prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" WIP method to predict column embeddings using remainder of row as context """ import pandas as pd import fasttext from scipy.spatial import distance from itertools import product import sys import numpy as np from configurations import * from tuple_embedding_models import AutoEncoderTupleEmbedding, AutoEncoderTupleEmbeddingAdjusted def produce_column_embeddings(table1, table2): """ Loop through each column in each table and generate dictionaries containing columns (keys) and embedded representations of columns (values) """ table1_dict = {} for col in table1.columns: embedded_values = predict_column_embedding(table1, col) embed_avg = np.average(np.array(embedded_values), axis=0) table1_dict[col] = embed_avg table2_dict = {} for col in table2.columns: embedded_values = predict_column_embedding(table2, col) embed_avg = np.average(np.array(embedded_values), axis=0) table2_dict[col] = embed_avg return table1_dict, table2_dict def predict_column_embedding(table, column): """ """ print(f"Creating embedding for column: {column}") tuple_embedding_model = AutoEncoderTupleEmbedding() column_embedding_model = AutoEncoderTupleEmbeddingAdjusted() # Drop rows which have nan values in the column we are embedding table = table.dropna(subset=column) # Drop rows which have all nan values in remaining rows other than column table = table.dropna(how='all', subset=[col for col in table.columns if col != column]) # Fill remainder of nan values with empty spaces table = table.fillna(' ') # Convert to all string values table = table.astype(str) # Merge words in all rows except column we are holding out table["_merged_text"] = table[[col for col in table.columns if col != column]].agg(' '.join, axis=1) # Extract held out column held_out_col = table[column] # Drop columns not in merged text table = table.drop(columns=[col for col in table.columns if col != "_merged_text"]) # Preprocess tuple embedding model tuple_embedding_model.preprocess(table["_merged_text"]) # Get tuple embeddings print("Getting tuple embeddings") tuple_embeddings = tuple_embedding_model.get_tuple_embedding(table["_merged_text"]) # Now, predict column embeddings by using column embedding model column_embedding_model.preprocess(tuple_embeddings, held_out_col) print("Getting column embeddings") column_embeddings = column_embedding_model.get_tuple_embedding(tuple_embeddings) return column_embeddings def cos_sim(col1_embed, col2_embed): cosine_similarity = 1 - distance.cdist(col1_embed.reshape(1,-1), col2_embed.reshape(1,-1), metric="cosine") # print(cosine_similarity) return cosine_similarity def generate_column_similarity(table1,table2): # Delete below when done table1 = table1.iloc[:, :2] table2 = table2.iloc[:, :2] ### column_compare_combos = list(product(table1.columns, table2.columns)) # Goal to retrieve column embeddings below table1_dict, table2_dict = produce_column_embeddings(table1, table2) cs_list = [] for item in column_compare_combos: cs = cos_sim(table1_dict[item[0]], table2_dict[item[1]]) # print(cs) cs_list.append(cs[0][0]) return cs_list,column_compare_combos def make_prediction_df(table_names, table_files): table1_name = table_names[0] table2_name = table_names[1] dfa =
pd.read_csv(table_files[0])
pandas.read_csv
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"), pd.Series([], dtype="float64"), ], ) def test_series_keys(ps): gds = cudf.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]),
pd.DataFrame({"first_col": [], "second_col": [], "third_col": []})
pandas.DataFrame
import pandas from google.cloud import bigquery from google_pandas_load import LoadConfig from tests.context.loaders import gpl1, gpl2, gpl3, gpl4, gpl5 from tests.context.resources import project_id, bq_client, \ dataset_ref, dataset_name from tests.utils import BaseClassTest, populate_dataset, \ populate, populate_bucket, populate_local_folder class DataDeliveryTest(BaseClassTest): def test_query_to_bq(self): l0 = [2, 3] populate_dataset() gpl3.load( source='query', destination='bq', data_name='a0', query='select 3 as x union all select 2 as x') table_ref = dataset_ref.table(table_id='a0') table = bq_client.get_table(table_ref) df1 = bq_client.list_rows(table=table).to_dataframe() l1 = sorted(list(df1.x)) self.assertEqual(l0, l1) def test_bq_to_dataframe(self): df0 = pandas.DataFrame(data={'x': ['data_a10_bq']}) populate() df1 = gpl4.load( source='bq', destination='dataframe', data_name='a10_bq') self.assertTrue(gpl4.exist_in_bq('a10_bq')) self.assertTrue(df0.equals(df1)) def test_gs_to_local(self): populate_bucket() gpl2.load( source='gs', destination='local', data_name='a7') self.assertEqual(len(gpl2.list_blob_uris('a7')), 1) self.assertEqual(len(gpl2.list_local_file_paths('a7')), 1) def test_local_to_dataframe(self): l0 = ['data_a{}_local'.format(i) for i in range(10, 14)] populate_local_folder() df1 = gpl5.load( source='local', destination='dataframe', data_name='a1') l1 = sorted(list(df1.x)) self.assertEqual(l0, l1) def test_query_to_dataframe(self): df0 = pandas.DataFrame(data={'x': [1, 1]}) populate() df1 = gpl2.load( source='query', destination='dataframe', query='select 1 as x union all select 1 as x', data_name='a1') self.assertFalse(gpl2.exist_in_bq('a1')) self.assertFalse(gpl2.exist_in_gs('a1')) self.assertFalse(gpl2.exist_in_local('a1')) self.assertTrue(df0.equals(df1)) def test_local_to_bq(self): populate() gpl3.load( source='local', destination='bq', data_name='a', bq_schema=[bigquery.SchemaField('x', 'STRING')]) self.assertTrue(gpl3.exist_in_local('a')) self.assertFalse(gpl3.exist_in_gs('a')) table_ref = dataset_ref.table(table_id='a') table = bq_client.get_table(table_ref) num_rows = table.num_rows self.assertEqual(num_rows, 5) def test_dataframe_to_gs(self): df = pandas.DataFrame(data={'x': [1]}) gpl3.load( source='dataframe', destination='gs', data_name='b', dataframe=df) self.assertFalse(gpl3.exist_in_local('b')) self.assertEqual(len(gpl3.list_blob_uris('b')), 1) def test_local_to_gs(self): populate() gpl1.load( source='local', destination='gs', data_name='a1') self.assertTrue(gpl1.exist_in_local('a1')) self.assertEqual(len(gpl1.list_blob_uris('a1')), 4) def test_dataframe_to_bq(self): l0 = [3, 4, 7] df0 = pandas.DataFrame(data={'x': l0}) populate() gpl5.load( source='dataframe', destination='bq', data_name='a', dataframe=df0) self.assertFalse(gpl5.exist_in_local('a')) self.assertFalse(gpl5.exist_in_gs('a')) self.assertTrue(gpl5.exist_in_bq('a')) query = 'select * from `{}.{}.{}`'.format( project_id, dataset_name, 'a') df1 = bq_client.query(query).to_dataframe() l1 = sorted(list(df1.x)) self.assertEqual(l0, l1) def test_upload_download(self): df0 = pandas.DataFrame(data={'x': [1], 'y': [3]}) populate() gpl1.load( source='dataframe', destination='bq', data_name='a9', dataframe=df0) query = 'select * from `{}.{}.{}`'.format( project_id, dataset_name, 'a9') df1 = gpl1.load( source='query', destination='dataframe', query=query) self.assertTrue(df0.equals(df1)) def test_download_upload(self): df0 = pandas.DataFrame(data={'x': [3]}) df1 = gpl2.load( source='query', destination='dataframe', query='select 3 as x') self.assertTrue(df0.equals(df1)) gpl2.load( source='dataframe', destination='bq', data_name='b8', dataframe=df1) query = 'select * from `{}.{}.{}`'.format( project_id, dataset_name, 'b8') df2 = bq_client.query(query).to_dataframe() self.assertTrue(df0.equals(df2)) def test_mload(self): populate() config1 = LoadConfig( source='dataframe', destination='bq', data_name='a10', dataframe=pandas.DataFrame(data={'x': [3]})) config2 = LoadConfig( source='query', destination='dataframe', query='select 4 as y') config3 = LoadConfig( source='query', destination='gs', data_name='e0', query='select 4 as y') load_results = gpl5.mload([config1, config2, config3]) self.assertEqual(len(load_results), 3) self.assertTrue(load_results[0] is None) df2 = pandas.DataFrame(data={'y': [4]}) self.assertTrue(load_results[1].equals(df2)) self.assertTrue(load_results[2] is None) def test_diamond(self): df0 = pandas.DataFrame(data={'x': [3]}) query = 'select 3 as x' populate() df1 = gpl5.xload( source='query', destination='dataframe', query=query).load_result config = LoadConfig( source='query', destination='dataframe', query=query) df2 = gpl5.mload([config])[0] self.assertTrue(df0.equals(df1)) self.assertTrue(df0.equals(df2)) def test_config_repeated(self): df0 =
pandas.DataFrame(data={'x': [3]})
pandas.DataFrame
# -*- coding: utf-8 -*- import os import sys import pandas as pd import numpy as np import json # webscraping import requests import wget from bs4 import BeautifulSoup from selenium import webdriver from datetime import datetime, timedelta import time from tqdm import tqdm # if __package__: # from ..imports import * # else: # # run as a script, use absolute import # _i = os.path.dirname(os.path.dirname(os.path.abspath(".."))) # if _i not in sys.path: # sys.path.insert(0, _i) # from imports import * """Scrape weather data and weather information """ # find station in the city name def find_weather_stations(city_names: list, weather_json_file: str): """Find a list of weather stations in city_names list """ # load weather information with open(weather_json_file, 'r') as f: station_dict_list = json.load(f) weather_stations_info = [] for city_name in city_names: for i, station in enumerate(station_dict_list): if city_name in station['city_name']: weather_stations_info.append(station) return weather_stations_info def get_data_n_soup(browser, date_str, header_url, waittime=30): ''' Input: date in string - Ask Selenium to open the website, and execute inner javascript. - Parse data into beautifulsoup object and look for the hourly table - Parse the table into a panda dataframe - remove the unit - add date column return: daily weather dataframe and beauitfulsoup object of that table ''' # url=f'https://www.wunderground.com/history/daily/th/bang-phut/VTBD/date/{date_str}' url = header_url + date_str #print(url) browser.get(url) time.sleep(waittime) innerhtml = browser.execute_script("return document.body.innerHTML") soup = BeautifulSoup(innerhtml, features="lxml") #div_table = soup.find_all('table') daily_df = pd.read_html(str(soup)) #print('table lenght ', len(daily_df)) daily_df = daily_df[-1] #print('data lenght', len(daily_df)) daily_df = daily_df.dropna(how='all') # add date columns daily_df['datetime'] = pd.to_datetime( date_str + ' ' + daily_df['Time'], format="%Y-%m-%d %I:%M %p") return daily_df def convert_temp_col(data_df, temperature_col): # convert string temperature in F to celcious in float for col in temperature_col: if col in data_df.columns: data_series = data_df[col].copy() #data_series = data_series.str.replace('°F', '') data_series = data_series.str.extract(r'(\d+)').iloc[:,0] data_series = data_series.astype(float) data_series = ((data_series - 32) * 5 / 9).round(2) data_df[col] = data_series data_df.columns = data_df.columns.str.replace(col, col + '(C)') return data_df def convert_wind_col(data_df, win_col): # convert string wind speed and wind gust in mph to kph for col in win_col: if col in data_df.columns: data_series = data_df[col].copy() # remove unit in the data data_series = data_series.str.extract(r'(\d+)').iloc[:,0] #data_series = data_series.str.replace('mph', '') #data_series = data_series.str.replace(',', '') data_series = data_series.astype(float) # convert the value data_series = (data_series * 1.60934).round(0) data_df[col] = data_series data_df.columns = data_df.columns.str.replace(col, col + '(kmph)') return data_df def convert_pressure_col(data_df, pressure_col): # convert string pressure in 'inch' to float for col in pressure_col: if col in data_df.columns: data_series = data_df[col].copy() #data_series = data_series.str.replace('in', '') data_series = data_series.str.extract(r'(\d+)').iloc[:,0] data_series = data_series.astype(float) # convert the value to hPa data_series = (data_series * 33.8638).round(0) data_df[col] = data_series data_df.columns = data_df.columns.str.replace(col, col + '(hPa)') return data_df def convert_precip_col(data_df, precip_col): # convert string precipitation in 'inch' to float and change unit for col in precip_col: if col in data_df.columns: data_series = data_df[col].copy() #data_series = data_series.str.replace('in', '') data_series = data_series.str.extract(r'(\d+)').iloc[:,0] data_series = data_series.astype(float) # convert the value to hPa data_series = (data_series * 25.4).round(2) data_df[col] = data_series data_df.columns = data_df.columns.str.replace(col, col + '(mm)') return data_df def convert_humidity_col(data_df, humidity_col): # convert string temperature in F to celcious in float for col in humidity_col: if col in data_df.columns: data_series = data_df[col].copy() #data_series = data_series.str.replace('%', '') data_series = data_series.str.extract(r'(\d+)').iloc[:,0] data_series = data_series.astype(int) data_df[col] = data_series data_df.columns = data_df.columns.str.replace(col, col + '(%)') return data_df def convert_unit(data_df): # convert string data into number by removing the text in the unit. Put the text in the columns name. # convert temperature wand windspeed into metric system data_df.columns = data_df.columns.str.replace(' ', '_') temperature_col = ['Temperature', 'Dew_Point'] wind_col = ['Wind_Speed', 'Wind_Gust'] pressure_col = ['Pressure'] humidity_col = ['Humidity'] precip_col = ['Precip.'] data_df = convert_temp_col(data_df, temperature_col) data_df = convert_wind_col(data_df, wind_col) data_df = convert_pressure_col(data_df, pressure_col) data_df = convert_humidity_col(data_df, humidity_col) data_df = convert_precip_col(data_df, precip_col) return data_df def scrape_weather(city_json, date_range): # scrape weather data from a city in date in date range # save filename using city name # return weather data and bad data df and date that fail # append the data to an exsiting file if the files does not exists browser = webdriver.Firefox() time.sleep(2) weather = pd.DataFrame() bad_date_df = pd.DataFrame() # Build header URL specific_url = city_json['specific_url'] header_url = 'https://www.wunderground.com/history/daily/' + specific_url + 'date/' for i, date in tqdm(enumerate(date_range)): try: # obtain daily weather dataframe daily_df = get_data_n_soup( browser, date, header_url=header_url, waittime=10) except: pass else: # good query # convert unit of the data daily_df = convert_unit(daily_df) # combine the weather for each day weather = pd.concat([weather, daily_df], axis=0, join='outer') # except BaseException: # # fail query, # bad_date_df = pd.concat( # [ # bad_date_df, # pd.DataFrame( # { # 'header_url': header_url, # 'date': date}, # index=[0])], # ignore_index=True) # else: # if len(daily_df) == 0: # # fail query, # bad_date_df = pd.concat( # [ # bad_date_df, # pd.DataFrame( # { # 'header_url': header_url, # 'date': date}, # index=[0])], # ignore_index=True) # else: # good query # convert unit of the data # daily_df = convert_unit(daily_df) # # combine the weather for each day # weather = pd.concat([weather, daily_df], axis=0, join='outer') browser.close() try: # sort weather value weather = weather.sort_values('datetime') except BaseException: print(date_range, weather.columns) return weather, bad_date_df def fix_temperature(df, lowest_t: int = 5, highest_t: int = 65): # remove abnormal tempearture reading from weather data idx = df[df['Temperature(C)'] < lowest_t].index df.loc[idx, ['Temperature(C)', 'Dew_Point(C)', 'Humidity(%)']] = np.nan idx = df[df['Temperature(C)'] > highest_t].index df.loc[idx, ['Temperature(C)', 'Dew_Point(C)', 'Humidity(%)']] = np.nan return df def fix_pressure(df, lowest_t: int = 170, highest_t: int = 1500): # remove abnormal tempearture reading from weather data idx = df[df['Pressure(hPa)'] < lowest_t].index df.loc[idx, ['Pressure(hPa)']] = np.nan idx = df[df['Pressure(hPa)'] > highest_t].index df.loc[idx, ['Pressure(hPa)']] = np.nan return df def fill_missing_weather(df, limit: int = 12): # make the timestamp to be 30 mins interval. Fill the missing value # roud datetiem to whole 30 mins df['datetime'] = pd.to_datetime(df['datetime']) df['datetime'] = df['datetime'].dt.round('30T') df = df.sort_values('datetime') df = df.drop_duplicates('datetime') dates = df['datetime'].dropna().dt.date.unique() # fill in the missing value new_datetime = pd.date_range( start=dates[0], end=dates[-1] + timedelta(days=1), freq='30T') new_weather = pd.DataFrame(new_datetime[:-1], columns=['datetime']) new_weather = new_weather.merge(df, on='datetime', how='outer') new_weather = new_weather.fillna(method='ffill', limit=limit) new_weather = new_weather.fillna(method='bfill', limit=limit) new_weather = new_weather.set_index('datetime') new_weather = new_weather.dropna(how='all').reset_index() return new_weather def update_weather( city_json, data_folder, start_date=datetime( 2000, 10, 1), end_date=datetime.now()): """Update weather for the city specified by city_json and save. """ # read existing file city_name = ('_').join(city_json['city_name'].split(' ')) current_filename = data_folder + city_name + '.csv' print('updateing file:', current_filename) # obtain a list of existed dates if exists if os.path.exists(current_filename): df = pd.read_csv(current_filename) df['datetime'] = pd.to_datetime(df['datetime']) df = df.drop_duplicates('datetime') # find exisiting date ex_date = df['datetime'].dt.strftime('%Y-%m-%d').unique() ex_date = set(ex_date) else: df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import os from pathlib import Path from itertools import islice class My_dict(dict): def __init__(self): self = dict() def add(self, key, value): self[key] = value class Df(): def __init__(self, raw_data_location): df = pd.read_csv(raw_data_location, header = 0) self.df = df def tsp_df(self): df = self.df df1 =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import streamlit as st import importlib import os import sys import time def file_selector(folder_path='.'): filenames = os.listdir(folder_path) filenames_ = [f for f in filenames if f[-3:] == "txt"] selected_filename = st.selectbox('Select a file', filenames_) return os.path.join(folder_path, selected_filename) st.header("Rocking Data Bytes") modo = st.sidebar.radio("Modo", options=["Buscar contenido", "Subir contenido", "Configuración"], index=0) if "METADATA.csv" in os.listdir(".") and "TAGS.csv" in os.listdir("."): METADATA = pd.read_csv("./METADATA.csv", index_col=0) TAGS = pd.read_csv("./TAGS.csv", index_col=0) else: METADATA = pd.DataFrame(np.zeros((1, 5)), index=["INIT"], columns=["TAG_{}".format(i) for i in range(1,6)]) METADATA.to_csv("./METADATA.csv") TAGS = pd.DataFrame({"TAGS":["funciones", "machine learning", "visualizacion", "estadistica"]}) TAGS.to_csv("./TAGS.csv") if modo == "Buscar contenido": METADATA = pd.read_csv("./METADATA.csv", index_col=0) TAGS = pd.read_csv("./TAGS.csv", index_col=0) search_tags = st.multiselect("Tags", options=[_[0] for _ in TAGS.values]) available_bytes = [] for byte in METADATA.index: if sum([tag_ in METADATA.loc[byte].values for tag_ in search_tags]) == len(search_tags): print(sum([tag_ in METADATA.loc[byte] for tag_ in search_tags])) available_bytes.append(byte) if search_tags == []: selection = st.selectbox("Índice", options=METADATA.index[1:]) else: selection = st.selectbox("Índice", options=available_bytes) if st.button("Ver"): importlib.import_module("{}".format(selection)) del sys.modules["{}".format(selection)] elif modo == "Subir contenido": METADATA = pd.read_csv("./METADATA.csv", index_col=0) TAGS = pd.read_csv("./TAGS.csv", index_col=0) nombre = st.text_input("Nombre") tags = st.multiselect("Tags", options=[_[0] for _ in TAGS.values]) path = file_selector() base = open(os.getcwd() + "/{}.py".format(nombre), "w", encoding="utf-8") base.write("import streamlit as st\nwith st.echo():\n") base.close() flag_1 = nombre is not None flag_2 = tags is not None FLAGS = flag_1 + flag_2 if FLAGS == 2 and st.button("Guardar"): temp = open(path, "r", encoding="utf-8") base_ = open(os.getcwd() + "/{}.py".format(nombre), "a", encoding="utf-8") for line in temp: base_.write("\t"+line) temp.close() base_.close() for i in range(5-len(tags)): tags.extend([0]) print({nombre:tags}) METADATA.loc[nombre, :] = tags METADATA.to_csv("./METADATA.csv") else: st.empty().text(" ") st.info("Actualmente existen {} bytes almacenados y {} tags".format(METADATA.shape[0]-1, len(TAGS.values))) st.empty().text(" ") st.subheader("Metadata") st.empty().text(" ") if st.button("Resetear metadata"): METADATA = pd.DataFrame(np.zeros((1, 5)), index=["INIT"], columns=["TAG_{}".format(i) for i in range(1, 6)]) METADATA.to_csv("./METADATA.csv") if st.button("Ver metadata"): st.write(METADATA.iloc[1:, :]) st.subheader("Tags") new_tag = st.text_input("Agregar un nuevo tag") if new_tag is not None and st.button("Agregar tag"): redundancia = False if new_tag in TAGS.values: redundancia = True if redundancia is False: TAGS = pd.concat([TAGS,
pd.DataFrame({"TAGS":new_tag}, index=[0])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 6 10:25:47 2019 @author: <NAME> Input files: host and pathogen quantification tables (e.g. pathogen_quant_salmon.tsv, host_quantification_uniquely_mapped_htseq.tsv), raw read statistics, star statistics Output file: tsv file Description: Used to collect mapping and quantifications statistics for STAR, HTSeq, Salmon or HTSeq results. """ import argparse import pandas as pd # function to sum up number of mapped reads from quantification table def mapping_stats(quantification_table_path,gene_attribute,organism): # read quantification table col_names = pd.read_csv(quantification_table_path, sep = '\t', nrows=0).columns types_dict = {gene_attribute: str} types_dict.update({col: float for col in col_names if col not in types_dict}) quantification_table = pd.read_csv(quantification_table_path, sep = '\t',index_col=0,dtype=types_dict) quantification_table = quantification_table.fillna(0) # initialize dict. quant_sum = {} for sample_name in quantification_table: # iterate over columns of quantification_table if 'NumReads' in sample_name: # for each column (sample) with 'NumReads' sum up the number of reads and add into quant_sum dict. quant_sum.update({sample_name:sum(quantification_table[sample_name])}) # create data frame from dict. total_counts_pd = pd.DataFrame.from_dict(quant_sum,orient='index') total_counts_pd.columns = [organism] return total_counts_pd parser = argparse.ArgumentParser(description="""collects and generates mapping statistics""") parser.add_argument("-q_p", "--quantification_table_pathogen", metavar='<quantification_table_pathogen>', default='.', help="Path to pathogen quantification table; Salmon and HTSeq") parser.add_argument("-q_h", "--quantification_table_host", metavar='<quantification_table_host>', default='.', help="Path to host quantification table; Salmon and HTSeq") parser.add_argument("-total_raw", "--total_no_raw_reads",metavar='<total_no_raw_reads>',default='.',help="Path to table with total number of raw reads for each sample; Salmon and STAR") parser.add_argument("-total_processed", "--total_no_processed_reads", metavar='<total_no_processed_reads>', help="Path to table with total number of processed reads by STAR or Salmon") parser.add_argument("-m_u", "--mapped_uniquely", metavar='<stats mapped uniquely >', default='.', help="Path to STAR mapping stats of uniquely mapped reads; STAR") parser.add_argument("-m_m", "--mapped_multi", metavar='<stats multi mapped >', default='.', help="Path to STAR mapping stats of multi mapped reads; STAR") parser.add_argument("-c_m", "--cross_mapped", metavar='<stats cross mapped >', default='.', help="Path to STAR mapping stats of cross_mapped reads; STAR") parser.add_argument("-star", "--star_stats", metavar='<stats star >', default='.', help="Path to mapping statistics of STAR; HTSeq") parser.add_argument("-star_pr", "--star_processed", metavar='<stats star_processed >', default='.',help="Path to STAR stats of processed reads; Salmon in alignment-based mode") parser.add_argument("-a", "--gene_attribute", default='.', help="gene attribute used in quantification; Salmon and HTSeq") parser.add_argument("-t", "--tool", metavar='<tool>', help="salmon, salmon_alignment, htseq or star") parser.add_argument("-o", "--output_dir", metavar='<output>', help="output dir",default='.') args = parser.parse_args() # collect statistics for Salmon Selective Alignment mode if args.tool == 'salmon': # collect assigned pathogen reads pathogen_total_counts = mapping_stats(args.quantification_table_pathogen,args.gene_attribute,'pathogen') # collect assigned host reads host_total_counts = mapping_stats(args.quantification_table_host,args.gene_attribute,'host') # combine