']) arr, idx = idx2.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestDatetime64(tm.TestCase): """ Also test support for datetime64[ns] in Series / DataFrame """ def setUp(self): dti = DatetimeIndex(start=datetime(2005, 1, 1), end=datetime(2005, 1, 10), freq='Min') self.series = Series(rand(len(dti)), dti) def test_datetimeindex_accessors(self): dti = DatetimeIndex( freq='D', start=datetime(1998, 1, 1), periods=365) self.assertEqual(dti.year[0], 1998) self.assertEqual(dti.month[0], 1) self.assertEqual(dti.day[0], 1) self.assertEqual(dti.hour[0], 0) self.assertEqual(dti.minute[0], 0) self.assertEqual(dti.second[0], 0) self.assertEqual(dti.microsecond[0], 0) self.assertEqual(dti.dayofweek[0], 3) self.assertEqual(dti.dayofyear[0], 1) self.assertEqual(dti.dayofyear[120], 121) self.assertEqual(dti.weekofyear[0], 1) self.assertEqual(dti.weekofyear[120], 18) self.assertEqual(dti.quarter[0], 1) self.assertEqual(dti.quarter[120], 2) self.assertEqual(dti.is_month_start[0], True) self.assertEqual(dti.is_month_start[1], False) self.assertEqual(dti.is_month_start[31], True) self.assertEqual(dti.is_quarter_start[0], True) self.assertEqual(dti.is_quarter_start[90], True) self.assertEqual(dti.is_year_start[0], True) self.assertEqual(dti.is_year_start[364], False) self.assertEqual(dti.is_month_end[0], False) self.assertEqual(dti.is_month_end[30], True) self.assertEqual(dti.is_month_end[31], False) self.assertEqual(dti.is_month_end[364], True) self.assertEqual(dti.is_quarter_end[0], False) self.assertEqual(dti.is_quarter_end[30], False) self.assertEqual(dti.is_quarter_end[89], True) self.assertEqual(dti.is_quarter_end[364], True) self.assertEqual(dti.is_year_end[0], False) self.assertEqual(dti.is_year_end[364], True) self.assertEqual(len(dti.year), 365) self.assertEqual(len(dti.month), 365) self.assertEqual(len(dti.day), 365) self.assertEqual(len(dti.hour), 365) self.assertEqual(len(dti.minute), 365) self.assertEqual(len(dti.second), 365) self.assertEqual(len(dti.microsecond), 365) self.assertEqual(len(dti.dayofweek), 365) self.assertEqual(len(dti.dayofyear), 365) self.assertEqual(len(dti.weekofyear), 365) self.assertEqual(len(dti.quarter), 365) self.assertEqual(len(dti.is_month_start), 365) self.assertEqual(len(dti.is_month_end), 365) self.assertEqual(len(dti.is_quarter_start), 365) self.assertEqual(len(dti.is_quarter_end), 365) self.assertEqual(len(dti.is_year_start), 365) self.assertEqual(len(dti.is_year_end), 365) dti = DatetimeIndex( freq='BQ-FEB', start=datetime(1998, 1, 1), periods=4) self.assertEqual(sum(dti.is_quarter_start), 0) self.assertEqual(sum(dti.is_quarter_end), 4) self.assertEqual(sum(dti.is_year_start), 0) self.assertEqual(sum(dti.is_year_end), 1) # Ensure is_start/end accessors throw ValueError for CustomBusinessDay, CBD requires np >= 1.7 if not _np_version_under1p7: bday_egypt = offsets.CustomBusinessDay(weekmask='Sun Mon Tue Wed Thu') dti = date_range(datetime(2013, 4, 30), periods=5, freq=bday_egypt) self.assertRaises(ValueError, lambda: dti.is_month_start) dti = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) self.assertEqual(dti.is_month_start[0], 1) tests = [ (Timestamp('2013-06-01', offset='M').is_month_start, 1), (Timestamp('2013-06-01', offset='BM').is_month_start, 0), (Timestamp('2013-06-03', offset='M').is_month_start, 0), (Timestamp('2013-06-03', offset='BM').is_month_start, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_month_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_quarter_end, 1), (Timestamp('2013-02-28', offset='Q-FEB').is_year_end, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_month_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_quarter_start, 1), (Timestamp('2013-03-01', offset='Q-FEB').is_year_start, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_month_end, 1), (Timestamp('2013-03-31', offset='QS-FEB').is_quarter_end, 0), (Timestamp('2013-03-31', offset='QS-FEB').is_year_end, 0), (Timestamp('2013-02-01', offset='QS-FEB').is_month_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_quarter_start, 1), (Timestamp('2013-02-01', offset='QS-FEB').is_year_start, 1), (Timestamp('2013-06-30', offset='BQ').is_month_end, 0), (Timestamp('2013-06-30', offset='BQ').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQ').is_year_end, 0), (Timestamp('2013-06-28', offset='BQ').is_month_end, 1), (Timestamp('2013-06-28', offset='BQ').is_quarter_end, 1), (Timestamp('2013-06-28', offset='BQ').is_year_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_month_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_quarter_end, 0), (Timestamp('2013-06-30', offset='BQS-APR').is_year_end, 0), (Timestamp('2013-06-28', offset='BQS-APR').is_month_end, 1), (Timestamp('2013-06-28', offset='BQS-APR').is_quarter_end, 1), (Timestamp('2013-03-29', offset='BQS-APR').is_year_end, 1), (Timestamp('2013-11-01', offset='AS-NOV').is_year_start, 1), (Timestamp('2013-10-31', offset='AS-NOV').is_year_end, 1)] for ts, value in tests: self.assertEqual(ts, value) def test_nanosecond_field(self): dti = DatetimeIndex(np.arange(10)) self.assert_numpy_array_equal(dti.nanosecond, np.arange(10)) def test_datetimeindex_diff(self): dti1 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=100) dti2 = DatetimeIndex(freq='Q-JAN', start=datetime(1997, 12, 31), periods=98) self.assertEqual(len(dti1.diff(dti2)), 2) def test_fancy_getitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(s[48], 48) self.assertEqual(s['1/2/2009'], 48) self.assertEqual(s['2009-1-2'], 48) self.assertEqual(s[datetime(2009, 1, 2)], 48) self.assertEqual(s[lib.Timestamp(datetime(2009, 1, 2))], 48) self.assertRaises(KeyError, s.__getitem__, '2009-1-3') assert_series_equal(s['3/6/2009':'2009-06-05'], s[datetime(2009, 3, 6):datetime(2009, 6, 5)]) def test_fancy_setitem(self): dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 self.assertEqual(s[48], -1) s['1/2/2009'] = -2 self.assertEqual(s[48], -2) s['1/2/2009':'2009-06-05'] = -3 self.assertTrue((s[48:54] == -3).all()) def test_datetimeindex_constructor(self): arr = ['1/1/2005', '1/2/2005', 'Jn 3, 2005', '2005-01-04'] self.assertRaises(Exception, DatetimeIndex, arr) arr = ['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'] idx1 = DatetimeIndex(arr) arr = [datetime(2005, 1, 1), '1/2/2005', '1/3/2005', '2005-01-04'] idx2 = DatetimeIndex(arr) arr = [lib.Timestamp(datetime(2005, 1, 1)), '1/2/2005', '1/3/2005', '2005-01-04'] idx3 = DatetimeIndex(arr) arr = np.array(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04'], dtype='O') idx4 = DatetimeIndex(arr) arr = to_datetime(['1/1/2005', '1/2/2005', '1/3/2005', '2005-01-04']) idx5 = DatetimeIndex(arr) arr = to_datetime( ['1/1/2005', '1/2/2005', 'Jan 3, 2005', '2005-01-04']) idx6 = DatetimeIndex(arr) idx7 = DatetimeIndex(['12/05/2007', '25/01/2008'], dayfirst=True) idx8 = DatetimeIndex(['2007/05/12', '2008/01/25'], dayfirst=False, yearfirst=True) self.assertTrue(idx7.equals(idx8)) for other in [idx2, idx3, idx4, idx5, idx6]: self.assertTrue((idx1.values == other.values).all()) sdate = datetime(1999, 12, 25) edate = datetime(2000, 1, 1) idx = DatetimeIndex(start=sdate, freq='1B', periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[0], sdate + 0 * dt.bday) self.assertEqual(idx.freq, 'B') idx = DatetimeIndex(end=edate, freq=('D', 5), periods=20) self.assertEqual(len(idx), 20) self.assertEqual(idx[-1], edate) self.assertEqual(idx.freq, '5D') idx1 = DatetimeIndex(start=sdate, end=edate, freq='W-SUN') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.Week(weekday=6)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='QS') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.QuarterBegin(startingMonth=1)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) idx1 = DatetimeIndex(start=sdate, end=edate, freq='BQ') idx2 = DatetimeIndex(start=sdate, end=edate, freq=dt.BQuarterEnd(startingMonth=12)) self.assertEqual(len(idx1), len(idx2)) self.assertEqual(idx1.offset, idx2.offset) def test_dayfirst(self): # GH 5917 arr = ['10/02/2014', '11/02/2014', '12/02/2014'] expected = DatetimeIndex([datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)]) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True) idx4 = to_datetime(np.array(arr), dayfirst=True) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) self.assertTrue(expected.equals(idx1)) self.assertTrue(expected.equals(idx2)) self.assertTrue(expected.equals(idx3)) self.assertTrue(expected.equals(idx4)) self.assertTrue(expected.equals(idx5)) self.assertTrue(expected.equals(idx6)) def test_dti_snap(self): dti = DatetimeIndex(['1/1/2002', '1/2/2002', '1/3/2002', '1/4/2002', '1/5/2002', '1/6/2002', '1/7/2002'], freq='D') res = dti.snap(freq='W-MON') exp = date_range('12/31/2001', '1/7/2002', freq='w-mon') exp = exp.repeat([3, 4]) self.assertTrue((res == exp).all()) res = dti.snap(freq='B') exp = date_range('1/1/2002', '1/7/2002', freq='b') exp = exp.repeat([1, 1, 1, 2, 2]) self.assertTrue((res == exp).all()) def test_dti_reset_index_round_trip(self): dti = DatetimeIndex(start='1/1/2001', end='6/1/2001', freq='D') d1 = DataFrame({'v': np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() self.assertEqual(d2.dtypes[0], np.dtype('M8[ns]')) d3 = d2.set_index('index') assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=['Date', 'Value']) df = df.set_index('Date') self.assertEqual(df.index[0], stamp) self.assertEqual(df.reset_index()['Date'][0], stamp) def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range('2011/01/01', periods=6, freq='M', tz='US/Eastern') idx2 = date_range('2013', periods=6, freq='A', tz='Asia/Tokyo') df = df.set_index(idx1) self.assertTrue(df.index.equals(idx1)) df = df.reindex(idx2) self.assertTrue(df.index.equals(idx2)) def test_datetimeindex_union_join_empty(self): dti = DatetimeIndex(start='1/1/2001', end='2/1/2001', freq='D') empty = Index([]) result = dti.union(empty) tm.assert_isinstance(result, DatetimeIndex) self.assertIs(result, result) result = dti.join(empty) tm.assert_isinstance(result, DatetimeIndex) def test_series_set_value(self): # #1561 dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)] index = DatetimeIndex(dates) s = Series().set_value(dates[0], 1.) s2 = s.set_value(dates[1], np.nan) exp = Series([1., np.nan], index=index) assert_series_equal(s2, exp) # s = Series(index[:1], index[:1]) # s2 = s.set_value(dates[1], index[1]) # self.assertEqual(s2.values.dtype, 'M8[ns]') @slow def test_slice_locs_indexerror(self): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(lrange(100000), times) s.ix[datetime(1900, 1, 1):datetime(2100, 1, 1)] class TestSeriesDatetime64(tm.TestCase): def setUp(self): self.series = Series(date_range('1/1/2000', periods=10)) def test_auto_conversion(self): series = Series(list(date_range('1/1/2000', periods=10))) self.assertEqual(series.dtype, 'M8[ns]') def test_constructor_cant_cast_datetime64(self): self.assertRaises(TypeError, Series, date_range('1/1/2000', periods=10), dtype=float) def test_series_comparison_scalars(self): val = datetime(2000, 1, 4) result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) val = self.series[5] result = self.series > val expected = np.array([x > val for x in self.series]) self.assert_numpy_array_equal(result, expected) def test_between(self): left, right = self.series[[2, 7]] result = self.series.between(left, right) expected = (self.series >= left) & (self.series <= right) assert_series_equal(result, expected) #---------------------------------------------------------------------- # NaT support def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') val = series[3] self.assertTrue(com.isnull(val)) series[2] = val self.assertTrue(com.isnull(series[2])) def test_set_none_nan(self): self.series[3] = None self.assertIs(self.series[3], NaT) self.series[3:5] = None self.assertIs(self.series[4], NaT) self.series[5] = np.nan self.assertIs(self.series[5], NaT) self.series[5:7] = np.nan self.assertIs(self.series[6], NaT) def test_intercept_astype_object(self): # this test no longer makes sense as series is by default already M8[ns] expected = self.series.astype('object') df = DataFrame({'a': self.series, 'b': np.random.randn(len(self.series))}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) df = DataFrame({'a': self.series, 'b': ['foo'] * len(self.series)}) result = df.values.squeeze() self.assertTrue((result[:, 0] == expected.values).all()) def test_union(self): rng1 = date_range('1/1/1999', '1/1/2012', freq='MS') s1 = Series(np.random.randn(len(rng1)), rng1) rng2 = date_range('1/1/1980', '12/1/2001', freq='MS') s2 = Series(np.random.randn(len(rng2)), rng2) df = DataFrame({'s1': s1, 's2': s2}) self.assertEqual(df.index.values.dtype, np.dtype('M8[ns]')) def test_intersection(self): rng = date_range('6/1/2000', '6/15/2000', freq='D') rng = rng.delete(5) rng2 = date_range('5/15/2000', '6/20/2000', freq='D') rng2 = DatetimeIndex(rng2.values) result = rng.intersection(rng2) self.assertTrue(result.equals(rng)) # empty same freq GH2129 rng = date_range('6/1/2000', '6/15/2000', freq='T') result = rng[0:0].intersection(rng) self.assertEqual(len(result), 0) result = rng.intersection(rng[0:0]) self.assertEqual(len(result), 0) def test_date_range_bms_bug(self): # #1645 rng = date_range('1/1/2000', periods=10, freq='BMS') ex_first = Timestamp('2000-01-03') self.assertEqual(rng[0], ex_first) def test_string_index_series_name_converted(self): # #1644 df = DataFrame(np.random.randn(10, 4), index=date_range('1/1/2000', periods=10)) result = df.ix['1/3/2000'] self.assertEqual(result.name, df.index[2]) result = df.T['1/3/2000'] self.assertEqual(result.name, df.index[2]) class TestTimestamp(tm.TestCase): def test_class_ops(self): _skip_if_no_pytz() import pytz def compare(x,y): self.assertEqual(int(Timestamp(x).value/1e9), int(Timestamp(y).value/1e9)) compare(Timestamp.now(),datetime.now()) compare(Timestamp.now('UTC'),datetime.now(pytz.timezone('UTC'))) compare(Timestamp.utcnow(),datetime.utcnow()) compare(Timestamp.today(),datetime.today()) def test_basics_nanos(self): val = np.int64(946684800000000000).view('M8[ns]') stamp = Timestamp(val.view('i8') + 500) self.assertEqual(stamp.year, 2000) self.assertEqual(stamp.month, 1) self.assertEqual(stamp.microsecond, 0) self.assertEqual(stamp.nanosecond, 500) def test_unit(self): def check(val,unit=None,h=1,s=1,us=0): stamp = Timestamp(val, unit=unit) self.assertEqual(stamp.year, 2000) self.assertEqual(stamp.month, 1) self.assertEqual(stamp.day, 1) self.assertEqual(stamp.hour, h) if unit != 'D': self.assertEqual(stamp.minute, 1) self.assertEqual(stamp.second, s) self.assertEqual(stamp.microsecond, us) else: self.assertEqual(stamp.minute, 0) self.assertEqual(stamp.second, 0) self.assertEqual(stamp.microsecond, 0) self.assertEqual(stamp.nanosecond, 0) ts = Timestamp('20000101 01:01:01') val = ts.value days = (ts - Timestamp('1970-01-01')).days check(val) check(val/long(1000),unit='us') check(val/long(1000000),unit='ms') check(val/long(1000000000),unit='s') check(days,unit='D',h=0) # using truediv, so these are like floats if compat.PY3: check((val+500000)/long(1000000000),unit='s',us=500) check((val+500000000)/long(1000000000),unit='s',us=500000) check((val+500000)/long(1000000),unit='ms',us=500) # get chopped in py2 else: check((val+500000)/long(1000000000),unit='s') check((val+500000000)/long(1000000000),unit='s') check((val+500000)/long(1000000),unit='ms') # ok check((val+500000)/long(1000),unit='us',us=500) check((val+500000000)/long(1000000),unit='ms',us=500000) # floats check(val/1000.0 + 5,unit='us',us=5) check(val/1000.0 + 5000,unit='us',us=5000) check(val/1000000.0 + 0.5,unit='ms',us=500) check(val/1000000.0 + 0.005,unit='ms',us=5) check(val/1000000000.0 + 0.5,unit='s',us=500000) check(days + 0.5,unit='D',h=12) # nan result = Timestamp(np.nan) self.assertIs(result, NaT) result = Timestamp(None) self.assertIs(result, NaT) result = Timestamp(iNaT) self.assertIs(result, NaT) result = Timestamp(NaT) self.assertIs(result, NaT) def test_comparison(self): # 5-18-2012 00:00:00.000 stamp = long(1337299200000000000) val = Timestamp(stamp) self.assertEqual(val, val) self.assertFalse(val != val) self.assertFalse(val < val) self.assertTrue(val <= val) self.assertFalse(val > val) self.assertTrue(val >= val) other = datetime(2012, 5, 18) self.assertEqual(val, other) self.assertFalse(val != other) self.assertFalse(val < other) self.assertTrue(val <= other) self.assertFalse(val > other) self.assertTrue(val >= other) other = Timestamp(stamp + 100) self.assertNotEqual(val, other) self.assertNotEqual(val, other) self.assertTrue(val < other) self.assertTrue(val <= other) self.assertTrue(other > val) self.assertTrue(other >= val) def test_cant_compare_tz_naive_w_aware(self): _skip_if_no_pytz() # #1404 a = Timestamp('3/12/2012') b = Timestamp('3/12/2012', tz='utc') self.assertRaises(Exception, a.__eq__, b) self.assertRaises(Exception, a.__ne__, b) self.assertRaises(Exception, a.__lt__, b) self.assertRaises(Exception, a.__gt__, b) self.assertRaises(Exception, b.__eq__, a) self.assertRaises(Exception, b.__ne__, a) self.assertRaises(Exception, b.__lt__, a) self.assertRaises(Exception, b.__gt__, a) if sys.version_info < (3, 3): self.assertRaises(Exception, a.__eq__, b.to_pydatetime()) self.assertRaises(Exception, a.to_pydatetime().__eq__, b) else: self.assertFalse(a == b.to_pydatetime()) self.assertFalse(a.to_pydatetime() == b) def test_delta_preserve_nanos(self): val = Timestamp(long(1337299200000000123)) result = val + timedelta(1) self.assertEqual(result.nanosecond, val.nanosecond) def test_frequency_misc(self): self.assertEqual(fmod.get_freq_group('T'), fmod.FreqGroup.FR_MIN) code, stride = fmod.get_freq_code(offsets.Hour()) self.assertEqual(code, fmod.FreqGroup.FR_HR) code, stride = fmod.get_freq_code((5, 'T')) self.assertEqual(code, fmod.FreqGroup.FR_MIN) self.assertEqual(stride, 5) offset = offsets.Hour() result = fmod.to_offset(offset) self.assertEqual(result, offset) result = fmod.to_offset((5, 'T')) expected = offsets.Minute(5) self.assertEqual(result, expected) self.assertRaises(ValueError, fmod.get_freq_code, (5, 'baz')) self.assertRaises(ValueError, fmod.to_offset, '100foo') self.assertRaises(ValueError, fmod.to_offset, ('', '')) result = fmod.get_standard_freq(offsets.Hour()) self.assertEqual(result, 'H') def test_hash_equivalent(self): d = {datetime(2011, 1, 1): 5} stamp = Timestamp(datetime(2011, 1, 1)) self.assertEqual(d[stamp], 5) def test_timestamp_compare_scalars(self): # case where ndim == 0 lhs = np.datetime64(datetime(2013, 12, 6)) rhs = Timestamp('now') nat = Timestamp('nat') ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) if pd._np_version_under1p7: # you have to convert to timestamp for this to work with numpy # scalars expected = left_f(Timestamp(lhs), rhs) # otherwise a TypeError is thrown if left not in ('eq', 'ne'): with tm.assertRaises(TypeError): left_f(lhs, rhs) else: expected = left_f(lhs, rhs) result = right_f(rhs, lhs) self.assertEqual(result, expected) expected = left_f(rhs, nat) result = right_f(nat, rhs) self.assertEqual(result, expected) def test_timestamp_compare_series(self): # make sure we can compare Timestamps on the right AND left hand side # GH4982 s = Series(date_range('20010101', periods=10), name='dates') s_nat = s.copy(deep=True) s[0] = pd.Timestamp('nat') s[3] = pd.Timestamp('nat') ops = {'lt': 'gt', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats expected = left_f(s, Timestamp('20010109')) result = right_f(Timestamp('20010109'), s) tm.assert_series_equal(result, expected) # nats expected = left_f(s, Timestamp('nat')) result = right_f(Timestamp('nat'), s) tm.assert_series_equal(result, expected) # compare to timestamp with series containing nats expected = left_f(s_nat, Timestamp('20010109')) result = right_f(Timestamp('20010109'), s_nat) tm.assert_series_equal(result, expected) # compare to nat with series containing nats expected = left_f(s_nat, Timestamp('nat')) result = right_f(Timestamp('nat'), s_nat) tm.assert_series_equal(result, expected) class TestSlicing(tm.TestCase): def test_slice_year(self): dti = DatetimeIndex(freq='B', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) result = s['2005'] expected = s[s.index.year == 2005] assert_series_equal(result, expected) df = DataFrame(np.random.rand(len(dti), 5), index=dti) result = df.ix['2005'] expected = df[df.index.year == 2005] assert_frame_equal(result, expected) rng = date_range('1/1/2000', '1/1/2010') result = rng.get_loc('2009') expected = slice(3288, 3653) self.assertEqual(result, expected) def test_slice_quarter(self): dti = DatetimeIndex(freq='D', start=datetime(2000, 6, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(len(s['2001Q1']), 90) df = DataFrame(np.random.rand(len(dti), 5), index=dti) self.assertEqual(len(df.ix['1Q01']), 90) def test_slice_month(self): dti = DatetimeIndex(freq='D', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(dti)), index=dti) self.assertEqual(len(s['2005-11']), 30) df = DataFrame(np.random.rand(len(dti), 5), index=dti) self.assertEqual(len(df.ix['2005-11']), 30) assert_series_equal(s['2005-11'], s['11-2005']) def test_partial_slice(self): rng = DatetimeIndex(freq='D', start=datetime(2005, 1, 1), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-05':'2006-02'] expected = s['20050501':'20060228'] assert_series_equal(result, expected) result = s['2005-05':] expected = s['20050501':] assert_series_equal(result, expected) result = s[:'2006-02'] expected = s[:'20060228'] assert_series_equal(result, expected) result = s['2005-1-1'] self.assertEqual(result, s.irow(0)) self.assertRaises(Exception, s.__getitem__, '2004-12-31') def test_partial_slice_daily(self): rng = DatetimeIndex(freq='H', start=datetime(2005, 1, 31), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-1-31'] assert_series_equal(result, s.ix[:24]) self.assertRaises(Exception, s.__getitem__, '2004-12-31 00') def test_partial_slice_hourly(self): rng = DatetimeIndex(freq='T', start=datetime(2005, 1, 1, 20, 0, 0), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-1-1'] assert_series_equal(result, s.ix[:60 * 4]) result = s['2005-1-1 20'] assert_series_equal(result, s.ix[:60]) self.assertEqual(s['2005-1-1 20:00'], s.ix[0]) self.assertRaises(Exception, s.__getitem__, '2004-12-31 00:15') def test_partial_slice_minutely(self): rng = DatetimeIndex(freq='S', start=datetime(2005, 1, 1, 23, 59, 0), periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['2005-1-1 23:59'] assert_series_equal(result, s.ix[:60]) result = s['2005-1-1']
assert_series_equal(result, s.ix[:60])
pandas.util.testing.assert_series_equal
import numpy as np import pandas as pd from sklearn import preprocessing from keras.layers.core import Dense, Dropout, Activation from keras.activations import linear from keras.layers.recurrent import LSTM from keras.models import Sequential from matplotlib import pyplot #read and prepare data from datafile data_file_name = "DailyDemandDataFactors.csv" data_csv = pd.read_csv(data_file_name, delimiter = ';',header=None, usecols=[3,4,5,6,7,8,9,10,11,12,13,14]) yt = data_csv[1:] data = yt data.columns = ['SumRetrait','CountTransaction','ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer','MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer'] # print (data.head(10)) pd.options.display.float_format = '{:,.0f}'.format data = data.dropna () y=data['SumRetrait'].astype(int) cols=['CountTransaction','ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer','MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer'] x=data[cols].astype(float) print("longeur de y",len(y)) print(x.head()) print(y.head()) #scaling data scaler_x = preprocessing.MinMaxScaler(feature_range =(-1, 1)) x = np.array(x).reshape ((len(x),11 )) x = scaler_x.fit_transform(x) scaler_y = preprocessing.MinMaxScaler(feature_range =(-1, 1)) y = np.array(y).reshape ((len(y), 1)) y = scaler_y.fit_transform(y) # Split train and test data train_end = 80 x_train=x[0: train_end ,] x_test=x[train_end +1: ,] y_train=y[0: train_end] y_test=y[train_end +1:] x_train=x_train.reshape(x_train.shape +(1,)) x_test=x_test.reshape(x_test.shape + (1,)) print("Data well prepared") print ('x_train shape ', x_train.shape) print ('y_train', y_train.shape) #Design the model - LSTM Network seed = 2016 np.random.seed(seed) fit1 = Sequential () fit1.add(LSTM( output_dim = 6, activation='tanh', input_shape =(11, 1))) fit1.add(Dropout(0.01)) fit1.add(Dense(output_dim =1)) fit1.add(Activation(linear)) #rmsprop or sgd batchsize = 7 fit1.compile(loss="mean_squared_error",optimizer="rmsprop") #train the model fit1.fit(x_train , y_train , batch_size = batchsize, nb_epoch =200, shuffle=False) print(fit1.summary ()) #Model error score_train = fit1.evaluate(x_train ,y_train ,batch_size =batchsize) score_test = fit1.evaluate(x_test , y_test ,batch_size =batchsize) print("in train MSE = ",round(score_train,4)) print("in test MSE = ",round(score_test ,4)) #Make prediction pred1=fit1.predict(x_test) pred1 = scaler_y.inverse_transform(np.array(pred1).reshape ((len(pred1), 1))) real_test = scaler_y.inverse_transform(np.array(y_test).reshape ((len(y_test), 1))).astype(int) # rmse = np.square(np.subtract(real_test, pred1)).mean() # print('Test RMSE: %.3f' % rmse) # serialize model to JSON model_json = fit1.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 fit1.save_weights("model.h5") print("Saved model to disk") #### # FeaturesTest = [36,95900,695,676,126700,88100,122800,768,659,741,419300] # xaa = np.array(FeaturesTest).reshape ((1,11 )) # xaa = scaler_x.fit_transform(xaa) # xaa=xaa.reshape(xaa.shape +(1,)) # tomorrowDemand = fit1.predict(xaa) # prediction = scaler_y.inverse_transform(np.array(tomorrowDemand).reshape ((len(tomorrowDemand), 1))).astype(int) # print ("la demande est: ",prediction) #### #save prediction testData = pd.DataFrame(real_test) preddData =
pd.DataFrame(pred1)
pandas.DataFrame
#!/usr/bin/env python # PROGRAM: plot_sst.py # ---------------------------------------------------------------------------------- # Version 0.18 # 19 August, 2019 # michael.taylor AT reading DOT ac DOT uk # PYTHON DEBUGGER CONTROL: #------------------------ # import os; os._exit(0) # import ipdb # ipdb.set_trace() import os.path import optparse from optparse import OptionParser import sys import numpy as np import xarray import pandas as pd from pandas import Series, DataFrame, Panel import seaborn as sns; sns.set(style="darkgrid") import datetime import matplotlib import matplotlib.pyplot as plt; plt.close("all") #import typhon #from typhon.plots import plot_bitfield #cmap = 'tab20c' # https://matplotlib.org/users/colormaps def calc_median(counts,bins): """ # ------------------------------- # CALCULATE MEDIUM FROM HISTOGRAM # ------------------------------- # M_estimated ~ L_m + [ ( N/2 - F_{m-1} ) / f_m] * c # # where, # # L_m =lower limit of the median bar # N = is the total number of observations # F_{m-1} = cumulative frequency (total number of observations) in all bars below the median bar # f_m = frequency of the median bar # c = median bar width """ M = 0 counts_cumsum = counts.cumsum() counts_half = counts_cumsum[-1]/2.0 for i in np.arange(0,bins.shape[0]-1): counts_l = counts_cumsum[i] counts_r = counts_cumsum[i+1] if (counts_half >= counts_l) & (counts_half < counts_r): c = bins[1]-bins[0] L_m = bins[i+1] F_m_minus_1 = counts_cumsum[i] f_m = counts[i+1] M = L_m + ( (counts_half - F_m_minus_1) / f_m ) * c return M def plot_n_sst(times,n_sst_q3,n_sst_q4,n_sst_q5): """ # --------------------------------------- # PLOT CUMULATIVE SST OBSERVATION DENSITY # --------------------------------------- """ ocean_area = 361900000.0 t = np.array(times, dtype=np.datetime64) years = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') / 365.0 Q3 = pd.Series(n_sst_q3, index=times).fillna(0) / ocean_area / years Q4 = pd.Series(n_sst_q4, index=times).fillna(0) / ocean_area / years Q5 = pd.Series(n_sst_q5, index=times).fillna(0) / ocean_area / years df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = df['QL=4'] + df['QL=5'] df = df.mask(np.isinf(df)) fig = plt.figure() plt.plot(times,df['QL=4 & 5'].cumsum(), drawstyle='steps') plt.plot(times,df['QL=3'].cumsum(), drawstyle='steps') plt.tick_params(labelsize=12) plt.ylabel("Observation density / $\mathrm{km^{-2} \ yr^{-1}}$", fontsize=12) title_str = ' ' + 'QL=3:max=' + "{0:.5f}".format(df['QL=3'].cumsum().max()) + ' ' + 'QL=4 & 5:max=' + "{0:.5f}".format(df['QL=4 & 5'].cumsum().max()) print(title_str) plt.legend(loc='best') plt.savefig('n_sst.pdf') # plt.savefig('n_sst.png', dpi=600) # plt.savefig('n_sst.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_n_sst_lat(lat_vec,n_sst_q3_lat,n_sst_q4_lat,n_sst_q5_lat): """ # ------------------------------------------ # PLOT SST OBSERVATION DENSITY WITH LATITUDE # ------------------------------------------ """ interpolation = np.arange(-90,90,1) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q3_lat), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q4_lat), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q5_lat), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = df['QL=4'] + df['QL=5'] df['QL=3 & 4 & 5'] = df['QL=3'] + df['QL=4'] + df['QL=5'] df = df.mask(np.isinf(df)) fig = plt.figure() plt.fill_between(interpolation, df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(interpolation, df['QL=3'], step="post", alpha=0.4) plt.plot(interpolation, df['QL=4 & 5'], drawstyle='steps-post', label='QL=4 & 5') plt.plot(interpolation, df['QL=3'], drawstyle='steps-post', label='QL=3') ax = plt.gca() ax.set_xlim([-90,90]) ticks = ax.get_xticks() ax.set_xticks(np.linspace(-90, 90, 7)) plt.tick_params(labelsize=12) plt.xlabel("Latitude / $\mathrm{\degree N}$", fontsize=12) plt.ylabel("Observation density / $\mathrm{km^{-2} \ yr^{-1}}$", fontsize=12) plt.legend(loc='best') plt.savefig('n_sst_lat.pdf') # plt.savefig('n_sst_lat.png', dpi=600) # plt.savefig('n_sst_lat.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_sst(sst_midpoints,sst_q3_hist,sst_q4_hist,sst_q5_hist): """ # ------------------------------ # PLOT HISTOGRAM OF SST + MEDIAN # ------------------------------ """ # interpolation = np.arange(260.05,319.95,0.1) # original bin midpoints i = np.arange(260,320,0.1) # bin edges n = len(i) m = 1.0 q3 = m * pd.Series(np.interp(i,sst_midpoints,sst_q3_hist), index=i) q4 = m * pd.Series(np.interp(i,sst_midpoints,sst_q4_hist), index=i) q5 = m * pd.Series(np.interp(i,sst_midpoints,sst_q5_hist), index=i) dq = pd.DataFrame({'QL=3':q3, 'QL=4':q4, 'QL=5':q5}) dq['QL=4 & 5'] = 0.5 * (dq['QL=4'] + dq['QL=5']) # dq = dq.mask(np.isinf(df)) M3 = calc_median(dq['QL=3'].values,i[0:n]) M4_5 = calc_median(dq['QL=4 & 5'].values,i[0:n]) interpolation = np.arange(260,320,1) # 10x original resolution n = len(interpolation) multiplier = 10.0 Q3 = multiplier * pd.Series(np.interp(interpolation,sst_midpoints,sst_q3_hist), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,sst_midpoints,sst_q4_hist), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,sst_midpoints,sst_q5_hist), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = 0.5 * (df['QL=4'] + df['QL=5']) # df = df.mask(np.isinf(df)) fig = plt.figure() plt.fill_between(interpolation,df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(interpolation,df['QL=3'], step="post", alpha=0.4) plt.plot(interpolation,df['QL=4 & 5'], drawstyle='steps-post') plt.plot(interpolation,df['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([260,310]) plt.tick_params(labelsize=12) plt.xlabel("SST / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ K^{-1}}$", fontsize=12) title_str = 'SST: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_sst.pdf') # plt.savefig('hist_sst.png', dpi=600) # plt.savefig('hist_sst.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_sensitivity(sensitivity_midpoints,sensitivity_q3_hist,sensitivity_q4_hist,sensitivity_q5_hist): """ # ------------------------------------------------ # PLOT HISTOGRAM OF RETRIEVAL SENSITIVITY + MEDIAN # ------------------------------------------------ """ # interpolation = np.arange(0.005,1.995,0.01) # original bin midpoints interpolation = np.arange(0,2,0.01) n = len(interpolation) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,sensitivity_midpoints,sensitivity_q3_hist), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,sensitivity_midpoints,sensitivity_q4_hist), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,sensitivity_midpoints,sensitivity_q5_hist), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = 0.5 * (df['QL=4'] + df['QL=5']) # df = df.mask(np.isinf(df)) M3 = calc_median(df['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df['QL=4 & 5'].values,interpolation[0:n]) fig = plt.figure() plt.fill_between(100.0*interpolation,df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(100.0*interpolation,df['QL=3'], step="post", alpha=0.4) plt.plot(100.0*interpolation,df['QL=4 & 5'], drawstyle='steps-post') plt.plot(100.0*interpolation,df['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([85,110]) plt.tick_params(labelsize=12) plt.xlabel("Retrieval sensitivity / $\mathrm{\%}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ {\%}^{-1} }$", fontsize=12) title_str = 'Sensitivity: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_sensitivity.pdf') # plt.savefig('hist_sensitivity.png', dpi=600) # plt.savefig('hist_sensitivity.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_total_uncertainty(total_uncertainty_midpoints,total_uncertainty_q3_hist,total_uncertainty_q4_hist,total_uncertainty_q5_hist): """ # -------------------------------------------- # PLOT HISTOGRAM OF TOTAL UNCERTAINTY + MEDIAN # -------------------------------------------- """ # interpolation = np.arange(0.005,3.995+0.01,0.01) # original bin midpoints interpolation = np.arange(0,4,0.01) n = len(interpolation) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q3_hist), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q4_hist), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q5_hist), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = 0.5 * (df['QL=4'] + df['QL=5']) # df = df.mask(np.isinf(df)) M3 = calc_median(df['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df['QL=4 & 5'].values,interpolation[0:n]) fig = plt.figure() plt.fill_between(total_uncertainty_midpoints,df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(total_uncertainty_midpoints,df['QL=3'], step="post", alpha=0.4) plt.plot(total_uncertainty_midpoints,df['QL=4 & 5'], drawstyle='steps-post') plt.plot(total_uncertainty_midpoints,df['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([0.0,1.25]) plt.tick_params(labelsize=12) plt.xlabel("Total uncertainty / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ cK^{-1}}$", fontsize=12) title_str = 'Uncertainty: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_total_uncertainty.pdf') # plt.savefig('hist_total_uncertainty.png', dpi=600) # plt.savefig('hist_total_uncertainty.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_total_uncertainty2(total_uncertainty_midpoints,total_uncertainty_q3_hist_avhrr,total_uncertainty_q4_hist_avhrr,total_uncertainty_q5_hist_avhrr,total_uncertainty_q3_hist_atsr,total_uncertainty_q4_hist_atsr,total_uncertainty_q5_hist_atsr): """ # -------------------------------------------------------------- # PLOT HISTOGRAM OF TOTAL UNCERTAINTY + MEDIAN FOR AVHRR VS ATSR # -------------------------------------------------------------- """ # interpolation = np.arange(0.005,3.995,0.01) # original bin midpoints interpolation = np.arange(0,4,0.01) n = len(interpolation) multiplier = 1.0 Q3_avhrr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q3_hist_avhrr), index=interpolation) Q4_avhrr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q4_hist_avhrr), index=interpolation) Q5_avhrr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q5_hist_avhrr), index=interpolation) df_avhrr = pd.DataFrame({'QL=3':Q3_avhrr, 'QL=4':Q4_avhrr, 'QL=5':Q5_avhrr}) # df_avhrr['QL=4 & 5'] = 0.5 * (df_avhrr['QL=4'] + df_avhrr['QL=5']) df_avhrr['QL=4 & 5'] = df_avhrr['QL=5'] # df_avhrr = df_avhrr.mask(np.isinf(df_avhrr)) Q3_atsr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q3_hist_atsr), index=interpolation) Q4_atsr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q4_hist_atsr), index=interpolation) Q5_atsr = multiplier * pd.Series(np.interp(interpolation,total_uncertainty_midpoints,total_uncertainty_q5_hist_atsr), index=interpolation) df_atsr = pd.DataFrame({'QL=3':Q3_atsr, 'QL=4':Q4_atsr, 'QL=5':Q5_atsr}) df_atsr['QL=4 & 5'] = 0.5 * (df_atsr['QL=4'] + df_atsr['QL=5']) # df_atsr = df_atsr.mask(np.isinf(df_atsr)) fig = plt.figure() plt.fill_between(total_uncertainty_midpoints,df_avhrr['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(total_uncertainty_midpoints,df_avhrr['QL=3'], step="post", alpha=0.4) plt.plot(total_uncertainty_midpoints,df_avhrr['QL=4 & 5'], drawstyle='steps-post') plt.plot(total_uncertainty_midpoints,df_avhrr['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([0.0,1.25]) plt.tick_params(labelsize=12) plt.xlabel("Total uncertainty / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ cK^{-1}}$", fontsize=12) M3 = calc_median(df_avhrr['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df_avhrr['QL=4 & 5'].values,interpolation[0:n]) title_str = 'AVHRR: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_total_uncertainty_avhrr.pdf') # plt.savefig('hist_total_uncertainty_avhrr.png', dpi=600) # plt.savefig('hist_total_uncertainty_avhrr.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') fig = plt.figure() plt.fill_between(total_uncertainty_midpoints,df_atsr['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(total_uncertainty_midpoints,df_atsr['QL=3'], step="post", alpha=0.4) plt.plot(total_uncertainty_midpoints,df_atsr['QL=4 & 5'], drawstyle='steps-post') plt.plot(total_uncertainty_midpoints,df_atsr['QL=3'], drawstyle='steps-post') ax = plt.gca() ax.set_xlim([0.0,1.25]) plt.tick_params(labelsize=12) plt.xlabel("Total uncertainty / $\mathrm{K}$", fontsize=12) plt.ylabel("Frequency / $\mathrm{\% \ cK^{-1}}$", fontsize=12) M3 = calc_median(df_atsr['QL=3'].values,interpolation[0:n]) M4_5 = calc_median(df_atsr['QL=4 & 5'].values,interpolation[0:n]) title_str = 'ATSR: QL=3:median=' + "{0:.5f}".format(M3) + ' ' + 'QL=4 & 5:median=' + "{0:.5f}".format(M4_5) print(title_str) plt.legend(loc='best') plt.savefig('hist_total_uncertainty_atsr.pdf') # plt.savefig('hist_total_uncertainty_atsr.png', dpi=600) # plt.savefig('hist_total_uncertainty_atsr.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def calc_n_sst_timeseries(satellites): """ # --------------------------------------------------------------- # CALC MEAN OF TIMESERIES OF DAILY OBSERVATION DENSITY PER SENSOR # --------------------------------------------------------------- """ ocean_area = 361900000.0 labels = ['ATSR1','ATSR2','AATSR','NOAA07','NOAA09','NOAA11','NOAA12','NOAA14','NOAA15','NOAA16','NOAA17','NOAA18','NOAA19','METOPA'] satellites = ['ATSR1','ATSR2','AATSR','AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] df_all = pd.DataFrame() for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3, 'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] df_all = df_all.append(df,ignore_index=True) satellites_avhrr = ['AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] df_avhrr = pd.DataFrame() for i in range(0,len(satellites_avhrr)): filename = satellites_avhrr[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3, 'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] df_avhrr = df_avhrr.append(df,ignore_index=True) satellites_atsr = ['AATSR','ATSR1','ATSR2'] df_atsr = pd.DataFrame() for i in range(0,len(satellites_atsr)): filename = satellites_atsr[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3, 'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] df_atsr = df_atsr.append(df,ignore_index=True) return df_all, df_avhrr, df_atsr def plot_n_sst_timeseries(satellites): """ # ------------------------------------------------------- # PLOT TIMESERIES OF DAILY OBSERVATION DENSITY PER SENSOR # ------------------------------------------------------- """ ocean_area = 361900000.0 labels = ['ATSR1','ATSR2','AATSR','NOAA07','NOAA09','NOAA11','NOAA12','NOAA14','NOAA15','NOAA16','NOAA17','NOAA18','NOAA19','METOPA'] satellites = ['ATSR1','ATSR2','AATSR','AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) lab = [] ncolors = len(satellites) ax1.set_prop_cycle('color',[plt.cm.gnuplot2(j) for j in np.linspace(0, 1, ncolors)]) for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q4_duplicates = pd.Series(ds['n_sst_q4'].values[idx], index=t) Q5_duplicates = pd.Series(ds['n_sst_q5'].values[idx], index=t) n_sst_q4 = 365.0 * Q4_duplicates.groupby(Q4_duplicates.index).sum() / ocean_area n_sst_q5 = 365.0 * Q5_duplicates.groupby(Q5_duplicates.index).sum() / ocean_area df = DataFrame({'Q4' : n_sst_q4, 'Q5' : n_sst_q5}) df['Sum'] = df['Q4'] + df['Q5'] # df['Sum'] = df['Q4'].fillna(0) + df['Q5'].fillna(0) # df['Sum_mean'] = df['Sum'].resample("1d").sum().fillna(0).rolling(window=31, min_periods=1).median() # df['Sum_mean'].plot(ax=ax1) lab.append(labels[i]) ax1.plot(times, df['Sum'], '.', markersize=0.2) ax1.set_ylim([0,18]) print(labels[i] + "," + str(df['Sum'].mean()) + "," + str(df['Sum'].shape[0])) plt.tick_params(labelsize=12) title_str = 'QL=4 & 5' ax1.set_title(title_str, fontsize=10) lab = [] ncolors = len(satellites) ax2.set_prop_cycle('color',[plt.cm.gnuplot2(j) for j in np.linspace(0, 1, ncolors)]) for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q3_duplicates = pd.Series(ds['n_sst_q3'].values[idx], index=t) n_sst_q3 = 365.0 * Q3_duplicates.groupby(Q3_duplicates.index).sum() / ocean_area df = DataFrame({'Q3' : n_sst_q3}) # df['Q3_mean'] = df['Q3'].resample("1d").sum().rolling(window=31, min_periods=1).median() # df['Q3_mean'].plot(ax=ax2) lab.append(labels[i]) ax2.plot(times, df['Q3'], '.', markersize=0.2) ax2.set_ylim([0,18]) print(labels[i] + "," + str(df['Q3'].mean()) + "," + str(df['Q3'].shape[0])) plt.tick_params(labelsize=12) title_str = 'QL=3' ax2.set_title(title_str, fontsize=10) fig.legend(lab, fontsize=8, loc=7, markerscale=20, scatterpoints=5) fig.subplots_adjust(right=0.8) fig.text(0.01, 0.5, 'Observation density / $\mathrm{km^{-2} \ yr^{-1}}$', va='center', rotation='vertical') plt.savefig('n_sst_timeseries.pdf') # plt.savefig('n_sst_timeseries.png', dpi=600) # plt.savefig('n_sst_timeseries.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_n_sst_boxplots(satellites): """ # -------------------------------------------------------------- # PLOT YEARLY BOXPLOTS FROM DAILY OBSERVATION DENSITY PER SENSOR # -------------------------------------------------------------- """ ocean_area = 361900000.0 labels = ['ATSR1','ATSR2','AATSR','NOAA07','NOAA09','NOAA11','NOAA12','NOAA14','NOAA15','NOAA16','NOAA17','NOAA18','NOAA19','METOPA'] satellites = ['ATSR1','ATSR2','AATSR','AVHRR07_G','AVHRR09_G','AVHRR11_G','AVHRR12_G','AVHRR14_G','AVHRR15_G','AVHRR16_G','AVHRR17_G','AVHRR18_G','AVHRR19_G','AVHRRMTA_G'] for i in range(0,len(satellites)): filename = satellites[i] + '_summary.nc' ds = xarray.open_dataset(filename) dates = ds['time'] idx = np.argsort(dates, axis=0) t = np.array(dates)[idx] days = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') years = days/365.0 times_duplicates = pd.Series(t) times = times_duplicates.drop_duplicates() Q4_duplicates =
pd.Series(ds['n_sst_q4'].values[idx], index=t)
pandas.Series
import unittest import pandas as pd import pandas.util.testing as pt import tia.util.fmt as fmt def tof(astr): return float(astr.replace(",", "")) class TestFormat(unittest.TestCase): def ae(self, expected, fct, value, **kwargs): cb = fct(**kwargs) actual = cb(value) self.assertEqual(expected, actual) def test_default_formats(self): B = float("-1,250,500,880.76".replace(",", "")) M = B / 1000.0 k = M / 1000.0 p = k / 1000000.0 tests = [ (B, "$(1.3B)", fmt.BillionDollarsFormatter), (B, "(1.3B)", fmt.BillionsFormatter), (M, "$(1.3M)", fmt.MillionDollarsFormatter), (M, "(1.3M)", fmt.MillionsFormatter), (k, "$(1.3k)", fmt.ThousandDollarsFormatter), (k, "(1.3k)", fmt.ThousandsFormatter), (k, "(1,250.50)", fmt.FloatFormatter), (k, "(1,251)", fmt.IntFormatter), # Floats (k, "-1,251", fmt.new_int_formatter(commas=1, parens=False)), (k, "-1251", fmt.new_int_formatter(commas=0, parens=False)), (abs(k), "1251", fmt.new_int_formatter(commas=0, parens=False)), (abs(k), "1,251", fmt.new_int_formatter(commas=1)), (str(k), "-1,251", fmt.new_int_formatter(commas=1, coerce=True, parens=0)), # Ints (k, "-1,251", fmt.new_int_formatter(commas=1, parens=False)), (k, "-1251", fmt.new_int_formatter(commas=0, parens=False)), (abs(k), "1251", fmt.new_int_formatter(commas=0, parens=False)), (abs(k), "1,251", fmt.new_int_formatter(commas=1)), # Percents (0.12433, "12.4%", fmt.new_percent_formatter(commas=1, precision=1)), (0.12433, "12.433%", fmt.new_percent_formatter(commas=1, precision=3)), ( -0.12433, "-12.4%", fmt.new_percent_formatter(commas=1, parens=0, precision=1), ), ( -0.12433, "(12.4%)", fmt.new_percent_formatter(commas=1, parens=1, precision=1), ), ] for val, expected, fct in tests: actual = fct(val) self.assertEqual(expected, actual) # Test if it were a list actual = fct([val] * 5) self.assertEqual([expected] * 5, actual) # Test if it were a series actual = fct(pd.Series([val] * 5)) pt.assert_series_equal(pd.Series([expected] * 5), actual) # Test if it were a DataFrame actual = fct(pd.DataFrame({"a": [val] * 5, "b": [val] * 5})) pt.assert_frame_equal( pd.DataFrame({"a": [expected] * 5, "b": [expected] * 5}), actual ) def test_fmt_datetime(self): self.assertEqual( fmt.new_datetime_formatter("%Y-%m")(pd.to_datetime("1/1/2013")), "2013-01" ) def test_guess_formatter(self): for n, t in (3, "k"), (6, "M"), (9, "B"): m = 10 ** n s =
pd.Series([2.1 * m, -20.1 * m, 200.1 * m])
pandas.Series
# coding: utf-8 # author: wamhanwan """Tushare API""" import tushare as ts import pandas as pd import numpy as np from time import sleep from FactorLib.utils.tool_funcs import get_members_of_date from functools import update_wrapper _token = '6135b90bf40bb5446ef2fe7aa20a9467ad10023eda97234739743f46' SHEXG = 'SSE' # 上交所代码 SZEXG = 'SZSE' # 深交所代码 ts.set_token(_token) pro_api = ts.pro_api() def set_call_limit(max_times=60, sleep_seconds=60): if isinstance(max_times, int): if max_times < 0: max_times = 1 else: raise TypeError("Expected max_times to be an integer") def decorating_function(user_function): wrapper = _time_limit_wrapper(user_function, max_times, sleep_seconds) return update_wrapper(wrapper, user_function) return decorating_function def _time_limit_wrapper(user_function, max_times, sleep_seconds): times = 0 def wrapper(*args, **kwargs): nonlocal times if times == max_times: print(f"sleep {sleep_seconds} sceonds") sleep(sleep_seconds) times = 0 times += 1 return user_function(*args, **kwargs) return wrapper class TushareDB(object): _instance = None def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = object.__new__(cls) return cls._instance return cls._instance def __init__(self): self._api = ts self._pro_api = pro_api self._token = _token @classmethod def get_instance(cls): return TushareDB() def run_api(self, api_name, *args, **kwargs): return getattr(self._pro_api, api_name)(*args, **kwargs) def format_date(self, data, column=None): data[column] = pd.to_datetime(data[column], format='%Y%m%d') return data def stock_basic_get(self, list_status=None, exchange=None, is_hs=None, fields=None): """基础数据-股票列表(只能取最新数据) Parameters: ---------- list_status: str 上市状态 L上市 D退市 P暂停上市 exchange: str 交易所 SHEXG上交所 SZEXG深交所 is_hs: str 是否深港通标的 N否 H沪股通 S深股通 Fields: ------ symbol 股票代码(ticker) name 股票简称 industry 行业 list_status 上市状态 list_date 上市日期 delist_date 退市日期 is_hs 是否深港通标的 """ data1 = self.run_api('stock_basic', list_status='L', exchange=exchange, is_hs=is_hs, fields=fields) data2 = self.run_api('stock_basic', list_status='P', exchange=exchange, is_hs=is_hs, fields=fields) data3 = self.run_api('stock_basic', list_status='D', exchange=exchange, is_hs=is_hs, fields=fields) l = [data1,data2,data3] if list_status: status_index =[['L', 'P', 'D'].index(x) for x in ','.split(list_status)] return pd.concat([l[i] for i in status_index]).sort_values('symbol') return pd.concat(l).sort_values('symbol') def stock_st_get(self, date): """A股戴帽摘帽 Paramters: --------- date: str 日期 YYYYMMDD Returns: ------ DataFrame: IDs name start_date end_date """ data = self.run_api('namechange', end_date=date) data = data[data['name'].str.contains('ST')] data = data.fillna({'end_date': '21001231'}) data = data[(data['start_date']<=date)&(data['end_date']>=date)] data = data[~data['ts_code'].duplicated(keep='last')] data['IDs'] = data['ts_code'].str[:6] return data def stock_onlist_get(self, date): """A股特定日期的股票列表 Return ------ DataFrame: symbol name list_date delist_date """ all_stocks = self.stock_basic_get( fields='symbol,name,list_date,delist_date' ).fillna({'delist_date':'21001231'}) indices = (all_stocks['list_date']<=date)&(all_stocks['delist_date']>date) return all_stocks[indices] def index_weight_get(self, index_code, date): """A股指数成分股权重 Parameters: ----------- index_code: str 指数代码 399300.SZ沪深300 000905.SH中证500 000906.SH中证800 date: str 日期 YYYYMMDD Returns: -------- DataFrame index_code con_code trade_date weight """ start_date = (pd.to_datetime(date)-pd.Timedelta(days=30)).strftime('%Y%m%d') data = self.run_api('index_weight',index_code=index_code, start_date=start_date, end_date=date) data = data[data['trade_date']==data['trade_date'].max()] data['index_code'] = data['index_code'].str[:6] data['con_code'] = data['con_code'].str[:6] data['trade_date'] = date data['weight'] /= 100.0 return data def quota_get(self, start_date, end_date, ticker=None, adj=None, freq='D', ma=None, asset='E'): """行情通用接口 Paramters: ---------- ticker: str 证券代码, 必填且为单只证券代码 start_date: str 开始日期 YYYYMMDD end_date: str 结束日期 YYYYMMDD adj: str 复权类型 qfq前复权 hfq后复权 freq:str 数据频率 1\5\15\30\60min D ma: int 均线数值 asset: str 资产类型 E股票 I指数 FT期货 FD基金 O期权 CB可转债 Returns: -------- DataFrame: ts_code, trade_date ... """ if ticker and asset=='E': ts_code = ticker+'.SH' if ticker[0]=='6' else ticker+'.SZ' elif ticker: ts_code = ticker else: ts_code = None data = self._api.pro_bar(ts_code=ts_code, start_date=start_date, end_date=end_date, freq=freq, adj=adj, ma=ma, asset=asset, adjfactor=True) if data is None: return pd.DataFrame() if not data.empty: data['trade_date'] = pd.to_datetime(data['trade_date'], format='%Y%m%d') return data def stock_daily_basic_get(self, trade_date=None, ticker=None, start_date=None, end_date=None, fields=None): """股票每日行情指标 Parameters: ---------- trade_date: str 交易日期 ticker: str 股票代码 与交易日期必须至少一个参数非空。 start_date: str 开始日期 end_date: str 结束日期 fields: str 返回字段 ts_code股票代码 trade_date交易日期 close当日收盘价 turnover_rate换手率(%) turnover_rate_f换手率(自由流通股) volume_ratio量比 pe市盈率 pe_ttm市盈率(TTM) pb市净率 ps市销率 ps_ttm市销率(TTM) dv_ratio股息率 dv_ttm股息率(TTM) total_share总股本(万股) float_share流通股本(万) free_share自由流通股本(万) total_mv总市值(万) circ_mv流通市值(万) Returns: ------- DataFrame: ts_code, trade_date ... """ if ticker: ticker = ticker+'.SH' if ticker[0]=='6' else ticker+'.SZ' data = self.run_api('daily_basic', ts_code=ticker, trade_date=trade_date, start_date=start_date, end_date=end_date, fields=fields) data['trade_date'] = pd.to_datetime(data['trade_date'], format='%Y%m%d') return data def stock_daily_price_get(self, ticker=None, trade_date=None, start_date=None, end_date=None, fields=None): """ A股日行情数据 Parameters: ----------- trade_date: str 交易日期 ticker: str 股票代码 与交易日期必须至少一个参数非空。 start_date: str 开始日期 end_date: str 结束日期 fields: str 返回字段 ts_code股票代码 trade_date交易日期 close当日收盘价 open开盘价 high最高价 low最低价 pre_close前收盘价 change涨跌 pct_chg涨跌幅(未复权) vol成交量(手) amount成交额(千元) Returns: ------- DataFrame: ts_code, trade_date ... """ if ticker: ticker = ticker+'.SH' if ticker[0]=='6' else ticker+'.SZ' data = self.run_api('daily', ts_code=ticker, trade_date=trade_date, start_date=start_date, end_date=end_date, fields=fields) data['trade_date'] = pd.to_datetime(data['trade_date'], format='%Y%m%d') return data def stock_monthly_price_get(self, ticker='', trade_date='', start_date='', end_date='', fields=None): """ A股月行情数据 Parameters: ----------- trade_date: str 交易日期 ticker: str 股票代码 与交易日期必须至少一个参数非空。 start_date: str 开始日期 end_date: str 结束日期 fields: str 返回字段 ts_code股票代码 trade_date交易日期 close当日收盘价 open开盘价 high最高价 low最低价 pre_close前收盘价 change涨跌 pct_chg涨跌幅(未复权) vol成交量(手) amount成交额(千元) """ if ticker: ticker = ticker+'.SH' if ticker[0]=='6' else ticker+'.SZ' data = self.run_api('monthly', ts_code=ticker, trade_date=trade_date, start_date=start_date, end_date=end_date, fields=fields) data['trade_date'] = pd.to_datetime(data['trade_date'], format='%Y%m%d') return data def option_basic_get(self, exchange='SSE', fields=None): """ 期权合约信息 :param exchange: str 交易所 SSE上交所 SZSE深交所 :param fields: str ts_codeTS代码 name合约名称 per_unit合约单位 opt_code标准合约代码 opt_type合约类型 call_put 期权类型 exercise_price行权价 s_month结算价格 maturity_date到期日期 list_price挂牌基准价 list_date开始交易日期 delist_date最后交割日期 quote_unit报价单位 :return: DataFrame ts_code, name, opt_code, ... """ data = self.run_api('opt_basic', exchange=exchange) if fields: data = data[fields.strip().split(',')] return data def option_daily_price_get(self, trade_date=None, ticker=None, start_date=None, end_date=None, fields=None, exchange=None): """ 期权日行情数据(单次最大1000行) :param trade_date: str 交易日期 YYYYMMDD :param ticker: str 证券代码 深交所300ETF期权以9开头;上交所期权以1开头; :param start_date: str 起始日期 :param end_date: str 结束日期 :param exchange: str 交易所 上交所SSE、中金所CFFEX、深交所SZSE、上期所SHFE、CZCE郑商所、DCE大商所 :param fields: str 字段名称 ts_code合约代码 trade_date交易日期 close当日收盘价 open开盘价 high最高价 low最低价 pre_close前收盘价 pre_settle昨结算价 settle结算价 vol成交量(手) amount成交金额(万元) oi持仓量(手) :return: DataFrame ts_code, trade_date, ... """ if ticker and ticker.find('.')<0: if ticker[0] == '1': ticker = ticker+'.SH' elif ticker[0] == '9': ticker = ticker+'.SZ' elif ticker[:2] == 'IO': ticker = ticker + '.CFX' data = self.run_api('opt_daily', exchange=exchange, ts_code=ticker, trade_date=trade_date, start_date=start_date, end_date=end_date) data['vol'] *= 10000 if fields: data = data[fields.strip().split(',')] data['trade_date'] = pd.to_datetime(data['trade_date'], format='%Y%m%d') return data def fund_basic_get(self, market=None, fields=None): """ 公募基金数据基本信息 :param market: str 交易市场 E:场内 O场外 :param fields: str 返回字段 ts_code基金代码 name基金简称 management管理人 fund_type投资类型 found_date成立日期 due_date到期日期 list_date上市日期 issue_date发行日期 delist_date退市日期 issue_amount发行份额 invest_type投资风格 type基金类型 benchmark基准 """ data = self.run_api('fund_basic', market=market) if fields: data = data[fields.strip().split(',')] return data def fund_portfolio_get(self, ts_code, start_period=None, end_period=None, fields=None): """ 公募基金持仓信息 Parameters ---------- ts_code : str 基金代码(带后缀) start_period: str 起始报告期 end_period: str 终止报告期 fields: str 返回字段 ts_code基金代码 ann_date公告日期 end_date截止日期 symbol股票代码 mkv持有股票市值(元) amount持有股票数量(股) stk_mkt_ratio占股票市值比 stk_float_ratio占流通股本比 Returns ------- DataFrame ts_code end_date ... """ data = self.run_api('fund_portfolio', ts_code=ts_code) if fields: data = data[fields.strip().split(',')] if start_period: data = data[data['end_date'] >= start_period] if end_period: data = data[data['end_date'] <= end_period] return data def fund_nav_get(self, ts_code=None, end_date=None, market=None, fields=None): """ 公募基金净值数据 Parameters: ----------- ts_code: str 基金代码(带后缀) end_date: str 净值日期YYYYMMDD market: str 交易市场 E:场内 O场外 fields: str ts_code基金代码 end_date截止日期 unit_nav单位净值 accum_div累计分红 net_asset资产净值 total_netasset合计资产净值 adj_nav复权单位净值 returns ------- DataFrame: ts_code end_date ... """ data = self.run_api('fund_nav', ts_code = ts_code, end_date = end_date, market = market) if fields is not None: data = data[fields.strip().split(',')] data['end_date'] = pd.to_datetime(data['end_date'], format='%Y%m%d') return data def fund_daily_price_get(self, ts_code=None, trade_date=None, start_date=None, end_date=None, fields=None): """ 基金日行情数据(每次最多返回800行数据) Parameters: ----------- ts_code: str 基金代码(带后缀) start_date: str 开始日期YYYYMMDD end_date: str 结束日期 trade_date: str 交易日期 fields: str 详见:https://tushare.pro/document/2?doc_id=127 returns: ------- DataFrame ts_code, trade_date.... """ data = self.run_api('fund_daily', ts_code = ts_code, start_date = start_date, end_date = end_date, trade_date = trade_date ) if fields is not None: data = data[fields.strip().split(',')] data['trade_date'] = pd.to_datetime(data['trade_date'], format='%Y%m%d') return data def fund_manager_get(self, ts_code, fields=None): """ 基金经理任职信息 Parameters: ----------- ts_code: str 基金代码(带后缀) fields: str 返回字段,以逗号分隔。 具体详见:https://tushare.pro/document/2?doc_id=208 """ data = self.run_api('fund_manager', ts_code = ts_code) if fields: data = data[fields.strip().split(',')] return data def income_sheet(self, ticker=None, start_period=None, end_period=None, period=None, report_type=None, fields=None): """ A股利润表 Parameters: ----------- ticker: str 股票代码 start_period: str 起始报告期 end_period: str 结束报告期 period: str 报告期 report_type: str 报告类型 1合并报表 2单季合并 3调整单季合并表 4调整合并报表 5调整前合并报表 6母公司报表 7母公司单季表 8母公司调整单季表 9母公司调整表 10母公司调整前报表 11调整前合并报表 12母公司调整前报表 fields: str 返回字段,字段太多,参照:https://tushare.pro/document/2?doc_id=33 """ if ticker: ticker = ticker + '.SH' if ticker[0] == '6' else ticker + '.SZ' if start_period is not None and end_period is not None: periods = pd.date_range(start_period, end_period, freq='1Q').strftime("%Y%m%d") else: periods = [period] df = [] for p in periods: data = self.run_api('vip_income', ts_code=ticker, period=p, report_type=report_type, fields=fields) df.append(df) data =
pd.concat(df)
pandas.concat
def ConvMAT2CSV(rootDir, codeDir): """ Written by <NAME> and <NAME> to work with macOS/Unix-based systems Purpose: Extract data from .mat files and format into DataFrames Export as csv file Inputs: PythonData.mat files, animalNotes_baselines.mat file Outputs: .csv files Last Revised: April 2nd, 2019 """ from scipy.io import loadmat import numpy as np import pandas as pd import sys import os sys.path.append(codeDir) from PreProcData import ResampFiltData from GraphData import GraphData # Load the baseline file baseFileStr = ("baselineInfo.mat") baseData = loadmat(rootDir + baseFileStr) # Build list of keys and values for the baseline data baseVals = baseData['animalNotes_baselines'][0,0] baseKeys = baseData['animalNotes_baselines'][0,0].dtype.descr baseResultsArray =
pd.DataFrame()
pandas.DataFrame
"""Yahoo Finance view""" __docformat__ = "numpy" import os import pandas as pd from matplotlib import pyplot as plt from tabulate import tabulate from gamestonk_terminal.etf import yfinance_model from gamestonk_terminal import feature_flags as gtff from gamestonk_terminal.config_plot import PLOT_DPI from gamestonk_terminal.helper_funcs import plot_autoscale, export_data from gamestonk_terminal.rich_config import console def display_etf_weightings( name: str, raw: bool = False, min_pct_to_display: float = 5, export: str = "", ): """Display sector weightings allocation of ETF. [Source: Yahoo Finance] Parameters ---------- name: str ETF name raw: bool Display sector weighting allocation min_pct_to_display: float Minimum percentage to display sector export: str Type of format to export data """ sectors = yfinance_model.get_etf_sector_weightings(name) if not sectors: console.print("No data was found for that ETF\n") return holdings =
pd.DataFrame(sectors, index=[0])
pandas.DataFrame
import datetime as dt import pandas as pd from .. import AShareDataReader, DateUtils, DBInterface, utils from ..config import get_db_interface class IndustryComparison(object): def __init__(self, index: str, industry_provider: str, industry_level: int, db_interface: DBInterface = None): if not db_interface: db_interface = get_db_interface() self.data_reader = AShareDataReader(db_interface) self.industry_info = self.data_reader.industry(industry_provider, industry_level) self.index = index def holding_comparison(self, holding: pd.Series): holding_ratio = self._holding_to_ratio(holding) return self.industry_ratio_comparison(holding_ratio) def industry_ratio_comparison(self, holding_ratio: pd.Series): date = holding_ratio.index.get_level_values('DateTime').unique()[0] industry_info = self.industry_info.get_data(dates=date).stack() industry_info.name = 'industry' index_comp = self.data_reader.index_constitute.get_data(index_ticker=self.index, date=date) holding_industry = self._industry_ratio(holding_ratio, industry_info) * 100 index_industry = self._industry_ratio(index_comp, industry_info) diff_df = pd.concat([holding_industry, index_industry], axis=1, sort=True).fillna(0) return diff_df.iloc[:, 0] - diff_df.iloc[:, 1] def _holding_to_ratio(self, holding: pd.Series): date = holding.index.get_level_values('DateTime').unique()[0] price_info = self.data_reader.stock_close.get_data(dates=[date]).stack() price_info.name = 'close' tmp = holding.join(price_info, how='inner') cap = tmp['quantity'] * tmp['close'] ratio = cap / cap.sum() ratio.name = 'ratio' return ratio @staticmethod def _industry_ratio(ratio: pd.Series, industry_info: pd.Series): tmp =
pd.concat([ratio, industry_info], join='inner', axis=1)
pandas.concat
# -------------- #Importing header files import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #Code starts here #Code ends here data=pd.read_csv(path) #Plotting histogram of Rating data['Rating'].plot(kind='hist') plt.show() #Subsetting the dataframe based on `Rating` column data=data[data['Rating']<=5] #Plotting histogram of Rating data['Rating'].plot(kind='hist') # -------------- # code starts here # code ends here total_null=data.isnull().sum() total_null k=[] for i in range (0,len(total_null)): s=(total_null[i]/len(data))*100 k.append(s) k percent_null=pd.Series(k,total_null.index) percent_null missing_data=pd.DataFrame({'Total':total_null,'Percent':percent_null}) missing_data data=data.dropna() total_null_1=data.isnull().sum() total_null_1 r=[] for i in range (0,len(total_null_1)): t=(total_null_1[i]/len(data))*100 r.append(t) r percent_null_1=pd.Series(r,total_null_1.index) percent_null_1 missing_data_1=
pd.DataFrame({'Total':total_null_1,'Percent':percent_null_1})
pandas.DataFrame
import os import re import warnings import matplotlib.pyplot as plt from numpy import array, isnan import pandas as pd import pyflux as pf from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import kpss warnings.simplefilter("ignore") from datetime import datetime def adf_test(timeseries): # print('Results of Dickey-Fuller Test:') dftest = adfuller(timeseries, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value (%s)' % key] = value # print(dfoutput) def kpss_test(timeseries): # print('Results of KPSS Test:') kpsstest = kpss(timeseries, regression='c') kpss_output = pd.Series(kpsstest[0:3], index=['Test Statistic', 'p-value', 'Lags Used']) for key, value in kpsstest[3].items(): kpss_output['Critical Value (%s)' % key] = value # print(kpss_output) macine_list = ["ibmq_16_melbourne.csv","ibmq_ourense.csv","ibmq_vigo.csv"] for machines in macine_list: date_analysis = datetime.now().strftime("%Y_%m_%d-%I_%M_%S_%p") machine_name="" path = ".\\Log\\" dirs = os.listdir(path)
pd.set_option('display.max_columns', None)
pandas.set_option
""" Base and utility classes for pandas objects. """ import textwrap import warnings import numpy as np import pandas._libs.lib as lib import pandas.compat as compat from pandas.compat import PYPY, OrderedDict, builtins, map, range from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( is_datetime64tz_dtype, is_datetimelike, is_extension_array_dtype, is_extension_type, is_list_like, is_object_dtype, is_scalar) from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries from pandas.core.dtypes.missing import isna from pandas.core import algorithms, common as com from pandas.core.accessor import DirNamesMixin import pandas.core.nanops as nanops _shared_docs = dict() _indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='', unique='IndexOpsMixin', duplicated='IndexOpsMixin') class StringMixin(object): """implements string methods so long as object defines a `__unicode__` method. Handles Python2/3 compatibility transparently. """ # side note - this could be made into a metaclass if more than one # object needs # ---------------------------------------------------------------------- # Formatting def __unicode__(self): raise AbstractMethodError(self) def __str__(self): """ Return a string representation for a particular Object Invoked by str(df) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from pandas.core.config import get_option encoding = get_option("display.encoding") return self.__unicode__().encode(encoding, 'replace') def __repr__(self): """ Return a string representation for a particular object. Yields Bytestring in Py2, Unicode String in py3. """ return str(self) class PandasObject(StringMixin, DirNamesMixin): """baseclass for various pandas objects""" @property def _constructor(self): """class constructor (for this class it's just `__class__`""" return self.__class__ def __unicode__(self): """ Return a string representation for a particular object. Invoked by unicode(obj) in py2 only. Yields a Unicode String in both py2/py3. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """ if getattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for an object that returns either a value or Series of values """ if hasattr(self, 'memory_usage'): mem = self.memory_usage(deep=True) if not is_scalar(mem): mem = mem.sum() return int(mem) # no memory_usage attribute, so fall back to # object's 'sizeof' return super(PandasObject, self).__sizeof__() class NoNewAttributesMixin(object): """Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a call to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on a accessor (`Series.cat/.str/.dt`). If you really want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """Prevents setting additional attributes""" object.__setattr__(self, "__frozen", True) # prevent adding any attribute via s.xxx.new_attribute = ... def __setattr__(self, key, value): # _cache is used by a decorator # We need to check both 1.) cls.__dict__ and 2.) getattr(self, key) # because # 1.) getattr is false for attributes that raise errors # 2.) cls.__dict__ doesn't traverse into base classes if (getattr(self, "__frozen", False) and not (key == "_cache" or key in type(self).__dict__ or getattr(self, key, None) is not None)): raise AttributeError("You cannot add any new attribute '{key}'". format(key=key)) object.__setattr__(self, key, value) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass class SelectionMixin(object): """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection = None _internal_names = ['_cache', '__setstate__'] _internal_names_set = set(_internal_names) _builtin_table = OrderedDict(( (builtins.sum, np.sum), (builtins.max, np.max), (builtins.min, np.min), )) _cython_table = OrderedDict(( (builtins.sum, 'sum'), (builtins.max, 'max'), (builtins.min, 'min'), (np.all, 'all'), (np.any, 'any'), (np.sum, 'sum'), (np.nansum, 'sum'), (np.mean, 'mean'), (np.nanmean, 'mean'), (np.prod, 'prod'), (np.nanprod, 'prod'), (np.std, 'std'), (np.nanstd, 'std'), (np.var, 'var'), (np.nanvar, 'var'), (np.median, 'median'), (np.nanmedian, 'median'), (np.max, 'max'), (np.nanmax, 'max'), (np.min, 'min'), (np.nanmin, 'min'), (np.cumprod, 'cumprod'), (np.nancumprod, 'cumprod'), (np.cumsum, 'cumsum'), (np.nancumsum, 'cumsum'), )) @property def _selection_name(self): """ return a name for myself; this would ideally be called the 'name' property, but we cannot conflict with the Series.name property which can be set """ if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, ABCSeries): return self.obj else: return self.obj[self._selection] @cache_readonly def ndim(self): return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): if self._selection is not None and isinstance(self.obj, ABCDataFrame): return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj def __getitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .format(selection=self._selection)) if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .format(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not getattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert isinstance(arg, compat.string_types) f = getattr(self, arg, None) if f is not None: if callable(f): return f(*args, **kwargs) # people may try to aggregate on a non-callable attribute # but don't let them think they can pass args to it assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = getattr(np, arg, None) if f is not None: return f(self, *args, **kwargs) raise ValueError("{arg} is an unknown string function".format(arg=arg)) def _aggregate(self, arg, *args, **kwargs): """ provide an implementation for the aggregators Parameters ---------- arg : string, dict, function *args : args to pass on to the function **kwargs : kwargs to pass on to the function Returns ------- tuple of result, how Notes ----- how can be a string describe the required post-processing, or None if not required """ is_aggregator = lambda x: isinstance(x, (list, tuple, dict)) is_nested_renamer = False _axis = kwargs.pop('_axis', None) if _axis is None: _axis = getattr(self, 'axis', 0) _level = kwargs.pop('_level', None) if isinstance(arg, compat.string_types): return self._try_aggregate_string_function(arg, *args, **kwargs), None if isinstance(arg, dict): # aggregate based on the passed dict if _axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj def nested_renaming_depr(level=4): # deprecation of nested renaming # GH 15931 warnings.warn( ("using a dict with renaming " "is deprecated and will be removed in a future " "version"), FutureWarning, stacklevel=level) # if we have a dict of any non-scalars # eg. {'A' : ['mean']}, normalize all to # be list-likes if any(is_aggregator(x) for x in compat.itervalues(arg)): new_arg = compat.OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v # the keys must be in the columns # for ndim=2, or renamers for ndim=1 # ok for now, but deprecated # {'A': { 'ra': 'mean' }} # {'A': { 'ra': ['mean'] }} # {'ra': ['mean']} # not ok # {'ra' : { 'A' : 'mean' }} if isinstance(v, dict): is_nested_renamer = True if k not in obj.columns: msg = ('cannot perform renaming for {key} with a ' 'nested dictionary').format(key=k) raise SpecificationError(msg) nested_renaming_depr(4 + (_level or 0)) elif isinstance(obj, ABCSeries): nested_renaming_depr() elif (isinstance(obj, ABCDataFrame) and k not in obj.columns): raise KeyError( "Column '{col}' does not exist!".format(col=k)) arg = new_arg else: # deprecation of renaming keys # GH 15931 keys = list(compat.iterkeys(arg)) if (isinstance(obj, ABCDataFrame) and len(obj.columns.intersection(keys)) != len(keys)): nested_renaming_depr() from pandas.core.reshape.concat import concat def _agg_1dim(name, how, subset=None): """ aggregate a 1-dim with how """ colg = self._gotitem(name, ndim=1, subset=subset) if colg.ndim != 1: raise SpecificationError("nested dictionary is ambiguous " "in aggregation") return colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result =
compat.OrderedDict()
pandas.compat.OrderedDict
from IMLearn.learners import UnivariateGaussian, MultivariateGaussian import plotly.graph_objects as go import plotly.express as px import plotly.io as pio import pandas as pd import numpy as np pio.templates.default = "simple_white" EXPECTED_VALUE = 10 VARIANCE = 1 NUM_OF_SAMPLES = 1000 SAMPLES_DIFF = 10 DIFF_COL = 'Difference between actual and estimated variance' NUM_OF_SAMPLES_COL = 'Sample size' SAMPLE_VAL_COL = 'Sample value' PDF_COL = 'Probability density function value' TITLE = 'Difference between actual and estimated variance by num of samples' PDF_TITLE = 'Sample value to its probability density function value' MV_MEAN = np.array([0, 0, 4, 0]) MV_COV = np.array([ [1, 0.2, 0, 0.5], [0.2, 2, 0, 0], [0, 0, 1, 0], [0.5, 0, 0, 1] ]) MV_NUM_OF_SAMPLES = 1000 MV_HEATMAP_TITLE = "Log Likelihood Heatmap based on f1, f3 values" F1_COL = 'f1' F3_COL = 'f3' LOG_LIKELIHOOD_COL = 'Log Likelihood' FORMAT = lambda x: format(x, '.3f') def test_univariate_gaussian(): # Question 1 uni_variate_gaussian = UnivariateGaussian() samples = np.random.normal(EXPECTED_VALUE, VARIANCE, NUM_OF_SAMPLES) uni_variate_gaussian = uni_variate_gaussian.fit(samples) print(f"({FORMAT(uni_variate_gaussian.mu_)}, {FORMAT(uni_variate_gaussian.var_)})") # Question 2 num_of_samples = SAMPLES_DIFF results = [] for i in range(10, 1010, 10): partial_samples = samples[:i] uni_variate_gaussian.fit(partial_samples) results.append((abs(uni_variate_gaussian.mu_ - EXPECTED_VALUE), partial_samples.size)) num_of_samples += SAMPLES_DIFF df = pd.DataFrame(results, columns=[DIFF_COL, NUM_OF_SAMPLES_COL]) px.bar(df, y=DIFF_COL, x=NUM_OF_SAMPLES_COL, title=TITLE).show() # Question 3 pdf = uni_variate_gaussian.pdf(samples) df = pd.DataFrame(zip(samples, pdf), columns=[SAMPLE_VAL_COL, PDF_COL]) px.scatter(df, x=SAMPLE_VAL_COL, y=PDF_COL, title=PDF_TITLE).show() def test_multivariate_gaussian(): # Question 4 - Draw samples and print fitted model samples = np.random.multivariate_normal(MV_MEAN, MV_COV, MV_NUM_OF_SAMPLES) mv_gaussian = MultivariateGaussian() mv_gaussian = mv_gaussian.fit(samples) print(mv_gaussian.mu_) print(mv_gaussian.cov_) # Question 5 - Likelihood evaluation results = [] vals_range = np.linspace(-10, 10, 200) for f1 in vals_range: for f3 in vals_range: mu = np.array([f1, 0, f3, 0]) log_likelihood = MultivariateGaussian.log_likelihood(mu, MV_COV, samples) results.append((f1, f3, log_likelihood)) df =
pd.DataFrame(results, columns=[F1_COL, F3_COL, LOG_LIKELIHOOD_COL])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat Mar 26 09:40:28 2022 @author: Featherine """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as md df = pd.read_csv('features - Final.csv') df = df.fillna(0) # df = df[0:48] df['DateTime'] = pd.to_datetime(df['DateTime'], format='%Y-%m-%d %H:%M:%S') fig, axs = plt.subplots(4, 2, figsize=(15,12)) # A random day df_day = df[0:48] axs[0, 0].plot('DateTime', '1006', data=df_day) axs[0, 0].set_xlim(df_day['DateTime'].min()-pd.Timedelta(1,'h'), df_day['DateTime'].max()+pd.Timedelta(1,'h')) axs[0, 0].xaxis.set_major_locator(md.HourLocator(interval = 1)) axs[0, 0].xaxis.set_major_formatter(md.DateFormatter('%H:%M:%S')) fig.autofmt_xdate() axs[0, 0].set_title('Traffic in a Random Day') axs[0, 0].set_xlabel('Time') axs[0, 0].set_ylabel('Number of Cars') axs[0, 1].plot('DateTime', 'Temp', data=df_day) axs[0, 1].set_xlim(df_day['DateTime'].min()-pd.Timedelta(1,'h'), df_day['DateTime'].max()+pd.Timedelta(1,'h')) axs[0, 1].xaxis.set_major_locator(md.HourLocator(interval = 1)) axs[0, 1].xaxis.set_major_formatter(md.DateFormatter('%H:%M:%S')) fig.autofmt_xdate() axs[0, 1].set_title('Temperature in a Random Day') axs[0, 1].set_ylabel('Temperature') # Per over a year axs[1, 0].plot('DateTime', '1006', data=df) axs[1, 0].set_xlim(df['DateTime'].min()-