host and pathogen mapped reads combined_total_mapped_reads = pd.concat([pathogen_total_counts, host_total_counts], axis=1) # rename colnames - remove '_NumReads' suffix new_index1 = [sample.split('_NumReads')[0] for sample in combined_total_mapped_reads.index] combined_total_mapped_reads.index = new_index1 # calculate total mapped reads combined_total_mapped_reads['total_mapped_reads'] = combined_total_mapped_reads.sum(axis=1) if args.total_no_raw_reads.endswith('.tsv'): # if tsv table is defined in total_no_raw_reads argument # read total number of raw reads total_reads = pd.read_csv(args.total_no_raw_reads,sep="\t",index_col=0, names=['total_raw_reads']) # read total number of reads processed by Salmon processed_reads_salmon = pd.read_csv(args.total_no_processed_reads,sep="\t",index_col=0, names=['processed_reads']) # combine statistics results_df = pd.concat([combined_total_mapped_reads, processed_reads_salmon, total_reads], axis=1) # calculate unmapped reads results_df['unmapped_reads'] = results_df['processed_reads'] - results_df['total_mapped_reads'] # calculate trimmed reads results_df['trimmed_reads'] = results_df['total_raw_reads'] - results_df['processed_reads'] else: # if tsv table is not defined in total_no_raw_reads argument # read total number of reads processed by Salmon processed_reads_salmon = pd.read_csv(args.total_no_processed_reads,sep="\t",index_col=0, names=['processed_reads']) results_df = pd.concat([combined_total_mapped_reads, processed_reads_salmon], axis=1) # calculate unmapped reads results_df['unmapped_reads'] = results_df['processed_reads'] - results_df['total_mapped_reads'] # save results results_df2 = results_df.sort_index() results_df2.to_csv(args.output_dir, sep='\t') # collect statistics for Salmon alignment-based mode elif args.tool == 'salmon_alignment': # collect assigned pathogen reads pathogen_total_counts = mapping_stats(args.quantification_table_pathogen,args.gene_attribute,'pathogen') # collect assigned host reads host_total_counts = mapping_stats(args.quantification_table_host,args.gene_attribute,'host') # combine host and pathogen mapped reads combined_total_assigned_reads = pd.concat([pathogen_total_counts, host_total_counts], axis=1) # rename colnames - remove '_NumReads' suffix new_index1 = [sample.split('_NumReads')[0] for sample in combined_total_assigned_reads.index] combined_total_assigned_reads.index = new_index1 # calculate total assigned reads combined_total_assigned_reads['total_assigned_reads'] = combined_total_assigned_reads.sum(axis=1) # extracted mapped reads from salmon log file combined_total_mapped_reads = pd.read_csv(args.total_no_processed_reads,sep="\t",index_col=0, names=['total_mapped_reads']) #read total number of reads processed by STAR processed_reads_star = pd.read_csv(args.star_processed,sep="\t",index_col=0, names=['processed_reads']) if args.total_no_raw_reads.endswith('.tsv'): #read total number of raw reads total_reads = pd.read_csv(args.total_no_raw_reads,sep="\t",index_col=0, names=['total_raw_reads']) results_df = pd.concat([processed_reads_star, total_reads, combined_total_assigned_reads, combined_total_mapped_reads], axis=1) # calculate unmapped reads results_df['unmapped_reads'] = results_df['processed_reads'] - results_df['total_mapped_reads'] # calculate unassigned reads results_df['unassigned_reads'] = results_df['total_mapped_reads'] - results_df['total_assigned_reads'] # calculate trimmed reads results_df['trimmed_reads'] = results_df['total_raw_reads'] - results_df['processed_reads'] else: results_df = pd.concat([processed_reads_star, combined_total_assigned_reads, combined_total_mapped_reads], axis=1) # calculate unmapped reads results_df['unmapped_reads'] = results_df['processed_reads'] - results_df['total_mapped_reads'] # calculate unassigned reads results_df['unassigned_reads'] = results_df['total_mapped_reads'] - results_df['total_assigned_reads'] # save results results_df2 = results_df.sort_index() results_df2.to_csv(args.output_dir, sep='\t') # collect statistics for HTSeq elif args.tool == 'htseq': # collect assigned pathogen reads pathogen_total_counts = mapping_stats(args.quantification_table_pathogen,args.gene_attribute,'pathogen_assigned_reads') # collect assigned host reads host_total_counts = mapping_stats(args.quantification_table_host,args.gene_attribute,'host_assigned_reads') combined_total_mapped_reads = pd.concat([pathogen_total_counts, host_total_counts], axis=1) # rename colnames - remove '_NumReads' suffix new_index1 = [sample.split('_NumReads')[0] for sample in combined_total_mapped_reads.index] combined_total_mapped_reads.index = new_index1 # calculate total assigned reads combined_total_mapped_reads['total_assigned_reads'] = combined_total_mapped_reads.sum(axis=1) # read alignment statistics star_stats = pd.read_csv(args.star_stats,sep="\t",index_col=0 ) # combine statistics results_df = pd.concat([star_stats,combined_total_mapped_reads], axis=1) # calculate unassigned host reads results_df['unassigned_host_reads'] = results_df['host_uniquely_mapped_reads'] - results_df['host_assigned_reads'] # calculate unassigned pathogen reads results_df['unassigned_pathogen_reads'] = results_df['pathogen_uniquely_mapped_reads'] - results_df['pathogen_assigned_reads'] # save results results_df2 = results_df.sort_index() results_df2.to_csv(args.output_dir, sep='\t') # collect statistics for STAR elif args.tool == 'star': # read total number of uniquely mapped reads mapped_uniquely = pd.read_csv(args.mapped_uniquely,sep="\t",index_col=0) # read total number of multi-mapped reads mapped_multi = pd.read_csv(args.mapped_multi,sep="\t",index_col=0) # read total number of cross-mapped reads cross_mapped =
pd.read_csv(args.cross_mapped,sep="\t", header=None, index_col=0, names=['cross_mapped_reads'])
pandas.read_csv
#! /usr/bin/env python import cyvcf2 import argparse import sys from collections import defaultdict, Counter import pandas as pd import signal import numpy as np from shutil import copyfile import pyfaidx from random import choice from pyliftover import LiftOver from Bio.Seq import reverse_complement from mutyper import ancestor def setup_ancestor(args): """utility for initializing an Ancestor object for use in different ' 'subroutines""" return ancestor.Ancestor(args.fasta, k=args.k, target=args.target, strand_file=args.strand_file, key_function=lambda x: x.split(args.sep)[args.chrom_pos], read_ahead=10000, sequence_always_upper=(not args.strict)) def ancestral_fasta(args): """subroutine for ancestor subcommand """ # single chromosome fasta file for reference genome ref = pyfaidx.Fasta(args.reference, read_ahead=10000) # make a copy to build our ancestor for this chromosome copyfile(args.reference, args.output) anc = pyfaidx.Fasta(args.output, read_ahead=10000, mutable=True) # reference genome for outgroup species (all chromosomes) out = pyfaidx.Fasta(args.outgroup, read_ahead=10000) # outgroup to reference alignment chain file lo = LiftOver(args.chain) # snps database for the same chromosome vcf = cyvcf2.VCF(args.vcf) # change regions outside of callability mask to all N bases if args.bed: if args.bed == '-': bed = sys.stdin else: bed = open(args.bed, 'r') last_end = 0 for line in bed: chrom, start, end = line.rstrip().split('\t')[:3] start = int(start) anc[chrom][last_end:start] = 'N' * (start - last_end) last_end = int(end) anc[chrom][last_end: len(anc[chrom])] = 'N' * (len(anc[chrom]) - last_end) for variant in vcf: # change variants that are not biallelic SNPs to N bases if not (variant.is_snp and len(variant.ALT) == 1): anc[chrom][variant.start: variant.end] = 'N' * (variant.end - variant.start) else: out_coords = lo.convert_coordinate(variant.CHROM, variant.start) # change ambiguously aligning sites to N bases if out_coords is None or len(out_coords) != 1: anc[chrom][variant.start] = 'N' else: if variant.REF != ref[chrom][variant.start].seq.upper(): raise ValueError(f'variant reference allele {variant.REF} ' f'mismatches reference sequence ' f'{ref[chrom][variant.start]}') out_chromosome, out_position, out_strand = out_coords[0][:3] out_allele = out[out_chromosome][out_position].seq # if negative strand, take reverse complement base if out_strand == '-': out_allele = reverse_complement(out_allele) # and finally, polarize if out_allele.upper() == variant.ALT[0]: anc[chrom][variant.start] = out_allele elif out_allele.upper() != variant.REF: # triallelic anc[chrom][variant.start] = 'N' def variants(args): """subroutine for variants subcommand """ ancestor = setup_ancestor(args) vcf = cyvcf2.VCF(args.vcf) vcf.add_info_to_header({'ID': 'mutation_type', 'Description': f'ancestral {args.k}-mer mutation ' 'type', 'Type': 'Character', 'Number': '1'}) vcf_writer = cyvcf2.Writer('-', vcf) vcf_writer.write_header() for variant in vcf: # biallelic snps only if not (variant.is_snp and len(variant.ALT) == 1): continue # mutation type as ancestral kmer and derived kmer anc_kmer, der_kmer = ancestor.mutation_type(variant.CHROM, variant.start, variant.REF, variant.ALT[0]) if anc_kmer is None or der_kmer is None: continue mutation_type = f'{anc_kmer}>{der_kmer}' variant.INFO['mutation_type'] = mutation_type # ancestral allele AA = ancestor[variant.CHROM][variant.start].seq # polarize genotypes (and associated INFO) if alternative allele is # ancestral if variant.ALT[0] == AA: variant.INFO['AC'] = variant.INFO['AN'] - variant.INFO['AC'] variant.INFO['AF'] = variant.INFO['AC'] / variant.INFO['AN'] # cyvcf2 docs say we need to reassign genotypes like this for the # change to propagate (can't just update indexwise) if variant.ploidy == 2: # diploid variant.genotypes = [[int(not gt[0]), int(not gt[1]), gt[2]] for gt in variant.genotypes] elif variant.ploidy == 1: # haploid variant.genotypes = [[int(not gt[0]), gt[1]] for gt in variant.genotypes] else: raise ValueError(f"invalid ploidy {variant.ploidy}") elif not variant.REF == AA: raise ValueError(f'ancestral allele {AA} is not equal to ' f'reference {variant.REF} or alternative ' f'{variant.ALT[0]}') # set REF to ancestral allele and ALT to derived allele variant.REF = anc_kmer[ancestor.target] variant.ALT = der_kmer[ancestor.target] vcf_writer.write_record(variant) # this line required to exit on a SIGTERM in a pipe, e.g. from head signal.signal(signal.SIGPIPE, signal.SIG_DFL) def targets(args): """subroutine for targets subcommand """ ancestor = setup_ancestor(args) if args.bed == '-': args.bed = sys.stdin sizes = ancestor.targets(args.bed) try: for kmer in sorted(sizes): print(f'{kmer}\t{sizes[kmer]}') except BrokenPipeError: pass def spectra(args): """subroutine for spectra subcommand """ vcf = cyvcf2.VCF(args.vcf, gts012=True) if args.population: spectra_data = Counter() for variant in vcf: spectra_data[variant.INFO['mutation_type']] += 1 spectra = pd.DataFrame(spectra_data, ['population']).reindex(sorted(spectra_data), axis='columns') try: print(spectra.to_csv(sep='\t', index=False)) except BrokenPipeError: pass else: spectra_data = defaultdict(lambda: np.zeros_like(vcf.samples, dtype=int)) if args.randomize: for variant in vcf: random_haplotype = choice([x for x, y in enumerate(variant.gt_types) for _ in range(y)]) spectra_data[variant.INFO['mutation_type']][random_haplotype] += 1. else: for variant in vcf: if variant.ploidy == 1: # haploid ALT are coded as 2 (homozygous ALT) variant.gt_types[variant.gt_types == 2] = 1 spectra_data[variant.INFO['mutation_type']] += variant.gt_types spectra = pd.DataFrame(spectra_data, vcf.samples).reindex(sorted(spectra_data), axis='columns') try: print(spectra.to_csv(sep='\t', index=True, index_label='sample')) except BrokenPipeError: pass def ksfs(args): """subroutine for ksfs subcommand """ vcf = cyvcf2.VCF(args.vcf) ksfs_data = defaultdict(lambda: Counter()) AN = None for variant in vcf: # AN must be the same for all sites (no missing genotypes) if AN is not None and variant.INFO['AN'] != AN: raise ValueError(f'different AN {variant.INFO["AN"]} and {AN}' ' indicates missing genotypes') AN = variant.INFO['AN'] ksfs_data[variant.INFO['mutation_type']][variant.INFO['AC']] += 1 # exclude fixed sites AC=0, AC=AN index = range(1, AN) for mutation_type in sorted(ksfs_data): ksfs_data[mutation_type] = [ksfs_data[mutation_type][ac] for ac in index] ksfs =
pd.DataFrame(ksfs_data, index)
pandas.DataFrame
# -*- coding: utf-8 -*- """experiment0_baseline_nn Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1fD-X5sxQmLpGu1VhKF6I73vLX7swU2kV """ """### Imports""" import numpy as np import matplotlib.pyplot as plt import random from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, precision_score from sklearn.metrics import recall_score, classification_report from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels import pandas as pd from keras.utils.vis_utils import plot_model from keras.preprocessing.image import ImageDataGenerator def plot_train(train_history, train=True, validation=True, acc_name='Model accuracy', loss_name='Model loss'): legend = [] fig, ax = plt.subplots() fig.tight_layout() fig = plt.gcf() fig.set_size_inches(18.5, 10.5) # summarize history for accuracy if train: plt.plot(history.history['acc']) legend.append('train') if validation: plt.plot(history.history['val_acc']) legend.append('validation') plt.grid() plt.title("Training Accuracy") plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(legend, loc='upper left') plt.xticks((np.arange(len(history.history["acc"]))), (np.arange(len(history.history["acc"]))+1)) fig.savefig(acc_name+".png", dpi=100) plt.show() fig.tight_layout() fig = plt.gcf() fig.set_size_inches(18.5, 10.5) legend = [] # summarize history for loss if train: plt.plot(history.history['loss']) legend.append('train') if validation: plt.plot(history.history['val_loss']) legend.append('validation') plt.grid() plt.title("Training Loss") plt.ylabel('loss') plt.xlabel('epoch') plt.legend(legend, loc='upper left') plt.xticks((np.arange(len(history.history["acc"]))), (np.arange(len(history.history["acc"]))+1)) fig.savefig(loss_name+".png", dpi=100) plt.show() return def global_evaluation(true_labels, predicted_labels, avg='macro'): f1 = f1_score(true_labels, predicted_labels, average=avg) precision = precision_score(true_labels, predicted_labels, average=avg) recall = recall_score(true_labels, predicted_labels, average=avg) accuracy = accuracy_score(true_labels, predicted_labels) evaluation_table = pd.DataFrame({'Metric':["F1-score", "Precision", "Recall", "Accuracy"], "Value":[f1, precision, recall, accuracy] }) return evaluation_table def micro_evaluation(true_labels, predicted_labels, labels=list(range(10)), avg=None): f1 = f1_score(true_labels, predicted_labels, average=avg) precision = precision_score(true_labels, predicted_labels, average=avg) recall = recall_score(true_labels, predicted_labels, average=avg) evaluation_table =
pd.DataFrame({'Labels':labels, "precision":precision, "recall":recall, "f1":f1 })
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Aplicación para resolver el Challenge Python L1 Desarrollado por <NAME> version 1.0 Bitacora: fecha: 2021-02-27 observacion: Version 1 por: <NAME> """ import requests import pandas as pd import json import hashlib from datetime import datetime as dt import sqlite3 from os import path,remove #validar si existen archivos import logging import argparse # agregar parametros por script # Para Ejecutar pruebas unitarias se debe agregar el parametro -T y para log el parametro -L # ejemplo # cd %path del proyecto% # python.exe pythonchallenge.py -L parser = argparse.ArgumentParser() parser.add_argument("-L", "--logs", help="Crea archivo de log en la carpeta /logs/ ", action="store_true") parser.add_argument("-T", "--Test", help="Ejecuta los test unitarios", action="store_true" ) args = parser.parse_args() logs=args.logs unitTest=args.Test def ahora(): return str(dt.now().strftime("%Y-%m-%d %H:%M:%S:%f")) archivoLog=ahora().replace('-','').replace(':','').replace(' ','')+'.log' fichero_log='./logs/'+archivoLog if logs: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s : %(levelname)s : %(message)s', filemode = 'w', filename = fichero_log, ) logging.debug('Inicio {0}'.format(ahora())) # 1. De https://rapidapi.com/apilayernet/api/rest-countries-v1, obtenga todas las regiones existentes. def extraeRegiones(): """ Retorna las regiones >>> regiones = extraeRegiones() >>> respuesta= {'', 'Polar', 'Africa', 'Europe', 'Asia', 'Americas', 'Oceania'} >>> [ True for x in regiones if x in respuesta ] [True, True, True, True, True, True, True] """ url = "https://restcountries-v1.p.rapidapi.com/all" headers = { 'x-rapidapi-key': "<KEY>", 'x-rapidapi-host': "restcountries-v1.p.rapidapi.com" } response = requests.request("GET", url, headers=headers) respuestaJson = response.json() df=
pd.DataFrame(data=respuestaJson)
pandas.DataFrame
import numpy as np import pandas as pd import random as random import pickle def formatRank_german(df): tmp = pd.DataFrame() tmp['y']=df.sort_values('y_pred',ascending=False).index tmp['y_pred']=tmp.index tmp['g']=df.sort_values('y_pred',ascending=False).reset_index()['g'] return tmp def formatRank_compas(df): tmp = pd.DataFrame() tmp['y']=df.sort_values('y_pred').index tmp['y_pred']=tmp.index tmp['g']=df.sort_values('y_pred')['g'] return tmp def readFA_IRData(inpath, filename, funct): return funct(pd.read_pickle(inpath+filename)) def getAllFA_IRData(inpath, funct): d ={} d['cb'] = readFA_IRData(inpath, 'ColorblindRanking.pickle', funct) d['base'] = d['cb'].copy() d['base']['y_pred']=d['base']['y'] d['feld'] = readFA_IRData(inpath, 'FeldmanRanking.pickle', funct) d['feld']['y'] = d['cb']['y'] d['fair1'] = readFA_IRData(inpath, 'FairRanking01PercentProtected.pickle', funct) d['fair2'] = readFA_IRData(inpath, 'FairRanking02PercentProtected.pickle', funct) d['fair3'] = readFA_IRData(inpath, 'FairRanking03PercentProtected.pickle', funct) d['fair4'] = readFA_IRData(inpath, 'FairRanking04PercentProtected.pickle', funct) d['fair5'] = readFA_IRData(inpath, 'FairRanking05PercentProtected.pickle', funct) d['fair6'] = readFA_IRData(inpath, 'FairRanking06PercentProtected.pickle', funct) d['fair7'] = readFA_IRData(inpath, 'FairRanking07PercentProtected.pickle', funct) d['fair8'] = readFA_IRData(inpath, 'FairRanking08PercentProtected.pickle', funct) d['fair9'] = readFA_IRData(inpath, 'FairRanking09PercentProtected.pickle', funct) return d def plainFA_IRData(inpath): d ={} d['cb'] = pd.read_pickle(inpath+'ColorblindRanking.pickle') d['base'] = d['cb'].copy() d['base']['y_pred']=d['base']['y'] d['feld'] = pd.read_pickle(inpath+'FeldmanRanking.pickle') d['feld']['y'] = d['cb']['y'] d['fair1'] = pd.read_pickle(inpath+'FairRanking01PercentProtected.pickle') d['fair2'] = pd.read_pickle(inpath+'FairRanking02PercentProtected.pickle') d['fair3'] =
pd.read_pickle(inpath+'FairRanking03PercentProtected.pickle')
pandas.read_pickle
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import plotly.graph_objs as go import pandas as pd import sqlite3 from dash.dependencies import Input, Output, State import time # import datetime from datetime import datetime from pandas import Series from scipy import stats from scipy.stats import norm from numpy import arange,array,ones import dash_table app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) app.config['suppress_callback_exceptions']=True current_year = datetime.now().year current_day = datetime.now().day today = time.strftime("%Y-%m-%d") dayofyear = time.strftime("%j") dayofyear = int(dayofyear) # daily normal temperatures df_norms_max = pd.read_csv('./daily_normal_max.csv') df_norms_min = pd.read_csv('./daily_normal_min.csv') df_norms_max_ly = pd.read_csv('./daily_normal_max_ly.csv') df_norms_min_ly = pd.read_csv('./daily_normal_min_ly.csv') df_norms_avg = pd.read_csv('./daily_normal_avg.csv') df_norms_avg_ly = pd.read_csv('./daily_normal_avg_ly.csv') df_old = pd.read_csv('./stapleton.csv').round(1) df_old['DATE'] = pd.to_datetime(df_old['DATE']) df_old = df_old.set_index('DATE') df_new = pd.read_csv('https://www.ncei.noaa.gov/access/services/data/v1?dataset=daily-summaries&dataTypes=TMAX,TMIN&stations=USW00023062&startDate=2019-01-01&endDate=' + today + '&units=standard').round(1) df_new['DATE'] = pd.to_datetime(df_new['DATE']) df_new = df_new.set_index('DATE') df_new['AVG'] = (df_new['TMAX'] + df_new['TMIN']) / 2 # print(df_new) if current_year % 4 == 0: df_new['MXNRM'] = df_norms_max_ly['DLY-TMAX-NORMAL'][0:len(df_new)].values df_new['MNNRM'] = df_norms_min_ly['DLY-TMIN-NORMAL'][0:len(df_new)].values else: df_new['MXNRM'] = df_norms_max['DLY-TMAX-NORMAL'][0:len(df_new)].values df_new['MNNRM'] = df_norms_min['DLY-TMIN-NORMAL'][0:len(df_new)].values df_new['AVGNRM'] = (df_new['MXNRM'] + df_new['MNNRM']) / 2 df = pd.concat([df_old, df_new], ignore_index=False) df_ya_max = df.resample('Y').mean() # record high and low record_max = df.loc[df['TMAX'].idxmax()] record_min = df.loc[df['TMIN'].idxmin()] df_ya_max = df.resample('Y').mean() df_da = df_ya_max.groupby((df_ya_max.index.year//10)*10).mean() # removes final year in df df5 = df_ya_max[:-1] # removes final decade in decade averages df10 = df_da[0:-1] # filters for completed years in current decade current_year_decade = current_year%10 current_year_indexer = current_year_decade + 1 # current year decade avg current decade df_da_cd = (df5[-(current_year_indexer):]).mean() df_da_cd['combined'] = (df_da_cd['TMAX'] + df_da_cd['TMIN']) / 2 df5['combined'] = (df5['TMAX'] + df5['TMIN']) / 2 # current year 90- degree days cy90 = df_new[df_new['TMAX']>=90] # add current decade to decade list df10.loc['2010'] = df_da_cd df10 = df10.round(1) df10 = df10.reset_index() # current year stats cy_max = df_new.loc[df_new['TMAX'].idxmax()] cy_min = df_new.loc[df_new['TMIN'].idxmin()] cy_max_mean = df_new['TMAX'].mean() cy_min_mean = df_new['TMIN'].mean() # filters all AVGT data for 5 year moving average allavg_rolling = df['AVG'].rolling(window=1825) allavg_rolling_mean = allavg_rolling.mean() # filters all MAXT data for 5 year moving average allmax_rolling = df['TMAX'].rolling(window=1825) allmax_rolling_mean = allmax_rolling.mean() # filters all MINT data fr 5 year moving average allmin_rolling = df['TMIN'].rolling(window=1825) allmin_rolling_mean = allmin_rolling.mean() # all_min_temp_mean = allmin_rolling.mean() # sorts annual mean temps annual_max_mean_rankings = df5['TMAX'].sort_values(axis=0, ascending=False) annual_min_mean_rankings = df5['TMIN'].sort_values(axis=0, ascending=False) annual_combined_rankings = df5['combined'].sort_values(axis=0, ascending=False) drl = annual_max_mean_rankings.size acr = pd.DataFrame({'YEAR':annual_combined_rankings.index.year, 'AVG TEMP':annual_combined_rankings.values}) acr = acr.round(1) maxdt = pd.DataFrame({'YEAR':annual_max_mean_rankings.index.year, 'MAX TEMP':annual_max_mean_rankings.values}) maxdt = maxdt.round(1) mindt = pd.DataFrame({'YEAR':annual_min_mean_rankings.index.year, 'MIN TEMP':annual_min_mean_rankings.values}) mindt = mindt.round(1) startyr = 1950 presentyr = datetime.now().year year_count = presentyr-startyr print(year_count) # linear fit for Avg Max Temps def annual_min_fit(): xi = arange(0,year_count) slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df5["TMIN"]) return (slope*xi+intercept) def annual_max_fit(): xi = arange(0,year_count) slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df5["TMAX"]) return (slope*xi+intercept) def all_avg_temp_fit(): xi = arange(0,year_count) slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df5["AVG"]) return (slope*xi+intercept) def all_max_temp_fit(): xi = arange(0,year_count) slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df5["TMAX"]) return (slope*xi+intercept) def all_min_temp_fit(): xi = arange(0,year_count) slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df5["TMIN"]) return (slope*xi+intercept) def generate_table(acr, max_rows=10): return html.Table ( [html.Tr([html.Th(col) for col in acr.columns])] + [html.Tr([ html.Td(acr.iloc[i][col]) for col in acr.columns ]) for i in range(min(len(acr), max_rows))] ) def generate_table_maxdt(maxdt, max_rows=10): return html.Table ( [html.Tr([html.Th(col) for col in maxdt.columns])] + [html.Tr([ html.Td(maxdt.iloc[i][col]) for col in maxdt.columns ]) for i in range(min(len(maxdt), max_rows))] ) def generate_table_mindt(mindt, max_rows=10): return html.Table ( [html.Tr([html.Th(col) for col in mindt.columns])] + [html.Tr([ html.Td(mindt.iloc[i][col]) for col in mindt.columns ]) for i in range(min(len(mindt), max_rows))] ) # year list for dropdown selector year = [] for YEAR in df.index.year.unique(): year.append({'label':(YEAR), 'value':YEAR}) body = dbc.Container([ dbc.Row([ dbc.Col( html.Div( className='app-header', children=[ html.Div('DENVER