pd.Timedelta(1,'h')
pandas.Timedelta
import pytest import pytz import dateutil import numpy as np from datetime import datetime from dateutil.tz import tzlocal import pandas as pd import pandas.util.testing as tm from pandas import (DatetimeIndex, date_range, Series, NaT, Index, Timestamp, Int64Index, Period) class TestDatetimeIndex(object): def test_astype(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(object) expected = Index([Timestamp('2016-05-16')] + [NaT] * 3, dtype=object) tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([1463356800000000000] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') tm.assert_index_equal(result, Index(rng.asi8)) tm.assert_numpy_array_equal(result.values, rng.asi8) def test_astype_with_tz(self): # with tz rng = date_range('1/1/2000', periods=10, tz='US/Eastern') result = rng.astype('datetime64[ns]') expected = (date_range('1/1/2000', periods=10, tz='US/Eastern') .tz_convert('UTC').tz_localize(None)) tm.assert_index_equal(result, expected) # BUG#10442 : testing astype(str) is correct for Series/DatetimeIndex result = pd.Series(pd.date_range('2012-01-01', periods=3)).astype(str) expected = pd.Series( ['2012-01-01', '2012-01-02', '2012-01-03'], dtype=object) tm.assert_series_equal(result, expected) result = Series(pd.date_range('2012-01-01', periods=3, tz='US/Eastern')).astype(str) expected = Series(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], dtype=object) tm.assert_series_equal(result, expected) # GH 18951: tz-aware to tz-aware idx = date_range('20170101', periods=4, tz='US/Pacific') result = idx.astype('datetime64[ns, US/Eastern]') expected = date_range('20170101 03:00:00', periods=4, tz='US/Eastern') tm.assert_index_equal(result, expected) # GH 18951: tz-naive to tz-aware idx = date_range('20170101', periods=4) result = idx.astype('datetime64[ns, US/Eastern]') expected = date_range('20170101', periods=4, tz='US/Eastern') tm.assert_index_equal(result, expected) def test_astype_str_compat(self): # GH 13149, GH 13209 # verify that we are returning NaT as a string (and not unicode) idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(str) expected = Index(['2016-05-16', 'NaT', 'NaT', 'NaT'], dtype=object) tm.assert_index_equal(result, expected) def test_astype_str(self): # test astype string - #10442 result = date_range('2012-01-01', periods=4, name='test_name').astype(str) expected = Index(['2012-01-01', '2012-01-02', '2012-01-03', '2012-01-04'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with tz and name result = date_range('2012-01-01', periods=3, name='test_name', tz='US/Eastern').astype(str) expected = Index(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with freqH and name result = date_range('1/1/2011', periods=3, freq='H', name='test_name').astype(str) expected = Index(['2011-01-01 00:00:00', '2011-01-01 01:00:00', '2011-01-01 02:00:00'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with freqH and timezone result = date_range('3/6/2012 00:00', periods=2, freq='H', tz='Europe/London', name='test_name').astype(str) expected = Index(['2012-03-06 00:00:00+00:00', '2012-03-06 01:00:00+00:00'], dtype=object, name='test_name') tm.assert_index_equal(result, expected) def test_astype_datetime64(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype('datetime64[ns]') tm.assert_index_equal(result, idx) assert result is not idx result = idx.astype('datetime64[ns]', copy=False) tm.assert_index_equal(result, idx) assert result is idx idx_tz = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN], tz='EST') result = idx_tz.astype('datetime64[ns]') expected = DatetimeIndex(['2016-05-16 05:00:00', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]') tm.assert_index_equal(result, expected) def test_astype_object(self): rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) tm.assert_index_equal(casted, Index(exp_values, dtype=np.object_)) assert casted.tolist() == exp_values @pytest.mark.parametrize('tz', [None, 'Asia/Tokyo']) def test_astype_object_tz(self, tz): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz=tz) expected_list = [Timestamp('2013-01-31', tz=tz), Timestamp('2013-02-28', tz=tz), Timestamp('2013-03-31', tz=tz), Timestamp('2013-04-30', tz=tz)] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.astype(object) tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list def test_astype_object_with_nat(self): idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.astype(object) tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list @pytest.mark.parametrize('dtype', [ float, 'timedelta64', 'timedelta64[ns]', 'datetime64', 'datetime64[D]']) def test_astype_raises(self, dtype): # GH 13149, GH 13209 idx =
DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN])
pandas.DatetimeIndex
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/04_Create_Acs_Indicators.ipynb (unless otherwise specified). __all__ = ['getColName', 'getColByName', 'addKey', 'nullIfEqual', 'sumInts', 'age5', 'age18', 'age24', 'age64', 'age65', 'bahigher', 'carpool', 'drvalone', 'elheat', 'empl', 'fam', 'female', 'femhhs', 'heatgas', 'hisp', 'hh25inc', 'hh40inc', 'hh60inc', 'hh75inc', 'hhchpov', 'hhm75', 'hhs', 'hsdipl', 'lesshs', 'male', 'mhhi', 'drvalone', 'novhcl', 'nohhint', 'othercom', 'paa', 'p2more', 'pasi', 'pubtran', 'pwhite', 'sclemp', 'tpop', 'trav14', 'trav14', 'trav45', 'trav44', 'unempr', 'unempr', 'walked', 'createAcsIndicator'] # Cell #@title Run This Cell: Misc Function Declarations # These functions right here are used in the calculations below. # Finds a column matchings a substring def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] # Pulls a column from one dataset into a new dataset. # This is not a crosswalk. calls getColByName() def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi # Return 0 if two specified columns are equal. def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) # I'm thinking this doesnt need to be a function.. def sumInts(df): return df.sum(numeric_only=True) # Cell #@title Run This Cell: Create age5 #File: age5.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age5( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_027E_Total_Female_Under_5_years', 'B01001_003E_Total_Male_Under_5_years', 'B01001_001E_Total' , 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df[ 'B01001_003E_Total_Male_Under_5_years' ] + df[ 'B01001_027E_Total_Female_Under_5_years' ] ) / df['B01001_001E_Total'] * 100 return fi # Cell #@title Run This Cell: age18 #File: age18.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age18( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_001E_Total', 'B01001_004E_Total_Male_5_to_9_years', 'B01001_005E_Total_Male_10_to_14_years' , 'B01001_006E_Total_Male_15_to_17_years', 'B01001_028E_Total_Female_5_to_9_years', 'B01001_029E_Total_Female_10_to_14_years' , 'B01001_030E_Total_Female_15_to_17_years'] columns = df.filter(regex='001E|004E|005E|006E|028E|029E|030E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='004E|005E|006E|028E|029E|030E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: Create age24 #File: age24.py #Author: <NAME> #Date: 9/8/21 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age24( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_007E_Total_Male_18_and_19_years', 'B01001_008E_Total_Male_20_years', 'B01001_009E_Total_Male_21_years' , 'B01001_010E_Total_Male_22_to_24_years' , 'B01001_031E_Total_Female_18_and_19_years' , 'B01001_032E_Total_Female_20_years' , 'B01001_033E_Total_Female_21_years' , 'B01001_034E_Total_Female_22_to_24_years', 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df[ 'B01001_007E_Total_Male_18_and_19_years' ] + df[ 'B01001_008E_Total_Male_20_years' ] + df[ 'B01001_009E_Total_Male_21_years' ] + df[ 'B01001_010E_Total_Male_22_to_24_years' ] + df[ 'B01001_031E_Total_Female_18_and_19_years' ] + df[ 'B01001_032E_Total_Female_20_years' ] + df[ 'B01001_033E_Total_Female_21_years' ] + df[ 'B01001_034E_Total_Female_22_to_24_years' ] ) / df['B01001_001E_Total'] * 100 return fi # Cell #@title Run This Cell: age64 import pandas as pd import glob def age64( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='012E|013E|014E|015E|016E|017E|018E|019E|036E|037E|038E|039E|040E|041E|042E|043E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='012E|013E|014E|015E|016E|017E|018E|019E|036E|037E|038E|039E|040E|041E|042E|043E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: age65 import pandas as pd import glob def age65( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|020E|021E|022E|023E|024E|025E|044E|045E|046E|047E|048E|049E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='020E|021E|022E|023E|024E|025E|044E|045E|046E|047E|048E|049E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: bahigher import pandas as pd import glob def bahigher( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='005E|006E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='005E|006E').sum(axis=1) ) / df['B06009_001E'] * 100 return fi # Cell #@title Run This Cell: - carpool import pandas as pd import glob def carpool( df, columnsToInclude ): # Final Dataframe fi = pd.DataFrame() columns = df.filter(regex='001E|049E|017E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_017E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: - drvalone import pandas as pd import glob def drvalone( df, columnsToInclude ): # Final Dataframe fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -elheat import pandas as pd import glob def elheat( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='B25040_004E|B25040_001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B25040_004E').sum(axis=1) ) / ( df.filter(regex='B25040_001E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -empl import pandas as pd import glob def empl( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -fam import pandas as pd import glob def fam( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -female import pandas as pd import glob def female( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['female'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -femhhs import pandas as pd import glob def femhhs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['femhhs'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -heatgas import pandas as pd import glob def heatgas( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: hisp import pandas as pd import glob def hisp( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total', 'B03002_012E_Total_Hispanic_or_Latino'] columns = df.filter(regex='001E|012E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') fi['final'] = ( df.filter(regex='012E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: hh25inc import pandas as pd import glob def hh25inc( df, columnsToInclude ): df.columns = df.columns.str.replace(r"[$]", "") fi = pd.DataFrame() columns = ['B19001_001E_Total', "B19001_002E_Total_Less_than_10,000", "B19001_003E_Total_10,000_to_14,999", "B19001_004E_Total_15,000_to_19,999", "B19001_005E_Total_20,000_to_24,999"] columns = df.filter(regex='002E|003E|004E|005E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey col: ', col, df.columns) fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='002E|003E|004E|005E').sum(axis=1) ) / df['B19001_001E_Total:'] * 100 return fi # Cell #@ title Run This Cell: -hh40inc import pandas as pd import glob def hh40inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hh60inc import pandas as pd import glob def hh60inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hh75inc import pandas as pd import glob def hh75inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhchpov import pandas as pd import glob def hhchpov( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhm75 import pandas as pd import glob def hhm75( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhs import pandas as pd import glob def hhs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hsdipl import pandas as pd import glob def hsdipl( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -lesshs import pandas as pd import glob def lesshs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -male import pandas as pd import glob def male( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell # @title Run This Cell : Create MHHI #File: mhhi.py #Author: <NAME> #Date: 1/24/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2016 INFLATION-ADJUSTED DOLLARS) # Universe: Households # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Sustainability - Percent of Population that Walks to Work Indicator #input: #output: import pandas as pd import glob def mhhi( df, columnsToInclude = [] ): info = pd.DataFrame( [ ['B19001_002E', 0, 10000], ['B19001_003E', 10000, 4999 ], ['B19001_004E', 15000, 4999 ], ['B19001_005E', 20000, 4999 ], ['B19001_006E', 25000, 4999 ], ['B19001_007E', 30000, 4999], ['B19001_008E', 35000, 4999 ], ['B19001_009E', 40000, 4999 ], ['B19001_010E', 45000, 4999 ], ['B19001_011E', 50000, 9999 ], ['B19001_012E', 60000, 14999], ['B19001_013E', 75000, 24999 ], ['B19001_014E', 100000, 24999 ], ['B19001_015E', 125000, 24999 ], ['B19001_016E', 150000, 49000 ], ['B19001_017E', 200000, 1000000000000000000000000 ], ], columns=['variable', 'lower', 'range'] ) # Final Dataframe data_table = pd.DataFrame() for index, row in info.iterrows(): data_table = addKey(df, data_table, row['variable']) # Accumulate totals accross the columns. # Midpoint: Divide column index 16 (the last column) of the cumulative totals temp_table = data_table.cumsum(axis=1) temp_table['midpoint'] = (temp_table.iloc[ : , -1 :] /2) # V3 temp_table['midpoint_index'] = False temp_table['midpoint_index_value'] = False # Z3 temp_table['midpoint_index_lower'] = False # W3 temp_table['midpoint_index_range'] = False # X3 temp_table['midpoint_index_minus_one_cumulative_sum'] = False #Y3 # step 3 - csa_agg3: get the midpoint index by "when midpoint > agg[1] and midpoint <= agg[2] then 2" # Get CSA Midpoint Index using the breakpoints in our info table. for index, row in temp_table.iterrows(): # Get the index of the first column where our midpoint is greater than the columns value. midpoint = row['midpoint'] midpoint_index = 0 # For each column (except the 6 columns we just created) # The tracts midpoint was < than the first tracts value at column 'B19001_002E_Total_Less_than_$10,000' if( midpoint < int(row[0]) or row[-6] == False ): temp_table.loc[ index, 'midpoint_index' ] = 0 else: for column in row.iloc[:-6]: # set midpoint index to the column with the highest value possible that is under midpoint if( midpoint >= int(column) ): if midpoint==False: print (str(column) + ' - ' + str(midpoint)) temp_table.loc[ index, 'midpoint_index' ] = midpoint_index +1 midpoint_index += 1 # temp_table = temp_table.drop('Unassigned--Jail') for index, row in temp_table.iterrows(): temp_table.loc[ index, 'midpoint_index_value' ] = data_table.loc[ index, data_table.columns[row['midpoint_index']] ] temp_table.loc[ index, 'midpoint_index_lower' ] = info.loc[ row['midpoint_index'] ]['lower'] temp_table.loc[ index, 'midpoint_index_range' ] = info.loc[ row['midpoint_index'] ]['range'] temp_table.loc[ index, 'midpoint_index_minus_one_cumulative_sum'] = row[ row['midpoint_index']-1 ] # This is our denominator, which cant be negative. for index, row in temp_table.iterrows(): if row['midpoint_index_value']==False: temp_table.at[index, 'midpoint_index_value']=1; #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # Calculation = (midpoint_lower::numeric + (midpoint_range::numeric * ( (midpoint - midpoint_upto_agg) / nullif(midpoint_total,0) # Calculation = W3+X3*((V3-Y3)/Z3) # v3 -> 1 - midpoint of households == sum / 2 # w3 -> 2 - lower limit of the income range containing the midpoint of the housing total == row[lower] # x3 -> width of the interval containing the medium == row[range] # z3 -> number of hhs within the interval containing the median == row[total] # y3 -> 4 - cumulative frequency up to, but no==NOT including the median interval #~~~~~~~~~~~~~~~ def finalCalc(x): return ( x['midpoint_index_lower']+ x['midpoint_index_range']*( ( x['midpoint']-x['midpoint_index_minus_one_cumulative_sum'])/ x['midpoint_index_value'] ) ) temp_table['final'] = temp_table.apply(lambda x: finalCalc(x), axis=1) temp_table[columnsToInclude] = df[columnsToInclude] return temp_table # Cell #@ title Run This Cell: -nilf import pandas as pd import glob def drvalone( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: novhcl import pandas as pd import glob def novhcl( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B08201_002E_Total_No_vehicle_available','B08201_001E_Total'] columns = df.filter(regex='002E|003E|004E|005E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='002E').sum(axis=1) ) / df['B08201_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: nohhint import pandas as pd import glob def nohhint( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B28011_001E_Total', 'B28011_002E_Total_With_an_Internet_subscription', 'B28011_003E_Total_With_an_Internet_subscription_Dial-up_alone', 'B28011_004E_Total_With_an_Internet_subscription_Broadband_such_as_cable,_fiber_optic,_or_DSL', 'B28011_005E_Total_With_an_Internet_subscription_Satellite_Internet_service', 'B28011_006E_Total_With_an_Internet_subscription_Other_service', 'B28011_007E_Total_Internet_access_without_a_subscription', 'B28011_008E_Total_No_Internet_access'] columns = df.filter(regex='008E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') # Calculate fi['nohhint'] = ( df.filter(regex='008E').sum(axis=1) ) / df['B28011_001E_Total:'] * 100 return fi # Cell #@ title Run This Cell: -othercom import pandas as pd import glob def othercom( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['othercom'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: paa import pandas as pd import glob def paa( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total:', 'B03002_004E_Total_Not_Hispanic_or_Latino_Black_or_African_American_alone'] columns = df.filter(regex='001E|004E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) fi['paa'] = ( df.filter(regex='004E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: -p2more import pandas as pd import glob def p2more( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -pasi *** import pandas as pd import glob def pasi( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='006E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -pubtran import pandas as pd import glob def pubtran( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='025E|001E|049E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['pubtran'] = ( df.filter(regex='025E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: pwhite import pandas as pd import glob def pwhite( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total', 'B03002_003E_Total_Not_Hispanic_or_Latino_White_alone'] columns = df.filter(regex='001E|003E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') # Calculate fi['pwhite'] = ( df.filter(regex='003E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: -racdiv *** # Cell #@title Run This Cell: -sclemp import pandas as pd import glob def sclemp( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|004E|005E|006E|009E|013E|018E|019E|020E|023E|027E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['sclemp'] = ( df.filter(regex='004E|005E|006E|009E|013E|018E|019E|020E|023E|027E').sum(axis=1) ) / ( df.filter(regex='001E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -tpop import pandas as pd import glob def tpop( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['tpop'] = ( df.filter(regex='001E').sum(axis=1) ) return fi # Cell #@title Run This Cell: trav14 import pandas as pd import glob def trav14( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='002E|003E|004E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['age65'] = ( df.filter(regex='002E|003E|004E').sum(axis=1) ) / df['B08303_001E'] * 100 return fi # Cell #@title Run This Cell: trav29 import pandas as pd import glob def trav14( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='005E|006E|007E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['age65'] = ( df.filter(regex='005E|006E|007E').sum(axis=1) ) / df['B08303_001E'] * 100 return fi # Cell #@title Run This Cell: Create trav45 #File: trav45.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B08303 - TRAVEL TIME TO WORK, # (Universe: Workers 16 years and over who did not work at home) # Table Creates: trav14, trav29, trav44, trav45 #purpose: Produce Sustainability - Percent of Employed Population with Travel Time to Work of 45 Minutes and Over Indicator #input: #output: import pandas as pd import glob def trav45(df, columnsToInclude = [] ): # Final Dataframe fi = pd.DataFrame() columns = ['B08303_011E','B08303_012E','B08303_013E','B08303_001E', 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) # Numerators numerators =
pd.DataFrame()
pandas.DataFrame
# # Explore overfitting and underfitting # # (https://www.tensorflow.org/alpha/tutorials/keras/overfit_and_underfit) import altair as alt import numpy as np import pandas as pd from tensorflow import keras # ## Download the IMDB dataset # !Multi-hot-encoding NUM_WORDS = 10000 (train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data( num_words=NUM_WORDS ) def multi_hot_sequences(sequences, dimension): # Create an all-zero matrix of shape (len(sequences), dimension) results = np.zeros((len(sequences), dimension)) for i, word_indices in enumerate(sequences): results[i, word_indices] = 1.0 # set specific indices of results[i] to 1s return results train_data = multi_hot_sequences(train_data, dimension=NUM_WORDS) test_data = multi_hot_sequences(test_data, dimension=NUM_WORDS) # - df =
pd.DataFrame({"label": train_data[0]})
pandas.DataFrame
#definition of add_dataset that creates the meta-dataset import pandas as pd from pandas.core.dtypes.common import is_numeric_dtype from scipy.stats import pearsonr from sklearn.model_selection import train_test_split from supervised.automl import AutoML import os import pandas as pd from sklearn.preprocessing import LabelEncoder import numpy as np rootdir = os.path.dirname(__file__) results_dir = rootdir + '/results/' dataset_dir = rootdir + '/datasets_list_final/' datasets_to_add_dir = rootdir + '/datasets_list_toadd/' algorithm_list = ['Linear', 'Random Forest', 'Decision Tree', 'Neural Network'] def encode_y(y): le = LabelEncoder() le.fit(y) y_enc = le.transform(y) return y_enc def compute_max_corr(df): y = encode_y(df[df.columns[-1]]) y = pd.Series(y) corr = df[df.columns[:-1]].corrwith(y) return np.max(np.absolute(corr)) def compute_max_corr_between_X_and_y(X, y): y = encode_y(y) y = pd.Series(y) X = X.apply(pd.to_numeric, errors='ignore') return np.max(np.absolute(X.apply(lambda x: x.corr(y) if is_numeric_dtype(x) else 0))) def add_dataset(dataset, dataset_dataframe): path = rootdir + "/ml_dataset.csv" try: df = pd.read_csv(path) except: df = pd.DataFrame() df['did'] = 0 dataset_id = dataset.dataset_id if dataset_id in df['did'].values: print("Dataset %d already present in the dataset!" % dataset_id) else: # PERFORM AUTOML X, y, _, _ = dataset.get_data( target=dataset.default_target_attribute) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) automl = AutoML(algorithms=algorithm_list, eval_metric='f1', results_path=results_dir + str(dataset_id), explain_level=1, top_models_to_improve=4, random_state=2, optuna_verbose=False) automl.fit(X_train, y_train) predictions = automl.predict(X_test) # ADD DATASET # Retrieve results from automl results_col_list = ['metric_value', 'train_time', 'model_type'] results_col_new_names = ['F1', 'time', 'algo'] df_automl_results = pd.read_csv(results_dir + str(dataset_id) + '/leaderboard.csv')[results_col_list] df_automl_results.columns = results_col_new_names # Add information about dataset interesting_columns = dataset_dataframe.columns[6:] for column in interesting_columns: df_automl_results[column] = dataset_dataframe.loc[dataset_id, column] df_automl_results['TDP'] = 250 df_automl_results['country'] = 'Switzerland' df_automl_results['max_corr'] = compute_max_corr_between_X_and_y(X, y) df_automl_results['did'] = dataset_id # Set algo as the last column i = list(df_automl_results.columns) pos = i.index('algo') new_i = i[0:pos] + i[pos + 1:] + [i[pos]] df_automl_results = df_automl_results[new_i] # Append new dataset df =
pd.concat([df, df_automl_results])
pandas.concat
import pandas as pd def cat_lump(x, n=5, prop=None, other_level="Other"): """ Lump together least common categories into an "Other" category Parameters ---------- x : pd.Series series to be modified n : int number of levels to preserve prop : float optional instead of n. Choose the minimum proportion for a level. Must be between 0 and 1. Overrides n. other_level : str "other" category label Returns ------- y : pd.Series modified series (with categorical type) """ counts = x.value_counts() if prop: assert 0 <= prop <= 1 min_count = int(prop * x.size) if min_count > counts.min(): repl = counts.loc[counts < min_count].index x = x.replace(repl, other_level) elif len(counts) > n: repl = counts.iloc[n:].index x = x.replace(repl, other_level) return x def cat_count(x, sort=False, prop=False): """ Count entries in a factor Parameters ---------- x : pd.Series series to be counted sort : boolean If `True`, sort the result so that the most common values are displayed at the top. prop : boolean If `True`, compute the fraction of marginal table. Returns ------- y : pd.core.frame.DataFrame A df with columns `f`, `n` and `p`, if prop is `True`. """ counts = x.value_counts(sort=sort) df = pd.DataFrame({'f': counts.index, 'n': counts.values}) if(prop): df['p'] = df['n']/sum(df['n']) return df def cat_anon(x, prefix = ""): """ Anonymise category levels Parameters ---------- x : pd.Series series to be modified prefix : string string prefix to insert in front of the numeric labels Returns ------- y : pd.Series Anonymised pandas series """ x_array = pd.factorize(x)[0] + 1 digits = [len(str(x)) for x in x_array] digits = max(digits) x = [str(x).zfill(digits) for x in x_array] x = prefix +
pd.Series(x)
pandas.Series
import act import requests import json import glob import pandas as pd import datetime as dt import numpy as np import xarray as xr import dask import matplotlib.pyplot as plt import textwrap from matplotlib.dates import DateFormatter from matplotlib.dates import HourLocator def get_doi(site, dsname, c_start, c_end): # Get DOI Information doi_url = 'https://adc.arm.gov/citationservice/citation/inst-class?id=' + inst[ii] + '&citationType=apa' doi_url += '&site=' + site doi_url += '&dataLevel=' + dsname.split('.')[-1] doi_url += '&startDate=' + c_start doi_url += '&endDate=' + c_end doi = requests.get(url=doi_url).json()['citation'] return doi def get_metadata(ds): metadata_url = 'https://adc.arm.gov/solr8/metadata/select?q=datastream%3A' + ds r = requests.get(url=metadata_url) response = r.json()['response'] response = response['docs'][0] description = response['instrument_name_text'] return description if __name__ == '__main__': now = pd.Timestamp.now() # Import Configuration File from anx_conf import conf site = conf['site'] inst = list(conf['instruments'].keys()) c_start = conf['start_date'] c_end = conf['end_date'] nrows = len(inst) ncols = 3 fig = plt.figure(figsize=(10, 1.5 * nrows), constrained_layout=True) gs = fig.add_gridspec(nrows, ncols) for ii in range(len(inst)): dsname = conf['instruments'][inst[ii]]['dsname'] ds = site + dsname files = glob.glob('/data/archive/' + site + '/' + ds + '/' + ds + '*nc') if len(files) == 0: files = glob.glob('/data/archive/' + site + '/' + ds + '/' + ds + '*cdf') files = sorted(files) obj = act.io.armfiles.read_netcdf(files, parallel=True) if 'dsname2' in conf['instruments'][inst[ii]]: dsname2 = conf['instruments'][inst[ii]]['dsname2'] ds2 = site + dsname2 files2 = glob.glob('/data/archive/' + site + '/' + ds2 + '/' + ds2 + '*nc') if len(files2) == 0: files2 = glob.glob('/data/archive/' + site + '/' + ds2 + '/' + ds2 + '*cdf') files2 = sorted(files2) obj2 = act.io.armfiles.read_netcdf(files2, parallel=True, concat_dim=['time'], combine='nested') obj = xr.merge([obj, obj2]) obj2.close() else: dsname2 = None if 'override_delta' in conf['instruments'][inst[ii]]: t_delta = conf['instruments'][inst[ii]]['override_delta'] else: t_delta = act.utils.determine_time_delta(obj['time'].values, default=60.)/60 print(ds, t_delta, int(1440/t_delta), 1440/t_delta) start = pd.to_datetime(obj['time'].values[0]).floor('D') end =
pd.to_datetime(obj['time'].values[-1])
pandas.to_datetime
''' Functions for calculating soiling metrics from photovoltaic system data. The soiling module is currently experimental. The API, results, and default behaviors may change in future releases (including MINOR and PATCH releases) as the code matures. ''' import warnings import pandas as pd import numpy as np from scipy.stats.mstats import theilslopes warnings.warn( 'The soiling module is currently experimental. The API, results, ' 'and default behaviors may change in future releases (including MINOR ' 'and PATCH releases) as the code matures.' ) # Custom exception class NoValidIntervalError(Exception): '''raised when no valid rows appear in the result dataframe''' pass class SRRAnalysis(): ''' Class for running the stochastic rate and recovery (SRR) photovoltaic soiling loss analysis presented in Deceglie et al. JPV 8(2) p547 2018 Parameters ---------- energy_normalized_daily : pandas.Series Daily performance metric (i.e. performance index, yield, etc.) Alternatively, the soiling ratio output of a soiling sensor (e.g. the photocurrent ratio between matched dirty and clean PV reference cells). In either case, data should be insolation-weighted daily aggregates. insolation_daily : pandas.Series Daily plane-of-array insolation corresponding to `energy_normalized_daily`. Arbitrary units. precipitation_daily : pandas.Series, default None Daily total precipitation. (Ignored if ``clean_criterion='shift'`` in subsequent calculations.) ''' def __init__(self, energy_normalized_daily, insolation_daily, precipitation_daily=None): self.pm = energy_normalized_daily # daily performance metric self.insolation_daily = insolation_daily self.precipitation_daily = precipitation_daily # daily precipitation self.random_profiles = [] # random soiling profiles in _calc_monte # insolation-weighted soiling ratios in _calc_monte: self.monte_losses = [] if pd.infer_freq(self.pm.index) != 'D': raise ValueError('Daily performance metric series must have ' 'daily frequency') if pd.infer_freq(self.insolation_daily.index) != 'D': raise ValueError('Daily insolation series must have ' 'daily frequency') if self.precipitation_daily is not None: if pd.infer_freq(self.precipitation_daily.index) != 'D': raise ValueError('Precipitation series must have ' 'daily frequency') def _calc_daily_df(self, day_scale=13, clean_threshold='infer', recenter=True, clean_criterion='shift', precip_threshold=0.01, outlier_factor=1.5): ''' Calculates self.daily_df, a pandas dataframe prepared for SRR analysis, and self.renorm_factor, the renormalization factor for the daily performance Parameters ---------- day_scale : int, default 13 The number of days to use in rolling median for cleaning detection. An odd value is recommended. clean_threshold : float or 'infer', default 'infer' If float: the fractional positive shift in rolling median for cleaning detection. If 'infer': automatically use outliers in the shift as the threshold recenter : bool, default True Whether to recenter (renormalize) the daily performance to the median of the first year clean_criterion : str, {'shift', 'precip_and_shift', 'precip_or_shift', 'precip'} \ default 'shift' The method of partitioning the dataset into soiling intervals. * 'precip_and_shift' - rolling median shifts must coincide with precipitation to be a valid cleaning event. * 'precip_or_shift' - rolling median shifts and precipitation events are each sufficient on their own to be a cleaning event. * 'shift', only rolling median shifts are treated as cleaning events. * 'precip', only precipitation events are treated as cleaning events. precip_threshold : float, default 0.01 The daily precipitation threshold for defining precipitation cleaning events. Units must be consistent with ``self.precipitation_daily``. outlier_factor : float, default 1.5 The factor used in the Tukey fence definition of outliers for flagging positive shifts in the rolling median used for cleaning detection. A smaller value will cause more and smaller shifts to be classified as cleaning events. ''' if (day_scale % 2 == 0) and ('shift' in clean_criterion): warnings.warn('An even value of day_scale was passed. An odd value is ' 'recommended, otherwise, consecutive days may be erroneously ' 'flagged as cleaning events. ' 'See https://github.com/NREL/rdtools/issues/189') df = self.pm.to_frame() df.columns = ['pi'] df_insol = self.insolation_daily.to_frame() df_insol.columns = ['insol'] df = df.join(df_insol) precip = self.precipitation_daily if precip is not None: df_precip = precip.to_frame() df_precip.columns = ['precip'] df = df.join(df_precip) else: df['precip'] = 0 # find first and last valid data point start = df[~df.pi.isnull()].index[0] end = df[~df.pi.isnull()].index[-1] df = df[start:end] # create a day count column df['day'] = range(len(df)) # Recenter to median of first year, as in YoY degradation if recenter: oneyear = start + pd.Timedelta('364d') renorm = df.loc[start:oneyear, 'pi'].median() else: renorm = 1 df['pi_norm'] = df['pi'] / renorm # Find the beginning and ends of outages longer than dayscale bfill = df['pi_norm'].fillna(method='bfill', limit=day_scale) ffill = df['pi_norm'].fillna(method='ffill', limit=day_scale) out_start = (~df['pi_norm'].isnull() & bfill.shift(-1).isnull()) out_end = (~df['pi_norm'].isnull() & ffill.shift(1).isnull()) # clean up the first and last elements out_start.iloc[-1] = False out_end.iloc[0] = False # Make a forward filled copy, just for use in # step, slope change detection df_ffill = df.fillna(method='ffill', limit=day_scale).copy() # Calculate rolling median df['pi_roll_med'] = \ df_ffill.pi_norm.rolling(day_scale, center=True).median() # Detect steps in rolling median df['delta'] = df.pi_roll_med.diff() if clean_threshold == 'infer': deltas = abs(df.delta) clean_threshold = deltas.quantile(0.75) + \ outlier_factor * (deltas.quantile(0.75) - deltas.quantile(0.25)) df['clean_event_detected'] = (df.delta > clean_threshold) precip_event = (df['precip'] > precip_threshold) if clean_criterion == 'precip_and_shift': # Detect which cleaning events are associated with rain # within a 3 day window precip_event = precip_event.rolling( 3, center=True, min_periods=1).apply(any).astype(bool) df['clean_event'] = (df['clean_event_detected'] & precip_event) elif clean_criterion == 'precip_or_shift': df['clean_event'] = (df['clean_event_detected'] | precip_event) elif clean_criterion == 'precip': df['clean_event'] = precip_event elif clean_criterion == 'shift': df['clean_event'] = df['clean_event_detected'] else: raise ValueError('clean_criterion must be one of ' '{"precip_and_shift", "precip_or_shift", ' '"precip", "shift"}') df['clean_event'] = df.clean_event | out_start | out_end df = df.fillna(0) # Give an index to each soiling interval/run df['run'] = df.clean_event.cumsum() df.index.name = 'date' # this gets used by name self.renorm_factor = renorm self.daily_df = df def _calc_result_df(self, trim=False, max_relative_slope_error=500.0, max_negative_step=0.05, min_interval_length=7): ''' Calculates self.result_df, a pandas dataframe summarizing the soiling intervals identified and self.analyzed_daily_df, a version of self.daily_df with additional columns calculated during analysis. Parameters ---------- trim : bool, default False whether to trim (remove) the first and last soiling intervals to avoid inclusion of partial intervals max_relative_slope_error : float, default 500 the maximum relative size of the slope confidence interval for an interval to be considered valid (percentage). max_negative_step : float, default 0.05 The maximum magnitude of negative discrete steps allowed in an interval for the interval to be considered valid (units of normalized performance metric). min_interval_length : int, default 7 The minimum duration for an interval to be considered valid. Cannot be less than 2 (days). ''' daily_df = self.daily_df result_list = [] if trim: # ignore first and last interval res_loop = sorted(list(set(daily_df['run'])))[1:-1] else: res_loop = sorted(list(set(daily_df['run']))) for r in res_loop: run = daily_df[daily_df['run'] == r] length = (run.day[-1] - run.day[0]) start_day = run.day[0] end_day = run.day[-1] start = run.index[0] end = run.index[-1] run_filtered = run[run.pi_norm > 0] # use the filtered version if it contains any points # otherwise use the unfiltered version to populate a # valid=False row if not run_filtered.empty: run = run_filtered result_dict = { 'start': start, 'end': end, 'length': length, 'run': r, 'run_slope': 0, 'run_slope_low': 0, 'run_slope_high': 0, 'max_neg_step': min(run.delta), 'start_loss': 1, 'inferred_start_loss': run.pi_norm.mean(), 'inferred_end_loss': run.pi_norm.mean(), 'valid': False } if len(run) > min_interval_length and run.pi_norm.sum() > 0: fit = theilslopes(run.pi_norm, run.day) fit_poly = np.poly1d(fit[0:2]) result_dict['run_slope'] = fit[0] result_dict['run_slope_low'] = fit[2] result_dict['run_slope_high'] = min([0.0, fit[3]]) result_dict['inferred_start_loss'] = fit_poly(start_day) result_dict['inferred_end_loss'] = fit_poly(end_day) result_dict['valid'] = True result_list.append(result_dict) results = pd.DataFrame(result_list) if results.empty: raise NoValidIntervalError('No valid soiling intervals were found') # Filter results for each interval, # setting invalid interval to slope of 0 results['slope_err'] = ( results.run_slope_high - results.run_slope_low)\ / abs(results.run_slope) # critera for exclusions filt = ( (results.run_slope > 0) | (results.slope_err >= max_relative_slope_error / 100.0) | (results.max_neg_step <= -1.0 * max_negative_step) ) results.loc[filt, 'run_slope'] = 0 results.loc[filt, 'run_slope_low'] = 0 results.loc[filt, 'run_slope_high'] = 0 results.loc[filt, 'valid'] = False # Calculate the next inferred start loss from next valid interval results['next_inferred_start_loss'] = np.clip( results[results.valid].inferred_start_loss.shift(-1), 0, 1) # Calculate the inferred recovery at the end of each interval results['inferred_recovery'] = np.clip( results.next_inferred_start_loss - results.inferred_end_loss, 0, 1) if len(results[results.valid]) == 0: raise NoValidIntervalError('No valid soiling intervals were found') new_start = results.start.iloc[0] new_end = results.end.iloc[-1] pm_frame_out = daily_df[new_start:new_end] pm_frame_out = pm_frame_out.reset_index() \ .merge(results, how='left', on='run') \ .set_index('date') pm_frame_out['loss_perfect_clean'] = np.nan pm_frame_out['loss_inferred_clean'] = np.nan pm_frame_out['days_since_clean'] = \ (pm_frame_out.index - pm_frame_out.start).dt.days # Calculate the daily derate pm_frame_out['loss_perfect_clean'] = \ pm_frame_out.start_loss + \ pm_frame_out.days_since_clean * pm_frame_out.run_slope # filling the flat intervals may need to be recalculated # for different assumptions pm_frame_out.loss_perfect_clean = \ pm_frame_out.loss_perfect_clean.fillna(1) pm_frame_out['loss_inferred_clean'] = \ pm_frame_out.inferred_start_loss + \ pm_frame_out.days_since_clean * pm_frame_out.run_slope # filling the flat intervals may need to be recalculated # for different assumptions pm_frame_out.loss_inferred_clean = \ pm_frame_out.loss_inferred_clean.fillna(1) self.result_df = results self.analyzed_daily_df = pm_frame_out def _calc_monte(self, monte, method='half_norm_clean'): ''' Runs the Monte Carlo step of the SRR method. Calculates self.random_profiles, a list of the random soiling profiles realized in the calculation, and self.monte_losses, a list of the insolation-weighted soiling ratios associated with the realizations. Parameters ---------- monte : int number of Monte Carlo simulations to run method : str, {'half_norm_clean', 'random_clean', 'perfect_clean'} \ default 'half_norm_clean' How to treat the recovery of each cleaning event * 'random_clean' - a random recovery between 0-100% * 'perfect_clean' - each cleaning event returns the performance metric to 1 * 'half_norm_clean' - The starting point of each interval is taken randomly from a half normal distribution with its mode (mu) at 1 and its sigma equal to 1/3 * (1-b) where b is the intercept of the fit to the interval. ''' # Raise a warning if there is >20% invalid data if (method == 'half_norm_clean') or (method == 'random_clean'): valid_fraction = self.analyzed_daily_df['valid'].mean() if valid_fraction <= 0.8: warnings.warn('20% or more of the daily data is assigned to invalid soiling ' 'intervals. This can be problematic with the "half_norm_clean" ' 'and "random_clean" cleaning assumptions. Consider more permissive ' 'validity criteria such as increasing "max_relative_slope_error" ' 'and/or "max_negative_step" and/or decreasing "min_interval_length".' ' Alternatively, consider using method="perfect_clean". For more' ' info see https://github.com/NREL/rdtools/issues/272' ) monte_losses = [] random_profiles = [] for _ in range(monte): results_rand = self.result_df.copy() df_rand = self.analyzed_daily_df.copy() # only really need this column from the original frame: df_rand = df_rand[['insol', 'run']] results_rand['run_slope'] = \ np.random.uniform(results_rand.run_slope_low, results_rand.run_slope_high) results_rand['run_loss'] = \ results_rand.run_slope * results_rand.length results_rand['end_loss'] = np.nan results_rand['start_loss'] = np.nan # Make groups that start with a valid interval and contain # subsequent invalid intervals group_list = [] group = 0 for x in results_rand.valid: if x: group += 1 group_list.append(group) results_rand['group'] = group_list # randomize the extent of the cleaning inter_start = 1.0 start_list = [] if (method == 'half_norm_clean') or (method == 'random_clean'): # Randomize recovery of valid intervals only valid_intervals = results_rand[results_rand.valid].copy() valid_intervals['inferred_recovery'] = \ valid_intervals.inferred_recovery.fillna(1.0) end_list = [] for i, row in valid_intervals.iterrows(): start_list.append(inter_start) end = inter_start + row.run_loss end_list.append(end) if method == 'half_norm_clean': # Use a half normal with the inferred clean at the # 3sigma point x = np.clip(end + row.inferred_recovery, 0, 1) inter_start = 1 - abs(np.random.normal(0.0, (1 - x) / 3)) elif method == 'random_clean': inter_start = np.random.uniform(end, 1) # Update the valid rows in results_rand valid_update = pd.DataFrame() valid_update['start_loss'] = start_list valid_update['end_loss'] = end_list valid_update.index = valid_intervals.index results_rand.update(valid_update) # forward and back fill to note the limits of random constant # derate for invalid intervals results_rand['previous_end'] = \ results_rand.end_loss.fillna(method='ffill') results_rand['next_start'] = \ results_rand.start_loss.fillna(method='bfill') # Randomly select random constant derate for invalid intervals # based on previous end and next beginning invalid_intervals = results_rand[~results_rand.valid].copy() # fill NaNs at beggining and end invalid_intervals.previous_end.fillna(1.0, inplace=True) invalid_intervals.next_start.fillna(1.0, inplace=True) groups = set(invalid_intervals.group) replace_levels = [] if len(groups) > 0: for g in groups: rows = invalid_intervals[invalid_intervals.group == g] n = len(rows) low = rows.iloc[0].previous_end high = rows.iloc[0].next_start level = np.random.uniform(low, high) replace_levels.append(np.full(n, level)) # Update results rand with the invalid rows replace_levels = np.concatenate(replace_levels) invalid_update = pd.DataFrame() invalid_update['start_loss'] = replace_levels invalid_update.index = invalid_intervals.index results_rand.update(invalid_update) elif method == 'perfect_clean': for i, row in results_rand.iterrows(): start_list.append(inter_start) end = inter_start + row.run_loss inter_start = 1 results_rand['start_loss'] = start_list else: raise ValueError("Invalid method specification") df_rand = df_rand.reset_index() \ .merge(results_rand, how='left', on='run') \ .set_index('date') df_rand['loss'] = np.nan df_rand['days_since_clean'] = \ (df_rand.index - df_rand.start).dt.days df_rand['loss'] = df_rand.start_loss + \ df_rand.days_since_clean * df_rand.run_slope df_rand['soil_insol'] = df_rand.loss * df_rand.insol soiling_ratio = ( df_rand.soil_insol.sum() / df_rand.insol[ ~df_rand.soil_insol.isnull()].sum() ) monte_losses.append(soiling_ratio) random_profile = df_rand['loss'].copy() random_profile.name = 'stochastic_soiling_profile' random_profiles.append(random_profile) self.random_profiles = random_profiles self.monte_losses = monte_losses def run(self, reps=1000, day_scale=13, clean_threshold='infer', trim=False, method='half_norm_clean', clean_criterion='shift', precip_threshold=0.01, min_interval_length=7, exceedance_prob=95.0, confidence_level=68.2, recenter=True, max_relative_slope_error=500.0, max_negative_step=0.05, outlier_factor=1.5): ''' Run the SRR method from beginning to end. Perform the stochastic rate and recovery soiling loss calculation. Based on the methods presented in Deceglie et al. "Quantifying Soiling Loss Directly From PV Yield" JPV 8(2) p547 2018. Parameters ---------- reps : int, default 1000 number of Monte Carlo realizations to calculate day_scale : int, default 13 The number of days to use in rolling median for cleaning detection, and the maximum number of days of missing data to tolerate in a valid interval. An odd value is recommended. clean_threshold : float or 'infer', default 'infer' The fractional positive shift in rolling median for cleaning detection. Or specify 'infer' to automatically use outliers in the shift as the threshold. trim : bool, default False Whether to trim (remove) the first and last soiling intervals to avoid inclusion of partial intervals method : str, {'half_norm_clean', 'random_clean', 'perfect_clean'} \ default 'half_norm_clean' How to treat the recovery of each cleaning event * 'random_clean' - a random recovery between 0-100% * 'perfect_clean' - each cleaning event returns the performance metric to 1 * 'half_norm_clean' - The starting point of each interval is taken randomly from a half normal distribution with its mode (mu) at 1 and its sigma equal to 1/3 * (1-b) where b is the intercept of the fit to the interval. clean_criterion : str, {'shift', 'precip_and_shift', 'precip_or_shift', 'precip'} \ default 'shift' The method of partitioning the dataset into soiling intervals * 'precip_and_shift' - rolling median shifts must coincide with precipitation to be a valid cleaning event. * 'precip_or_shift' - rolling median shifts and precipitation events are each sufficient on their own to be a cleaning event. * 'shift', only rolling median shifts are treated as cleaning events. * 'precip', only precipitation events are treated as cleaning events. precip_threshold : float, default 0.01 The daily precipitation threshold for defining precipitation cleaning events. Units must be consistent with ``self.precipitation_daily`` min_interval_length : int, default 7 The minimum duration for an interval to be considered valid. Cannot be less than 2 (days). exceedance_prob : float, default 95.0 The probability level to use for exceedance value calculation in percent confidence_level : float, default 68.2 The size of the confidence interval to return, in percent recenter : bool, default True Specify whether data is centered to normalized yield of 1 based on first year median max_relative_slope_error : float, default 500 the maximum relative size of the slope confidence interval for an interval to be considered valid (percentage). max_negative_step : float, default 0.05 The maximum magnitude of negative discrete steps allowed in an interval for the interval to be considered valid (units of normalized performance metric). outlier_factor : float, default 1.5 The factor used in the Tukey fence definition of outliers for flagging positive shifts in the rolling median used for cleaning detection. A smaller value will cause more and smaller shifts to be classified as cleaning events. Returns ------- insolation_weighted_soiling_ratio : float P50 insolation-weighted soiling ratio based on stochastic rate and recovery analysis confidence_interval : numpy.array confidence interval (size specified by confidence_level) of insolation-weighted soiling ratio calc_info : dict * 'renormalizing_factor' - value used to recenter data * 'exceedance_level' - the insolation-weighted soiling ratio that was outperformed with probability of exceedance_prob * 'stochastic_soiling_profiles' - List of Pandas series corresponding to the Monte Carlo realizations of soiling ratio profiles * 'soiling_ratio_perfect_clean' - Pandas series of the soiling ratio during valid soiling intervals assuming perfect cleaning and P50 slopes * 'soiling_interval_summary' - Pandas dataframe summarizing the soiling intervals identified. The columns of the dataframe are as follows: +------------------------+----------------------------------------------+ | Column Name | Description | +========================+==============================================+ | 'start' | Start timestamp of the soiling interval | +------------------------+----------------------------------------------+ | 'end' | End timestamp of the soiling interval | +------------------------+----------------------------------------------+ | 'soiling_rate' | P50 Soiling rate for interval, in day^−1 | | | Negative value indicates soiling is | | | occurring. E.g. a rate of −0.01 indicates 1% | | | soiling loss per day. | +------------------------+----------------------------------------------+ | 'soiling_rate_low' | Low edge of confidence interval for soiling | | | rate for interval, in day^−1 | +------------------------+----------------------------------------------+ | 'soiling_rate_high' | High edge of confidence interval for | | | soiling rate for interval, in day^−1 | +------------------------+----------------------------------------------+ | 'inferred_start_loss' | Estimated performance metric at the start | | | of the interval | +------------------------+----------------------------------------------+ | 'inferred_end_loss' | Estimated performance metric at the end | | | of the interval | +------------------------+----------------------------------------------+ | 'length' | Number of days in the interval | +------------------------+----------------------------------------------+ | 'valid' | Whether the interval meets the criteria to | | | be treated as a valid soiling interval | +------------------------+----------------------------------------------+ ''' self._calc_daily_df(day_scale=day_scale, clean_threshold=clean_threshold, recenter=recenter, clean_criterion=clean_criterion, precip_threshold=precip_threshold, outlier_factor=outlier_factor) self._calc_result_df(trim=trim, max_relative_slope_error=max_relative_slope_error, max_negative_step=max_negative_step, min_interval_length=min_interval_length) self._calc_monte(reps, method=method) # Calculate the P50 and confidence interval half_ci = confidence_level / 2.0 result = np.percentile(self.monte_losses, [50, 50.0 - half_ci, 50.0 + half_ci, 100 - exceedance_prob]) P_level = result[3] # Construct calc_info output intervals_out = self.result_df[ ['start', 'end', 'run_slope', 'run_slope_low', 'run_slope_high', 'inferred_start_loss', 'inferred_end_loss', 'length', 'valid']].copy() intervals_out.rename(columns={'run_slope': 'soiling_rate', 'run_slope_high': 'soiling_rate_high', 'run_slope_low': 'soiling_rate_low', }, inplace=True) df_d = self.analyzed_daily_df sr_perfect = df_d[df_d['valid']]['loss_perfect_clean'] calc_info = { 'exceedance_level': P_level, 'renormalizing_factor': self.renorm_factor, 'stochastic_soiling_profiles': self.random_profiles, 'soiling_interval_summary': intervals_out, 'soiling_ratio_perfect_clean': sr_perfect } return (result[0], result[1:3], calc_info) def soiling_srr(energy_normalized_daily, insolation_daily, reps=1000, precipitation_daily=None, day_scale=13, clean_threshold='infer', trim=False, method='half_norm_clean', clean_criterion='shift', precip_threshold=0.01, min_interval_length=7, exceedance_prob=95.0, confidence_level=68.2, recenter=True, max_relative_slope_error=500.0, max_negative_step=0.05, outlier_factor=1.5): ''' Functional wrapper for :py:class:`~rdtools.soiling.SRRAnalysis`. Perform the stochastic rate and recovery soiling loss calculation. Based on the methods presented in Deceglie et al. JPV 8(2) p547 2018. Parameters ---------- energy_normalized_daily : pandas.Series Daily performance metric (i.e. performance index, yield, etc.) Alternatively, the soiling ratio output of a soiling sensor (e.g. the photocurrent ratio between matched dirty and clean PV reference cells). In either case, data should be insolation-weighted daily aggregates. insolation_daily : pandas.Series Daily plane-of-array insolation corresponding to `energy_normalized_daily`. Arbitrary units. reps : int, default 1000 number of Monte Carlo realizations to calculate precipitation_daily : pandas.Series, default None Daily total precipitation. Units ambiguous but should be the same as precip_threshold. Note default behavior of precip_threshold. (Ignored if ``clean_criterion='shift'``.) day_scale : int, default 13 The number of days to use in rolling median for cleaning detection, and the maximum number of days of missing data to tolerate in a valid interval. An odd value is recommended. clean_threshold : float or 'infer', default 'infer' The fractional positive shift in rolling median for cleaning detection. Or specify 'infer' to automatically use outliers in the shift as the threshold. trim : bool, default False Whether to trim (remove) the first and last soiling intervals to avoid inclusion of partial intervals method : str, {'half_norm_clean', 'random_clean', 'perfect_clean'} \ default 'half_norm_clean' How to treat the recovery of each cleaning event * 'random_clean' - a random recovery between 0-100% * 'perfect_clean' - each cleaning event returns the performance metric to 1 * 'half_norm_clean' - The starting point of each interval is taken randomly from a half normal distribution with its mode (mu) at 1 and its sigma equal to 1/3 * (1-b) where b is the intercept of the fit to the interval. clean_criterion : str, {'shift', 'precip_and_shift', 'precip_or_shift', 'precip'} \ default 'shift' The method of partitioning the dataset into soiling intervals * 'precip_and_shift' - rolling median shifts must coincide with precipitation to be a valid cleaning event. * 'precip_or_shift' - rolling median shifts and precipitation events are each sufficient on their own to be a cleaning event. * 'shift', only rolling median shifts are treated as cleaning events. * 'precip', only precipitation events are treated as cleaning events. precip_threshold : float, default 0.01 The daily precipitation threshold for defining precipitation cleaning events. Units must be consistent with precip. min_interval_length : int, default 7 The minimum duration, in days, for an interval to be considered valid. Cannot be less than 2 (days). exceedance_prob : float, default 95.0 the probability level to use for exceedance value calculation in percent confidence_level : float, default 68.2 the size of the confidence interval to return, in percent recenter : bool, default True specify whether data is centered to normalized yield of 1 based on first year median max_relative_slope_error : float, default 500.0 the maximum relative size of the slope confidence interval for an interval to be considered valid (percentage). max_negative_step : float, default 0.05 The maximum magnitude of negative discrete steps allowed in an interval for the interval to be considered valid (units of normalized performance metric). outlier_factor : float, default 1.5 The factor used in the Tukey fence definition of outliers for flagging positive shifts in the rolling median used for cleaning detection. A smaller value will cause more and smaller shifts to be classified as cleaning events. Returns ------- insolation_weighted_soiling_ratio : float P50 insolation weighted soiling ratio based on stochastic rate and recovery analysis confidence_interval : numpy.array confidence interval (size specified by ``confidence_level``) of degradation rate estimate calc_info : dict * 'renormalizing_factor' - value used to recenter data * 'exceedance_level' - the insolation-weighted soiling ratio that was outperformed with probability of exceedance_prob * 'stochastic_soiling_profiles' - List of Pandas series corresponding to the Monte Carlo realizations of soiling ratio profiles * 'soiling_ratio_perfect_clean' - Pandas series of the soiling ratio during valid soiling intervals assuming perfect cleaning and P50 slopes * 'soiling_interval_summary' - Pandas dataframe summarizing the soiling intervals identified. The columns of the dataframe are as follows: +------------------------+----------------------------------------------+ | Column Name | Description | +========================+==============================================+ | 'start' | Start timestamp of the soiling interval | +------------------------+----------------------------------------------+ | 'end' | End timestamp of the soiling interval | +------------------------+----------------------------------------------+ | 'soiling_rate' | P50 Soiling rate for interval, in day^−1 | | | Negative value indicates soiling is | | | occurring. E.g. a rate of −0.01 indicates 1% | | | soiling loss per day. | +------------------------+----------------------------------------------+ | 'soiling_rate_low' | Low edge of confidence interval for soiling | | | rate for interval, in day^−1 | +------------------------+----------------------------------------------+ | 'soiling_rate_high' | High edge of confidence interval for | | | soiling rate for interval, in day^−1 | +------------------------+----------------------------------------------+ | 'inferred_start_loss' | Estimated performance metric at the start | | | of the interval | +------------------------+----------------------------------------------+ | 'inferred_end_loss' | Estimated performance metric at the end | | | of the interval | +------------------------+----------------------------------------------+ | 'length' | Number of days in the interval | +------------------------+----------------------------------------------+ | 'valid' | Whether the interval meets the criteria to | | | be treated as a valid soiling interval | +------------------------+----------------------------------------------+ ''' srr = SRRAnalysis(energy_normalized_daily, insolation_daily, precipitation_daily=precipitation_daily) sr, sr_ci, soiling_info = srr.run( reps=reps, day_scale=day_scale, clean_threshold=clean_threshold, trim=trim, method=method, clean_criterion=clean_criterion, precip_threshold=precip_threshold, min_interval_length=min_interval_length, exceedance_prob=exceedance_prob, confidence_level=confidence_level, recenter=recenter, max_relative_slope_error=max_relative_slope_error, max_negative_step=max_negative_step, outlier_factor=outlier_factor) return sr, sr_ci, soiling_info def _count_month_days(start, end): '''Return a dict of number of days between start and end (inclusive) in each month''' days =
pd.date_range(start, end)
pandas.date_range
import pandas as pd from texthero import representation from texthero import preprocessing from . import PandasTestCase import doctest import unittest import string """ Test doctest """ def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(representation)) return tests class TestRepresentation(PandasTestCase): """ Term Frequency. """ def test_term_frequency_single_document(self): s = pd.Series("a b c c") s_true = pd.Series([[1, 1, 2]]) self.assertEqual(representation.term_frequency(s), s_true) def test_term_frequency_multiple_documents(self): s = pd.Series(["doc_one", "doc_two"]) s_true =
pd.Series([[1, 0], [0, 1]])
pandas.Series
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx) expected = IntervalIndex.from_breaks(idx.values) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self): index = self.index assert len(index) == 2 assert index.size == 2 assert index.shape == (2, ) tm.assert_index_equal(index.left, Index([0, 1])) tm.assert_index_equal(index.right, Index([1, 2])) tm.assert_index_equal(index.mid, Index([0.5, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.index_with_nan assert len(index) == 3 assert index.size == 3 assert index.shape == (3, ) tm.assert_index_equal(index.left, Index([0, np.nan, 1])) tm.assert_index_equal(index.right, Index([1, np.nan, 2])) tm.assert_index_equal(index.mid, Index([0.5, np.nan, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), np.nan, Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self): index = self.index assert not index.hasnans tm.assert_numpy_array_equal(index.isna(), np.array([False, False])) tm.assert_numpy_array_equal(index.notna(), np.array([True, True])) index = self.index_with_nan assert index.hasnans tm.assert_numpy_array_equal(index.notna(), np.array([True, False, True])) tm.assert_numpy_array_equal(index.isna(), np.array([False, True, False])) def test_copy(self): actual = self.index.copy() assert actual.equals(self.index) actual = self.index.copy(deep=True) assert actual.equals(self.index) assert actual.left is not self.index.left def test_ensure_copied_data(self): # exercise the copy flag in the constructor # not copying index = self.index result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self): idx = self.index assert idx.equals(idx) assert idx.equals(idx.copy()) assert not idx.equals(idx.astype(object)) assert not idx.equals(np.array(idx)) assert not idx.equals(list(idx)) assert not idx.equals([1, 2]) assert not idx.equals(np.array([1, 2])) assert not idx.equals(pd.date_range('20130101', periods=2)) def test_astype(self): idx = self.index for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) def test_where(self): expected = self.index result = self.index.where(self.index.notna()) tm.assert_index_equal(result, expected) idx = IntervalIndex.from_breaks([1, 2]) result = idx.where([True, False]) expected = IntervalIndex.from_intervals( [Interval(1.0, 2.0, closed='right'), np.nan]) tm.assert_index_equal(result, expected) def test_where_array_like(self): pass def test_delete(self): expected = IntervalIndex.from_breaks([1, 2]) actual = self.index.delete(0) assert expected.equals(actual) def test_insert(self): expected = IntervalIndex.from_breaks(range(4)) actual = self.index.insert(2, Interval(2, 3)) assert expected.equals(actual) pytest.raises(ValueError, self.index.insert, 0, 1) pytest.raises(ValueError, self.index.insert, 0, Interval(2, 3, closed='left')) def test_take(self): actual = self.index.take([0, 1]) assert self.index.equals(actual) expected = IntervalIndex.from_arrays([0, 0, 1], [1, 1, 2]) actual = self.index.take([0, 0, 1]) assert expected.equals(actual) def test_monotonic_and_unique(self): assert self.index.is_monotonic assert self.index.is_unique idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)]) assert idx.is_monotonic assert idx.is_unique idx = IntervalIndex.from_tuples([(0, 1), (2, 3), (1, 2)]) assert not idx.is_monotonic assert idx.is_unique idx = IntervalIndex.from_tuples([(0, 2), (0, 2)]) assert not idx.is_unique assert idx.is_monotonic @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed='right') assert i[0] == Interval(0.0, 1.0) assert i[1] == Interval(1.0, 2.0) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed='right') tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed='right') tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed='right') tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx =
IntervalIndex.from_arrays([0, 2], [1, 3])
pandas.IntervalIndex.from_arrays
#!/usr/bin/env python # coding: utf-8 # usage: # python gen_csv_denoised_pad_train_val.py 200015779 import sys import pandas as pd import numpy as np try: val_label = sys.argv[1] except: print("specify book name for validation") sys.exit(1) df_train = pd.read_csv('./input/train_characters.csv', header=None) df_train.columns = ['Unicode', 'filepath'] uniq_char = df_train.Unicode.unique() train_df_list = [] val_df_list = [] for i, cur_char in enumerate(uniq_char): cur_df = df_train[df_train.Unicode == cur_char] tmp_train = cur_df.drop(cur_df.index[cur_df.filepath.str.contains(val_label)]) tmp_val = cur_df[cur_df.filepath.str.contains(val_label)] if len(tmp_val) == 0: # If there is no character of the specified book, random sample up to 20 copies from train val_count = int(len(tmp_train) * 0.10) if val_count > 20: cur_val = tmp_train.sample(20) tmp_train = tmp_train.drop(cur_val.index) else: # characters that occur 20 times or less are also copied to validation cur_val = cur_df else: cur_val = tmp_val if len(tmp_train) == 0: # Random samples up to 20 if there are no characters in the train # except for the specified book characters. train_count = int(len(tmp_val) * 0.10) if train_count > 20: cur_train = tmp_val.sample(20) cur_val = tmp_val.drop(cur_train.index) else: # characters that occur 20 times or less are also copied to train cur_train = cur_df else: cur_train = tmp_train train_df_list.append(cur_train) val_df_list.append(cur_val) if i % 100 == 0: print(".", end='') sys.stdout.flush() print("preprocess done!") train_df = pd.concat(train_df_list) val_df = pd.concat(val_df_list) print("postprocess for train data for class contains less than 100 images...") # Oversample characters that appear less than 100 times more than 100 times counter = train_df.Unicode.value_counts() code_and_count = {} for elem in train_df.Unicode.unique(): if counter[elem] < 100: code_and_count[elem] = counter[elem] add_train_df_list = [] for elem, count in code_and_count.items(): multi_count = int(100 / count) for i in range(multi_count): add_train_df_list.append(train_df[train_df.Unicode == elem]) add_train_df = pd.concat(add_train_df_list) train_df = pd.concat([train_df, add_train_df]) print("done!") print("postprocess for validation data for class contains less than 20 images...") # Oversample characters that appear less than 20 times more than 20 times counter = val_df.Unicode.value_counts() code_and_count = {} for elem in val_df.Unicode.unique(): if counter[elem] < 20: code_and_count[elem] = counter[elem] add_val_df_list = [] for elem, count in code_and_count.items(): multi_count = int(20 / count) for i in range(multi_count): add_val_df_list.append(val_df[val_df.Unicode == elem]) print("done!") print("finalizing...") add_val_df =
pd.concat(add_val_df_list)
pandas.concat
# Copyright 2020, <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np from typing import Dict, List import yaml import os def _read_IMARIS_cell_migration_data(filename): ''' ''' if (not os.path.isfile(filename)): return pd.DataFrame() print("Open file: %s" % filename) sep = _count_delimiters(open(filename, "r", encoding="ISO-8859-1").read()) num_lines = sum(1 for line in open(filename, encoding="ISO-8859-1")) if num_lines < 10: return pd.DataFrame() f = open(filename, "r", encoding="ISO-8859-1") skip_row = 0 for line in f.readlines(): row = line.split(sep) if len(row) > 0: if row[0] == "Variable": break if row[0] == "Position X": break skip_row += 1 f.close() if skip_row > 10: return pd.DataFrame() df_stat = pd.read_csv(filename, skiprows=skip_row, sep=sep, encoding="ISO-8859-1") return df_stat def _count_delimiters(s): valid_seps = [' ', '|', ',', ';', '\t'] cnt = {' ': 0, '|': 0, ',': 0, ';': 0, '\t': 0} for c in s: if c in valid_seps: cnt[c] = cnt[c] + 1 tup = [(value, key) for key, value in cnt.items()] if (cnt[';'] > 0): print("File contains semicolons, check if opened correctly! %s") print(cnt) return max(tup)[1] def CMSO_movement_data(imaris_key_file: pd.DataFrame, parameters: Dict, start_time, end_time) -> pd.DataFrame: processed_key_file = imaris_key_file.copy() imaris_data = dict() unified_imaris = dict() object_data = dict() link_data = dict() tracking_data = dict() json_meta = dict() #json_meta["test.json"] = {"cmso_space_unit": "micron", "cmso_time_unit": "frame"} object_data_statistics = pd.DataFrame() counter = 1 with open("./conf/base/catalog.yml") as file: catalog_dict = yaml.load(file, Loader=yaml.FullLoader) cmso_object_dir = catalog_dict['CMSO_object_data']['filepath'] cmso_link_dir = catalog_dict['CMSO_link_data']['filepath'] cmso_track_dir = catalog_dict['CMSO_track_data']['filepath'] for fish_number in imaris_key_file["fish_number"].unique(): if (np.isnan(fish_number)): continue df_single_fish_all_groups = imaris_key_file[imaris_key_file['fish_number'] == fish_number] for analysis_group in df_single_fish_all_groups["analysis_group"].unique(): df_single_fish = df_single_fish_all_groups[df_single_fish_all_groups["analysis_group"] == analysis_group] print("=================================================") print("fish number: %s" % int(fish_number)) print("=================================================") print(df_single_fish) object_filename = 'objects_fish_%s_%s.csv' % (int(fish_number), analysis_group) #object_data[filename] = objects_d am not sharing that piece about Kate to be disparaging about herf object_data_statistics.at[counter, "filename"] = object_filename for index, row in df_single_fish.iterrows(): filename = parameters["data_dir"] + row["filename"] #print("FILENAME: %s" % filename) imaris_df = _read_IMARIS_cell_migration_data(filename) object_data_statistics.at[counter,"imaris_df.size"] = imaris_df.size if imaris_df.size <= 1: print("ERROR: Imaris df too small") print(imaris_df.head()) else: imaris_data['tracks_fish_%s_%s_%s.csv' % ( analysis_group, int(fish_number), row["vessel_type"])] = imaris_df unified_df = _unify_tidy_wide_IMARIS_formats(imaris_df) print(unified_df.head()) if unified_df.size <= 1: print("ERROR: Unified df too small") print(unified_df.head()) else: object_data_statistics.at[counter, "unified_df.size"] = unified_df.size imaris_data['tracks_fish_%s_%s_%s.csv' % ( analysis_group, int(fish_number), row["vessel_type"])] = imaris_df unified_imaris['tracks_fish_%s_%s_%s.csv' % ( analysis_group, int(fish_number), row["vessel_type"])] = unified_df object_filename = 'objects_fish_%s_%s_%s.csv' % ( analysis_group, int(fish_number), row["vessel_type"]) object_data[object_filename] = unified_df[["object_id", "x", "y", "z", "frame"]] link_filename = 'link_fish_%s_%s_%s.csv' % (analysis_group, int(fish_number), row["vessel_type"]) link_df = unified_df[["object_id", "track_id"]] link_df = link_df.rename(columns={"track_id": "link_id"}) link_data[link_filename] = link_df json_filename = "meta_fish_%s_%s_%s.json" % (analysis_group, int(fish_number), row["vessel_type"]) json_meta[json_filename] = {"cmso_space_unit": "micron", "cmso_time_unit": "frame", "name": "cmso_tracks_zebrafish_%s" % analysis_group, "resources": [ { "name" : "objects_table_fish_%s_%s_%s" % ( analysis_group, int(fish_number), row["vessel_type"]), "path": "../CMSO_object_data/%s" % object_filename, "schema": { "fields": [ { "constraints": { "unique": True }, "description": "", "format": "default", "name": "object_id", "title": "", "type": "integer" }, { "description": "", "format": "default", "name": "frame", "title": "", "type": "integer" }, { "description": "", "format": "default", "name": "x", "title": "", "type": "number" }, { "description": "", "format": "default", "name": "y", "title": "", "type": "number" }, { "description": "", "format": "default", "name": "z", "title": "", "type": "number" }, ], "primaryKey": "cmso_object_id" } }, { "name": "objects_table_fish_%s_%s_%s" % ( analysis_group, int(fish_number), row["vessel_type"]), "path": "../CMSO_link_data/%s" % link_filename, "schema": { "fields": [ { "description": "", "format": "default", "name": "link_id", "title": "", "type": "integer" }, { "description": "", "format": "default", "name": "object_id", "title": "", "type": "integer" } ], "foreignKeys": [ { "fields": "cmso_object_id", "reference": { "datapackage": "", "fields": "object_id", "resource": "cmso_objects_table" } } ] } } ] } track_counter = 0 track_df =
pd.DataFrame()
pandas.DataFrame
import json import os from urllib.error import HTTPError, URLError from urllib.request import urlopen import pandas as pd from pandas.tseries.offsets import DateOffset def from_download(tok, start_date, end_date, offset_days, series_list): """Download and assemble dataset of demand data per balancing authority for desired date range. :param str tok: token obtained by registering with EIA. :param pandas.Timestamp/numpy.datetime64/datetime.datetime start_date: start date. :param pandas.Timestamp/numpy.datetime64/datetime.datetime end_date: end data. :param list series_list: list of demand series names provided by EIA, e.g., ['EBA.AVA-ALL.D.H', 'EBA.AZPS-ALL.D.H']. :param int offset_days: number of business days for data to stabilize. :return: (*pandas.DataFrame*) -- data frame with UTC timestamp as indices and BA series name as column names. """ timespan = pd.date_range( start_date, end_date - DateOffset(days=offset_days), tz="UTC", freq="H" ) df_all = pd.DataFrame(index=timespan) for ba in series_list: print("Downloading", ba) d = EIAgov(tok, [ba]) df = d.get_data() if df is not None: df.index =
pd.to_datetime(df["Date"])
pandas.to_datetime