TEMPERATURE RECORD', className="app-header--title"), ] ), ), ]), dbc.Row([ dbc.Col( html.H5('1950-PRESENT', style={'text-align':'center'}) )] ), dbc.Row([ dbc.Col( html.Div( html.H6('DAILY TEMPERATURES'), style={'text-align':'center'} ), ) ], justify='around', ), dbc.Row([ dbc.Col( html.Div([ dcc.Graph(id='graph1'), ]), width={'size':6} ), dbc.Col( html.Div([ dcc.Graph(id='graph2'), ]), width={'size':6} ), ], justify='around', ), dbc.Row([ dbc.Col( html.H5('SELECT YEAR', style={'text-align':'center'}) ), dbc.Col( html.H6('Data Updated', style={'text-align':'center'}) ), dbc.Col( html.H5('SELECT PARAMETER', style={'text-align':'center'}) ), ]), dbc.Row([ dbc.Col( dcc.Dropdown(id='year-picker', options=year ), width = {'size': 3}), dbc.Col( html.H5('{}-{}-{}'.format(df.index[-1].year,df.index[-1].month,df.index[-1].day), style={'text-align': 'center'}), width = {'size': 3}), dbc.Col( dcc.RadioItems(id='param', options=[ {'label':'MAX TEMP','value':'TMAX'}, {'label':'MIN TEMP','value':'TMIN'}, {'label':'AVG TEMP','value':'AVG'}, ]), width = {'size': 3}), ], justify='around', ), html.Div( className="stats", children=[ dbc.Row([ dbc.Col( html.Div( html.H5(id='stats',style={'text-align':'center'}), ), ), ]), ]), dbc.Row([ dbc.Col( html.Div([ html.H6(id='yearly-high/low') ]), width={'size':6}, style={'text-align':'center'} ), dbc.Col( html.Div([ html.H6(id='mean-max/min'), ]), width={'size':6}, style={'text-align':'center'} ), ]), dbc.Row([ dbc.Col( html.Div([ html.H6(id='days-above-100/below-0') ]), width={'size':6}, style={'text-align':'center'} ), dbc.Col( html.Div([ html.H6(id='days-above-90/high-below-0'), ]), width={'size':6}, style={'text-align':'center'} ), ]), dbc.Row([ dbc.Col( html.Div([ html.H6(id='days-above-80/below-32') ]), width={'size':6}, style={'text-align':'center'} ), dbc.Col( html.Div([ html.H6(id='days-above-normal/below-normal'), ]), width={'size':6}, style={'text-align':'center'} ), ]), dbc.Row([ dbc.Col( html.H5('Select Data', style={'text-align':'center'}) )] ), dbc.Row([ dbc.Col( dcc.RadioItems(id='selection', options=[ {'label':'Decade Rankings','value':'decades'}, {'label':'100 Degree Days','value':'100-degrees'}, {'label':'90 Degree Days','value':'90-degrees'}, ]), width = {'size': 5,'display': 'inline-block'}, ), ], justify='center', ), dbc.Row([ dbc.Col( dash_table.DataTable( id='temptable', columns=[{}], data=[{}], sorting=True, style_cell={'textAlign': 'center'}, style_as_list_view=True, style_table={ 'maxHeight': '450', 'overflowY': 'scroll' }, ), ), dbc.Col( dcc.Graph(id='bar'), ), ]), dbc.Row([ dbc.Col( html.H4('YEARLY RANKINGS', style={'text-align':'center'}) )] ), dbc.Row([ dbc.Col( html.H6('Select Parameters', style={'text-align':'center'}) )] ), dbc.Row([ dbc.Col( dcc.RadioItems(id='rankings', options=[ {'label':'Avg Daily Temp','value':'acr'}, {'label':'Max Daily Temp','value':'max_dt'}, {'label':'Min Daily Temp','value':'min_dt'}, ]), width = {'size': 4,'display': 'inline-block'}), ], justify='center', ), dbc.Row([ dbc.Col( html.Div(id='table-container'), ), dbc.Col( dcc.Graph(id='yearly-rankings-bar'), ), ]), dbc.Row([ dbc.Col( html.H4('1950-Present, Complete Record', style={'text-align':'center'}) )] ), dbc.Row( [ dbc.Col( html.Div([ dcc.Graph(id='all-avg-temps', figure = { 'data': [ { 'x' : df.index, 'y' : allavg_rolling_mean, 'mode' : 'lines + markers', 'name' : 'Avg Temp' }, { 'x' : df5.index, 'y' : all_avg_temp_fit(), 'name' : 'trend' } ], 'layout': go.Layout( xaxis = {'title': 'Date'}, yaxis = {'title': 'Temp'}, hovermode = 'closest', height = 700 ), } ), ]), width = {'size': 10, 'offset':1}, ), ] ), dbc.Row( [ dbc.Col( html.H5('Avg Temps 1950-Present, 5 Year Moving Avg', style={'height':50, 'text-align': 'center'}), ), ], align = 'around' ), dbc.Row( [ dbc.Col( html.Div([ dcc.Graph(id='all-max-temps', figure = { 'data': [ { 'x' : df.index, 'y' : allmax_rolling_mean, 'mode' : 'lines + markers', 'name' : 'Max Temp' }, { 'x' : df5.index, 'y' : all_max_temp_fit(), 'name' : 'trend' } ], 'layout': go.Layout( xaxis = {'title': 'Date'}, yaxis = {'title': 'Temp'}, hovermode = 'closest', height = 700 ), } ), ]), width = {'size': 10, 'offset':1}, ), ], ), dbc.Row( [ dbc.Col( html.H5('Max Temps 1950-Present, 5 Year Moving Avg', style={'height':50, 'text-align': 'center'}), ), ], align = 'around' ), dbc.Row( [ dbc.Col( html.Div([ dcc.Graph(id='all-min-temps', figure = { 'data': [ { 'x' : df.index, 'y' : allmin_rolling_mean, 'mode' : 'lines + markers', 'name' : 'Min Temp' }, { 'x' : df5.index, 'y' : all_min_temp_fit(), 'name' : 'trend' }, ], 'layout': go.Layout( xaxis = {'title': 'Date'}, yaxis = {'title': 'Temp'}, hovermode = 'closest', height = 700 ), } ), ]), width = {'size': 10, 'offset':1}, ), ] ), dbc.Row( [ dbc.Col( html.H5('Min Temps 1950-Present, 5 Year Moving Avg', style={'height':50, 'text-align': 'center'}), ), ], align = 'around' ), ]) @app.callback(Output('graph1', 'figure'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_figure(selected_year, param): filtered_year = df[df.index.year == selected_year] traces = [] year_param_max = filtered_year['TMAX'] year_param_min = filtered_year['TMIN'] year_param_avg = filtered_year['AVG'] if param == 'TMAX': traces.append(go.Scatter( y = year_param_max, name = param, line = {'color':'red'} )) traces.append(go.Scatter( y = df_norms_max['DLY-TMAX-NORMAL'], name = "Normal Max T", line = {'color':'black'} )) elif param == 'TMIN': traces.append(go.Scatter( y = year_param_min, name = param, line = {'color':'dodgerblue'} )) traces.append(go.Scatter( y = df_norms_min['DLY-TMIN-NORMAL'], name = "Normal Min T", line = {'color':'black'} )) elif param == 'AVG': traces.append(go.Scatter( y = year_param_avg, name = param, line = {'color':'black'} )) traces.append(go.Scatter( y = df_norms_avg['DLY-AVG-NORMAL'], name = "Normal Avg T", line = {'color':'black'} )) return { 'data': traces, 'layout': go.Layout( xaxis = {'title': 'DAY'}, yaxis = {'title': 'TEMP'}, hovermode = 'closest', title = 'Daily Temps', height = 400, ) } @app.callback(Output('graph2', 'figure'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_figure_a(selected_year, param): traces = [] filtered_year = df[df.index.year == selected_year] year_param_max = filtered_year['TMAX'] year_param_min = filtered_year['TMIN'] year_param_avg = filtered_year['AVG'] normal_max_diff = year_param_max - filtered_year['MXNRM'] normal_min_diff = year_param_min - filtered_year['MNNRM'] normal_avg_diff = year_param_avg - filtered_year['AVGNRM'] colorscale_max = ((((normal_max_diff.max() - normal_max_diff.min()) - normal_max_diff.max()) / (normal_max_diff.max() - normal_max_diff.min()))) colorscale_min = ((((normal_min_diff.max() - normal_min_diff.min()) - normal_min_diff.max()) / (normal_min_diff.max() - normal_min_diff.min()))) colorscale_avg = ((((normal_avg_diff.max() - normal_avg_diff.min()) - normal_avg_diff.max()) / (normal_avg_diff.max() - normal_avg_diff.min()))) if param == 'TMAX': traces.append(go.Heatmap( y=year_param_max.index.day, x=year_param_max.index.month, z=normal_max_diff, colorscale=[[0, 'blue'],[colorscale_max, 'white'], [1, 'red']] )) elif param == 'TMIN': traces.append(go.Heatmap( y=year_param_min.index.day, x=year_param_min.index.month, z=normal_min_diff, colorscale=[[0, 'blue'],[colorscale_min, 'white'], [1, 'red']] )) elif param == 'AVG': traces.append(go.Heatmap( y=year_param_avg.index.day, x=year_param_avg.index.month, z=normal_avg_diff, colorscale=[[0, 'blue'],[colorscale_avg, 'white'], [1, 'red']] )) return { 'data': traces, 'layout': go.Layout( title='{} Departure From Norm'.format(param), xaxis={'title':'MONTH'}, yaxis={'title':'DAY'}, height= 400 ) } @app.callback(Output('stats', 'children'), [Input('year-picker', 'value')]) def update_layout_a(selected_year): return 'Stats for {}'.format(selected_year) @app.callback(Output('yearly-high/low', 'children'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_layout_b(selected_year, param): filtered_year = df[df.index.year == selected_year] yearly_max = filtered_year.loc[filtered_year['TMAX'].idxmax()] yearly_min = filtered_year.loc[filtered_year['TMIN'].idxmin()] if param == 'TMAX': return 'Yearly High: {}'.format(yearly_max['TMAX']) elif param == 'TMIN': return 'Yearly Low: {}'.format(yearly_min['TMIN']) @app.callback(Output('mean-max/min', 'children'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_layout_c(selected_year, param): filtered_year = df[df.index.year == selected_year] if param == 'TMAX': return 'Mean Max Temp: {:,.1f}'.format(filtered_year['TMAX'].mean()) elif param == 'TMIN': return 'Mean Min Temp: {:,.1f}'.format(filtered_year['TMIN'].mean()) @app.callback(Output('days-above-100/below-0', 'children'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_layout_d(selected_year, param): filtered_year = df[df.index.year == selected_year] da_hundred = (filtered_year['TMAX'] >= 100).sum() da_below_zero = (filtered_year['TMIN'] < 0).sum() if param == 'TMAX': return '100 Degree Days: {} - Normal: 1'.format(da_hundred) elif param == 'TMIN': return 'Days Below 0: {} - Normal: 6.7'.format(da_below_zero) @app.callback(Output('days-above-90/high-below-0', 'children'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_layout_e(selected_year, param): filtered_year = df[df.index.year == selected_year] da_ninety = (filtered_year['TMAX'] >= 90).sum() da_high_below_32 = (filtered_year['TMAX'] < 32).sum() if param == 'TMAX': return '90 Degree Days: {} - Normal: 30.6'.format(da_ninety) elif param == 'TMIN': return 'Days High Below 32: {} - Normal: 21'.format(da_high_below_32) @app.callback(Output('days-above-80/below-32', 'children'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_layout_f(selected_year, param): filtered_year = df[df.index.year == selected_year] da_80 = (filtered_year['TMAX'] >= 80).sum() da_below_32 = (filtered_year['TMIN'] < 32).sum() if param == 'TMAX': return '80 Degree Days: {} - Normal: 95.5'.format(da_80) elif param == 'TMIN': return 'Days Below 32: {} - Normal: 156.5'.format(da_below_32) @app.callback(Output('days-above-normal/below-normal', 'children'), [Input('year-picker', 'value'), Input('param', 'value')]) def update_layout_g(selected_year, param): filtered_year = df[df.index.year == selected_year] dmaxan = 0 dminan = 0 i = 0 df_norms_max.loc[i]['DLY-TMAX-NORMAL'] if param == 'TMAX': while i < filtered_year["TMAX"].count(): if filtered_year.iloc[i]['TMAX'] > df_norms_max.iloc[i]['DLY-TMAX-NORMAL']: dmaxan = dmaxan + 1 i = i + 1 else: i = i + 1 return 'Days High Above Normal: {}/{}'.format(dmaxan, i) elif param == 'TMIN': while i < filtered_year["TMIN"].count(): if filtered_year.iloc[i]['TMIN'] < df_norms_min.iloc[i]['DLY-TMIN-NORMAL']: dminan = dminan + 1 i = i + 1 else: i = i + 1 return 'Days Low Below Normal: {}/{}'.format(dminan, i) @app.callback(Output('temptable', 'columns'), [Input('selection', 'value')]) def update_table_a(selection): df_100 = df[df['TMAX']>=100] df_100_count = df_100.resample('Y').count()['TMAX'] df_100 = pd.DataFrame({'DATE':df_100_count.index.year, '100 Degree Days':df_100_count.values}) df_90 = df[df['TMAX']>=90] df_90_count = df_90.resample('Y').count()['TMAX'] # convert series to dataframe df_90 = pd.DataFrame({'DATE':df_90_count.index.year, '90 Degree Days':df_90_count.values}) # print(df10) if selection == 'decades': return [{'name': i, 'id': i} for i in df10.columns] elif selection == '100-degrees': return [{'name': i, 'id': i} for i in df_100.columns] elif selection == '90-degrees': return [{'name': i, 'id': i} for i in df_90.columns] @app.callback(Output('temptable', 'data'), [Input('selection', 'value')]) def create_table_b(selection): df_100 = df[df['TMAX']>=100] df_100_count = df_100.resample('Y').count()['TMAX'] df_100 = pd.DataFrame({'DATE':df_100_count.index.year, '100 Degree Days':df_100_count.values}) df_90 = df[df['TMAX']>=90] df_90_count = df_90.resample('Y').count()['TMAX'] df_90 = pd.DataFrame({'DATE':df_90_count.index.year, '90 Degree Days':df_90_count.values}) if selection == 'decades': return df10.to_dict('records') elif selection == '100-degrees': return df_100.to_dict('records') elif selection == '90-degrees': return df_90.to_dict('records') @app.callback(Output('bar', 'figure'), [Input('selection', 'value')]) def update_figure_b(selection): print(selection) df_100 = df[df['TMAX']>=100] df_100_count = df_100.resample('Y').count()['TMAX'] df_100 =