import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score import random import socket client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(('3.142.167.4', 15271)) # client.connect(('127.0.0.1', 60000)) import rss22 pid = 2 def rssrd(r, xy): f = {} g = {} R = {} esend = {} epk1 = {} for j in range(rss22.n): if j+1==pid: continue f[pid,(j+1)] = round(random.uniform(3*(10**7),4*(10**7)),6) g[pid,(j+1)] = round(random.uniform(3*(10**7),4*(10**7)),6) R[pid,(j+1)] = random.uniform(11*(10**18),19*(10**18)) for j in range(rss22.n): if j+1==pid: continue prod = f[pid,(j+1)] * r esend[pid,(j+1)] = ( rss22.public_key.encrypt(prod) , f[pid,(j+1)] ) for j in range(1,4): if j == pid: rss22.client_send(esend, client) print('sent') else: print("Ready to receive") rss22.client_receive(pid, client) print("Received data") print(rss22.erecive) fj = {} for i in rss22.erecive.keys(): epk1[i[0],i[1]]=( rss22.erecive[i][0] * g[i[1],i[0]] * xy + R[i[1],i[0]] , g[i[1],i[0]] ) fj[i] = rss22.erecive[i][1] print("fj ",fj,"\n") print() for j in range(1,4): if j == pid: rss22.epk_send(epk1, client) else: rss22.epk_receive(pid, client) print("Received dat 01a") print(rss22.epkfinal) share1 = {} share2 = {} for i in rss22.epkfinal.keys(): nr = rss22.private_key.decrypt(rss22.epkfinal[i][0]) dr = rss22.epkfinal[i][1] * f[i] share1[i] = nr/dr share2[i] = - R[i] / ( fj[(i[1],i[0])] * g[i] ) print('ok') t = round(random.uniform((-0.5),(0.5)),6) si = 0 for i in share1.keys(): si += share1[i] + share2[i] + ( r + t ) * xy rss22.s = [] for j in range(1,4): if j == pid: rss22.si_send(si, client) else: rss22.si_receive(client) rss22.s.append(si) print(rss22.s) return sum(rss22.s) def rss(d): x, y = d['x'], d['y'] alphax = round(random.uniform((-0.5),(0.5)),6) alphay = round(random.uniform((-0.5),(0.5)),6) x = x + alphax y = y + alphay r = round(random.uniform(3000,4000),6) sx = rssrd(r, x) sy = rssrd(r, y) return sx/sy def fdrt(dat, alpha, beta): cos_alpha = round(math.cos(alpha),4) sin_alpha = round(math.sin(alpha), 4) cos_beta = round(math.cos(beta),4) sin_beta = round(math.sin(beta), 4) x = [[cos_alpha,-sin_alpha, 0, 0], [ sin_alpha, cos_alpha, 0, 0], [ 0, 0, cos_beta, -sin_beta], [ 0, 0, sin_beta, cos_beta] ] length=len(dat.columns) cnt = length//4 if length % 4>0: cnt+=1 i=0 j=4 k=0 while k<cnt: if j<length: dat4 = dat.iloc[:,i:j] else: dat4 = dat.iloc[:,-4:] i=length-4 j=length dat4 = dat4.values.tolist() prod = np.dot(dat4,x) dat.iloc[:,i:j] = prod i=j j+=4 k+=1 return dat ########################################################################### data = pd.read_csv('Test/cryo3.csv') ndata = data.iloc[:,:-1].select_dtypes(include=np.number) print(ndata) dat = ndata.apply(lambda x: 5*(x - x.min()) / (x.max() - x.min())) print(dat) length=len(dat.columns) cnt = length//4 if length % 4>0: cnt+=1 i=0 j=4 k=0 while k<cnt: if j<length: dat4 = dat.iloc[:,i:j] i=j j+=4 else: dat4 = dat.iloc[:,-4:] rot =
pd.DataFrame(columns=[0,1,2,3])
pandas.DataFrame
from __future__ import print_function import pandas as pd import numpy as np import tensorflow as tf import os import shutil import copy from time import time from datetime import timedelta import h5py tf.compat.v1.disable_eager_execution() ''' CHRONOS: population modeling of CRISPR readcount data <NAME> (<EMAIL>) The Broad Institute ''' def write_hdf5(df, filename): if os.path.exists(filename): os.remove(filename) dest = h5py.File(filename, 'w') try: dim_0 = [x.encode('utf8') for x in df.index] dim_1 = [x.encode('utf8') for x in df.columns] dest_dim_0 = dest.create_dataset('dim_0', track_times=False, data=dim_0) dest_dim_1 = dest.create_dataset('dim_1', track_times=False, data=dim_1) dest.create_dataset("data", track_times=False, data=df.values) finally: dest.close() def read_hdf5(filename): src = h5py.File(filename, 'r') try: dim_0 = [x.decode('utf8') for x in src['dim_0']] dim_1 = [x.decode('utf8') for x in src['dim_1']] data = np.array(src['data']) return pd.DataFrame(index=dim_0, columns=dim_1, data=data) finally: src.close() def extract_last_reps(sequence_map): '''get the sequence IDs of replicates at their last measured timepoint''' rep_map = sequence_map[sequence_map.cell_line_name != 'pDNA'] last_days = rep_map.groupby('cell_line_name').days.max() last_reps = rep_map[rep_map.days == last_days.loc[rep_map.cell_line_name].values].sequence_ID return last_reps def check_inputs(readcounts=None, guide_gene_map=None, sequence_map=None): keys = None sequence_expected = set(['sequence_ID', 'cell_line_name', 'days', 'pDNA_batch']) guide_expected = set(['sgrna', 'gene']) for name, entry in zip(['readcounts', 'guide_gene_map', 'sequence_map'], [readcounts, guide_gene_map, sequence_map]): if entry is None: continue if not isinstance(entry, dict): raise ValueError("Expected dict, but received %r" %entry) if keys is None: keys = set(entry.keys()) else: if not set(entry.keys()) == keys: raise ValueError("The keys for %s (%r) do not match the other keys found (%r)" % (name, keys, set(entry.keys))) for key, val in entry.items(): if not isinstance(val, pd.DataFrame): raise ValueError('expected Pandas dataframe for %s[%r]' %(name, key)) if name == 'readcounts': assert val.index.duplicated().sum() == 0, "duplicated sequence IDs for readcounts %r" %key assert not val.isnull().all(axis=1).any(), \ "All readcounts are null for one or more replicates in %s, please drop them" % key assert not val.isnull().all(axis=0).any(),\ "All readcounts are null for one or more guides in %s, please drop them" % key elif name == 'guide_gene_map': assert not guide_expected - set(val.columns), \ "not all expected columns %r found for guide-gene map for %s. Found %r" %(guide_expected, key, val.columns) assert val.sgrna.duplicated().sum() == 0, "duplicated sgRNAs for guide-gene map %r. Multiple gene alignments for sgRNAs are not supported." %key elif name == 'sequence_map': assert not sequence_expected - set(val.columns), \ "not all expected columns %r found for sequence map for %s. Found %r" %(sequence_expected, key, val.columns) assert val.sequence_ID.duplicated().sum() == 0, "duplicated sequence IDs for sequence map %r" %key for batch in val.query('cell_line_name != "pDNA"').pDNA_batch.unique(): assert batch in val.query('cell_line_name == "pDNA"').pDNA_batch.values, \ "there are sequences with pDNA batch %s in library %s, but no pDNA measurements for that batch" %(batch, key) if val.days.max() > 50: print("\t\t\tWARNING: many days (%1.2f) found for %s.\n\t\t\tThis may cause numerical issues in fitting the model.\n\ Consider rescaling all days by a constant factor so the max is less than 50." % (val.days.max(), key)) for key in keys: if not readcounts is None and not sequence_map is None: assert not set(readcounts[key].index) ^ set(sequence_map[key].sequence_ID), \ "\t\t\t mismatched sequence IDs between readcounts and sequence map for %r.\n\ Chronos expects `readcounts` to have guides as columns, sequence IDs as rows.\n\ Is your data transposed?" %key if not readcounts is None and not guide_gene_map is None: assert not set(readcounts[key].columns) ^ set(guide_gene_map[key].sgrna), \ "mismatched map keys between readcounts and guide map for %s" % key def filter_guides(guide_gene_map, max_guides=15): ''' removes sgRNAs that target multiple genes, then genes that have less than two guides. Parameters: `guide_gene_map` (`pandas.DataFrame`): See Model.__init__ for formatting of guide_gene_map Returns: `pandas.DataFrame`: filtered guide_gene_map ''' alignment_counts = guide_gene_map.groupby("sgrna").gene.count() guide_gene_map = guide_gene_map[guide_gene_map['sgrna'].isin(alignment_counts.loc[lambda x: x == 1].index)] guide_counts = guide_gene_map.groupby('gene')['sgrna'].count() guide_gene_map = guide_gene_map[guide_gene_map.gene.isin(guide_counts.loc[lambda x: (x > 1)& (x <= max_guides)].index)] return guide_gene_map def calculate_fold_change(readcounts, sequence_map): ''' Calculates fold change as the ratio of the RPM+1 of late time points to pDNA Parameters: readcounts (`pandas.DataFrame`): readcount matrix with replicates on rows, guides on columns sequence_map (`pandas.DataFrame`): has string columns "sequence_ID", "cell_line_name", and "pDNA_batch" returns: fold_change (`pd.DataFrame`) ''' check_inputs(readcounts={'default': readcounts}, sequence_map={'default': sequence_map}) reps = sequence_map.query('cell_line_name != "pDNA"').sequence_ID pdna = sequence_map.query('cell_line_name == "pDNA"').sequence_ID rpm = pd.DataFrame( (1e6 * readcounts.values.T / readcounts.sum(axis=1).values + 1).T, index=readcounts.index, columns=readcounts.columns ) fc = rpm.loc[reps] norm = rpm.loc[pdna].groupby(sequence_map.set_index('sequence_ID')['pDNA_batch']).median() try: fc = pd.DataFrame(fc.values/norm.loc[sequence_map.set_index('sequence_ID').loc[reps, 'pDNA_batch']].values, index=fc.index, columns=fc.columns ) except Exception as e: print(fc.iloc[:3, :3],'\n') print(norm[:3], '\n') print(reps[:3], '\n') print(sequence_map[:3], '\n') raise e errors = [] # if np.sum(fc.values <= 0) > 0: # errors.append("Fold change has zero or negative values:\n%r\n" % fc[fc <= 0].stack()[:10]) # if (fc.min(axis=1) >= 1).any(): # errors.append("Fold change has no values less than 1 for replicates\n%r" % fc.min(axis=1).loc[lambda x: x>= 1]) if errors: raise RuntimeError('\n'.join(errors)) return fc def nan_outgrowths(readcounts, sequence_map, guide_gene_map, absolute_cutoff=2, gap_cutoff=2): ''' NaNs readcounts in cases where all of the following are true: - The value for the guide/replicate pair corresponds to the most positive log fold change of all guides and all replicates for a cell line - The logfold change for the guide/replicate pair is greater than `absolute_cutoff` - The difference between the lfc for this pair and the next most positive pair for that gene and cell line is greater than gap_cutoff Readcounts are mutated in place. Parameters: readcounts (`pandas.DataFrame`): readcount matrix with replicates on rows, guides on columns sequence_map (`pandas.DataFrame`): has string columns "sequence_ID", "cell_line_name", and "pDNA_batch" guide_gene_map (`pandas.DataFrame`): has string columns "sequence_ID", "cell_line_name", and "pDNA_batch" ''' check_inputs(readcounts={'default': readcounts}, sequence_map={'default': sequence_map}, guide_gene_map={'default': guide_gene_map}) print('calculating LFC') lfc = np.log2(calculate_fold_change(readcounts, sequence_map)) print('finding maximum LFC cells') ggtemp = guide_gene_map.set_index('sgrna').gene.sort_index() sqtemp = sequence_map.set_index('sequence_ID').cell_line_name.sort_index() max_lfc = lfc.groupby(ggtemp, axis=1).max() potential_cols = max_lfc.columns[max_lfc.max() > absolute_cutoff] potential_rows= max_lfc.index[max_lfc.max(axis=1) > absolute_cutoff] max_lfc = max_lfc.loc[potential_rows, potential_cols] ggtemp = ggtemp[ggtemp.isin(potential_cols)] sqtemp = sqtemp[sqtemp.isin(potential_rows)] ggreversed = pd.Series(ggtemp.index.values, index=ggtemp.values).sort_index() sqreversed = pd.Series(sqtemp.index.values, index=sqtemp.values).sort_index() def second_highest(x): if len(x) == 1: return -np.inf return x.values[np.argpartition(-x.values, 1)[1]] max_row_2nd_column = lfc.T.groupby(ggtemp, axis=0).agg(second_highest).T # print('constructing second of two second-highest matrices') # max_col_2nd_row = lfc.groupby(ggtemp, axis=1).max()\ # .groupby(sqtemp, axis=0).agg(second_highest) second_highest = max_row_2nd_column.loc[max_lfc.index, max_lfc.columns].values # max_col_2nd_row.loc[max_lfc.index, max_lfc.columns].values # ) gap = pd.DataFrame(max_lfc.values - second_highest, #second_highest index=max_lfc.index, columns=max_lfc.columns) print('finding sequences and guides with outgrowth') cases = max_lfc[(max_lfc > absolute_cutoff) & (gap > gap_cutoff)] cases = cases.stack() print('%i (%1.5f%% of) readcounts to be removed' % ( len(cases), 100*len(cases)/np.product(readcounts.shape) )) print(cases[:10]) problems = pd.Series() for ind in cases.index: block = lfc.loc[ind[0], ggreversed.loc[[ind[1]]]] stacked = block[block == cases.loc[ind]] guide = stacked.index[0] problems.loc['%s&%s' % ind] = (ind[0], guide) print('NaNing bad outgrowths') for rep, guide in problems.values: readcounts.loc[rep, guide] = np.nan ################################################################## # M O D E L # ################################################################## class Chronos(object): ''' Model class for inferring effect of gene knockout from readcount data. Takes in readcounts, mapping dataframes, and hyperparameters at init, then is trained with `train`. Note on axes: Replicates and cell lines are always the rows/major axis of all dataframes and tensors. Guides and genes are always the columns/second axis. In cases where values vary per library, the object is a dict, and the library name is the key. Notes on attribute names: Attributes with single preceding underscores are tensorflow constants or tensorflow nodes, in analogy with the idea of "private" attributes not meant to be interacted with directly. For tensorflow nodes, there is usually a defined class attribute with no underscore which runs the node and returns a pandas Series or DataFrame or dict of the same. In other words `Chronos.v_a` (tensor) --(tensorflow function)-> `Chronos._a` (tensor) --(session run)-> `Chronos.a` (pandas object) Some intermediate tensorflow nodes do not have corresponding numpy/pandas attributes. Most parameters with a pandas interface can be set using the pandas interface. Do NOT try set tensorflow tensors directly - there are usually transformations Chronos expects, such as rescaling time values. Use the pandas interface, i.e. my_chronos_model.gene_effect = my_pandas_dataframe. Every set of parameters that are fit per-library are dicts. If `Chronos.v_a` is a dict, the subsequent attributes in the graph are also dicts. Settable Attributes: these CAN be set manually to interrogate the model or for other advanced uses, but NOT RECOMMENDED. Most users will just want to read them out after training. guide_efficacy (`pandas.Series`): estimated on-target KO efficacy of reagents, between 0 and 1 cell_efficacy (`dict` of `pandas.Series`): estimated cell line KO efficacy per library, between 0 and 1 growth_rate (`dict` of `pandas.Series`): relative growth rate of cell lines, positive float. 1 is the average of all lines in lbrary. gene_effect ('pandas.DataFrame'): cell line by gene matrix of inferred change in growth rate caused by gene knockout screen_delay (`pandas.Series`): per gene delay between infection and appearance of growth rate phenotype initial_offset (`dict` of 'pandas.Series'): per sgrna estimated log fold pDNA error, per library. This value is exponentiated and mean-cented, then multiplied by the measured pDNA to infer the actual pDNA RPM of each guide. If there are fewer than 2 late time points, the mean of this value per gene is 0. days (`dict` of `pandas.Series`): number of days in culture for each replicate. learning_rate (`float`): current model learning rate. Will be overwritten when `train` is called. Unsettable (Calculated) Attributes: cost (`float`): the NB2 negative log-likelihood of the data under the current model, shifted to be 0 when the output RPM perfectly matches the input RPM. Does not include regularization or terms involving only constants. cost_presum (`dict` of `pd.DataFrame`): the per-library, per-replicate, per-guide contribution to the cost. out (`dict` of `pd.DataFrame`): the per-library, per-replicate, per-guide model estimate of reads, unnormalized. output_norm (`dict` of `pandas.DataFrame`): `out` normalized so the sum of reads for each replicate is 1. efficacy (`pandas.DataFrame`): cell by guide efficacy matrix generated from the outer product of cell and guide efficacies initial (`dict` of `pandas.DataFrame`): estimated initial abundance of guides rpm (`dict` of `pandas.DataFrame`): the RPM of the measured readcounts / 1 million. Effectively a constant. ''' default_timepoint_scale = .1 * np.log(2) default_cost_value = 0.67 persistent_handles = set([]) def __init__(self, readcounts, #copy_number_matrix, guide_gene_map, sequence_map, gene_effect_hierarchical=.1, gene_effect_smoothing=.25, kernel_width=5, gene_effect_L1=0.1, gene_effect_L2=0, excess_variance=0.05, guide_efficacy_reg=.5, offset_reg=1, growth_rate_reg=0.01, smart_init=True, cell_efficacy_guide_quantile=0.01, initial_screen_delay=3, scale_cost=0.67, max_learning_rate=.02, dtype=tf.double, verify_integrity=True, log_dir=None, ): ''' Parameters: readcounts (`dict` of `pandas.DataFrame`): Values are matrices with sequenced entities on rows, guides as column headers, and total readcounts for the guide in the replicate as entries. There should be at least one key for each library, but the user can also make separate individual datasets according to some other condition, such as screening site. sequence_map (`dict` of `pandas.DataFrame`): Keys must match the keys of readcounts. Values are tables with the columns: sequence_ID: matches a row index in the corresponding readcounts matrix. Should uniquely identify a combination of cell line, replicate, and sequence passage. cell_line: name of corresponding cell line. 'pDNA' if this is a plasmid DNA or initial count measurement. days: estimate number of cell days from infection when readcounts were performed. Plasmid DNA entries should be 0. pDNA_batch: Unique identifier for associating readcounts to time 0 readcounts. guide_gene_map (`dict` of `pandas.DataFrame`): Values are tables with the columns: sgrna: guide sequence or unique guide identifier gene: gene mapped to by guide. Genes should follow consistent naming conventions between libraries gene_effect_hierarchical (`float`): regularization of individual gene effect scores towards the mean across cell lines gene_effect_smoothing (`float`): regularization of individual gene scores towards mean after Gaussian kernel convolution kernel_width (`float`): width (SD) of the Gaussian kernel for the smoothing regularization gene_effect_L1 (`float`): regularization of gene effect CELL LINE MEAN towards zero with L1 penalty gene_effect_L2 (`float`): regularization of individual gene scores towards zero with L2 penalty offset_reg (`float`): regularization of pDNA error growth_rate_reg (`float`): regularization of the negative log of the relative growth rate guide_efficacy_reg (`float`): regularization of the gap between the two strongest guides' efficacy per gene, or of the gap between them and 1 if only one late timepoint is present in readcounts for that library excess_variance (`float` or `dict`): measure of Negative Binomial overdispersion for the cost function, overall or per cell line and library. max_learning_rate (`float`): passed to AdamOptimizer after initial burn-in period during training verify_integrity (`bool`): whether to check each itnermediate tensor computed by Chronos for innappropriate values log_dir (`path` or None): if provided, location where Tensorboard snapshots will be saved cell_efficacy_init (`bool`): whether to initialize cell efficacies using the fold change of the most depleted guides at the last timepoint celll_efficacy_guide_quantile (`float`): quantile of guides to use to estimate cell screen efficacy. Between 0 and 0.5. initial_screen_delay (`float`): how long after infection before growth phenotype kicks in, in days. If there are fewer than 3 late timepoints this initial value will be left unchanged. dtype (`tensorflow.double` or `tensorflow.float`): numerical precision of the computation. Strongly recommend to leave this unchanged. scale_cost (`bool`): The likelihood cost will be scaled to always be initially this value (default 0.67) for all data. This encourages more consistent behavior across datasets when leaving the other regularization hyperparameters constant. Pass 0, False, or None to avoid cost scaling. ''' ########################### I N I T I A L C H E C K S ############################ check_inputs(readcounts=readcounts, sequence_map=sequence_map, guide_gene_map=guide_gene_map) sequence_map = self._make_pdna_unique(sequence_map, readcounts) excess_variance = self._check_excess_variance(excess_variance, readcounts, sequence_map) self.np_dtype = {tf.double: np.float64, tf.float32: np.float32}[dtype] self.keys = list(readcounts.keys()) if scale_cost: try: scale_cost = float(scale_cost) assert 0 < scale_cost, "scale_cost must be positive" except: raise ValueError("scale_cost must be None, False, or a semi-positive number") #################### C R E A T E M A P P I N G S ######################## (self.guides, self.genes, self.all_guides, self.all_genes, self.guide_map, self.column_map ) = self._get_column_attributes(readcounts, guide_gene_map) (self.sequences, self.pDNA_unique, self.cells, self.all_sequences, \ self.all_cells, self.cell_indices, self.replicate_map, self.index_map, self.line_index_map, self.batch_map ) = self._get_row_attributes(readcounts, sequence_map) ################## A S S I G N C O N S T A N T S ####################### print('\n\nassigning float constants') self.guide_efficacy_reg = float(guide_efficacy_reg) self.gene_effect_L1 = float(gene_effect_L1) self.gene_effect_L2 = float(gene_effect_L2) self.gene_effect_hierarchical = float(gene_effect_hierarchical) self.growth_rate_reg = float(growth_rate_reg) self.offset_reg = float(offset_reg) self.gene_effect_smoothing = float(gene_effect_smoothing) self.kernel_width = float(kernel_width) self.cell_efficacy_guide_quantile = float(cell_efficacy_guide_quantile) if not 0 < self.cell_efficacy_guide_quantile < .5: raise ValueError("cell_efficacy_guide_quantile should be greater than 0 and less than 0.5") self.nguides, self.ngenes, self.nlines, self.nsequences = ( len(self.all_guides), len(self.all_genes), len(self.all_cells), len(self.all_sequences) ) self._excess_variance = self._get_excess_variance_tf(excess_variance) self.median_timepoint_counts = self._summarize_timepoint(sequence_map, np.median) self._initialize_graph(max_learning_rate, dtype) self._gene_effect_mask, self.mask_count = self._get_gene_effect_mask(dtype) self._days = self._get_days(sequence_map, dtype) self._rpm, self._mask = self._get_late_tf_timepoints(readcounts, dtype) self._measured_initial = self._get_tf_measured_initial(readcounts, sequence_map, dtype) ################## C R E A T E V A R I A B L E S ####################### print('\n\nBuilding variables') (self.v_initial, self._initial_core, self._initial, self._initial_offset, self._grouped_initial_offset) = self._get_initial_tf_variables(dtype) (self.v_guide_efficacy, self._guide_efficacy) = self._get_tf_guide_efficacy(dtype) (self.v_growth_rate, self._growth_rate, self._line_presence_boolean) = self._get_tf_growth_rate(dtype) (self.v_cell_efficacy, self._cell_efficacy) = self._get_tf_cell_efficacy(dtype) (self.v_screen_delay, self._screen_delay) = self._get_tf_screen_delay(initial_screen_delay, dtype) (self.v_mean_effect, self.v_residue, self._residue, self._true_residue, self._combined_gene_effect ) = self._get_tf_gene_effect(dtype) ############################# C O R E M O D E L ############################## print("\n\nConnecting graph nodes in model") self._effective_days = self._get_effect_days(self._screen_delay, self._days) self._gene_effect_growth = self._get_gene_effect_growth(self._combined_gene_effect, self._growth_rate) self._efficacy, self._selected_efficacies = self._get_combined_efficacy(self._cell_efficacy,self. _guide_efficacy) self._growth, self._change = self._get_growth_and_fold_change(self._gene_effect_growth, self._effective_days, self._selected_efficacies) self._out, self._output_norm = self._get_abundance_estimates(self._initial, self._change) ##################################### C O S T ######################################### print("\n\nBuilding all costs") self._total_guide_reg_cost = self._get_guide_regularization(self._guide_efficacy, dtype) self._smoothed_presum = self._get_smoothed_ge_regularization(self.v_mean_effect, self._true_residue, kernel_width, dtype) self._initial_cost = self._get_initial_regularization(self._initial_offset) self._cost_presum, self._cost, self._scale = self._get_nb2_cost(self._excess_variance, self._output_norm, self._rpm, self._mask, dtype) self.run_dict.update({self._scale: 1.0}) self._full_cost = self._get_full_cost(dtype) ######################### F I N A L I Z I N G ################################### print('\nCreating optimizer') self.optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=self._learning_rate) default_var_list = [ self.v_mean_effect, self.v_residue, self.v_guide_efficacy, self.v_initial, self.v_growth_rate ] # if all([val > 2 for val in self.median_timepoint_counts.values()]): # "All libraries have sufficient timepoints to estimate screen_delay, adding to estimate" # default_var_list.append(self.v_screen_delay) self._ge_only_step = self.optimizer.minimize(self._full_cost, var_list=[self.v_mean_effect, self.v_residue]) self._step = self.optimizer.minimize(self._full_cost, var_list=default_var_list) self._merged = tf.compat.v1.summary.merge_all() if log_dir is not None: print("\tcreating log at %s" %log_dir) if os.path.isdir(log_dir): shutil.rmtree(log_dir) os.mkdir(log_dir) self.log_dir = log_dir self.writer = tf.compat.v1.summary.FileWriter(log_dir, self.sess.graph) init_op = tf.compat.v1.global_variables_initializer() print('initializing variables') self.sess.run(init_op) if scale_cost: denom = self.cost self.run_dict.update({self._scale: scale_cost/denom}) if smart_init: print("estimating initial screen efficacy") self.smart_initialize(readcounts, sequence_map, cell_efficacy_guide_quantile) if verify_integrity: print("\tverifying graph integrity") self.nan_check() self.epoch = 0 print('ready to train') ################################################################################################ ############## I N I T I A L I Z A T I O N M E T H O D S ######################### ################################################################################################ def get_persistent_input(self, dtype, data, name=''): placeholder = tf.compat.v1.placeholder(dtype=dtype, shape=data.shape) # Persistent tensor to hold the data in tensorflow. Helpful because TF doesn't allow # graph definitions larger than 2GB (so can't use constants), and passing the feed dict each time is slow. # This feature is poorly documented, but the handle seems to refer not to a tensor but rather a tensor "state" - # the state of a placeholder that's been passed the feed dict. This is what persists. Annoyingly, it then becomes # impossible to track the shape of the tensor. state_handle = self.sess.run(tf.compat.v1.get_session_handle(placeholder), {placeholder: data}) # why TF's persistence requires two handles, I don't know. But it does. tensor_handle, data = tf.compat.v1.get_session_tensor(state_handle.handle, dtype=dtype, name=name) self.run_dict[tensor_handle] = state_handle.handle self.persistent_handles.add(state_handle.handle) return data ########################### I N I T I A L C H E C K S ############################ def _make_pdna_unique(self, sequence_map, readcounts): #guarantee unique pDNA batches sequence_map = {key: val.query('sequence_ID in %r' % list(readcounts[key].index)) for key, val in sequence_map.items()} for key, val in sequence_map.items(): val['pDNA_batch'] = val['pDNA_batch'].apply(lambda s: '%s_%s' % (key, s)) return sequence_map def _check_excess_variance(self, excess_variance, readcounts, sequence_map): if not isinstance(excess_variance, dict): try: excess_variance = float(excess_variance) except ValueError: raise ValueError("if provided, excess_variance must be a dict of pd.Series per library or a float") else: for key, val in excess_variance.items(): assert key in readcounts, "excess_variance key %s not found in the rest of the data" % key assert isinstance(val, pd.Series), "the excess_variance values provided for the different datasets must be pandas.Series objects, not\n%r" % val diff = set(val.index) ^ set(sequence_map[key].cell_line_name) assert len(diff) < 2, "difference between index values\n%r\nfor excess_variance and cell lines found in %s" % (diff, key) return excess_variance #################### C R E A T E M A P P I N G S ######################## def make_map(melted_map, outer_list, inner_list, dtype=np.float64): ''' takes a sorted list of indices, targets, and a pd.Series that maps between them and recomputes the mapping between them as two arrays of integer indices suitable for gather function calls. The mapping can only include a subset of either the outer or inner list and vice versa. The mapping's indices must be unique. ''' melted_map = melted_map[melted_map.index.isin(outer_list) & melted_map.isin(inner_list)] outer_array = np.array(outer_list) gather_outer = np.searchsorted(outer_array, melted_map.index).astype(np.int) inner_array = np.array(inner_list) gather_inner = np.searchsorted(inner_array, melted_map.values).astype(np.int) args = { 'gather_ind_inner': gather_inner, 'gather_ind_outer': gather_outer} return args def _get_column_attributes(self, readcounts, guide_gene_map): print('\n\nFinding all unique guides and genes') #guarantees the same sequence of guides and genes within each library guides = {key: val.columns for key, val in readcounts.items()} genes = {key: val.set_index('sgrna').loc[guides[key], 'gene'] for key, val in guide_gene_map.items()} all_guides = sorted(set.union(*[set(v) for v in guides.values()])) all_genes = sorted(set.union(*[set(v.values) for v in genes.values()])) for key in self.keys: print("found %i unique guides and %i unique genes in %s" %( len(set(guides[key])), len(set(genes[key])), key )) print("found %i unique guides and %i unique genes overall" %(len(all_guides), len(all_genes))) print('\nfinding guide-gene mapping indices') guide_map = {key: Chronos.make_map(guide_gene_map[key][['sgrna', 'gene']].set_index('sgrna').iloc[:, 0], all_guides, all_genes, self.np_dtype) for key in self.keys} column_map = {key: np.array(all_guides)[guide_map[key]['gather_ind_outer']] for key in self.keys} return guides, genes, all_guides, all_genes, guide_map, column_map def _get_row_attributes(self, readcounts, sequence_map): print('\nfinding all unique sequenced replicates, cell lines, and pDNA batches') #guarantees the same sequence of sequence_IDs and cell lines within each library. sequences = {key: val[val.cell_line_name != 'pDNA'].sequence_ID for key, val in sequence_map.items()} pDNA_batches = {key: list(val[val.cell_line_name != 'pDNA'].pDNA_batch.values) for key, val in sequence_map.items()} pDNA_unique = {key: sorted(set(val)) for key, val in pDNA_batches.items()} cells = {key: val[val.cell_line_name != 'pDNA']['cell_line_name'].unique() for key, val in sequence_map.items()} all_sequences = sorted(set.union(*tuple([set(v.values) for v in sequences.values()]))) all_cells = sorted(set.union(*tuple([set(v) for v in cells.values()]))) #This is necessary consume copy number provided for only the cell-guide blocks present in each library cell_indices = {key: [all_cells.index(s) for s in v] for key, v in cells.items()} assert len(all_sequences) == sum([len(val) for val in sequences.values()] ), "sequence IDs must be unique among all datasets" for key in self.keys: print("found %i unique sequences (excluding pDNA) and %i unique cell lines in %s" %( len(set(sequences[key])), len(set(cells[key])), key )) print("found %i unique replicates and %i unique cell lines overall" %(len(all_sequences), len(all_cells))) print('\nfinding replicate-cell line mappings indices') replicate_map = {key: Chronos.make_map(sequence_map[key][['sequence_ID', 'cell_line_name']].set_index('sequence_ID').iloc[:, 0], all_sequences, all_cells, self.np_dtype) for key in self.keys} index_map = {key: np.array(all_sequences)[replicate_map[key]['gather_ind_outer']] for key in self.keys} line_index_map = {key: np.array(all_cells)[replicate_map[key]['gather_ind_inner']] for key in self.keys} print('\nfinding replicate-pDNA mappings indices') batch_map = {key: Chronos.make_map(sequence_map[key][['sequence_ID', 'pDNA_batch']].set_index('sequence_ID').iloc[:, 0], all_sequences, pDNA_unique[key], self.np_dtype) for key in self.keys} return sequences, pDNA_unique, cells, all_sequences, all_cells, cell_indices, replicate_map, index_map, line_index_map, batch_map ################## A S S I G N C O N S T A N T S ####################### def _get_excess_variance_tf(self, excess_variance): _excess_variance = {} for key in self.keys: try: _excess_variance[key] = tf.constant(excess_variance[key][self.line_index_map[key]].values.reshape((-1, 1))) except IndexError: raise IndexError("difference between index values for excess_variance and cell lines found in %s" % key) except TypeError: _excess_variance[key] = tf.constant(excess_variance * np.ones(shape=(len(self.line_index_map[key]), 1))) return _excess_variance def _summarize_timepoint(self, sequence_map, func): out = {} for key, val in sequence_map.items(): out[key] = func(val.groupby("cell_line_name").days.agg(lambda v: len(v.unique())).drop('pDNA').values) return out def _initialize_graph(self, max_learning_rate, dtype): print('initializing graph') self.sess = tf.compat.v1.Session() self._learning_rate = tf.compat.v1.placeholder(shape=tuple(), dtype=dtype) self.run_dict = {self._learning_rate: max_learning_rate} self.max_learning_rate = max_learning_rate self.persistent_handles = set([]) def _get_gene_effect_mask(self, dtype): # excludes genes in a cell line with reads from only one library print('\nbuilding gene effect mask') if len(self.keys) == 1: #only one library, therefore no mask _gene_effect_mask = tf.constant(1, shape=(len(self.all_cells), len(self.all_genes)), dtype=dtype) mask_count = len(self.all_cells) * len(self.all_genes) print("built mask with no exclusions") return _gene_effect_mask, mask_count else: print(self.keys) mask = {}#pd.DataFrame(0, index=self.all_cells, columns=self.all_genes, dtype=np.bool) for cell in self.all_cells: libraries = [key for key in self.keys if cell in self.cells[key]] covered_genes = sorted(set.intersection(*[set(self.genes[key]) for key in libraries])) mask[cell] = pd.Series(1, index=covered_genes, dtype=self.np_dtype) mask = pd.DataFrame(mask).T.reindex(index=self.all_cells, columns=self.all_genes).fillna(0) _gene_effect_mask = tf.constant(mask.values, dtype=dtype) mask_count = (mask == 1).sum().sum() print('made gene_effect mask, excluded %i (%1.5f) values' % ((mask == 0).sum().sum(), (mask == 0).mean().mean())) return _gene_effect_mask, mask_count def _get_days(self, sequence_map, dtype): print('\nbuilding doubling vectors') _days = {key: tf.constant(Chronos.default_timepoint_scale * val.set_index('sequence_ID').loc[self.index_map[key]].days.astype(self.np_dtype).values, dtype=dtype, shape=(len(self.index_map[key]), 1), name="days_%s" % key) for key, val in sequence_map.items()} for key in self.keys: print("made days vector of shape %r for %s" %( _days[key].get_shape().as_list(), key)) return _days def _get_late_tf_timepoints(self, readcounts, dtype): print("\nbuilding late observed timepoints") _rpm = {} _mask = {} for key in self.keys: rpm_np = readcounts[key].loc[self.index_map[key], self.column_map[key]].copy() rpm_np = 1e6 * (rpm_np.values + 1e-32) / (rpm_np.fillna(0).values + 1e-32).sum(axis=1).reshape((-1, 1)) mask = pd.notnull(rpm_np) _mask[key] = tf.constant(mask, dtype=tf.bool, name='NaN_mask_%s' % key) rpm_np[~mask] = 0 _rpm[key] = self.get_persistent_input(dtype, rpm_np, name='rpm_%s' % key) print("\tbuilt normalized timepoints for %s with shape %r (replicates X guides)" %( key, rpm_np.shape)) return _rpm, _mask def _get_tf_measured_initial(self, readcounts, sequence_map, dtype): print('\nbuilding initial reads') _measured_initial = {} for key in self.keys: rc = readcounts[key] sm = sequence_map[key] sm = sm[sm.cell_line_name == 'pDNA'] batch = rc.loc[sm.sequence_ID] if batch.empty: raise ValueError("No sequenced entities are labeled 'pDNA', or there are no readcounts for those that are") if batch.shape[0] > 1: batch = batch.groupby(sm.pDNA_batch.values).sum().astype(self.np_dtype) else: batch =
pd.DataFrame({self.pDNA_unique[key][0]: batch.iloc[0]})
pandas.DataFrame
''' Run this to get html files This file contains code to obtain html data from oslo bors and yahoo finance ''' import argparse import re import threading import time from pprint import pprint from typing import List import sys import pathlib import os import numpy as np import pandas as pd import pypatconsole as ppc from bs4 import BeautifulSoup as bs from pandas import DataFrame, to_numeric from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait from tqdm import tqdm import config as cng import yfinance_hotfix as yf import utils def dump_assert(file: str): assert file is not None, 'File parameter must be specified when dump=True' def get_osebx_htmlfile(url: str, timeout: int=cng.DEFAULT_TIMEOUT, wait_target_class: str=None, verbose: int=1, dump: bool=True, file: str=None) -> str: '''Load OSEBX html files using selenium''' if verbose >= 1: print(f'Gathering data from {url}') chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("--headless") chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") chrome_options.add_argument("--disable-gpu") driver = webdriver.Chrome(options=chrome_options) if verbose >= 2: print('Initialized chromedriver') driver.get(url) if verbose >= 2: print('Waiting for target HTML class to appear') # If the webpage dynamically loads the table with the stock information. This code will force the webdriver # wait until the wanted element is loaded. if not wait_target_class is None: try: WebDriverWait(driver, timeout).until( EC.presence_of_element_located((By.CLASS_NAME, wait_target_class)) ) except: print(f'Timeout: Could not load class {wait_target_class} from {url}') driver.quit() exit() if verbose >= 2: print('Element located') page_src = driver.page_source driver.quit() if dump: if verbose >= 1: print(f'Dumping HTML file: {file}') dump_assert(file) with open(file, 'w+') as file: file.write(page_src) return page_src def get_osebx_htmlfiles(): '''Get OSEBX HTML files''' get_osebx_htmlfile(url=cng.BORS_QUOTES_URL, wait_target_class=cng.QUOTES_WAIT_TARGET_CLASS, dump=True, file=cng.QUOTES_HTML_DATE_FILE, verbose=2) get_osebx_htmlfile(url=cng.BORS_RETURNS_URL, wait_target_class=cng.RETURNS_WAIT_TARGET_CLASS, dump=True, file=cng.RETURNS_HTML_DATE_FILE, verbose=2) def scrape_osebx_html(quotes: str=None, returns: str=None, verbose: int=0, dump: bool=True, file: str=None) -> pd.DataFrame: ''' Scrape stocks from oslo bors HTML files. HTML of websites of quotes and returns should be located in same folder this file. quotes: https://www.oslobors.no/ob_eng/markedsaktivitet/#/list/shares/quotelist/ob/all/all/false returns: https://www.oslobors.no/ob_eng/markedsaktivitet/#/list/shares/return/ob/all/all/false ''' if quotes is None: quotes = cng.QUOTES_HTML_FILE if returns is None: returns = cng.RETURNS_HTML_FILE with open(quotes) as html_source: soup_quotes = bs(html_source, 'html.parser') with open(returns) as html_source: soup_return = bs(html_source, 'html.parser') # Filter out the stock tables html_quotes = soup_quotes.find('div', class_="ng-scope").find('ui-view').find('ui-view').find('tbody').find_all('tr') html_return = soup_return.find('div', class_="ng-scope").find('ui-view').find('ui-view').find('tbody').find_all('tr') tickers = [] names = [] lasts = [] buys = [] sells = [] tradecounts = [] marketcaps = [] sectors = [] infos = [] profits_today = [] profits_1wk = [] profits_1month = [] profits_ytd = [] profits_1yr = [] # Create lists with features. Only preprocessing for strings are done (values are all strings). # Further preprocessing will be done later when the values are in a pandas DataFrame. for quotesrow, returnrow in tqdm(zip(html_quotes, html_return), total=len(html_quotes), disable=verbose): # Scrape ticker, name, marketcap, sector and info. tickers.append(quotesrow.a.text) names.append(quotesrow.find('td', {'data-header':'Navn'}).text) lasts.append(quotesrow.find('td', {'data-header':'Last'}).text.replace(',', '')) buys.append(quotesrow.find('td', {'data-header':'Buy'}).text.replace(',', '')) sells.append(quotesrow.find('td', {'data-header':'Sell'}).text.replace(',', '')) tradecounts.append(quotesrow.find('td', {'data-header':'No. of trades'}).text.replace(',', '')) marketcaps.append(quotesrow.find('td', {'data-header':'Market cap (MNOK)'}).text.replace(',', '')) # Marketcap unit is in millions, multiply by 10e6 to get normal values sectors.append(quotesrow.find('td', class_='icons').get('title')) # Info is whether instrument is a Liquidit y provider or not infos.append('LP' if 'fa-bolt' in quotesrow.find('td', class_='infoIcon').i.get('class') else np.nan) # Scrape return values # Values are percentages, and are currently in text form. Divide by 100 to get normal values profits_today.append(returnrow.find('td', class_='CHANGE_PCT_SLACK').text.replace('%', '')) profits_1wk.append(returnrow.find('td', class_='CHANGE_1WEEK_PCT_SLACK').text.replace('%', '')) profits_1month.append(returnrow.find('td', class_='CHANGE_1MONTH_PCT_SLACK').text.replace('%', '')) profits_ytd.append(returnrow.find('td', class_='CHANGE_YEAR_PCT_SLACK').text.replace('%', '')) profits_1yr.append(returnrow.find('td', class_='CHANGE_1YEAR_PCT_SLACK').text.replace('%', '')) if verbose >= 1: print(f'Ticker: {tickers[-1]}') print(f'Name: {names[-1]}') print(f'Last: {lasts[-1]}') print(f'Buy: {buys[-1]}') print(f'Sell: {sells[-1]}') print(f'Cap: {marketcaps[-1]}') print(f'Sector: {sectors[-1]}') print(f'Info: {infos[-1]}') print(f'Profit today: {profits_today[-1]}') print(f'Profit 1 week: {profits_1wk[-1]}') print(f'Profit 1 month: {profits_1month[-1]}') print(f'Profit YTD: {profits_ytd[-1]}') print(f'Profit 1 year: {profits_1yr[-1]}') print() df = DataFrame(dict( ticker=tickers, name=names, sector=sectors, last_=lasts, # DataFrame.last is a method, hence the underscore buy=buys, sell=sells, tradecount=tradecounts, info=infos, marketcap=marketcaps, profit_today=profits_today, profit_1wk=profits_1wk, profit_1month=profits_1month, profit_ytd=profits_ytd, profit_1yr=profits_1yr )) # Turn returns to floats then divide by 100 to convert from percentages to "numbers" columns_to_num = ['profit_today', 'profit_1wk', 'profit_1month', 'profit_ytd', 'profit_1yr'] df[columns_to_num] = df[columns_to_num].apply(to_numeric, errors='coerce') / 100 # Turn other things to numeric as well # coerce turns missing or invalid values to nan df.last_ =
to_numeric(df.last_, errors='coerce')
pandas.to_numeric
#!/usr/bin/python from threading import Thread from threading import Lock from http.server import BaseHTTPRequestHandler, HTTPServer import cgi import json from urllib import parse import pandas as pd import csv from pandas import DataFrame from pandas import Series from pandas import concat from pandas import read_csv from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from math import sqrt import numpy import random import traceback from keras.models import load_model from sklearn.externals import joblib PORT_NUMBER = 8080 lock = Lock() models = {} # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag + 1)] columns.append(df) df = concat(columns, axis=1) df = df.drop(0) return df # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # inverse scaling for a forecasted value def invert_scale(scaler, X, yhat): new_row = [x for x in X] + [yhat] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # fit an LSTM network to training data def fit_lstm(train, batch_size2, nb_epoch, neurons): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = Sequential() model.add(LSTM(neurons, batch_input_shape=(batch_size2, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=batch_size2, verbose=0, shuffle=False) # loss = model.evaluate(X, y) # print("Epoch {}/{}, loss = {}".format(i, nb_epoch, loss)) print("Epoch {}/{}".format(i, nb_epoch)) model.reset_states() return model def train_models(job): lock.acquire() if job not in models: models[job] = { 'lock': Lock() } lock.release() models[job]['lock'].acquire() # load dataset series = read_csv('./data/' + job + '.csv', header=0, index_col=0, squeeze=True) # transform data to be stationary raw_values = series.values diff_values = difference(raw_values, 1) # transform data to be supervised learning lag = 4 supervised = timeseries_to_supervised(diff_values, lag) supervised_values = supervised.values batch_size = 32 if supervised_values.shape[0] < 100: batch_size = 16 if supervised_values.shape[0] < 60: batch_size = 8 # split data into train and test-sets train = supervised_values # transform the scale of the data # scale data to [-1, 1] # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # fit the model t1 = train.shape[0] % batch_size train_trimmed = train_scaled[t1:, :] model = fit_lstm(train_trimmed, batch_size, 30, 4) model.save('./data/checkpoint-' + job) scaler_filename = './data/checkpoint-' + job + "-scaler.save" joblib.dump(scaler, scaler_filename) models[job]['batch_size'] = batch_size models[job]['lock'].release() def predict(job, seq): if job not in models or 'batch_size' not in models[job]: return -1, False batch_size = int(models[job]['batch_size']) data = { 'seq': seq, 'value': 0, } model = load_model('./data/checkpoint-' + job) scaler_filename = './data/checkpoint-' + job + "-scaler.save" scaler = joblib.load(scaler_filename) file = './data/' + job + '.' + str(random.randint(1000, 9999)) + '.csv' df =
pd.read_csv('./data/' + job + '.csv', usecols=['seq', 'value'])
pandas.read_csv
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3), pd.timedelta_range("1 day", periods=3),
pd.period_range("2012Q1", periods=3, freq="Q")
pandas.period_range
import pandas as pd import numpy as np import matplotlib.pyplot as plt from kneed import KneeLocator from jupyter_utils import AllDataset data_dir = '../drp-data/' GDSC_GENE_EXPRESSION = 'preprocessed/gdsc_tcga/gdsc_rma_gene_expr.csv' TCGA_GENE_EXPRESSION = 'preprocessed/gdsc_tcga/tcga_log2_gene_expr.csv' TCGA_CANCER = 'preprocessed/cancer_type/TCGA_cancer_one_hot.csv' GDSC_CANCER = 'preprocessed/cancer_type/GDSC_cancer_one_hot.csv' GDSC_lnIC50 = 'preprocessed/drug_response/gdsc_lnic50.csv' TCGA_DR = 'preprocessed/drug_response/tcga_drug_response.csv' gdsc_dr = pd.read_csv(data_dir + GDSC_lnIC50, index_col=0) tcga_dr = pd.read_csv(data_dir + TCGA_DR, index_col=0) gdsc_cancer = pd.read_csv(data_dir + GDSC_CANCER, index_col=0) tcga_cancer = pd.read_csv(data_dir + TCGA_CANCER, index_col=0) # dataset = AllDataset(data_dir, GDSC_GENE_EXPRESSION, TCGA_GENE_EXPRESSION, # GDSC_lnIC50, TCGA_DR, TCGA_TISSUE) # cancer_typetcga = drugs = [ 'bleomycin', 'cisplatin', 'cyclophosphamide', 'docetaxel', 'doxorubicin', 'etoposide', 'gemcitabine', 'irinotecan', 'oxaliplatin', 'paclitaxel', 'pemetrexed', 'tamoxifen', 'temozolomide', 'vinorelbine'] writer_a = pd.ExcelWriter('gene_finding/sample_counts.xlsx', engine='xlsxwriter') gdsc_df =
pd.DataFrame(columns=drugs)
pandas.DataFrame
import math import numpy as np import matplotlib.pyplot as plt import argparse import logging import sys import pandas as pd from scipy import integrate def parse_args(): parser = argparse.ArgumentParser("Compute precession of orbits") parser.add_argument('--config', type=str, default="config.yml", help="yaml config file") parser.add_argument('--planet', type=str, default="jupiter.yml", help="planet yml file") return parser.parse_args() def initial_values(config, planet, mercury): # initial values are arranged as: # [r_p(0), theta_p(0), v_p(0), omega_p(0), r_m(0), theta_m(0), v_m(0), omega_m(0)] # note that v = dr_dt and omega = dtheta_dt # place the planet and mercury with phase difference of pi if (config.onlyMercury): return [0., 0., 0., 0., mercury.RMin, 0., 0., (mercury.vMax / mercury.RMin)] else: return [planet.a, math.pi, 0., (planet.L / planet.a**2), mercury.RMin, 0., 0., (mercury.vMax / mercury.RMin)] def compute_rhs(t, y, config, planet, mercury): # incoming values are arranged as: # [r_p(t-), theta_p(t-), v_p(t-), omega_p(t-), r_m(t-), theta_m(t-), v_m(t-), omega_m(t-)] # note that v = dr_dt and omega = dtheta_dt [r_p, theta_p, v_p, omega_p, r_m, theta_m, v_m, omega_m] = y theta_mp = theta_m - theta_p cos_theta_mp = math.cos(theta_mp) sin_theta_mp = math.sin(theta_mp) r_mp = math.sqrt(r_m**2 + r_p**2 - 2 * r_m * r_p * cos_theta_mp) r_mp3 = r_mp**3 alpha_p = planet.GM / r_mp3 alpha_m = mercury.GM / r_mp3 d_rp_dt = v_p d_thetap_dt = omega_p d_vp_dt = (r_p * omega_p**2) - (planet.GMS / r_p**2) - \ (alpha_m * (r_p - r_m * cos_theta_mp)) d_omegap_dt = ((-2. * v_p * omega_p) / r_p) - \ (alpha_m * (r_m / r_p) * sin_theta_mp) d_rm_dt = v_m d_thetam_dt = omega_m d_vm_dt = (r_m * omega_m**2) - (mercury.GMS / r_m**2) - \ (alpha_p * (r_m - r_p * cos_theta_mp)) d_omegam_dt = ((-2. * v_m * omega_m) / r_m) + \ (alpha_p * (r_p / r_m) * sin_theta_mp) # return values are arranged as: # [d_rp_dt(t), d_thetap_dt(t), d_vp_dt(t), d_omegap_dt(t), d_rm_dt(t), d_thetam_dt(t), d_vm_dt(t), d_omegam_dt(t)] return [d_rp_dt, d_thetap_dt, d_vp_dt, d_omegap_dt, d_rm_dt, d_thetam_dt, d_vm_dt, d_omegam_dt] def solve(config, planet, mercury): y = initial_values(config, planet, mercury) solution = integrate.solve_ivp(fun=compute_rhs, max_step=config.max_step, t_span=( 0., config.tEnd), y0=y, atol=config.targetTolerance, args=(config, planet, mercury)) df =
pd.DataFrame(solution.y)
pandas.DataFrame
__author__ = "<NAME>" import os import re import gzip import logging import pandas import csv from .Exceptions import ReportableException def folder_contents(folder, pattern=None): regexp = re.compile(pattern) if pattern else None p = os .listdir(folder) if regexp: p = [x for x in p if regexp.search(x)] p = [os.path.join(folder,x) for x in p] return p def ensure_requisite_folders(path): folder = os.path.split(path)[0] if len(folder) and not os.path.exists(folder): os.makedirs(folder) def maybe_create_folder(path): if not os.path.exists(path): os.makedirs(path) ######################################################################################################################## def file_logic(folder, pattern): r = re.compile(pattern) f = sorted([x for x in os.listdir(folder) if r.search(x)]) p_ = [r.search(x).group(1) for x in f] p = [os.path.join(folder,x) for x in f] return pandas.DataFrame({"name":p_, "path":p, "file":f}) def file_logic_2(folder, pattern, sub_fields, filter=None): r = re.compile(pattern) f = os.listdir(folder) if filter is not None: filter = re.compile(filter) f = [x for x in f if filter.search(x)] f = sorted([x for x in f if r.search(x)]) r, subfield_names, subfield_positions = name_parse_prepare(pattern, sub_fields) values=[] for x in f: values.append((x, os.path.join(folder, x))+name_parse(x, r, subfield_positions)) columns = ["file", "path"] + subfield_names values = pandas.DataFrame(values, columns=columns) return values ######################################################################################################################## def name_parse_prepare(name_subfield_regexp, name_subfield): if name_subfield and name_subfield_regexp: r = re.compile(name_subfield_regexp) subfield_names = [x[0] for x in name_subfield] subfield_positions = [int(x[1]) for x in name_subfield] else: r = None subfield_names = None subfield_positions = None return r, subfield_names, subfield_positions def name_parse(file, subfield_regexp, subfield_positions): if subfield_positions: values = [] s_ = subfield_regexp.search(file) for position in subfield_positions: values.append(s_.group(position)) values = tuple(values) else: values = None return values def name_parse_argumentize(subfield_names, subfield_positions, values): return {subfield_names[i-1]:values[i-1] for i in subfield_positions} ######################################################################################################################## class PercentReporter(object): def __init__(self, level, total, increment=10, pattern="%i %% complete"): self.level = level self.total = total self.increment = increment self.last_reported = 0 self.pattern = pattern def update(self, i, text=None, force=False): percent = int(i*100.0/self.total) if force or percent >= self.last_reported + self.increment: self.last_reported = percent if not text: text = self.pattern logging.log(self.level, text, percent) ERROR_REGEXP = re.compile('[^0-9a-zA-Z]+') ######################################################################################################################## def load_list(path): k = pandas.read_table(path, header=None) return k.iloc[:,0] def to_dataframe(data, columns, fill_na=None, to_numeric=None): if len(data): data = pandas.DataFrame(data, columns=columns) data = data[columns] else: data =pandas.DataFrame(columns=columns) if to_numeric: if type(to_numeric) == list: for k in to_numeric: data[k] =
pandas.to_numeric(data[k])
pandas.to_numeric
import warnings import pandas_datareader as web import numpy as np import pandas as pd from sklearn import metrics # for the check the error and accuracy of the model from sklearn.metrics import ( confusion_matrix, classification_report, r2_score, accuracy_score, r2_score, ) from sklearn.model_selection import ( train_test_split, KFold, StratifiedKFold, cross_val_score, GridSearchCV, cross_validate, ) from sklearn.model_selection import ( cross_val_score, KFold, cross_validate, train_test_split, TimeSeriesSplit, ) from math import sqrt import xgboost as xgb from xgboost import XGBRegressor import matplotlib import matplotlib as mpl from matplotlib import style from matplotlib import pyplot as plt import seaborn as sns import pyforest import pyfolio as pf import backtrader as bt from backtrader.feeds import PandasData import streamlit as st from tscv import GapKFold warnings.filterwarnings("ignore") warnings.simplefilter(action="ignore", category=FutureWarning) pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500)
pd.set_option("display.width", 150)
pandas.set_option
import pandas as pd from collections import Counter from natsort import index_natsorted import numpy as np ids = [] text = [] ab_ids = [] ab_text = [] normal_vocab_freq_dist = Counter() ab_vocab_freq_dist = Counter() # keywords that most likely associated with abnormalities KEYWORDS = ['emphysema', 'cardiomegaly', 'borderline', 'mild', 'chronic', 'minimal', 'copd', 'hernia', 'hyperinflated', 'hemodialysis', 'atelectasis', 'degenerative', 'effusion', 'atherosclerotic', 'aneurysmal', 'granuloma', 'fracture', 'severe', 'concerns', 'fibrosis', 'scarring', 'crowding', 'opacities', 'persistent', 'ectatic', 'hyperinflation', 'moderate', 'opacity', 'calcified', 'effusions', 'edema', 'continued', 'low lung volume', 'pacing lead', 'resection', 'dilated', 'left', 'right', 'bilateral', 'hyperexpanded', 'calcification', 'concerning', 'concern', 'enlargement', 'lines', 'tubes', 'Emphysema', 'Hyperexpanded', 'advanced', 'Advanced', 'tortuosity'] with open('files/normal.txt', mode='r', encoding='utf-8') as f, open('files/abnormal.txt', mode='r', encoding='utf-8') as af: for line in f: xml, *label_text = line.split() ids.append(xml) normal_vocab_freq_dist.update(label_text) text.append(' '.join(label_text)) for line in af: xml, *label_text = line.split() ab_ids.append(xml) ab_vocab_freq_dist.update(label_text) ab_text.append(' '.join(label_text)) def first_filter_normal_label(a_string): if a_string.startswith(('no acute', 'no evidence', 'no active', 'no radiographic evidence')) and a_string.endswith( ('process.', 'disease.', 'abnormality.', 'abnormalities.', 'findings.', 'finding.', 'identified.', 'infiltrates.', 'infiltrate.')): return 0 else: return a_string def second_filter_normal(a_string): if isinstance(a_string, int): return a_string if a_string.startswith(('normal chest', 'normal exam', 'unremarkable chest', 'unremarkable examination', 'unremarkable radiographs')): return 0 if a_string.startswith('clear') and a_string.endswith('lungs.'): return 0 if a_string.startswith(('negative for', 'negative chest')): return 0 if a_string.startswith('negative') and a_string.endswith('negative.'): return 0 else: return a_string def third_filter_normal(a_string): if isinstance(a_string, int): return a_string if a_string.startswith(('stable appearance', 'stable chest radiograph', 'stable exam', 'stable', 'stable post-procedural', 'stable radiographic')): if any(w in a_string for w in KEYWORDS): return a_string else: return 0 if a_string.startswith('clear') or a_string.endswith('clear.'): if any(w in a_string for w in KEYWORDS): return a_string else: return 0 return a_string def fourth_filter_normal(a_string): if isinstance(a_string, int): return a_string if 'no acute' or 'without acute' in a_string: if any(w in a_string for w in KEYWORDS): return 2 elif 'stable' or 'clear' or 'normal' in a_string: return 0 return a_string print(normal_vocab_freq_dist.most_common(50)) print(ab_vocab_freq_dist.most_common(50)) # filtering strickt normal from borderline/mild abnormal e.g. stable/chronic conditions but no acute findings normal = {'xmlId': ids, 'label_text': text} normal_df =
pd.DataFrame(normal)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2018 Open Energy Efficiency, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datetime import datetime import pandas as pd import pytest import pytz from eeweather import ( ISDStation, get_isd_station_metadata, get_isd_filenames, get_gsod_filenames, get_isd_file_metadata, fetch_isd_raw_temp_data, fetch_isd_hourly_temp_data, fetch_isd_daily_temp_data, fetch_gsod_raw_temp_data, fetch_gsod_daily_temp_data, fetch_tmy3_hourly_temp_data, fetch_cz2010_hourly_temp_data, get_isd_hourly_temp_data_cache_key, get_isd_daily_temp_data_cache_key, get_gsod_daily_temp_data_cache_key, get_tmy3_hourly_temp_data_cache_key, get_cz2010_hourly_temp_data_cache_key, cached_isd_hourly_temp_data_is_expired, cached_isd_daily_temp_data_is_expired, cached_gsod_daily_temp_data_is_expired, validate_isd_hourly_temp_data_cache, validate_isd_daily_temp_data_cache, validate_gsod_daily_temp_data_cache, validate_tmy3_hourly_temp_data_cache, validate_cz2010_hourly_temp_data_cache, serialize_isd_hourly_temp_data, serialize_isd_daily_temp_data, serialize_gsod_daily_temp_data, serialize_tmy3_hourly_temp_data, serialize_cz2010_hourly_temp_data, deserialize_isd_hourly_temp_data, deserialize_isd_daily_temp_data, deserialize_gsod_daily_temp_data, deserialize_tmy3_hourly_temp_data, deserialize_cz2010_hourly_temp_data, read_isd_hourly_temp_data_from_cache, read_isd_daily_temp_data_from_cache, read_gsod_daily_temp_data_from_cache, read_tmy3_hourly_temp_data_from_cache, read_cz2010_hourly_temp_data_from_cache, write_isd_hourly_temp_data_to_cache, write_isd_daily_temp_data_to_cache, write_gsod_daily_temp_data_to_cache, write_tmy3_hourly_temp_data_to_cache, write_cz2010_hourly_temp_data_to_cache, destroy_cached_isd_hourly_temp_data, destroy_cached_isd_daily_temp_data, destroy_cached_gsod_daily_temp_data, destroy_cached_tmy3_hourly_temp_data, destroy_cached_cz2010_hourly_temp_data, load_isd_hourly_temp_data_cached_proxy, load_isd_daily_temp_data_cached_proxy, load_gsod_daily_temp_data_cached_proxy, load_tmy3_hourly_temp_data_cached_proxy, load_cz2010_hourly_temp_data_cached_proxy, load_isd_hourly_temp_data, load_isd_daily_temp_data, load_gsod_daily_temp_data, load_tmy3_hourly_temp_data, load_cz2010_hourly_temp_data, load_cached_isd_hourly_temp_data, load_cached_isd_daily_temp_data, load_cached_gsod_daily_temp_data, load_cached_tmy3_hourly_temp_data, load_cached_cz2010_hourly_temp_data, ) from eeweather.exceptions import ( UnrecognizedUSAFIDError, ISDDataNotAvailableError, GSODDataNotAvailableError, TMY3DataNotAvailableError, CZ2010DataNotAvailableError, NonUTCTimezoneInfoError, ) from eeweather.testing import ( MockNOAAFTPConnectionProxy, MockKeyValueStoreProxy, mock_request_text_tmy3, mock_request_text_cz2010, ) @pytest.fixture def monkeypatch_noaa_ftp(monkeypatch): monkeypatch.setattr( "eeweather.connections.noaa_ftp_connection_proxy", MockNOAAFTPConnectionProxy() ) @pytest.fixture def monkeypatch_tmy3_request(monkeypatch): monkeypatch.setattr("eeweather.mockable.request_text", mock_request_text_tmy3) @pytest.fixture def monkeypatch_cz2010_request(monkeypatch): monkeypatch.setattr("eeweather.mockable.request_text", mock_request_text_cz2010) @pytest.fixture def monkeypatch_key_value_store(monkeypatch): key_value_store_proxy = MockKeyValueStoreProxy() monkeypatch.setattr( "eeweather.connections.key_value_store_proxy", key_value_store_proxy ) return key_value_store_proxy.get_store() def test_get_isd_station_metadata(): assert get_isd_station_metadata("722874") == { "ba_climate_zone": "Hot-Dry", "ca_climate_zone": "CA_08", "elevation": "+0054.6", "icao_code": "KCQT", "iecc_climate_zone": "3", "iecc_moisture_regime": "B", "latitude": "+34.024", "longitude": "-118.291", "name": "DOWNTOWN L.A./USC CAMPUS", "quality": "high", "recent_wban_id": "93134", "state": "CA", "usaf_id": "722874", "wban_ids": "93134", } def test_isd_station_no_load_metadata(): station = ISDStation("722880", load_metadata=False) assert station.usaf_id == "722880" assert station.iecc_climate_zone is None assert station.iecc_moisture_regime is None assert station.ba_climate_zone is None assert station.ca_climate_zone is None assert station.elevation is None assert station.latitude is None assert station.longitude is None assert station.coords is None assert station.name is None assert station.quality is None assert station.wban_ids is None assert station.recent_wban_id is None assert station.climate_zones == {} assert str(station) == "722880" assert repr(station) == "ISDStation('722880')" def test_isd_station_no_load_metadata_invalid(): with pytest.raises(UnrecognizedUSAFIDError): station = ISDStation("FAKE", load_metadata=False) def test_isd_station_with_load_metadata(): station = ISDStation("722880", load_metadata=True) assert station.usaf_id == "722880" assert station.iecc_climate_zone == "3" assert station.iecc_moisture_regime == "B" assert station.ba_climate_zone == "Hot-Dry" assert station.ca_climate_zone == "CA_09" assert station.elevation == 236.2 assert station.icao_code == "KBUR" assert station.latitude == 34.201 assert station.longitude == -118.358 assert station.coords == (34.201, -118.358) assert station.name == "<NAME>" assert station.quality == "high" assert station.wban_ids == ["23152", "99999"] assert station.recent_wban_id == "23152" assert station.climate_zones == { "ba_climate_zone": "Hot-Dry", "ca_climate_zone": "CA_09", "iecc_climate_zone": "3", "iecc_moisture_regime": "B", } def test_isd_station_json(): station = ISDStation("722880", load_metadata=True) assert station.json() == { "elevation": 236.2, "icao_code": "KBUR", "latitude": 34.201, "longitude": -118.358, "name": "<NAME>", "quality": "high", "recent_wban_id": "23152", "wban_ids": ["23152", "99999"], "climate_zones": { "ba_climate_zone": "Hot-Dry", "ca_climate_zone": "CA_09", "iecc_climate_zone": "3", "iecc_moisture_regime": "B", }, } def test_isd_station_unrecognized_usaf_id(): with pytest.raises(UnrecognizedUSAFIDError): station = ISDStation("FAKE", load_metadata=True) def test_get_isd_filenames_bad_usaf_id(): with pytest.raises(UnrecognizedUSAFIDError) as excinfo: get_isd_filenames("000000", 2007) assert excinfo.value.value == "000000" def test_get_isd_filenames_single_year(snapshot): filenames = get_isd_filenames("722860", 2007) snapshot.assert_match(filenames, "filenames") def test_get_isd_filenames_multiple_year(snapshot): filenames = get_isd_filenames("722860") snapshot.assert_match(filenames, "filenames") def test_get_isd_filenames_future_year(): filenames = get_isd_filenames("722860", 2050) assert filenames == ["/pub/data/noaa/2050/722860-23119-2050.gz"] def test_get_isd_filenames_with_host(): filenames = get_isd_filenames("722860", 2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2017/722860-23119-2017.gz" ] def test_isd_station_get_isd_filenames(snapshot): station = ISDStation("722860") filenames = station.get_isd_filenames() snapshot.assert_match(filenames, "filenames") def test_isd_station_get_isd_filenames_with_year(snapshot): station = ISDStation("722860") filenames = station.get_isd_filenames(2007) snapshot.assert_match(filenames, "filenames") def test_isd_station_get_isd_filenames_with_host(): station = ISDStation("722860") filenames = station.get_isd_filenames(2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2017/722860-23119-2017.gz" ] def test_get_gsod_filenames_bad_usaf_id(): with pytest.raises(UnrecognizedUSAFIDError) as excinfo: get_gsod_filenames("000000", 2007) assert excinfo.value.value == "000000" def test_get_gsod_filenames_single_year(snapshot): filenames = get_gsod_filenames("722860", 2007) snapshot.assert_match(filenames, "filenames") def test_get_gsod_filenames_multiple_year(snapshot): filenames = get_gsod_filenames("722860") snapshot.assert_match(filenames, "filenames") def test_get_gsod_filenames_future_year(): filenames = get_gsod_filenames("722860", 2050) assert filenames == ["/pub/data/gsod/2050/722860-23119-2050.op.gz"] def test_get_gsod_filenames_with_host(): filenames = get_gsod_filenames("722860", 2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2017/722860-23119-2017.op.gz" ] def test_isd_station_get_gsod_filenames(snapshot): station = ISDStation("722860") filenames = station.get_gsod_filenames() snapshot.assert_match(filenames, "filenames") def test_isd_station_get_gsod_filenames_with_year(snapshot): station = ISDStation("722860") filenames = station.get_gsod_filenames(2007) snapshot.assert_match(filenames, "filenames") def test_isd_station_get_gsod_filenames_with_host(): station = ISDStation("722860") filenames = station.get_gsod_filenames(2017, with_host=True) assert filenames == [ "ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2017/722860-23119-2017.op.gz" ] def test_get_isd_file_metadata(): assert get_isd_file_metadata("722874") == [ {"usaf_id": "722874", "wban_id": "93134", "year": "2006"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2007"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2008"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2009"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2010"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2011"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2012"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2013"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2014"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2015"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2016"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2017"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2018"}, ] with pytest.raises(UnrecognizedUSAFIDError) as excinfo: get_isd_file_metadata("000000") assert excinfo.value.value == "000000" def test_isd_station_get_isd_file_metadata(): station = ISDStation("722874") assert station.get_isd_file_metadata() == [ {"usaf_id": "722874", "wban_id": "93134", "year": "2006"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2007"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2008"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2009"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2010"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2011"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2012"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2013"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2014"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2015"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2016"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2017"}, {"usaf_id": "722874", "wban_id": "93134", "year": "2018"}, ] # fetch raw def test_fetch_isd_raw_temp_data(monkeypatch_noaa_ftp): data = fetch_isd_raw_temp_data("722874", 2007) assert round(data.sum()) == 185945 assert data.shape == (11094,) def test_fetch_gsod_raw_temp_data(monkeypatch_noaa_ftp): data = fetch_gsod_raw_temp_data("722874", 2007) assert data.sum() == 6509.5 assert data.shape == (365,) # station fetch raw def test_isd_station_fetch_isd_raw_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_isd_raw_temp_data(2007) assert round(data.sum()) == 185945 assert data.shape == (11094,) def test_isd_station_fetch_gsod_raw_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_gsod_raw_temp_data(2007) assert data.sum() == 6509.5 assert data.shape == (365,) # fetch raw invalid station def test_fetch_isd_raw_temp_data_invalid_station(): with pytest.raises(UnrecognizedUSAFIDError): fetch_isd_raw_temp_data("INVALID", 2007) def test_fetch_gsod_raw_temp_data_invalid_station(): with pytest.raises(UnrecognizedUSAFIDError): fetch_gsod_raw_temp_data("INVALID", 2007) # fetch raw invalid year def test_fetch_isd_raw_temp_data_invalid_year(monkeypatch_noaa_ftp): with pytest.raises(ISDDataNotAvailableError): fetch_isd_raw_temp_data("722874", 1800) def test_fetch_gsod_raw_temp_data_invalid_year(monkeypatch_noaa_ftp): with pytest.raises(GSODDataNotAvailableError): fetch_gsod_raw_temp_data("722874", 1800) # fetch file full of nans def test_isd_station_fetch_isd_raw_temp_data_all_nan(monkeypatch_noaa_ftp): station = ISDStation("994035") data = station.fetch_isd_raw_temp_data(2013) assert round(data.sum()) == 0 assert data.shape == (8611,) # fetch def test_fetch_isd_hourly_temp_data(monkeypatch_noaa_ftp): data = fetch_isd_hourly_temp_data("722874", 2007) assert data.sum() == 156160.0355 assert data.shape == (8760,) def test_fetch_isd_daily_temp_data(monkeypatch_noaa_ftp): data = fetch_isd_daily_temp_data("722874", 2007) assert data.sum() == 6510.002260821784 assert data.shape == (365,) def test_fetch_gsod_daily_temp_data(monkeypatch_noaa_ftp): data = fetch_gsod_daily_temp_data("722874", 2007) assert data.sum() == 6509.5 assert data.shape == (365,) def test_fetch_tmy3_hourly_temp_data(monkeypatch_tmy3_request): data = fetch_tmy3_hourly_temp_data("722880") assert data.sum() == 156194.3 assert data.shape == (8760,) def test_fetch_cz2010_hourly_temp_data(monkeypatch_cz2010_request): data = fetch_cz2010_hourly_temp_data("722880") assert data.sum() == 153430.90000000002 assert data.shape == (8760,) # station fetch def test_isd_station_fetch_isd_hourly_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_isd_hourly_temp_data(2007) assert data.sum() == 156160.0355 assert data.shape == (8760,) def test_isd_station_fetch_isd_daily_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_isd_daily_temp_data(2007) assert data.sum() == 6510.002260821784 assert data.shape == (365,) def test_isd_station_fetch_gsod_daily_temp_data(monkeypatch_noaa_ftp): station = ISDStation("722874") data = station.fetch_gsod_daily_temp_data(2007) assert data.sum() == 6509.5 assert data.shape == (365,) def test_tmy3_station_hourly_temp_data(monkeypatch_tmy3_request): station = ISDStation("722880") data = station.fetch_tmy3_hourly_temp_data() assert data.sum() == 156194.3 assert data.shape == (8760,) def test_cz2010_station_hourly_temp_data(monkeypatch_cz2010_request): station = ISDStation("722880") data = station.fetch_cz2010_hourly_temp_data() assert data.sum() == 153430.90000000002 assert data.shape == (8760,) # fetch invalid station def test_fetch_isd_hourly_temp_data_invalid(): with pytest.raises(UnrecognizedUSAFIDError): fetch_isd_hourly_temp_data("INVALID", 2007) def test_fetch_isd_daily_temp_data_invalid(): with pytest.raises(UnrecognizedUSAFIDError): fetch_isd_daily_temp_data("INVALID", 2007) def test_fetch_gsod_daily_temp_data_invalid(): with pytest.raises(UnrecognizedUSAFIDError): fetch_gsod_daily_temp_data("INVALID", 2007) def test_fetch_tmy3_hourly_temp_data_invalid(): with pytest.raises(TMY3DataNotAvailableError): fetch_tmy3_hourly_temp_data("INVALID") def test_fetch_cz2010_hourly_temp_data_invalid(): with pytest.raises(CZ2010DataNotAvailableError): fetch_cz2010_hourly_temp_data("INVALID") def test_fetch_tmy3_hourly_temp_data_not_in_tmy3_list(monkeypatch_noaa_ftp): data = fetch_isd_hourly_temp_data("722874", 2007) assert data.sum() == 156160.0355 assert data.shape == (8760,) with pytest.raises(TMY3DataNotAvailableError): fetch_tmy3_hourly_temp_data("722874") def test_fetch_cz2010_hourly_temp_data_not_in_cz2010_list(monkeypatch_cz2010_request): data = fetch_cz2010_hourly_temp_data("722880") assert data.sum() == 153430.90000000002 assert data.shape == (8760,) with pytest.raises(CZ2010DataNotAvailableError): fetch_cz2010_hourly_temp_data("725340") # get cache key def test_get_isd_hourly_temp_data_cache_key(): assert ( get_isd_hourly_temp_data_cache_key("722874", 2007) == "isd-hourly-722874-2007" ) def test_get_isd_daily_temp_data_cache_key(): assert get_isd_daily_temp_data_cache_key("722874", 2007) == "isd-daily-722874-2007" def test_get_gsod_daily_temp_data_cache_key(): assert ( get_gsod_daily_temp_data_cache_key("722874", 2007) == "gsod-daily-722874-2007" ) def test_get_tmy3_hourly_temp_data_cache_key(): assert get_tmy3_hourly_temp_data_cache_key("722880") == "tmy3-hourly-722880" def test_get_cz2010_hourly_temp_data_cache_key(): assert get_cz2010_hourly_temp_data_cache_key("722880") == "cz2010-hourly-722880" # station get cache key def test_isd_station_get_isd_hourly_temp_data_cache_key(): station = ISDStation("722874") assert station.get_isd_hourly_temp_data_cache_key(2007) == "isd-hourly-722874-2007" def test_isd_station_get_isd_daily_temp_data_cache_key(): station = ISDStation("722874") assert station.get_isd_daily_temp_data_cache_key(2007) == "isd-daily-722874-2007" def test_isd_station_get_gsod_daily_temp_data_cache_key(): station = ISDStation("722874") assert station.get_gsod_daily_temp_data_cache_key(2007) == "gsod-daily-722874-2007" def test_tmy3_station_get_isd_hourly_temp_data_cache_key(): station = ISDStation("722880") assert station.get_tmy3_hourly_temp_data_cache_key() == "tmy3-hourly-722880" def test_cz2010_station_get_isd_hourly_temp_data_cache_key(): station = ISDStation("722880") assert station.get_cz2010_hourly_temp_data_cache_key() == "cz2010-hourly-722880" # cache expired empty def test_cached_isd_hourly_temp_data_is_expired_empty(monkeypatch_key_value_store): assert cached_isd_hourly_temp_data_is_expired("722874", 2007) is True def test_cached_isd_daily_temp_data_is_expired_empty(monkeypatch_key_value_store): assert cached_isd_daily_temp_data_is_expired("722874", 2007) is True def test_cached_gsod_daily_temp_data_is_expired_empty(monkeypatch_key_value_store): assert cached_gsod_daily_temp_data_is_expired("722874", 2007) is True # station cache expired empty def test_isd_station_cached_isd_hourly_temp_data_is_expired_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.cached_isd_hourly_temp_data_is_expired(2007) is True def test_isd_station_cached_isd_daily_temp_data_is_expired_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.cached_isd_daily_temp_data_is_expired(2007) is True def test_isd_station_cached_gsod_daily_temp_data_is_expired_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.cached_gsod_daily_temp_data_is_expired(2007) is True # cache expired false def test_cached_isd_hourly_temp_data_is_expired_false( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) assert cached_isd_hourly_temp_data_is_expired("722874", 2007) is False def test_cached_isd_daily_temp_data_is_expired_false( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) assert cached_isd_daily_temp_data_is_expired("722874", 2007) is False def test_cached_gsod_daily_temp_data_is_expired_false( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) assert cached_gsod_daily_temp_data_is_expired("722874", 2007) is False # cache expired true def test_cached_isd_hourly_temp_data_is_expired_true( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_hourly_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert cached_isd_hourly_temp_data_is_expired("722874", 2007) is True def test_cached_isd_daily_temp_data_is_expired_true( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert cached_isd_daily_temp_data_is_expired("722874", 2007) is True def test_cached_gsod_daily_temp_data_is_expired_true( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_gsod_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert cached_gsod_daily_temp_data_is_expired("722874", 2007) is True # validate cache empty def test_validate_isd_hourly_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_isd_hourly_temp_data_cache("722874", 2007) is False def test_validate_isd_daily_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_isd_daily_temp_data_cache("722874", 2007) is False def test_validate_gsod_daily_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_gsod_daily_temp_data_cache("722874", 2007) is False def test_validate_tmy3_hourly_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_tmy3_hourly_temp_data_cache("722880") is False def test_validate_cz2010_hourly_temp_data_cache_empty(monkeypatch_key_value_store): assert validate_cz2010_hourly_temp_data_cache("722880") is False # station validate cache empty def test_isd_station_validate_isd_hourly_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.validate_isd_hourly_temp_data_cache(2007) is False def test_isd_station_validate_isd_daily_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.validate_isd_daily_temp_data_cache(2007) is False def test_isd_station_validate_gsod_daily_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722874") assert station.validate_gsod_daily_temp_data_cache(2007) is False def test_isd_station_validate_tmy3_hourly_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722880") assert station.validate_tmy3_hourly_temp_data_cache() is False def test_isd_station_validate_cz2010_hourly_temp_data_cache_empty( monkeypatch_key_value_store ): station = ISDStation("722880") assert station.validate_cz2010_hourly_temp_data_cache() is False # error on non-existent when relying on cache def test_raise_on_missing_isd_hourly_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(ISDDataNotAvailableError): load_isd_hourly_temp_data_cached_proxy("722874", 1907, fetch_from_web=False) def test_raise_on_missing_isd_daily_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(ISDDataNotAvailableError): load_isd_daily_temp_data_cached_proxy("722874", 1907, fetch_from_web=False) def test_raise_on_missing_gsod_daily_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(GSODDataNotAvailableError): load_gsod_daily_temp_data_cached_proxy("722874", 1907, fetch_from_web=False) def test_raise_on_missing_tmy3_hourly_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(TMY3DataNotAvailableError): load_tmy3_hourly_temp_data_cached_proxy("722874", fetch_from_web=False) def test_raise_on_missing_cz2010_hourly_temp_data_cache_data_no_web_fetch( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): with pytest.raises(CZ2010DataNotAvailableError): load_cz2010_hourly_temp_data_cached_proxy("722874", fetch_from_web=False) # validate updated recently def test_validate_isd_hourly_temp_data_cache_updated_recently( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) assert validate_isd_hourly_temp_data_cache("722874", 2007) is True def test_validate_isd_daily_temp_data_cache_updated_recently( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) assert validate_isd_daily_temp_data_cache("722874", 2007) is True def test_validate_gsod_daily_temp_data_cache_updated_recently( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) assert validate_gsod_daily_temp_data_cache("722874", 2007) is True def test_validate_tmy3_hourly_temp_data_cache_updated_recently( monkeypatch_tmy3_request, monkeypatch_key_value_store ): load_tmy3_hourly_temp_data_cached_proxy("722880") assert validate_tmy3_hourly_temp_data_cache("722880") is True def test_validate_cz2010_hourly_temp_data_cache_updated_recently( monkeypatch_cz2010_request, monkeypatch_key_value_store ): load_cz2010_hourly_temp_data_cached_proxy("722880") assert validate_cz2010_hourly_temp_data_cache("722880") is True # validate expired def test_validate_isd_hourly_temp_data_cache_expired( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_hourly_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_hourly_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert validate_isd_hourly_temp_data_cache("722874", 2007) is False def test_validate_isd_daily_temp_data_cache_expired( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_isd_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_isd_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert validate_isd_daily_temp_data_cache("722874", 2007) is False def test_validate_gsod_daily_temp_data_cache_expired( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): load_gsod_daily_temp_data_cached_proxy("722874", 2007) # manually expire key value item key = get_gsod_daily_temp_data_cache_key("722874", 2007) store = monkeypatch_key_value_store store.items.update().where(store.items.c.key == key).values( updated=pytz.UTC.localize(datetime(2007, 3, 3)) ).execute() assert validate_gsod_daily_temp_data_cache("722874", 2007) is False # serialize def test_serialize_isd_hourly_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_isd_hourly_temp_data(ts) == [["2017010100", 1]] def test_serialize_isd_daily_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_isd_daily_temp_data(ts) == [["20170101", 1]] def test_serialize_gsod_daily_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_gsod_daily_temp_data(ts) == [["20170101", 1]] def test_serialize_tmy3_hourly_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_tmy3_hourly_temp_data(ts) == [["2017010100", 1]] def test_serialize_cz2010_hourly_temp_data(): ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert serialize_cz2010_hourly_temp_data(ts) == [["2017010100", 1]] # station serialize def test_isd_station_serialize_isd_hourly_temp_data(): station = ISDStation("722874") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_isd_hourly_temp_data(ts) == [["2017010100", 1]] def test_isd_station_serialize_isd_daily_temp_data(): station = ISDStation("722874") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_isd_daily_temp_data(ts) == [["20170101", 1]] def test_isd_station_serialize_gsod_daily_temp_data(): station = ISDStation("722874") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_gsod_daily_temp_data(ts) == [["20170101", 1]] def test_isd_station_serialize_tmy3_hourly_temp_data(): station = ISDStation("722880") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_tmy3_hourly_temp_data(ts) == [["2017010100", 1]] def test_isd_station_serialize_cz2010_hourly_temp_data(): station = ISDStation("722880") ts = pd.Series([1], index=[pytz.UTC.localize(datetime(2017, 1, 1))]) assert station.serialize_cz2010_hourly_temp_data(ts) == [["2017010100", 1]] # deserialize def test_deserialize_isd_hourly_temp_data(): ts = deserialize_isd_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_deserialize_isd_daily_temp_data(): ts = deserialize_isd_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_deserialize_gsod_daily_temp_data(): ts = deserialize_gsod_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_deserialize_tmy3_hourly_temp_data(): ts = deserialize_tmy3_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_deserialize_cz2010_hourly_temp_data(): ts = deserialize_cz2010_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" # station deserialize def test_isd_station_deserialize_isd_hourly_temp_data(): station = ISDStation("722874") ts = station.deserialize_isd_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_isd_station_deserialize_isd_daily_temp_data(): station = ISDStation("722874") ts = station.deserialize_isd_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_isd_station_deserialize_gsod_daily_temp_data(): station = ISDStation("722874") ts = station.deserialize_gsod_daily_temp_data([["20170101", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "D" def test_isd_station_deserialize_tmy3_hourly_temp_data(): station = ISDStation("722880") ts = station.deserialize_tmy3_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" def test_isd_station_deserialize_cz2010_hourly_temp_data(): station = ISDStation("722880") ts = station.deserialize_cz2010_hourly_temp_data([["2017010100", 1]]) assert ts.sum() == 1 assert ts.index.freq.name == "H" # write read destroy def test_write_read_destroy_isd_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_isd_hourly_temp_data_cache_key("123456", 1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_isd_hourly_temp_data_to_cache("123456", 1990, ts1) assert store.key_exists(key) is True ts2 = read_isd_hourly_temp_data_from_cache("123456", 1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_isd_hourly_temp_data("123456", 1990) assert store.key_exists(key) is False def test_write_read_destroy_isd_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_isd_daily_temp_data_cache_key("123456", 1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_isd_daily_temp_data_to_cache("123456", 1990, ts1) assert store.key_exists(key) is True ts2 = read_isd_daily_temp_data_from_cache("123456", 1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_isd_daily_temp_data("123456", 1990) assert store.key_exists(key) is False def test_write_read_destroy_gsod_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_gsod_daily_temp_data_cache_key("123456", 1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_gsod_daily_temp_data_to_cache("123456", 1990, ts1) assert store.key_exists(key) is True ts2 = read_gsod_daily_temp_data_from_cache("123456", 1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_gsod_daily_temp_data("123456", 1990) assert store.key_exists(key) is False def test_write_read_destroy_tmy3_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_tmy3_hourly_temp_data_cache_key("123456") assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_tmy3_hourly_temp_data_to_cache("123456", ts1) assert store.key_exists(key) is True ts2 = read_tmy3_hourly_temp_data_from_cache("123456") assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_tmy3_hourly_temp_data("123456") assert store.key_exists(key) is False def test_write_read_destroy_cz2010_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): store = monkeypatch_key_value_store key = get_cz2010_hourly_temp_data_cache_key("123456") assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) write_cz2010_hourly_temp_data_to_cache("123456", ts1) assert store.key_exists(key) is True ts2 = read_cz2010_hourly_temp_data_from_cache("123456") assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape destroy_cached_cz2010_hourly_temp_data("123456") assert store.key_exists(key) is False # station write read destroy def test_isd_station_write_read_destroy_isd_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722874") store = monkeypatch_key_value_store key = station.get_isd_hourly_temp_data_cache_key(1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_isd_hourly_temp_data_to_cache(1990, ts1) assert store.key_exists(key) is True ts2 = station.read_isd_hourly_temp_data_from_cache(1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_isd_hourly_temp_data(1990) assert store.key_exists(key) is False def test_isd_station_write_read_destroy_isd_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722874") store = monkeypatch_key_value_store key = station.get_isd_daily_temp_data_cache_key(1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_isd_daily_temp_data_to_cache(1990, ts1) assert store.key_exists(key) is True ts2 = station.read_isd_daily_temp_data_from_cache(1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_isd_daily_temp_data(1990) assert store.key_exists(key) is False def test_isd_station_write_read_destroy_gsod_daily_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722874") store = monkeypatch_key_value_store key = station.get_gsod_daily_temp_data_cache_key(1990) assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_gsod_daily_temp_data_to_cache(1990, ts1) assert store.key_exists(key) is True ts2 = station.read_gsod_daily_temp_data_from_cache(1990) assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_gsod_daily_temp_data(1990) assert store.key_exists(key) is False def test_isd_station_write_read_destroy_tmy3_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722880") store = monkeypatch_key_value_store key = station.get_tmy3_hourly_temp_data_cache_key() assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_tmy3_hourly_temp_data_to_cache(ts1) assert store.key_exists(key) is True ts2 = station.read_tmy3_hourly_temp_data_from_cache() assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_tmy3_hourly_temp_data() assert store.key_exists(key) is False def test_isd_station_write_read_destroy_cz2010_hourly_temp_data_to_from_cache( monkeypatch_key_value_store ): station = ISDStation("722880") store = monkeypatch_key_value_store key = station.get_cz2010_hourly_temp_data_cache_key() assert store.key_exists(key) is False ts1 = pd.Series([1], index=[pytz.UTC.localize(datetime(1990, 1, 1))]) station.write_cz2010_hourly_temp_data_to_cache(ts1) assert store.key_exists(key) is True ts2 = station.read_cz2010_hourly_temp_data_from_cache() assert store.key_exists(key) is True assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape station.destroy_cached_cz2010_hourly_temp_data() assert store.key_exists(key) is False # load cached proxy def test_load_isd_hourly_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_isd_hourly_temp_data_cached_proxy("722874", 2007) ts2 = load_isd_hourly_temp_data_cached_proxy("722874", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_isd_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_isd_daily_temp_data_cached_proxy("722874", 2007) ts2 = load_isd_daily_temp_data_cached_proxy("722874", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_gsod_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_gsod_daily_temp_data_cached_proxy("722874", 2007) ts2 = load_gsod_daily_temp_data_cached_proxy("722874", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_tmy3_hourly_temp_data_cached_proxy( monkeypatch_tmy3_request, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_tmy3_hourly_temp_data_cached_proxy("722880", 2007) ts2 = load_tmy3_hourly_temp_data_cached_proxy("722880", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_load_cz2010_hourly_temp_data_cached_proxy( monkeypatch_cz2010_request, monkeypatch_key_value_store ): # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = load_cz2010_hourly_temp_data_cached_proxy("722880", 2007) ts2 = load_cz2010_hourly_temp_data_cached_proxy("722880", 2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape # station load cached proxy def test_isd_station_load_isd_hourly_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): station = ISDStation("722874") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_isd_hourly_temp_data_cached_proxy(2007) ts2 = station.load_isd_hourly_temp_data_cached_proxy(2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_isd_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): station = ISDStation("722874") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_isd_daily_temp_data_cached_proxy(2007) ts2 = station.load_isd_daily_temp_data_cached_proxy(2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_gsod_daily_temp_data_cached_proxy( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): station = ISDStation("722874") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_gsod_daily_temp_data_cached_proxy(2007) ts2 = station.load_gsod_daily_temp_data_cached_proxy(2007) assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_tmy3_hourly_temp_data_cached_proxy( monkeypatch_tmy3_request, monkeypatch_key_value_store ): station = ISDStation("722880") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_tmy3_hourly_temp_data_cached_proxy() ts2 = station.load_tmy3_hourly_temp_data_cached_proxy() assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape def test_isd_station_load_cz2010_hourly_temp_data_cached_proxy( monkeypatch_cz2010_request, monkeypatch_key_value_store ): station = ISDStation("722880") # doesn't yet guarantee that all code paths are taken, # except that coverage picks it up either here or elsewhere ts1 = station.load_cz2010_hourly_temp_data_cached_proxy() ts2 = station.load_cz2010_hourly_temp_data_cached_proxy() assert int(ts1.sum()) == int(ts2.sum()) assert ts1.shape == ts2.shape # load data between dates def test_load_isd_hourly_temp_data(monkeypatch_noaa_ftp, monkeypatch_key_value_store): start = datetime(2006, 1, 3, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, tzinfo=pytz.UTC) ts, warnings = load_isd_hourly_temp_data("722874", start, end) assert ts.index[0] == start assert pd.isnull(ts[0]) assert ts.index[-1] == end assert pd.notnull(ts[-1]) def test_load_isd_hourly_temp_data_non_normalized_dates( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): start = datetime(2006, 1, 3, 11, 12, 13, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, 12, 13, 14, tzinfo=pytz.UTC) ts, warnings = load_isd_hourly_temp_data("722874", start, end) assert ts.index[0] == datetime(2006, 1, 3, 12, tzinfo=pytz.UTC) assert pd.isnull(ts[0]) assert ts.index[-1] == datetime(2007, 4, 3, 12, tzinfo=pytz.UTC) assert pd.notnull(ts[-1]) def test_load_isd_daily_temp_data(monkeypatch_noaa_ftp, monkeypatch_key_value_store): start = datetime(2006, 1, 3, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, tzinfo=pytz.UTC) ts = load_isd_daily_temp_data("722874", start, end) assert ts.index[0] == start assert pd.isnull(ts[0]) assert ts.index[-1] == end assert pd.notnull(ts[-1]) def test_load_isd_daily_temp_data_non_normalized_dates( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): start = datetime(2006, 1, 3, 11, 12, 13, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, 12, 13, 14, tzinfo=pytz.UTC) ts = load_isd_daily_temp_data("722874", start, end) assert ts.index[0] == datetime(2006, 1, 4, tzinfo=pytz.UTC) assert pd.isnull(ts[0]) assert ts.index[-1] == datetime(2007, 4, 3, tzinfo=pytz.UTC) assert pd.notnull(ts[-1]) def test_load_gsod_daily_temp_data(monkeypatch_noaa_ftp, monkeypatch_key_value_store): start = datetime(2006, 1, 3, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, tzinfo=pytz.UTC) ts = load_gsod_daily_temp_data("722874", start, end) assert ts.index[0] == start assert pd.isnull(ts[0]) assert ts.index[-1] == end assert pd.notnull(ts[-1]) def test_load_gsod_daily_temp_data_non_normalized_dates( monkeypatch_noaa_ftp, monkeypatch_key_value_store ): start = datetime(2006, 1, 3, 11, 12, 13, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, 12, 13, 14, tzinfo=pytz.UTC) ts = load_gsod_daily_temp_data("722874", start, end) assert ts.index[0] == datetime(2006, 1, 4, tzinfo=pytz.UTC) assert pd.isnull(ts[0]) assert ts.index[-1] == datetime(2007, 4, 3, tzinfo=pytz.UTC) assert pd.notnull(ts[-1]) def test_load_tmy3_hourly_temp_data( monkeypatch_tmy3_request, monkeypatch_key_value_store ): start = datetime(2006, 1, 3, tzinfo=pytz.UTC) end = datetime(2007, 4, 3, tzinfo=pytz.UTC) ts = load_tmy3_hourly_temp_data("722880", start, end) assert ts.index[0] == start assert pd.notnull(ts[0]) assert ts.index[-1] == end assert
pd.notnull(ts[-1])
pandas.notnull
import numpy as np import pandas as pd from numba import njit import pytest import os from collections import namedtuple from itertools import product, combinations from vectorbt import settings from vectorbt.utils import checks, config, decorators, math, array, random, enum, data, params from tests.utils import hash seed = 42 # ############# config.py ############# # class TestConfig: def test_config(self): conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=False) conf['b']['d'] = 2 conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=True) conf['a'] = 2 with pytest.raises(Exception) as e_info: conf['d'] = 2 with pytest.raises(Exception) as e_info: conf.update(d=2) conf.update(d=2, force_update=True) assert conf['d'] == 2 conf = config.Config({'a': 0, 'b': {'c': 1}}, read_only=True) with pytest.raises(Exception) as e_info: conf['a'] = 2 with pytest.raises(Exception) as e_info: del conf['a'] with pytest.raises(Exception) as e_info: conf.pop('a') with pytest.raises(Exception) as e_info: conf.popitem() with pytest.raises(Exception) as e_info: conf.clear() with pytest.raises(Exception) as e_info: conf.update(a=2) assert isinstance(conf.merge_with(dict(b=dict(d=2))), config.Config) assert conf.merge_with(dict(b=dict(d=2)), read_only=True).read_only assert conf.merge_with(dict(b=dict(d=2)))['b']['d'] == 2 conf = config.Config({'a': 0, 'b': {'c': [1, 2]}}) conf['a'] = 1 conf['b']['c'].append(3) conf['b']['d'] = 2 assert conf == {'a': 1, 'b': {'c': [1, 2, 3], 'd': 2}} conf.reset() assert conf == {'a': 0, 'b': {'c': [1, 2]}} def test_merge_dicts(self): assert config.merge_dicts({'a': 1}, {'b': 2}) == {'a': 1, 'b': 2} assert config.merge_dicts({'a': 1}, {'a': 2}) == {'a': 2} assert config.merge_dicts({'a': {'b': 2}}, {'a': {'c': 3}}) == {'a': {'b': 2, 'c': 3}} assert config.merge_dicts({'a': {'b': 2}}, {'a': {'b': 3}}) == {'a': {'b': 3}} def test_configured(self): class H(config.Configured): def __init__(self, a, b=2, **kwargs): super().__init__(a=a, b=b, **kwargs) assert H(1).config == {'a': 1, 'b': 2} assert H(1).copy(b=3).config == {'a': 1, 'b': 3} assert H(1).copy(c=4).config == {'a': 1, 'b': 2, 'c': 4} assert H(pd.Series([1, 2, 3])) == H(pd.Series([1, 2, 3])) assert H(pd.Series([1, 2, 3])) != H(pd.Series([1, 2, 4])) assert H(pd.DataFrame([1, 2, 3])) == H(pd.DataFrame([1, 2, 3])) assert H(pd.DataFrame([1, 2, 3])) != H(pd.DataFrame([1, 2, 4])) assert H(pd.Index([1, 2, 3])) == H(pd.Index([1, 2, 3])) assert H(pd.Index([1, 2, 3])) != H(pd.Index([1, 2, 4])) assert H(np.array([1, 2, 3])) == H(np.array([1, 2, 3])) assert H(np.array([1, 2, 3])) != H(np.array([1, 2, 4])) assert H(None) == H(None) assert H(None) != H(10.) # ############# decorators.py ############# # class TestDecorators: def test_class_or_instancemethod(self): class G: @decorators.class_or_instancemethod def g(self_or_cls): if isinstance(self_or_cls, type): return True # class return False # instance assert G.g() assert not G().g() def test_custom_property(self): class G: @decorators.custom_property(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_custom_method(self): class G: @decorators.custom_method(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_cached_property(self): np.random.seed(seed) class G: @decorators.cached_property def cache_me(self): return np.random.uniform() g = G() cached_number = g.cache_me assert g.cache_me == cached_number class G: @decorators.cached_property(hello="world", hello2="world2") def cache_me(self): return np.random.uniform() assert 'hello' in G.cache_me.kwargs assert G.cache_me.kwargs['hello'] == 'world' g = G() g2 = G() class G3(G): pass g3 = G3() cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 # clear_cache method cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me G.cache_me.clear_cache(g) assert g.cache_me != cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 # test blacklist # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((g, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(g) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((G, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(G) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G.cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('g') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # disabled globally G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # test whitelist # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((g, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(g) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((G, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(G) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G.cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('g') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() def test_cached_method(self): np.random.seed(seed) class G: @decorators.cached_method def cache_me(self, b=10): return np.random.uniform() g = G() cached_number = g.cache_me assert g.cache_me == cached_number class G: @decorators.cached_method(hello="world", hello2="world2") def cache_me(self, b=10): return np.random.uniform() assert 'hello' in G.cache_me.kwargs assert G.cache_me.kwargs['hello'] == 'world' g = G() g2 = G() class G3(G): pass g3 = G3() cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 # clear_cache method cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() G.cache_me.clear_cache(g) assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 # test blacklist # function G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(g.cache_me) cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((g, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(g) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((G, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(G) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G.cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('g') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # disabled globally G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # test whitelist # function G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(g.cache_me) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((g, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(g) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((G, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(G) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G.cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('g') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # disabled by non-hashable args G.cache_me.clear_cache(g) cached_number = g.cache_me(b=np.zeros(1)) assert g.cache_me(b=np.zeros(1)) != cached_number def test_traverse_attr_kwargs(self): class A: @decorators.custom_property(some_key=0) def a(self): pass class B: @decorators.cached_property(some_key=0, child_cls=A) def a(self): pass @decorators.custom_method(some_key=1) def b(self): pass class C: @decorators.cached_method(some_key=0, child_cls=B) def b(self): pass @decorators.custom_property(some_key=1) def c(self): pass assert hash(str(decorators.traverse_attr_kwargs(C))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key'))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=1))) == 703070484833749378 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=(0, 1)))) == 16728515581653529580 # ############# checks.py ############# # class TestChecks: def test_is_pandas(self): assert not checks.is_pandas(0) assert not checks.is_pandas(np.array([0])) assert checks.is_pandas(pd.Series([1, 2, 3])) assert checks.is_pandas(pd.DataFrame([1, 2, 3])) def test_is_series(self): assert not checks.is_series(0) assert not checks.is_series(np.array([0])) assert checks.is_series(pd.Series([1, 2, 3])) assert not checks.is_series(pd.DataFrame([1, 2, 3])) def test_is_frame(self): assert not checks.is_frame(0) assert not checks.is_frame(np.array([0])) assert not checks.is_frame(pd.Series([1, 2, 3])) assert checks.is_frame(pd.DataFrame([1, 2, 3])) def test_is_array(self): assert not checks.is_array(0) assert checks.is_array(np.array([0])) assert checks.is_array(pd.Series([1, 2, 3])) assert checks.is_array(pd.DataFrame([1, 2, 3])) def test_is_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x assert not checks.is_numba_func(test_func) assert checks.is_numba_func(test_func_nb) def test_is_hashable(self): assert checks.is_hashable(2) assert not checks.is_hashable(np.asarray(2)) def test_is_index_equal(self): assert checks.is_index_equal( pd.Index([0]), pd.Index([0]) ) assert not checks.is_index_equal( pd.Index([0]), pd.Index([1]) ) assert not checks.is_index_equal( pd.Index([0], name='name'), pd.Index([0]) ) assert checks.is_index_equal( pd.Index([0], name='name'), pd.Index([0]), strict=False ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.Index([0]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.MultiIndex.from_arrays([[0], [1]]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']) ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name3', 'name4']) ) def test_is_default_index(self): assert checks.is_default_index(pd.DataFrame([[1, 2, 3]]).columns) assert checks.is_default_index(pd.Series([1, 2, 3]).to_frame().columns) assert checks.is_default_index(pd.Index([0, 1, 2])) assert not checks.is_default_index(pd.Index([0, 1, 2], name='name')) def test_is_equal(self): assert checks.is_equal(np.arange(3), np.arange(3), np.array_equal) assert not checks.is_equal(np.arange(3), None, np.array_equal) assert not checks.is_equal(None, np.arange(3), np.array_equal) assert checks.is_equal(None, None, np.array_equal) def test_is_namedtuple(self): assert checks.is_namedtuple(namedtuple('Hello', ['world'])(*range(1))) assert not checks.is_namedtuple((0,)) def test_method_accepts_argument(self): def test(a, *args, b=2, **kwargs): pass assert checks.method_accepts_argument(test, 'a') assert not checks.method_accepts_argument(test, 'args') assert checks.method_accepts_argument(test, '*args') assert checks.method_accepts_argument(test, 'b') assert not checks.method_accepts_argument(test, 'kwargs') assert checks.method_accepts_argument(test, '**kwargs') assert not checks.method_accepts_argument(test, 'c') def test_assert_in(self): checks.assert_in(0, (0, 1)) with pytest.raises(Exception) as e_info: checks.assert_in(2, (0, 1)) def test_assert_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x checks.assert_numba_func(test_func_nb) with pytest.raises(Exception) as e_info: checks.assert_numba_func(test_func) def test_assert_not_none(self): checks.assert_not_none(0) with pytest.raises(Exception) as e_info: checks.assert_not_none(None) def test_assert_type(self): checks.assert_type(0, int) checks.assert_type(np.zeros(1), (np.ndarray, pd.Series)) checks.assert_type(pd.Series([1, 2, 3]), (np.ndarray, pd.Series)) with pytest.raises(Exception) as e_info: checks.assert_type(pd.DataFrame([1, 2, 3]), (np.ndarray, pd.Series)) def test_assert_subclass(self): class A: pass class B(A): pass class C(B): pass checks.assert_subclass(B, A) checks.assert_subclass(C, B) checks.assert_subclass(C, A) with pytest.raises(Exception) as e_info: checks.assert_subclass(A, B) def test_assert_type_equal(self): checks.assert_type_equal(0, 1) checks.assert_type_equal(np.zeros(1), np.empty(1)) with pytest.raises(Exception) as e_info: checks.assert_type(0, np.zeros(1)) def test_assert_dtype(self): checks.assert_dtype(np.zeros(1), np.float) checks.assert_dtype(pd.Series([1, 2, 3]), np.int) checks.assert_dtype(pd.DataFrame({'a': [1, 2], 'b': [3, 4]}), np.int) with pytest.raises(Exception) as e_info: checks.assert_dtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.int) def test_assert_subdtype(self): checks.assert_subdtype([0], np.number) checks.assert_subdtype(np.array([1, 2, 3]), np.number) checks.assert_subdtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.number) with pytest.raises(Exception) as e_info: checks.assert_subdtype(np.array([1, 2, 3]), np.float) with pytest.raises(Exception) as e_info: checks.assert_subdtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.float) def test_assert_dtype_equal(self): checks.assert_dtype_equal([1], [1, 1, 1]) checks.assert_dtype_equal(pd.Series([1, 2, 3]), pd.DataFrame([[1, 2, 3]])) checks.assert_dtype_equal(pd.DataFrame([[1, 2, 3.]]), pd.DataFrame([[1, 2, 3.]])) with pytest.raises(Exception) as e_info: checks.assert_dtype_equal(pd.DataFrame([[1, 2, 3]]), pd.DataFrame([[1, 2, 3.]])) def test_assert_ndim(self): checks.assert_ndim(0, 0) checks.assert_ndim(np.zeros(1), 1) checks.assert_ndim(pd.Series([1, 2, 3]), (1, 2)) checks.assert_ndim(pd.DataFrame([1, 2, 3]), (1, 2)) with pytest.raises(Exception) as e_info: checks.assert_ndim(np.zeros((3, 3, 3)), (1, 2)) def test_assert_len_equal(self): checks.assert_len_equal([[1]], [[2]]) checks.assert_len_equal([[1]], [[2, 3]]) with pytest.raises(Exception) as e_info: checks.assert_len_equal([[1]], [[2], [3]]) def test_assert_shape_equal(self): checks.assert_shape_equal(0, 1) checks.assert_shape_equal([1, 2, 3], np.asarray([1, 2, 3])) checks.assert_shape_equal([1, 2, 3], pd.Series([1, 2, 3])) checks.assert_shape_equal(np.zeros((3, 3)), pd.Series([1, 2, 3]), axis=0) checks.assert_shape_equal(np.zeros((2, 3)), pd.Series([1, 2, 3]), axis=(1, 0)) with pytest.raises(Exception) as e_info: checks.assert_shape_equal(np.zeros((2, 3)), pd.Series([1, 2, 3]), axis=(0, 1)) def test_assert_index_equal(self): checks.assert_index_equal(pd.Index([1, 2, 3]), pd.Index([1, 2, 3])) with pytest.raises(Exception) as e_info: checks.assert_index_equal(pd.Index([1, 2, 3]), pd.Index([2, 3, 4])) def test_assert_meta_equal(self): index = ['x', 'y', 'z'] columns = ['a', 'b', 'c'] checks.assert_meta_equal(np.array([1, 2, 3]), np.array([1, 2, 3])) checks.assert_meta_equal(pd.Series([1, 2, 3], index=index), pd.Series([1, 2, 3], index=index)) checks.assert_meta_equal(pd.DataFrame([[1, 2, 3]], columns=columns), pd.DataFrame([[1, 2, 3]], columns=columns)) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.Series([1, 2]), pd.DataFrame([1, 2])) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.DataFrame([1, 2]), pd.DataFrame([1, 2, 3])) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.DataFrame([1, 2, 3]),
pd.DataFrame([1, 2, 3], index=index)
pandas.DataFrame
import tempfile import pytest import pandas as pd from fuzzyfinder.database import SearchDatabase def test_build_and_search(): db_filename = tempfile.NamedTemporaryFile().name db = SearchDatabase(db_filename) rec1 = {"unique_id": 1, "first_name": "robin", "surname": "linacre"} rec2 = {"unique_id": 2, "first_name": "robyn", "surname": "linaker"} rec3 = {"unique_id": 3, "first_name": "robin", "surname": "linacre"} rec3 = {"unique_id": 4, "first_name": "david", "surname": "smith"} dicts = [rec1, rec2, rec3] db.write_list_dicts_parallel(dicts, unique_id_col="unique_id") db.build_or_replace_stats_tables() search_rec = {"unique_id": 4, "first_name": "robin", "surname": None} assert 1 in db.find_potental_matches(search_rec).keys() # With record caching, we want to make sure that if the search rec is changed but the unique id # is for some reason left the same, we get different search results search_rec = {"unique_id": 4, "first_name": "david", "surname": None} assert 4 in db.find_potental_matches(search_rec).keys() # See https://stackoverflow.com/questions/11942364/typeerror-integer-is-not-json-serializable-when-serializing-json-in-python # Problem is that the new pandas nullable integer cannot be serialised to json def test_json_problem(): db_filename = tempfile.NamedTemporaryFile().name db = SearchDatabase(db_filename) rec1 = {"unique_id": 1, "first_name": "robin", "int_problem": 1} rec2 = {"unique_id": 2, "first_name": "robyn", "int_problem": 2} rec3 = {"unique_id": 3, "first_name": "robin", "int_problem": 3} rec3 = {"unique_id": 4, "first_name": "david", "int_problem": None} import pandas as pd dicts = [rec1, rec2, rec3] df = pd.DataFrame(dicts) df["int_problem"] = df["int_problem"].astype(
pd.Int64Dtype()
pandas.Int64Dtype
__all__ = [ "add_net_meta", "convert_column", "and_filter", "get_outlier_bounds", "avg_over_net", "normalize", "add_topo", "add_median_lh", "add_split_label", "remove_outliers", "calc_paired_diff", "calc_percentage_change", "calc_icc", "normalize_series", "concat_dfs", "long_column_to_wide", ] import itertools import pandas as pd import numpy as np from matplotlib.cbook import boxplot_stats import pandas_flavor as pf from neuro_helper.statistics import percent_change, icc @pf.register_dataframe_method def add_net_meta(df, labels): meta = pd.Series(index=df.index, name="net_meta") for label, nets in labels.items(): meta.loc[df.network.isin(nets)] = label df["net_meta"] = meta return df @pf.register_dataframe_method def convert_column(df, **col_dict): new_df = df.copy() for col_name, func in col_dict.items(): new_df[col_name] = func(new_df[col_name]) return new_df @pf.register_dataframe_method def and_filter(df, drop_single=True, **kwargs): filt = True keys = [] for key, value in kwargs.items(): negate = False if key.startswith("NOT"): negate = True key = key.replace("NOT", "") keys.append(key) if type(value) in [list, tuple, np.ndarray]: this_filt = df[key].isin(value) else: this_filt = df[key] == value filt &= ~this_filt if negate else this_filt new_df = df[filt] if drop_single: return new_df.drop([c for c in keys if len(new_df[c].unique()) <= 1], 1) else: return new_df @pf.register_dataframe_method def get_outlier_bounds(df, of): if isinstance(of, str): of = [of, ] out = [] for col in of: stat = boxplot_stats(df[col])[0] out.append((stat["whislo"], stat["whishi"])) return out[0] if len(out) == 1 else out @pf.register_dataframe_method def avg_over_net(df): return df.groupby(list(df.columns.drop(["region", "metric"]))).mean().reset_index() @pf.register_dataframe_method def normalize(x, columns, new_min=0, new_max=1): if isinstance(columns, str): columns = [columns, ] df = x.copy() for on in columns: df[on] = normalize_series(df[on], new_min, new_max) return df @pf.register_dataframe_method def add_topo(df, *args): new_df = df has_net = "network" in df.columns for topo in args: topo() topo_data = topo.data if has_net: new_df = pd.merge(new_df, topo_data, on=["region", "network"]) else: new_df = pd.merge(new_df, topo_data.drop("network", 1), on=["region"]) return new_df @pf.register_dataframe_method def add_median_lh(x, calc_med_col, values=("L", "H")): med = x[calc_med_col].median() return add_split_label(x, calc_med_col, calc_med_col, (values, med)) @pf.register_dataframe_method def add_split_label(df, on, based, criteria): x = df.copy() if callable(criteria): labels, borders = criteria(x[based]) else: labels, borders = criteria if np.isscalar(borders): borders = [borders, ] if len(labels) != len(borders) + 1: raise ValueError("labels should be one more than borders") new_col_name = f"{on}_split" on_splitted = pd.Series(index=x.index, name=new_col_name, data=pd.NA) borders.append(borders[-1]) for index, (label, border) in enumerate(zip(labels, borders)): if index == 0: filt = x[based] < border elif index == len(labels) - 1: filt = x[based] >= border else: filt = (x[based] < border) & (x[based] >= borders[index - 1]) on_splitted.loc[filt] = label if on_splitted.isna().any(): raise ValueError(f"criteria does not cover the whole {on} bound") x[new_col_name] = on_splitted return x @pf.register_dataframe_method def remove_outliers(x, of): stat = boxplot_stats(x[of])[0] low, high = stat["whislo"], stat["whishi"] return x.loc[(x[of] > low) & (x[of] < high)] @pf.register_dataframe_method def calc_paired_diff(x, diff_func=lambda left, right: abs(left - right), repeat=True): """ calculates the 2-by-2 difference on one single column. :param x: a dataframe with only two columns. First column is the label for the second column. The second one is the metric :param diff_func: the difference function. default is L1 norm :param repeat: if True return all combinations with repeteation (product), otherwise only unique combinations :return: a dataframe with 3 columns. Left items, Right items and the difference between left and right """ diff =
pd.DataFrame(columns=("left", "right", "difference"))
pandas.DataFrame
import pandas as pd import numpy as np import os import requests import json import datetime import time MIN_FINAL_RATING = 1500 # top submission in a match must have reached this score num_api_calls_today = 0 all_files = [] for root, dirs, files in os.walk('../input/', topdown=False): all_files.extend(files) seen_episodes = [int(f.split('.')[0]) for f in all_files if '.' in f and f.split('.')[0].isdigit() and f.split('.')[1] == 'json'] print('{} games in existing library'.format(len(seen_episodes))) NUM_TEAMS = 1 EPISODES = 600 BUFFER = 1 base_url = "https://www.kaggle.com/requests/EpisodeService/" get_url = base_url + "GetEpisodeReplay" list_url = base_url + "ListEpisodes" # inital team list r = requests.post(list_url, json = {"teamId": 5586412}) # arbitrary ID, change to leading ID during challenge rj = r.json() teams_df = pd.DataFrame(rj['result']['teams']) teams_df.sort_values('publicLeaderboardRank', inplace = True) teams_df.head(6) def getTeamEpisodes(team_id): # request r = requests.post(list_url, json = {"teamId": int(team_id)}) rj = r.json() # update teams list global teams_df teams_df_new =
pd.DataFrame(rj['result']['teams'])
pandas.DataFrame
from os.path import dirname, join as pjoin import scipy.io as sio import numpy as np import pandas as pd import sys import os import argparse import shutil # Globally accessible: csv_folderpath = os.path.join(sys.path[0], 'csvIndexes') class ADEIndex(): def __init__(self): self.image_index = None self.object_name_list = None self.object_image_matrix = None self.CSVsExist = False if os.path.exists(csv_folderpath)\ and os.path.exists(os.path.join(csv_folderpath, 'image_index.csv'))\ and os.path.exists(os.path.join(csv_folderpath, 'object_name_list.csv'))\ and os.path.exists(os.path.join(csv_folderpath,'object_image_matrix.csv')): print("Now loading data from CSV files") self.image_index = pd.read_csv(os.path.join(csv_folderpath, 'image_index.csv')) self.object_name_list = pd.read_csv(os.path.join(csv_folderpath, 'object_name_list.csv')) self.object_image_matrix = pd.read_csv(os.path.join(csv_folderpath, 'object_image_matrix.csv')) self.CSVsExist = True else: print("No CSVs found - will save CSVs after loading MATLAB data") # This script should be run from within the project's James_TompGAN/data/ folder # data_dir = pjoin('ADE20K_2016_07_26') # mat_fname = pjoin(data_dir, 'index_ade20k.mat') mat_fname = os.path.join(sys.path[0], 'ADE20K_2016_07_26', 'index_ade20k.mat') mat_contents = sio.loadmat(mat_fname) matindex = mat_contents['index'][0,0] # print("Index fields are ", matindex.dtype) # The index does NOT have a consistent row or column structure, I assume # the reason is just that it's composed of a bunch of different MATLAB arrays # The columns are transposed occasionally because otherwise they don't fit # together - they're imported from MATLAB in a bunch of inconsistent dimensions num_examples = matindex[matindex.dtype.names[1]].size print("There are ", num_examples, " images in the dataset") # print("Here's a list of the attributes in the MATLAB data:") # for name_i in matindex.dtype.names: # print("Attribute: ", name_i) # print("Dimensions of ", name_i, ": ", matindex[name_i].shape) # -------- # putting image attributes in a DataFrame filename_col_nested = pd.DataFrame(matindex['filename'].T, columns=['filename']) filename_col = pd.DataFrame(columns=['filename']) for index, row in filename_col_nested.iterrows(): filename_col.loc[index] = filename_col_nested['filename'][index][0] folder_col_nested = pd.DataFrame(matindex['folder'].T, columns=['folder']) folder_col = pd.DataFrame(columns=['folder']) for index, row in folder_col_nested.iterrows(): folder_col.loc[index] = folder_col_nested['folder'][index][0] # I don't know what this column is for (it's not documented on the dataset site) typeset_col = pd.DataFrame(matindex['typeset'], columns=['typeset']) # scene type of each image scene_col = pd.DataFrame(matindex['scene'].T, columns=['scene']) # putting the columns together int_indexed_image_index = pd.concat([filename_col, folder_col, typeset_col, scene_col], axis=1) self.image_index = int_indexed_image_index.set_index('filename') # Need filename col to be the index AND a query-able column # (because conversion to csv makes the index just an int) # self.image_index = pd.concat([self.image_index, filename_col], axis=1) # print(image_index.index) # print(image_index) # print(image_index['ADE_train_00011093.jpg']) # image_index.to_csv("csvIndexes/image_index.csv") # print(image_index['ADE_train_00011093.jpg']) # ------- # Putting object attributes in a DataFrame object_name_list_nested =
pd.DataFrame(matindex['objectnames'].T, columns=['objectnames'])
pandas.DataFrame
# Overcommented for explanatory reasons import re import os # Type annotations from typing import IO, Text # Reading pdf from io import StringIO from pdfminer.pdfinterp import PDFResourceManager from pdfminer.pdfinterp import PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage # Pandas and numpy for visualization import numpy as np import pandas as pd def read(pdf: IO) -> Text: """Acquire a pdf and return a text file""" pdfname = pdf [:-4] # Setting the conversion trio pagenums = set() output = StringIO() manager = PDFResourceManager() converter = TextConverter(manager, output, laparams=LAParams()) interpreter = PDFPageInterpreter(manager, converter) # Opening the pdf infile = open(pdf, 'rb') # Readiing loop: get the page and use the interpreter for page in PDFPage.get_pages(infile, pagenums): interpreter.process_page(page) infile.close() converter.close() # Get the values and turn them to byte content = output.getvalue() output.close() # Specify encoding tobyte = content.encode(encoding="latin-1",\ errors="backslashreplace") # Coping to txt, finally! with open(pdfname + '.txt', 'wb') as txt_file: txt_file.write(tobyte) def cleantxt(filetxt: Text) -> Text: """ Fix all the latin-1 badly imported chars. Remove extra newlines Ensure there's always a space after the dot Adjust bad inputs, such as: a. Ò is " b. Ó is " c. Õ is ' d. Ð is - e. Ñ is -- (longdash) Fix spacing the * Fix space after ) Fix space after ] """ with open(filetxt) as f: ftxt = f.read() ftxt=ftxt.replace('\\u25a0', ' * ') # Black dot ftxt=ftxt.replace('\\u2013', '-') ftxt=ftxt.replace('\\u2014', '-') ftxt=ftxt.replace('\\u2019', '\'') ftxt=ftxt.replace('\\u2018', '\'') ftxt=ftxt.replace('\\u201c', '\'') ftxt=ftxt.replace('\\u201d', '\'') ftxt=ftxt.replace('\\ufb01', 'fi') ftxt=ftxt.replace('\\ufb02', 'fl') ftxt=ftxt.replace('\\u0152', 'oe') ftxt=ftxt.replace('\\u0153', 'oe') ftxt=ftxt.replace('\\u2022', '-') # Point ftxt=ftxt.replace('\\u27a4', '->') # Right arrow ftxt=ftxt.replace('\\u27a5', '->') # Right curved arrow ftxt=ftxt.replace('\\u2122', '') # TM logo ftxt=ftxt.replace('\\u20ac', 'euro') ftxt=ftxt.replace('\\u221e', 'infinity') # Infinity ftxt=ftxt.replace('\x0c', '') # Up arrow ftxt=ftxt.replace('VC ', '') # Copyright # Umlaut related ftxt=ftxt.replace('\\u20aca', 'a') ftxt=ftxt.replace('\\u20aco', 'o') ftxt=ftxt.replace('\\u20acu', 'u') ftxt=ftxt.replace('\\u2026', '...') # Slavic ftxt=ftxt.replace('\\u017', 'z') ftxt=ftxt.replace('\\u0161', 's') ftxt=ftxt.replace('\\u0106', 'C') ftxt=ftxt.replace("\.", "\. ") ftxt=ftxt.replace("Ò", "\"") ftxt=ftxt.replace("Ó", "\"") ftxt=ftxt.replace("Õ", "\'") ftxt=ftxt.replace("Ð", "-") ftxt=ftxt.replace("Ñ", "--") # Ad hoc cleaning given my corpusx ftxt=ftxt.replace(" eg, ", "") # Messes up fulldata ftxt=ftxt.replace(" Ltd 2004", "") # Bad input ftxt=ftxt.replace(" Malden 0214", "") # Bad input # Spacing ftxt=ftxt.replace("\n", " ") # Newlines to space ftxt=ftxt.replace("*", "") # Clean * ftxt=ftxt.replace(")", ") ") # Space after ) ftxt=ftxt.replace("]", "] ") # Space after ] ftxt=ftxt.replace(" ;", ";") # No space after ; ftxt=ftxt.replace(" ,", ",") # No space after , ftxt=ftxt.replace(" .", ".") # No space after . ftxt=ftxt.replace(" ", " ") # 2 spaces into 1 return ftxt def preprocess(txt: Text) -> Text: """ Clean txt for regex processing using the cleantxt function. """ filename = txt[:-4] with open(filename +'_prep.txt', 'w') as preptxt: preptxt.write(cleantxt(txt)) return cleantxt(txt) def extractbiblio(txt: Text) -> Text: """ Apply regex patterns in REGEX_LIST to a (processed) text. References are stored in 'Author Year' format. """ # Initialize the list containing the extracted refs extractedlist = [] filename = txt[:-9] # The file passes ended with "_prep.txt" for regex in REGEX_LIST: print('Processing ', regex) # Open the paper as corpus corpus = open(txt).read() # Run regexes over corpus matches = re.findall(regex, corpus) # Save matches in the extracted list for match in matches: # We using capturing groups for author and date extractedlist.append(str(match[0]) \ + ' ' + str(match[1])) # Print statement to have an idea of the search # feel free to comment it out print(sorted(set(extractedlist)), len(set(extractedlist))) # Saving to file with open(filename + '_biblio.txt', 'w') as f: for citatation in extractedlist: f.write(citation + '\n') return extractedlist def extract_to_gephi(biblio: Text, papernamewithyear) -> Text: """ Format the data for usage in gephi. The gephi table has: - a 'paper' column: the paper we exteracted references from; - a 'references' column: the outcome of our biblio extraction; - a 'weight' column: Gephi needs it set to 1. The parameters are: -biblio: a txt file with the extract biblio (_biblio.txt is the output name of the extractbiblio(txt) function); - papernamewith year: the paper we are extracting the references from given the format we are using of 'Author year' you have to insert it this way. Otherwise your Gephi network will not display there references to the paper you are processing. """ references = pd.read_csv(biblio, sep='\n', header=None,\ names = ['references', 'paper', 'weight']) df =
pd.DataFrame(references)
pandas.DataFrame
import streamlit as st import pandas as pd import base64 import numpy as np from PIL import Image from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2_score, mean_squared_error # predict def pred(df_train, df_test): X_train=df_train.iloc[:,:-1].values Y_train=df_train.iloc[:,-1].values X_test= df_test.iloc[:,:-1] Y_test =df_test.iloc[:,-1] model=RandomForestRegressor() model.fit(X_train, Y_train) pred=model.predict(X_test) return Y_test, pred # Calculates performance metrics def calc_metrics(Y_actual,Y_predicted ): mse=mean_squared_error(Y_actual,Y_predicted) rmse=np.sqrt(mse) r_squared=r2_score(Y_actual,Y_predicted) mse_series= pd.Series(mse,name='MSE') rmse_series= pd.Series(rmse,name='RMSE') r2score_series= pd.Series(r_squared,name='R_squared') df = pd.concat( [mse_series, rmse_series, r2score_series], axis=1 ) return df # Load example data def load_example_data(): df1 = pd.read_csv('vegitation_data_train.csv') df2=pd.read_csv('vegitation_data_test.csv') return df1,df2 # Download performance metrics def filedownload(df,name): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions href = f'<a href="data:file/csv;base64,{b64}" download={name}.csv>Download CSV File</a>' return href # Sidebar - Header st.sidebar.header('Input panel') st.sidebar.markdown(""" [Example CSV file](https://raw.githubusercontent.com/dataprofessor/model_performance_app/main/Y_example.csv) """) # Sidebar panel - Upload input file uploaded_file = st.sidebar.file_uploader('Upload your train CSV file', type=['csv']) uploaded_test = st.sidebar.file_uploader('Upload your test CSV file', type=['csv']) # Sidebar panel - Performance metrics performance_metrics = ['MSE', 'RMSE', 'R_squared'] selected_metrics = st.sidebar.multiselect('Performance metrics', performance_metrics, performance_metrics) # Main panel image = Image.open('logo.png') st.image(image, width = 500) st.title('Model Performance Calculator App') st.markdown(""" This app calculates the model performance metrics given the actual and predicted values. * **Python libraries:** `base64`, `pandas`, `streamlit`, `scikit-learn` """) if (uploaded_file and uploaded_test) is not None: train_df = pd.read_csv(uploaded_file) test_df =
pd.read_csv(uploaded_test)
pandas.read_csv
import pandas as pd import mlflow import click import warnings warnings.simplefilter(action='ignore', category=FutureWarning) def human_readable(value): if value == ['1']: return "FAKE NEWS!" return "REAL NEWS" def predict(text): print(f"Accepted payload: {text}") my_data = { "text": {0: text}, } data = pd.DataFrame(data=my_data) # Load model as a PyFuncModel. loaded_model = mlflow.pyfunc.load_model('model') result = loaded_model.predict(
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np import os import datetime import re from tqdm import tqdm # Run the create dataframe and clean data function file = "../data_scheme_w.csv" def windows_folder(folder): """ Modify foders from files in a dataframe\ To be used with pandas .apply() """ folder = str(folder).replace("\\", "/") return folder def create_dataframe(folder): """ Create a dataframe from set files found in folder This function recursively scan folder for Axona .set files and return a pandas dataframe with ['filename', 'folder', 'time', 'duration'] columns Parameters: folder (str): A folder containing the data Returns: dataframe: Pandas dataframe with all set files """ set_file = [] root_folder = [] time = [] duration = [] try: print("Load files ..") df =
pd.read_csv(file)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 20 11:32:12 2020 @authors: <NAME> and <NAME> """ #Import Python core modules import os import pandas as pd import numpy as np #Import custom modules import dataextract import analyzer path=os.getcwd() os.chdir(path) #defining file names netVehicleDataFile = 'veh0122.xlsx' evDataFile = 'veh0132.xlsx' countyDataFile = 'CountyDistricts.xlsx' la2CountyFile = 'LA2County.xlsx' #set year and quarter year = "2021" Quarter = "Q1" #Opening files netVehicleData = dataextract.Dataextract(netVehicleDataFile) netVehicleData.openfile(sheet=0, sheet_type = 'xlsx') electricVehicleData = dataextract.Dataextract(evDataFile) electricVehicleData.openfile(sheet=2,sheet_type = 'xlsx') countyData = dataextract.Dataextract(countyDataFile) countyData.openfile(sheet=1,sheet_type = 'xlsx') la2CountyData = dataextract.Dataextract(la2CountyFile) la2CountyData.openfile(sheet=1,sheet_type = 'xlsx') #cleaning Data netVehicleData.cleanseVehData(countyData = countyData.rawdf) electricVehicleData.cleanseEVData(countyData = la2CountyData.rawdf) #analysis and prepping for csv regions = netVehicleData.rawdf.columns historic_data_Qs = netVehicleData.rawdf.index test_matching = electricVehicleData.rawdf.index if (test_matching == historic_data_Qs).all() == False: print("Quarters do not match") data_to_save_historic = pd.DataFrame() data_to_save_S_curve =
pd.DataFrame()
pandas.DataFrame
import pandas as pd def nasa_weather(df): year = df['YEAR'].astype(str) month = df['MO'].astype(str) day = df['DY'].astype(str) month = month.apply(lambda x: '0'+x if len(x) == 1 else x) day = day.apply(lambda x: '0'+x if len(x) == 1 else x) df['date'] =
pd.to_datetime(year + "-" + month + "-" + day)
pandas.to_datetime
#!/usr/bin/env python3 # # Copyright 2019 <NAME> <<EMAIL>> # # This file is part of Salus # (see https://github.com/SymbioticLab/Salus). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: utf-8 -*- """ Created on Sun Sep 2 04:25:58 2018 @author: peifeng """ from __future__ import print_function, absolute_import, division import re from datetime import datetime from collections import defaultdict import multiprocessing as mp from pathlib import Path import subprocess as sp import tempfile import pandas as pd #import seaborn as sns import numpy as np import matplotlib.pyplot as plt import plotutils as pu import compmem as cm def load_case(path): df = pd.read_csv(path, header=None, sep=' ', names=['date', 'time', 'event', 'skip', 'Model'], parse_dates=[['date', 'time']]) df = df[['date_time', 'event', 'Model']] df['timestamp'] = df['date_time'] df = df.drop('date_time', axis=1) wls = df.pivot_table(values='timestamp', index=['Model'], columns='event', aggfunc='first').reset_index() for col in ['Started', 'Queued', 'Finished']: wls[col] = wls[col].str[:-1] wls[col] = pd.to_datetime(wls[col]) wls['queuing'] = wls.Started - wls.Queued wls['JCT'] = wls.Finished - wls.Queued # for convinent wls['No'] = pd.to_numeric(wls['Model'].str.rpartition('.')[2]) return wls def load_trace(path, fifo=True): df = pd.read_csv(path) df = df.sort_values(by='submit_time') if fifo: models = defaultdict(dict) curr = 0 for idx, row in df.iterrows(): if curr < row['submit_time']: curr = row['submit_time'] models[idx]['Queued'] = row['submit_time'] models[idx]['Started'] = curr curr += row['duration'] models[idx]['Finished'] = curr data = [ { "Model": '{model_name}.tf.{iterations}iter.{job_id}'.format(**df.iloc[idx]), "Finished": m['Finished'], "Queued": m['Queued'], "Started": m['Started'], "queuing": m['Started'] - m['Queued'], "JCT": m['Finished'] - m['Queued'] } for idx, m in models.items() ] df = pd.DataFrame(data) else: data = [ { "Model": f"{row.model_name}.tf.{row.iterations}iter.{row.job_id}", "Finished": row.submit_time + row.duration, "Queued": row.submit_time, "Started": row.submit_time, "queuing": 0, "JCT": row.duration } for idx, row in df.iterrows() ] df = pd.DataFrame(data) for col in ['Finished', 'Queued', 'Started', 'queuing', 'JCT']: df[col] = pd.to_timedelta(df[col], unit='s') df['No'] = pd.to_numeric(df['Model'].str.rpartition('.')[2]) return df def load_refine(pathdir): # load preempt select events with tempfile.NamedTemporaryFile() as f: server_output = pathdir/'server.output' sp.check_call(['grep', 'preempt_select_sess', str(server_output)], stdout=f) f.flush() df = cm.load_generic(f.name, event_filters=['preempt_select_sess']) df = df.drop(['evt', 'level', 'loc', 'thread', 'type'], axis=1) # convert UTC from server to local df['timestamp'] = df.timestamp.dt.tz_localize('UTC').dt.tz_convert('US/Eastern').dt.tz_localize(None) sess2Model = {} # model name -> sess handle ptn = re.compile('Created session with handle (?P<sess>.+)$') for fpath in pathdir.glob('*.*.*.*.output'): with fpath.open() as f: for line in f: m = ptn.search(line) if m: sess2Model[m.group('sess')] = fpath.name.rstrip('.output') # add model name info to it df['Model'] = df.Sess.map(sess2Model) # make sure every session is covered assert df.Model.isnull().sum() == 0 # for convinent df['No'] = pd.to_numeric(df['Model'].str.rpartition('.')[2]) return df def load_serverevents(pathdir): # sess handle -> lane id with tempfile.NamedTemporaryFile() as f: server_output = pathdir/'server.output' sp.check_call(['grep', 'lane_assigned', str(server_output)], stdout=f) f.flush() df = cm.load_generic(f.name, event_filters=['lane_assigned']) df = df.drop(['evt', 'level', 'loc', 'thread', 'type'], axis=1) # sess handles are unique assert len(df.Sess.unique()) == len(df.Sess) # make Sess as index so we can lookup df = df.set_index('Sess') # add a new column df['Model'] = None # model name -> sess handle ptn = re.compile('Created session with handle (?P<sess>.+)$') for fpath in pathdir.glob('*.*.*.*.output'): with fpath.open() as f: for line in f: m = ptn.search(line) if m: df.loc[m.group('sess'), 'Model'] = fpath.name.rstrip('.output') # reset index so we can use that later df = df.reset_index() return df def refine_time_events(df, sevts): """Return a copy of df""" assert df.Model.is_unique assert sevts.Model.is_unique df = df.set_index('Model').sort_index() sevts = sevts.set_index('Model').sort_index() # check sevts contains all needed info assert sevts.index.equals(df.index) # Server logs in UTC, convert to local sevts['Started'] = sevts.timestamp.dt.tz_localize('UTC').dt.tz_convert('US/Eastern').dt.tz_localize(None) sevts = sevts.drop(['timestamp'], axis=1) df['Queued'] = df.Started df = df.drop(['Started'], axis=1) # set Model as index for both as then and then concat df = pd.concat([df, sevts], axis=1) # update queuing df['queuing'] = df.Started - df.Queued return df.reset_index() def plot_timeline(df, colors=None, **kwargs): ax = kwargs.pop('ax', None) if ax is None: ax = plt.gca() # sort df by no df['No'] = pd.to_numeric(df['Model'].str.rpartition('.')[2]) df = df.sort_values(by='No') offset = df.Queued.min() qmin = (df.Queued - offset) / pd.Timedelta(1, unit='s') xmin = (df.Started - offset) / pd.Timedelta(1, unit='s') xmax = (df.Finished - offset) / pd.Timedelta(1, unit='s') if colors is None: color_cycle = ax._get_lines.prop_cycler colors = [next(color_cycle)['color'] for _ in qmin] for (_, row), q, left, right, color in zip(df.iterrows(), qmin, xmin, xmax, colors): barheight = 0.8 # queuing time ax.barh(row.No, left - q, barheight, q, color='#b6b6b6') # run time bar = ax.barh(row.No, right - left, barheight, left, color=color, label='#{3}: {0}'.format(*row.Model.split('.'))) if 'LaneId' in row: ax.text(right + 2, row.No, f'Lane {row.LaneId}', ha='left', va='center', fontsize=3) # ax.legend() ax.set_xlabel('Time (s)') # ax.set_ylabel('Workload') ax.yaxis.set_ticks([]) return bar, colors def plot_refine(ax, df, refine_data): # so that we can access job using no df = df.set_index('No') # for every preempt event pair, mask jobs that's not the left event's switch_to job offset = df.Queued.min() refine_data['Ntime'] = (refine_data['timestamp'] - offset) / pd.Timedelta(1, unit='s') # also convert df.Queued to relative time df['Started'] = (df.Started - offset) / pd.Timedelta(1, unit='s') df['Finished'] = (df.Finished - offset) / pd.Timedelta(1, unit='s') bars = [] # group refine_data by laneId for laneId, grp in refine_data.groupby('LaneId'): magic = grp.iterrows() next(magic) for (_, left), (_, right) in zip(grp.iterrows(), magic): for no in df.index.unique(): if no == left.No: continue if laneId != df.loc[no].LaneId: continue l = max(df.loc[no].Started, left.Ntime) r = min(df.loc[no].Finished, right.Ntime) if l >= r: continue # make sure left and right within job no's started and finished # mask from left to right bars.append(ax.barh(no, r - l, 0.5, l, color='#ffffff', edgecolor='#ffffff')) return bars def plot_lanes(refined_df, **kwargs): lanes = refined_df.groupby(['LaneId', 'LaneSize']).agg({ 'Queued': 'first', 'Finished': 'last' }).rename(columns={'Queued':'Started'}).reset_index() tables = [] for col in ['Started', 'Finished']: t = lanes.pivot_table(values='LaneSize', columns='LaneId', index=[col], aggfunc='first') tables.append(t) lanes2 = pd.concat(tables).sort_index().interpolate(method='linear', limit_area='inside').fillna(0) # x x = (lanes2.index - lanes2.index.min()) /
pd.Timedelta(1, 's')
pandas.Timedelta
import pandas as pd from sklearn import linear_model import statsmodels.api as sm import numpy as np from scipy import stats # df_2018 = pd.read_csv("/mnt/nadavrap-students/STS/data/2018_2019.csv") # df_2016 = pd.read_csv("/mnt/nadavrap-students/STS/data/2016_2017.csv") # df_2014 = pd.read_csv("/mnt/nadavrap-students/STS/data/2014_2015.csv") # df_2012 = pd.read_csv("/mnt/nadavrap-students/STS/data/2012_2013.csv") # df_2010 = pd.read_csv("/mnt/nadavrap-students/STS/data/2010_2011.csv") # # print (df_2018.stsrcom.unique()) # print (df_2016.stsrcom.unique()) # print (df_2014.stsrcom.unique()) # print (df_2012.stsrcom.unique()) # print (df_2010.stsrcom.unique()) # print (df_2018.stsrcHospD.unique()) # print (df_2016.stsrcHospD.unique()) # print (df_2014.stsrcHospD.unique()) # print (df_2012.stsrcHospD.unique()) # print (df_2010.stsrcHospD.unique()) # # print (df_2018.columns.tolist()) # df_union = pd.concat([df_2010, df_2012,df_2014,df_2016,df_2018], ignore_index=True) # print (df_union) # print (df_union['surgyear'].value_counts()) # for col in df_union.columns: # print("Column '{}' have :: {} missing values.".format(col,df_union[col].isna().sum())) # df_union= pd.read_csv("df_union.csv") # cols_to_remove = [] # samples = len(df_union) # for col in df_union.columns: # nan_vals = df_union[col].isna().sum() # prec_missing_vals = nan_vals / samples # print("Column '{}' have :: {} missing values. {}%".format(col, df_union[col].isna().sum(), round(prec_missing_vals,3))) # print (cols_to_remove) # # df_union.drop(cols_to_remove, axis=1, inplace=True) # print("Number of Features : ",len(df_union.columns)) # for col in df_union.columns: # print("Column '{}' have :: {} missing values.".format(col,df_union[col].isna().sum())) # # df_union.to_csv("df union after remove.csv") # df_2018_ = pd.read_csv("/mnt/nadavrap-students/STS/data/2018_2019.csv") df_all= pd.read_csv("/tmp/pycharm_project_723/df_union.csv") print (df_all.reoperation.unique()) print (df_all.stsrcHospD.unique()) print (df_all.stsrcom.unique()) # mask = df_2018_['surgyear'] == 2018 # df_all = df_2018_[mask] # mask_reop = df_all['reoperation'] == 1 # df_reop = df_all[mask_reop] # df_op = df_all[~mask_reop] def create_df_for_bins_hospid(col_mort): df1 = df_all.groupby(['hospid', 'surgyear'])['hospid'].count().reset_index(name='total') df2 = df_all.groupby(['hospid', 'surgyear'])['reoperation'].apply(lambda x: (x == 1).sum()).reset_index( name='Reop') df3 = df_all.groupby(['hospid', 'surgyear'])['reoperation'].apply(lambda x: (x == 0).sum()).reset_index( name='FirstOperation') df_aggr = pd.read_csv("aggregate_csv.csv") mask_reop = df_all['reoperation'] == 1 df_reop = df_all[mask_reop] df_op = df_all[~mask_reop] dfmort = df_all.groupby(['hospid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_all') dfmortf = df_op.groupby(['hospid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_first') dfmortr = df_reop.groupby(['hospid', 'surgyear'])[col_mort].apply(lambda x: (x == 1).sum()).reset_index( name='Mortality_reop') df_comp = df_all.groupby(['hospid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_all') df_compr = df_reop.groupby(['hospid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_reop') df_compf = df_op.groupby(['hospid', 'surgyear'])['complics'].apply(lambda x: (x == 1).sum()).reset_index( name='Complics_FirstOperation') d1 = pd.merge(df1, df3, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d2 = pd.merge(d1, df2, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') df5 = pd.merge(df_aggr, d2, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='inner') # how='left', on=['HospID','surgyear']) del df5["Unnamed: 0"] d3 = pd.merge(df5, dfmort, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d4 = pd.merge(d3, dfmortf, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d5 = pd.merge(d4, dfmortr, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer') d6 =
pd.merge(d5, df_comp, left_on=['hospid', 'surgyear'], right_on=['hospid', 'surgyear'], how='outer')
pandas.merge
from unittest import TestCase import definitions from src.Swell import Swell from src.SwellDAO import SwellDAO import pandas as pd import os class TestSwellDAO(TestCase): def test_create_table(self): swellDAO = SwellDAO() swellDAO.create_table() tables = swellDAO.show_tables() tables_list = [elem[0] for elem in tables] if ('SwellStaging') not in tables_list: self.fail() def test_empty_swell_staging(self): swellDAO = SwellDAO() swellDAO.create_table() swellDAO.drop_table_if_exists() tables = swellDAO.show_tables() tables_list = [elem[0] for elem in tables] if ('SwellStaging') in tables_list: self.fail() def test_insert_csv_into_database(self): swellDAO = SwellDAO() swellDAO.drop_table_if_exists() swellDAO.create_table() test_data_path = os.path.join(definitions.ROOT_DIR, 'testdata/testWaveDataWithHeaders.csv') swell1 = Swell(test_data_path) data =
pd.read_csv(test_data_path, encoding='unicode_escape')
pandas.read_csv
import numpy as np import pandas as pd from asset_model import geometric_brownian_motion #TODO # class CcpiStrategy(InvestmentStrategy): # # def __init__(self, drawdown=None, multiplier=3): # self.drawdown = drawdown # self.multiplier = multiplier # # def update_portfolio_weighs(self, current_weights, account_value, returns): # risky_weight = current_weights[0] # safe_weight = current_weights[1] # #TODO # # if self.drawdown is not None: # # peak = np.maximum(peak, account_value) # # floor_value = peak * (1 - drawdown) # cushion = (account_value - floor_value) / account_value # risky_weight = self.multiplier * cushion # risky_weight = np.minimum(risky_weight, 1) # risky_weight = np.maximum(risky_weight, 0) # safe_weight = 1 - risky_weight # return np.array(risky_weight, safe_weight) def backtest_cppi(risky_returns, safe_returns=None, risk_free_rate=0.03, multiplier=3, cushion_ratio=0.8, drawdown=None, start_value=1000): """ Run a backtest of the CPPI strategy, given a set of returns for the risky asset Returns a dictionary containing: Asset Value History, Risk Budget History, Risky Weight History :param risky_returns: history of risky returns :param safe_returns: history of safe returns. If None, default to risk free rate :param risk_free_rate: Rate of return of the risk free asset :param multiplier: multiplier to allocate to risky asset = multiplier*(1-cushion)*wealth :param cushion_ratio: ratio of the wealth to protect :param drawdown: max drawdown allowed (as ratio) :param start_value: Initial monetary value of the account """ # Ensure returns are a data frame if isinstance(risky_returns, pd.Series): risky_returns = pd.DataFrame(risky_returns, columns=["R"]) # If no safe asset is specified, default to the risk free rate if safe_returns is None: safe_returns =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import requests import os class extract_as_csv(object): def extract_f1_json(url__f1_tv, url__drivers): page = requests.get(url__f1_tv) json__f1_tv = page.json() # ergast data page = requests.get(url__drivers) json__drivers = page.json() def db_name(): j_temp = json__f1_tv['path'] j_temp = j_temp[5:] csv_name = '' n = 0 while j_temp[n] != '/': csv_name = csv_name + j_temp[n] n = 1 + n return csv_name csv_name = db_name() def create_path(): if not os.path.exists('Database/GrandPrix/'+csv_name): os.makedirs('Database/GrandPrix/'+csv_name) create_path() def generate_csv_name(csv_type): path_db = 'Database/GrandPrix/' + csv_name + '/' + csv_name + '-' + csv_type + '.csv' return path_db def for_loop_by_time(json): Time = [] Something = [] i = 0 for value in json: if i == 0: Time.append(value) i = 1 else: Something.append(value) i = 0 return Time, Something def weather(json__f1_tv): j_temp = json__f1_tv['Weather'] j_temp = j_temp['graph'] j_temp = j_temp['data'] def temperature(j_temp): def temp_df(j_temp): Time, Temp = for_loop_by_time(j_temp) Track_Temp = {"Time": Time, "Temperature": Temp} Track_Temp_Data = pd.DataFrame(data=Track_Temp) Track_Temp_Data = Track_Temp_Data.set_index('Time') return Track_Temp_Data def track_temp(j_temp): j_temp = j_temp['pTrack'] Track_Temp_Data = temp_df(j_temp) path_db = generate_csv_name('Track_Temp') Track_Temp_Data.to_csv(path_db) def air_temp(j_temp): j_temp = j_temp['pAir'] Track_Temp_Data = temp_df(j_temp) path_db = generate_csv_name('Air_Temp') Track_Temp_Data.to_csv(path_db) track_temp(j_temp) air_temp(j_temp) def is_raining(j_temp): j_temp = j_temp['pRaining'] Time, Raining = for_loop_by_time(j_temp) Track_Temp = {"Time": Time, "Raining": Raining} Track_Temp_Data = pd.DataFrame(data=Track_Temp) Track_Temp_Data = Track_Temp_Data.set_index('Time') path_db = generate_csv_name('Raining') Track_Temp_Data.to_csv(path_db) def wind_speed(j_temp): j_temp = j_temp['pWind Speed'] Time, Wind_Speed = for_loop_by_time(j_temp) Track_Temp = {"Time": Time, "Wind Speed": Wind_Speed} Track_Temp_Data = pd.DataFrame(data=Track_Temp) Track_Temp_Data = Track_Temp_Data.set_index('Time') path_db = generate_csv_name('Wind_Speed') Track_Temp_Data.to_csv(path_db) def humidity(j_temp): j_temp = j_temp['pHumidity'] Time, Humidity = for_loop_by_time(j_temp) Track_Temp = {"Time": Time, "Humidity": Humidity} Track_Temp_Data = pd.DataFrame(data=Track_Temp) Track_Temp_Data = Track_Temp_Data.set_index('Time') path_db = generate_csv_name('Humidity') Track_Temp_Data.to_csv(path_db) def air_pressure(j_temp): j_temp = j_temp['pPressure'] Time, Air_Pressure = for_loop_by_time(j_temp) Track_Temp = {"Time": Time, "Air Pressure": Air_Pressure} Track_Temp_Data = pd.DataFrame(data=Track_Temp) Track_Temp_Data = Track_Temp_Data.set_index('Time') path_db = generate_csv_name('Air_Pressure') Track_Temp_Data.to_csv(path_db) def wind_direction(j_temp): j_temp = j_temp['pWind Dir'] Time, Wind_Direction = for_loop_by_time(j_temp) Track_Temp = {"Time": Time, "Wind Direction": Wind_Direction} Track_Temp_Data = pd.DataFrame(data=Track_Temp) Track_Temp_Data = Track_Temp_Data.set_index('Time') path_db = generate_csv_name('Wind_Direction') Track_Temp_Data.to_csv(path_db) temperature(j_temp) is_raining(j_temp) wind_speed(j_temp) humidity(j_temp) air_pressure(j_temp) wind_direction(j_temp) def current_drivers(json__f1_tv): j_temp = json__f1_tv['init'] j_temp = j_temp['data'] j_temp = j_temp['Drivers'] Driver_Name = [] Driver_Initials = [] Driver_Team = [] Driver_Num = [] Team_Color_Picker = [] for Driver in j_temp: Driver_Name.append(Driver['FirstName'] + ' ' + Driver['Name']) Driver_Initials.append(Driver['Initials']) Driver_Team.append(Driver['Team']) Driver_Num.append(Driver['Num']) Team_Color_Picker.append(Driver['Color']) Current_Drivers = {"Number": Driver_Num, "Driver Name": Driver_Name, "Driver Initials": Driver_Initials, "Driver Team": Driver_Team, "Color": Team_Color_Picker} Current_Drivers_Data = pd.DataFrame(data=Current_Drivers) Current_Drivers_Data = Current_Drivers_Data.set_index('Number') path_db = generate_csv_name('Drivers') Current_Drivers_Data.to_csv(path_db) return Driver_Initials def count_laps(json__f1_tv): j_temp = json__f1_tv['free'] j_temp = j_temp['data'] Lap = [] i = 1 while i <= j_temp['L']: Lap.append(i) i = i + 1 return Lap def track_status(json__f1_tv, Laps): j_temp = json__f1_tv['Scores'] j_temp = j_temp['graph'] j_temp = j_temp['TrackStatus'] Track_Status = [] i = 0 for lap in j_temp: if i == 1: if lap == '': lap = None Track_Status.append(lap) i = i - 1 else: i = i + 1 Track_Status_Dict = {"Lap": Laps, "Status": Track_Status[1:Laps.__len__()+1]} Track_Status_Data = pd.DataFrame(data=Track_Status_Dict) Track_Status_Data = Track_Status_Data.set_index('Lap') path_db = generate_csv_name('Track_Status') Track_Status_Data.to_csv(path_db) def drivers_performance_points(json__f1_tv, Driver_Initials, Laps): j_temp = json__f1_tv['Scores'] j_temp = j_temp['graph'] j_temp = j_temp['Performance'] Driver_Performance = {} Driver_Performance['Lap'] = Laps for Driver in Driver_Initials: i = 0 Performance_Gap = [] for Performance in j_temp['p'+Driver]: if i == 0: i = i + 1 else: Performance_Gap.append(Performance) i = i - 1 while Performance_Gap.__len__() < Laps.__len__(): Performance_Gap.append(None) Driver_Performance[Driver] = Performance_Gap Driver_Performance_Data = pd.DataFrame(data=Driver_Performance) Driver_Performance_Data = Driver_Performance_Data.set_index('Lap') path_db = generate_csv_name('Drivers_Performance') Driver_Performance_Data.to_csv(path_db) def race_result(json__f1_tv, Driver_Initials): j_temp = json__f1_tv['opt'] j_temp = j_temp['data'] j_temp = j_temp['DR'] Race_Result = {} i = 0 for item in j_temp: for position in item['OC']: Race_Result[Driver_Initials[i]] = position i = i + 1 return Race_Result def best__(json__f1_tv, Driver_Initials): j_temp = json__f1_tv['best'] j_temp = j_temp['data'] j_temp = j_temp['DR'] Lap_Times = [] Lap = [] Rank = [] Sector_1 = [] Position_Sector_1 = [] Sector_2 = [] Position_Sector_2 = [] Sector_3 = [] Position_Sector_3 = [] Highest_Speed_Sector_1 = [] Position_Speed_Sector_1 = [] Highest_Speed_Sector_2 = [] Position_Speed_Sector_2 = [] Highest_Speed_Sector_3 = [] Position_Speed_Sector_3 = [] SpeedTrap = [] Position_SpeedTrap = [] for item in j_temp: i = 0 for content in item['B']: if i == 1: Lap_Times.append(content) elif i == 2: Lap.append(content) elif i == 3: Rank.append(content) elif i == 4: Sector_1.append(content) elif i == 6: Position_Sector_1.append(content) elif i == 7: Sector_2.append(content) elif i == 9: Position_Sector_2.append(content) elif i == 10: Sector_3.append(content) elif i == 12: Position_Sector_3.append(content) elif i == 13: Highest_Speed_Sector_1.append(content) elif i == 15: Position_Speed_Sector_1.append(content) elif i == 16: Highest_Speed_Sector_2.append(content) elif i == 18: Position_Speed_Sector_2.append(content) elif i == 19: Highest_Speed_Sector_3.append(content) elif i == 21: Position_Speed_Sector_3.append(content) i = i + 1 DataFrame = {'Ranking': Rank, 'Driver': Driver_Initials, 'Corresponding Lap': Lap, 'Lap Time': Lap_Times} DataFrame =