pd.DataFrame({'DATE':df_100_count.index, '100 Degree Days':df_100_count.values})
pandas.DataFrame
import os import datetime import pandas as pd from dataactcore.config import CONFIG_BROKER from dataactcore.scripts import load_duns_exec_comp from dataactcore.models.domainModels import DUNS from dataactcore.utils.duns import DUNS_COLUMNS, EXCLUDE_FROM_API def mock_get_duns_props_from_sam(duns_list): """ Mock function for get_duns_props as we can't connect to the SAM service """ request_cols = [col for col in DUNS_COLUMNS if col not in EXCLUDE_FROM_API] columns = request_cols results =
pd.DataFrame(columns=columns)
pandas.DataFrame
from __future__ import print_function import os import pandas as pd import xgboost as xgb import time import shutil from sklearn import preprocessing from sklearn.cross_validation import train_test_split import numpy as np from sklearn.utils import shuffle def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.localtime()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return os.chdir('/users/cuoco/home/KC/cervical-cancer-screening/src') trainfile=('../input/patients_train.csv.gz') testfile=('../input/patients_test.csv.gz') train=pd.read_csv(trainfile,low_memory=False ) test=pd.read_csv(testfile,low_memory=False ) train_ex_file=('../input/train_patients_to_exclude.csv.gz') train_ex=pd.read_csv(train_ex_file,low_memory=False) train=train[train.patient_id.isin(train_ex.patient_id)==False] test_ex_file=('../input/test_patients_to_exclude.csv.gz') test_ex=pd.read_csv(test_ex_file,low_memory=False) test=test[test.patient_id.isin(test_ex.patient_id)==False] print(train.shape,test.shape) surgical=pd.read_csv('../features/surgical_pap.csv.gz') diagnosis=pd.read_csv('../features/diagnosis_hpv.csv.gz') procedure_cervi=pd.read_csv('../features/procedure_cervi.csv.gz') procedure_hpv=pd.read_csv('../features/procedure_hpv.csv.gz') procedure_vaccine=pd.read_csv('../features/procedure_vaccine.csv.gz') procedure_vagi=pd.read_csv('../features/procedure_vagi.csv.gz') procedure_plan_type=pd.read_csv('../features/procedure_plan_type.csv.gz') rx_payment=pd.read_csv('../features/rx_payment.csv.gz') train_pract_screen_ratio=pd.read_csv('../features/train_pract_screen_ratio.csv.gz') test_pract_screen_ratio=pd.read_csv('../features/test_pract_screen_ratio.csv.gz') visits=pd.read_csv('../features/visits.csv.gz') # print(train.shape,test.shape) train=pd.merge(train,visits, on='patient_id',how='left') test=pd.merge(test,visits, on='patient_id',how='left') print('after merging visits') train=pd.merge(train,surgical, on='patient_id',how='left') test=pd.merge(test,surgical, on='patient_id',how='left') print('after merging surgical') print(train.shape,test.shape) train=pd.merge(train,diagnosis, on='patient_id',how='left') test=pd.merge(test,diagnosis, on='patient_id',how='left') print('after merging diagnosis') print(train.shape,test.shape) train=pd.merge(train,procedure_cervi, on='patient_id',how='left') test=pd.merge(test,procedure_cervi, on='patient_id',how='left') train=pd.merge(train,procedure_hpv, on='patient_id',how='left') test=pd.merge(test,procedure_hpv, on='patient_id',how='left') #train=pd.merge(train,procedure_vaccine, on='patient_id',how='left') #test=pd.merge(test,procedure_vaccine, on='patient_id',how='left') train=pd.merge(train,procedure_vagi, on='patient_id',how='left') test=pd.merge(test,procedure_vagi, on='patient_id',how='left') #train=pd.merge(train,procedure_plan_type, on='patient_id',how='left') #test=pd.merge(test,procedure_plan_type, on='patient_id',how='left') print('after merging procedure') print(train.shape,test.shape) #train=pd.merge(train,rx_payment, on='patient_id',how='left') #test=pd.merge(test,rx_payment, on='patient_id',how='left') #print('after merging rx_payment') print(train.shape,test.shape) train=pd.merge(train,train_pract_screen_ratio, on='patient_id',how='left') test=pd.merge(test,test_pract_screen_ratio, on='patient_id',how='left') print('after merging pract_scree_ratio') print(train.shape,test.shape) ############################################################################################### def preprocess_data(train,test): y=train['is_screener'] id_test=test['patient_id'] train=train.drop(['patient_id','is_screener'],axis=1) test=test.drop(['patient_id'],axis=1) for f in train.columns: if train[f].dtype == 'object': print(f) lbl = preprocessing.LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) return id_test,test,train,y ##prepare a sparse matrix train=train.fillna(0) test=test.fillna(0) id_test,test,train,y=preprocess_data(train,test) #print(train.columns) print(train.shape,test.shape) #print(train.columns) X=np.asarray(train) y=np.asarray(y) X_test=np.asarray(test) X,y=shuffle(X,y,random_state=9) X_train,X_val,y_train,y_val = train_test_split(X,y,test_size=0.2,random_state=17) from sklearn import preprocessing #scl=decomposition.PCA(n_components=30,whiten=True) #scl=preprocessing.RobustScaler() #X_train=scl.fit_transform(X_train) #X_val=scl.transform(X_val) #X_test=scl.transform(X_test) dval=xgb.DMatrix(data=X_val,label=y_val) dtrain=xgb.DMatrix(data=X_train,label=y_train) DTest=xgb.DMatrix(data=X_test) watchlist = [(dval,'eval'), (dtrain,'train')] params = {"objective": "binary:logistic", "eta": 0.01, "eta_decay":0.5, "max_depth": 12, "silent":1, "subsample": 0.9, "colsample_bytree": 0.65, "seed": 1193, "booster": "gbtree", "nthread":-1, "eval_metric":'auc' } # clf = xgb.train(params, dtrain, num_boost_round=400, evals=watchlist, early_stopping_rounds=10,verbose_eval=True, maximize= False) predictions=clf.predict(DTest,ntree_limit=clf.best_ntree_limit) score=clf.best_score model='XGBOOST_onselected-features' # # predict on test set submission='%s_score_%03f.csv' %(model,score) # create submission file preds =
pd.DataFrame({"patient_id": id_test, 'predict_screener': predictions})
pandas.DataFrame
import numpy as np # deal with data import pandas as pd # deal with data import re # regular expression from bs4 import BeautifulSoup # resolver review from nltk.corpus import stopwords # Import the stop word list from gensim.models import word2vec# use word2Vec(skip-gram model) making wordfeature vetor from sklearn.model_selection import train_test_split # use trian data split train and test data import torch from torch.utils.data import Dataset,TensorDataset import torch.nn as nn from tqdm import tqdm from RQ1 import model from collections import Counter from sklearn import metrics from RQ1.utils import file_opt import jsonlines from matplotlib import pyplot as plt import seaborn as sns import config def review_to_wordlist(review,remove_stop_words=False): #1.remove HIML reivew_text=BeautifulSoup(review,'lxml').get_text() #2.Remove non-latters latters_only=re.sub("[^a-zA-Z]",' ',reivew_text) #3.Convert to lower case,split into individual words words=latters_only.lower().split() #4.Remove stop words if remove_stop_words: stop=set(stopwords.words('english')) words=[w for w in words if not w in stop] #5. reutrn a list of words return words # make features vector by each words def makeFeatureVec(words,model,num_features): featureVec = np.zeros((num_features,), dtype="float32") nwords=0 index2word_set = set(model.wv.index2word) #get name for word in words: if word in index2word_set: # if word in index2word and get it's feature nwords+=1 featureVec=np.add(featureVec,model[word]) if nwords == 0: pass else: featureVec=np.divide(featureVec,nwords) # average each featureVector return featureVec # make all word's features def getAvgFeatureVecs(reviews,model,num_features): counter=0 reviewFeatureVecs = np.zeros((len(reviews), num_features), dtype="float32") #features size=len(reviews) X num_features for review in tqdm(reviews): # loop each review(word) vector = makeFeatureVec(review,model,num_features) reviewFeatureVecs[counter]=vector # get each word's featureVectors counter+=1 return reviewFeatureVecs def nag_sample_balance_data(dataset): print("********* Negative Sample Balance ***********") bugs = dataset.loc[dataset["label"]==0] features = dataset.loc[dataset["label"]==1] others = dataset.loc[dataset["label"]==2] min_len = min(len(bugs), len(features), len(others)) bugs_b = bugs.sample(n=min_len, random_state=1) feature_b = features.sample(n=min_len, random_state=1) other_b = others.sample(n=min_len, random_state=1) balanced_data = pd.concat([bugs_b, feature_b, other_b]) balanced_data = balanced_data.sample(frac=1, random_state=1) balanced_data = balanced_data.reset_index(drop=True) print("欠采样后数据集中各类的分布情况:{}".format(Counter(balanced_data["label"]))) return balanced_data def binary_nag_sample_balance_data(dataset): print("********* Negative Sample Balance ***********") bugs = dataset.loc[dataset["label"]==0] features = dataset.loc[dataset["label"]==1] # others = dataset.loc[train_data["label"]==2] min_len = min(len(bugs), len(features)) bugs_b = bugs.sample(n=min_len, random_state=1) feature_b = features.sample(n=min_len, random_state=1) # other_b = others.sample(n=min_len, random_state=1) balanced_data = pd.concat([bugs_b, feature_b]) balanced_data = balanced_data.sample(frac=1, random_state=1) balanced_data = balanced_data.reset_index(drop=True) print("欠采样后数据集中各类的分布情况:{}".format(Counter(balanced_data["label"]))) return balanced_data def k_split(X, y, k, total_k): fold_size = len(X) // total_k X_test = X[k*fold_size:(k+1)*fold_size] X_train = np.concatenate((X[:k*fold_size], X[(k+1)*fold_size:]), axis=0) y_test = y[k*fold_size:(k+1)*fold_size] y_train = np.concatenate((y[:k*fold_size], y[(k+1)*fold_size:]), axis=0) return X_train, X_test, y_train, y_test def t2v(file_path, repo, time_delt, epoch, lr, batch, text_d, time_dim): train_data = pd.read_csv(file_path) train_data['datetime'] = pd.to_datetime(train_data['datetime']) train_data['timedelta'] = train_data['datetime'] - train_data['datetime'][0] train_data['timedelta'] = train_data.timedelta.dt.days // time_delt train_data = nag_sample_balance_data(train_data) # 欠采样 train_data = train_data.sample(frac=1, random_state=1).reset_index(drop=True) lstm = model.t2v_LSTM(time_dim) optimizer = torch.optim.Adam(lstm.parameters(), lr=lr) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # loss function is CrossEntropyLoss total_k = 10 for k in tqdm(range(total_k)): X = train_data.timedelta.values y = np.array(train_data['label']) X_train, X_test, y_train, y_test = k_split(X, y, k, total_k) X_test = torch.from_numpy(X_test).view(-1, 1, 1) X_train = torch.from_numpy(np.array(X_train, dtype=np.float32)).view(-1, 1,1) y_train = torch.from_numpy(np.array(y_train, dtype=np.int64)).view(-1, 1) deal_traindata1 = TensorDataset(X_train, y_train) # deal with wordVetor and label load_train1 = torch.utils.data.DataLoader(dataset=deal_traindata1, batch_size=batch, shuffle=False) # laod data make batch for e in range(epoch): for step, (x_time, label) in enumerate(load_train1): label = label.view(-1) # loss function need 1 dim! if don't do it, loss function will make error! x_time = x_time.float() output = lstm(x_time) optimizer.zero_grad() # clear gradients for this training step loss = loss_func(output, label) loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients X_test = X_test.float() output_test = lstm(X_test) # test model and print:loss and accuracy pred_y = torch.max(output_test, 1)[1].data.numpy() pred_y_np = output_test.detach().numpy() true_y = np.zeros((len(y_test), 3), dtype=np.int) for i in range(len(y_test)): true_y[i][y_test[i]] = 1 fpr, tpr, _ = metrics.roc_curve(true_y.ravel(), pred_y_np.ravel()) roc_auc = metrics.auc(fpr, tpr) print(metrics.classification_report(y_test, pred_y)) precision = metrics.precision_score(y_test, pred_y, average="macro") recall = metrics.recall_score(y_test, pred_y, average="macro") f1 = metrics.f1_score(y_test, pred_y, average="macro") result = {"repository": repo, "precision": precision, "recall": recall, "f1": f1, "auc": roc_auc, "fpr": fpr, "tpr": tpr} roc = {"repository": repo, "fpr": fpr.tolist(), "tpr": tpr.tolist()} return result, roc def lstm(file_path, repo, time_delt, epoch, lr, batch, text_d, time_dim): train_data = pd.read_csv(file_path) train_data['datetime'] = pd.to_datetime(train_data['datetime']) train_data['timedelta'] = train_data['datetime'] - train_data['datetime'][0] train_data['timedelta'] = train_data.timedelta.dt.days // time_delt train_data = nag_sample_balance_data(train_data) # 欠采样 train_data = train_data.sample(frac=1, random_state=1).reset_index(drop=True) lstm = model.single_LSTM(time_dim) optimizer = torch.optim.Adam(lstm.parameters(), lr=lr) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # loss function is CrossEntropyLoss total_k = 10 for k in tqdm(range(total_k)): X = train_data.timedelta.values y = np.array(train_data['label']) X_train, X_test, y_train, y_test = k_split(X, y, k, total_k) X_test = torch.from_numpy(X_test).view(-1, 1, 1) X_train = torch.from_numpy(np.array(X_train, dtype=np.float32)).view(-1, 1,1) y_train = torch.from_numpy(np.array(y_train, dtype=np.int64)).view(-1, 1) deal_traindata1 = TensorDataset(X_train, y_train) # deal with wordVetor and label load_train1 = torch.utils.data.DataLoader(dataset=deal_traindata1, batch_size=batch, shuffle=False) # laod data make batch for e in range(epoch): for step, (x_time, label) in enumerate(load_train1): label = label.view(-1) # loss function need 1 dim! if don't do it, loss function will make error! x_time = x_time.float() output = lstm(x_time) optimizer.zero_grad() # clear gradients for this training step loss = loss_func(output, label) loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients X_test = X_test.float() output_test = lstm(X_test) # test model and print:loss and accuracy pred_y = torch.max(output_test, 1)[1].data.numpy() pred_y_np = output_test.detach().numpy() true_y = np.zeros((len(y_test), 3), dtype=np.int) for i in range(len(y_test)): true_y[i][y_test[i]] = 1 fpr, tpr, _ = metrics.roc_curve(true_y.ravel(), pred_y_np.ravel()) roc_auc = metrics.auc(fpr, tpr) print(metrics.classification_report(y_test, pred_y)) precision = metrics.precision_score(y_test, pred_y, average="macro") recall = metrics.recall_score(y_test, pred_y, average="macro") f1 = metrics.f1_score(y_test, pred_y, average="macro") result = {"repository": repo, "precision": precision, "recall": recall, "f1": f1, "auc": roc_auc, "fpr": fpr, "tpr": tpr} roc = {"repository": repo, "fpr": fpr.tolist(), "tpr": tpr.tolist()} return result, roc def zeroR(file_path, repo, time_delt, epoch, lr, batch, text_d, time_dim): train_data = pd.read_csv(file_path) train_data['datetime'] = pd.to_datetime(train_data['datetime']) train_data['timedelta'] = train_data['datetime'] - train_data['datetime'][0] train_data['timedelta'] = train_data.timedelta.dt.days // time_delt train_data = nag_sample_balance_data(train_data) # 欠采样 train_data = train_data.sample(frac=1, random_state=1).reset_index(drop=True) X = train_data.timedelta.values y = np.array(train_data['label']) pred_y = np.zeros((len(y),1), dtype=int) # ZeroR true_y = np.zeros((len(y), 3), dtype=np.int) for i in range(len(y)): true_y[i][y[i]] = 1 pred_y_np = np.concatenate( (np.ones([len(y), 1], dtype=int), np.zeros([len(y), 2], dtype=int)), axis=1 ) fpr, tpr, _ = metrics.roc_curve(true_y.ravel(), pred_y_np.ravel()) roc_auc = metrics.auc(fpr, tpr) print(metrics.classification_report(y, pred_y)) precision = metrics.precision_score(y, pred_y, average="macro") recall = metrics.recall_score(y, pred_y, average="macro") f1 = metrics.f1_score(y, pred_y, average="macro") result = {"repository": repo, "precision": precision, "recall": recall, "f1": f1, "auc": roc_auc, "fpr": fpr, "tpr": tpr} roc = {"repository": repo, "fpr": fpr.tolist(), "tpr": tpr.tolist()} return result, roc def random_guessing(file_path, repo, time_delt, epoch, lr, batch, text_d, time_dim): train_data = pd.read_csv(file_path) train_data['datetime'] = pd.to_datetime(train_data['datetime']) train_data['timedelta'] = train_data['datetime'] - train_data['datetime'][0] train_data['timedelta'] = train_data.timedelta.dt.days // time_delt train_data = nag_sample_balance_data(train_data) # 欠采样 train_data = train_data.sample(frac=1, random_state=1).reset_index(drop=True) X = train_data.timedelta.values y = np.array(train_data['label']) pred_y = np.random.randint(3,size=((len(y), 1))) # Randon guessing pred_y_np = np.full([len(y), 3], 1/3) true_y = np.zeros((len(y), 3), dtype=np.int) for i in range(len(y)): true_y[i][y[i]] = 1 fpr, tpr, _ = metrics.roc_curve(true_y.ravel(), pred_y_np.ravel()) roc_auc = metrics.auc(fpr, tpr) precision = metrics.precision_score(y, pred_y, average="macro") recall = metrics.recall_score(y, pred_y, average="macro") f1 = metrics.f1_score(y, pred_y, average="macro") result = {"repository": repo, "precision": precision, "recall": recall, "f1": f1, "auc": roc_auc, "fpr": fpr, "tpr": tpr} roc = {"repository": repo, "fpr": fpr.tolist(), "tpr": tpr.tolist()} return result, roc def plot_roc(): with jsonlines.open("./results/t2v_result_roc.jsonl", mode="r") as reader: for r in reader: roc_t2v = r with jsonlines.open("./results/lstm_result_roc.jsonl", mode="r") as reader: for r in reader: roc_lstm = r with jsonlines.open("./results/zeroR_result_roc.jsonl", mode="r") as reader: for r in reader: roc_zeroR = r with jsonlines.open("./results/random_result_roc.jsonl", mode="r") as reader: for r in reader: roc_random = r for i in range(len(roc_t2v)): plt.plot(roc_t2v[i]["fpr"], roc_t2v[i]["tpr"], label=roc_t2v[i]["repository"]) plt.plot(roc_random[0]["fpr"], roc_random[0]["tpr"], label="random guessing & zeroR", linestyle="--") plt.show() def main(): result = pd.DataFrame(columns=["repository", "precision", "recall", "f1", "auc", "fpr", "tpr"]) result_lstm = pd.DataFrame(columns=["repository", "precision", "recall", "f1", "auc", "fpr", "tpr"]) result_zeroR = pd.DataFrame(columns=["repository", "precision", "recall", "f1", "auc", "fpr", "tpr"]) result_random = pd.DataFrame(columns=["repository", "precision", "recall", "f1", "auc", "fpr", "tpr"]) roc_t2v, roc_lstm, roc_zeroR, roc_random = [], [], [], [] repo_list = file_opt.read_txt(config.code_path + "/resource/repo_list.txt") for repo in repo_list: file_path = config.data_path + "/" + repo + "/" + repo.replace("/", "_") + "_t2v.csv" time_delt = 30 epoch = 20 lr = 1e-5 batch = 16 text_d = 100 time_d = 40 result = result.append(t2v(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[0], ignore_index=True) result_lstm = result.append(lstm(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[0], ignore_index=True) result_zeroR = result_zeroR.append(zeroR(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[0], ignore_index=True) result_random = result_random.append(random_guessing(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[0], ignore_index=True) roc_t2v.append(t2v(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[1]) roc_lstm.append(lstm(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[1]) roc_zeroR.append(zeroR(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[1]) roc_random.append(random_guessing(file_path, repo, time_delt, epoch, lr, batch, text_d, time_d)[1]) result.to_csv("./results/t2v_result.csv") result_lstm.to_csv("./results/lstm_result.csv") result_zeroR.to_csv("./results/zeroR_result.csv") result_random.to_csv("./results/random_result.csv") with jsonlines.open("./results/t2v_result_roc.jsonl", mode="w") as writer: writer.write(roc_t2v) with jsonlines.open("./results/lstm_result_roc.jsonl", mode="w") as writer: writer.write(roc_lstm) with jsonlines.open("./results/zeroR_result_roc.jsonl", mode="w") as writer: writer.write(roc_zeroR) with jsonlines.open("./results/random_result_roc.jsonl", mode="w") as writer: writer.write(roc_random) def plot_f1(): result = pd.read_csv("./results/t2v_result.csv") result_lstm = pd.read_csv("./results/lstm_result.csv") result_zeroR = pd.read_csv("./results/zeroR_result.csv") result_random = pd.read_csv("./results/random_result.csv") print(result["f1"].describe()) print(result_lstm["f1"].describe()) print(result_zeroR["f1"].describe()) print(result_random["f1"].describe()) df = pd.concat([result[["f1"]], result_lstm[["f1"]], result_zeroR[["f1"]], result_random[["f1"]]], axis=1) df.columns = ["Time2Vec-LSTM","LSTM", "ZeroR", "Random Guessing"] plt.figure(figsize=[4,3]) df.boxplot(column=["Time2Vec-LSTM", "LSTM", "ZeroR", "Random Guessing"]) plt.show() df_avg_f1 = pd.DataFrame(columns=["Time2Vec", "LSTM", "ZeroR", "Random Guessing"]) df_avg_f1 = df_avg_f1.append({"Time2Vec": result["precision"].mean(), "LSTM": result_lstm["precision"].mean(), "ZeroR": result_zeroR["precision"].mean(), "Random Guessing": result_random["precision"].mean()} ,ignore_index=True) df_avg_f1 = df_avg_f1.append({"Time2Vec": result["recall"].mean(), "LSTM": result_lstm["recall"].mean(), "ZeroR": result_zeroR["recall"].mean(), "Random Guessing": result_random["recall"].mean()} ,ignore_index=True) df_avg_f1 = df_avg_f1.append({"Time2Vec": result["f1"].mean(), "LSTM": result_lstm["f1"].mean(), "ZeroR": result_zeroR["f1"].mean(), "Random Guessing": result_random["f1"].mean()} ,ignore_index=True) df_avg_f1 = df_avg_f1.append({"Time2Vec": result["auc"].mean(), "LSTM": result_lstm["auc"].mean(), "ZeroR": result_zeroR["auc"].mean(), "Random Guessing": result_random["auc"].mean()} ,ignore_index=True) df_avg_f1.index = ['Precision', 'Recall', 'F1-measure', 'AUC'] df_avg_f1.plot(kind='bar', rot=0, fontsize=14) plt.show() def plot_auc_box(): with jsonlines.open("./results/t2v_result_roc.jsonl", mode="r") as reader: for r in reader: roc_t2v = r with jsonlines.open("./results/zeroR_result_roc.jsonl", mode="r") as reader: for r in reader: roc_zeroR = r with jsonlines.open("./results/random_result_roc.jsonl", mode="r") as reader: for r in reader: roc_random = r result = pd.read_csv("./results/t2v_result.csv") result_zeroR = pd.read_csv("./results/zeroR_result.csv") result_random = pd.read_csv("./results/random_result.csv") auc_pd =
pd.DataFrame(columns=["T2V", "ZeroR", "Random Guessing"])
pandas.DataFrame
""" Código para crear las variables de decisión del baseline """ import pandas as pd import time from baseline_ajustes import variables_decision_nacional, variables_decision_exp from limpieza_masters import limpieza_data, ajustar_tarifario from output import guardar_outputs # Carga de datos. Retorna diccionario de DFs start_time = time.time() sheet_names = ['master_demanda', 'master_tarifario', 'master_homologacion'] data = limpieza_data('input/datamaster_baseline.xlsx', sheet_names, is_baseline=True) # Ejecutar funciones de Baseline. Tener en cuenta que Nal y Exp vienen en la misma hoja de calculo ## Nacional demanda_nal = data['master_demanda'].loc[data['master_demanda']['id_ciudad_origen'] != 'CGNA_PORT'] demanda_exp = data['master_demanda'].loc[data['master_demanda']['id_ciudad_origen'] == 'CGNA_PORT'] # Validamos que el tarifario no tenga duplicados data['mater_tarifario'] = ajustar_tarifario(data['master_tarifario']) decision_nal, demanda_nal_omitida = variables_decision_nacional(demanda_nal, data['master_tarifario'], data['master_homologacion']) decision_exp, demanda_exp_omitida = variables_decision_exp(demanda_exp,data['master_tarifario'], factor_eficiencia=0.78) # Concatenar archivos de decision y guardar decision en output/
pd.concat([decision_nal, decision_exp])
pandas.concat