pd.DataFrame(data=DataFrame)
pandas.DataFrame
# General Packages from math import atan2, degrees from datetime import datetime from pathlib import Path import time import pprint import numpy as np import pandas as pd import pickle # Plotting import matplotlib.pyplot as plt import matplotlib.ticker as mtick from matplotlib.dates import date2num import seaborn as sns # Scaling from sklearn.preprocessing import StandardScaler settings = { # # audit settings 'data_name': 'credit', 'method_name': 'logreg', 'normalize_data': True, 'force_rational_actions': False, # # script flags 'audit_recourse': True, 'plot_audits': True, 'print_flag': True, 'save_flag': True, 'randomseed': 2338, # # placeholders 'method_suffixes': [''], 'audit_suffixes': [''], } # Paths repo_dir = Path(__file__).absolute().parent.parent paper_dir = repo_dir / 'paper/' # directory containing paper related info data_dir = paper_dir / 'data/' # directory containing data files results_dir = paper_dir / 'results/' # directory containing results # create directories that don't exist for d in [data_dir, results_dir]: d.mkdir(exist_ok = True) # Formatting Options np.set_printoptions(precision = 4, suppress = False)
pd.set_option('display.max_columns', 30)
pandas.set_option
import os from collections import Counter from os import listdir from os.path import isfile, join from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np from matplotlib.pyplot import figure from matplotlib import style style.use('ggplot') import scipy from matplotlib.ticker import MaxNLocator from mpl_toolkits.mplot3d import Axes3D from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm, ticker import numpy as np from sys import argv import Orange import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import colors as mcolors, cm from matplotlib.collections import PolyCollection from classifiers import classifiers_list from datasetsDelaunay import dataset_list_bi, dataset_list_mult from folders import output_dir, dir_pca_biclasse, metricas_biclasse, dir_pca_multiclasse, metricas_multiclasse from parameters import order, alphas order_dict = {'area': 1, 'volume': 2, 'area_volume_ratio': 3, 'edge_ratio': 4, 'radius_ratio': 5, 'aspect_ratio': 6, 'max_solid_angle': 7, 'min_solid_angle': 8, 'solid_angle': 9} class Statistics: def __init__(self): pass def compute_CD_customizado(self, avranks, n, alpha="0.05", test="nemenyi"): """ Returns critical difference for Nemenyi or Bonferroni-Dunn test according to given alpha (either alpha="0.05" or alpha="0.1") for average ranks and number of tested datasets N. Test can be either "nemenyi" for for Nemenyi two tailed test or "bonferroni-dunn" for Bonferroni-Dunn test. """ k = len(avranks) d = {("nemenyi", "0.05"): [1.960, 2.344, 2.569, 2.728, 2.850, 2.948, 3.031, 3.102, 3.164, 3.219, 3.268, 3.313, 3.354, 3.391, 3.426, 3.458, 3.489, 3.517, 3.544, 3.569, 3.593, 3.616, 3.637, 3.658, 3.678, 3.696, 3.714, 3.732, 3.749, 3.765, 3.780, 3.795, 3.810, 3.824, 3.837, 3.850, 3.863, 3.876, 3.888, 3.899, 3.911, 3.922, 3.933, 3.943, 3.954, 3.964, 3.973, 3.983, 3.992], ("nemenyi", "0.1"): [0, 0, 1.644854, 2.052293, 2.291341, 2.459516, 2.588521, 2.692732, 2.779884, 2.854606, 2.919889, 2.977768, 3.029694, 3.076733, 3.119693, 3.159199, 3.195743, 3.229723, 3.261461, 3.291224, 3.319233], ("bonferroni-dunn", "0.05"): [0, 0, 1.960, 2.241, 2.394, 2.498, 2.576, 2.638, 2.690, 2.724, 2.773], ("bonferroni-dunn", "0.1"): [0, 0, 1.645, 1.960, 2.128, 2.241, 2.326, 2.394, 2.450, 2.498, 2.539]} q = d[(test, alpha)] cd = q[k] * (k * (k + 1) / (6.0 * n)) ** 0.5 return cd def calcula_media_folds_biclasse(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_biclasse_' + mode + '.csv', index=False) def calcula_media_folds_multiclass(self, df): t = pd.Series(data=np.arange(0, df.shape[0], 1)) dfr = pd.DataFrame( columns=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM', 'ORDER', 'ALPHA', 'PRE', 'REC', 'SPE', 'F1', 'GEO', 'IBA', 'AUC'], index=np.arange(0, int(t.shape[0] / 5))) df_temp = df.groupby(by=['MODE', 'DATASET', 'PREPROC', 'ALGORITHM']) idx = dfr.index.values i = idx[0] for name, group in df_temp: group = group.reset_index() dfr.at[i, 'MODE'] = group.loc[0, 'MODE'] mode = group.loc[0, 'MODE'] dfr.at[i, 'DATASET'] = group.loc[0, 'DATASET'] dfr.at[i, 'PREPROC'] = group.loc[0, 'PREPROC'] dfr.at[i, 'ALGORITHM'] = group.loc[0, 'ALGORITHM'] dfr.at[i, 'ORDER'] = group.loc[0, 'ORDER'] dfr.at[i, 'ALPHA'] = group.loc[0, 'ALPHA'] dfr.at[i, 'PRE'] = group['PRE'].mean() dfr.at[i, 'REC'] = group['REC'].mean() dfr.at[i, 'SPE'] = group['SPE'].mean() dfr.at[i, 'F1'] = group['F1'].mean() dfr.at[i, 'GEO'] = group['GEO'].mean() dfr.at[i, 'IBA'] = group['IBA'].mean() dfr.at[i, 'AUC'] = group['AUC'].mean() i = i + 1 print(i) dfr.to_csv(output_dir + 'resultado_media_multiclass_' + mode + '.csv', index=False) def separa_delaunay_biclass(self, filename): df = pd.read_csv(filename) list_base = [] for p in np.arange(0, len(preproc_type)): list_base.append(df[(df['PREPROC'] == preproc_type[p])]) df_base = list_base.pop(0) for i in np.arange(0, len(list_base)): df_base = pd.concat([df_base, list_base[i]], ignore_index=True) for o in order: for a in alphas: dfr = df[(df['ORDER'] == o)] dfr1 = dfr[(dfr['ALPHA'] == str(a))] df_file = pd.concat([df_base, dfr1], ignore_index=True) df_file.to_csv('./../output_dir/result_biclass' + '_' + o + '_' + str(a) + '.csv', index=False) def read_dir_files(self, dir_name): f = [f for f in listdir(dir_name) if isfile(join(dir_name, f))] return f def find_best_rank(self, results_dir, tipo): results = self.read_dir_files(results_dir) df = pd.DataFrame(columns=[['ARQUIVO', 'WINER']]) i = 0 for f in results: df_temp = pd.read_csv(results_dir + f) df.at[i, 'ARQUIVO'] = f df.at[i, 'WINER'] = df_temp.iloc[0, 0] i += 1 df.to_csv(output_dir + tipo) def find_best_delaunay(self, results_dir, tipo): df = pd.read_csv(results_dir + tipo) i = 0 j = 0 df_best = pd.DataFrame(columns=['ARQUIVO', 'WINER']) win = list(df['WINER']) for w in win: if w == 'DELAUNAY': df_best.at[i, 'ARQUIVO'] = df.iloc[j, 1] df_best.at[i, 'WINER'] = df.iloc[j, 2] i += 1 j += 1 df_best.to_csv(output_dir + 'only_best_delaunay_pca_biclass_media_rank.csv') def rank_by_algorithm(self, df, tipo, wd, reducao, order, alpha): ''' Calcula rank :param df: :param tipo: :param wd: :param delaunay_type: :return: ''' df_tabela = pd.DataFrame( columns=['DATASET', 'ALGORITHM', 'ORIGINAL', 'RANK_ORIGINAL', 'SMOTE', 'RANK_SMOTE', 'SMOTE_SVM', 'RANK_SMOTE_SVM', 'BORDERLINE1', 'RANK_BORDERLINE1', 'BORDERLINE2', 'RANK_BORDERLINE2', 'GEOMETRIC_SMOTE', 'RANK_GEOMETRIC_SMOTE', 'DELAUNAY', 'RANK_DELAUNAY', 'DELAUNAY_TYPE', 'ALPHA', 'unit']) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df.to_csv(dir_pca_biclasse + reducao + '_' + tipo + '_' + order + '_' + str(alpha) + '.csv') j = 0 for d in dataset_list_bi: for m in metricas_biclasse: aux = group[group['DATASET'] == d] aux = aux.reset_index() df_tabela.at[j, 'DATASET'] = d df_tabela.at[j, 'ALGORITHM'] = name indice = aux.PREPROC[aux.PREPROC == '_train'].index.tolist()[0] df_tabela.at[j, 'ORIGINAL'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_SMOTE'].index.tolist()[0] df_tabela.at[j, 'SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_smoteSVM'].index.tolist()[0] df_tabela.at[j, 'SMOTE_SVM'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline1'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE1'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Borderline2'].index.tolist()[0] df_tabela.at[j, 'BORDERLINE2'] = aux.at[indice, m] indice = aux.PREPROC[aux.PREPROC == '_Geometric_SMOTE'].index.tolist()[0] df_tabela.at[j, 'GEOMETRIC_SMOTE'] = aux.at[indice, m] indice = aux.PREPROC[aux.ORDER == order].index.tolist()[0] df_tabela.at[j, 'DELAUNAY'] = aux.at[indice, m] df_tabela.at[j, 'DELAUNAY_TYPE'] = order df_tabela.at[j, 'ALPHA'] = alpha df_tabela.at[j, 'unit'] = m j += 1 df_pre = df_tabela[df_tabela['unit'] == 'PRE'] df_rec = df_tabela[df_tabela['unit'] == 'REC'] df_spe = df_tabela[df_tabela['unit'] == 'SPE'] df_f1 = df_tabela[df_tabela['unit'] == 'F1'] df_geo = df_tabela[df_tabela['unit'] == 'GEO'] df_iba = df_tabela[df_tabela['unit'] == 'IBA'] df_auc = df_tabela[df_tabela['unit'] == 'AUC'] pre = df_pre[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] rec = df_rec[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] spe = df_spe[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] f1 = df_f1[['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] geo = df_geo[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] iba = df_iba[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] auc = df_auc[ ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', 'DELAUNAY']] pre = pre.reset_index() pre.drop('index', axis=1, inplace=True) rec = rec.reset_index() rec.drop('index', axis=1, inplace=True) spe = spe.reset_index() spe.drop('index', axis=1, inplace=True) f1 = f1.reset_index() f1.drop('index', axis=1, inplace=True) geo = geo.reset_index() geo.drop('index', axis=1, inplace=True) iba = iba.reset_index() iba.drop('index', axis=1, inplace=True) auc = auc.reset_index() auc.drop('index', axis=1, inplace=True) # calcula rank linha a linha pre_rank = pre.rank(axis=1, ascending=False) rec_rank = rec.rank(axis=1, ascending=False) spe_rank = spe.rank(axis=1, ascending=False) f1_rank = f1.rank(axis=1, ascending=False) geo_rank = geo.rank(axis=1, ascending=False) iba_rank = iba.rank(axis=1, ascending=False) auc_rank = auc.rank(axis=1, ascending=False) df_pre = df_pre.reset_index() df_pre.drop('index', axis=1, inplace=True) df_pre['RANK_ORIGINAL'] = pre_rank['ORIGINAL'] df_pre['RANK_SMOTE'] = pre_rank['SMOTE'] df_pre['RANK_SMOTE_SVM'] = pre_rank['SMOTE_SVM'] df_pre['RANK_BORDERLINE1'] = pre_rank['BORDERLINE1'] df_pre['RANK_BORDERLINE2'] = pre_rank['BORDERLINE2'] df_pre['RANK_GEOMETRIC_SMOTE'] = pre_rank['GEOMETRIC_SMOTE'] df_pre['RANK_DELAUNAY'] = pre_rank['DELAUNAY'] df_rec = df_rec.reset_index() df_rec.drop('index', axis=1, inplace=True) df_rec['RANK_ORIGINAL'] = rec_rank['ORIGINAL'] df_rec['RANK_SMOTE'] = rec_rank['SMOTE'] df_rec['RANK_SMOTE_SVM'] = rec_rank['SMOTE_SVM'] df_rec['RANK_BORDERLINE1'] = rec_rank['BORDERLINE1'] df_rec['RANK_BORDERLINE2'] = rec_rank['BORDERLINE2'] df_rec['RANK_GEOMETRIC_SMOTE'] = rec_rank['GEOMETRIC_SMOTE'] df_rec['RANK_DELAUNAY'] = rec_rank['DELAUNAY'] df_spe = df_spe.reset_index() df_spe.drop('index', axis=1, inplace=True) df_spe['RANK_ORIGINAL'] = spe_rank['ORIGINAL'] df_spe['RANK_SMOTE'] = spe_rank['SMOTE'] df_spe['RANK_SMOTE_SVM'] = spe_rank['SMOTE_SVM'] df_spe['RANK_BORDERLINE1'] = spe_rank['BORDERLINE1'] df_spe['RANK_BORDERLINE2'] = spe_rank['BORDERLINE2'] df_spe['RANK_GEOMETRIC_SMOTE'] = spe_rank['GEOMETRIC_SMOTE'] df_spe['RANK_DELAUNAY'] = spe_rank['DELAUNAY'] df_f1 = df_f1.reset_index() df_f1.drop('index', axis=1, inplace=True) df_f1['RANK_ORIGINAL'] = f1_rank['ORIGINAL'] df_f1['RANK_SMOTE'] = f1_rank['SMOTE'] df_f1['RANK_SMOTE_SVM'] = f1_rank['SMOTE_SVM'] df_f1['RANK_BORDERLINE1'] = f1_rank['BORDERLINE1'] df_f1['RANK_BORDERLINE2'] = f1_rank['BORDERLINE2'] df_f1['RANK_GEOMETRIC_SMOTE'] = f1_rank['GEOMETRIC_SMOTE'] df_f1['RANK_DELAUNAY'] = f1_rank['DELAUNAY'] df_geo = df_geo.reset_index() df_geo.drop('index', axis=1, inplace=True) df_geo['RANK_ORIGINAL'] = geo_rank['ORIGINAL'] df_geo['RANK_SMOTE'] = geo_rank['SMOTE'] df_geo['RANK_SMOTE_SVM'] = geo_rank['SMOTE_SVM'] df_geo['RANK_BORDERLINE1'] = geo_rank['BORDERLINE1'] df_geo['RANK_BORDERLINE2'] = geo_rank['BORDERLINE2'] df_geo['RANK_GEOMETRIC_SMOTE'] = geo_rank['GEOMETRIC_SMOTE'] df_geo['RANK_DELAUNAY'] = geo_rank['DELAUNAY'] df_iba = df_iba.reset_index() df_iba.drop('index', axis=1, inplace=True) df_iba['RANK_ORIGINAL'] = iba_rank['ORIGINAL'] df_iba['RANK_SMOTE'] = iba_rank['SMOTE'] df_iba['RANK_SMOTE_SVM'] = iba_rank['SMOTE_SVM'] df_iba['RANK_BORDERLINE1'] = iba_rank['BORDERLINE1'] df_iba['RANK_BORDERLINE2'] = iba_rank['BORDERLINE2'] df_iba['RANK_GEOMETRIC_SMOTE'] = iba_rank['GEOMETRIC_SMOTE'] df_iba['RANK_DELAUNAY'] = iba_rank['DELAUNAY'] df_auc = df_auc.reset_index() df_auc.drop('index', axis=1, inplace=True) df_auc['RANK_ORIGINAL'] = auc_rank['ORIGINAL'] df_auc['RANK_SMOTE'] = auc_rank['SMOTE'] df_auc['RANK_SMOTE_SVM'] = auc_rank['SMOTE_SVM'] df_auc['RANK_BORDERLINE1'] = auc_rank['BORDERLINE1'] df_auc['RANK_BORDERLINE2'] = auc_rank['BORDERLINE2'] df_auc['RANK_GEOMETRIC_SMOTE'] = auc_rank['GEOMETRIC_SMOTE'] df_auc['RANK_DELAUNAY'] = auc_rank['DELAUNAY'] # avarege rank media_pre_rank = pre_rank.mean(axis=0) media_rec_rank = rec_rank.mean(axis=0) media_spe_rank = spe_rank.mean(axis=0) media_f1_rank = f1_rank.mean(axis=0) media_geo_rank = geo_rank.mean(axis=0) media_iba_rank = iba_rank.mean(axis=0) media_auc_rank = auc_rank.mean(axis=0) media_pre_rank_file = media_pre_rank.reset_index() media_pre_rank_file = media_pre_rank_file.sort_values(by=0) media_rec_rank_file = media_rec_rank.reset_index() media_rec_rank_file = media_rec_rank_file.sort_values(by=0) media_spe_rank_file = media_spe_rank.reset_index() media_spe_rank_file = media_spe_rank_file.sort_values(by=0) media_f1_rank_file = media_f1_rank.reset_index() media_f1_rank_file = media_f1_rank_file.sort_values(by=0) media_geo_rank_file = media_geo_rank.reset_index() media_geo_rank_file = media_geo_rank_file.sort_values(by=0) media_iba_rank_file = media_iba_rank.reset_index() media_iba_rank_file = media_iba_rank_file.sort_values(by=0) media_auc_rank_file = media_auc_rank.reset_index() media_auc_rank_file = media_auc_rank_file.sort_values(by=0) # Grava arquivos importantes df_pre.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) df_rec.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) df_spe.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) df_f1.to_csv(wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) df_geo.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) df_iba.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) df_auc.to_csv( wd + 'total_rank/' + reducao + '_total_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) media_pre_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv', index=False) media_rec_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv', index=False) media_spe_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv', index=False) media_f1_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv', index=False) media_geo_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv', index=False) media_iba_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv', index=False) media_auc_rank_file.to_csv( wd + 'media_rank/' + reducao + '_media_rank_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv', index=False) delaunay_type = order + '_' + str(alpha) # grafico CD identificadores = ['ORIGINAL', 'SMOTE', 'SMOTE_SVM', 'BORDERLINE1', 'BORDERLINE2', 'GEOMETRIC_SMOTE', delaunay_type] avranks = list(media_pre_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_pre.pdf') plt.close() avranks = list(media_rec_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_rec.pdf') plt.close() avranks = list(media_spe_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_spe.pdf') plt.close() avranks = list(media_f1_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig(wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_f1.pdf') plt.close() avranks = list(media_geo_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_geo.pdf') plt.close() avranks = list(media_iba_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_iba.pdf') plt.close() '''avranks = list(media_auc_rank) cd = Orange.evaluation.compute_CD(avranks, len(dataset_list_bi)) Orange.evaluation.graph_ranks(avranks, identificadores, cd=cd, width=9, textspace=3) plt.savefig( wd + 'figurasCD/' + 'cd_' + reducao + '_' + tipo + '_' + delaunay_type + '_' + name + '_auc.pdf') plt.close()''' print('Delaunay Type= ', delaunay_type) print('Algorithm= ', name) def rank_total_by_algorithm(self, tipo, wd, reducao, order, alpha): delaunay_name = 'RANK_DTO_' + str(order) + '_' + str(alpha) cols = ['ALGORITHM', 'RANK_ORIGINAL', 'RANK_SMOTE', 'RANK_SMOTE_SVM', 'RANK_BORDERLINE1', 'RANK_BORDERLINE2', 'RANK_GEOMETRIC_SMOTE', 'RANK_DELAUNAY'] for name in classifiers_list: print(os.path.abspath(os.getcwd())) # Grava arquivos importantes path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_pre.csv' df_pre = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_rec.csv' df_rec = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_spe.csv' df_spe = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_f1.csv' df_f1 = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_geo.csv' df_geo = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_iba.csv' df_iba = pd.read_csv(path_name) path_name = wd + reducao + '_total_rank_' + tipo + '_' + order + '_' + str(alpha) + '_' + name + '_auc.csv' df_auc = pd.read_csv(path_name) # PRE df_pre_col = df_pre[cols] df_pre_col.loc[:, delaunay_name] = df_pre_col['RANK_DELAUNAY'].values df_pre_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_pre = df_pre_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_pre.csv' ranking_pre['ALGORITHM'] = name ranking_pre.to_csv(path_name, index=False) # REC df_rec_col = df_rec[cols] df_rec_col.loc[:, delaunay_name] = df_rec_col['RANK_DELAUNAY'].values df_rec_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_rec = df_rec_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_rec.csv' ranking_rec['ALGORITHM'] = name ranking_rec.to_csv(path_name, index=False) # SPE df_spe_col = df_spe[cols] df_spe_col.loc[:, delaunay_name] = df_spe_col['RANK_DELAUNAY'].values df_spe_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_spe = df_spe_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_spe.csv' ranking_spe['ALGORITHM'] = name ranking_spe.to_csv(path_name, index=False) # F1 df_f1_col = df_f1[cols] df_f1_col.loc[:, delaunay_name] = df_f1_col['RANK_DELAUNAY'].values df_f1_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_f1 = df_f1_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_f1.csv' ranking_f1['ALGORITHM'] = name ranking_f1.to_csv(path_name, index=False) # GEO df_geo_col = df_geo[cols] df_geo_col.loc[:, delaunay_name] = df_geo_col['RANK_DELAUNAY'].values df_geo_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_geo = df_geo_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_geo.csv' ranking_geo['ALGORITHM'] = name ranking_geo.to_csv(path_name, index=False) # IBA df_iba_col = df_iba[cols] df_iba_col.loc[:, delaunay_name] = df_iba_col['RANK_DELAUNAY'].values df_iba_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_iba = df_iba_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_iba.csv' ranking_iba['ALGORITHM'] = name ranking_iba.to_csv(path_name, index=False) # AUC df_auc_col = df_auc[cols] df_auc_col.loc[:, delaunay_name] = df_auc_col['RANK_DELAUNAY'].values df_auc_col.drop(['RANK_DELAUNAY'], axis=1, inplace=True) ranking_auc = df_auc_col.groupby(['ALGORITHM']).mean() path_name = wd + reducao + '_rank_by_algorithm_' + tipo + '_' + order + '_' + str( alpha) + '_' + name + '_auc.csv' ranking_auc['ALGORITHM'] = name ranking_auc.to_csv(path_name, index=False) def rank_by_algorithm_dataset(self, filename): df = pd.read_csv(filename) df_temp = df.groupby(by=['ALGORITHM']) for name, group in df_temp: group = group.reset_index() group.drop('index', axis=1, inplace=True) df_temp1 = group.groupby(by=['DATASET']) for name1, group1 in df_temp1: group1 = group1.reset_index() group1.drop('index', axis=1, inplace=True) group1['rank_f1'] = group1['F1'].rank(ascending=False) group1['rank_geo'] = group1['GEO'].rank(ascending=False) group1['rank_iba'] = group1['IBA'].rank(ascending=False) group1['rank_auc'] = group1['AUC'].rank(ascending=False) group1.to_csv('./../output_dir/rank/rank_algorithm_dataset_' + name + '_' + name1 + '.csv', index=False) def rank_by_algorithm_dataset_only_dto(self, filename): df =
pd.read_csv(filename)
pandas.read_csv
# # Copyright (c) 2015 - 2022, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY LOG OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ GEOPM IO - Helper module for parsing/processing report and trace files. """ from __future__ import absolute_import from __future__ import division from builtins import str from collections import OrderedDict import os import json import re import pandas import numpy import glob import sys import subprocess import psutil import copy import yaml import io import hashlib from distutils.spawn import find_executable from natsort import natsorted from . import __version__ from . import update_report try: _, os.environ['COLUMNS'] = subprocess.check_output(['stty', 'size']).decode().split() except subprocess.CalledProcessError: os.environ['COLUMNS'] = "200" pandas.set_option('display.width', int(os.environ['COLUMNS'])) pandas.set_option('display.max_colwidth', 80) pandas.set_option('max_columns', 100) class AppOutput(object): """The container class for all trace related data. This class holds the relevant objects for parsing and indexing all data that is output from GEOPM. This object can be created with a a trace glob string that will be used to search dir_name for the relevant files. If files are found their data will be parsed into objects for easy data access. Additionally a Pandas DataFrame is constructed containing all of all of the trace data. These DataFrames are indexed based on the version of GEOPM found in the files, the profile name, agent name, and the number of times that particular configuration has been seen by the parser (i.e. experiment iteration). Attributes: trace_glob: The string pattern to use to search for trace files. dir_name: The directory path to use when searching for files. verbose: A bool to control whether verbose output is printed to stdout. """ def __init__(self, traces=None, dir_name='.', verbose=False, do_cache=True): self._traces = {} self._traces_df = pandas.DataFrame() self._all_paths = [] self._index_tracker = IndexTracker() self._node_names = None self._region_names = None if traces: if type(traces) is list: trace_paths = [os.path.join(dir_name, path) for path in traces] else: trace_glob = os.path.join(dir_name, traces) try: trace_paths = glob.glob(trace_glob) except TypeError: raise TypeError('<geopm> geopmpy.io: AppOutput: traces must be a list of paths or a glob pattern') trace_paths = natsorted(trace_paths) if len(trace_paths) == 0: raise RuntimeError('<geopm> geopmpy.io: No trace files found with pattern {}.'.format(trace_glob)) self._all_paths.extend(trace_paths) self._index_tracker.reset() if do_cache: # unique cache name based on trace files in this list paths_str = str(trace_paths) try: h5_id = hashlib.shake_256(paths_str.encode()).hexdigest(14) except AttributeError: h5_id = hash(paths_str) trace_h5_name = 'trace_{}.h5'.format(h5_id) self._all_paths.append(trace_h5_name) # check if cache is older than traces if os.path.exists(trace_h5_name): cache_mod_time = os.path.getmtime(trace_h5_name) regen_cache = False for trace_file in trace_paths: mod_time = os.path.getmtime(trace_file) if mod_time > cache_mod_time: regen_cache = True if regen_cache: os.remove(trace_h5_name) try: self._traces_df = pandas.read_hdf(trace_h5_name, 'trace') if verbose: sys.stdout.write('Loaded traces from {}.\n'.format(trace_h5_name)) except IOError as err: sys.stderr.write('Warning: <geopm> geopmpy.io: Trace HDF5 file not detected or older than traces. Data will be saved to {}.\n' .format(trace_h5_name)) self.parse_traces(trace_paths, verbose) # Cache traces dataframe try: if verbose: sys.stdout.write('Generating HDF5 files... ') self._traces_df.to_hdf(trace_h5_name, 'trace') except ImportError as error: sys.stderr.write('Warning: <geopm> geopmpy.io: Unable to write HDF5 file: {}\n'.format(str(error))) if verbose: sys.stdout.write('Done.\n') sys.stdout.flush() else: self.parse_traces(trace_paths, verbose) def parse_traces(self, trace_paths, verbose): traces_df_list = [] fileno = 1 filesize = 0 for tp in trace_paths: # Get size of all trace files filesize += os.stat(tp).st_size # Abort if traces are too large avail_mem = psutil.virtual_memory().available if filesize > avail_mem // 2: sys.stderr.write('Warning: <geopm> geopmpy.io: Total size of traces is greater than 50% of available memory. Parsing traces will be skipped.\n') return filesize = '{}MiB'.format(filesize // 1024 // 1024) for tp in trace_paths: if verbose: sys.stdout.write('\rParsing trace file {} of {} ({})... '.format(fileno, len(trace_paths), filesize)) sys.stdout.flush() fileno += 1 tt = Trace(tp) self.add_trace_df(tt, traces_df_list) # Handles multiple traces per node if verbose: sys.stdout.write('Done.\n') sys.stdout.flush() if verbose: sys.stdout.write('Creating combined traces DF... ') sys.stdout.flush() self._traces_df = pandas.concat(traces_df_list) self._traces_df = self._traces_df.sort_index(ascending=True) if verbose: sys.stdout.write('Done.\n') sys.stdout.flush() def remove_files(self): """Deletes all files currently tracked by this object.""" for ff in self._all_paths: try: os.remove(ff) except OSError: pass def add_trace_df(self, tt, traces_df_list): """Adds a trace DataFrame to the tracking list. The report tracking list is used to create the combined DataFrame once all reports are parsed. Args: tt: The Trace object used to extract the Trace DataFrame. This DataFrame will be indexed and added to the tracking list. """ tdf = tt.get_df() # TODO: this needs numeric cols optimization tdf = tdf.set_index(self._index_tracker.get_multiindex(tt)) traces_df_list.append(tdf) def get_trace_data(self, node_name=None): idx = pandas.IndexSlice df = self._traces_df if node_name is not None: df = df.loc[idx[:, :, :, :, node_name, :, :], ] return df def get_trace_df(self): """Getter for the combined DataFrame of all trace files parsed. This DataFrame contains all data parsed, and has a complex MultiIndex for accessing the unique data from each individual trace. For more information on this index, see the IndexTracker docstring. Returns: pandas.DataFrame: Contains all parsed data. """ return self._traces_df class IndexTracker(object): """Tracks and uniquely identifies experiment configurations for DataFrame indexing. This object's purpose is to examine parsed data for reports or traces and determine if a particular experiment configuration has already been tracked. A user may run the same configuration repeatedly in order to prove that results are repeatable and are not outliers. Since the same configuration is used many times, it must be tracked and counted to ensure that the unique data for each run can be extracted later. The parsed data is used to extract the following fields to build the tracking index tuple: (<GEOPM_VERSION>, <PROFILE_NAME>, <AGENT_NAME>, <NODE_NAME>) If the tuple not contained in the _run_outputs dict, it is inserted with a value of 1. The value is incremented if the tuple is currently in the _run_outputs dict. This value is used to uniquely identify a particular set of parsed data when the MultiIndex is created. """ def __init__(self): self._run_outputs = {} def _check_increment(self, run_output): """Extracts the index tuple from the parsed data and tracks it. Checks to see if the current run_output has been seen before. If so, the count is incremented. Otherwise it is stored as 1. Args: run_output: The Trace object to be tracked. """ index = (run_output.get_version(), run_output.get_start_time(), os.path.basename(run_output.get_profile_name()), run_output.get_agent(), run_output.get_node_name()) if index not in self._run_outputs: self._run_outputs[index] = 1 else: self._run_outputs[index] += 1 def _get_base_index(self, run_output): """Constructs the actual index tuple to be used to construct a uniquely-identifying MultiIndex for this data. Takes a run_output as input, and returns the unique tuple to identify this run_output in the DataFrame. Note that this method appends the current experiment iteration to the end of the returned tuple. E.g.: >>> self._index_tracker.get_base_index(rr) ('0.1.1+dev365gfcda929', 'geopm_test_integration', 170, 'static_policy', 'power_balancing', 'mr-fusion2', 1) Args: run_output: The Trace object to produce an index tuple for. Returns: Tuple: This will contain all of the index fields needed to uniquely identify this data (including the count of how many times this experiment has been seen. """ key = (run_output.get_version(), run_output.get_start_time(), os.path.basename(run_output.get_profile_name()), run_output.get_agent(), run_output.get_node_name()) return key + (self._run_outputs[key], ) def get_multiindex(self, run_output): """Returns a MultiIndex from this run_output. Used in DataFrame construction. This will add the current run_output to the list of tracked data, and return a unique muiltiindex tuple to identify this data in a DataFrame. For Trace objects, the integer index of the DataFrame is appended to the tuple. Args: run_output: The Trace object to produce an index tuple for. Returns: pandas.MultiIndex: The unique index to identify this data object. """ self._check_increment(run_output) itl = [] index_names = ['version', 'start_time', 'name', 'agent', 'node_name', 'iteration'] # Trace file index index_names.append('index') for ii in range(len(run_output.get_df())): # Append the integer index to the DataFrame index itl.append(self._get_base_index(run_output) + (ii, )) mi = pandas.MultiIndex.from_tuples(itl, names=index_names) return mi def reset(self): """Clears the internal tracking dictionary. Since only one type of data (reports OR traces) can be tracked at once, this is necessary to reset the object's state so a new type of data can be tracked. """ self._run_outputs = {} class Trace(object): """Creates a pandas DataFrame comprised of the trace file data. This object will parse both the header and the CSV data in a trace file. The header identifies the uniquely-identifying configuration for this file which is used for later indexing purposes. Even though __getattr__() and __getitem__() allow this object to effectively be treated like a DataFrame, you must use get_df() if you're building a list of DataFrames to pass to pandas.concat(). Using the raw object in a list and calling concat will cause an error. Attributes: trace_path: The path to the trace file to parse. """ def __init__(self, trace_path, use_agent=True): self._path = trace_path old_headers = {'time': 'TIME', 'epoch_count': 'EPOCH_COUNT', 'region_hash': 'REGION_HASH', 'region_hint': 'REGION_HINT', 'region_progress': 'REGION_PROGRESS', 'region_count': 'REGION_COUNT', 'region_runtime': 'REGION_RUNTIME', 'energy_package': 'ENERGY_PACKAGE', 'energy_dram': 'ENERGY_DRAM', 'power_package': 'POWER_PACKAGE', 'power_dram': 'POWER_DRAM', 'frequency': 'FREQUENCY', 'cycles_thread': 'CYCLES_THREAD', 'cycles_reference': 'CYCLES_REFERENCE', 'temperature_core': 'TEMPERATURE_CORE'} old_balancer_headers = {'policy_power_cap': 'POLICY_POWER_CAP', 'policy_step_count': 'POLICY_STEP_COUNT', 'policy_max_epoch_runtime': 'POLICY_MAX_EPOCH_RUNTIME', 'policy_power_slack': 'POLICY_POWER_SLACK', 'epoch_runtime': 'EPOCH_RUNTIME', 'power_limit': 'POWER_LIMIT', 'enforced_power_limit': 'ENFORCED_POWER_LIMIT'} old_headers.update(old_balancer_headers) old_governor_headers = {'power_budget': 'POWER_BUDGET'} old_headers.update(old_governor_headers) # Need to determine how many lines are in the header # explicitly. We cannot use '#' as a comment character since # it occurs in raw MSR signal names. skiprows = 0 with open(trace_path) as fid: for ll in fid: if ll.startswith('#'): skiprows += 1 else: break column_headers = pandas.read_csv(trace_path, sep='|', skiprows=skiprows, nrows=0, encoding='utf-8').columns.tolist() original_headers = copy.deepcopy(column_headers) column_headers = [old_headers.get(ii, ii) for ii in column_headers] if column_headers != original_headers: sys.stderr.write('Warning: <geopm> geopmpy.io: Old trace file format detected. Old column headers will be forced ' \ 'to UPPERCASE.\n') # region_hash and region_hint must be a string for pretty printing pandas DataFrames # You can force them to int64 by setting up a converter function then passing the hex string through it # with the read_csv call, but the number will be displayed as an integer from then on. You'd have to convert # it back to a hex string to compare it with the data in the reports. self._df = pandas.read_csv(trace_path, sep='|', skiprows=skiprows, header=0, names=column_headers, encoding='utf-8', dtype={'REGION_HASH': 'unicode', 'REGION_HINT': 'unicode'}) self._df.columns = list(map(str.strip, self._df[:0])) # Strip whitespace from column names self._df['REGION_HASH'] = self._df['REGION_HASH'].astype('unicode').map(str.strip) # Strip whitespace from region hashes self._df['REGION_HINT'] = self._df['REGION_HINT'].astype('unicode').map(str.strip) # Strip whitespace from region hints self._version = None self._start_time = None self._profile_name = None self._agent = None self._node_name = None self._use_agent = use_agent self._parse_header(trace_path) def __repr__(self): return self._df.__repr__() def __str__(self): return self.__repr__() def __getattr__(self, attr): """Pass through attribute requests to the underlying DataFrame. This allows for Trace objects to be treated like DataFrames for analysis. You can do things like: >>> tt = geopmpy.io.Trace('170-4-balanced-minife-trace-mr-fusion5') >>> tt.keys() Index([u'region_hash', u'region_hint', u'seconds', u'pkg_energy-0', u'dram_energy-0',... """ return getattr(self._df, attr) def __getitem__(self, key): """Pass through item requests to the underlying DataFrame. This allows standard DataFrame slicing operations to take place. @todo, update >>> tt[['region_hash', 'region_hint', 'time', 'energy_package', 'energy_dram']][:5] region_hash region_hint time energy_package-0 energy_dram-0 0 2305843009213693952 0.662906 106012.363770 25631.015519 1 2305843009213693952 0.667854 106012.873718 25631.045777 2 2305843009213693952 0.672882 106013.411621 25631.075807 3 2305843009213693952 0.677869 106013.998108 25631.105882 4 2305843009213693952 0.682849 106014.621704 25631.136186 """ return self._df.__getitem__(key) def _parse_header(self, trace_path): """Parses the configuration header out of the top of the trace file. Args: trace_path: The path to the trace file to parse. """ done = False out = [] with open(trace_path) as fid: while not done: ll = fid.readline() if ll.startswith('#'): out.append(ll[1:]) else: done = True try: yaml_fd = io.StringIO(u''.join(out)) dd = yaml.load(yaml_fd, Loader=yaml.SafeLoader) except yaml.parser.ParserError: out.insert(0, '{') out.append('}') json_str = ''.join(out) dd = json.loads(json_str) try: self._version = dd['geopm_version'] self._start_time = dd['start_time'] self._profile_name = dd['profile_name'] if self._use_agent: self._agent = dd['agent'] self._node_name = dd['node_name'] except KeyError: raise SyntaxError('<geopm> geopmpy.io: Trace file header could not be parsed!') def get_df(self): return self._df def get_version(self): return self._version def get_start_time(self): return self._start_time def get_profile_name(self): return self._profile_name def get_agent(self): return self._agent def get_node_name(self): return self._node_name @staticmethod def diff_df(trace_df, column_regex, epoch=True): """Diff the DataFrame. Since the counters in the trace files are monotonically increasing, a diff must be performed to extract the useful data. Args: trace_df: The MultiIndexed DataFrame created by the AppOutput class. column_regex: A string representing the regex search pattern for the column names to diff. epoch: A flag to set whether or not to focus solely on epoch regions. Returns: pandas.DataFrame: With the diffed columns specified by 'column_regex', and an 'elapsed_time' column. Todo: * Should I drop everything before the first epoch if 'epoch' is false? """ # drop_duplicates() is a workaround for #662. Duplicate data # rows are showing up in the trace for unmarked. tmp_df = trace_df.drop_duplicates() filtered_df = tmp_df.filter(regex=column_regex).copy() filtered_df['elapsed_time'] = tmp_df['time'] if epoch: filtered_df['epoch_count'] = tmp_df['epoch_count'] filtered_df = filtered_df.diff() # The following drops all 0's and the negative sample when traversing between 2 trace files. # If the epoch_count column is included, this will also drop rows occuring mid-epoch. filtered_df = filtered_df.loc[(filtered_df > 0).all(axis=1)] # Reset 'index' to be 0 to the length of the unique trace files traces_list = [] for (version, start_time, name, agent, node_name, iteration), df in \ filtered_df.groupby(level=['version', 'start_time', 'name', 'agent', 'node_name', 'iteration']): df = df.reset_index(level='index') df['index'] = pandas.Series(numpy.arange(len(df)), index=df.index) df = df.set_index('index', append=True) traces_list.append(df) return pandas.concat(traces_list) @staticmethod def get_median_df(trace_df, column_regex, config): """Extract the median experiment iteration. This logic calculates the sum of elapsed times for all of the experiment iterations for all nodes in that iteration. It then extracts the DataFrame for the iteration that is closest to the median. For input DataFrames with a single iteration, the single iteration is returned. Args: trace_df: The MultiIndexed DataFrame created by the AppOutput class. column_regex: A string representing the regex search pattern for the column names to diff. config: The TraceConfig object being used presently. Returns: pandas.DataFrame: Containing a single experiment iteration. """ diffed_trace_df = Trace.diff_df(trace_df, column_regex, config.epoch_only) idx = pandas.IndexSlice et_sums = diffed_trace_df.groupby(level=['iteration'])['elapsed_time'].sum() median_index = (et_sums - et_sums.median()).abs().sort_values().index[0] median_df = diffed_trace_df.loc[idx[:, :, :, :, :, median_index], ] if config.verbose: median_df_index = [] median_df_index.append(median_df.index.get_level_values('version').unique()[0]) median_df_index.append(median_df.index.get_level_values('start_time').unique()[0]) median_df_index.append(median_df.index.get_level_values('name').unique()[0]) median_df_index.append(median_df.index.get_level_values('agent').unique()[0]) median_df_index.append(median_df.index.get_level_values('iteration').unique()[0]) sys.stdout.write('Median DF index = ({})...\n'.format(' '.join(str(s) for s in median_df_index))) sys.stdout.flush() return median_df class BenchConf(object): """The application configuration parameters. Used to hold the config data for the integration test application. This application allows for varying combinations of regions (compute, IO, or network bound), complexity, desired execution count, and amount of imbalance between nodes during execution. Attributes: path: The output path for this configuration file. """ def __init__(self, path): self._path = path self._loop_count = 1 self._region = [] self._big_o = [] self._hostname = [] self._imbalance = [] def __repr__(self): template = """\ path : {path} regions : {regions} big-o : {big_o} loop count: {loops} hostnames : {hosts} imbalance : {imbalance} """ return template.format(path=self._path, regions=self._region, big_o=self._big_o, loops=self._loop_count, hosts=self._hostname, imbalance=self._imbalance) def __str__(self): return self.__repr__() def set_loop_count(self, loop_count): self._loop_count = loop_count def append_region(self, name, big_o): """Appends a region to the internal list. Args: name: The string representation of the region. big_o: The desired complexity of the region. This affects compute, IO, or network complexity depending on the type of region requested. """ self._region.append(name) self._big_o.append(big_o) def append_imbalance(self, hostname, imbalance): """Appends imbalance to the config for a particular node. Args: hostname: The name of the node. imbalance: The amount of imbalance to apply to the node. This is specified by a float in the range [0,1]. For example, specifying a value of 0.25 means that this node will spend 25% more time executing the work than a node would by default. Nodes not specified with imbalance configurations will perform normally. """ self._hostname.append(hostname) self._imbalance.append(imbalance) def get_path(self): return self._path def write(self): """Write the current config to a file.""" obj = {'loop-count': self._loop_count, 'region': self._region, 'big-o': self._big_o} if (self._imbalance and self._hostname): obj['imbalance'] = self._imbalance obj['hostname'] = self._hostname with open(self._path, 'w') as fid: json.dump(obj, fid) def get_exec_path(self): # Using libtool causes sporadic issues with the Intel # toolchain. result = 'geopmbench' path = find_executable(result) source_dir = os.path.dirname( os.path.dirname( os.path.dirname( os.path.realpath(__file__)))) source_bin = os.path.join(source_dir, '.libs', 'geopmbench') if not path: result = source_bin else: with open(path, 'rb') as fid: buffer = fid.read(4096) if b'Generated by libtool' in buffer: result = source_bin return result def get_exec_args(self): return [self._path] class RawReport(object): def __init__(self, path): update_report.update_report(path) # Fix issue with python yaml module where it is confused # about floating point numbers of the form "1e+10" where # the decimal point is missing. # See PR: https://github.com/yaml/pyyaml/pull/174 # for upstream fix to pyyaml loader = yaml.SafeLoader loader.add_implicit_resolver( u'tag:yaml.org,2002:float', re.compile(r'''^(?:[-+]?(?:[0-9][0-9_]*)\.[0-9_]*(?:[eE][-+]?[0-9]+)? |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) |\.[0-9_]+(?:[eE][-+]?[0-9]+)? |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\.[0-9_]* |[-+]?\.(?:inf|Inf|INF) |\.(?:nan|NaN|NAN))$''', re.X), list(u'-+0123456789.')) with open(path) as fid: self._raw_dict = yaml.load(fid, Loader=loader) def raw_report(self): return copy.deepcopy(self._raw_dict) def dump_json(self, path): jdata = json.dumps(self._raw_dict) with open(path, 'w') as fid: fid.write(jdata) def meta_data(self): result = dict() all_keys = ['GEOPM Version', 'Start Time', 'Profile', 'Agent', 'Policy'] for kk in all_keys: result[kk] = self._raw_dict[kk] return result def figure_of_merit(self): result = None try: result = copy.deepcopy(self._raw_dict['Figure of Merit']) except: pass return result def total_runtime(self): result = None try: result = copy.deepcopy(self._raw_dict['Total Runtime']) except: pass return result def host_names(self): return list(self._raw_dict['Hosts'].keys()) def region_names(self, host_name): return [rr['region'] for rr in self._raw_dict['Hosts'][host_name]['Regions']] def raw_region(self, host_name, region_name): result = None for rr in self._raw_dict['Hosts'][host_name]['Regions']: if rr['region'] == region_name: result = copy.deepcopy(rr) if not result: raise RuntimeError('region name: {} not found'.format(region_name)) return result def raw_unmarked(self, host_name): host_data = self._raw_dict["Hosts"][host_name] key = 'Unmarked Totals' return copy.deepcopy(host_data[key]) def raw_epoch(self, host_name): host_data = self._raw_dict["Hosts"][host_name] key = 'Epoch Totals' return copy.deepcopy(host_data[key]) def raw_totals(self, host_name): host_data = self._raw_dict["Hosts"][host_name] key = 'Application Totals' return copy.deepcopy(host_data[key]) def agent_host_additions(self, host_name): # other keys that are not region, epoch, or app # total i.e. from Agent::report_host() host_data = self._raw_dict[host_name] result = {} for key, val in host_data.items(): if key not in ['Epoch Totals', 'Application Totals'] and not key.startswith('Region '): result[key] = copy.deepcopy(val) return result def get_field(self, raw_data, key, units=''): matches = [(len(kk), kk) for kk in raw_data if key in kk and units in kk] if len(matches) == 0: raise KeyError('<geopm> geopmpy.io: Field not found: {}'.format(key)) match = sorted(matches)[0][1] return copy.deepcopy(raw_data[match]) class RawReportCollection(object): ''' Used to group together a collection of related RawReports. ''' def __init__(self, report_paths, dir_name='.', dir_cache=None, verbose=True, do_cache=True): self._reports_df = pandas.DataFrame() self._app_reports_df = pandas.DataFrame() self._epoch_reports_df = pandas.DataFrame() self._meta_data = None self.load_reports(report_paths, dir_name, dir_cache, verbose, do_cache) @staticmethod def make_h5_name(paths, outdir): paths_str = str([os.path.realpath(rr) for rr in paths]) h5_id = hashlib.sha256(paths_str.encode()).hexdigest()[:14] report_h5_name = os.path.join(outdir, 'cache_{}.h5'.format(h5_id)) return report_h5_name @staticmethod def fixup_metadata(metadata, df): # This block works around having mixed datatypes in the Profile column by # forcing the column into the NumPy S type. for key, val in metadata.items(): if type(val) is not dict: # Policy is a dict and should be excluded df[key] = df[key].astype('S') return df def load_reports(self, reports, dir_name, dir_cache, verbose, do_cache): ''' TODO: copied from AppOutput. refactor to shared function. - removed concept of tracked files to be deleted - added separate epoch dataframe ''' if type(reports) is list: report_paths = [os.path.join(dir_name, path) for path in reports] else: report_glob = os.path.join(dir_name, reports) try: report_paths = glob.glob(report_glob) except TypeError: raise TypeError('<geopm> geopmpy.io: AppOutput: reports must be a list of paths or a glob pattern') report_paths = natsorted(report_paths) if len(report_paths) == 0: raise RuntimeError('<geopm> geopmpy.io: No report files found with pattern {}.'.format(report_glob)) if do_cache: if dir_cache is None: dir_cache = dir_name self._report_h5_name = RawReportCollection.make_h5_name(report_paths, dir_cache) # check if cache is older than reports if os.path.exists(self._report_h5_name): cache_mod_time = os.path.getmtime(self._report_h5_name) regen_cache = False for report_file in report_paths: mod_time = os.path.getmtime(report_file) if mod_time > cache_mod_time: regen_cache = True if regen_cache: os.remove(self._report_h5_name) try: if verbose: sys.stdout.write('Attempting to read {}...\n'.format(self._report_h5_name)) # load dataframes from cache self._reports_df = pandas.read_hdf(self._report_h5_name, 'report') self._app_reports_df = pandas.read_hdf(self._report_h5_name, 'app_report') # temporary workaround since old format cache is missing unmarked_data try: self._unmarked_reports_df = pandas.read_hdf(self._report_h5_name, 'unmarked_report') except: self._unmarked_reports_df = self._reports_df.loc[self._reports_df['region'] == 'unmarked-region'] self._epoch_reports_df = pandas.read_hdf(self._report_h5_name, 'epoch_report') if verbose: sys.stdout.write('Loaded report data from {}.\n'.format(self._report_h5_name)) except IOError: sys.stderr.write('Warning: <geopm> geopmpy.io: Report HDF5 file not detected or older than reports. Data will be saved to {}.\n' .format(self._report_h5_name)) self.parse_reports(report_paths, verbose) # Cache report dataframe cache_created = False while not cache_created: try: if verbose: sys.stdout.write('Generating HDF5 files... ') self._reports_df.to_hdf(self._report_h5_name, 'report', format='table') self._app_reports_df.to_hdf(self._report_h5_name, 'app_report', format='table', append=True) self._unmarked_reports_df.to_hdf(self._report_h5_name, 'unmarked_report', format='table', append=True) self._epoch_reports_df.to_hdf(self._report_h5_name, 'epoch_report', format='table', append=True) cache_created = True except TypeError as error: fm = RawReportCollection.fixup_metadata if verbose: sys.stdout.write('Applying workaround for strings in HDF5 files... ') self._reports_df = fm(self._meta_data, self._reports_df) self._app_reports_df = fm(self._meta_data, self._app_reports_df) self._unmarked_reports_df = fm(self._meta_data, self._unmarked_reports_df) self._epoch_reports_df = fm(self._meta_data, self._epoch_reports_df) except ImportError as error: sys.stderr.write('Warning: <geopm> geopmpy.io: Unable to write HDF5 file: {}\n'.format(str(error))) break if verbose: sys.stdout.write('Done.\n') sys.stdout.flush() except: raise RuntimeError('<geopm> geopmpy.io: {} could not be read. Try removing and regenerating the cache file.'.format(self._report_h5_name)) else: self.parse_reports(report_paths, verbose) def parse_reports(self, report_paths, verbose): # Note: overlapping key names can break this # Insert repeated data for non-leaf levels # TODO: iteration - for now, distinguishable from start time def _init_tables(): self._columns_order = {} self._columns_set = {} for name in ['region', 'unmarked', 'epoch', 'app']: self._columns_order[name] = [] self._columns_set[name] = set() def _add_column(table_name, col_name): ''' Used to add columns to the data frame in the order they appear in the report. ''' if table_name not in ['region', 'unmarked', 'epoch', 'app', 'all']: raise RuntimeError('Invalid table name') if table_name == 'all': _add_column('region', col_name) _add_column('unmarked', col_name) _add_column('epoch', col_name) _add_column('app', col_name) elif col_name not in self._columns_set[table_name]: self._columns_set[table_name].add(col_name) self._columns_order[table_name].append(col_name) def _try_float(val): ''' Attempt to convert values we assume are floats ''' rv = val try: rv = float(val) except: pass return rv _init_tables() region_df_list = [] unmarked_df_list = [] epoch_df_list = [] app_df_list = [] for report in report_paths: if verbose: sys.stdout.write("Loading data from {}.\n".format(report)) rr = RawReport(report) self._meta_data = rr.meta_data() header = {} # report header for top_key, top_val in self._meta_data.items(): # allow one level of dict nesting in header for policy if type(top_val) is dict: for in_key, in_val in top_val.items(): _add_column('all', in_key) header[in_key] = _try_float(in_val) else: _add_column('all', top_key) header[top_key] = str(top_val) _add_column('all', 'host') figure_of_merit = rr.figure_of_merit() if figure_of_merit is not None: _add_column('app', 'FOM') total_runtime = rr.total_runtime() if total_runtime is not None: _add_column('app', 'total_runtime') host_names = rr.host_names() for host in host_names: # data about host to be repeated over all rows per_host_data = {'host': host} # TODO: other host data may also contain dict # TODO: leave out for now #other_host_data = rr.agent_host_additions(host) _add_column('region', 'region') region_names = rr.region_names(host) for region in region_names: row = copy.deepcopy(header) row.update(per_host_data) #row['region'] = row.pop('name') # TODO: region hash region_data = rr.raw_region(host, region) for key, val in region_data.items(): region_data[key] = _try_float(val) row.update(region_data) for cc in rr.raw_region(host, region).keys(): _add_column('region', cc) region_df_list.append(pandas.DataFrame(row, index=[0])) unmarked_row = copy.deepcopy(header) unmarked_row.update(per_host_data) unmarked_data = rr.raw_unmarked(host) for key, val in unmarked_data.items(): unmarked_data[key] = _try_float(val) for cc in unmarked_data.keys(): _add_column('unmarked', cc) unmarked_row.update(unmarked_data) unmarked_df_list.append(
pandas.DataFrame(unmarked_row, index=[0])
pandas.DataFrame
#!/usr/bin/env python """Script for generating figures of catalog statistics. Run `QCreport.py -h` for command line usage. """ import os import sys import errno import argparse from datetime import date, datetime from math import sqrt, radians, cos import markdown import numpy as np import pandas as pd import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.patches import Polygon from obspy.geodetics.base import gps2dist_azimuth # Python 2 try: from urllib2 import urlopen, HTTPError # Python 3 except ImportError: from urllib.request import urlopen, HTTPError import QCutils as qcu from decorators import retry, printstatus ############################################################################### ############################################################################### ############################################################################### @printstatus('Creating basic catalog summary') def basic_cat_sum(catalog, dirname, dup1, dup2, timewindow, distwindow): """Gather basic catalog summary statistics.""" lines = [] lines.append('Catalog name: %s\n\n' % dirname[:-9].upper()) lines.append('First date in catalog: %s\n' % catalog['time'].min()) lines.append('Last date in catalog: %s\n\n' % catalog['time'].max()) lines.append('Total number of events: %s\n\n' % len(catalog)) lines.append('Minimum latitude: %s\n' % catalog['latitude'].min()) lines.append('Maximum latitude: %s\n' % catalog['latitude'].max()) lines.append('Minimum longitude: %s\n' % catalog['longitude'].min()) lines.append('Maximum longitude: %s\n\n' % catalog['longitude'].max()) lines.append('Minimum depth: %s\n' % catalog['depth'].min()) lines.append('Maximum depth: %s\n' % catalog['depth'].max()) lines.append('Number of 0 km depth events: %s\n' % len(catalog[catalog['depth'] == 0])) lines.append('Number of NaN depth events: %s\n\n' % len(catalog[pd.isnull(catalog['depth'])])) lines.append('Minimum magnitude: %s\n' % catalog['mag'].min()) lines.append('Maximum magnitude: %s\n' % catalog['mag'].max()) lines.append('Number of 0 magnitude events: %s\n' % len(catalog[catalog['mag'] == 0])) lines.append('Number of NaN magnitude events: %s\n\n' % len(catalog[pd.isnull(catalog['mag'])])) lines.append('Number of possible duplicates (%ss and %skm threshold): %d\n' % (timewindow, distwindow, dup1)) lines.append('Number of possible duplicates (16s and 100km threshold): %d' % dup2) with open('%s_catalogsummary.txt' % dirname, 'w') as sumfile: for line in lines: sumfile.write(line) def largest_ten(catalog, dirname): """Make a list of the 10 events with largest magnitude.""" catalog = catalog.sort_values(by='mag', ascending=False) topten = catalog.head(n=10) topten = topten[['time', 'id', 'latitude', 'longitude', 'depth', 'mag']] with open('%s_largestten.txt' % dirname, 'w') as magfile: for event in topten.itertuples(): line = ' '.join([str(x) for x in event[1:]]) + '\n' magfile.write(line) @printstatus('Finding possible duplicates') def list_duplicates(catalog, dirname, timewindow=2, distwindow=15, magwindow=None, minmag=-5, locfilter=None): """Make a list of possible duplicate events.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')) for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') catalog = catalog[catalog['mag'] >= minmag] if locfilter: catalog = catalog[catalog['place'].str.contains(locfilter, na=False)] cat = catalog[['time', 'convtime', 'id', 'latitude', 'longitude', 'depth', 'mag']].copy() cat.loc[:, 'time'] = [qcu.to_epoch(x) for x in cat['time']] duplines1 = [('Possible duplicates using %ss time threshold and %skm ' 'distance threshold\n') % (timewindow, distwindow), '***********************\n' 'date time id latitude longitude depth magnitude ' '(distance) (Δ time) (Δ magnitude)\n'] duplines2 = [('\n\nPossible duplicates using 16s time threshold and 100km ' 'distance threshold\n'), '***********************\n' 'date time id latitude longitude depth magnitude ' '(distance) (Δ time) (Δ magnitude)\n'] sep = '-----------------------\n' thresh1dupes, thresh2dupes = 0, 0 for event in cat.itertuples(): trimdf = cat[cat['convtime'].between(event.convtime, event.convtime + pd.Timedelta(seconds=16), inclusive=False)] if len(trimdf) != 0: for tevent in trimdf.itertuples(): dist = gps2dist_azimuth(event.latitude, event.longitude, tevent.latitude, tevent.longitude)[0] / 1000. if dist < 100: dtime = (event.convtime - tevent.convtime).total_seconds() dmag = event.mag - tevent.mag diffs = map('{:.2f}'.format, [dist, dtime, dmag]) dupline1 = ' '.join([str(x) for x in event[1:]]) + ' ' +\ ' '.join(diffs) + '\n' dupline2 = ' '.join([str(x) for x in tevent[1:]]) + '\n' duplines2.extend((sep, dupline1, dupline2)) thresh2dupes += 1 if (dist < distwindow) and (abs(dtime) < timewindow): duplines1.extend((sep, dupline1, dupline2)) thresh1dupes += 1 continue with open('%s_duplicates.txt' % dirname, 'w') as dupfile: for dupline in duplines1: dupfile.write(dupline) for dupline in duplines2: dupfile.write(dupline) return thresh1dupes, thresh2dupes @printstatus('Mapping earthquake locations') def map_detecs(catalog, dirname, minmag=-5, mindep=-50, title=''): """Make scatter plot of detections with magnitudes (if applicable).""" catalog = catalog[(catalog['mag'] >= minmag) & (catalog['depth'] >= mindep)].copy() if len(catalog) == 0: print('\nCatalog contains no events deeper than %s.' % mindep) return # define map bounds lllat, lllon, urlat, urlon, _, _, _, clon = qcu.get_map_bounds(catalog) plt.figure(figsize=(12, 7)) mplmap = plt.axes(projection=ccrs.PlateCarree(central_longitude=clon)) mplmap.set_extent([lllon, urlon, lllat, urlat], ccrs.PlateCarree()) mplmap.coastlines('50m', facecolor='none') # if catalog has magnitude data if not catalog['mag'].isnull().all(): bins = [0, 5, 6, 7, 8, 15] binnames = ['< 5', '5-6', '6-7', '7-8', r'$\geq$8'] binsizes = [10, 25, 50, 100, 400] bincolors = ['g', 'b', 'y', 'r', 'r'] binmarks = ['o', 'o', 'o', 'o', '*'] catalog.loc[:, 'maggroup'] = pd.cut(catalog['mag'], bins, labels=binnames) for i, label in enumerate(binnames): mgmask = catalog['maggroup'] == label rcat = catalog[mgmask] lons, lats = list(rcat['longitude']), list(rcat['latitude']) if len(lons) > 0: mplmap.scatter(lons, lats, s=binsizes[i], marker=binmarks[i], c=bincolors[i], label=binnames[i], alpha=0.8, zorder=10, transform=ccrs.PlateCarree()) plt.legend(loc='lower left', title='Magnitude') # if catalog does not have magnitude data else: lons, lats = list(catalog['longitude']), list(catalog['latitude']) mplmap.scatter(lons, lats, s=15, marker='x', c='r', zorder=10) mplmap.add_feature(cfeature.NaturalEarthFeature('cultural', 'admin_1_states_provinces_lines', '50m', facecolor='none', edgecolor='k', zorder=9)) mplmap.add_feature(cfeature.BORDERS) plt.title(title, fontsize=20) plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) if mindep != -50: plt.savefig('%s_morethan%sdetecs.png' % (dirname, mindep), dpi=300) else: plt.savefig('%s_mapdetecs.png' % dirname, dpi=300) plt.close() @printstatus('Mapping earthquake density') def map_detec_nums(catalog, dirname, title='', numcolors=16, rmin=77, rmax=490, minmag=-5, pltevents=True): """Map detections and a grid of detection density. rmax=510 is white, rmin=0 is black. """ # generate bounds for map mask = catalog['mag'] >= minmag lllat, lllon, urlat, urlon, gridsize, hgridsize, _, clon = \ qcu.get_map_bounds(catalog[mask]) catalog = qcu.add_centers(catalog, gridsize) groupedlatlons, _, cmax = qcu.group_lat_lons(catalog, minmag=minmag) # print message if there are no detections with magnitudes above minmag if cmax == 0: print("No detections over magnitude %s" % minmag) # create color gradient from light red to dark red colors = qcu.range2rgb(rmin, rmax, numcolors) # put each center into its corresponding color group colorgroups = list(np.linspace(0, cmax, numcolors)) groupedlatlons.loc[:, 'group'] = np.digitize(groupedlatlons['count'], colorgroups) # create map plt.figure(figsize=(12, 7)) mplmap = plt.axes(projection=ccrs.PlateCarree(central_longitude=clon)) mplmap.set_extent([lllon, urlon, lllat, urlat], ccrs.PlateCarree()) mplmap.coastlines('50m') mplmap.add_feature(cfeature.BORDERS) mplmap.add_feature(cfeature.NaturalEarthFeature('cultural', 'admin_1_states_provinces_lines', '50m', facecolor='none', edgecolor='k', zorder=9)) plt.title(title, fontsize=20) plt.subplots_adjust(left=0.01, right=0.9, top=0.95, bottom=0.05) # create color map based on rmin and rmax cmap = LinearSegmentedColormap.from_list('CM', colors)._resample(numcolors) # make dummy plot for setting color bar colormesh = mplmap.pcolormesh(colors, colors, colors, cmap=cmap, alpha=1, vmin=0, vmax=cmax) # format color bar cbticks = [x for x in np.linspace(0, cmax, numcolors+1)] cbar = plt.colorbar(colormesh, ticks=cbticks) cbar.ax.set_yticklabels([('%.0f' % x) for x in cbticks]) cbar.set_label('# of detections', rotation=270, labelpad=15) # plot rectangles with color corresponding to number of detections for center, _, cgroup in groupedlatlons.itertuples(): minlat, maxlat = center[0]-hgridsize, center[0]+hgridsize minlon, maxlon = center[1]-hgridsize, center[1]+hgridsize glats = [minlat, maxlat, maxlat, minlat] glons = [minlon, minlon, maxlon, maxlon] color = colors[cgroup-1] qcu.draw_grid(glats, glons, color, alpha=0.8) # if provided, plot detection epicenters if pltevents and not catalog['mag'].isnull().all(): magmask = catalog['mag'] >= minmag lons = list(catalog['longitude'][magmask]) lats = list(catalog['latitude'][magmask]) mplmap.scatter(lons, lats, c='k', s=7, marker='x', zorder=5) elif catalog['mag'].isnull().all(): lons = list(catalog['longitude']) lats = list(catalog['latitude']) mplmap.scatter(lons, lats, c='k', s=7, marker='x', zorder=5) plt.savefig('%s_eqdensity.png' % dirname, dpi=300) plt.close() @printstatus('Making histogram of given parameter') def make_hist(catalog, param, binsize, dirname, title='', xlabel='', countlabel=False, maxval=None): """Plot histogram grouped by some parameter.""" paramlist = catalog[pd.notnull(catalog[param])][param].tolist() minparam, maxparam = min(paramlist), max(paramlist) paramdown = qcu.round2bin(minparam, binsize, 'down') paramup = qcu.round2bin(maxparam, binsize, 'up') numbins = int((paramup-paramdown) / binsize) labelbuff = float(paramup-paramdown) / numbins * 0.5 diffs = [abs(paramlist[i+1]-paramlist[i]) for i in range(len(paramlist)) if i+1 < len(paramlist)] diffs = [round(x, 1) for x in diffs if x > 0] plt.figure(figsize=(10, 6)) plt.title(title, fontsize=20) plt.xlabel(xlabel, fontsize=14) plt.ylabel('Count', fontsize=14) if param == 'ms': parambins = np.linspace(paramdown, paramup, numbins+1) plt.xlim(paramdown, paramup) else: parambins = np.linspace(paramdown, paramup+binsize, numbins+2) - binsize/2. plt.xlim(paramdown-binsize/2., paramup+binsize/2.) phist = plt.hist(paramlist, parambins, alpha=0.7, color='b', edgecolor='k') maxbarheight = max([phist[0][x] for x in range(numbins)] or [0]) labely = maxbarheight / 50. plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.11) if maxval: plt.xlim(xmax=maxval) plt.ylim(0, maxbarheight*1.1+0.1) # put count numbers above the bars if countlabel=True if countlabel: for i in range(numbins): plt.text(phist[1][i]+labelbuff, phist[0][i]+labely, '%0.f' % phist[0][i], size=12, ha='center') if maxval: plt.savefig('%s_zoom%shistogram.png' % (dirname, param), dpi=300) else: plt.savefig('%s_%shistogram.png' % (dirname, param), dpi=300) plt.close() @printstatus('Making histogram of given time duration') def make_time_hist(catalog, timelength, dirname, title=''): """Make histogram either by hour of the day or by date.""" timelist = catalog['time'] plt.figure(figsize=(10, 6)) plt.title(title, fontsize=20) plt.ylabel('Count', fontsize=14) if timelength == 'hour': lons = np.linspace(-180, 180, 25).tolist() hours = np.linspace(-12, 12, 25).tolist() tlonlist = catalog.loc[:, ['longitude', 'time']] tlonlist.loc[:, 'rLon'] = qcu.round2lon(tlonlist['longitude']) tlonlist.loc[:, 'hour'] = [int(x.split('T')[1].split(':')[0]) for x in tlonlist['time']] tlonlist.loc[:, 'rhour'] = [x.hour + hours[lons.index(x.rLon)] for x in tlonlist.itertuples()] tlonlist.loc[:, 'rhour'] = [x+24 if x < 0 else x-24 if x > 23 else x for x in tlonlist['rhour']] hourlist = tlonlist.rhour.tolist() hourbins = np.linspace(-0.5, 23.5, 25) plt.hist(hourlist, hourbins, alpha=1, color='b', edgecolor='k') plt.xlabel('Hour of the Day', fontsize=14) plt.xlim(-0.5, 23.5) elif timelength == 'day': daylist = [x.split('T')[0] for x in timelist] daydf = pd.DataFrame({'date': daylist}) daydf['date'] = daydf['date'].astype('datetime64[ns]') daydf = daydf.groupby([daydf['date'].dt.year, daydf['date'].dt.month, daydf['date'].dt.day]).count() eqdates = daydf.index.tolist() counts = daydf.date.tolist() eqdates = [date(x[0], x[1], x[2]) for x in eqdates] minday, maxday = min(eqdates), max(eqdates) plt.bar(eqdates, counts, alpha=1, color='b', width=1) plt.xlabel('Date', fontsize=14) plt.xlim(minday, maxday) plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.11) plt.savefig('%s_%shistogram.png' % (dirname, timelength), dpi=300) plt.close() @printstatus('Graphing mean time separation') def graph_time_sep(catalog, dirname): """Make bar graph of mean time separation between events by date.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') catalog.loc[:, 'dt'] = catalog.convtime.diff().astype('timedelta64[ns]') catalog.loc[:, 'dtmin'] = catalog['dt'] / pd.Timedelta(minutes=1) mindate = catalog['convtime'].min() maxdate = catalog['convtime'].max() fig = plt.figure(figsize=(10, 6)) axfull = fig.add_subplot(111) axfull.set_ylabel('Time separation (min)', fontsize=14, labelpad=20) axfull.spines['top'].set_color('none') axfull.spines['bottom'].set_color('none') axfull.spines['left'].set_color('none') axfull.spines['right'].set_color('none') axfull.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') if maxdate - mindate < pd.Timedelta(days=1460): # time separation between events fig.add_subplot(311) plt.plot(catalog['convtime'], catalog['dtmin'], alpha=1, color='b') plt.xlabel('Date') plt.title('Time separation between events') plt.xlim(mindate, maxdate) plt.ylim(0) # maximum monthly time separation fig.add_subplot(312) month_max = catalog.resample('1M', on='convtime').max()['dtmin'] months = month_max.index.map(lambda x: x.strftime('%Y-%m')).tolist() months = [date(int(x[:4]), int(x[-2:]), 1) for x in months] plt.bar(months, month_max.tolist(), color='b', alpha=1, width=31, edgecolor='k') plt.xlabel('Month') plt.title('Maximum event separation by month') plt.xlim(mindate - pd.Timedelta(days=15), maxdate - pd.Timedelta(days=16)) # median monthly time separation fig.add_subplot(313) month_med = catalog.resample('1M', on='convtime').median()['dtmin'] plt.bar(months, month_med.tolist(), color='b', alpha=1, width=31, edgecolor='k') plt.xlabel('Month') plt.title('Median event separation by month') plt.tight_layout() plt.xlim(mindate - pd.Timedelta(days=15), maxdate - pd.Timedelta(days=16)) else: # time separation between events fig.add_subplot(311) plt.plot(catalog['convtime'], catalog['dtmin'], alpha=1, color='b') plt.xlabel('Date') plt.title('Time separation between events') plt.xlim(mindate, maxdate) plt.ylim(0) # maximum yearly time separation fig.add_subplot(312) year_max = catalog.resample('1Y', on='convtime').max()['dtmin'] years = year_max.index.map(lambda x: x.strftime('%Y')).tolist() years = [date(int(x[:4]), 1, 1) for x in years] plt.bar(years, year_max.tolist(), color='b', alpha=1, width=365, edgecolor='k') plt.xlabel('Year') plt.title('Maximum event separation by year') plt.xlim(mindate - pd.Timedelta(days=183), maxdate - pd.Timedelta(days=183)) # median yearly time separation fig.add_subplot(313) year_med = catalog.resample('1Y', on='convtime').median()['dtmin'] plt.bar(years, year_med.tolist(), color='b', alpha=1, width=365, edgecolor='k') plt.xlabel('Year') plt.title('Median event separation by year') plt.tight_layout() plt.xlim(mindate - pd.Timedelta(days=183), maxdate - pd.Timedelta(days=183)) plt.savefig('%s_timeseparation.png' % dirname, dpi=300) plt.close() @printstatus('Graphing median magnitude by time') def med_mag(catalog, dirname): """Make a bar graph of median event magnitude by year.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') mindate = catalog['convtime'].min() maxdate = catalog['convtime'].max() if maxdate - mindate < pd.Timedelta(days=1460): month_max = catalog.resample('1M', on='convtime').max()['mag'] months = month_max.index.map(lambda x: x.strftime('%Y-%m')).tolist() months = [date(int(x[:4]), int(x[-2:]), 1) for x in months] month_medmag = catalog.resample('1M', on='convtime').median()['mag'] fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111) ax.tick_params(bottom='off') plt.bar(months, month_medmag.tolist(), color='b', edgecolor='k', alpha=1, width=31) plt.xlabel('Month', fontsize=14) plt.ylabel('Magnitude', fontsize=14) plt.title('Monthly Median Magnitude', fontsize=20) plt.xlim(min(months) - pd.Timedelta(days=15), max(months) + pd.Timedelta(days=15)) else: year_max = catalog.resample('1Y', on='convtime').max()['mag'] years = year_max.index.map(lambda x: x.strftime('%Y')).tolist() years = [date(int(x[:4]), 1, 1) for x in years] year_medmag = catalog.resample('1Y', on='convtime').median()['mag'] fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111) ax.tick_params(bottom='off') plt.bar(years, year_medmag.tolist(), color='b', edgecolor='k', alpha=1, width=365) plt.xlabel('Year', fontsize=14) plt.ylabel('Magnitude', fontsize=14) plt.title('Yearly Median Magnitude', fontsize=20) plt.xlim(min(years) - pd.Timedelta(days=183), max(years) - pd.Timedelta(days=183)) plt.savefig('%s_medianmag' % dirname, dpi=300) plt.close() @printstatus('Graphing magnitude completeness') def cat_mag_comp(catalog, dirname, magbin=0.1): """Plot catalog magnitude completeness.""" catalog = catalog[pd.notnull(catalog['mag'])] mags = np.array(catalog['mag']) mags = np.around(mags, 1) minmag, maxmag = min(min(mags), 0), max(mags) mag_centers = np.arange(minmag, maxmag + 2*magbin, magbin) cdf = np.zeros(len(mag_centers)) for idx in range(len(cdf)): cdf[idx] = np.count_nonzero( ~np.isnan(mags[mags >= mag_centers[idx]-0.001])) mag_edges = np.arange(minmag - magbin/2., maxmag+magbin, magbin) g_r, _ = np.histogram(mags, mag_edges) idx = list(g_r).index(max(g_r)) mc_est = mag_centers[idx] try: mc_est, bvalue, avalue, lval, mc_bins, std_dev = qcu.WW2000(mc_est, mags, magbin) except: mc_est = mc_est + 0.3 mc_bins = np.arange(0, maxmag + magbin/2., magbin) bvalue = np.log10(np.exp(1))/(np.average(mags[mags >= mc_est]) - (mc_est-magbin/2.)) avalue = np.log10(len(mags[mags >= mc_est])) + bvalue*mc_est log_l = avalue-bvalue*mc_bins lval = 10.**log_l std_dev = bvalue/sqrt(len(mags[mags >= mc_est])) plt.figure(figsize=(8, 6)) plt.scatter(mag_centers[:len(g_r)], g_r, edgecolor='r', marker='o', facecolor='none', label='Incremental') plt.scatter(mag_centers, cdf, c='k', marker='+', label='Cumulative') plt.axvline(mc_est, c='r', linestyle='--', label='Mc = %2.1f' % mc_est) plt.plot(mc_bins, lval, c='k', linestyle='--', label='B = %1.3f%s%1.3f' % (bvalue, u'\u00B1', std_dev)) ax1 = plt.gca() ax1.set_yscale('log') max_count = np.amax(cdf) + 100000 ax1.set_xlim([minmag, maxmag]) ax1.set_ylim([1, max_count]) plt.title('Frequency-Magnitude Distribution', fontsize=18) plt.xlabel('Magnitude', fontsize=14) plt.ylabel('Log10 Count', fontsize=14) plt.legend(numpoints=1) plt.savefig('%s_catmagcomp.png' % dirname, dpi=300) plt.close() @printstatus('Graphing magnitude versus time for each earthquake') def graph_mag_time(catalog, dirname): """Plot magnitudes vs. origin time.""" catalog = catalog[pd.notnull(catalog['mag'])] catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') times = catalog['time'].copy() mags = catalog['mag'].copy() plt.figure(figsize=(10, 6)) plt.xlabel('Date', fontsize=14) plt.ylabel('Magnitude', fontsize=14) plt.plot_date(times, mags, alpha=0.7, markersize=2, c='b') plt.xlim(min(times), max(times)) plt.title('Magnitude vs. Time', fontsize=20) plt.savefig('%s_magvtime.png' % dirname, dpi=300) plt.close() @printstatus('Graphing event count by date and magnitude') def graph_mag_count(catalog, dirname): """Graph event count grouped by magnitude and by date.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') mindate, maxdate = catalog['convtime'].min(), catalog['convtime'].max() bincond = maxdate - mindate < pd.Timedelta(days=1460) barwidth = 31 if bincond else 365 timedelt =
pd.Timedelta(days=barwidth/2.)
pandas.Timedelta
import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np def get_soup(url): headers = {'User-Agent': ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/39.0.2171.95 Safari/537.36')} r = requests.get(url, headers=headers) r.encoding = 'unicode-escape' return BeautifulSoup(r.content, 'html.parser') def get_data_from_table(table, data_type, skip_rows): """Helper method to get the data from a table. """ # https://stackoverflow.com/questions/42285417/how-to-preserve-links-when-scraping-a-table-with-beautiful-soup-and-pandas if data_type == 'title': data = [[td.a.get('title') if td.find('a') else ''.join(td.stripped_strings) for td in row.find_all('td')] for row in table.find_all('tr')] if data_type == 'link': data = [[td.a['href'] if td.find('a') else ''.join(td.stripped_strings) for td in row.find_all('td')] for row in table.find_all('tr')] else: data = [[td.a.string if td.find('a') else ''.join(td.stripped_strings) for td in row.find_all('td')] for row in table.find_all('tr')] data = [d for d in data if len(d)!=0][0::skip_rows] return data def get_fbref_big5(url): soup = get_soup(url) df = pd.read_html(str(soup))[0] # column names - collapse the multiindex col1 = list(df.columns.get_level_values(0)) col1 = ['' if c[:7]=='Unnamed' else c.replace(' ', '_').lower() for c in col1] col2 = list(df.columns.get_level_values(1)) col2 = [c.replace(' ', '_').lower() for c in col2] cols = [f'{c}_{col2[i]}' if c != '' else col2[i] for i, c in enumerate(col1)] df.columns = cols # remove lines that are the header row repeated df = df[df.rk != 'Rk'].copy() # add the url for the player profile and match logs # https://stackoverflow.com/questions/42285417/how-to-preserve-links-when-scraping-a-table-with-beautiful-soup-and-pandas parsed_table = soup.find_all('table')[0] data = [[td.a['href'] if td.find('a') else ''.join(td.stripped_strings) for td in row.find_all('td')] for row in parsed_table.find_all('tr')] data = [d for d in data if len(d)!=0] match_log = [d[-1] for d in data] player_profile = [d[0] for d in data] df['match_link'] = match_log df['player_link'] = player_profile # remove players who haven't played a minute from the playing time table if 'playing_time_mp' in df.columns: df = df[df.playing_time_mp != '0'].copy() df.reset_index(drop=True, inplace=True) df['rk'] = df.index + 1 # drop the matches column df.drop('matches', axis='columns', inplace=True) # columns to numeric columns df[df.columns[6:-2]] = df[df.columns[6:-2]].apply(pd.to_numeric, errors='coerce', axis='columns') return df def get_fbref_player_dob(url): soup = get_soup(url) info = soup.findAll("div", {"class": "players"})[0] squad = [p for p in info.find_all('p') if 'Club' in p.getText()] if len(squad) == 0: squad = None else: squad = squad[0].find('a').contents[0] if info.find("span", itemprop="birthDate"): dob = pd.to_datetime(info.find("span", itemprop="birthDate").contents[0].strip()) else: dob = pd.to_datetime(np.nan) info = BeautifulSoup(str(info)[:str(info).find('Position')], 'html.parser') name = info.find('p').getText() if name == '': name = info.find('span').getText() return name, dob, squad def get_tm_team_league(soup): """Get the team name and league from a team page.""" team_name, league = soup.find("meta", attrs={'name':'keywords'})['content'].split(',')[:2] return team_name, league def get_tm_team_links(url): """Get links for each team from the league page.""" soup = get_soup(url) table = soup.find_all('table')[3] links = table.find_all('a', class_='vereinprofil_tooltip') links = [l['href'] for l in links] links = list(set(links)) links = [f'https://www.transfermarkt.com{l}' for l in links] return links def get_tm_team_squad(url): """ Get the team squad from a team url.""" soup = get_soup(url) team_name, league = get_tm_team_league(soup) table = soup.find_all('table')[1] data = get_data_from_table(table, 'string', 3) # format data as a dataframe df = pd.DataFrame(data) if len(df.columns) == 14: df = df.drop([2, 6, 7, 11], axis=1) else: df = df.drop([2, 6, 10], axis=1) df.columns = ['number', 'transfer_details', 'player', 'position', 'dob_age', 'height', 'foot', 'joined', 'contract_expires', 'market_value'] df['team_name'] = team_name df['league'] = league # get the links and add to the dataframe data2 = get_data_from_table(table, 'link', 3) player_links = [d[3] for d in data2] signed_from = [d[10] for d in data2] df['player_link'] = player_links df['signed_from_link'] = signed_from return df def get_tm_arrivals_and_departures(url): """Get the team arrivals and departures from a team transfer page.""" soup = get_soup(url) team_name, league = get_team_league(soup) # get data from tables tables = soup.find_all('table') # arrivals arrival_table = tables[2] arrival_data = get_data_from_table(arrival_table, 'string', 5) arrival_data_links = get_data_from_table(arrival_table, 'link', 5) # departures departure_table = [t for t in tables if 'Joined' in str(t)][0] departure_data = get_data_from_table(departure_table, 'string', 5) departure_data_links = get_data_from_table(departure_table, 'link', 5) # arrival dataframe df_arrival = pd.DataFrame(arrival_data[:-1]) df_arrival.drop([0, 1, 2, 7, 8, 9], axis='columns', inplace=True) df_arrival.columns = ['player', 'pos', 'age', 'market_value', 'left', 'left_league', 'fee'] arrival_player_links = [d[1] for d in arrival_data_links[:-1]] df_arrival['player_link'] = arrival_player_links df_arrival['joined'] = team_name df_arrival['joined_league'] = league # departure dataframe df_departure = pd.DataFrame(departure_data[:-1]) df_departure.drop([0, 1, 2, 7, 8, 9], axis='columns', inplace=True) df_departure.columns = ['player', 'pos', 'age', 'market_value', 'joined', 'joined_league', 'fee'] departure_player_links = [d[1] for d in departure_data_links[:-1]] df_departure['player_link'] = departure_player_links df_departure['left'] = team_name df_departure['left_league'] = league df =
pd.concat([df_arrival, df_departure])
pandas.concat
import pandas as pd def model(buffer): df =
pd.DataFrame.from_dict(buffer)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Fri May 15 12:52:53 2020 This script plots the boxplots of the distributions @author: acn980 """ import os, glob, sys import pandas as pd import numpy as np import warnings import matplotlib.pyplot as plt sys.path.insert(0,r'E:\github\seasonality_risk\Functions') from Functions_HCMC import detrend_fft, remove_NaN_skew, extract_MM from matplotlib.ticker import AutoMinorLocator warnings.filterwarnings("ignore") #%% save = False fn_trunk = 'E:/surfdrive/Documents' fn = os.path.join(fn_trunk, 'Master2019\Thomas\data\matlab_csv') fn_files = 'Master2019/Thomas/data' fn2 = os.path.join(fn_trunk,fn_files) lag_joint = 0 #days #%% GESLA OR WACC fn_tide = os.path.join(fn,'Tide_WACC_VungTau_Cleaned_Detrended_Strict_sel_const.csv') date_parser = lambda x: pd.datetime.strptime(x, "%d-%m-%Y %H:%M:%S") tide = pd.read_csv(fn_tide, parse_dates = True, date_parser= date_parser, index_col = 'Date') tide.rename(columns = {tide.columns[0]:'tide'}, inplace = True) all_tide = tide.resample('M').max() tide_day = tide.resample('D').max() # Importing monthly data - rainfall allfiles = glob.glob(os.path.join(fn2, 'NewRain\TRENDS\MONTH_CORRECTED', 'Thiessen_*.csv')) all_rain = pd.DataFrame(data=None) for file in allfiles: month = pd.read_csv(file, index_col = 'Year', parse_dates=True) month.rename(columns={month.columns[0]:'Thiessen'}, inplace = True) all_rain = pd.concat([all_rain, month], axis = 0) #Importing the monthly data surge allfiles = glob.glob(os.path.join(fn2, 'NewSurge\TRENDS\MONTH_RAW', 'skew_fft_*.csv')) all_skew = pd.DataFrame(data=None) for file in allfiles: month = pd.read_csv(file, index_col = 'Year', parse_dates=True) all_skew = pd.concat([all_skew, month], axis = 0) fn_skew = os.path.join(fn,'skew_WACC_VungTau_Cleaned_Detrended_Strict_sel_const.csv') skew =
pd.read_csv(fn_skew, parse_dates = True, date_parser= date_parser, index_col = 'Date')
pandas.read_csv
import pandas as pd import os import time try:from ethnicolr import census_ln, pred_census_ln,pred_wiki_name,pred_fl_reg_name except: os.system('pip install ethnicolr') import seaborn as sns import matplotlib.pylab as plt import scipy from itertools import permutations import numpy as np import matplotlib.gridspec as gridspec from igraph import VertexClustering from itertools import combinations plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams['font.sans-serif'] = "Palatino" plt.rcParams['font.serif'] = "Palatino" plt.rcParams['mathtext.fontset'] = 'custom' plt.rcParams['mathtext.it'] = 'Palatino:italic' plt.rcParams['mathtext.bf'] = 'Palatino:bold' plt.rcParams['mathtext.cal'] = 'Palatino' from matplotlib.ticker import FormatStrFormatter from matplotlib import ticker from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor from sklearn.neural_network import MLPClassifier,MLPRegressor from sklearn.linear_model import RidgeClassifierCV from sklearn.multioutput import MultiOutputRegressor from sklearn.linear_model import RidgeCV from sklearn.decomposition import PCA from statsmodels.stats.multitest import multipletests import multiprocessing from multiprocessing import Pool import tqdm import igraph from scipy.stats import pearsonr global paper_df global main_df global g global graphs global pal global homedir global method global node_2_a global a_2_node global a_2_paper global control global matrix_idxs global prs # matrix_idxs = {'white_M':0,'white_W':1,'white_U':2,'api_M':3,'api_W':4,'api_U':5,'hispanic_M':6,'hispanic_W':7,'hispanic_U':8,'black_M':9,'black_W':10,'black_U':11} pal = np.array([[72,61,139],[82,139,139],[180,205,205],[205,129,98]])/255. # global us_only # us_only = True """ AF = author names, with the format LastName, FirstName; LastName, FirstName; etc.. SO = journal DT = document type (review or article) CR = reference list TC = total citations received (at time of downloading about a year ago) PD = month of publication PY = year of publication DI = DOI """ import argparse def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: return v parser = argparse.ArgumentParser() parser.add_argument('-homedir',action='store',dest='homedir',default='/Users/maxwell/Dropbox/Bertolero_Bassett_Projects/citations/') parser.add_argument('-method',action='store',dest='method',default='wiki') parser.add_argument('-continent',type=str2bool,action='store',dest='continent',default=False) parser.add_argument('-continent_only',type=str2bool,action='store',dest='continent_only',default=False) parser.add_argument('-control',type=str2bool,action='store',dest='control',default=False) parser.add_argument('-within_poc',type=str2bool,action='store',dest='within_poc',default=False) parser.add_argument('-walk_length',type=str,action='store',dest='walk_length',default='cited') parser.add_argument('-walk_papers',type=str2bool,action='store',dest='walk_papers',default=False) r = parser.parse_args() locals().update(r.__dict__) globals().update(r.__dict__) wiki_2_race = {"Asian,GreaterEastAsian,EastAsian":'api', "Asian,GreaterEastAsian,Japanese":'api', "Asian,IndianSubContinent":'api', "GreaterAfrican,Africans":'black', "GreaterAfrican,Muslim":'black', "GreaterEuropean,British":'white', "GreaterEuropean,EastEuropean":'white', "GreaterEuropean,Jewish":'white', "GreaterEuropean,WestEuropean,French":'white', "GreaterEuropean,WestEuropean,Germanic":'white', "GreaterEuropean,WestEuropean,Hispanic":'hispanic', "GreaterEuropean,WestEuropean,Italian":'white', "GreaterEuropean,WestEuropean,Nordic":'white'} matrix_idxs = {'white_M':0,'api_M':1,'hispanic_M':2,'black_M':3,'white_W':4,'api_W':5,'hispanic_W':6,'black_W':7} def log_p_value(p): if p == 0.0: p = "-log10($\it{p}$)>250" elif p > 0.001: p = np.around(p,3) p = "$\it{p}$=%s"%(p) else: p = (-1) * np.log10(p) p = "-log10($\it{p}$)=%s"%(np.around(p,0).astype(int)) return p def convert_r_p(r,p): return "$\it{r}$=%s\n%s"%(np.around(r,2),log_p_value(p)) def nan_pearsonr(x,y): xmask = np.isnan(x) ymask = np.isnan(y) mask = (xmask==False) & (ymask==False) return pearsonr(x[mask],y[mask]) def mean_confidence_interval(data, confidence=0.95): a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1) return m, m-h, m+h def make_df(method=method): """ this makes the actual data by pulling the race from the census or wiki data """ # if os.path.exists('/%s/data/result_df_%s.csv'%(homedir,method)): # df = pd.read_csv('/%s/data/result_df_%s.csv'%(homedir,method)) # return df main_df = pd.read_csv('/%s/article_data/NewArticleData2019_filtered.csv'%(homedir),header=0) result_df = pd.DataFrame(columns=['fa_race','la_race','citation_count']) store_fa_race = [] store_la_race = [] store_citations = [] store_year = [] store_journal = [] store_fa_g = [] store_la_g = [] store_fa_category = [] store_la_category = [] for entry in tqdm.tqdm(main_df.iterrows(),total=len(main_df)): store_year.append(entry[1]['PY']) store_journal.append(entry[1]['SO']) fa = entry[1].AF.split(';')[0] la = entry[1].AF.split(';')[-1] fa_lname,fa_fname = fa.split(', ') la_lname,la_fname = la.split(', ') try:store_citations.append(len(entry[1].cited.split(','))) except:store_citations.append(0) ##wiki if method =='wiki': names = [{'lname': fa_lname,'fname':fa_fname}] fa_df = pd.DataFrame(names,columns=['lname','fname']) fa_race = wiki_2_race[pred_wiki_name(fa_df,'lname','fname').race.values[0]] names = [{'lname': la_lname,'fname':la_fname}] la_df = pd.DataFrame(names,columns=['lname','fname']) la_race = wiki_2_race[pred_wiki_name(la_df,'lname','fname').race.values[0]] if method =='florida': names = [{'lname': fa_lname,'fname':fa_fname}] fa_df = pd.DataFrame(names,columns=['lname','fname']) fa_race = pred_fl_reg_name(fa_df,'lname','fname').race.values[0].split('_')[-1] names = [{'lname': la_lname,'fname':la_fname}] la_df = pd.DataFrame(names,columns=['lname','fname']) la_race = pred_fl_reg_name(la_df,'lname','fname').race.values[0].split('_')[-1] #census if method =='census': names = [{'name': fa_lname},{'name':la_lname}] la_df = pd.DataFrame(names) r = pred_census_ln(la_df,'name') fa_race,la_race= r.race.values if method =='combined': ##wiki names = [{'lname': fa_lname,'fname':fa_fname}] fa_df = pd.DataFrame(names,columns=['fname','lname']) fa_race_wiki = wiki_2_race[pred_wiki_name(fa_df,'fname','lname').race.values[0]] names = [{'lname': la_lname,'fname':la_fname}] la_df = pd.DataFrame(names,columns=['fname','lname']) la_race_wiki = wiki_2_race[pred_wiki_name(la_df,'fname','lname').race.values[0]] names = [{'name': fa_lname},{'name':la_lname}] la_df = pd.DataFrame(names) r = pred_census_ln(la_df,'name') fa_race_census,la_race_census= r.race.values if la_race_census != la_race_wiki: if la_race_wiki == 'white': la_race = la_race_census if la_race_census == 'white': la_race = la_race_wiki elif (la_race_census != 'white') & (la_race_wiki != 'white'): la_race = la_race_wiki elif la_race_census == la_race_wiki: la_race = la_race_wiki if fa_race_census != fa_race_wiki: if fa_race_wiki == 'white': fa_race = fa_race_census if fa_race_census == 'white': fa_race = fa_race_wiki elif (fa_race_census != 'white') & (fa_race_wiki != 'white'): fa_race = fa_race_wiki elif fa_race_census == fa_race_wiki: fa_race = fa_race_wiki store_la_race.append(la_race) store_fa_race.append(fa_race) store_fa_g.append(entry[1].AG[0]) store_la_g.append(entry[1].AG[1]) store_fa_category.append('%s_%s' %(fa_race,entry[1].AG[0])) store_la_category.append('%s_%s' %(la_race,entry[1].AG[1])) result_df['fa_race'] = store_fa_race result_df['la_race'] = store_la_race result_df['fa_g'] = store_fa_g result_df['la_g'] = store_la_g result_df['journal'] = store_journal result_df['year'] = store_year result_df['citation_count'] = store_citations result_df['fa_category'] = store_fa_category result_df['la_category'] = store_la_category # result_df.citation_count = result_df.citation_count.values.astype(int) result_df.to_csv('/%s/data/result_df_%s.csv'%(homedir,method),index=False) return result_df def make_pr_df(method=method): """ this makes the actual data by pulling the race from the census or wiki data """ main_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) prs = np.zeros((main_df.shape[0],8,8)) gender_base = {} for year in np.unique(main_df.PY.values): ydf = main_df[main_df.PY==year].AG fa = np.array([x[0] for x in ydf.values]) la = np.array([x[1] for x in ydf.values]) fa_m = len(fa[fa=='M'])/ len(fa[fa!='U']) fa_w = len(fa[fa=='W'])/ len(fa[fa!='U']) la_m = len(la[fa=='M'])/ len(la[la!='U']) la_w = len(la[fa=='W'])/ len(la[la!='U']) gender_base[year] = [fa_m,fa_w,la_m,la_w] asian = [0,1,2] black = [3,4] white = [5,6,7,8,9,11,12] hispanic = [10] if method =='wiki_black': black = [3] for entry in tqdm.tqdm(main_df.iterrows(),total=len(main_df)): fa = entry[1].AF.split(';')[0] la = entry[1].AF.split(';')[-1] fa_lname,fa_fname = fa.split(', ') la_lname,la_fname = la.split(', ') fa_g = entry[1].AG[0] la_g = entry[1].AG[1] paper_matrix = np.zeros((2,8)) # 1/0 ##wiki if method =='wiki' or method == 'wiki_black': names = [{'lname': fa_lname,'fname':fa_fname}] fa_df = pd.DataFrame(names,columns=['lname','fname']) fa_race = pred_wiki_name(fa_df,'lname','fname').values[0][3:] fa_race = [np.sum(fa_race[white]),np.sum(fa_race[asian]),np.sum(fa_race[hispanic]),np.sum(fa_race[black])] names = [{'lname': la_lname,'fname':la_fname}] la_df = pd.DataFrame(names,columns=['lname','fname']) la_race = pred_wiki_name(la_df,'lname','fname').values[0][3:] la_race = [np.sum(la_race[white]),np.sum(la_race[asian]),np.sum(la_race[hispanic]),np.sum(la_race[black])] # #census if method =='census': names = [{'name': fa_lname},{'name':la_lname}] la_df = pd.DataFrame(names) r = pred_census_ln(la_df,'name') fa_race = [r.iloc[0]['white'],r.iloc[0]['api'],r.iloc[0]['hispanic'],r.iloc[0]['black']] la_race = [r.iloc[1]['white'],r.iloc[1]['api'],r.iloc[1]['hispanic'],r.iloc[1]['black']] if method =='florida': names = [{'lname': fa_lname,'fname':fa_fname}] fa_df = pd.DataFrame(names,columns=['lname','fname']) asian, hispanic, black, white = pred_fl_reg_name(fa_df,'lname','fname').values[0][3:] fa_race = [white,asian,hispanic,black] names = [{'lname': la_lname,'fname':la_fname}] la_df = pd.DataFrame(names,columns=['lname','fname']) asian, hispanic, black, white = pred_fl_reg_name(la_df,'lname','fname').values[0][3:] la_race = [white,asian,hispanic,black] if method == 'combined': names = [{'lname': fa_lname,'fname':fa_fname}] fa_df = pd.DataFrame(names,columns=['fname','lname']) fa_race_wiki = pred_wiki_name(fa_df,'lname','fname').values[0][3:] fa_race_wiki = [np.sum(fa_race_wiki[white]),np.sum(fa_race_wiki[asian]),np.sum(fa_race_wiki[hispanic]),np.sum(fa_race_wiki[black])] names = [{'lname': la_lname,'fname':la_fname}] la_df = pd.DataFrame(names,columns=['fname','lname']) la_race_wiki = pred_wiki_name(la_df,'lname','fname').values[0][3:] la_race_wiki = [np.sum(la_race_wiki[white]),np.sum(la_race_wiki[asian]),np.sum(la_race_wiki[hispanic]),np.sum(la_race_wiki[black])] names = [{'name': fa_lname},{'name':la_lname}] la_df = pd.DataFrame(names) r = pred_census_ln(la_df,'name') fa_race_census = [r.iloc[0]['white'],r.iloc[0]['api'],r.iloc[0]['hispanic'],r.iloc[0]['black']] la_race_census = [r.iloc[1]['white'],r.iloc[1]['api'],r.iloc[1]['hispanic'],r.iloc[1]['black']] if fa_race_census[0] < fa_race_wiki[0]: fa_race = fa_race_census else: fa_race = fa_race_wiki if la_race_census[0] < la_race_wiki[0]: la_race = la_race_census else: la_race = la_race_wiki gender_b = gender_base[year] if fa_g == 'M': paper_matrix[0] = np.outer([1,0],fa_race).flatten() if fa_g == 'W': paper_matrix[0] = np.outer([0,1],fa_race).flatten() if fa_g == 'U': paper_matrix[0] = np.outer([gender_b[0],gender_b[1]],fa_race).flatten() if la_g == 'M': paper_matrix[1] = np.outer([1,0],la_race).flatten() if la_g == 'W': paper_matrix[1] = np.outer([0,1],la_race).flatten() if la_g == 'U': paper_matrix[1] = np.outer([gender_b[2],gender_b[3]],la_race).flatten() paper_matrix = np.outer(paper_matrix[0],paper_matrix[1]) paper_matrix = paper_matrix / np.sum(paper_matrix) prs[entry[0]] = paper_matrix np.save('/%s/data/result_pr_df_%s.npy'%(homedir,method),prs) def make_all_author_race(): """ this makes the actual data by pulling the race from the census or wiki data, but this version include middle authors, which we use for the co-authorship networks """ main_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) names = [] lnames = [] fnames = [] for entry in main_df.iterrows(): for a in entry[1].AF.split('; '): a_lname,a_fname = a.split(', ') lnames.append(a_lname.strip()) fnames.append(a_fname.strip()) names.append(a) df = pd.DataFrame(np.array([names,fnames,lnames]).swapaxes(0,1),columns=['name','fname','lname']) df = df.drop_duplicates('name') if method =='florida': # 1/0 r = pred_fl_reg_name(df,'lname','fname') r.rename(columns={'nh_black':'black','nh_white':'white'}) r.to_csv('/%s/data/result_df_%s_all.csv'%(homedir,method),index=False) if method =='census': r = pred_census_ln(df,'lname') r.to_csv('/%s/data/result_df_%s_all.csv'%(homedir,method),index=False) all_races = [] r = dict(zip(df.name.values,df.race.values)) for idx,paper in tqdm.tqdm(main_df.iterrows(),total=main_df.shape[0]): races = [] for a in paper.AF.split('; '): a_lname,a_fname = a.split(', ') races.append(r[a_lname.strip()]) all_races.append('_'.join(str(x) for x in races)) main_df['all_races'] = all_races main_df.to_csv('/%s/data/all_data_%s.csv'%(homedir,method),index=False) race2wiki = {'api': ["Asian,GreaterEastAsian,EastAsian","Asian,GreaterEastAsian,Japanese", "Asian,IndianSubContinent"], 'black':["GreaterAfrican,Africans", "GreaterAfrican,Muslim"], 'white':["GreaterEuropean,British", "GreaterEuropean,EastEuropean", "GreaterEuropean,Jewish", "GreaterEuropean,WestEuropean,French", "GreaterEuropean,WestEuropean,Germanic", "GreaterEuropean,WestEuropean,Nordic", "GreaterEuropean,WestEuropean,Italian"], 'hispanic':["GreaterEuropean,WestEuropean,Hispanic"]} if method =='wiki': r = pred_wiki_name(df,'lname','fname') for race in ['api','black','hispanic','white']: r[race] = 0.0 for e in race2wiki[race]: r[race] = r[race] + r[e] for race in ['api','black','hispanic','white']: for e in race2wiki[race]: r = r.drop(columns=[e]) r.to_csv('/%s/data/result_df_%s_all.csv'%(homedir,method),index=False) all_races = [] for idx,paper in tqdm.tqdm(main_df.iterrows(),total=main_df.shape[0]): races = [] for a in paper.AF.split('; '): races.append(r[r.name==a].race.values[0]) all_races.append('_'.join(str(x) for x in races)) main_df['all_races'] = all_races main_df.to_csv('/%s/data/all_data_%s.csv'%(homedir,method),index=False) if method =='combined': r_wiki = pred_wiki_name(df,'lname','fname') for race in ['api','black','hispanic','white']: r_wiki[race] = 0.0 for e in race2wiki[race]: r_wiki[race] = r_wiki[race] + r_wiki[e] for race in ['api','black','hispanic','white']: for e in race2wiki[race]: r_wiki = r_wiki.drop(columns=[e]) r_census = pred_census_ln(df,'lname') census = r_census.white < r_wiki.white wiki = r_census.white > r_wiki.white r = r_census.copy() r[census] = r_census r[wiki] = r_wiki r.to_csv('/%s/data/result_df_%s_all.csv'%(homedir,method),index=False) def figure_1_pr_authors(): df = pd.read_csv('/%s/data/result_df_%s_all.csv'%(homedir,method)) paper_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) results = [] for year in np.unique(paper_df.PY.values): print (year) ydf = paper_df[paper_df.PY==year] names = [] for p in ydf.iterrows(): for n in p[1].AF.split(';'): names.append(n.strip()) names = np.unique(names) result = np.zeros((len(names),4)) for idx,name in enumerate(names): try:result[idx] = df[df.name==name].values[0][-4:] except:result[idx] = np.nan results.append(np.nansum(result,axis=0)) results = np.array(results) plt.close() sns.set(style='white',font='Palatino') # pal = sns.color_palette("Set2") # pal = sns.color_palette("vlag",4) fig = plt.figure(figsize=(7.5,4),constrained_layout=False) gs = gridspec.GridSpec(15, 14, figure=fig,wspace=.75,hspace=0,left=.1,right=.9,top=.9,bottom=.1) ax1 = fig.add_subplot(gs[:15,:7]) ax1_plot = plt.stackplot(np.unique(paper_df.PY),np.flip(results.transpose()[[3,0,2,1]],axis=0), labels=['Black','Hispanic','Asian','White'],colors=np.flip(pal,axis=0), alpha=1) handles, labels = plt.gca().get_legend_handles_labels() labels.reverse() handles.reverse() leg = plt.legend(loc=2,frameon=False,labels=labels,handles=handles,fontsize=8) for text in leg.get_texts(): plt.setp(text, color = 'black') plt.margins(0,0) plt.ylabel('sum of predicted author race') plt.xlabel('publication year') ax1.tick_params(axis='y', which='major', pad=0) plt.title('a',{'fontweight':'bold'},'left',pad=2) # 1/0 ax2 = fig.add_subplot(gs[:15,8:]) ax2_plot = plt.stackplot(np.unique(paper_df.PY),np.flip(np.divide(results.transpose()[[3,0,2,1]],np.sum(results,axis=1)),axis=0)*100, labels=['Black','Hispanic','Asian','White'],colors=np.flip(pal,axis=0),alpha=1) handles, labels = plt.gca().get_legend_handles_labels() labels.reverse() handles.reverse() leg = plt.legend(loc=2,frameon=False,labels=labels,handles=handles,fontsize=8) for text in leg.get_texts(): plt.setp(text, color = 'white') plt.margins(0,0) plt.ylabel('percentage of predicted author race',labelpad=-5) plt.xlabel('publication year') ax2.yaxis.set_major_formatter(ticker.PercentFormatter()) ax2.tick_params(axis='y', which='major', pad=0) plt.title('b',{'fontweight':'bold'},'left',pad=2) plt.savefig('authors.pdf') def figure_1_pr(): n_iters = 1000 df =pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0).rename({'PY':'year','SO':'journal'},axis='columns') matrix = np.load('/%s/data/result_pr_df_%s.npy'%(homedir,method)) results = np.zeros((len(np.unique(df.year)),4)) if within_poc == False: labels = ['white author & white author','white author & author of color','author of color & white author','author of color &\nauthor of color'] groups = [np.vectorize(matrix_idxs.get)(['white_M','white_W',]), np.vectorize(matrix_idxs.get)(['api_M','api_W','hispanic_M','hispanic_W','black_M','black_W',])] names = ['white-white','white-poc','poc-white','poc-poc'] plot_matrix = np.zeros((matrix.shape[0],len(groups),len(groups))) plot_base_matrix = np.zeros((matrix.shape[0],len(groups),len(groups))) for i in range(len(groups)): for j in range(len(groups)): plot_matrix[:,i,j] = np.nansum(matrix[:,groups[i]][:,:,groups[j]].reshape(matrix.shape[0],-1),axis=1) for yidx,year in enumerate(np.unique(df.year)): papers = df[df.year==year].index r = np.mean(plot_matrix[papers],axis=0).flatten() results[yidx,0] = r[0] results[yidx,1] = r[1] results[yidx,2] = r[2] results[yidx,3] = r[3] if within_poc == True: names = ['white author','Asian author','Hispanic author','Black author'] groups = [[0,4],[1,5],[2,6],[3,7]] labels = names plot_matrix = np.zeros((matrix.shape[0],len(groups))) for i in range(4): plot_matrix[:,i] = plot_matrix[:,i] + np.nansum(np.nanmean(matrix[:,groups[i],:],axis=-1),axis=-1) plot_matrix[:,i] = plot_matrix[:,i] + np.nansum(np.nanmean(matrix[:,:,groups[i]],axis=-1),axis=-1) for yidx,year in enumerate(np.unique(df.year)): papers = df[df.year==year].index r = np.mean(plot_matrix[papers],axis=0).flatten() results[yidx,0] = r[0] results[yidx,1] = r[1] results[yidx,2] = r[2] results[yidx,3] = r[3] plt.close() sns.set(style='white',font='Palatino') # pal = sns.color_palette("Set2") # pal = sns.color_palette("vlag",4) fig = plt.figure(figsize=(7.5,4),constrained_layout=False) gs = gridspec.GridSpec(15, 16, figure=fig,wspace=.75,hspace=0,left=.1,right=.9,top=.9,bottom=.1) ax1 = fig.add_subplot(gs[:15,:5]) plt.sca(ax1) ax1_plot = plt.stackplot(np.unique(df.year),np.flip(results.transpose(),axis=0)*100, labels=np.flip(labels),colors=np.flip(pal,axis=0), alpha=1) handles, labels = plt.gca().get_legend_handles_labels() labels.reverse() handles.reverse() leg = plt.legend(loc=9,frameon=False,labels=labels,handles=handles,fontsize=8) for text in leg.get_texts(): plt.setp(text, color = 'w') plt.margins(0,0) plt.ylabel('percentage of publications') plt.xlabel('publication year') ax1.tick_params(axis='x', which='major', pad=-1) ax1.tick_params(axis='y', which='major', pad=0) i,j,k,l = np.flip(results[0]*100) i,j,k,l = [i,(i+j),(i+j+k),(i+j+k+l)] i,j,k,l = [np.mean([0,i]),np.mean([i,j]),np.mean([j,k]),np.mean([k,l])] # i,j,k,l = np.array([100]) - np.array([i,j,k,l]) plt.sca(ax1) ax1.yaxis.set_major_formatter(ticker.PercentFormatter()) ax1.set_yticks([i,j,k,l]) ax1.set_yticklabels(np.flip(np.around(results[0]*100,0).astype(int))) ax2 = ax1_plot[0].axes.twinx() plt.sca(ax2) i,j,k,l = np.flip(results[-1]*100) i,j,k,l = [i,(i+j),(i+j+k),(i+j+k+l)] i,j,k,l = [np.mean([0,i]),np.mean([i,j]),np.mean([j,k]),np.mean([k,l])] plt.ylim(0,100) ax2.yaxis.set_major_formatter(ticker.PercentFormatter()) ax2.set_yticks([i,j,k,l]) ax2.set_yticklabels(np.flip(np.around(results[-1]*100,0)).astype(int)) plt.xticks([1995., 2000., 2005., 2010., 2015., 2019],np.array([1995., 2000., 2005., 2010., 2015., 2019]).astype(int)) ax2.tick_params(axis='y', which='major', pad=0) plt.title('a',{'fontweight':'bold'},'left',pad=2) plot_df = pd.DataFrame(columns=['year','percentage','iteration']) for yidx,year in enumerate(np.unique(df.year)): for i in range(n_iters): data = df[(df.year==year)] papers = data.sample(int(len(data)),replace=True).index r = np.mean(plot_matrix[papers],axis=0).flatten() total = r.sum() r = np.array(r[1:])/total r = r.sum() tdf = pd.DataFrame(np.array([r,year,i]).reshape(1,-1),columns=['percentage','year','iteration']) plot_df = plot_df.append(tdf,ignore_index=True) plot_df.percentage = plot_df.percentage.astype(float) plot_df.iteration = plot_df.iteration.astype(int) plot_df.percentage = plot_df.percentage.astype(float) * 100 pct_df = pd.DataFrame(columns=['year','percentage','iteration']) plot_df = plot_df.sort_values('year') for i in range(n_iters): a = plot_df[(plot_df.iteration==i)].percentage.values # change = np.diff(a) / a[:-1] * 100. change = np.diff(a) tdf = pd.DataFrame(columns=['year','percentage','iteration']) tdf.year = range(1997,2020) tdf.percentage = change[1:] tdf.iteration = i pct_df = pct_df.append(tdf,ignore_index=True) pct_df = pct_df.dropna() pct_df = pct_df[np.isinf(pct_df.percentage)==False] ci = mean_confidence_interval(pct_df.percentage) ci = np.around(ci,2) print ("Across 1000 bootstraps, the mean percent increase per year was %s%% (95 CI:%s%%,%s%%)"%(ci[0],ci[1],ci[2])) plt.text(.5,.48,"Increasing at %s%% per year\n(95%% CI:%s%%,%s%%)"%(ci[0],ci[1],ci[2]),{'fontsize':8,'color':'white'},horizontalalignment='center',verticalalignment='bottom',rotation=9,transform=ax2.transAxes) axes = [] jidx = 3 for makea in range(5): axes.append(fig.add_subplot(gs[jidx-3:jidx,6:10])) jidx=jidx+3 for aidx,journal in enumerate(np.unique(df.journal)): ax = axes[aidx] plt.sca(ax) if aidx == 2: ax.set_ylabel('percentage of publications') if aidx == 4: ax.set_xlabel('publication\nyear',labelpad=-10) results = np.zeros(( len(np.unique(df[(df.journal==journal)].year)),4)) for yidx,year in enumerate(np.unique(df[(df.journal==journal)].year)): papers = df[(df.year==year)&(df.journal==journal)].index r = np.mean(plot_matrix[papers],axis=0).flatten() results[yidx,0] = r[0] results[yidx,1] = r[1] results[yidx,2] = r[2] results[yidx,3] = r[3] data = df[df.journal==journal] if journal == 'NATURE NEUROSCIENCE': for i in range(3): results = np.concatenate([[[0,0,0,0]],results],axis=0) ax1_plot = plt.stackplot(np.unique(df.year),np.flip(results.transpose(),axis=0)*100, labels=np.flip(labels,axis=0),colors=np.flip(pal,axis=0), alpha=1) plt.margins(0,0) ax.set_yticks([]) if aidx != 4: ax.set_xticks([]) else: plt.xticks(np.array([1996.5,2017.5]),np.array([1995.,2019]).astype(int)) plt.title(journal.title(), pad=-10,color='w',fontsize=8) if aidx == 0: plt.text(0,1,'b',{'fontweight':'bold'},horizontalalignment='left',verticalalignment='bottom',transform=ax.transAxes) journals = np.unique(df.journal) plot_df = pd.DataFrame(columns=['journal','year','percentage','iteration']) for j in journals: for yidx,year in enumerate(np.unique(df.year)): for i in range(n_iters): data = df[(df.year==year)&(df.journal==j)] papers = data.sample(int(len(data)),replace=True).index r = np.mean(plot_matrix[papers],axis=0).flatten() total = r.sum() r = np.array(r[1:])/total r = r.sum() tdf = pd.DataFrame(np.array([j,r,year,i]).reshape(1,-1),columns=['journal','percentage','year','iteration']) plot_df = plot_df.append(tdf,ignore_index=True) plot_df.percentage = plot_df.percentage.astype(float) plot_df.iteration = plot_df.iteration.astype(int) plot_df.percentage = plot_df.percentage.astype(float) * 100 pct_df = pd.DataFrame(columns=['journal','year','percentage','iteration']) plot_df = plot_df.sort_values('year') for i in range(n_iters): for j in journals: a = plot_df[(plot_df.iteration==i)&(plot_df.journal==j)].percentage.values # change = np.diff(a) / a[:-1] * 100. change = np.diff(a) tdf = pd.DataFrame(columns=['journal','year','percentage','iteration']) tdf.year = range(1997,2020) tdf.percentage = change[1:] tdf.journal = j tdf.iteration = i pct_df = pct_df.append(tdf,ignore_index=True) pct_df = pct_df.dropna() pct_df = pct_df[np.isinf(pct_df.percentage)==False] ci = pct_df.groupby(['journal']).percentage.agg(mean_confidence_interval).values axes = [] jidx = 3 for makea in range(5): axes.append(fig.add_subplot(gs[jidx-3:jidx,11:])) jidx=jidx+3 for i,ax,journal,color in zip(range(5),axes,journals,sns.color_palette("rocket_r", 5)): plt.sca(ax) ax.clear() # # plot_df[np.isnan(plot_df.percentage)] = 0.0 if i == 0: plt.text(0,1,'c',{'fontweight':'bold'},horizontalalignment='left',verticalalignment='bottom',transform=ax.transAxes) lp = sns.lineplot(data=plot_df[plot_df.journal==journal],y='percentage',x='year',color=color,ci='sd') plt.margins(0,0) thisdf = plot_df[plot_df.journal==journal] minp = int(np.around(thisdf.mean()['percentage'],0)) thisdf = thisdf[thisdf.year==thisdf.year.max()] maxp = int(np.around(thisdf.mean()['percentage'],0)) plt.text(-0.01,.5,'%s'%(minp),horizontalalignment='right',verticalalignment='top', transform=ax.transAxes,fontsize=10) plt.text(1.01,.9,'%s'%(maxp),horizontalalignment='left',verticalalignment='top', transform=ax.transAxes,fontsize=10) ax.set_yticks([]) # ax.set_xticks([]) ax.set_ylabel('') plt.margins(0,0) ax.set_yticks([]) if i == 2: ax.set_ylabel('percentage of publications',labelpad=12) if i != 4: ax.set_xticks([]) else: plt.xticks(np.array([1.5,22.5]),np.array([1995.,2019]).astype(int)) mean_pc,min_pc,max_pc = np.around(ci[i],2) if i == 4: ax.set_xlabel('publication\nyear',labelpad=-10) else: ax.set_xlabel('') plt.text(.99,0,'95%' + "CI: %s<%s<%s"%(min_pc,mean_pc,max_pc),horizontalalignment='right',verticalalignment='bottom', transform=ax.transAxes,fontsize=8) if journal == 'NATURE NEUROSCIENCE': plt.xlim(-3,21) plt.savefig('/%s/figures/figure1_pr_%s_%s.pdf'%(homedir,method,within_poc)) def validate(): black_names = pd.read_csv('%s/data/Black scientists - Faculty.csv'%(homedir))['Name'].values[1:] fnames = [] lnames = [] all_names =[] for n in black_names: try: fn,la = n.split(' ')[:2] fnames.append(fn.strip()) lnames.append(la.strip()) all_names.append('%s_%s'%(fn.strip(),la.strip())) except:continue black_df = pd.DataFrame(np.array([all_names,fnames,lnames]).swapaxes(0,1),columns=['name','fname','lname']) main_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) names = [] lnames = [] fnames = [] for entry in main_df.iterrows(): for a in entry[1].AF.split('; '): a_lname,a_fname = a.split(', ') lnames.append(a_lname.strip()) fnames.append(a_fname.strip()) names.append('%s_%s'%(a_fname,a_lname)) main_df = pd.DataFrame(np.array([names,fnames,lnames]).swapaxes(0,1),columns=['name','fname','lname']) main_df = main_df.drop_duplicates('name') if method == 'wiki': black_r = pred_wiki_name(black_df,'lname','fname') all_r = pred_wiki_name(main_df,'lname','fname') asian = [0,1,2] black = [3,4] white = [5,6,7,8,9,11,12] hispanic = [10] all_df = pd.DataFrame(columns=['probability','sample']) all_df['probability'] = all_r.as_matrix()[:,4:][:,black].sum(axis=1) all_df['sample'] = 'papers' black_df = pd.DataFrame(columns=['probability','sample']) black_df['probability'] = black_r.as_matrix()[:,4:][:,black].sum(axis=1) black_df['sample'] = 'Black-in-STEM' if method == 'florida': black_r = pred_fl_reg_name(black_df,'lname','fname') all_r = pred_fl_reg_name(main_df,'lname','fname') asian = [0,1,2] black = [3,4] white = [5,6,7,8,9,11,12] hispanic = [10] all_df = pd.DataFrame(columns=['probability','sample']) all_df['probability'] = all_r.values[:,-2] all_df['sample'] = 'papers' black_df = pd.DataFrame(columns=['probability','sample']) black_df['probability'] = black_r.values[:,-2] black_df['sample'] = 'Black-in-STEM' if method == 'census': black_r = pred_census_ln(black_df,'lname') all_r = pred_census_ln(main_df,'lname') all_df = pd.DataFrame(columns=['probability','sample']) all_df['probability'] = all_r.values[:,-3] all_df['sample'] = 'papers' black_df = pd.DataFrame(columns=['probability','sample']) black_df['probability'] = black_r.values[:,-3] black_df['sample'] = 'Black-in-STEM' data = all_df.append(black_df,ignore_index=True) data.probability = data.probability.astype(float) plt.close() sns.set(style='white',font='Palatino') fig = plt.figure(figsize=(7.5,3),constrained_layout=True) gs = gridspec.GridSpec(6,6, figure=fig) ax1 = fig.add_subplot(gs[:6,:3]) plt.sca(ax1) sns.histplot(data=data,x='probability',hue="sample",stat='density',common_norm=False,bins=20) ax2 = fig.add_subplot(gs[:6,3:]) plt.sca(ax2) sns.histplot(data=data,x='probability',hue="sample",stat='density',common_norm=False,bins=20) plt.ylim(0,2.5) plt.savefig('Black-in-STEM_%s.pdf'%(method)) plt.close() sns.set(style='white',font='Palatino') fig = plt.figure(figsize=(7.5,3),constrained_layout=True) gs = gridspec.GridSpec(6,6, figure=fig) ax1 = fig.add_subplot(gs[:6,:3]) plt.sca(ax1) sns.histplot(data=data[data['sample']=='papers'],x='probability',stat='density',common_norm=False,bins=20) ax2 = fig.add_subplot(gs[:6,3:]) plt.sca(ax2) sns.histplot(data=data[data['sample']=='Black-in-STEM'],x='probability',hue="sample",stat='density',common_norm=False,bins=20) # plt.ylim(0,2.5) plt.savefig('Black-in-STEM_2.pdf') def make_pr_control(): """ control for features of citing article """ # 1) the year of publication # 2) the journal in which it was published # 3) the number of authors # 4) whether the paper was a review article # 5) the seniority of the paper’s first and last authors. # 6) paper location df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) prs = np.load('/%s/data/result_pr_df_%s.npy'%(homedir,method)) cont = pd.read_csv('/%s/article_data/CountryAndContData.csv'%(homedir)) df = df.merge(cont,how='outer',left_index=True, right_index=True) df = df.merge(pd.read_csv('/%s/article_data/SeniorityData.csv'%(homedir)),left_index=True, right_index=True) reg_df = pd.DataFrame(columns=['year','n_authors','journal','paper_type','senior','location']) for entry in tqdm.tqdm(df.iterrows(),total=len(df)): idx = entry[0] paper = entry[1] year = entry[1].PY n_authors = len(paper.AF.split(';')) journal = entry[1].SO paper_type = paper.DT senior = entry[1].V4 try: loc = entry[1]['FirstListed.Cont'].split()[0] except: loc = 'None' reg_df.loc[len(reg_df)] = [year,n_authors,journal,paper_type,senior,loc] reg_df["n_authors"] = pd.to_numeric(reg_df["n_authors"]) reg_df["year"] = pd.to_numeric(reg_df["year"]) reg_df["senior"] = pd.to_numeric(reg_df["senior"]) skl_df = pd.get_dummies(reg_df).values ridge = MultiOutputRegressor(RidgeCV(alphas=[1e-5,1e-4,1e-3, 1e-2, 1e-1, 1,10,25,50,75,100])).fit(skl_df,prs.reshape(prs.shape[0],-1)) ridge_probabilities = ridge.predict(skl_df) ridge_probabilities = np.divide((ridge_probabilities), np.sum(ridge_probabilities,axis=1).reshape(-1,1)) ridge_probabilities = ridge_probabilities.reshape(ridge_probabilities.shape[0],8,8) np.save('/%s/data/probabilities_pr_%s.npy'%(homedir,method),ridge_probabilities) def make_pr_control_jn(): """ control for features of citing article """ # 1) the year of publication # 2) the journal in which it was published # 3) the number of authors # 4) whether the paper was a review article # 5) the seniority of the paper’s first and last authors. # 6) paper location # 6) paper sub-field df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) prs = np.load('/%s/data/result_pr_df_%s.npy'%(homedir,method)) cont = pd.read_csv('/%s/article_data/CountryAndContData.csv'%(homedir)) df = df.merge(cont,how='outer',left_index=True, right_index=True) df = df.merge(pd.read_csv('/%s/article_data/SeniorityData.csv'%(homedir)),left_index=True, right_index=True) df = df.rename(columns={'DI':'doi'}) df['category'] = 'none' sub = pd.read_csv('/%s/article_data/JoNcategories_no2019.csv'%(homedir)) for cat,doi in zip(sub.category,sub.doi): df.iloc[np.where(df.doi==doi)[0],-1] = cat reg_df = pd.DataFrame(columns=['year','n_authors','journal','paper_type','senior','location','category']) for entry in tqdm.tqdm(df.iterrows(),total=len(df)): idx = entry[0] paper = entry[1] year = entry[1].PY n_authors = len(paper.AF.split(';')) journal = entry[1].SO paper_type = paper.DT senior = entry[1].V4 cat = entry[1].category try: loc = entry[1]['FirstListed.Cont'].split()[0] except: loc = 'None' reg_df.loc[len(reg_df)] = [year,n_authors,journal,paper_type,senior,loc,cat] reg_df["n_authors"] = pd.to_numeric(reg_df["n_authors"]) reg_df["year"] = pd.to_numeric(reg_df["year"]) reg_df["senior"] = pd.to_numeric(reg_df["senior"]) skl_df = pd.get_dummies(reg_df).values ridge = MultiOutputRegressor(RidgeCV(alphas=[1e-5,1e-4,1e-3, 1e-2, 1e-1, 1,10,25,50,75,100])).fit(skl_df,prs.reshape(prs.shape[0],-1)) ridge_probabilities = ridge.predict(skl_df) ridge_probabilities = np.divide((ridge_probabilities), np.sum(ridge_probabilities,axis=1).reshape(-1,1)) ridge_probabilities = ridge_probabilities.reshape(ridge_probabilities.shape[0],8,8) np.save('/%s/data/probabilities_pr_%s_jn.npy'%(homedir,method),ridge_probabilities) df = df.rename(columns={'DI':'doi'}) df['category'] = 'none' def write_matrix(): main_df = pd.read_csv('/%s/data/ArticleDataNew.csv'%(homedir)) prs = np.load('/%s/data/result_pr_df_%s.npy'%(homedir,method)) small_matrix = np.zeros((2,2)) matrix_idxs = {'white':0,'api':1,'hispanic':2,'black':3} small_idxs = {'white':0,'api':1,'hispanic':1,'black':1} for fa_r in ['white','api','hispanic','black']: for la_r in ['white','api','hispanic','black']: small_matrix[small_idxs[fa_r],small_idxs[la_r]] += np.sum(prs[:,matrix_idxs[fa_r],matrix_idxs[la_r]],axis=0) np.save('/Users/maxwell/Documents/GitHub/unbiasedciter/expected_matrix_%s.npy'%(method),np.sum(prs,axis=0)) np.save('//Users/maxwell/Documents/GitHub/unbiasedciter/expected_small_matrix_%s.npy'%(method),small_matrix) def convert_df(): main_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) race_df = pd.read_csv('/%s/data/result_df_%s.csv'%(homedir,method)) df = race_df.merge(main_df,how='outer',left_index=True, right_index=True) df['cited'] = np.nan for idx,paper in tqdm.tqdm(df.iterrows(),total=df.shape[0]): self_cites = np.array(paper.SA.split(',')).astype(int) try: cites = np.array(paper.CP.split(',')).astype(int) except: if np.isnan(paper.CP): continue cites = cites[np.isin(cites,self_cites) == False] df.iloc[idx,-1] = ', '.join(cites.astype(str)) df.to_csv('/%s/article_data/NewArticleData2019_filtered.csv'%(homedir)) def make_pr_percentages(control): print (control) df = pd.read_csv('/%s/article_data/NewArticleData2019_filtered.csv'%(homedir),header=0) citing_prs = np.load('/%s/data/result_pr_df_%s.npy'%(homedir,method)) if control == 'True_jn' or control == 'null_jn': base_prs = np.load('/%s/data/probabilities_pr_%s_jn.npy'%(homedir,method)) if control == True: base_prs = np.load('/%s/data/probabilities_pr_%s.npy'%(homedir,method)) if control == 'null_True': base_prs = np.load('/%s/data/probabilities_pr_%s.npy'%(homedir,method)) if control == 'null_walk' or control == 'walk': if walk_length == 'cited': base_prs = np.load('/%s/data/walk_pr_probabilities_%s_cited.npy'%(homedir,method)).reshape(-1,8,8) if walk_length[:3] == 'all': base_prs = np.load('/%s/data/walk_pr_probabilities_%s_%s.npy'%(homedir,method,walk_length)).reshape(-1,8,8) if type(control) != bool and control[:4] == 'null': matrix = np.zeros((100,df.shape[0],8,8)) matrix[:] = np.nan base_matrix = np.zeros((100,df.shape[0],8,8)) base_matrix[:] = np.nan else: matrix = np.zeros((df.shape[0],8,8)) matrix[:] = np.nan base_matrix = np.zeros((df.shape[0],8,8)) base_matrix[:] = np.nan if control == False: year_df = pd.DataFrame(columns=['year','month','prs']) citable_df = pd.DataFrame(columns=['year','month','index']) for year in df.PY.unique(): if year < 2009:continue for month in df.PD.unique(): rdf = df[(df.year<year) | ((df.year==year) & (df.PD<=month))] this_base_matrix = citing_prs[rdf.index.values].mean(axis=0) year_df = year_df.append(pd.DataFrame(np.array([year,month,this_base_matrix]).reshape(1,-1),columns=['year','month','prs']),ignore_index=True) citable_df = citable_df.append(pd.DataFrame(np.array([year,month,rdf.index.values]).reshape(1,-1),columns=['year','month','index']),ignore_index=True) if type(control) != bool and control[5:] == 'False': year_df = pd.DataFrame(columns=['year','month','prs']) citable_df = pd.DataFrame(columns=['year','month','index']) for year in df.PY.unique(): if year < 2009:continue for month in df.PD.unique(): rdf = df[(df.year<year) | ((df.year==year) & (df.PD<=month))] this_base_matrix = citing_prs[rdf.index.values].mean(axis=0) year_df = year_df.append(pd.DataFrame(np.array([year,month,this_base_matrix]).reshape(1,-1),columns=['year','month','prs']),ignore_index=True) citable_df = citable_df.append(pd.DataFrame(np.array([year,month,rdf.index.values]).reshape(1,-1),columns=['year','month','index']),ignore_index=True) for idx,paper in tqdm.tqdm(df.iterrows(),total=df.shape[0]): #only look at papers published 2009 or later year = paper.year if year < 2009:continue #only look at papers that cite at least 10 papers in our data if type(paper.cited) != str: if np.isnan(paper.cited)==True: continue n_cites = len(paper['cited'].split(',')) if n_cites < 10: continue if control == 'null_True' or control == 'null_jn': for i in range(100): this_base_matrix = [] this_matrix = [] for p in base_prs[np.array(paper['cited'].split(',')).astype(int)-1]: #for each cited paper if np.min(p) < 0:p = p + abs(np.min(p)) p = p + abs(np.min(p)) p = p.flatten()/p.sum() this_base_matrix.append(p.reshape((8,8))) #use model prs as base matrix choice = np.zeros((8,8)) choice[np.unravel_index(np.random.choice(range(64),p=p),(8,8))] = 1 #and randomly assign race category as citation matrix this_matrix.append(choice) this_base_matrix = np.sum(this_base_matrix,axis=0) this_matrix = np.sum(this_matrix,axis=0) matrix[i,idx] = this_matrix base_matrix[i,idx] = this_base_matrix elif control == 'null_False': citable = citable_df[(citable_df['year']==year)&(citable_df.month==paper.PD)]['index'].values[0] for i in range(100): this_base_matrix = [] this_matrix = [] for p in citing_prs[np.random.choice(citable,n_cites,False)]: #for each cited paper #for naive sampling random papers if np.min(p) < 0:p = p + abs(np.min(p)) p = p + abs(np.min(p)) p = p.flatten()/p.sum() this_base_matrix.append(p.reshape((8,8))) #use naive base rate as base matrix choice = np.zeros((8,8)) choice[np.unravel_index(np.random.choice(range(64),p=p),(8,8))] = 1 #and randomly assign race category as citation matrix based on base rates this_matrix.append(choice) this_base_matrix = np.sum(this_base_matrix,axis=0) this_matrix = np.sum(this_matrix,axis=0) matrix[i,idx] = this_matrix base_matrix[i,idx] = this_base_matrix elif control == 'null_walk': for i in range(100): this_base_matrix = [] this_matrix = [] for p in base_prs[np.array(paper['cited'].split(',')).astype(int)-1]: #for each cited paper choice = np.zeros((8,8)) if np.isnan(p).any(): this_base_matrix.append(p.reshape((8,8))) #use model prs as base matrix choice[:] = np.nan this_matrix.append(choice) continue if np.min(p) < 0:p = p + abs(np.min(p)) p = p + abs(np.min(p)) p = p.flatten()/p.sum() this_base_matrix.append(p.reshape((8,8))) #use model prs as base matrix choice[np.unravel_index(np.random.choice(range(64),p=p),(8,8))] = 1 #and randomly assign race category as citation matrix this_matrix.append(choice) this_base_matrix = np.nansum(this_base_matrix,axis=0) this_matrix = np.nansum(this_matrix,axis=0) matrix[i,idx] = this_matrix base_matrix[i,idx] = this_base_matrix else: this_matrix = citing_prs[np.array(paper['cited'].split(',')).astype(int)-1].sum(axis=0) if control == False: this_base_matrix = year_df[(year_df.year==year) & (year_df.month<=month)]['prs'].values[0] * n_cites if control == True: this_base_matrix = base_prs[np.array(paper['cited'].split(',')).astype(int)-1].sum(axis=0) if control == 'True_jn': this_base_matrix = base_prs[np.array(paper['cited'].split(',')).astype(int)-1].sum(axis=0) if control == 'walk': this_base_matrix = np.nansum(base_prs[np.array(paper['cited'].split(',')).astype(int)-1],axis=0) matrix[idx] = this_matrix base_matrix[idx] = this_base_matrix if type(control) == bool or control == 'True_jn': np.save('/%s/data/citation_matrix_pr_%s_%s.npy'%(homedir,method,control),matrix) np.save('/%s/data/base_citation_matrix_pr_%s_%s.npy'%(homedir,method,control),base_matrix) elif control =='null_True' or control =='null_False' or control == 'null_jn': np.save('/%s/data/citation_matrix_pr_%s_%s.npy'%(homedir,method,control),matrix) np.save('/%s/data/base_citation_matrix_pr_%s_%s.npy'%(homedir,method,control),base_matrix) else: np.save('/%s/data/citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,control,walk_length),matrix) np.save('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,control,walk_length),base_matrix) def self_citing(method): main_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) race_df = pd.read_csv('/%s/data/result_df_%s.csv'%(homedir,method)) df = race_df.merge(main_df,how='outer',left_index=True, right_index=True) df['self_cites'] = np.zeros((df.shape[0])) for idx,paper in tqdm.tqdm(df.iterrows(),total=df.shape[0]): #only look at papers published 2009 or later year = paper.year if year < 2009: continue df.iloc[idx,-1] = len(paper.SA.split(',')) scipy.stats.ttest_ind(df[(df.fa_race=='white')&(df.fa_race=='white')].self_cites,df[(df.fa_race!='white')|(df.fa_race!='white')].self_cites) np.median(df[(df.fa_race=='white')&(df.fa_race=='white')].self_cites.values) np.median(df[(df.fa_race!='white')|(df.fa_race!='white')].self_cites.values) np.mean(df[(df.fa_race=='white')&(df.fa_race=='white')].self_cites.values) np.mean(df[(df.fa_race!='white')|(df.fa_race!='white')].self_cites.values) def plot_pr_intersections(control,citing): main_df = pd.read_csv('/%s/article_data/NewArticleData2019.csv'%(homedir),header=0) race_df = pd.read_csv('/%s/data/result_df_%s.csv'%(homedir,method.split('_')[0])) df = race_df.merge(main_df,how='outer',left_index=True, right_index=True) n_iters = 1000 if type(control) == bool: matrix = np.load('/%s/data/citation_matrix_pr_%s_%s.npy'%(homedir,method,control)) base_matrix = np.load('/%s/data/base_citation_matrix_pr_%s_%s.npy'%(homedir,method,control)) elif control == 'all': matrix = np.load('/%s/data/citation_matrix_pr_%s_%s.npy'%(homedir,method,False)) base_matrix = [] for control_type in [True,False]: base_matrix.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s.npy'%(homedir,method,control_type))) base_matrix.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'walk','cited'))) base_matrix[0] = base_matrix[0] / np.nansum(base_matrix[0]) base_matrix[1] = base_matrix[1] / np.nansum(base_matrix[1]) base_matrix[2] = base_matrix[2] / np.nansum(base_matrix[2]) base_matrix = np.mean(base_matrix,axis=0) else: matrix = np.load('/%s/data/citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,control,walk_length)) base_matrix = np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,control,walk_length)) # np.save('/Users/maxwell/Documents/GitHub/unbiasedciter/expected_matrix_%s.npy'%(method),np.mean(matrix,axis=0)) if type(control) == bool: null = np.load('/%s/data/citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'null',control)) null_base = np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'null',control))[0] elif control == 'all': null = np.load('/%s/data/citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'null',False)) null_base = [] null_base.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'null',True))[0]) null_base.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'null',True))[0]) null_base.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s_%s.npy'%(homedir,method,'null','walk','cited'))[0]) null_base = np.mean(null_base,axis=0) else: null = np.load('/%s/data/citation_matrix_pr_%s_%s_%s_%s.npy'%(homedir,method,'null',control,walk_length)) null_base = np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s_%s.npy'%(homedir,method,'null',control,walk_length))[0] boot_matrix = np.zeros((n_iters,8,8)) boot_r_matrix = np.zeros((n_iters,8,8)) ww_indices = df[(df.year>=2009)&(df.fa_race=='white')&(df.la_race=='white')].index wa_indices = df[(df.year>=2009)&(df.fa_race=='white')&(df.la_race!='white')].index aw_indices = df[(df.year>=2009)&(df.fa_race!='white')&(df.la_race=='white')].index aa_indices = df[(df.year>=2009)&(df.fa_race!='white')&(df.la_race!='white')].index black_indices = df[(df.year>=2009)&((df.fa_race=='black')|(df.la_race=='black'))].index white_indices = df[(df.year>=2009)&((df.fa_race=='white')|(df.la_race=='white'))].index hispanic_indices = df[(df.year>=2009)&((df.fa_race=='hispanic')|(df.la_race=='hispanic'))].index api_indices = df[(df.year>=2009)&((df.fa_race=='api')|(df.la_race=='api'))].index for b in range(n_iters): if citing == 'all': papers = np.random.choice(range(matrix.shape[0]),matrix.shape[0],replace=True) if citing == 'ww': papers = np.random.choice(ww_indices,ww_indices.shape[0],replace=True) if citing == 'wa': papers = np.random.choice(wa_indices,wa_indices.shape[0],replace=True) if citing == 'aw': papers = np.random.choice(aw_indices,aw_indices.shape[0],replace=True) if citing == 'aa': papers = np.random.choice(aa_indices,aa_indices.shape[0],replace=True) if citing == 'black': papers = np.random.choice(black_indices,black_indices.shape[0],replace=True) if citing == 'hispanic': papers = np.random.choice(hispanic_indices,hispanic_indices.shape[0],replace=True) if citing == 'api': papers = np.random.choice(api_indices,api_indices.shape[0],replace=True) if citing == 'white': papers = np.random.choice(white_indices,white_indices.shape[0],replace=True) m = np.nansum(matrix[papers],axis=0) m = m / np.sum(m) e = np.nansum(base_matrix[papers],axis=0) e = e / np.sum(e) r = np.nansum(null[np.random.choice(100,1),papers],axis=0) r = r / np.sum(r) er = np.nansum(null_base[papers],axis=0) er = er / np.sum(er) rate = (m - e) / e r_rate = (r - er) / er boot_matrix[b] = rate boot_r_matrix[b] = r_rate # np.save('/%s/data/intersection_boot_matrix_%s.npy'%(homedir),boot_matrix,method) p_matrix = np.zeros((8,8)) for i,j in combinations(range(8),2): x = boot_matrix[:,i,j] y = boot_r_matrix[:,i,j] ay = abs(y) ax = abs(x.mean()) p_matrix[i,j] = len(ay[ay>ax]) p_matrix = p_matrix / n_iters multi_mask = multipletests(p_matrix.flatten(),0.05,'holm')[0].reshape(8,8) names = ['white(m)','Asian(m)','Hispanic(m)','Black(m)','white(w)','Asian(w)','Hispanic(w)','Black(w)'] matrix_idxs = {'white(m)':0,'api(m)':1,'hispanic(m)':2,'black(m)':3,'white(w)':4,'api(w)':5,'hispanic(w)':6,'black(w)':7} men_aoc = np.vectorize(matrix_idxs.get)(['api(m)','hispanic(m)','black(m)']) women_aoc = np.vectorize(matrix_idxs.get)(['api(w)','hispanic(w)','black(w)']) men_aoc = boot_matrix[:,men_aoc][:,:,men_aoc].flatten() women_aoc = boot_matrix[:,women_aoc][:,:,women_aoc].flatten() white_men = np.vectorize(matrix_idxs.get)(['white(m)']) white_women = np.vectorize(matrix_idxs.get)(['white(w)']) white_men= boot_matrix[:,white_men][:,:,white_men].flatten() white_women = boot_matrix[:,white_women][:,:,white_women].flatten() # def exact_mc_perm_test(xs, ys, nmc=10000): # n, k = len(xs), 0 # diff = np.abs(np.mean(xs) - np.mean(ys)) # zs = np.concatenate([xs, ys]) # for j in range(nmc): # np.random.shuffle(zs) # k += diff <= np.abs(np.mean(zs[:n]) - np.mean(zs[n:])) # return k / nmc # p = exact_mc_perm_test(men_aoc,women_aoc) # p = log_p_value(p) def direction(d): if d<=0: return 'less' else: return 'greater' diff = (men_aoc-women_aoc) high,low = np.percentile(diff,97.5),np.percentile(diff,2.5) low,high = np.around(low*100,2),np.around(high*100,2) diff = np.around(diff.mean()*100,2) print (control) if control == 'walk': print (walk_length) print ('AoC men papers are cited at %s percentage points %s than women AoC papers 95pecentCI=%s,%s'%(abs(diff),direction(diff),low,high)) diff = (white_men-men_aoc[:len(white_men)]) high,low = np.percentile(diff,97.5),np.percentile(diff,2.5) low,high = np.around(low*100,2),np.around(high*100,2) diff = np.around(diff.mean()*100,2) if control == 'walk': print (walk_length) print ('white men papers are cited at %s percentage points %s than men AoC papers 95pecentCI=%s,%s'%(abs(diff),direction(diff),low,high)) diff = (white_men-white_women) high,low = np.percentile(diff,97.5),np.percentile(diff,2.5) low,high = np.around(low*100,2),np.around(high*100,2) diff = np.around(diff.mean()*100,2) print ('white men papers are cited at %s percentage points %s than white women papers 95pecentCI=%s,%s'%(abs(diff),direction(diff),low,high)) diff = (white_women-women_aoc[:len(white_women)]) high,low = np.percentile(diff,97.5),np.percentile(diff,2.5) low,high = np.around(low*100,2),np.around(high*100,2) diff = np.around(diff.mean()*100,2) print ('white women papers are cited at %s percentage points %s than women-AoC papers 95pecentCI=%s,%s'%(abs(diff),direction(diff),low,high)) diff = (white_women-men_aoc[:len(white_women)]) high,low = np.percentile(diff,97.5),np.percentile(diff,2.5) low,high = np.around(low*100,2),np.around(high*100,2) diff = np.around(diff.mean()*100,2) if control == 'walk': print (walk_length) print ('white women papers are cited at %s percentage points %s than men AoC papers 95pecentCI=%s,%s'%(abs(diff),direction(diff),low,high)) # 1/0 if type(control) == bool: orig_matrix = np.load('/%s/data/citation_matrix_pr_%s_%s.npy'%(homedir,method,control)) orig_base_matrix = np.load('/%s/data/base_citation_matrix_pr_%s_%s.npy'%(homedir,method,control)) elif control == 'all': orig_matrix = np.load('/%s/data/citation_matrix_pr_%s_%s.npy'%(homedir,method,False)) orig_base_matrix = [] for control_type in [True,False]: orig_base_matrix.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s.npy'%(homedir,method,control_type))) orig_base_matrix.append(np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,'walk','cited'))) orig_base_matrix[0] = orig_base_matrix[0] / np.nansum(orig_base_matrix[0]) orig_base_matrix[1] = orig_base_matrix[1] / np.nansum(orig_base_matrix[1]) orig_base_matrix[2] = orig_base_matrix[2] / np.nansum(orig_base_matrix[2]) orig_base_matrix = np.mean(orig_base_matrix,axis=0) else: orig_matrix = np.load('/%s/data/citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,control,walk_length)) orig_base_matrix = np.load('/%s/data/base_citation_matrix_pr_%s_%s_%s.npy'%(homedir,method,control,walk_length)) matrix_idxs = {'white_M':0,'api_M':1,'hispanic_M':2,'black_M':3,'white_W':4,'api_W':5,'hispanic_W':6,'black_W':7} df =
pd.DataFrame(columns=['bias type','bias amount','boot','race'])
pandas.DataFrame
"""Plotting functions for linear models (broadly construed).""" from __future__ import division import copy import itertools import warnings import numpy as np import pandas as pd from scipy.spatial import distance import matplotlib as mpl import matplotlib.pyplot as plt try: import statsmodels.api as sm import statsmodels.formula.api as sf _has_statsmodels = True except ImportError: _has_statsmodels = False from .external.six import string_types from .external.six.moves import range from . import utils from . import algorithms as algo from .palettes import color_palette from .axisgrid import FacetGrid class _LinearPlotter(object): """Base class for plotting relational data in tidy format. To get anything useful done you'll have to inherit from this, but setup code that can be abstracted out should be put here. """ def establish_variables(self, data, **kws): """Extract variables from data or use directly.""" self.data = data # Validate the inputs any_strings = any([isinstance(v, string_types) for v in kws.values()]) if any_strings and data is None: raise ValueError("Must pass `data` if using named variables.") # Set the variables for var, val in kws.items(): if isinstance(val, string_types): setattr(self, var, data[val]) else: setattr(self, var, val) def dropna(self, *vars): """Remove observations with missing data.""" vals = [getattr(self, var) for var in vars] vals = [v for v in vals if v is not None] not_na = np.all(np.column_stack([pd.notnull(v) for v in vals]), axis=1) for var in vars: val = getattr(self, var) if val is not None: setattr(self, var, val[not_na]) def plot(self, ax): raise NotImplementedError class _DiscretePlotter(_LinearPlotter): """Plotter for data with discrete independent variable(s). This will be used by the `barplot` and `pointplot` functions, and thus indirectly by the `factorplot` function. It can produce plots where some statistic for a dependent measure is estimated within subsets of the data, which can be hierarchically structured at up to two levels (`x` and `hue`). The plots can be drawn with a few different visual representations of the same underlying data (`bar`, and `point`, with `box` doing something similar but skipping the estimation). """ def __init__(self, x, y=None, hue=None, data=None, units=None, x_order=None, hue_order=None, color=None, palette=None, kind="auto", markers=None, linestyles=None, dodge=0, join=True, hline=None, estimator=np.mean, ci=95, n_boot=1000, dropna=True): # This implies we have a single bar/point for each level of `x` # but that the different levels should be mapped with a palette self.x_palette = hue is None and palette is not None # Set class attributes based on inputs self.estimator = len if y is None else estimator self.ci = None if y is None else ci self.join = join self.n_boot = n_boot self.hline = hline # Other attributes that are hardcoded for now self.bar_widths = .8 self.err_color = "#444444" self.lw = mpl.rcParams["lines.linewidth"] * 1.8 # Once we've set the above values, if `y` is None we want the actual # y values to be the x values so we can count them self.y_count = y is None if y is None: y = x # Ascertain which values will be associated with what values self.establish_variables(data, x=x, y=y, hue=hue, units=units) # Figure out the order of the variables on the x axis x_sorted = np.sort(pd.unique(self.x)) self.x_order = x_sorted if x_order is None else x_order if self.hue is not None: hue_sorted = np.sort(pd.unique(self.hue)) self.hue_order = hue_sorted if hue_order is None else hue_order else: self.hue_order = [None] # Handle the other hue-mapped attributes if markers is None: self.markers = ["o"] * len(self.hue_order) else: if len(markers) != len(self.hue_order): raise ValueError("Length of marker list must equal " "number of hue levels") self.markers = markers if linestyles is None: self.linestyles = ["-"] * len(self.hue_order) else: if len(linestyles) != len(self.hue_order): raise ValueError("Length of linestyle list must equal " "number of hue levels") self.linestyles = linestyles # Drop null observations if dropna: self.dropna("x", "y", "hue", "units") # Settle whe kind of plot this is going to be self.establish_plot_kind(kind) # Determine the color palette self.establish_palette(color, palette) # Figure out where the data should be drawn self.establish_positions(dodge) def establish_palette(self, color, palette): """Set a list of colors for each plot element.""" n_hues = len(self.x_order) if self.x_palette else len(self.hue_order) hue_names = self.x_order if self.x_palette else self.hue_order if self.hue is None and not self.x_palette: if color is None: color = color_palette()[0] palette = [color for _ in self.x_order] elif palette is None: palette = color_palette(n_colors=n_hues) elif isinstance(palette, dict): palette = [palette[k] for k in hue_names] palette = color_palette(palette, n_hues) else: palette = color_palette(palette, n_hues) self.palette = palette if self.kind == "point": self.err_palette = palette else: # TODO make this smarter self.err_palette = [self.err_color] * len(palette) def establish_positions(self, dodge): """Make list of center values for each x and offset for each hue.""" self.positions = np.arange(len(self.x_order)) # If there's no hue variable kind is irrelevant if self.hue is None: n_hues = 1 width = self.bar_widths offset = np.zeros(n_hues) else: n_hues = len(self.hue_order) # Bar offset is set by hardcoded bar width if self.kind in ["bar", "box"]: width = self.bar_widths / n_hues offset = np.linspace(0, self.bar_widths - width, n_hues) if self.kind == "box": width *= .95 self.bar_widths = width # Point offset is set by `dodge` parameter elif self.kind == "point": offset = np.linspace(0, dodge, n_hues) offset -= offset.mean() self.offset = offset def establish_plot_kind(self, kind): """Use specified kind of apply heuristics to decide automatically.""" if kind == "auto": y = self.y # Walk through some heuristics to automatically assign a kind if self.y_count: kind = "bar" elif y.max() <= 1: kind = "point" elif (y.mean() / y.std()) < 2.5: kind = "bar" else: kind = "point" self.kind = kind elif kind in ["bar", "point", "box"]: self.kind = kind else: raise ValueError("%s is not a valid kind of plot" % kind) @property def estimate_data(self): """Generator to yield x, y, and ci data for each hue subset.""" # First iterate through the hues, as plots are drawn for all # positions of a given hue at the same time for i, hue in enumerate(self.hue_order): # Build intermediate lists of the values for each drawing pos = [] height = [] ci = [] for j, x in enumerate(self.x_order): pos.append(self.positions[j] + self.offset[i]) # Focus on the data for this specific bar/point current_data = (self.x == x) & (self.hue == hue) y_data = self.y[current_data] if self.units is None: unit_data = None else: unit_data = self.units[current_data] # This is where the main computation happens height.append(self.estimator(y_data)) if self.ci is not None: boots = algo.bootstrap(y_data, func=self.estimator, n_boot=self.n_boot, units=unit_data) ci.append(utils.ci(boots, self.ci)) yield pos, height, ci @property def binned_data(self): """Generator to yield entire subsets of data for each bin.""" # First iterate through the hues, as plots are drawn for all # positions of a given hue at the same time for i, hue in enumerate(self.hue_order): # Build intermediate lists of the values for each drawing pos = [] data = [] for j, x in enumerate(self.x_order): pos.append(self.positions[j] + self.offset[i]) current_data = (self.x == x) & (self.hue == hue) data.append(self.y[current_data]) yield pos, data def plot(self, ax): """Plot based on the stored value for kind of plot.""" plotter = getattr(self, self.kind + "plot") plotter(ax) # Set the plot attributes (these are shared across plot kinds if self.hue is not None: leg = ax.legend(loc="best", scatterpoints=1) if hasattr(self.hue, "name"): leg.set_title(self.hue.name, prop={"size": mpl.rcParams["axes.labelsize"]}) ax.xaxis.grid(False) ax.set_xticks(self.positions) ax.set_xticklabels(self.x_order) if hasattr(self.x, "name"): ax.set_xlabel(self.x.name) if self.y_count: ax.set_ylabel("count") else: if hasattr(self.y, "name"): ax.set_ylabel(self.y.name) if self.hline is not None: ymin, ymax = ax.get_ylim() if self.hline > ymin and self.hline < ymax: ax.axhline(self.hline, c="#666666") def barplot(self, ax): """Draw the plot with a bar representation.""" for i, (pos, height, ci) in enumerate(self.estimate_data): color = self.palette if self.x_palette else self.palette[i] ecolor = self.err_palette[i] label = self.hue_order[i] # The main plot ax.bar(pos, height, self.bar_widths, color=color, label=label, align="center") # The error bars for x, (low, high) in zip(pos, ci): ax.plot([x, x], [low, high], linewidth=self.lw, color=ecolor) # Set the x limits offset = .5 xlim = self.positions.min() - offset, self.positions.max() + offset ax.set_xlim(xlim) def boxplot(self, ax): """Draw the plot with a bar representation.""" from .distributions import boxplot for i, (pos, data) in enumerate(self.binned_data): color = self.palette if self.x_palette else self.palette[i] label = self.hue_order[i] # The main plot boxplot(data, widths=self.bar_widths, color=color, positions=pos, label=label, ax=ax) # Set the x limits offset = .5 xlim = self.positions.min() - offset, self.positions.max() + offset ax.set_xlim(xlim) def pointplot(self, ax): """Draw the plot with a point representation.""" for i, (pos, height, ci) in enumerate(self.estimate_data): color = self.palette if self.x_palette else self.palette[i] err_palette = self.err_palette label = self.hue_order[i] marker = self.markers[i] linestyle = self.linestyles[i] # The error bars for j, (x, (low, high)) in enumerate(zip(pos, ci)): ecolor = err_palette[j] if self.x_palette else err_palette[i] ax.plot([x, x], [low, high], linewidth=self.lw, color=ecolor) # The main plot ax.scatter(pos, height, s=75, color=color, label=label, marker=marker) # The join line if self.join: ax.plot(pos, height, color=color, linewidth=self.lw, linestyle=linestyle) # Set the x limits xlim = (self.positions.min() + self.offset.min() - .3, self.positions.max() + self.offset.max() + .3) ax.set_xlim(xlim) class _RegressionPlotter(_LinearPlotter): """Plotter for numeric independent variables with regression model. This does the computations and drawing for the `regplot` function, and is thus also used indirectly by `lmplot`. It is generally similar to the `_DiscretePlotter`, but it's intended for use when the independent variable is numeric (continuous or discrete), and its primary advantage is that a regression model can be fit to the data and visualized, allowing extrapolations beyond the observed datapoints. """ def __init__(self, x, y, data=None, x_estimator=None, x_bins=None, x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, color=None, label=None): # Set member attributes self.x_estimator = x_estimator self.ci = ci self.x_ci = ci if x_ci == "ci" else x_ci self.n_boot = n_boot self.scatter = scatter self.fit_reg = fit_reg self.order = order self.logistic = logistic self.lowess = lowess self.robust = robust self.truncate = truncate self.x_jitter = x_jitter self.y_jitter = y_jitter self.color = color self.label = label # Validate the regression options: if sum((order > 1, logistic, robust, lowess)) > 1: raise ValueError("Mutually exclusive regression options.") # Extract the data vals from the arguments or passed dataframe self.establish_variables(data, x=x, y=y, units=units, x_partial=x_partial, y_partial=y_partial) # Drop null observations if dropna: self.dropna("x", "y", "units", "x_partial", "y_partial") # Regress nuisance variables out of the data if self.x_partial is not None: self.x = self.regress_out(self.x, self.x_partial) if self.y_partial is not None: self.y = self.regress_out(self.y, self.y_partial) # Possibly bin the predictor variable, which implies a point estimate if x_bins is not None: self.x_estimator = np.mean if x_estimator is None else x_estimator x_discrete, x_bins = self.bin_predictor(x_bins) self.x_discrete = x_discrete else: self.x_discrete = self.x # Save the range of the x variable for the grid later self.x_range = self.x.min(), self.x.max() @property def scatter_data(self): """Data where each observation is a point.""" x_j = self.x_jitter if x_j is None: x = self.x else: x = self.x + np.random.uniform(-x_j, x_j, len(self.x)) y_j = self.y_jitter if y_j is None: y = self.y else: y = self.y + np.random.uniform(-y_j, y_j, len(self.y)) return x, y @property def estimate_data(self): """Data with a point estimate and CI for each discrete x value.""" x, y = self.x_discrete, self.y vals = sorted(np.unique(x)) points, cis = [], [] for val in vals: # Get the point estimate of the y variable _y = y[x == val] est = self.x_estimator(_y) points.append(est) # Compute the confidence interval for this estimate if self.x_ci is None: cis.append(None) else: units = None if self.units is not None: units = self.units[x == val] boots = algo.bootstrap(_y, func=self.x_estimator, n_boot=self.n_boot, units=units) _ci = utils.ci(boots, self.x_ci) cis.append(_ci) return vals, points, cis def fit_regression(self, ax=None, x_range=None, grid=None): """Fit the regression model.""" # Create the grid for the regression if grid is None: if self.truncate: x_min, x_max = self.x_range else: if ax is None: x_min, x_max = x_range else: x_min, x_max = ax.get_xlim() grid = np.linspace(x_min, x_max, 100) ci = self.ci # Fit the regression if self.order > 1: yhat, yhat_boots = self.fit_poly(grid, self.order) elif self.logistic: from statsmodels.api import GLM, families yhat, yhat_boots = self.fit_statsmodels(grid, GLM, family=families.Binomial()) elif self.lowess: ci = None grid, yhat = self.fit_lowess() elif self.robust: from statsmodels.api import RLM yhat, yhat_boots = self.fit_statsmodels(grid, RLM) else: yhat, yhat_boots = self.fit_fast(grid) # Compute the confidence interval at each grid point if ci is None: err_bands = None else: err_bands = utils.ci(yhat_boots, ci, axis=0) return grid, yhat, err_bands def fit_fast(self, grid): """Low-level regression and prediction using linear algebra.""" X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), grid] reg_func = lambda _x, _y: np.linalg.pinv(_x).dot(_y) yhat = grid.dot(reg_func(X, y)) if self.ci is None: return yhat, None beta_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units).T yhat_boots = grid.dot(beta_boots).T return yhat, yhat_boots def fit_poly(self, grid, order): """Regression using numpy polyfit for higher-order trends.""" x, y = self.x, self.y reg_func = lambda _x, _y: np.polyval(np.polyfit(_x, _y, order), grid) yhat = reg_func(x, y) if self.ci is None: return yhat, None yhat_boots = algo.bootstrap(x, y, func=reg_func, n_boot=self.n_boot, units=self.units) return yhat, yhat_boots def fit_statsmodels(self, grid, model, **kwargs): """More general regression function using statsmodels objects.""" X, y = np.c_[np.ones(len(self.x)), self.x], self.y grid = np.c_[np.ones(len(grid)), grid] reg_func = lambda _x, _y: model(_y, _x, **kwargs).fit().predict(grid) yhat = reg_func(X, y) if self.ci is None: return yhat, None yhat_boots = algo.bootstrap(X, y, func=reg_func, n_boot=self.n_boot, units=self.units) return yhat, yhat_boots def fit_lowess(self): """Fit a locally-weighted regression, which returns its own grid.""" from statsmodels.api import nonparametric grid, yhat = nonparametric.lowess(self.y, self.x).T return grid, yhat def bin_predictor(self, bins): """Discretize a predictor by assigning value to closest bin.""" x = self.x if np.isscalar(bins): percentiles = np.linspace(0, 100, bins + 2)[1:-1] bins = np.c_[utils.percentiles(x, percentiles)] else: bins = np.c_[np.ravel(bins)] dist = distance.cdist(np.c_[x], bins) x_binned = bins[np.argmin(dist, axis=1)].ravel() return x_binned, bins.ravel() def regress_out(self, a, b): """Regress b from a keeping a's original mean.""" a_mean = a.mean() a = a - a_mean b = b - b.mean() b = np.c_[b] a_prime = a - b.dot(np.linalg.pinv(b).dot(a)) return (a_prime + a_mean).reshape(a.shape) def plot(self, ax, scatter_kws, line_kws): """Draw the full plot.""" # Insert the plot label into the correct set of keyword arguments if self.fit_reg: line_kws["label"] = self.label else: scatter_kws["label"] = self.label # Use the current color cycle state as a default if self.color is None: lines, = plt.plot(self.x.mean(), self.y.mean()) color = lines.get_color() lines.remove() else: color = self.color # Let color in keyword arguments override overall plot color scatter_kws.setdefault("color", color) line_kws.setdefault("color", color) # Draw the constituent plots if self.scatter: self.scatterplot(ax, scatter_kws) if self.fit_reg: self.lineplot(ax, line_kws) # Label the axes if hasattr(self.x, "name"): ax.set_xlabel(self.x.name) if hasattr(self.y, "name"): ax.set_ylabel(self.y.name) def scatterplot(self, ax, kws): """Draw the data.""" if self.x_estimator is None: kws.setdefault("alpha", .8) x, y = self.scatter_data ax.scatter(x, y, **kws) else: # TODO abstraction ci_kws = {"color": kws["color"]} ci_kws["linewidth"] = mpl.rcParams["lines.linewidth"] * 1.75 kws.setdefault("s", 50) xs, ys, cis = self.estimate_data if [ci for ci in cis if ci is not None]: for x, ci in zip(xs, cis): ax.plot([x, x], ci, **ci_kws) ax.scatter(xs, ys, **kws) def lineplot(self, ax, kws): """Draw the model.""" xlim = ax.get_xlim() # Fit the regression model grid, yhat, err_bands = self.fit_regression(ax) # Get set default aesthetics fill_color = kws["color"] lw = kws.pop("lw", mpl.rcParams["lines.linewidth"] * 1.5) kws.setdefault("linewidth", lw) # Draw the regression line and confidence interval ax.plot(grid, yhat, **kws) if err_bands is not None: ax.fill_between(grid, *err_bands, color=fill_color, alpha=.15) ax.set_xlim(*xlim) def lmplot(x, y, data, hue=None, col=None, row=None, palette="husl", col_wrap=None, size=5, aspect=1, sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, dropna=True, legend=True, legend_out=True, **kwargs): """Plot a linear regression model and data onto a FacetGrid. Parameters ---------- x, y : strings Column names in ``data``. data : DataFrame Long-form (tidy) dataframe with variables in columns and observations in rows. hue, col, row : strings, optional Variable names to facet on the hue, col, or row dimensions (see :class:`FacetGrid` docs for more information). palette : seaborn palette or dict, optional Color palette if using a `hue` facet. Should be something that seaborn.color_palette can read, or a dictionary mapping values of the hue variable to matplotlib colors. col_wrap : int, optional Wrap the column variable at this width. Incompatible with `row`. size : scalar, optional Height (in inches) of each facet. aspect : scalar, optional Aspect * size gives the width (in inches) of each facet. share{x, y}: booleans, optional Lock the limits of the vertical and horizontal axes across the facets. {hue, col, row}_order: sequence of strings Order to plot the values in the faceting variables in, otherwise sorts the unique values. dropna : boolean, optional Drop missing values from the data before plotting. legend : boolean, optional Draw a legend for the data when using a `hue` variable. legend_out: boolean, optional Draw the legend outside the grid of plots. kwargs : key, value pairs Other keyword arguments are pasted to :func:`regplot` Returns ------- facets : FacetGrid Returns the :class:`FacetGrid` instance with the plot on it for further tweaking. See Also -------- regplot : Axes-level function for plotting linear regressions. """ # Backwards-compatibility warning layer if "color" in kwargs: msg = "`color` is deprecated and will be removed; using `hue` instead." warnings.warn(msg, UserWarning) hue = kwargs.pop("color") # Reduce the dataframe to only needed columns # Otherwise when dropna is True we could lose data because it is missing # in a column that isn't relevant to this plot units = kwargs.get("units", None) x_partial = kwargs.get("x_partial", None) y_partial = kwargs.get("y_partial", None) need_cols = [x, y, hue, col, row, units, x_partial, y_partial] cols = np.unique([a for a in need_cols if a is not None]).tolist() data = data[cols] # Initialize the grid facets = FacetGrid(data, row, col, hue, palette=palette, row_order=row_order, col_order=col_order, hue_order=hue_order, dropna=dropna, size=size, aspect=aspect, col_wrap=col_wrap, sharex=sharex, sharey=sharey, legend=legend, legend_out=legend_out) # Hack to set the x limits properly, which needs to happen here # because the extent of the regression estimate is determined # by the limits of the plot if sharex: for ax in facets.axes.flat: scatter = ax.scatter(data[x], np.ones(len(data)) * data[y].mean()) scatter.remove() # Draw the regression plot on each facet facets.map_dataframe(regplot, x, y, **kwargs) return facets def factorplot(x, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=np.mean, ci=95, n_boot=1000, units=None, x_order=None, hue_order=None, col_order=None, row_order=None, kind="auto", markers=None, linestyles=None, dodge=0, join=True, hline=None, size=5, aspect=1, palette=None, legend=True, legend_out=True, dropna=True, sharex=True, sharey=True, margin_titles=False): """Plot a variable estimate and error sorted by categorical factors. Parameters ---------- x : string Variable name in `data` for splitting the plot on the x axis. y : string, optional Variable name in `data` for the dependent variable. If omitted, the counts within each bin are plotted (without confidence intervals). data : DataFrame Long-form (tidy) dataframe with variables in columns and observations in rows. hue : string, optional Variable name in `data` for splitting the plot by color. In the case of `kind="bar"`, this also influences the placement on the x axis. row, col : strings, optional Variable name(s) in `data` for splitting the plot into a facet grid along row and columns. col_wrap : int or None, optional Wrap the column variable at this width (incompatible with `row`). estimator : vector -> scalar function, optional Function to aggregate `y` values at each level of the factors. ci : int in {0, 100}, optional Size of confidene interval to draw around the aggregated value. n_boot : int, optional Number of bootstrap resamples used to compute confidence interval. units : vector, optional Vector with ids for sampling units; bootstrap will be performed over these units and then within them. kind : {"auto", "point", "bar"}, optional Visual representation of the plot. "auto" uses a few heuristics to guess whether "bar" or "point" is more appropriate. markers : list of strings, optional Marker codes to map the `hue` variable with. Only relevant when kind is "point". linestyles : list of strings, optional Linestyle codes to map the `hue` variable with. Only relevant when kind is "point". dodge : positive scalar, optional Horizontal offset applies to different `hue` levels. Only relevant when kind is "point". join : boolean, optional Whether points from the same level of `hue` should be joined. Only relevant when kind is "point". size : positive scalar, optional Height (in inches) of each facet. aspect : positive scalar, optional Ratio of facet width to facet height. palette : seaborn color palette, optional Palette to map `hue` variable with (or `x` variable when `hue` is None). legend : boolean, optional Draw a legend, only if `hue` is used and does not overlap with other variables. legend_out : boolean, optional Draw the legend outside the grid; otherwise it is placed within the first facet. dropna : boolean, optional Remove observations that are NA within any variables used to make the plot. share{x, y} : booleans, optional Lock the limits of the vertical and/or horizontal axes across the facets. margin_titles : bool, optional If True and there is a `row` variable, draw the titles on the right margin of the grid (experimental). Returns ------- facet : FacetGrid Returns the :class:`FacetGrid` instance with the plot on it for further tweaking. See Also -------- pointplot : Axes-level function for drawing a point plot barplot : Axes-level function for drawing a bar plot boxplot : Axes-level function for drawing a box plot """ cols = [a for a in [x, y, hue, col, row, units] if a is not None] cols = pd.unique(cols).tolist() data = data[cols] facet_hue = hue if hue in [row, col] else None facet_palette = palette if hue in [row, col] else None # Initialize the grid facets = FacetGrid(data, row, col, facet_hue, palette=facet_palette, row_order=row_order, col_order=col_order, dropna=dropna, size=size, aspect=aspect, col_wrap=col_wrap, legend=legend, legend_out=legend_out, margin_titles=margin_titles) if kind == "auto": if y is None: kind = "bar" elif (data[y] <= 1).all(): kind = "point" elif (data[y].mean() / data[y].std()) < 2.5: kind = "bar" else: kind = "point" # Draw the plot on each facet kwargs = dict(estimator=estimator, ci=ci, n_boot=n_boot, units=units, x_order=x_order, hue_order=hue_order, hline=hline) # Delegate the hue variable to the plotter not the FacetGrid if hue is not None and hue in [row, col]: hue = None else: kwargs["palette"] = palette # Plot by mapping a plot function across the facets if kind == "bar": facets.map_dataframe(barplot, x, y, hue, **kwargs) elif kind == "box": def _boxplot(x, y, hue, data=None, **kwargs): p = _DiscretePlotter(x, y, hue, data, kind="box", **kwargs) ax = plt.gca() p.plot(ax) facets.map_dataframe(_boxplot, x, y, hue, **kwargs) elif kind == "point": kwargs.update(dict(dodge=dodge, join=join, markers=markers, linestyles=linestyles)) facets.map_dataframe(pointplot, x, y, hue, **kwargs) # Draw legends and labels if y is None: facets.set_axis_labels(x, "count") facets.fig.tight_layout() if legend and (hue is not None) and (hue not in [x, row, col]): facets.set_legend(title=hue, label_order=hue_order) return facets def barplot(x, y=None, hue=None, data=None, estimator=np.mean, hline=None, ci=95, n_boot=1000, units=None, x_order=None, hue_order=None, dropna=True, color=None, palette=None, label=None, ax=None): """Estimate data in categorical bins with a bar representation. Parameters ---------- x : Vector or string Data or variable name in `data` for splitting the plot on the x axis. y : Vector or string, optional Data or variable name in `data` for the dependent variable. If omitted, the counts within each bin are plotted (without confidence intervals). data : DataFrame, optional Long-form (tidy) dataframe with variables in columns and observations in rows. estimator : vector -> scalar function, optional Function to aggregate `y` values at each level of the factors. ci : int in {0, 100}, optional Size of confidene interval to draw around the aggregated value. n_boot : int, optional Number of bootstrap resamples used to compute confidence interval. units : vector, optional Vector with ids for sampling units; bootstrap will be performed over these units and then within them. palette : seaborn color palette, optional Palette to map `hue` variable with (or `x` variable when `hue` is None). dropna : boolean, optional Remove observations that are NA within any variables used to make the plot. Returns ------- facet : FacetGrid Returns the :class:`FacetGrid` instance with the plot on it for further tweaking. See Also -------- factorplot : Combine barplot and FacetGrid pointplot : Axes-level function for drawing a point plot """ plotter = _DiscretePlotter(x, y, hue, data, units, x_order, hue_order, color, palette, "bar", None, None, 0, False, hline, estimator, ci, n_boot, dropna) if ax is None: ax = plt.gca() plotter.plot(ax) return ax def pointplot(x, y, hue=None, data=None, estimator=np.mean, hline=None, ci=95, n_boot=1000, units=None, x_order=None, hue_order=None, markers=None, linestyles=None, dodge=0, dropna=True, color=None, palette=None, join=True, label=None, ax=None): """Estimate data in categorical bins with a point representation. Parameters ---------- x : Vector or string Data or variable name in `data` for splitting the plot on the x axis. y : Vector or string, optional Data or variable name in `data` for the dependent variable. If omitted, the counts within each bin are plotted (without confidence intervals). data : DataFrame, optional Long-form (tidy) dataframe with variables in columns and observations in rows. estimator : vector -> scalar function, optional Function to aggregate `y` values at each level of the factors. ci : int in {0, 100}, optional Size of confidene interval to draw around the aggregated value. n_boot : int, optional Number of bootstrap resamples used to compute confidence interval. units : vector, optional Vector with ids for sampling units; bootstrap will be performed over these units and then within them. markers : list of strings, optional Marker codes to map the `hue` variable with. linestyles : list of strings, optional Linestyle codes to map the `hue` variable with. dodge : positive scalar, optional Horizontal offset applies to different `hue` levels. Only relevant when kind is "point". join : boolean, optional Whether points from the same level of `hue` should be joined. Only relevant when kind is "point". palette : seaborn color palette, optional Palette to map `hue` variable with (or `x` variable when `hue` is None). dropna : boolean, optional Remove observations that are NA within any variables used to make the plot. Returns ------- ax : Axes Returns the matplotlib Axes with the plot on it for further tweaking. See Also -------- factorplot : Combine pointplot and FacetGrid barplot : Axes-level function for drawing a bar plot """ plotter = _DiscretePlotter(x, y, hue, data, units, x_order, hue_order, color, palette, "point", markers, linestyles, dodge, join, hline, estimator, ci, n_boot, dropna) if ax is None: ax = plt.gca() plotter.plot(ax) return ax def regplot(x, y, data=None, x_estimator=None, x_bins=None, x_ci=95, scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, xlabel=None, ylabel=None, label=None, color=None, scatter_kws=None, line_kws=None, ax=None): """Draw a scatter plot between x and y with a regression line. Parameters ---------- x : vector or string Data or column name in `data` for the predictor variable. y : vector or string Data or column name in `data` for the response variable. data : DataFrame, optional DataFrame to use if `x` and `y` are column names. x_estimator : function that aggregates a vector into one value, optional When `x` is a discrete variable, apply this estimator to the data at each value and plot the data as a series of point estimates and confidence intervals rather than a scatter plot. x_bins : int or vector, optional When `x` is a continuous variable, use the values in this vector (or a vector of evenly spaced values with this length) to discretize the data by assigning each point to the closest bin value. This applies only to the plot; the regression is fit to the original data. This implies that `x_estimator` is numpy.mean if not otherwise provided. x_ci: int between 0 and 100, optional Confidence interval to compute and draw around the point estimates when `x` is treated as a discrete variable. scatter : boolean, optional Draw the scatter plot or point estimates with CIs representing the observed data. fit_reg : boolean, optional If False, don't fit a regression; just draw the scatterplot. ci : int between 0 and 100 or None, optional Confidence interval to compute for regression estimate, which is drawn as translucent bands around the regression line. n_boot : int, optional Number of bootstrap resamples used to compute the confidence intervals. units : vector or string Data or column name in `data` with ids for sampling units, so that the bootstrap is performed by resampling units and then observations within units for more accurate confidence intervals when data have repeated measures. order : int, optional Order of the polynomial to fit. Use order > 1 to explore higher-order trends in the relationship. logistic : boolean, optional Fit a logistic regression model. This requires `y` to be dichotomous with values of either 0 or 1. lowess : boolean, optional Plot a lowess model (locally weighted nonparametric regression). robust : boolean, optional Fit a robust linear regression, which may be useful when the data appear to have outliers. {x, y}_partial : matrix or string(s) , optional Matrix with same first dimension as `x`, or column name(s) in `data`. These variables are treated as confounding and are removed from the `x` or `y` variables before plotting. truncate : boolean, optional If True, truncate the regression estimate at the minimum and maximum values of the `x` variable. dropna : boolean, optional Remove observations that are NA in at least one of the variables. {x, y}_jitter : floats, optional Add uniform random noise from within this range (in data coordinates) to each datapoint in the x and/or y direction. This can be helpful when plotting discrete values. label : string, optional Label to use for the regression line, or for the scatterplot if not fitting a regression. color : matplotlib color, optional Color to use for all elements of the plot. Can set the scatter and regression colors separately using the `kws` dictionaries. If not provided, the current color in the axis cycle is used. {scatter, line}_kws : dictionaries, optional Additional keyword arguments passed to scatter() and plot() for drawing the components of the plot. ax : matplotlib axis, optional Plot into this axis, otherwise grab the current axis or make a new one if not existing. Returns ------- ax: matplotlib axes Axes with the regression plot. See Also -------- lmplot : Combine regplot and a FacetGrid. residplot : Calculate and plot the residuals of a linear model. jointplot (with kind="reg"): Draw a regplot with univariate marginal distrbutions. """ plotter = _RegressionPlotter(x, y, data, x_estimator, x_bins, x_ci, scatter, fit_reg, ci, n_boot, units, order, logistic, lowess, robust, x_partial, y_partial, truncate, dropna, x_jitter, y_jitter, color, label) if ax is None: ax = plt.gca() scatter_kws = {} if scatter_kws is None else copy.copy(scatter_kws) line_kws = {} if line_kws is None else copy.copy(line_kws) plotter.plot(ax, scatter_kws, line_kws) return ax def residplot(x, y, data=None, lowess=False, x_partial=None, y_partial=None, order=1, robust=False, dropna=True, label=None, color=None, scatter_kws=None, ax=None): """Plot the residuals of a linear regression. This function will regress y on x (possibly as a robust or polynomial regression) and then draw a scatterplot of the residuals. You can optionally fit a lowess smoother to the residual plot, which can help in determining if there is structure to the residuals. Parameters ---------- x : vector or string Data or column name in `data` for the predictor variable. y : vector or string Data or column name in `data` for the response variable. data : DataFrame, optional DataFrame to use if `x` and `y` are column names. lowess : boolean, optional Fit a lowess smoother to the residual scatterplot. {x, y}_partial : matrix or string(s) , optional Matrix with same first dimension as `x`, or column name(s) in `data`. These variables are treated as confounding and are removed from the `x` or `y` variables before plotting. order : int, optional Order of the polynomial to fit when calculating the residuals. robust : boolean, optional Fit a robust linear regression when calculating the residuals. dropna : boolean, optional If True, ignore observations with missing data when fitting and plotting. label : string, optional Label that will be used in any plot legends. color : matplotlib color, optional Color to use for all elements of the plot. scatter_kws : dictionaries, optional Additional keyword arguments passed to scatter() for drawing. ax : matplotlib axis, optional Plot into this axis, otherwise grab the current axis or make a new one if not existing. Returns ------- ax: matplotlib axes Axes with the regression plot. See Also -------- regplot : Plot a simple linear regression model. jointplot (with kind="resid"): Draw a residplot with univariate marginal distrbutions. """ plotter = _RegressionPlotter(x, y, data, ci=None, order=order, robust=robust, x_partial=x_partial, y_partial=y_partial, dropna=dropna, color=color, label=label) if ax is None: ax = plt.gca() # Calculate the residual from a linear regression _, yhat, _ = plotter.fit_regression(grid=plotter.x) plotter.y = plotter.y - yhat # Set the regression option on the plotter if lowess: plotter.lowess = True else: plotter.fit_reg = False # Plot a horizontal line at 0 ax.axhline(0, ls=":", c=".2") # Draw the scatterplot scatter_kws = {} if scatter_kws is None else scatter_kws plotter.plot(ax, scatter_kws, {}) return ax def coefplot(formula, data, groupby=None, intercept=False, ci=95, palette="husl"): """Plot the coefficients from a linear model. Parameters ---------- formula : string patsy formula for ols model data : dataframe data for the plot; formula terms must appear in columns groupby : grouping object, optional object to group data with to fit conditional models intercept : bool, optional if False, strips the intercept term before plotting ci : float, optional size of confidence intervals palette : seaborn color palette, optional palette for the horizonal plots """ if not _has_statsmodels: raise ImportError("The `coefplot` function requires statsmodels") alpha = 1 - ci / 100 if groupby is None: coefs = sf.ols(formula, data).fit().params cis = sf.ols(formula, data).fit().conf_int(alpha) else: grouped = data.groupby(groupby) coefs = grouped.apply(lambda d: sf.ols(formula, d).fit().params).T cis = grouped.apply(lambda d: sf.ols(formula, d).fit().conf_int(alpha)) # Possibly ignore the intercept if not intercept: coefs = coefs.ix[1:] n_terms = len(coefs) # Plot seperately depending on groupby w, h = mpl.rcParams["figure.figsize"] hsize = lambda n: n * (h / 2) wsize = lambda n: n * (w / (4 * (n / 5))) if groupby is None: colors = itertools.cycle(color_palette(palette, n_terms)) f, ax = plt.subplots(1, 1, figsize=(wsize(n_terms), hsize(1))) for i, term in enumerate(coefs.index): color = next(colors) low, high = cis.ix[term] ax.plot([i, i], [low, high], c=color, solid_capstyle="round", lw=2.5) ax.plot(i, coefs.ix[term], "o", c=color, ms=8) ax.set_xlim(-.5, n_terms - .5) ax.axhline(0, ls="--", c="dimgray") ax.set_xticks(range(n_terms)) ax.set_xticklabels(coefs.index) else: n_groups = len(coefs.columns) f, axes = plt.subplots(n_terms, 1, sharex=True, figsize=(wsize(n_groups), hsize(n_terms))) if n_terms == 1: axes = [axes] colors = itertools.cycle(color_palette(palette, n_groups)) for ax, term in zip(axes, coefs.index): for i, group in enumerate(coefs.columns): color = next(colors) low, high = cis.ix[(group, term)] ax.plot([i, i], [low, high], c=color, solid_capstyle="round", lw=2.5) ax.plot(i, coefs.loc[term, group], "o", c=color, ms=8) ax.set_xlim(-.5, n_groups - .5) ax.axhline(0, ls="--", c="dimgray") ax.set_title(term) ax.set_xlabel(groupby) ax.set_xticks(range(n_groups)) ax.set_xticklabels(coefs.columns) def interactplot(x1, x2, y, data=None, filled=False, cmap="RdBu_r", colorbar=True, levels=30, logistic=False, contour_kws=None, scatter_kws=None, ax=None, **kwargs): """Visualize a continuous two-way interaction with a contour plot. Parameters ---------- x1, x2, y, strings or array-like Either the two independent variables and the dependent variable, or keys to extract them from `data` data : DataFrame Pandas DataFrame with the data in the columns. filled : bool Whether to plot with filled or unfilled contours cmap : matplotlib colormap Colormap to represent yhat in the countour plot. colorbar : bool Whether to draw the colorbar for interpreting the color values. levels : int or sequence Number or position of contour plot levels. logistic : bool Fit a logistic regression model instead of linear regression. contour_kws : dictionary Keyword arguments for contour[f](). scatter_kws : dictionary Keyword arguments for plot(). ax : matplotlib axis Axis to draw plot in. Returns ------- ax : Matplotlib axis Axis with the contour plot. """ if not _has_statsmodels: raise ImportError("The `interactplot` function requires statsmodels") # Handle the form of the data if data is not None: x1 = data[x1] x2 = data[x2] y = data[y] if hasattr(x1, "name"): xlabel = x1.name else: xlabel = None if hasattr(x2, "name"): ylabel = x2.name else: ylabel = None if hasattr(y, "name"): clabel = y.name else: clabel = None x1 = np.asarray(x1) x2 = np.asarray(x2) y = np.asarray(y) # Initialize the scatter keyword dictionary if scatter_kws is None: scatter_kws = {} if not ("color" in scatter_kws or "c" in scatter_kws): scatter_kws["color"] = "#222222" if not "alpha" in scatter_kws: scatter_kws["alpha"] = 0.75 # Intialize the contour keyword dictionary if contour_kws is None: contour_kws = {} # Initialize the axis if ax is None: ax = plt.gca() # Plot once to let matplotlib sort out the axis limits ax.plot(x1, x2, "o", **scatter_kws) # Find the plot limits x1min, x1max = ax.get_xlim() x2min, x2max = ax.get_ylim() # Make the grid for the contour plot x1_points = np.linspace(x1min, x1max, 100) x2_points = np.linspace(x2min, x2max, 100) xx1, xx2 = np.meshgrid(x1_points, x2_points) # Fit the model with an interaction X = np.c_[np.ones(x1.size), x1, x2, x1 * x2] if logistic: lm = sm.GLM(y, X, family=sm.families.Binomial()).fit() else: lm = sm.OLS(y, X).fit() # Evaluate the model on the grid eval = np.vectorize(lambda x1_, x2_: lm.predict([1, x1_, x2_, x1_ * x2_])) yhat = eval(xx1, xx2) # Default color limits put the midpoint at mean(y) y_bar = y.mean() c_min = min(np.percentile(y, 2), yhat.min()) c_max = max(np.percentile(y, 98), yhat.max()) delta = max(c_max - y_bar, y_bar - c_min) c_min, cmax = y_bar - delta, y_bar + delta contour_kws.setdefault("vmin", c_min) contour_kws.setdefault("vmax", c_max) # Draw the contour plot func_name = "contourf" if filled else "contour" contour = getattr(ax, func_name) c = contour(xx1, xx2, yhat, levels, cmap=cmap, **contour_kws) # Draw the scatter again so it's visible ax.plot(x1, x2, "o", **scatter_kws) # Draw a colorbar, maybe if colorbar: bar = plt.colorbar(c) # Label the axes if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if clabel is not None and colorbar: clabel = "P(%s)" % clabel if logistic else clabel bar.set_label(clabel, labelpad=15, rotation=270) return ax def corrplot(data, names=None, annot=True, sig_stars=True, sig_tail="both", sig_corr=True, cmap=None, cmap_range=None, cbar=True, diag_names=True, ax=None, **kwargs): """Plot a correlation matrix with colormap and r values. Parameters ---------- data : Dataframe or nobs x nvars array Rectangular input data with variabes in the columns. names : sequence of strings Names to associate with variables if `data` is not a DataFrame. annot : bool Whether to annotate the upper triangle with correlation coefficients. sig_stars : bool If True, get significance with permutation test and denote with stars. sig_tail : both | upper | lower Direction for significance test. Also controls the default colorbar. sig_corr : bool If True, use FWE-corrected p values for the sig stars. cmap : colormap Colormap name as string or colormap object. cmap_range : None, "full", (low, high) Either truncate colormap at (-max(abs(r)), max(abs(r))), use the full range (-1, 1), or specify (min, max) values for the colormap. cbar : bool If true, plot the colorbar legend. ax : matplotlib axis Axis to draw plot in. kwargs : other keyword arguments Passed to ax.matshow() Returns ------- ax : matplotlib axis Axis object with plot. """ if not isinstance(data, pd.DataFrame): if names is None: names = ["var_%d" % i for i in range(data.shape[1])] data =
pd.DataFrame(data, columns=names, dtype=np.float)
pandas.DataFrame
import numpy as np import pandas as pd import random import tensorflow.keras as keras from sklearn.model_selection import train_test_split def read_data(random_state=42, otu_filename='../../Datasets/otu_table_all_80.csv', metadata_filename='../../Datasets/metadata_table_all_80.csv'): otu =
pd.read_csv(otu_filename, index_col=0, header=None, sep='\t')
pandas.read_csv
""" test fancy indexing & misc """ from datetime import datetime import re import weakref import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import ( is_float_dtype, is_integer_dtype, ) import pandas as pd from pandas import ( DataFrame, Index, NaT, Series, date_range, offsets, timedelta_range, ) import pandas._testing as tm from pandas.core.api import Float64Index from pandas.tests.indexing.common import _mklbl from pandas.tests.indexing.test_floats import gen_obj # ------------------------------------------------------------------------ # Indexing test cases class TestFancy: """pure get/set item & fancy indexing""" def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) # invalid msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) # valid df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], "bar"] expected = Series( [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar" ) tm.assert_series_equal(result, expected) def test_setitem_ndarray_1d_2(self): # GH5508 # dtype getting changed? df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df[2:5] = np.arange(1, 4) * 1j def test_getitem_ndarray_3d( self, index, frame_or_series, indexer_sli, using_array_manager ): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) msgs = [] if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]: msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]") if using_array_manager: msgs.append("Passed array should be 1-dimensional") if frame_or_series is Series or indexer_sli is tm.iloc: msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)") if using_array_manager: msgs.append("indexer should be 1-dimensional") if indexer_sli is tm.loc or ( frame_or_series is Series and indexer_sli is tm.setitem ): msgs.append("Cannot index with multidimensional key") if frame_or_series is DataFrame and indexer_sli is tm.setitem: msgs.append("Index data must be 1-dimensional") if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc: msgs.append("Index data must be 1-dimensional") if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)): msgs.append("Data must be 1-dimensional") if len(index) == 0 or isinstance(index, pd.MultiIndex): msgs.append("positional indexers are out-of-bounds") msg = "|".join(msgs) potential_errors = (IndexError, ValueError, NotImplementedError) with pytest.raises(potential_errors, match=msg): idxr[nd3] def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) if indexer_sli is tm.iloc: err = ValueError msg = f"Cannot set values with ndim > {obj.ndim}" else: err = ValueError msg = "|".join( [ r"Buffer has wrong number of dimensions \(expected 1, got 3\)", "Cannot set values with ndim > 1", "Index data must be 1-dimensional", "Data must be 1-dimensional", "Array conditional must be same shape as self", ] ) with pytest.raises(err, match=msg): idxr[nd3] = 0 def test_getitem_ndarray_0d(self): # GH#24924 key = np.array(0) # dataframe __getitem__ df = DataFrame([[1, 2], [3, 4]]) result = df[key] expected = Series([1, 3], name=0) tm.assert_series_equal(result, expected) # series __getitem__ ser = Series([1, 2]) result = ser[key] assert result == 1 def test_inf_upcast(self): # GH 16957 # We should be able to use np.inf as a key # np.inf should cause an index to convert to float # Test with np.inf in rows df = DataFrame(columns=[0]) df.loc[1] = 1 df.loc[2] = 2 df.loc[np.inf] = 3 # make sure we can look up the value assert df.loc[np.inf, 0] == 3 result = df.index expected = Float64Index([1, 2, np.inf]) tm.assert_index_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df["c"] = np.nan assert df["c"].dtype == np.float64 df.loc[0, "c"] = "foo" expected = DataFrame( [{"a": 1, "b": np.nan, "c": "foo"}, {"a": 3, "b": 2, "c": np.nan}] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("val", [3.14, "wxyz"]) def test_setitem_dtype_upcast2(self, val): # GH10280 df = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=list("ab"), columns=["foo", "bar", "baz"], ) left = df.copy() left.loc["a", "bar"] = val right = DataFrame( [[0, val, 2], [3, 4, 5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_integer_dtype(left["foo"]) assert is_integer_dtype(left["baz"]) def test_setitem_dtype_upcast3(self): left = DataFrame( np.arange(6, dtype="int64").reshape(2, 3) / 10.0, index=list("ab"), columns=["foo", "bar", "baz"], ) left.loc["a", "bar"] = "wxyz" right = DataFrame( [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_float_dtype(left["foo"]) assert is_float_dtype(left["baz"]) def test_dups_fancy_indexing(self): # GH 3455 df = tm.makeCustomDataframe(10, 3) df.columns = ["a", "a", "b"] result = df[["b", "a"]].columns expected = Index(["b", "a", "a"]) tm.assert_index_equal(result, expected) def test_dups_fancy_indexing_across_dtypes(self): # across dtypes df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa")) df.head() str(df) result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]]) result.columns = list("aaaaaaa") # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) def test_dups_fancy_indexing_not_in_order(self): # GH 3561, dups not in selected order df = DataFrame( {"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")}, index=["A", "A", "B", "C"], ) rows = ["C", "B"] expected = DataFrame( {"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows ) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ["C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] # see GH5553, make sure we use the right indexer rows = ["F", "G", "H", "C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] def test_dups_fancy_indexing_only_missing_label(self): # List containing only missing label dfnu = DataFrame(np.random.randn(5, 3), index=list("AABCD")) with pytest.raises( KeyError, match=re.escape( "\"None of [Index(['E'], dtype='object')] are in the [index]\"" ), ): dfnu.loc[["E"]] # ToDo: check_index_type can be True after GH 11497 @pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")]) def test_dups_fancy_indexing_missing_label(self, vals): # GH 4619; duplicate indexer with missing label df = DataFrame({"A": vals}) with pytest.raises(KeyError, match="not in index"): df.loc[[0, 8, 0]] def test_dups_fancy_indexing_non_unique(self): # non unique with non unique selector df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"]) with pytest.raises(KeyError, match="not in index"): df.loc[["A", "A", "E"]] def test_dups_fancy_indexing2(self): # GH 5835 # dups on index and missing values df = DataFrame(np.random.randn(5, 5), columns=["A", "B", "B", "B", "A"]) with pytest.raises(KeyError, match="not in index"): df.loc[:, ["A", "B", "C"]] def test_dups_fancy_indexing3(self): # GH 6504, multi-axis indexing df = DataFrame( np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=["a", "b"] ) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ["a", "b"]] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ["a", "b"]] tm.assert_frame_equal(result, expected) def test_duplicate_int_indexing(self, indexer_sl): # GH 17347 ser = Series(range(3), index=[1, 1, 3]) expected = Series(range(2), index=[1, 1]) result = indexer_sl(ser)[[1]] tm.assert_series_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame( {"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}} ) # this works, new column is created correctly df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x) # this does not work, ie column test is not changed idx = df["test"] == "_" temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x) df.loc[idx, "test"] = temp assert df.iloc[0, 2] == "-----" def test_multitype_list_index_access(self): # GH 10610 df = DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")): df[[22, 26, -8]] assert df[21].shape[0] == df.shape[0] def test_set_index_nan(self): # GH 3586 df = DataFrame( { "PRuid": { 17: "nonQC", 18: "nonQC", 19: "nonQC", 20: "10", 21: "11", 22: "12", 23: "13", 24: "24", 25: "35", 26: "46", 27: "47", 28: "48", 29: "59", 30: "10", }, "QC": { 17: 0.0, 18: 0.0, 19: 0.0, 20: np.nan, 21: np.nan, 22: np.nan, 23: np.nan, 24: 1.0, 25: np.nan, 26: np.nan, 27: np.nan, 28: np.nan, 29: np.nan, 30: np.nan, }, "data": { 17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006, }, "year": { 17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986, }, } ).reset_index() result = ( df.set_index(["year", "PRuid", "QC"]) .reset_index() .reindex(columns=df.columns) ) tm.assert_frame_equal(result, df) def test_multi_assign(self): # GH 3626, an assignment of a sub-df to a df df = DataFrame( { "FC": ["a", "b", "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": list(range(6)), "col2": list(range(6, 12)), } ) df.iloc[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isna() cols = ["col1", "col2"] dft = df2 * 2 dft.iloc[3, 3] = np.nan expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": Series([0, 1, 4, 6, 8, 10]), "col2": [12, 7, 16, np.nan, 20, 22], } ) # frame on rhs df2.loc[mask, cols] = dft.loc[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs # coerces to float64 because values has float64 dtype # GH 14001 expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": [0.0, 1.0, 4.0, 6.0, 8.0, 10.0], "col2": [12, 7, 16, np.nan, 20, 22], } ) df2 = df.copy() df2.loc[mask, cols] = dft.loc[mask, cols].values tm.assert_frame_equal(df2, expected) def test_multi_assign_broadcasting_rhs(self): # broadcasting on the rhs is required df = DataFrame( { "A": [1, 2, 0, 0, 0], "B": [0, 0, 0, 10, 11], "C": [0, 0, 0, 10, 11], "D": [3, 4, 5, 6, 7], } ) expected = df.copy() mask = expected["A"] == 0 for col in ["A", "B"]: expected.loc[mask, col] = df["D"] df.loc[df["A"] == 0, ["A", "B"]] = df["D"] tm.assert_frame_equal(df, expected) # TODO(ArrayManager) setting single item with an iterable doesn't work yet # in the "split" path @td.skip_array_manager_not_yet_implemented def test_setitem_list(self): # GH 6043 # iloc with a list df =
DataFrame(index=[0, 1], columns=[0])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pandas as pd from astropy.coordinates import SkyCoord from astropy.io.votable import parse from sh import bzip2 from ...lib.context_managers import cd # ============================================================================= # CONSTANTS # ============================================================================= PATH = os.path.abspath(os.path.dirname(__file__)) CATALOG_PATH = os.path.join(PATH, "carpyncho_catalog.pkl") # ============================================================================= # BUILD # ============================================================================= def get_ogle_3_resume(): with cd(PATH): bzip2("-f", "-dk", "ogleIII_all.csv.bz2") df = pd.read_csv("ogleIII_all.csv") ra = df["RA"].apply( lambda d: d.replace(":", "h", 1).replace(":", "m", 1) + "s") dec = df["Decl"].apply( lambda d: d.replace(":", "d", 1).replace(":", "m", 1) + "s") coords = SkyCoord(ra, dec, frame='icrs') df['ra'] = pd.Series(coords.ra.deg, index=df.index) df['dec'] = pd.Series(coords.dec.deg, index=df.index) df["cls"] = df["Type"] + "-" + df["Subtype"] df = df[["ID", "ra", "dec", "cls"]] df["catalog"] = pd.Series("OGLE-3", index=df.index) os.remove("ogleIII_all.csv") return df def get_ogle_4_resume(): with cd(PATH): bzip2("-f", "-dk", "ogle4.csv.bz2") df = pd.read_csv("ogle4.csv") def _ra(d): d = d.replace(":", "h", 1).replace(":", "m", 1) return d.replace(":", ".") + "s" ra = df["ra"].apply(_ra) def _dec(d): d = d.replace(":", "d", 1).replace(":", "m", 1) return d.replace(":", ".") + "s" dec = df["dec"].apply(_dec) coords = SkyCoord(ra, dec, frame='icrs') df['ra'] = pd.Series(coords.ra.deg, index=df.index) df['dec'] = pd.Series(coords.dec.deg, index=df.index) df["ID"] = df["id"] df = df[["ID", "ra", "dec", "cls"]] df["catalog"] =
pd.Series("OGLE-4", index=df.index)
pandas.Series
# -*- coding: utf-8 -*- """ Joining files script, to be used prior to uploading the data on DataBricks """ import pandas as pd import glob # Name of the sensors whch files need to be joined sensors = ["well_wh_p_", "well_dh_p_", "well_wh_t_", "well_dh_t", "well_wh_choke_"] # loop through each sensor and find all files with sensor as name for csvfile in sensors: path = r'C:/Users/well_data/' #change path accordingly all_files = glob.glob(path + "/" + csvfile + "*" ) print(len(all_files)) # Print total number of files present in repository li = [] # Create list to store .csv data during joining # get data out of each .csv file for filename in all_files: df = pd.read_csv(filename, index_col=None, header=0) li.append(df) print("All files read for sensor", csvfile) # concatenate the files together frame =
pd.concat(li, axis=0, ignore_index=True, sort=False)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 4 09:34:08 2017 @author: <NAME> Answer query script: This script contains functions to query and manipulate DLR survey answer sets. It references datasets that must be stored in a /data/tables subdirectory in the parent directory. """ import numpy as np import pandas as pd import os from glob import glob import json import feather from support import feature_dir, fdata_dir, InputError, writeLog, validYears, table_dir def loadTable(name, query=None, columns=None): """ This function loads all feather tables in filepath into workspace. """ dir_path = os.path.join(table_dir, 'feather') file = os.path.join(dir_path, name +'.feather') d = feather.read_dataframe(file) if columns is None: table = d else: table = d[columns] try: return table except UnboundLocalError: return('Could not find table with name '+name) def loadID(): """ This function subsets Answer or Profile IDs by year. Tables variable can be constructred with loadTables() function. Year input can be number or string. id_name is AnswerID or ProfileID. """ groups = loadTable('groups') links = loadTable('links') profiles = loadTable('profiles') # a_id = links[(links.GroupID != 0) & (links['AnswerID'] != 0)].drop(columns=['ConsumerID','lock','ProfileID']) p_id = links[(links.GroupID != 0) & (links['ProfileID'] != 0)].drop(labels=['ConsumerID','lock','AnswerID'], axis=1) profile_meta = profiles.merge(p_id, how='left', left_on='ProfileId', right_on='ProfileID').drop(labels=['ProfileId','lock'], axis=1) ap = links[links.GroupID==0].drop(labels=['ConsumerID','lock','GroupID'], axis=1) x = profile_meta.merge(ap, how='outer', on = 'ProfileID') join = x.merge(groups, on='GroupID', how='left') #Wrangling data into right format all_ids = join[join['Survey'] != 'Namibia'] # remove Namibia all_ids = all_ids.dropna(subset=['GroupID','Year']) all_ids.Year = all_ids.Year.astype(int) all_ids.GroupID = all_ids.GroupID.astype(int) all_ids.AnswerID.fillna(0, inplace=True) all_ids.AnswerID = all_ids.AnswerID.astype(int) all_ids.ProfileID = all_ids.ProfileID.astype(int) return all_ids def idsDuplicates(): ids = loadID() i = ids[(ids.duplicated('AnswerID')==True)&(ids['AnswerID']!=0)] ip = i.pivot_table(index='Year',columns='AnswerID',values='ProfileID',aggfunc='count') return ip.T.describe() def matchAIDToPID(year, pp): #TODO still needs checking --- think about integrating with socios.loadID -> all PIDs and the 0 where there is no corresponding AID a_id = loadID(year, id_name = 'AnswerID')['id'] # p_id = socios.loadID(year, id_name = 'ProfileID')['id'] #get dataframe of linkages between AnswerIDs and ProfileIDs links = loadTable('links') # year_links = links[links.ProfileID.isin(p_id)] year_links = links[links.AnswerID.isin(a_id)] year_links = year_links.loc[year_links.ProfileID != 0, ['AnswerID','ProfileID']] #get profile metadata (recorder ID, recording channel, recorder type, units of measurement) profiles = loadTable('profiles') #add AnswerID information to profiles metadata profile_meta = year_links.merge(profiles, left_on='ProfileID', right_on='ProfileId').drop('ProfileId', axis=1) VI_profile_meta = profile_meta.loc[(profile_meta['Unit of measurement'] == 2), :] #select current profiles only #THIS IS NB!! output = pp.merge(VI_profile_meta.loc[:,['AnswerID','ProfileID']], left_on='ProfileID_i', right_on='ProfileID').drop(['ProfileID','Valid_i','Valid_v'], axis=1) output = output[output.columns.sort_values()] output.fillna({'valid_calculated':0}, inplace=True) return output def loadQuestions(dtype = None): """ This function gets all questions. """ qu = loadTable('questions').drop(labels='lock', axis=1) qu.Datatype = qu.Datatype.astype('category') qu.Datatype.cat.categories = ['blob','char','num'] qu['ColumnAlias'] = [x.strip() for x in qu['ColumnAlias']] if dtype is None: pass else: qu = qu[qu.Datatype == dtype] return qu def loadAnswers(): """ This function returns all answer IDs and their question responses for a selected data type. If dtype is None, answer IDs and their corresponding questionaire IDs are returned instead. """ answer_meta = loadTable('answers', columns=['AnswerID', 'QuestionaireID']) blob = loadTable('answers_blob_anonymised').drop(labels='lock', axis=1) blob = blob.merge(answer_meta, how='left', on='AnswerID') blob.fillna(np.nan, inplace = True) char = loadTable('answers_char_anonymised').drop(labels='lock', axis=1) char = char.merge(answer_meta, how='left', on='AnswerID') char.fillna(np.nan, inplace = True) num = loadTable('answers_number_anonymised').drop(labels='lock', axis=1) num = num.merge(answer_meta, how='left', on='AnswerID') num.fillna(np.nan, inplace = True) return {'blob':blob, 'char':char, 'num':num} def searchQuestions(search = None): """ Searches questions for a search term, taking questionaire ID and question data type (num, blob, char) as input. A single search term can be specified as a string, or a list of search terms as list. """ questions = loadTable('questions').drop(labels='lock', axis=1) questions.Datatype = questions.Datatype.astype('category') questions.Datatype.cat.categories = ['blob','char','num'] if search is None: searchterm = '' else: searchterm = search.replace(' ', '+') trantab = str.maketrans({'(':'', ')':'', ' ':'', '/':''}) result = questions.loc[questions.Question.str.translate(trantab).str.contains(searchterm, case=False), ['Question', 'Datatype','QuestionaireID', 'ColumnNo']] return result def searchAnswers(search): """ This function returns the answer IDs and responses for a list of search terms """ answers = loadAnswers() questions = searchQuestions(search) #get column numbers for query result = pd.DataFrame(columns=['AnswerID','QuestionaireID']) for dt in questions.Datatype.unique(): ans = answers[dt] for i in questions.QuestionaireID.unique(): select = questions.loc[(questions.Datatype == dt)&(questions.QuestionaireID==i)] fetchcolumns=['AnswerID'] + ['QuestionaireID'] + list(select.ColumnNo.astype(str)) newcolumns = ['AnswerID'] + ['QuestionaireID'] + list(select.Question.astype(str).str.lower()) df = ans.loc[ans['QuestionaireID']==i,fetchcolumns] df.columns = newcolumns result = result.merge(df, how='outer') return result def extractSocios(searchlist, year=None, col_names=None, geo=None): """ This function creates a dataframe containing the data for a set of selected features for a given year. questionaire options: 6 - pre 1999, 3 - 2000 onwards This function extracts a set of selected features for a given year. 'geo' adds location data and can be one of Municipality, District, Province or None """ if isinstance(searchlist, list): pass else: searchlist = [searchlist] if col_names is None: search = dict(zip(searchlist, searchlist)) else: search = dict(zip(searchlist, col_names)) #filter AnswerIDs by year ids = loadID() if year is None: sub_ids = ids[ids.AnswerID!=0] else: sub_ids = ids[(ids.AnswerID!=0)&(ids.Year==year)] sub_ids = sub_ids.drop_duplicates(subset='AnswerID') #generate feature frame result = pd.DataFrame(columns=['AnswerID','QuestionaireID']) for s in search.keys(): d = searchAnswers(s) ans = d[(d.AnswerID.isin(sub_ids.AnswerID)) & (d.QuestionaireID < 10)] # remove non-domestic results ans = ans.dropna(axis=1, how='all') #set feature frame column names if len(ans.columns[2:])==1: ans.columns = ['AnswerID','QuestionaireID'] + [search.get(s)] try: result = result.merge(ans, how='outer') except Exception: pass if geo is None: result = result.merge(sub_ids[['AnswerID', 'ProfileID']], how='left') else: result = result.merge(sub_ids[['AnswerID', 'ProfileID', geo]], how='left') return result def generateSociosSetSingle(year, spec_file, set_id='ProfileID'): """ This function generates a json formatted evidence text file compatible with the syntax for providing evidence to the python library libpgm for the specified year. The function requires a json formatted text file with feature specifications as input. """ #Get feature specficiations files = glob(os.path.join(feature_dir, 'specification', spec_file + '*.txt')) for file_path in files: try: with open(file_path, 'r') as f: featurespec = json.load(f) year_range = featurespec['year_range'] except: raise InputError(year, 'Problem reading the spec file.') if year >= int(year_range[0]) and year <= int(year_range[1]): validYears(year) #check if year input is valid break else: continue searchlist = featurespec['searchlist'] features = featurespec['features'] transform = featurespec['transform'] bins = featurespec['bins'] labels = featurespec['labels'] cut = featurespec['cut'] replace = featurespec['replace'] if len(featurespec['geo'])==0: geo = None else: geo = featurespec['geo'] #Get data and questions from socio-demographic survey responses data = extractSocios(searchlist, year, col_names=searchlist, geo=geo) missing_cols = list(set(searchlist) - set(data.columns)) data = data.append(
pd.DataFrame(columns=missing_cols)
pandas.DataFrame
# Created by <NAME> import numpy as np import pandas as pd from hics.scored_slices import ScoredSlices class AbstractResultStorage: def update_relevancies(self, new_relevancies: pd.DataFrame): raise NotImplementedError() def update_redundancies(self, new_redundancies: pd.DataFrame): raise NotImplementedError() def update_bivariate_redundancies(self, new_redundancies: pd.DataFrame, new_weights: pd.DataFrame): raise NotImplementedError() def update_slices(self, new_slices: dict()): raise NotImplementedError() def get_bivariate_redundancies(self): raise NotImplementedError() def get_redundancies(self): raise NotImplementedError() def get_relevancies(self): raise NotImplementedError() def get_slices(self): raise NotImplementedError() class DefaultResultStorage(AbstractResultStorage): def __init__(self, features: list()): self.relevancies = pd.DataFrame(columns=['relevancy', 'iteration']) self.redundancies =
pd.DataFrame(columns=['redundancy', 'iteration'])
pandas.DataFrame
import torch import numpy as np import pandas as pd import time import h5py from tensorboardX import SummaryWriter class DeepLogger(object): def __init__(self, time_to_track, what_to_track, log_fname=None, network_fname=None, seed_id=0, tboard_fname=None, time_to_print=None, what_to_print=[], save_all_ckpth=False, print_every_update=None): """ Logging object for Deep RL experiments - Parameters to specify: - Where to log agent (.ckpth) & training stats (.hdf5) to - Random seed & folderpath for tensorboard - Time index & statistics to print & Verbosity level of logger - Whether to save all or only most recent checkpoint of network """ self.current_optim_step = 0 self.log_save_counter = 0 self.log_update_counter = 0 self.seed_id = seed_id self.print_every_update = print_every_update if print_every_update is not None else 1 self.start_time = time.time() # Set where to log to (Stats - .hdf5, Network - .ckpth) if isinstance(log_fname, str): self.log_save_fname = log_fname else: self.log_save_fname = None if isinstance(network_fname, str): self.network_save_fname = network_fname else: self.network_save_fname = None # Boolean and fname list for storing all weights during training self.save_all_ckpth = save_all_ckpth if self.save_all_ckpth: self.ckpth_w_list = [] # Initialize tensorboard logger/summary writer if isinstance(tboard_fname, str): self.writer = SummaryWriter(tboard_fname + "_seed_" + str(self.seed_id)) else: self.writer = None # Initialize pd dataframes to store logging stats/times self.time_to_track = time_to_track + ["time_elapsed"] self.what_to_track = what_to_track self.clock_to_track = pd.DataFrame(columns=self.time_to_track) self.stats_to_track =
pd.DataFrame(columns=self.what_to_track)
pandas.DataFrame
import sys import argparse from functools import reduce from collections import OrderedDict import numpy as np import pandas as pd import matplotlib.pyplot as plt import xgboost as xgb from sklearn.metrics import roc_auc_score from sklearn.linear_model import Ridge, LinearRegression import torch import torch.nn as nn from zamlexplain.data import load_data from model import RealNVP def mean_sd(df_x, df_gen): df_x = df_x.iloc[:,:17] df_gen = df_gen.iloc[:,:17] mean_x = df_x.mean() mean_gen = df_gen.mean() mean_err = 100*(mean_gen - mean_x)/mean_x df_mean = pd.DataFrame(OrderedDict({ 'data mean': mean_x, 'synth mean': mean_gen, 'err %': mean_err})).round({'data mean': 2, 'synth mean': 2, 'err %': 0}) std_x = df_x.std() std_gen = df_gen.std() std_err = 100*(std_gen - std_x)/std_x df_std = pd.DataFrame(OrderedDict({ 'data std': std_x, 'synth std': std_gen, 'err %': std_err})).round({'data std': 2, 'synth std': 2, 'err %': 0}) return df_mean, df_std def fix_df(x, scaler, return_numpy=False): x = scaler.inverse_transform(x.copy()) for cat_idx in scaler.cat_cols: if len(cat_idx) == 1: x[:, cat_idx] = (x[:,cat_idx] > 0.5).astype(np.float32) else: new_ohe = np.zeros((x.shape[0], len(cat_idx)), dtype=np.float32) new_ohe[np.arange(x.shape[0]), np.argmax(x[:, cat_idx], axis=1)] = 1.0 x[:, cat_idx] = new_ohe # delinq_2yrs, inq, mths, mths, open for i in [5, 6, 7, 8, 9, 10, 12, 16]: x[x[:,i] < 0, i] = 0.0 x[:, i] = np.round(x[:, i]) if return_numpy: return x else: return
pd.DataFrame(x, columns=scaler.columns)
pandas.DataFrame
import re import os import pandas as pd import numpy as np from .extract_tools import default_tokenizer as _default_tokenizer def _getDictionnaryKeys(dictionnary): """ Function that get keys from a dict object and flatten sub dict. """ keys_array = [] for key in dictionnary.keys(): keys_array.append(key) if (type(dictionnary[key]) == type({})): keys_array = keys_array+_getDictionnaryKeys(dictionnary[key]) return(keys_array) class pandasToBrat: """ Class for Pandas brat folder management. For each brat folder, there is an instance of pandasToBrat. It supports importation and exportation of configurations for relations and entities. Documents importation and exportation. Annotations and entities importation and exportation. Inputs : folder, str : path of brat folder """ def __init__(self, folder): self.folder = folder self.conf_file = 'annotation.conf' self.emptyDFCols = { "annotations":["id","type_id", "word", "label", "start", "end"], "relations":["id","type_id","relation","Arg1","Arg2"] } # Adding '/' to folder path if missing if(self.folder[-1] != '/'): self.folder += '/' # Creating folder if do not exist if (os.path.isdir(self.folder)) == False: os.mkdir(self.folder) # Loading conf file if exists | creating empty conf file if not self.read_conf() def _emptyData(self): fileList = self._getFileList() nb_files = fileList.shape[0] confirmation = input("Deleting all data ({} files), press y to confirm :".format(nb_files)) if confirmation == 'y': fileList["filename"].apply(lambda x: os.remove(self.folder+x)) print("{} files deleted.".format(nb_files)) def _generateEntitiesStr (self, conf, data = '', level = 0): if (type(conf) != type({})): return data # Parsing keys for key in conf.keys(): value = conf[key] if value == True: data += '\n'+level*'\t'+key elif value == False: data += '\n'+level*'\t'+'!'+key elif type(value) == type({}): data += '\n'+level*'\t'+key data = self._generateEntitiesStr(value, data, level+1) return data def _writeEntitiesLevel (self, conf, data, last_n = -1): for n in range(last_n,len(conf)): # If empty : pass, if not the last line : pass if (conf[n] != '' and n > last_n): level = len(conf[n].split("\t"))-1 if (n+1 <= len(conf)): # Level of next item next_level = len(conf[n+1].split("\t"))-1 else: next_level = level splitted_str = conf[n].split("\t") str_clean = splitted_str[len(splitted_str)-1] if (level >= next_level): # On écrit les lignes de même niveau if (str_clean[0] == '!'): data[str_clean[1:]] = False else: data[str_clean] = True if (level > next_level): # On casse la boucle break elif (level < next_level): # On écrit les lignes inférieurs par récurence splitted_str = conf[n].split("\t") last_n, data[str_clean] = self._writeEntitiesLevel(conf, {}, n) return(n, data) def _readRelations(self, relations, entities = []): data = {} for relation in relations.split("\n"): if relation != '': relation_data = relation.split("\t")[0] args = list(map(lambda x: x.split(":")[1], relation.split("\t")[1].split(", "))) args_valid = list(filter(lambda x: x in entities, args)) if (len(args_valid) > 0): data[relation_data] = {"args":args_valid} return data def _writeRelations(self, relations, entities = []): data = '' for relation in relations: args_array = list(filter(lambda x: x in entities, relations[relation]["args"])) if (len(args_array) > 0): data += '\n'+relation+'\t' for n in range(0, len(args_array)): data += int(bool(n))*', '+'Arg'+str(n+1)+':'+args_array[n] return data def read_conf (self): """ Get the current Brat configuration. Output : Dict containing "entities" and "relations" configurations. """ if (os.path.isfile(self.folder+self.conf_file)): # Reading file file = open(self.folder+self.conf_file) conf_str = file.read() file.close() # Splitting conf_str conf_data = re.split(re.compile(r"\[[a-zA-Z]+\]", re.DOTALL), conf_str)[1:] data = {} # Reading enteties data["entities"] = self._writeEntitiesLevel(conf_data[0].split("\n"), {})[1] # Reading relations entitiesKeys = _getDictionnaryKeys(data["entities"]) data["relations"] = self._readRelations(conf_data[1], entitiesKeys) return(data) else: self.write_conf() self.read_conf() def write_conf(self, entities = {}, relations = {}, events = {}, attributes = {}): """ Write or overwrite configuration file. It actually doesn't suppport events and attributes configuration data. inputs : entities, dict : dict containing the entities. If an entities do have children, his value is an other dict, otherwise, it is set as True. relations, dict : dict containing the relations between entities, each key is a relation name, the value is a dict with a "args" key containing the list of related entities. """ # TODO : Add events and attributes support. conf_str = '' # Entities conf_str += '\n\n[entities]' conf_str += self._generateEntitiesStr(entities) # relations conf_str += '\n\n[relations]' entitiesKeys = _getDictionnaryKeys(entities) conf_str += self._writeRelations(relations, entitiesKeys) # attributes conf_str += '\n\n[attributes]' # events conf_str += '\n\n[events]' # Write conf file file = open(self.folder+self.conf_file,'w') file.write(conf_str) file.close() def _getFileList(self): # Listing files filesDF = pd.DataFrame({'filename':pd.Series(os.listdir(self.folder))}) filesDFSplitted = filesDF["filename"].str.split(".", expand = True) filesDF["id"] = filesDFSplitted[0] filesDF["filetype"] = filesDFSplitted[1] filesDF = filesDF[filesDF["filetype"].isin(["txt","ann"])] return(filesDF) def _parseData(self): # Listing files filesDF = self._getFileList() # Getting data from txt and ann filesDF_txt = filesDF.rename(columns = {"filename":"text_data"}).loc[filesDF["filetype"] == "txt", ["id","text_data"]] filesDF_ann = filesDF.rename(columns = {"filename":"annotation"}).loc[filesDF["filetype"] == "ann", ["id","annotation"]] dataDF = filesDF_txt.join(filesDF_ann.set_index("id"), on = "id") dataDF["text_data"] = dataDF["text_data"].apply(lambda x: open(self.folder+x).read()) dataDF["annotation"] = dataDF["annotation"].apply(lambda x: open(self.folder+x).read()) return(dataDF) def read_text(self): """ read_text Get a pandas DataFrame containing the brat documents. Input : None Output : Pandas dataframe """ dataDF = self._parseData() return(dataDF[["id","text_data"]]) def read_annotation(self, ids = []): """ read_annotation Get annotations from the brat folder. You can get specific annotation by filtering by id. input : ids, list (optionnal) : list of id for which you want the annotation data, if empty all annotations are returned. output : dict containing an annotations and relations data. """ data = {} data["annotations"] = pd.DataFrame(columns=self.emptyDFCols["annotations"]) data["relations"] = pd.DataFrame(columns=self.emptyDFCols["relations"]) dataDF = self._parseData()[["id","annotation"]] dataDF = dataDF[(dataDF["annotation"].isna() == False) & (dataDF["annotation"] != '')] # Removing empty annotation # Filtering by ids if (len(ids) > 0): dataDF = dataDF[dataDF["id"].isin(pd.Series(ids).astype(str))] if (dataDF.shape[0] > 0): # Ann data to pandas dataDF = dataDF.join(dataDF["annotation"].str.split("\n").apply(pd.Series).stack().reset_index(level = 0).set_index("level_0")).reset_index(drop = True).drop("annotation", axis = 1).rename(columns = {0: "annotation"}) dataDF = dataDF[dataDF["annotation"].str.len() > 0].reset_index(drop = True) dataDF = dataDF.join(dataDF["annotation"].str.split("\t", expand = True).rename(columns = {0: 'type_id', 1: 'data', 2: 'word'})).drop("annotation", axis = 1) dataDF["type"] = dataDF["type_id"].str.slice(0,1) ## Annotations data["annotations"] = dataDF[dataDF["type"] == 'T'] if (data["annotations"].shape[0] > 0): data["annotations"] = data["annotations"].join(data["annotations"]["data"].str.split(" ", expand = True).rename(columns = {0: "label", 1: "start", 2: "end"})).drop(columns = ["data","type"]) ## Relations data["relations"] = dataDF[dataDF["type"] == 'R'] if (data["relations"].shape[0] > 0): tmp_splitted = data["relations"]["data"].str.split(" ", expand = True).rename(columns = {0: "relation"}) ### Col names rename_dict = dict(zip(list(tmp_splitted.columns.values[1:]), list("Arg"+tmp_splitted.columns.values[1:].astype(str).astype(object)))) tmp_splitted = tmp_splitted.rename(columns = rename_dict) ### Merging data tmp_splitted = tmp_splitted[["relation"]].join(tmp_splitted.loc[:,tmp_splitted.columns[tmp_splitted.columns != 'relation']].applymap(lambda x: x.split(":")[1])) data["relations"] = data["relations"].join(tmp_splitted).drop(columns = ["data","type","word"]) return(data) def _write_function(self, x, filetype = "txt", overwrite = False): filenames = [] if (filetype == 'txt' or filetype == 'both'): filenames.append(self.folder+str(x["filename"])+'.txt') if (filetype == 'ann' or filetype == 'both'): filenames.append(self.folder+str(x["filename"])+'.ann') for filename in filenames: try: open(str(filename), "r") is_file = True except FileNotFoundError: is_file = False if ((is_file == False) or (overwrite == True)): file = open(str(filename), "w") file.write(x["content"]) file.close() def write_text(self, text_id, text, empty = False, overWriteAnnotations = False): """ write_text Send text data from the brat folder. input : text_id, pd.Series : pandas series containing documents ids text, pd.Series : pandas series containing documents text in the same order as text_id empty, boolean : if True the brat folder is emptyied of all but configuration data (text and ann files) before writting overwriteAnnotations, boolean : if True, the current annotation files are replaced by blank one """ if overWriteAnnotations == True: # On controle la façon dont la variable est écrite overwriteAnn = True else: overwriteAnn = False if (type(text) == type(pd.Series()) and type(text_id) == type(pd.Series()) and text.shape[0] == text_id.shape[0]): # ID check : check should be smaller than text : check if not inverted if (text_id.astype(str).str.len().max() < text.astype(str).str.len().max()): # empty : option to erase existing data if (empty): self._emptyData() # Writting data print("Writting data") df_text = pd.DataFrame({"filename":text_id, "content":text}) df_ann = pd.DataFrame({"filename":text_id, "content":""}) df_text.apply(lambda x: self._write_function(x, filetype = "txt", overwrite = True), axis = 1) df_ann.apply(lambda x: self._write_function(x, filetype = "ann", overwrite = overwriteAnn), axis = 1) print("data written.") else: raise ValueError('ID is larger than text, maybe you inverted them.') else: raise ValueError('Incorrect variable type, expected two Pandas Series of same shape.') def write_annotations(self, df, text_id, word, label, start, end, overwrite = False): """ write_annotations Send annotation data from the brat folder. Useful to pre-anotate some data. input : df, pd.Dataframe : dataframe containing annotations data, should contains the text id, the annotated word, the annotated label, the start and end offset. text_id, str : name of the column in df which contains the document id word, str : name of the column in df which contains the annotated word label, str : name of the column in df which contains the label of the annotated word start, str : name of the column in df which contains the start offset end, str : name of the column in df which contains the end offset overwrite, boolean : if True, the current annotation files are replaced by new data, otherwise, the new annotations are merged with existing one """ # Checking data types if (type(df) == type(pd.DataFrame())): # Loading df df = df.rename(columns = {text_id:"id",word:"word",label:"label",start:"start",end:"end"}) df["type_id"] = df.groupby("id").cumcount()+1 # List of ids ids = df["id"].unique() # Loading current data current_annotation = self.read_annotation(ids) current_annotations = current_annotation["annotations"] tmaxDFAnnotations = current_annotations.set_index(["id"])["type_id"].str.slice(1,).astype(int).reset_index().groupby("id").max().rename(columns = {"type_id":"Tmax"}) if (overwrite == True): df["type_id"] = "T"+df["type_id"].astype(str) new_annotations = df else: df = df.join(tmaxDFAnnotations, on = "id").fillna(0) df["type_id"] = "T"+(df["type_id"]+df["Tmax"]).astype(int).astype(str) df = df.drop(columns = ["Tmax"]) new_annotations = pd.concat((current_annotations, df[self.emptyDFCols["annotations"]])).reset_index(drop = True) new_annotations.drop_duplicates() ## Removing duplicates # Injecting new annotations current_annotation["annotations"] = new_annotations # Calling write function self._write_annotation(current_annotation["annotations"], current_annotation["relations"]) else: raise ValueError('Incorrect variable type, expected a Pandas DF.') def write_relations(self, df, text_id, relation, overwrite = False): """ write_relations Send relations data from the brat folder. Useful to pre-anotate some data. input : df, pd.Dataframe : dataframe containing relations data, should contains the text id, the relation name, the if of the linked annotations. text_id, str : name of the column in df which contains the document id relation, str : name of the column in df which contains the relation name overwrite, boolean : if True, the current annotation files are replaced by new data, otherwise, the new annotations are merged with existing one The other columns should contains the type_id of related entities, as outputed by the read_annotation method. """ # Checking data types if (type(df) == type(pd.DataFrame())): # Loading df df = df.rename(columns = {text_id:"id",relation:"relation"}) df["type_id"] = df.groupby("id").cumcount()+1 # type_id # Columns names old_columns = df.columns[np.isin(df.columns, ["id", "relation","type_id"]) == False] new_columns = "Arg"+np.array(list(range(1,len(old_columns)+1))).astype(str).astype(object) df = df.rename(columns = dict(zip(old_columns, new_columns))) # List of ids ids = df["id"].unique() # Loading current data current_annotation = self.read_annotation(ids) current_relations = current_annotation["relations"] rmaxDFrelations = current_relations.set_index(["id"])["type_id"].str.slice(1,).astype(int).reset_index().groupby("id").max().rename(columns = {"type_id":"Rmax"}) if (overwrite == True): df["type_id"] = "R"+df["type_id"].astype(str) new_relations = df else: df = df.join(rmaxDFrelations, on = "id").fillna(0) df["type_id"] = "R"+(df["type_id"]+df["Rmax"]).astype(int).astype(str) df = df.drop(columns = ["Rmax"]) # Adding missing columns if (len(df.columns) > len(current_relations.columns)): for column in df.columns[np.isin(df.columns, current_relations.columns) == False]: current_relations[column] = np.nan else: for column in current_relations.columns[np.isin(current_relations.columns, df.columns) == False]: df[column] = np.nan new_relations =
pd.concat((current_relations, df[current_relations.columns]))
pandas.concat
import os import torch from tqdm import tqdm import argparse import multiprocessing as mp import pandas as pd from moses.models_storage import ModelsStorage from moses.metrics.utils import average_agg_tanimoto, fingerprints, fingerprint from rdkit import DataStructs, Chem from scipy.spatial.distance import jaccard import numpy as np parser = argparse.ArgumentParser() parser.add_argument("--model", required=True) parser.add_argument("--lbann-weights-dir", required=True) parser.add_argument("--lbann-load-epoch", type=int, required=True) parser.add_argument("--lbann-load-step", type=int, required=True) parser.add_argument( "--vocab-path", type=str, default="", help="path to experiment vocabulary" ) parser.add_argument("--num-layers", type=int) parser.add_argument("--dropout", type=float) parser.add_argument("--weight-prefix") parser.add_argument("--n-samples", type=int, default=100) parser.add_argument("--max-len", type=int, default=100) parser.add_argument("--n-batch", type=int, default=10) parser.add_argument("--gen-save", required=True) parser.add_argument("--test-path", required=True) parser.add_argument("--test-scaffolds-path") parser.add_argument("--ptest-path") parser.add_argument("--ptest-scaffolds-path") parser.add_argument("--ks", type=int, nargs="+", help="list with values for unique@k. Will calculate number of unique molecules in the first k molecules.") parser.add_argument("--n-jobs", type=int, default=mp.cpu_count()-1) parser.add_argument("--gpu", type=int, help=" index of GPU for FCD metric and internal diversity, -1 means use CPU") parser.add_argument("--batch-size", type=int, help="batch size for FCD metric") parser.add_argument("--hidden", type=int) parser.add_argument("--metrics", help="output path to store metrics") parser.add_argument("--model-config", help="path to model configuration dict") ###################################### # These are things specific to the VAE ###################################### #parser.add_argument("--freeze-embeddings", action="store_true") # this turns off grad accumulation for embedding layer (see https://github.com/samadejacobs/moses/blob/master/moses/vae/model.py#L22) #parser.add_argument("--q-cell", default="gru") parser.add_argument("--seed-molecules", help="points to a file with molecules to use as the reference points in the experiment", required=True) parser.add_argument("--k-neighbor-samples", help="number of neighbors to draw from the gaussian ball", type=int, required=True) parser.add_argument("--scale-factor", help="scale factor (std) for gaussian", type=float, required=True) parser.add_argument("--output", help="path to save output results", required=True) model_config = parser.parse_args() moses_config_dict = torch.load(model_config.model_config) def load_model(): MODELS = ModelsStorage() model_vocab = torch.load(model_config.vocab_path) model = MODELS.get_model_class(model_config.model)(model_vocab, moses_config_dict) # load the model assert os.path.exists(model_config.lbann_weights_dir) is not None weights_prefix = f"{model_config.lbann_weights_dir}/{model_config.weight_prefix}" model.load_lbann_weights(model_config.lbann_weights_dir, epoch_count=model_config.lbann_load_epoch) model.cuda() model.eval() return model def sample_noise_add_to_vec(latent_vec, scale_factor=model_config.scale_factor): noise = torch.normal(mean=0, std=torch.ones(latent_vec.shape)*scale_factor).numpy() #print(noise) return latent_vec + noise def main(k=model_config.k_neighbor_samples): model = load_model() input_smiles_list = pd.read_csv(model_config.seed_molecules, header=None)[0].to_list() #import ipdb #ipdb.set_trace() reference_latent_vec_list, reference_smiles_list = model.encode_smiles(input_smiles_list) reference_latent_vec_list = [x.cpu().unsqueeze(0).numpy() for x in reference_latent_vec_list] result_list = [] for reference_latent_vec, reference_smiles in tqdm(zip(reference_latent_vec_list, reference_smiles_list), desc="sampling neighbors for reference vec and decoding", total=len(reference_latent_vec_list)): # TODO: this is just for debugging #input_fp = fingerprint(input_smiles, fp_type='morgan') #reference_mol = Chem.MolFromSmiles(reference_smiles) neighbor_smiles_list = [model.decode_smiles(sample_noise_add_to_vec(reference_latent_vec))[0]['SMILES'][0] for i in range(k)] neighbor_fps = [fingerprint(neighbor_smiles, fp_type='morgan') for neighbor_smiles in neighbor_smiles_list] #here is a bug in fingerprints funciton that references first_fp before assignment... reference_fp = fingerprint(reference_smiles, fp_type='morgan') neighbor_tani_list = [jaccard(reference_fp, neighbor_fp) for neighbor_fp in neighbor_fps] neighbor_valid_list = [x for x in [Chem.MolFromSmiles(smiles) for smiles in neighbor_smiles_list] if x is not None] result_list.append({"reference_smiles": reference_smiles, "mean_tani_sim": np.mean(neighbor_tani_list), "min_tani_sim": np.min(neighbor_tani_list), "max_tani_sim": np.max(neighbor_tani_list), "valid_rate": len(neighbor_valid_list)/k })
pd.DataFrame(result_list)
pandas.DataFrame
import pandas as pd from sklearn.decomposition import TruncatedSVD, NMF from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score, f1_score, confusion_matrix from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.cluster import KMeans from sklearn.manifold import TSNE import seaborn as sns import matplotlib.pyplot as plt from nltk.stem import PorterStemmer from nltk.corpus import stopwords def textPreprocessing(df): stop = stopwords.words('english') df['text'] = df['text'].str.replace('[^\w\s]', '') df['text'] = df['text'].apply(lambda x: " ".join(x for x in x.split() if x not in stop)) df['text'] = df['text'].apply(lambda x: " ".join(x.lower() for x in x.split())) stemmer = PorterStemmer() df['text'] = df['text'].apply(lambda x: " ".join([stemmer.stem(word) for word in x.split()])) return df def loadDataset(): reviews0 = pd.read_csv('Analytics/reviews/reviews0.csv') reviews1 = pd.read_csv('Analytics/reviews/reviews1.csv') reviews2 = pd.read_csv('Analytics/reviews/reviews2.csv') reviews3 = pd.read_csv('Analytics/reviews/reviews3.csv') reviews4 = pd.read_csv('Analytics/reviews/reviews4.csv') reviews5 = pd.read_csv('Analytics/reviews/reviews5.csv') reviews6 = pd.read_csv('Analytics/reviews/reviews6.csv') reviews7 = pd.read_csv('Analytics/reviews/reviews7.csv') reviews = [reviews0, reviews1, reviews2, reviews3, reviews4, reviews5, reviews6, reviews7] df = pd.concat(reviews, ignore_index=True) return df if __name__ == 'main': # Load dataset df = loadDataset() # Keep text and username df = df[['username', 'text']] # group by username & merge reviews text to a unified corpus df = df.groupby('username').agg({ 'text': lambda x: ' '.join(x) }).reset_index() # Text Pre-Processing df = textPreprocessing(df) # Import demographics dataset demographics = pd.read_csv('Analytics/demographics.csv') # Keep only username and gender demographics = demographics[['username', 'gender']] # Merge the two dataframes dataframe =
pd.merge(df, demographics, on='username')
pandas.merge
import pandas as pd import numpy as np import matplotlib.pyplot as plt class Visualizer: def __init__(self, action_labels): self.n_action = len(action_labels) self.action_labels = action_labels def visualise_episode(self, env, cum_rewards, actions, pqs, ideal, fig_path): _, (ax_price, ax_action, ax_Q) = plt.subplots(3, 1, sharex='all', figsize=(14, 14)) p = env.price_df.price.values - env.price_df.price.values[-1] ax_price.plot(p, 'k-', label='prices') ax_price.plot(cum_rewards, 'b', label='P&L') ax_price.plot(ideal, 'r', label='ideal P&L') ax_price.legend(loc='best', frameon=False) ax_price.set_title(env.title + f', explored: {cum_rewards[-1]}, median ideal: {np.nanmedian(ideal)}') ax_action.set_title('Actions: cash=0, open=1, close=2') ax_action.plot(actions, 'b', label='explored') ax_action.set_ylim(-0.4, self.n_action - 0.6) ax_action.set_ylabel('action') ax_action.set_yticks(range(self.n_action)) ax_action.legend(loc='best', frameon=False) styles = ['k', 'r', 'b'] qs_df =
pd.DataFrame(pqs, columns=['cash', 'open', 'keep'])
pandas.DataFrame
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with tm.assert_raises_regex(TypeError, msg): addend + dti_tz # ------------------------------------------------------------- def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 =
date_range('20130101', periods=3)
pandas.date_range
import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.model_selection import train_test_split import copy import math from shapely.geometry.polygon import Polygon # A shared random state will ensure that data is split in a same way in both train and test function RANDOM_STATE = 42 def load_tabular_features_hadoop(distribution='all', matched=False, scale='all', minus_one=False): tabular_path = 'data/join_results/train/join_cardinality_data_points_sara.csv' print(tabular_path) tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) if distribution != 'all': tabular_features_df = tabular_features_df[tabular_features_df['label'].str.contains('_{}'.format(distribution))] if matched: tabular_features_df = tabular_features_df[tabular_features_df['label'].str.contains('_Match')] if scale != all: tabular_features_df = tabular_features_df[tabular_features_df['label'].str.contains(scale)] if minus_one: tabular_features_df['join_sel'] = 1 - tabular_features_df['join_sel'] tabular_features_df = tabular_features_df.drop(columns=['label', 'coll1', 'D1', 'coll2', 'D2']) tabular_features_df = tabular_features_df.rename(columns={x: y for x, y in zip(tabular_features_df.columns, range(0, len(tabular_features_df.columns)))}) # Get train and test data train_data, test_data = train_test_split(tabular_features_df, test_size=0.20, random_state=RANDOM_STATE) num_features = len(tabular_features_df.columns) - 1 X_train = pd.DataFrame.to_numpy(train_data[[i for i in range(num_features)]]) y_train = train_data[num_features] X_test = pd.DataFrame.to_numpy(test_data[[i for i in range(num_features)]]) y_test = test_data[num_features] return X_train, y_train, X_test, y_test def load_tabular_features(join_result_path, tabular_path, normalize=False, minus_one=False, target='join_selectivity'): tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] join_df = pd.read_csv(join_result_path, delimiter=',', header=None, names=cols) join_df = join_df[join_df.result_size != 0] join_df = pd.merge(join_df, tabular_features_df, left_on='dataset1', right_on='dataset_name') join_df = pd.merge(join_df, tabular_features_df, left_on='dataset2', right_on='dataset_name') cardinality_x = join_df['cardinality_x'] cardinality_y = join_df['cardinality_y'] result_size = join_df['result_size'] mbr_tests = join_df['mbr_tests'] # x1_x, y1_x, x2_x, y2_x, x1_y, y1_y, x2_y, y2_y = join_df['x1_x'], join_df['y1_x'], join_df['x2_x'], join_df['y2_x'], join_df['x1_y'], join_df['y1_y'], join_df['x2_y'], join_df['y2_y'] # # Compute intersection area 1, intersection area 2 and area similarity # intersect_x1 = pd.concat([x1_x, x1_y]).max(level=0) # intersect_y1 = max(y1_x, y1_y) # intersect_x2 = min(x2_x, x2_y) # intersect_y2 = min(y2_x, y2_y) # print(intersect_x1) if minus_one: join_selectivity = 1 - result_size / (cardinality_x * cardinality_y) mbr_tests_selectivity = 1 - mbr_tests / (cardinality_x * cardinality_y) else: join_selectivity = result_size / (cardinality_x * cardinality_y) mbr_tests_selectivity = mbr_tests / (cardinality_x * cardinality_y) join_df = join_df.drop( columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', 'mbr_tests', 'duration']) if normalize: column_groups = [ ['AVG area_x', 'AVG area_y'], ['AVG x_x', 'AVG y_x', 'AVG x_y', 'AVG y_y'], ['E0_x', 'E2_x', 'E0_y', 'E2_y'], ['cardinality_x', 'cardinality_y'], ] for column_group in column_groups: input_data = join_df[column_group].to_numpy() original_shape = input_data.shape reshaped = input_data.reshape(input_data.size, 1) reshaped = preprocessing.minmax_scale(reshaped) join_df[column_group] = reshaped.reshape(original_shape) # Rename the column's names to numbers for easier access join_df = join_df.rename(columns={x: y for x, y in zip(join_df.columns, range(0, len(join_df.columns)))}) # Save the number of features in order to extract (X, y) correctly num_features = len(join_df.columns) # Append the target to the right of data frame join_df.insert(len(join_df.columns), 'join_selectivity', join_selectivity, True) join_df.insert(len(join_df.columns), 'mbr_tests_selectivity', mbr_tests_selectivity, True) # TODO: delete this dumping action. This is just for debugging join_df.to_csv('data/temp/join_df.csv') # Split join data to train and test data # target = 'join_selectivity' train_data, test_data = train_test_split(join_df, test_size=0.20, random_state=RANDOM_STATE) X_train = pd.DataFrame.to_numpy(train_data[[i for i in range(num_features)]]) y_train = train_data[target] X_test = pd.DataFrame.to_numpy(test_data[[i for i in range(num_features)]]) y_test = test_data[target] return X_train, y_train, X_test, y_test def generate_tabular_features(join_result_path, tabular_path, output, normalize=False, minus_one=False): tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration', 'best_algorithm'] join_df = pd.read_csv(join_result_path, delimiter=',', header=None, names=cols) best_algorithm = join_df['best_algorithm'] join_df = join_df[join_df.result_size != 0] join_df = pd.merge(join_df, tabular_features_df, left_on='dataset1', right_on='dataset_name') join_df =
pd.merge(join_df, tabular_features_df, left_on='dataset2', right_on='dataset_name')
pandas.merge
import recordlinkage import pandas as pd import csv import re import pymongo from pymongo import MongoClient #path to our datasets ORIGINAL = "restaurants.tsv" DUPLICATES = "restaurants_DPL.tsv" #parse to tsv files into a dataframe df =
pd.read_csv(ORIGINAL, sep='\t')
pandas.read_csv
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** # -*- coding: utf-8 -*- import numpy as np import pandas as pd import sdc import unittest from itertools import product from sdc.str_arr_ext import StringArray from sdc.str_ext import std_str_to_unicode, unicode_to_std_str from sdc.tests.test_base import TestCase from sdc.tests.test_utils import skip_numba_jit from sdc.functions import numpy_like from sdc.functions import sort class TestArrays(TestCase): def test_astype_to_num(self): def ref_impl(a, t): return a.astype(t) def sdc_impl(a, t): return numpy_like.astype(a, t) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan]] cases_type = [np.float64, np.int64, 'float64', 'int64'] for case in cases: a = np.array(case) for type_ in cases_type: with self.subTest(data=case, type=type_): np.testing.assert_array_equal(sdc_func(a, type_), ref_impl(a, type_)) def test_astype_to_float(self): def ref_impl(a): return a.astype('float64') def sdc_impl(a): return numpy_like.astype(a, 'float64') sdc_func = self.jit(sdc_impl) cases = [[2, 3, 0], [4., 5.6, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_to_int(self): def ref_impl(a): return a.astype(np.int64) def sdc_impl(a): return numpy_like.astype(a, np.int64) sdc_func = self.jit(sdc_impl) cases = [[2, 3, 0], [4., 5.6, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_int_to_str(self): def ref_impl(a): return a.astype(str) def sdc_impl(a): return numpy_like.astype(a, str) sdc_func = self.jit(sdc_impl) a = np.array([2, 3, 0]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Numba converts float to string with incorrect precision') def test_astype_float_to_str(self): def ref_impl(a): return a.astype(str) def sdc_impl(a): return numpy_like.astype(a, str) sdc_func = self.jit(sdc_impl) a = np.array([4., 5.6, np.nan]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_num_to_str(self): def ref_impl(a): return a.astype('str') def sdc_impl(a): return numpy_like.astype(a, 'str') sdc_func = self.jit(sdc_impl) a = np.array([5, 2, 0, 333, -4]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Needs Numba astype impl support converting unicode_type to other type') def test_astype_str_to_num(self): def ref_impl(a, t): return a.astype(t) def sdc_impl(a, t): return numpy_like.astype(a, t) sdc_func = self.jit(sdc_impl) cases = [['a', 'cc', 'd'], ['3.3', '5', '.4'], ['¡Y', 'tú quién ', 'te crees']] cases_type = [np.float64, np.int64] for case in cases: a = np.array(case) for type_ in cases_type: with self.subTest(data=case, type=type_): np.testing.assert_array_equal(sdc_func(a, type_), ref_impl(a, type_)) def test_isnan(self): def ref_impl(a): return np.isnan(a) def sdc_impl(a): return numpy_like.isnan(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Needs provide String Array boxing') def test_isnan_str(self): def ref_impl(a): return np.isnan(a) def sdc_impl(a): return numpy_like.isnan(a) sdc_func = self.jit(sdc_impl) cases = [['a', 'cc', np.nan], ['se', None, 'vvv']] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_notnan(self): def ref_impl(a): return np.invert(np.isnan(a)) def sdc_impl(a): return numpy_like.notnan(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_copy(self): from sdc.str_arr_ext import StringArray def ref_impl(a): return np.copy(a) @self.jit def sdc_func(a): _a = StringArray(a) if as_str_arr == True else a # noqa return numpy_like.copy(_a) cases = { 'int': [5, 2, 0, 333, -4], 'float': [3.3, 5.4, np.nan, 7.9, np.nan], 'bool': [True, False, True], 'str': ['a', 'vv', 'o12oo'] } for dtype, data in cases.items(): a = data if dtype == 'str' else np.asarray(data) as_str_arr = True if dtype == 'str' else False with self.subTest(case=data): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_copy_int(self): def ref_impl(): a = np.array([5, 2, 0, 333, -4]) return np.copy(a) def sdc_impl(): a = np.array([5, 2, 0, 333, -4]) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) def test_copy_bool(self): def ref_impl(): a = np.array([True, False, True]) return np.copy(a) def sdc_impl(): a = np.array([True, False, True]) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) @unittest.skip("Numba doesn't have string array") def test_copy_str(self): def ref_impl(): a = np.array(['a', 'vv', 'o12oo']) return np.copy(a) def sdc_impl(): a = np.array(['a', 'vv', 'o12oo']) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) def test_argmin(self): def ref_impl(a): return np.argmin(a) def sdc_impl(a): return numpy_like.argmin(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_argmax(self): def ref_impl(a): return np.argmax(a) def sdc_impl(a): return numpy_like.argmax(a) sdc_func = self.jit(sdc_impl) cases = [[np.nan, np.nan, np.inf, np.nan], [5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_nanargmin(self): def ref_impl(a): return np.nanargmin(a) def sdc_impl(a): return numpy_like.nanargmin(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_nanargmax(self): def ref_impl(a): return np.nanargmax(a) def sdc_impl(a): return numpy_like.nanargmax(a) sdc_func = self.jit(sdc_impl) cases = [[np.nan, np.nan, np.inf, np.nan], [5, 2, -9, 333, -4], [3.3, 5.4, np.nan, 7.9]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_sort(self): np.random.seed(0) def ref_impl(a): return np.sort(a) def sdc_impl(a): sort.parallel_sort(a) return a sdc_func = self.jit(sdc_impl) float_array = np.random.ranf(10**2) int_arryay = np.random.randint(0, 127, 10**2) float_cases = ['float32', 'float64'] for case in float_cases: array0 = float_array.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) int_cases = ['int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] for case in int_cases: array0 = int_arryay.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) def test_stable_sort(self): np.random.seed(0) def ref_impl(a): return np.sort(a) def sdc_impl(a): sort.parallel_stable_sort(a) return a sdc_func = self.jit(sdc_impl) float_array = np.random.ranf(10**2) int_arryay = np.random.randint(0, 127, 10**2) float_cases = ['float32', 'float64'] for case in float_cases: array0 = float_array.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) int_cases = ['int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] for case in int_cases: array0 = int_arryay.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) def _test_fillna_numeric(self, pyfunc, cfunc, inplace): data_to_test = [ [True, False, False, True, True], [5, 2, 0, 333, -4], [3.3, 5.4, 7.9], [3.3, 5.4, np.nan, 7.9, np.nan], ] values_to_test = [ None, np.nan, 2.1, 2 ] for data, value in product(data_to_test, values_to_test): a1 = np.asarray(data) a2 = pd.Series(np.copy(a1)) if inplace else pd.Series(a1) with self.subTest(data=data, value=value): result = cfunc(a1, value) result_ref = pyfunc(a2, value) if inplace: result, result_ref = a1, a2 np.testing.assert_array_equal(result, result_ref) def test_fillna_numeric_inplace_false(self): def ref_impl(S, value): if value is None: return S.values.copy() else: return S.fillna(value=value, inplace=False).values def sdc_impl(a, value): return numpy_like.fillna(a, inplace=False, value=value) sdc_func = self.jit(sdc_impl) self._test_fillna_numeric(ref_impl, sdc_func, inplace=False) def test_fillna_numeric_inplace_true(self): def ref_impl(S, value): if value is None: return None else: S.fillna(value=value, inplace=True) return None def sdc_impl(a, value): return numpy_like.fillna(a, inplace=True, value=value) sdc_func = self.jit(sdc_impl) self._test_fillna_numeric(ref_impl, sdc_func, inplace=True) def test_fillna_str_inplace_false(self): def ref_impl(S, value): if value is None: return S.values.copy() else: return S.fillna(value=value, inplace=False).values def sdc_impl(S, value): str_arr = S.values return numpy_like.fillna(str_arr, inplace=False, value=value) sdc_func = self.jit(sdc_impl) data_to_test = [ ['a', 'b', 'c', 'd'], ['a', 'b', None, 'c', None, 'd'], ] values_to_test = [ None, '', 'asd' ] for data, value in product(data_to_test, values_to_test): S =
pd.Series(data)
pandas.Series
# Reference: https://learndataanalysis.org/how-to-download-photos-from-google-photos-in-python/ import os from Google import Create_Service import pandas as pd # pip install pandas import requests # pip install requests pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 150)
pd.set_option('display.max_colwidth', 150)
pandas.set_option
#!/usr/bin/env python -B #============================================================================== #title :phenorank.py #description :main function for running PhenoRank #author :<NAME> #date_created :12 May 2015 #version :0.1.2 #usage : #python_version :2.7.9 #============================================================================== import cPickle import logging import numpy as np import pandas as pd import random import pkg_resources import scipy.sparse as sp import scipy.stats as ss import sys import inout import scoring def run_phenorank(omim_obs, phenotypes_obs=None, nperm=1000, r=0.1, ni=20, gene_mask=None, include_h=True, include_m=True, dir_data="data_phenorank", filename_output="~"): """ run the main PhenoRank function Args: omim_obs: OMIM ID for the disease of interest phenotypes_obs: a list of phenotypes describing the disease of interest nperm: number of permutations to complete r: the restart probability for the RWR method ic: the iteration cutoff for the RWR method gene_mask: gene to mask, if None no gene is masked include_h, include_m: logical values denoting whether human and mouse data should be included dir_data: path to the data, used for testing Returns: a pandas DataFrame of scores for the input GWAS loci """ # create logger if required logger = logging.getLogger("__main__") # log algrithm progress logger.info("") logger.info("# Algorithm progress") logger.info("Importing data...") # import data con = open(pkg_resources.resource_filename("phenorank", dir_data + "/phenorank_genes.tsv"), "r") genes = list(pd.read_csv(con, header=None)[0]) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/phenorank_conditions.tsv"), "r") omims = list(pd.read_csv(con, header=None)[0]) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/phenorank_phenotypes.tsv"), "r") phenotypes = list(pd.read_csv(con, header=None)[0]) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/cp_h_omim.tsv"), "r") cp_h = inout.import_dictionary(con, split_by="|", key_int=True, value_int=True) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/gc_h.pickle"), "r") gc_h = cPickle.load(con) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/gc_m.pickle"), "r") gc_m = cPickle.load(con) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/phenotype_ancestors.tsv"), "r") pheno_ancestors = inout.import_dictionary(con, split_by="|", key_int=True, value_int=True) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/phenotype_ic.tsv"), "r") pheno_ic = np.array(list(pd.read_csv(con, header=None)[0])) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/condition_ic.tsv"), "r") omim_ic = np.array(list(pd.read_csv(con, header=None)[0])) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/pheno_condition_ic_matrix.pickle"), "r") pheno_omim_ic_matrix = cPickle.load(con) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/pheno_cooccur.pickle"), "r") pheno_cooccur = cPickle.load(con) con.close() con = open(pkg_resources.resource_filename("phenorank", dir_data + "/W_generic.pickle"), "r") W = cPickle.load(con) con.close() # check when input is acceptable if omim_obs not in omims: raise Exception("disease " + omim_obs + " not accepted by PhenoRank") # get the indices of input genes, diseases and phenotypes logger.info("Indexing genes, diseases and phenotypes to consider...") if gene_mask: gene_mask_ind = genes.index(gene_mask) if omim_obs: omim_obs_ind = omims.index(omim_obs) if phenotypes_obs: phenotypes_obs_ind = [phenotypes.index(phenotype) for phenotype in phenotypes_obs] else: phenotypes_obs_ind = cp_h[omim_obs_ind] # if a gene to mask has been specified, and if it is associated with the OMIM ID, mask if gene_mask: gc_h[gene_mask_ind, omim_obs_ind] = 0 # score genes using updated phenotypes logger.info("Scoring genes for query disease...") score_unprop, score_unranked_prop, score_obs = scoring.score_genes(phenotypes_obs_ind, pheno_ancestors, pheno_ic, omim_ic, pheno_omim_ic_matrix, gc_h, gc_m, W, r, ni, include_h, include_m) # score genes using permuted phenotypes score_sim = np.empty((nperm, len(score_obs))) # empty array to hold scores for n in range(nperm): pheno_sim_ind = scoring.simulate_disease(len(phenotypes_obs_ind), pheno_cooccur) tmp, tmp, score_sim[n] = scoring.score_genes(pheno_sim_ind, pheno_ancestors, pheno_ic, omim_ic, pheno_omim_ic_matrix, gc_h, gc_m, W, r, ni, include_h, include_m) if n != 0 and (n + 1) % 100 == 0: logger.info("Scoring genes for simulated sets of disease phenotype terms ({}/{} sets completed)...".format(n + 1, nperm)) # compute p-values logger.info("Computing p-values...") pvalues = sum(score_sim >= score_obs) / float(nperm) pvalues[pvalues == 0.0] = 1.0 / nperm # ensure that no p-values equal 0 # format output logger.info("Formatting results...") res = pd.DataFrame({"GENE": pd.Series(genes, index=genes), "SCORE_UNRANKED_UNPROP": pd.Series(score_unprop, index=genes), "SCORE_UNRANKED_PROP":
pd.Series(score_unranked_prop, index=genes)
pandas.Series
# © All rights reserved. ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, # Switzerland, Laboratory of Experimental Biophysics, 2016 # See the LICENSE.txt file for more details. import pandas as pd import trackpy as tp import numpy as np import matplotlib.pyplot as plt import re from abc import ABCMeta, abstractmethod, abstractproperty from sklearn.cluster import DBSCAN from operator import * from scipy.signal import gaussian from scipy.ndimage import filters from scipy.interpolate import UnivariateSpline, interp1d from scipy.optimize import minimize from matplotlib.widgets import RectangleSelector from bstore import config from bstore.parsers import FormatMap import warnings __version__ = config.__bstore_Version__ """Metaclasses ------------------------------------------------------------------------------- """ class ComputeTrajectories(metaclass=ABCMeta): """Basic functionality for computing trajectories from localizations. This is used to compute trajectories from regions of a dataset containing localizations, such as fiducial drift trajectories (position vs. frame number)or astigmatic calibration curves (PSF width vs. z). Attributes ---------- regionLocs : Pandas DataFrame The localizations for individual regions. """ def __init__(self): """Initializes the trajectory computer. """ self._regionData = None def _plotCurves(self, curveNumber=None, coordCols=['x', 'y'], horizontalLabels=['', 'time'], verticalLabels=['x', 'y'], title='trajectories', splineCols=['t','x','y'], offsets=[0,0], ylims=[-100, 500, -100, 500]): """Make a plot of each region's trajectory and the average spline fit. plotCurves allows the user to check the trajectories of localizations and their fits against the average spline fit. Parameters ---------- curveNumber : int Index of the spline to plot. (0-index) coordCols : list of string The column names corresponding to the trajectory's dependent variable (e.g. time or z-position) and the localizations' x- and y-coordinates (order is t, x, y). horizontalLabels : list of string The labels for the x-axes of each trajectory plot. verticalLabels : list of string The labels for the y-axes for each trajectory (order is x-trajectory, then y). title : str The title of each plot. splineCols : list of str The column names of the average spline DataFrame that correspond to the trajectory's dependent variable (i.e. z-position or frame number,) the localizations' x-coordinates, and the localizaitons' y-coordinates, respectively. offsets : list of int The vertical offsets to apply to the curves. ylims : list of float The y-limits of the two trajectory plots (order is min and max of x-trajectory, then min and max of the y-trajectory). """ t, x, y = coordCols xHorzLabel, yHorzLabel = horizontalLabels xVertLabel, yVertLabel = verticalLabels ts, xs, ys = splineCols x0, y0 = offsets minxy, maxxy, minyy, maxyy = ylims if self.regionLocs is None: raise ZeroRegions( 'Zero regions are currently saved with this processor.') fig, (axx, axy) = plt.subplots(nrows=2, ncols=1, sharex=True) locs = self.regionLocs.xs(curveNumber, level='region_id', drop_level=False) # Filter out localizations that are outliers outliers = locs.loc[locs[self._includeColName] == False] locs = locs.loc[locs[self._includeColName]] if (curveNumber in self.useTrajectories) or (not self.useTrajectories): markerColor = 'blue' else: markerColor = '#999999' # gray axx.plot(locs[t], locs[x] - x0, '.', color=markerColor, alpha=0.5) axx.plot(outliers[t], outliers[x] - x0, 'x', color='#999999', alpha=0.5) axx.plot(self.avgSpline[ts], self.avgSpline[xs], linewidth=2, color='orange') axx.set_xlabel(xHorzLabel) axx.set_ylabel(xVertLabel) axx.set_title('{0:s}, Region number: {1:d}'.format(title, curveNumber)) axx.set_ylim((minxy, maxxy)) axy.plot(locs[t], locs[y] - y0, '.', color=markerColor, alpha=0.5) axy.plot(outliers[t], outliers[y] - y0, 'x', color='#999999', alpha=0.5) axy.plot(self.avgSpline[ts], self.avgSpline[ys], linewidth=2, color='orange') axy.set_xlabel(yHorzLabel) axy.set_ylabel(yVertLabel) axy.set_ylim((minyy, maxyy)) plt.show() @property def regionLocs(self): """DataFrame holding the localizations for individual fiducials. """ return self._regionData @regionLocs.setter def regionLocs(self, regionData): """Checks that the fiducial localizations are formatted correctly. """ if regionData is not None: assert 'region_id' in regionData.index.names, \ 'regionLocs DataFrame requires index named "region_id"' # Sort the multi-index to allow slicing regionData.sort_index(inplace=True) self._regionData = regionData def clearRegionLocs(self): """Clears any currently held localization data. """ self._regionData = None @abstractmethod def computeTrajectory(self): """Computes the trajectory. """ pass def _movingAverage(self, series, windowSize=100, sigma=3): """Estimate the weights for smoothing splines. Parameters ---------- series : array of int Discrete samples from a time series. windowSize : int Size of the moving average window in axial slices. sigma : int Size of the Gaussian averaging kernel in axial slices. Returns ------- average : float The moving window average. var : float The variance of the data within the sumoving window. References ---------- http://www.nehalemlabs.net/prototype/blog/2014/04/12/how-to-fix-scipys-interpolating-spline-default-behavior/ """ b = gaussian(windowSize, sigma) average = filters.convolve1d(series, b / b.sum()) var = filters.convolve1d(np.power(series - average, 2), b / b.sum()) return average, var @abstractmethod def reset(self): """Resets the drift computer to its initial value. """ pass class DriftCorrect(metaclass=ABCMeta): """Basic functionality for a drift correction processor. Attributes ---------- correctorType : string Identifies the type of drift corrector for a specific class. driftTrajectory : Pandas DataFrame x,y pairs each possessing a unique frame number. """ @abstractproperty def correctorType(self): """Identifies the type of drift corrector for a specific class. """ pass @abstractproperty def driftTrajectory(self): """A list of x,y pairs with each possessing a unique frame number. """ pass @abstractmethod def correctLocalizations(self): """Corrects a DataFrame of localizations for drift. """ pass @abstractmethod def readSettings(self): """Sets the state of the drift corrector. """ pass @abstractmethod def writeSettings(self): """Writes the state of the drift corrector to a file. """ pass class MergeStats(metaclass=ABCMeta): """Basic functionality for computing statistics from merged localizations. """ @abstractmethod def computeStatistics(self): """Computes the merged molecule statistics. """ pass def _wAvg(self, group, coordinate, photonsCol='photons'): """Perform a photon-weighted average over positions. This helper function computes the average of all numbers in the 'coordinate' column when applied to a Pandas GroupBy object. Parameters ---------- group : Pandas GroupBy The merged localizations. coordinate : str Column label for the coordinate over which to compute the weighted average for a particular group. photonsCol : str Column label for the photons column. Returns ------- wAvg : float The weighted average over the grouped data in 'coordinate', weighted by the square root of values in the 'photons' column. """ positions = group[coordinate] photons = group[photonsCol] wAvg = (positions * photons.apply(np.sqrt)).sum() \ / photons.apply(np.sqrt).sum() return wAvg """ Utility classes ------------------------------------------------------------------------------- """ class SelectLocalizations: """Interactively select localizations using rectangular ROI's. This class is used to display an image containing information about the local density of localizations within a dataset. From this image, a user may interactively select regions containing localizations for further analysis, such as when performing fiducial drift corrections. """ def __init__(self): # Setup the class fields self._regions = [{'xMin': None, 'xMax': None, 'yMin': None, 'yMax': None}] def doInteractiveSearch(self, df, gridSize=100, unitConvFactor=1. / 1000, unitLabel='microns'): """Interactively find regions in the histogram images. Allows the user to select regions and extract localizations. Parameters ---------- df : Pandas DataFrame Data to visualize and search for fiducials. gridSize : float The size of the hexagonal grid in the 2D histogram. unitConvFactor : float Conversion factor for plotting the 2D histogram in different units than the data. Most commonly used to convert nanometers to microns. In this case, there are unitConvFactor = 1/1000 nm/micron. unitLabel : str Unit label for the histogram. This is only used for labeling the axes of the 2D histogram; users may change this depending on the units of their data and unitConvFactor. """ # Reset the fiducial regions self._regions = [{'xMin': None, 'xMax': None, 'yMin': None, 'yMax': None}] def onClose(event): """Run when the figure closes. """ fig.canvas.stop_event_loop() def onSelect(eclick, erelease): pass def toggleSelector(event, processor): """Handles user input. """ if event.key in [' ']: # Clear fiducial regions list if they are not empty #(Important for when multiple search regions are selected.) if not self._regions[0]['xMin']: # Convert _regions to empty list ready for appending self._regions = [] xMin, xMax, yMin, yMax = toggleSelector.RS.extents processor._regions.append({'xMin': xMin / unitConvFactor, 'xMax': xMax / unitConvFactor, 'yMin': yMin / unitConvFactor, 'yMax': yMax / unitConvFactor}) fig, ax = plt.subplots() fig.canvas.mpl_connect('close_event', onClose) im = ax.hexbin(df[self._coordCols[0]] * unitConvFactor, df[self._coordCols[1]] * unitConvFactor, gridsize=gridSize, cmap=plt.cm.YlOrRd_r) ax.set_xlabel(r'x-position, ' + unitLabel) ax.set_ylabel(r'y-position, ' + unitLabel) ax.invert_yaxis() cb = plt.colorbar(im) cb.set_label('Counts') toggleSelector.RS = RectangleSelector(ax, onSelect, drawtype='box', useblit=True, button=[1, 3], # l/r only spancoords='data', interactive=True) plt.connect('key_press_event', lambda event: toggleSelector(event, self)) # Make figure full screen figManager = plt.get_current_fig_manager() figManager.window.showMaximized() plt.show() # Suppress the MatplotlibDeprecationWarning with warnings.catch_warnings(): warnings.simplefilter("ignore") fig.canvas.start_event_loop_default() def _extractLocsFromRegions(self, df): """Reduce the size of the search area for automatic fiducial detection. Parameters ---------- df : Pandas DataFrame DataFrame that will be spatially filtered. Returns ------- locsInRegions : Pandas DataFrame DataFrame containing localizations only within the select regions. """ # If search regions are not defined, raise an error if not self._regions[0]['xMin']: raise ZeroFiducialRegions('Error: Identified no fiducial regions.') locsInRegions = [] numRegions = len(self._regions) for regionNumber in range(numRegions): xMin = self._regions[regionNumber]['xMin'] xMax = self._regions[regionNumber]['xMax'] yMin = self._regions[regionNumber]['yMin'] yMax = self._regions[regionNumber]['yMax'] # Isolate the localizations within the current region locsInCurrRegion = df[(df[self._coordCols[0]] > xMin) & (df[self._coordCols[0]] < xMax) & (df[self._coordCols[1]] > yMin) & (df[self._coordCols[1]] < yMax)].copy() # Add a multi-index identifying the region number locsInCurrRegion['region_id'] = regionNumber locsInCurrRegion.set_index(['region_id'], append=True, inplace=True) locsInRegions.append(locsInCurrRegion) return pd.concat(locsInRegions) """ Concrete classes ------------------------------------------------------------------------------- """ class AddColumn: """Adds a column to a DataFrame. AddColumn adds a column to a DataFrame and initializes every row to the same value. Parameters ---------- columnName : str The name of the new column. defaultValue : mixed datatype The default value to assign to each row of the new column. Attributes ---------- columnName : str The name of the new column. defaultValue : mixed datatype The default value to assign to each row of the new column. """ def __init__(self, columnName, defaultValue=True): self.columnName = columnName self.defaultValue = defaultValue def __call__(self, df): """Add the new column to the DataFrame. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- procdf : DataFrame A DataFrame object with a new column. """ procdf = df.copy() del(df) numRows, _ = procdf.shape procdf[self.columnName] = pd.Series([self.defaultValue] * numRows, index=procdf.index) return procdf class CalibrateAstigmatism(SelectLocalizations): """Computes calibration curves for astigmatic imaging from bead stacks. Parameters ---------- interactiveSearch : bool Determines whether the user will interactively find fiducials. Setting this to False means that fiducials are found automatically, although this is not always reliable. coordCols : list of str List of strings identifying the x- and y-coordinate column names in that order. sigmaCols : list of str List of strings identifying the column names containing the PSF widths in x and y. zCol : str Name of the column identifying the z-coordinate values. astigmatismComputer: ComputeTrajectories Algorithm for computing astigmatic calibration curves. wobbleComputer: ComputeTrajectories Algorithm for computing wobble calibration curves. Attributes ---------- interactiveSearch : bool Determines whether the user will interactively find fiducials. Setting this to False means that fiducials are found automatically, although this is not always reliable. astigmatismComputer: AstigComputer Algorithm for computing astigmatic calibration curves. calibrationCurves : func, func The calibration curves for astigmatic 3D imaging. The first element contains the PSF width in x as a function of z and the second contains the width in y as a function of z. wobbleCurves : func, func The wobble curves for astigmatic 3D imaging. These map the PSF centroid positions as a function of z. See Ref. 1 for more information. References ---------- 1. Carlini, et al., "Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging," PLoS One 10(11):e0142949 (2015). """ def __init__(self, interactiveSearch=True, coordCols=['x', 'y'], sigmaCols=['sigma_x', 'sigma_y'], zCol='z', startz=None, stopz=None, astigmatismComputer=None, wobbleComputer=None): self.interactiveSearch = interactiveSearch self.calibrationCurves = None self.wobbleCurves = None self._coordCols = coordCols self._sigmaCols = sigmaCols self._zCol = zCol if astigmatismComputer: self.astigmatismComputer = astigmatismComputer else: self.astigmatismComputer = DefaultAstigmatismComputer( coordCols=coordCols, sigmaCols=sigmaCols, zCol=zCol) if wobbleComputer: self.wobbleComputer = wobbleComputer else: self.wobbleComputer = DefaultAstigmatismComputer( coordCols=coordCols, sigmaCols=coordCols, zCol=zCol, zeroz=0) def __call__(self, df): """Computes the astigmatic calibration curves from user-selected beads. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- df : DataFrame The same Pandas DataFrame object is returned because the original localizations are not modified. """ # Update the wobble computer to match the same fitting range as the # astigmatism computer. This prevents problems with the display of bead # fits where the points not included in the astigmatism curve fits # reflected the wobble computer settings. print(('Setting wobble fiting range to the match the astigmatism fit ' 'range. startz and stopz are set in the astigmatism computer.')) self.wobbleComputer.startz = self.astigmatismComputer.startz self.wobbleComputer.stopz = self.astigmatismComputer.stopz if self.interactiveSearch: self.doInteractiveSearch(df) try: locs = self._extractLocsFromRegions(df) except ZeroFiducialRegions: print('No regions containing localizations identified. ' 'Returning original DataFrame.') self.astigmatismComputer.clearRegionLocs() self.wobbleComputer.clearRegionLocs() return df else: locs = self.astigmatismComputer.regionLocs # This returns the average splines, but we don't need them. _ = self.astigmatismComputer.computeTrajectory(locs) _ = self.wobbleComputer.computeTrajectory(locs) self.calibrationCurves = self._computeCalibrationCurves( self.astigmatismComputer.avgSpline) self.wobbleCurves = self._computeCalibrationCurves( self.wobbleComputer.avgSpline) return df def _computeCalibrationCurves(self, avgSpline): """Computes the 3D astigmatic calibration curve from average splines. Parameters ---------- avgSpline : Pandas DataFrame The averaged spline fits to bead data. Returns ------- fx : func The calibration curve that returns the the width in x as a function of z. fy : func The calibration curve that returns the the width in y as a function of z. """ xS, yS = avgSpline['xS'], avgSpline['yS'] zPos = avgSpline['z'] fx = interp1d(zPos, xS, kind='cubic', bounds_error=False, fill_value=np.NaN, assume_sorted=False) fy = interp1d(zPos, yS, kind='cubic', bounds_error=False, fill_value=np.NaN, assume_sorted=False) return fx, fy class CleanUp: """Performs regular clean up routines on imported data. The cleanup processor encapsulates a few common steps that are performed on imported datasets. Currently, these steps are: 1) Convert rows containing strings to numeric data types 2) Drop rows containing strings that cannot be parsed to numeric types 3) Drop rows with Inf's and NaN's """ def __call__(self, df): """Clean up the data. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- procdf : DataFrame A DataFrame object with the same information but new column names. """ procdf = df.copy() del(df) for column in procdf: # 'coerce' means anything unable to be parsed becomes a NaN procdf[column] = pd.to_numeric(procdf[column], errors='coerce') procdf.replace([np.inf, -np.inf], np.nan, inplace=True) procdf.dropna(inplace=True) # DO NOT USE procdf.reindex() because it will not # automatically reorder an index correctly. It is # used for other purposes. procdf.index = np.arange(procdf.shape[0]) return procdf class Cluster: """Clusters the localizations into spatial clusters. Parameters ---------- minSamples : int Minimum number of samples within one neighborhood radius. eps : float The neighborhood radius defining a cluster. coordCols : list of str The columns of the data to be clustered in the format ['x', 'y']. """ def __init__(self, minSamples=50, eps=20, coordCols=['x', 'y']): self._minSamples = minSamples self._eps = eps self._coordCols = coordCols def __call__(self, df): """Group the localizations into spatial clusters. When this class is called, it performs density-based spatial clustering on the positional coordinates of each localization. Cluster labels are added as an additional column to the DataFrame. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- procdf : DataFrame A DataFrame object with containing a new column indicating the cluster ID. """ columnsToCluster = self._coordCols # Setup and perform the clustering db = DBSCAN(min_samples=self._minSamples, eps=self._eps) db.fit(df[columnsToCluster]) # Get the cluster labels and make it a Pandas Series clusterLabels = pd.Series(db.labels_, name='cluster_id') # Append the labels to the DataFrame procdf = pd.concat([df, clusterLabels], axis=1) return procdf class ComputeClusterStats: """Computes statistics for clusters of localizations. Parameters ---------- idLabel : str The column name containing cluster ID's. coordCols : list of string A list containing the column names containing the transverse localization coordinates. zCoord : str The column name of the axial coordinate. statsFunctions : dict of name/function pairs A dictionary containing column names and functions for computing custom statistics from the clustered localizations. The keys in dictionary determine the name of the customized column and the value contains a function that computes a number from the coordinates of the localizations in each cluster. """ # The name to append to the center coordinate column names centerName = '_center' def __init__(self, idLabel='cluster_id', coordCols=['x', 'y'], zCoord='z', statsFunctions=None): self._idLabel = idLabel self._statsFunctions = {'radius_of_gyration': self._radiusOfGyration, 'eccentricity': self._eccentricity, 'convex_hull': self._convexHull} self.coordCols = coordCols self.zCoord = zCoord # Add the input functions to the defaults if they were supplied if statsFunctions: for name, func in statsFunctions.items(): self._statsFunctions[name] = func def __call__(self, df): """Compute the statistics for each cluster of localizations. This function takes a DataFrame, groups the data by the column idLabel, then computes the cluster statistics for each cluster. A new DataFrame for the statistics are returned. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- procdf : DataFrame A DataFrame object containing cluster statistics. """ # Group localizations by their ID groups = df.groupby(self._idLabel) # Computes the default statistics for each cluster tempResultsCoM = groups[self.coordCols].agg(np.mean) tempResultsLength = pd.Series(groups.size()) # Compute the custom statistics for each cluster and set # the column name to the dictionary key tempResultsCustom = [] for name, func in self._statsFunctions.items(): temp = groups.apply(func, self.coordCols, self.zCoord) temp.name = name # The name of the column is now the dictionary key tempResultsCustom.append(temp) # Appends '_center' to the names of the coordinate columns # and renames the series newCoordCols = [col + self.centerName for col in self.coordCols] nameMapping = dict(zip(self.coordCols, newCoordCols)) tempResultsCoM.rename(columns=nameMapping, inplace=True) tempResultsLength.name = 'number_of_localizations' # Create the merged DataFrame dataToJoin = [tempResultsCoM, tempResultsLength] dataToJoin = dataToJoin + tempResultsCustom procdf = pd.concat(dataToJoin, axis=1) # Convert the cluster_id index to a column procdf.reset_index(level=['cluster_id'], inplace=True) return procdf def _radiusOfGyration(self, group, coordinates, zCoordinate): """Computes the radius of gyration of a grouped cluster. Parameters ---------- group : Pandas GroupBy The clustered localizations. coordinates : list of str The columns to use for performing the computation; typically these containg the localization coordinates. zCoordinate : str The column title of the axial coordinate. Returns ------- Rg : float The radius of gyration of the group of localizations. Notes ----- This currently only uses the transverse coordinates and ignores the z-coordinate. """ variances = group[coordinates].var(ddof=0) Rg = np.sqrt(variances.sum()) return Rg def _eccentricity(self, group, coordinates, zCoordinate): """ Computes the eccentricity of a grouped cluster. Parameters ---------- group : Pandas GroupBy The clustered localizations. coordinates : list of str The columns to use for performing the computation; typically these containg the localization coordinates. zCoordinate : str The column title of the axial coordinate. Returns ------- ecc : float The eccentricity of the group of localizations. Notes ----- This currently only uses the transverse coordinates and ignores the z-coordinate. """ try: # Compute the covariance matrix and its eigevalues Mcov = np.cov(group[coordinates].as_matrix(), rowvar=0, bias=1) eigs = np.linalg.eigvals(Mcov) ecc = np.max(eigs) / min(eigs) except: print('Warning: Error occurred during eccentricity computation. ' 'Returning NaN instead.') ecc = np.nan return ecc def _convexHull(self, group, coordinates, zCoordinate): """Computes the volume of the cluster's complex hull. Parameters ---------- group : Pandas GroupBy The clustered localizations. coordinates : list of str The columns to use for performing the computation; typically these containg the localization coordinates. zCoordinate : str The column title of the axial coordinate. Returns ------- volume : float or np.nan Notes ----- This currently only uses the transverse coordinates and ignores the z-coordinate. """ # Compute CHull only if pyhull is installed # pyhull is only available in Linux try: from pyhull import qconvex except ImportError: print(('Warning: pyhull is not installed. ' 'Cannot compute convex hull. Returning NaN instead.')) return np.nan # Find output volume try: points = group[coordinates].as_matrix() output = qconvex('FA', points) volume = [vol for vol in output if 'Total volume:' in vol][0] volume = float(re.findall(r'[-+]?[0-9]*\.?[0-9]+', volume)[0]) except: print(('Warning: Error occurred during convhex hull computation. ' 'Returning NaN instead.')) volume = np.nan return volume class ComputeZPosition: """Computes the localizations' z-positions from calibration curves. Parameters ---------- zFunc : func Function(s) mapping the PSF widths onto Z. Supply this argument as a tuple in the order (fx, fy). zCol : str The name to assign to the new column of z-positions. coordCols : list of str The x- and y-coordinate column names, in that order. This is only used for the wobble correction if wobbleFunc is not None. sigmaCols : list of str The column names containing the PSF widths in the x- and y-directions, respectively. fittype : str String indicating the type of fit to use when deriving the z-positions. Can be either 'huang', which minimizes a distance-like objective function, or 'diff', which interpolates a curve based on the difference between PSF widths in x and y. scalingFactor : float A scaling factor that multiples the computed z-values to account for a refractive index mismatch at the coverslip. See [1] for more details. This can safely be left at one and the computed z-values rescaled later if you are uncertain about the value to use. wobbleFunc : func Function(s) mapping the PSF centroids onto Z. Supply this argument as a tuple in the order (fx, fy). See [2] for more details. References ---------- 1. Huang, et al., Science 319, 810-813 (2008) 2. Carlini, et al., PLoS One 10(11):e0142949 (2015). """ def __init__(self, zFunc, zCol='z', coordCols=['x', 'y'], sigmaCols=['sigma_x, sigma_y'], fittype='diff', scalingFactor=1, wobbleFunc = None): self.zFunc = zFunc self.zCol = zCol self.coordCols = coordCols self.sigmaCols = sigmaCols self.fittype = fittype self.scalingFactor = scalingFactor self.wobbleFunc = wobbleFunc # This is the calibration curve computed when fittype='diff' and is # used internally for error checking and testing. self._f = None def __call__(self, df): """ Applies zFunc to the localizations to produce the z-positions. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- procdf : DataFrame A DataFrame object with the same information but new column names. """ x, y = self.sigmaCols fx, fy = self.zFunc if self.fittype == 'diff': procdf = self._diff(df, x, y, fx, fy) elif self.fittype == 'huang': procdf = self._huang(df, x, y, fx, fy) procdf[self.zCol] *= self.scalingFactor if self.wobbleFunc: procdf = self._wobble(procdf) return procdf def _diff(self, df, x, y, fx, fy): """Determines the z-position from the difference in x- and y-widths. In this approach, the two calibration curves are sampled, subtracted from one another, and then reinterpolated to produce a function representing the axial position as a function of the difference between the PSF widths in x and y. In general, it is much faster than the optimization routine used in Huang et al., Science 2008. """ df = df.copy() # Prevents overwriting input DataFrame # Get minimum and maximum z-positions contained in calibration curves. # This is required to define the bounds on the sampling domain. zMin, zMax = np.min([fx.x, fy.x]), np.max([fx.x, fy.x]) zSamples = np.linspace(zMin, zMax, num=150) # Create the function representing the difference between calibration # curves. def dW(fx, fy): return lambda z: fx(z) - fy(z) f = interp1d(dW(fx, fy)(zSamples), zSamples, bounds_error=False, fill_value=np.NaN, assume_sorted=False) self._f = f # Compute the z-positions from this interpolated curve locWidths = df[x] - df[y] z = f(locWidths) df[self.zCol] = z return df def _huang(self, df, x, y, fx, fy): """Determines the z-position by objective minimization. This routine can be very slow, especially for large datasets. It is recommended to try it on a very slow dataset first. """ df = df.copy() # Prevents overwriting input DataFrame # Create the objective function for the distance between the data and # calibration curves. def D(z, wx, wy): return np.sqrt((wx**0.5 - fx(z)**0.5)**2 + \ (wy**0.5 - fy(z)**0.5)**2) # Create the objective function to minimize def fmin(wx, wy): res = minimize(lambda z: D(z, wx, wy), [0], bounds=[(-600,600)]) return res.x[0] df[self.zCol] = df.apply(lambda row: fmin(row[x], row[y]), axis=1) return df def _wobble(self, df): """Corrects localizations for wobble. This function takes a DataFrame of localizations whose z-positions were already computed and determines the x- and y-corrections necessary to correct for an axial dependence of the centriod position. It then applies these corrections and returns the processed DataFrame. Parameters ---------- df : DataFrame A Pandas DataFrame containing the localizations. Returns ------- df : DataFrame The wobble-corrected DataFrame. """ df = df.copy() # Prevents overwriting input DataFrame x, y = self.coordCols zLocs = df[self.zCol] fx, fy = self.wobbleFunc xc = fx(zLocs) yc = fy(zLocs) df['dx'] = xc df['dy'] = yc df[x] = df[x] - xc df[y] = df[y] - yc return df class ConvertHeader: """Converts the column names in a localization file to a different format. Parameters ---------- mapping : FormatMap A two-way dictionary for converting from column name to another. Attributes ---------- mapping : FormatMap A two-way dictionary for converting from column name to another. """ def __init__(self, mapping=FormatMap(config.__Format_Default__)): """Determines whether the file is a single file or a directory tree. Parameters ---------- mapping : FormatMap A dict-like object for converting between column names in different data formats. """ self.mapping = mapping def __call__(self, df): """Convert the files to the new header format. When this class is called, it maps the column names from the input format to the output format. Formats are defined independently of this class. Parameters ---------- df : DataFrame A Pandas DataFrame object. Returns ------- procdf : DataFrame A DataFrame object with the same information but new column names. """ procdf = df # Change the column names colNames = [self.mapping[oldName] for oldName in df.columns] procdf.columns = colNames return procdf class DefaultAstigmatismComputer(ComputeTrajectories): """Default algorithm for computing astigmatic calibration curves. Parameters ---------- coordCols : list of str List of strings identifying the x- and y-coordinate column names in that order. sigmaCols : list of str List of strings identifying the column names containing the PSF widths in x and y. zCol : str Name of the column identifying the z-coordinate values. smoothingWindowSize : float Moving average window size in slices for spline fitting. smoothingFilterSize : float Moving average Gaussian kernel width in slices for spline fitting. useTrajectories : list of int or empty list List of integers corresponding to the fiducial trajectories to use when computing the average trajectory. If [], all trajectories are used. startz : float The start point of the z-fitting range. stopz : float The end point of the z-fitting range. zeroz : None or float The z-position corresponding to the focal plane. This is used only for the calculation of the wobble curves and NOT the astigmatism curves. Set to None if this computer is intended to compute astigmatism curves; set to a number to compute wobble curves. """ def __init__(self, coordCols=['x','y'], sigmaCols=['sigma_x', 'sigma_y'], zCol='z', smoothingWindowSize=20, smoothingFilterSize=3, useTrajectories=[], startz=None, stopz=None, zeroz = None): self.coordCols = coordCols self.sigmaCols = sigmaCols self.zCol = zCol self.smoothingWindowSize = smoothingWindowSize self.smoothingFilterSize = smoothingFilterSize self.useTrajectories = useTrajectories self.startz = startz self.stopz = stopz self.zeroz = zeroz super(ComputeTrajectories, self).__init__() # Column of DataFrame used to indicate what localizations are not # included in a trajectory for a spline fit, e.g. outliers self._includeColName = 'included_in_trajectory' # initial state self._init_coordCols = coordCols.copy() self._init_sigmaCols = sigmaCols.copy() self._init_zCol = zCol self._init_smoothingWindowSize = smoothingWindowSize self._init_smoothingFilterSize = smoothingFilterSize self._init_useTrajectories = useTrajectories.copy() self._init_startz = startz self._init_stopz = stopz self._init_zeroz = zeroz def combineCurves(self, startz, stopz): """Average the splines from different fiducials together. Parameters ---------- startz : float Minimum frame number in full dataset stopz : float Maximum frame number in full dataset """ zPos = np.linspace(startz, stopz, num=100) numSplines = len(self.splines) # Evalute each x and y spline at every frame position fullRangeSplines = {'xS': np.array([self.splines[i]['xS'](zPos) for i in range(numSplines)]), 'yS': np.array([self.splines[i]['yS'](zPos) for i in range(numSplines)])} # Create the mask area if only certain fiducials are to be averaged if not self.useTrajectories: mask = np.arange(numSplines) else: mask = self.useTrajectories # Compute the average over spline values avgSpline = {'xS': [], 'yS': []} try: for key in avgSpline.keys(): avgSpline[key] = np.mean(fullRangeSplines[key][mask], axis=0) except IndexError: raise UseTrajectoryError( 'At least one of the indexes inside ' 'useTrajectories does not match a known fiducial ' 'index. The maximum fiducial index is {0:d}.' ''.format( numSplines - 1)) # Append z positions to avgSpline avgSpline['z'] = zPos self.avgSpline = pd.DataFrame(avgSpline) def computeTrajectory(self, locs): """Computes the final drift trajectory from fiducial localizations. Parameters ---------- locs : Pandas DataFrame DataFrame containing the localizations belonging to beads. Returns ------- avgSpline : Pandas DataFrame A dataframe containing z-positions and PSF widths in x- and y- for calibrating an astigmatic imaging measurement. """ z = self.zCol if self.startz: startz = self.startz else: startz = locs[z].min() if self.stopz: stopz = self.stopz else: stopz = locs[z].max() self.clearRegionLocs() self.regionLocs = locs self._removeOutliers(startz, stopz) self.fitCurves() self.combineCurves(startz, stopz) return self.avgSpline def _computeOffsets(self, locs): """Compute the offsets for bead trajectories to align curves at z=0. Parameters ---------- locs : Pandas DataFrame Localizations from a single bead region. Returns ------- x0, y0 : tuple of int The offsets to subtract from the localizations belonging to a bead. """ avgOffset = 10 x, y = self.coordCols[0], self.coordCols[1] startFrame, stopFrame = locs[self.zCol].min(), \ locs[self.zCol].max() # Convert None's to infinity for comparison if self.startz == None: startz = -np.inf else: startz = self.startz if self.stopz == None: stopz = np.inf else: stopz = self.stopz if self.zeroz > stopz or self.zeroz < startz: warnings.warn(('Warning: zeroz ({0:d}) is outside the ' 'allowable range of frame numbers in this dataset ' '({1:d} - {2:d}). Try a different zeroz value.' ''.format(self.zeroz, startFrame + avgOffset, stopFrame - avgOffset))) # Average the localizations around the zeroz value x0 = locs[(locs[self.zCol] > self.zeroz - avgOffset) & (locs[self.zCol] < self.zeroz + avgOffset)][x].mean() y0 = locs[(locs[self.zCol] > self.zeroz - avgOffset) & (locs[self.zCol] < self.zeroz + avgOffset)][y].mean() if (x0 is np.nan) or (y0 is np.nan): warnings.warn('Could not determine an offset value; ' 'setting offsets to zero.') x0, y0 = 0, 0 return x0, y0 def fitCurves(self): """Fits individual splines to each z-scan. """ print('Performing spline fits...') # Check whether trajectories already exist if self.regionLocs is None: raise ZeroRegions('Zero regions containing beads are currently ' 'saved with this processor.') self.splines = [] regionIDIndex = self.regionLocs.index.names.index('region_id') x = self.sigmaCols[0] y = self.sigmaCols[1] z = self.zCol # rid is an integer for rid in self.regionLocs.index.levels[regionIDIndex]: # Get localizations from inside the current region matching rid # and that passed the _removeOutliers() step currRegionLocs = self.regionLocs.xs( rid, level='region_id', drop_level=False) # Use only those fiducials within a certain radius of the # cluster of localization's center of mass currRegionLocs = currRegionLocs.loc[ currRegionLocs[self._includeColName]] windowSize = self.smoothingWindowSize sigma = self.smoothingFilterSize # Shift the localization(s) at zeroz to (x = 0, y = 0) by # subtracting its value at frame number zeroFrame if self.zeroz is not None: x0, y0 = self._computeOffsets(currRegionLocs) else: x0, y0 = 0, 0 # Determine the appropriate weighting factors _, varx = self._movingAverage(currRegionLocs[x] - x0, windowSize=windowSize, sigma=sigma) _, vary = self._movingAverage(currRegionLocs[y] - y0, windowSize=windowSize, sigma=sigma) # Perform spline fits. Extrapolate using boundary values (const) extrapMethod = 'extrapolate' xSpline = UnivariateSpline(currRegionLocs[z].as_matrix(), currRegionLocs[x].as_matrix() - x0, w=1 / np.sqrt(varx), ext=extrapMethod) ySpline = UnivariateSpline(currRegionLocs[z].as_matrix(), currRegionLocs[y].as_matrix() - y0, w=1 / np.sqrt(vary), ext=extrapMethod) # Append results to class field splines self.splines.append({'xS': xSpline, 'yS': ySpline}) def plotBeads(self, curveNumber=None): """Make a plot of each bead's z-stack and the average spline fit. plotBeads allows the user to check the individual beads and their fits against the average spline fit. Parameters ---------- curveNumber : int Index of the spline to plot. (0-index) """ coordCols = [ self.zCol, self.sigmaCols[0], self.sigmaCols[1] ] horizontalLabels = ['', 'z-position'] verticalLabels = ['x', 'y'] title = 'Avg. spline and bead' splineCols = ['z', 'xS', 'yS'] # Set the y-axis based on the average spline minxy, maxxy = self.avgSpline['xS'].min(), self.avgSpline['xS'].max() minyy, maxyy = self.avgSpline['yS'].min(), self.avgSpline['yS'].max() minxy -= 50 maxxy += 50 minyy -= 50 maxyy += 50 ylims = [minxy, maxxy, minyy, maxyy] if curveNumber is None: # Plot all trajectories and splines startIndex = 0 stopIndex = len(self.splines) else: # Plot only the input trajectory and spline startIndex = curveNumber stopIndex = curveNumber + 1 offsets=[0,0] # No offsets for these plots for fid in range(startIndex, stopIndex): locs = self.regionLocs.xs(fid, level='region_id', drop_level=False) locs = locs.loc[locs[self._includeColName]] if self.zeroz is not None: offsets = self._computeOffsets(locs) else: offsets = (0, 0) self._plotCurves(fid, coordCols, horizontalLabels, verticalLabels, title, splineCols, offsets, ylims) def _removeOutliers(self, startz, stopz): """ Removes localizations lying outside the z-fitting range. Parameters ---------- startz : float stopz : float """ z = self.zCol self.regionLocs[self._includeColName] = True self.regionLocs.loc[ (self.regionLocs[z] < startz) | (self.regionLocs[z] > stopz), self._includeColName ] = False def reset(self): """Resets the astigmatism computer to its initial state. """ self.coordCols = self._init_coordCols.copy() self.sigmaCols = self._init_sigmaCols.copy() self.zCol = self._init_zCol self.smoothingWindowSize = self._init_smoothingWindowSize self.smoothingFilterSize = self._init_smoothingFilterSize self.useTrajectories = self._init_useTrajectories.copy() self.startz = self._init_startz self.stopz = self._init_stopz self.zeroz = self._init_zeroz class DefaultDriftComputer(ComputeTrajectories): """The default algorithm for computing a drift trajectory. The default drift computer fits a cubic smoothing spline to localizations from fiducial regions and averages the splines from multiple fiducials. It allows users to set the frame where the trajectories are equal to zero in x and y, to adjust the smoothing window parameters, and to select what trajectories are used to compute the final trajectory that is stored inside the avgSpline attribute. Parameters ---------- coordCols : list str List of strings identifying the x- and y-coordinate column names in that order. frameCol : str Name of the column identifying the column containing the frames. maxRadius : float The maximum distance that a localization may lie from the center of a cluster of fiducial localizations; localizations farther than this distance are not included in the fit. Set to None to include all fiducials. Units are the same as in coordCols. smoothingWindowSize : float Moving average window size in frames for spline fitting. smoothingFilterSize : float Moving average Gaussian kernel width in frames for spline fitting. useTrajectories : list of int List of integers corresponding to the fiducial trajectories to use when computing the average trajectory. If empty, all trajectories are used. zeroFrame : int Frame where all individual drift trajectories are equal to zero. This may be adjusted to help correct fiducial trajectories that don't overlap well near the beginning. Attributes ---------- avgSpline : Pandas DataFrame DataFrame with 'frame' index column and 'xS' and 'yS' position coordinate columns representing the drift of the sample during the acquisition. coordCols : list str List of strings identifying the x- and y-coordinate column names in that order. regionLocs : Pandas DataFrame DataFrame with a 'region_id' column denoting localizations from different regions of the original dataset. This is created by the parent ComputeTrajectories class. frameCol : str Name of the column identifying the column containing the frames. maxRadius : float The maximum distance that a localization may lie from the center of a cluster of fiducial localizations; localizations farther than this distance are not included in the fit. Set to None to include all fiducials. Units are the same as in coordCols. smoothingWindowSize : float Moving average window size in frames for spline fitting. smoothingFilterSize : float Moving average Gaussian kernel width in frames for spline fitting. splines : list of dict of 2x UnivariateSpline, 2x int Individual splines fit to the fiducial trajectories. Key names are 'xS', 'yS', 'minFrame', and 'maxFrame'. useTrajectories : list of int or empty list List of integers corresponding to the fiducial trajectories to use when computing the average trajectory. If [], all trajectories are used. zeroFrame : int Frame where all individual drift trajectories are equal to zero. This may be adjusted to help correct fiducial trajectories that don't overlap well near the beginning. """ def __init__(self, coordCols=['x', 'y'], frameCol='frame', maxRadius=None, smoothingWindowSize=600, smoothingFilterSize=400, useTrajectories=[], zeroFrame=1000): self.coordCols = coordCols self.frameCol = frameCol self.maxRadius = maxRadius self.smoothingWindowSize = smoothingWindowSize self.smoothingFilterSize = smoothingFilterSize self.useTrajectories = useTrajectories self.zeroFrame = zeroFrame super(ComputeTrajectories, self).__init__() # Column of DataFrame used to indicate what localizations are not # included in a trajectory for a spline fit, e.g. outliers self._includeColName = 'included_in_trajectory' # initial state self._init_coordCols = coordCols.copy() self._init_frameCol = frameCol self._init_maxRadius = maxRadius self._init_smoothingWindowSize = smoothingWindowSize self._init_smoothingFilterSize = smoothingFilterSize self._init_useTrajectories = useTrajectories.copy() self._init_zeroFrame = zeroFrame def combineCurves(self, startFrame, stopFrame): """Average the splines from different fiducials together. combineSplines(self, framesdf) relies on the assumption that fiducial trajectories span a significant portion of the full number of frames in the acquisition. Under this assumption, it uses the splines found in fitSplines() to extrapolate values outside of their tracks using the boundary value. It next evaluates the splines at each frame spanning the input DataFrame, shifts the evaluated splines to zero at the first frame, and then computes the average across different fiducials. Parameters ---------- startFrame : int Minimum frame number in full dataset stopFrame : int Maximum frame number in full dataset """ # Build list of evaluated splines between the absolute max and # min frames. frames = np.arange(startFrame, stopFrame + 1, 1) numSplines = len(self.splines) # Evalute each x and y spline at every frame position fullRangeSplines = {'xS': np.array([self.splines[i]['xS'](frames) for i in range(numSplines)]), 'yS': np.array([self.splines[i]['yS'](frames) for i in range(numSplines)])} # Create the mask area if only certain fiducials are to be averaged if not self.useTrajectories: mask = np.arange(numSplines) else: mask = self.useTrajectories # Compute the average over spline values avgSpline = {'xS': [], 'yS': []} try: for key in avgSpline.keys(): avgSpline[key] = np.mean(fullRangeSplines[key][mask], axis=0) except IndexError: raise UseTrajectoryError( 'At least one of the indexes inside ' 'useTrajectories does not match a known fiducial ' 'index. The maximum fiducial index is {0:d}.' ''.format( numSplines - 1)) # Append frames to avgSpline avgSpline['frame'] = frames self.avgSpline = pd.DataFrame(avgSpline) def computeTrajectory(self, regionLocs, startFrame, stopFrame): """Computes the final drift trajectory from fiducial localizations. Parameters ---------- regionLocs : Pandas DataFrame DataFrame containing the localizations belonging to fiducials. startFrame : int The minimum frame number in the full dataset. stopFrame : int The maximum frame number in the full dataset. Returns ------- self.avgSpline : Pandas DataFrame DataFrame with 'frame' index column and 'xS' and 'yS' position coordinate columns representing the drift of the sample during the acquisition. Notes ----- computeTrajectory() requires the start and stop frames because the fiducial localizations may not span the full range of frames in the dataset. """ self.clearRegionLocs() self.regionLocs = regionLocs self._removeOutliers() self.fitCurves() self.combineCurves(startFrame, stopFrame) return self.avgSpline def _computeOffsets(self, locs): """Compute the offsets for fiducial trajectories based on zeroFrame. Parameters ---------- locs : Pandas DataFrame Localizations from a single fiducial region. Returns ------- x0, y0 : tuple of int The offsets to subtract from the localizations belonging to a fiducial. """ avgOffset = 50 x, y = self.coordCols[0], self.coordCols[1] startFrame, stopFrame = locs[self.frameCol].min(), \ locs[self.frameCol].max() if self.zeroFrame > stopFrame or self.zeroFrame < startFrame: warnings.warn(('Warning: zeroFrame ({0:d}) is outside the ' 'allowable range of frame numbers in this dataset ' '({1:d} - {2:d}). Try a different zeroFrame value' 'by adjusting driftComputer.zeroFrame.' ''.format(self.zeroFrame, startFrame + avgOffset, stopFrame - avgOffset))) # Average the localizations around the zeroFrame value x0 = locs[(locs[self.frameCol] > self.zeroFrame - avgOffset) & (locs[self.frameCol] < self.zeroFrame + avgOffset)][x].mean() y0 = locs[(locs[self.frameCol] > self.zeroFrame - avgOffset) & (locs[self.frameCol] < self.zeroFrame + avgOffset)][y].mean() if (x0 is np.nan) or (y0 is np.nan): warnings.warn('Could not determine an offset value; ' 'setting offsets to zero.') x0, y0 = 0, 0 return x0, y0 def fitCurves(self): """Fits individual splines to each fiducial. """ print('Performing spline fits...') # Check whether fiducial trajectories already exist if self.regionLocs is None: raise ZeroRegions('Zero fiducials are currently saved ' 'with this processor.') self.splines = [] regionIDIndex = self.regionLocs.index.names.index('region_id') x = self.coordCols[0] y = self.coordCols[1] frameID = self.frameCol # fid is an integer for fid in self.regionLocs.index.levels[regionIDIndex]: # Get localizations from inside the current region matching fid # and that passed the _removeOutliers() step currRegionLocs = self.regionLocs.xs( fid, level='region_id', drop_level=False) # Use only those fiducials within a certain radius of the # cluster of localization's center of mass currRegionLocs = currRegionLocs.loc[ currRegionLocs[self._includeColName]] maxFrame = currRegionLocs[frameID].max() minFrame = currRegionLocs[frameID].min() windowSize = self.smoothingWindowSize sigma = self.smoothingFilterSize # Shift the localization(s) at zeroFrame to (x = 0, y = 0) by # subtracting its value at frame number zeroFrame x0, y0 = self._computeOffsets(currRegionLocs) # Determine the appropriate weighting factors _, varx = self._movingAverage(currRegionLocs[x] - x0, windowSize=windowSize, sigma=sigma) _, vary = self._movingAverage(currRegionLocs[y] - y0, windowSize=windowSize, sigma=sigma) # Perform spline fits. Extrapolate using boundary values (const) extrapMethod = 'const' xSpline = UnivariateSpline(currRegionLocs[frameID].as_matrix(), currRegionLocs[x].as_matrix() - x0, w=1 / np.sqrt(varx), ext=extrapMethod) ySpline = UnivariateSpline(currRegionLocs[frameID].as_matrix(), currRegionLocs[y].as_matrix() - y0, w=1 / np.sqrt(vary), ext=extrapMethod) # Append results to class field splines self.splines.append({'xS': xSpline, 'yS': ySpline, 'minFrame': minFrame, 'maxFrame': maxFrame}) def plotFiducials(self, curveNumber=None): """Make a plot of each fiducial track and the average spline fit. plotFiducials allows the user to check the individual fiducial tracks against the average spline fit. Parameters ---------- curveNumber : int Index of the spline to plot. (0-index) """ coordCols = [ self.frameCol, self.coordCols[0], self.coordCols[1] ] horizontalLabels = ['', 'Frame number'] verticalLabels = ['x-position', 'y-position'] title = 'Avg. spline and fiducial' splineCols = ['frame', 'xS', 'yS'] # Set the y-axis based on the average spline minxy, maxxy = self.avgSpline['xS'].min(), self.avgSpline['xS'].max() minyy, maxyy = self.avgSpline['yS'].min(), self.avgSpline['yS'].max() minxy -= 50 maxxy += 50 minyy -= 50 maxyy += 50 ylims = [minxy, maxxy, minyy, maxyy] if curveNumber is None: # Plot all trajectories and splines startIndex = 0 stopIndex = len(self.splines) else: # Plot only the input trajectory and spline startIndex = curveNumber stopIndex = curveNumber + 1 for fid in range(startIndex, stopIndex): locs = self.regionLocs.xs(fid, level='region_id', drop_level=False) # Filter out localizations that are outliers and find # offsets locs = locs.loc[locs[self._includeColName]] offsets = self._computeOffsets(locs) self._plotCurves(fid, coordCols, horizontalLabels, verticalLabels, title, splineCols, offsets, ylims) def _removeOutliers(self): """Removes outlier localizations from fiducial tracks before fitting. _removeOutliers() computes the center of mass of each cluster of localizations belonging to a fiducial and then removes localizations lying farther than self.maxRadius from this center. """ x = self.coordCols[0] y = self.coordCols[1] self.regionLocs[self._includeColName] = True maxRadius = self.maxRadius if not maxRadius: return # Change the region_id from an index to a normal column self.regionLocs.reset_index(level='region_id', inplace=True) groups = self.regionLocs.groupby('region_id') temp = [] for _, group in groups: # Make a copy to avoid the warning about modifying slices group = group.copy() # Subtract the center of mass and filter by distances xc, yc = group.loc[:, [x, y]].mean() dfc = pd.concat( [group[x] - xc, group[y] - yc], axis=1) distFilter = dfc[x]**2 + dfc[y]**2 > maxRadius**2 group.loc[distFilter, self._includeColName] = False temp.append(group) # Aggregate the filtered groups, reset the index, then recreate # self.regionLocs with the filtered localizations temp =
pd.concat(temp)
pandas.concat
''' Model training with the entire training data ''' # Libraries import pandas as pd import numpy as np import keras import tensorflow as tf from keras.models import Model from tensorflow.keras.models import load_model import keras.backend as K from keras import optimizers from keras.layers import Dense, Dropout, BatchNormalization, Conv1D, Flatten, Input, GaussianNoise, LeakyReLU, Add from keras.utils import to_categorical, np_utils from keras.regularizers import l2 from sklearn.model_selection import train_test_split, KFold, cross_val_score, StratifiedKFold from sklearn.preprocessing import StandardScaler, LabelEncoder, normalize from sklearn.utils import shuffle from sklearn.metrics import confusion_matrix, accuracy_score, f1_score import matplotlib.pyplot as plt import pickle from keras import regularizers from keras import backend as K from sklearn.utils import class_weight # GPU from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession tf.keras.backend.clear_session() config = ConfigProto() config.gpu_options.allow_growth = True gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options)) LIMIT = 3 * 1024 gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration( gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=LIMIT)]) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) # dataset import and preprocessing ds = pd.read_csv("../dataset/dataset.csv") X1 = ds.iloc[:,5:6] # (BF) X1 = pd.DataFrame(X1) X2 = ds.iloc[:,6:7] # rHpy X = pd.concat([X1, X2], axis=1) y = ds.iloc[:,7] y_w = y # Seed seed = 1337 np.random.seed(1337) # Features # Secondary Structure Folds infile = open('../features/SSF/feature/NF1_7.pickle','rb') nf1_9 = pickle.load(infile) infile.close() # # Amino Acid Signatures in the Interaction Shells infile = open('../features/AASIS/feature/NF2_8.pickle','rb') nf2_8 = pickle.load(infile) infile.close() infile = open('../features/AASIS/feature/NF2_7.pickle','rb') nf2_7 = pickle.load(infile) infile.close() infile = open('../features/AASIS/feature/NF2_6.pickle','rb') nf2_6 = pickle.load(infile) infile.close() infile = open('../features/AASIS/feature/NF2_5.pickle','rb') nf2_5 = pickle.load(infile) infile.close() # # Enzyme Class infile = open('../features/EC/feature/NF3_le.pickle','rb') nf3 = pickle.load(infile) infile.close() # # Motifs infile = open('../features/Motifs/feature/NF4_13.pickle','rb') nf4_13 = pickle.load(infile) infile.close() infile = open('../features/Motifs/feature/NF4_11.pickle','rb') nf4_11 = pickle.load(infile) infile.close() infile = open('../features/Motifs/feature/NF4_9.pickle','rb') nf4_9 = pickle.load(infile) infile.close() infile = open('../features/Motifs/feature/NF4_7.pickle','rb') nf4_7 = pickle.load(infile) infile.close() infile = open('../features/Motifs/feature/NF4_5.pickle','rb') nf4_5 = pickle.load(infile) infile.close() infile = open('../features/Motifs/feature/NF4_3.pickle','rb') nf4_3 = pickle.load(infile) infile.close() # Feature Selection nf1_9 = pd.DataFrame(nf1_9) nf2_8 = pd.DataFrame(nf2_8) nf2_7 = pd.DataFrame(nf2_7) nf2_6 = pd.DataFrame(nf2_6) nf2_5 = pd.DataFrame(nf2_5) nf3 = pd.DataFrame(nf3) nf4_3 = pd.DataFrame(nf4_3) nf4_5 = pd.DataFrame(nf4_5) nf4_7 = pd.DataFrame(nf4_7) nf4_9 = pd.DataFrame(nf4_9) nf4_11 = pd.DataFrame(nf4_11) nf4_13 =
pd.DataFrame(nf4_13)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jan 7 12:11:33 2020 @author: Andrew """ import numpy as np import pandas as pd import src.features as features import json import os #### methods for reading in or creating parameter files in params/ def read_ignoring_comments(filepath): """read in a file and return a list of lines not starting with '#'""" with open(filepath) as f: contents = f.read() contents = contents.split('\n') # filter out any blank lines or lines that are comments contents = [c for c in contents if c != '' and c[0] != '#'] return contents def get_gestures(version=2, path = 'params/'): """fetches gestures, and dictionaries mapping between integers and gestures""" gestures = read_ignoring_comments(f'{path}gesturesV{version}.txt') # get gesture to id dictionary g2idx = {g: i for i, g in enumerate(gestures)} # get id to gesture dictionary idx2g = {i: g for i, g in enumerate(gestures)} return gestures, g2idx, idx2g def get_VoI(path = 'params/'): """fetches variables of interest from params/VoI.txt""" VoI = read_ignoring_comments(f'{path}VoI.txt') return VoI def get_VoI_drop(path = 'params/'): """fetches variables to drop at prediction time from params/VoI_drop.txt""" VoI_drop = read_ignoring_comments(f'{path}VoI_drop.txt') return VoI_drop def get_derived_feature_dict(path = 'params/'): """fetches two lists, one each for one and two handed features to derive""" feature_dict = {} feature_dict['one_handed'] = read_ignoring_comments(f'{path}derived_features_one_handed.txt') feature_dict['two_handed'] = read_ignoring_comments(f'{path}derived_features_two_handed.txt') return feature_dict def create_dicts(df): """generates dictionaries for mean and std of a pandas df's columns, saving them to params/""" with open('params/means_dict.json', 'w') as f: json.dump(df.mean().to_dict(), f) with open('params/stds_dict.json', 'w') as f: json.dump(df.std().to_dict(), f) #### methods for the different steps in getting training examples from a CSV file def CSV2VoI(raw_file='data/recordings/fist_test.csv', VoI_file='params/VoI.txt', target_fps=25): """Turns a csv file of raw leap data into a pandas df containing gesture + variables of interest Attributes: raw_file -- str, giving the path/name of the leap motion data VoI_file -- str, giving the path/name of the txt file, with a variable of interest for each line target_fps -- int, output fps. Every nth frame is taken to acheive this, n is calculated using average fps of file Note: The VoI txt file shouldn't reference handedness for each of its chosen variables, or contain any variables that won't work with 'left_' or 'right_' appended to the start of them. Assumes that 'gesture' is a column name, indicating the gesture being performed. The error thrown when VoI contains an invalid name does not specify which name is invalid. This is annoying! """ # get the raw leap data from a csv file with open(raw_file, 'r') as f: raw = pd.read_csv(f) # get the variables of interest VoI = get_VoI() # get the average frame rate of the file mean_fps = raw['currentFrameRate'].mean() # get number of frames to skip skip = round(mean_fps / target_fps) if skip == 0: print('WARNING: Average file frame rate is less that half the target frame rate. Taking every frame.') skip = 1 # replace raw df with skipped frame version raw = raw.iloc[::skip,:] print(f'mean fps: {mean_fps:.2f}') print(f'target fps: {target_fps}') print(f'taking every {skip} frames') ### get df with VoI only # make list of variables to extract VoI_list = ['gesture'] # check there is data for the left hand, before adding left hand variables to VoI_list left, right = False, False if len(raw.filter(regex='left').columns) != 0: left = True VoI_list += ['left_' + v for v in VoI] fraction_active = 1 - sum(raw['left_' + VoI[0]].isna()) / len(raw) print(f'{fraction_active*100:.2f}% of rows contain valid LH data') # likewise, for right if len(raw.filter(regex='right').columns) != 0: right = True VoI_list += ['right_' + v for v in VoI] fraction_active = 1 - sum(raw['right_' + VoI[0]].isna()) / len(raw) print(f'{fraction_active*100:.2f}% of rows contain valid RH data') df = raw[::][VoI_list] print('Found left hand data: ', left) print('Found right hand data: ', right) df.reset_index(inplace=True) return df def df2X_y(df, g2idx = {'no_gesture': 0, 'so_so': 1, 'open_close': 2, 'maybe': 3}, hands=['right', 'left'], derive_features=True, standardize=True, dicts_gen=False, mirror=False): """Extracts X and y from pandas data frame, drops nan rows, and normalizes variables Arguments: df -- a dataframe of leap motion capture data g2idx -- dict mapping gesture names to integers hands -- list of hands to keep columns for derive_features -- bool, indicates whether or not to derive more features standardize -- bool, indicates whether or not to standardize and center variables create_dicts -- if true, new standard deviations and means dictionary are generated from the df, and saved to params/. needed if new features have been added to the model. mirror -- if true, flips data so that left hand becomes right hand and vice versa Returns: df.values -- np array of shape (time steps, features), predictors for every time step y -- np array of shape (time steps), with an int label for every time step Note: Purging na rows is a bit clumsy, it results in sudden time jumps in the input. Ideally a single training example shouldn't contain such a jump. In any case, this is likely rare. """ # drop columns for other hand, drop na rows len_with_na = len(df) # filter to gesture + variables for hands of interest df = df.filter(regex='|'.join(hands + ['gesture'])) # filter out any rows that have a gesture not in g2idx allowable_gestures = [g in g2idx.keys() for g in df['gesture']] if False in allowable_gestures: n_rows = len(allowable_gestures) invalid_rows = n_rows - sum(allowable_gestures) print(f'Warning: {invalid_rows} of {n_rows} rows contain gestures not in g2idx') df = df[allowable_gestures] if len(hands) == 1: # if we are only interested in one hand, then at this point the df will only contain cols for that hand # if the other hand was active while the hand of interest wasn't, this will leave NA rows df.dropna(inplace=True) else: # if both hands are required, then we replace nans with the last observed valid value df.fillna(method='ffill', inplace=True) # the first rows might contain nans - remove these, then reset index df.dropna(inplace=True) df.reset_index(inplace=True, drop=True) # make sure that data for both hands is present in the dataframe assert df.filter(regex='left').shape[1] > 0 and df.filter(regex='right').shape[1] > 0, 'Dataframe contains columns for only one hand, but data for both is requested' print(f'dealt with {len_with_na - len(df)} of {len_with_na} rows with nans') # warn if mirror=True but only one hand is needed for data, and set mirror to False # in future, this could be restructured so that mirroring occurs before data for other hand is dropped, so that mirroring can be used one-handed if mirror and len(hands) == 1: print('WARNING: length of hands is one, but mirror=True will result in one handed data being mirrored to opposite hand. mirror set to False.') mirror = False if mirror: df = mirror_data(df) print('Data successfully mirrored') # at this point, we may wish to derive some more features, and drop some of the original VoI if derive_features: derived_feature_dict = get_derived_feature_dict() df = pd.concat([df, pd.DataFrame.from_records(df.apply(features.get_derived_features,args=(derived_feature_dict,),axis=1))], axis=1) for hand in hands: for VoI in get_VoI_drop(): df.drop(hand + '_' + VoI, axis=1, inplace=True) # extract the gesture label after dealing with nans y = [g2idx[i] for i in df['gesture']] df = df.drop(columns=['gesture']) # # use create_dicts here if new derived variables have been created if dicts_gen: create_dicts(df) # perform mean normalization and scaling for unit variance if standardize: # use the dictionaries of means and stds for each variable with open('params/means_dict.json', 'r') as f: means_dict = json.load(f) for col in df.columns: df[col] = df[col] - means_dict[col] with open('params/stds_dict.json', 'r') as f: stds_dict = json.load(f) for col in df.columns: df[col] = df[col] / stds_dict[col] # get range for each variable, to check normalization: # print(df.min(), df.max()) # make sure that columns are in alphabetical order, so that model training and deployment accord with one another df = df.reindex(sorted(df.columns), axis=1) return df.values, np.array(y) def X_y2examples(X,y=[],n_frames=30, stride=None): """splits a contiguous list of frames and labels up into single gesture examples of length n_frames Arguments: X -- features to be split up y -- labels for each frame n_frames -- int, length of each training example stride -- int, determines how far to move along the sliding window that takes training examples, defaults to n_frames // 2 Returns: X_final -- np array of shape (examples, frames, features) y_final -- np array of shape (examples), using integers to indicate gestures. I.e. not one hot. Note: A sliding window is used to take training examples, with stride equal to half of frame size Any trailing frames not long enough for a complete example will be dropped """ # # simple test case # X = [[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7],[0,8],[1,1],[1,2],[1,3],[1,4],[1,5],[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],[3,7],[4,1],[4,2]] # y = [0,0,0,0,0,0,0,0,1,1,1,1,1,3,3,3,3,3,3,3,4,4] # if there are no y labels, then just return X split up into n_frames length examples if len(y) == 0: return np.array([X[i:i+n_frames] for i in range(0, len(X) - len(X) % n_frames, n_frames)]) if stride == None: stride = n_frames // 2 #### part 1: get the start and end indices of each gesture # each sublist contains two indices, for start and end Xsplit = [[0]] # ysplit contains a label for each sublist in Xsplit ysplit = [y[0]] for i, g in enumerate(y): # check if this frame is a different gestre if g != ysplit[-1]: # note down i - 1 as last index of previous gesture Xsplit[-1].append(i-1) # note down i as first index of current gesture Xsplit.append([i]) ysplit.append(g) Xsplit[-1].append(len(X)-1) #### part 2: split up into examples, using the generated indices X_final = [] y_final = [] for i, g in enumerate(ysplit): # iterate over what will be the end index of each training example # we add 2 to the upper bound because it is non inclusive (+1), but then neither is the stop index when slicing to get the example (+1 again) for j in range(Xsplit[i][0] + n_frames, Xsplit[i][1] + 2, stride): X_final.append(X[j-n_frames:j]) y_final.append(g) return np.array(X_final), np.array(y_final) def synced_shuffle(x, y): '''shuffles two numpy arrays in sync''' state = np.random.get_state() np.random.shuffle(x) np.random.set_state(state) np.random.shuffle(y) def mirror_data(df): """takes a data frame of gesture data and generates its mirror image: RH <-> LH""" #### warning: this function MIGHT break if different VoI are used # swap around left and right variables df_flipped = df.copy() df_flipped.columns = [col.replace('left', 'lft') for col in df_flipped.columns] df_flipped.columns = [col.replace('right', 'left') for col in df_flipped.columns] df_flipped.columns = [col.replace('lft', 'right') for col in df_flipped.columns] df_flipped = df_flipped.apply(lambda x: -x if x.name[-1] == '0' else x, axis=0) return df_flipped #### methods for combining the above together, to go straight from a CSVs to training examples def CSV2examples(raw_file='data/recordings/test1.csv', target_fps=30, g2idx={'no_gesture': 0, 'so_so': 1}, hands=['left', 'right'], n_frames=25, standardize=True, dicts_gen=False, mirror=True, derive_features=True): """all of the above: gets VoI, and using these, splits a CSV to X and y""" df = CSV2VoI(raw_file=raw_file, VoI_file='params/VoI.txt', target_fps=target_fps) X_contiguous, y_contiguous = df2X_y(df, g2idx, hands=hands, standardize=standardize, dicts_gen=dicts_gen, mirror=False, derive_features=derive_features) X, y = X_y2examples(X_contiguous, y=y_contiguous, n_frames=n_frames) if mirror: X_contiguous, y_contiguous = df2X_y(df, g2idx, hands=hands, standardize=standardize, dicts_gen=dicts_gen, mirror=True, derive_features=derive_features) X2, y2 = X_y2examples(X_contiguous, y=y_contiguous, n_frames=n_frames) X = np.concatenate([X,X2]) y = np.concatenate([y, y2]) synced_shuffle(X, y) return X, y def folder2examples(folder='data/loops/', target_fps=30, g2idx={'no_gesture': 0, 'so_so': 1}, hands=['left', 'right'], n_frames=25, standardize=True, dicts_gen=False, mirror=True, derive_features=True): '''all of the above: gets VoI, splits a folder of CSVs to X and y''' # create empty data frame df =
pd.DataFrame()
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python [conda env:.conda-bandit_nhgf] # language: python # name: conda-env-.conda-bandit_nhgf-py # --- # %% language="javascript" # IPython.notebook.kernel.restart() # %% import numpy as np import pandas as pd from collections import OrderedDict from pyPRMS.ParameterFile import ParameterFile # %% step = 'SOM' # one of AET, RUN, RCH, SCA, SOM, ALL hru_id = '66119' workdir = f'/Users/pnorton/Projects/National_Hydrology_Model/calibrations/NHMv11/byHRU_sample/HRU{hru_id}' calib_file = f'{workdir}/parameter_info' param_file = f'{workdir}/params_byHRU' ofs_file = f'{workdir}/RESULTS/{step}_OFS_HRU{hru_id}' mean_param_file = f'{workdir}/RESULTS/{step}_PARAMS_HRU{hru_id}' cal_sca = False # %% # 1 RUN 0.34418 # 2 AET 0.27683 # 3 SCA 0.16787 # 4 SOM 0.13448 # 5 RCH 0.07663 # 6 ALL 1.00000 # %% calib_df =
pd.read_csv(calib_file, sep='\s+', index_col=['Parameter'])
pandas.read_csv
import numpy as np import pandas as pd from sklearn.metrics.pairwise import cosine_similarity import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import warnings import seaborn as sns warnings.filterwarnings('ignore')
pd.set_option('display.max_rows',100,'display.max_columns', 10000,"display.max_colwidth",10000,'display.width',10000)
pandas.set_option