# -*- coding: utf-8 -*- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # Author: <EMAIL> from mlhub.pkg import mlask, mlcat MOVIELENS = '100k' # Select Movielens data size: 100k, 1m, 10m, or 20m. TOPK = 10 # Top k items to recommend. TITLEN = 45 # Truncation of titles in printing to screen. SMPLS = 10 # Number of observations to display. MOVDISP = 5 # Number of movies to display for a specific user. mlcat("Microsoft Recommenders Best Practice", """\ Welcome to a demo of the Microsoft open source Recommendations toolkit. This is a Microsoft open source project though not a supported product. Pull requests are most welcome. This demo runs several recommender algorithms on the traditional MovieLens benchmark dataset which is freely available from https://grouplens.org/datasets/movielens/. """) # ---------------------------------------------------------------------- # Setup # ---------------------------------------------------------------------- import sys stderr = sys.stderr stdout = sys.stdout devnull = open('/dev/null', 'w') sys.stderr = devnull # Import the required libraries. import os import time import itertools import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings import recutils import imdb import urllib.request from shutil import copyfile from reco_utils.recommender.sar.sar_singlenode import SARSingleNode from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_random_split from reco_utils.evaluation.python_evaluation import ( map_at_k, ndcg_at_k, precision_at_k, recall_at_k ) sys.stderr = stderr mlask() print("\nSystem version: {}".format(sys.version)) print("Pandas version: {}\n".format(pd.__version__)) mlcat("SAR Algorithm","""\ SAR, the smart adaptive recommendation algorithm, is a fast algorithm for personalized recommendations based on user history using collaborative filtering. It produces easily explainable and interpretable recommendations and handles "cold item" and "semi-cold user" scenarios. The training data schema is: <User ID> <Item ID> <Time> [<Event Type>] [<Event Weight>]. Each observation is an interaction between a user and item (e.g., a movie watched on a streaming site or an item clicked on an e-commerce website). The MovieLens dataset records movie ratings provided by viewers. The ratings are treated as the event weights. The smaller of the available datasets is used, consisting of 100K users. The dataset is being loaded. Once loaded we can review the first few observations. """) data = movielens.load_pandas_df(size = MOVIELENS, header = ['UserId', 'MovieId', 'Rating', 'Timestamp'] ) # Convert float precision to 32-bit to reduce memory consumption. data.loc[:, 'Rating'] = data['Rating'].astype(np.float32) # Load the movie title index. titles = pd.read_table('titles.txt', sep = '|', header = None, encoding = "ISO-8859-1") titles = titles.loc[:, 0:1] titles.columns = ["MovieId", "MovieTitle"] mlask(end="\n") mlcat("Sample Ratings", """\ Below we illustrate the ratings that a number of users have provided for specific movies. Note that the Rating column will be treated as the Event Weight and we are not displaying the Time column. From the 100,000 events in the dataset we will be partitioning the data into training and test subsets. The model is built from the training dataset. """) # Illustrative sample output. Rating is really a 1-5 integer and not a # float so be sure to display as an integer rather than a # float. Decide not to display Timestamp unless we convert to # something understandable. # TODO Replace truncated movie title with ... to be more informative. smpl = pd.merge(data, titles, on="MovieId").sample(SMPLS) smpl['MovieTitle'] = smpl['MovieTitle'].str[:TITLEN] smpl['Rating'] = pd.to_numeric(smpl['Rating'], downcast='integer') del smpl['Timestamp'] # Drop the column from printing. print(smpl.to_string()) # Create train and test datasets. train, test = python_random_split(data) # Create a model object. header = { "col_user" : "UserId", "col_item" : "MovieId", "col_rating" : "Rating", "col_timestamp" : "Timestamp", } model = SARSingleNode(remove_seen = True, similarity_type = "jaccard", time_decay_coefficient = 30, time_now = None, timedecay_formula = True, **header ) start_time = time.time() model.fit(train) train_time = time.time() - start_time start_time = time.time() topk = model.recommend_k_items(test) test_time = time.time() - start_time # TODO: remove this call when the model returns same type as input topk['UserId'] = pd.to_numeric(topk['UserId']) topk['MovieId'] =
pd.to_numeric(topk['MovieId'])
pandas.to_numeric
import unittest from unittest.mock import patch, PropertyMock import time import mt5_correlation.correlation as correlation import pandas as pd from datetime import datetime, timedelta from test_mt5 import Symbol import random import os class TestCorrelation(unittest.TestCase): # Mock symbols. 4 Symbols, 3 visible. mock_symbols = [Symbol(name='SYMBOL1', visible=True), Symbol(name='SYMBOL2', visible=True), Symbol(name='SYMBOL3', visible=False), Symbol(name='SYMBOL4', visible=True), Symbol(name='SYMBOL5', visible=True)] # Start and end date for price data and mock prices: base; correlated; and uncorrelated. start_date = None end_date = None price_columns = None mock_base_prices = None mock_correlated_prices = None mock_uncorrelated_prices = None def setUp(self): """ Creates some price data fro use in tests :return: """ # Start and end date for price data and mock price dataframes. One for: base; correlated; uncorrelated and # different dates. self.start_date = datetime(2021, 1, 1, 1, 5, 0) self.end_date = datetime(2021, 1, 1, 11, 30, 0) self.price_columns = ['time', 'close'] self.mock_base_prices = pd.DataFrame(columns=self.price_columns) self.mock_correlated_prices = pd.DataFrame(columns=self.price_columns) self.mock_uncorrelated_prices = pd.DataFrame(columns=self.price_columns) self.mock_correlated_different_dates = pd.DataFrame(columns=self.price_columns) self.mock_inverse_correlated_prices = pd.DataFrame(columns=self.price_columns) # Build the price data for the test. One price every 5 minutes for 500 rows. Base will use min for price, # correlated will use min + 5 and uncorrelated will use random for date in (self.start_date + timedelta(minutes=m) for m in range(0, 500*5, 5)): self.mock_base_prices = self.mock_base_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, date.minute]])) self.mock_correlated_prices = \ self.mock_correlated_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, date.minute + 5]])) self.mock_uncorrelated_prices = \ self.mock_uncorrelated_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, random.randint(0, 1000000)]])) self.mock_correlated_different_dates = \ self.mock_correlated_different_dates.append(pd.DataFrame(columns=self.price_columns, data=[[date + timedelta(minutes=100), date.minute + 5]])) self.mock_inverse_correlated_prices = \ self.mock_inverse_correlated_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, (date.minute + 5) * -1]])) @patch('mt5_correlation.mt5.MetaTrader5') def test_calculate(self, mock): """ Test the calculate method. Uses mock for MT5 symbols and prices. :param mock: :return: """ # Mock symbol return values mock.symbols_get.return_value = self.mock_symbols # Correlation class cor = correlation.Correlation(monitoring_threshold=1, monitor_inverse=True) # Calculate for price data. We should have 100% matching dates in sets. Get prices should be called 4 times. # We don't have a SYMBOL3 as this is set as not visible. Correlations should be as follows: # SYMBOL1:SYMBOL2 should be fully correlated (1) # SYMBOL1:SYMBOL4 should be uncorrelated (0) # SYMBOL1:SYMBOL5 should be negatively correlated # SYMBOL2:SYMBOL5 should be negatively correlated # We will not use p_value as the last set uses random numbers so p value will not be useful. mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices, self.mock_uncorrelated_prices, self.mock_inverse_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) # Test the output. We should have 6 rows. S1:S2 c=1, S1:S4 c<1, S1:S5 c=-1, S2:S5 c=-1. We are not checking # S2:S4 or S4:S5 self.assertEqual(len(cor.coefficient_data.index), 6, "There should be six correlations rows calculated.") self.assertEqual(cor.get_base_coefficient('SYMBOL1', 'SYMBOL2'), 1, "The correlation for SYMBOL1:SYMBOL2 should be 1.") self.assertTrue(cor.get_base_coefficient('SYMBOL1', 'SYMBOL4') < 1, "The correlation for SYMBOL1:SYMBOL4 should be <1.") self.assertEqual(cor.get_base_coefficient('SYMBOL1', 'SYMBOL5'), -1, "The correlation for SYMBOL1:SYMBOL5 should be -1.") self.assertEqual(cor.get_base_coefficient('SYMBOL2', 'SYMBOL5'), -1, "The correlation for SYMBOL2:SYMBOL5 should be -1.") # Monitoring threshold is 1 and we are monitoring inverse. Get filtered correlations. There should be 3 (S1:S2, # S1:S5 and S2:S5) self.assertEqual(len(cor.filtered_coefficient_data.index), 3, "There should be 3 rows in filtered coefficient data when we are monitoring inverse " "correlations.") # Now aren't monitoring inverse correlations. There should only be one correlation when filtered cor.monitor_inverse = False self.assertEqual(len(cor.filtered_coefficient_data.index), 1, "There should be only 1 rows in filtered coefficient data when we are not monitoring inverse " "correlations.") # Now were going to recalculate, but this time SYMBOL1:SYMBOL2 will have non overlapping dates and coefficient # should be None. There shouldn't be a row. We should have correlations for S1:S4, S1:S5 and S4:S5 mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_different_dates, self.mock_correlated_prices, self.mock_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) self.assertEqual(len(cor.coefficient_data.index), 3, "There should be three correlations rows calculated.") self.assertEqual(cor.coefficient_data.iloc[0, 2], 1, "The correlation for SYMBOL1:SYMBOL4 should be 1.") self.assertEqual(cor.coefficient_data.iloc[1, 2], 1, "The correlation for SYMBOL1:SYMBOL5 should be 1.") self.assertEqual(cor.coefficient_data.iloc[2, 2], 1, "The correlation for SYMBOL4:SYMBOL5 should be 1.") # Get the price data used to calculate the coefficients for symbol 1. It should match mock_base_prices. price_data = cor.get_price_data('SYMBOL1') self.assertTrue(price_data.equals(self.mock_base_prices), "Price data returned post calculation should match " "mock price data.") def test_calculate_coefficient(self): """ Tests the coefficient calculation. :return: """ # Correlation class cor = correlation.Correlation() # Test 2 correlated sets coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_correlated_prices) self.assertEqual(coefficient, 1, "Coefficient should be 1.") # Test 2 uncorrelated sets. Set p value to 1 to force correlation to be returned. coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_uncorrelated_prices, max_p_value=1) self.assertTrue(coefficient < 1, "Coefficient should be < 1.") # Test 2 sets where prices dont overlap coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_correlated_different_dates) self.assertTrue(coefficient < 1, "Coefficient should be None.") # Test 2 inversely correlated sets coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_inverse_correlated_prices) self.assertEqual(coefficient, -1, "Coefficient should be -1.") @patch('mt5_correlation.mt5.MetaTrader5') def test_get_ticks(self, mock): """ Test that caching works. For the purpose of this test, we can use price data rather than tick data. Mock 2 different sets of prices. Get three times. Base, One within cache threshold and one outside. Set 1 should match set 2 but differ from set 3. :param mock: :return: """ # Correlation class to test cor = correlation.Correlation() # Mock the tick data to contain 2 different sets. Then get twice. They should match as the data was cached. mock.copy_ticks_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices] # We need to start and stop the monitor as this will set the cache time cor.start_monitor(interval=10, calculation_params={'from': 10, 'min_prices': 0, 'max_set_size_diff_pct': 0, 'overlap_pct': 0, 'max_p_value': 1}, cache_time=3) cor.stop_monitor() # Get the ticks within cache time and check that they match base_ticks = cor.get_ticks('SYMBOL1', None, None) cached_ticks = cor.get_ticks('SYMBOL1', None, None) self.assertTrue(base_ticks.equals(cached_ticks), "Both sets of tick data should match as set 2 came from cache.") # Wait 3 seconds time.sleep(3) # Retrieve again. This one should be different as the cache has expired. non_cached_ticks = cor.get_ticks('SYMBOL1', None, None) self.assertTrue(not base_ticks.equals(non_cached_ticks), "Both sets of tick data should differ as cached data had expired.") @patch('mt5_correlation.mt5.MetaTrader5') def test_start_monitor(self, mock): """ Test that starting the monitor and running for 2 seconds produces two sets of coefficient history when using an interval of 1 second. :param mock: :return: """ # Mock symbol return values mock.symbols_get.return_value = self.mock_symbols # Create correlation class. We will set a divergence threshold so that we can test status. cor = correlation.Correlation(divergence_threshold=0.8, monitor_inverse=True) # Calculate for price data. We should have 100% matching dates in sets. Get prices should be called 4 times. # We dont have a SYMBOL2 as this is set as not visible. All pairs should be correlated for the purpose of this # test. mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices, self.mock_correlated_prices, self.mock_inverse_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) # We will build some tick data for each symbol and patch it in. Tick data will be from 10 seconds ago to now. # We only need to patch in one set of tick data for each symbol as it will be cached. columns = ['time', 'ask'] starttime = datetime.now() - timedelta(seconds=10) tick_data_s1 = pd.DataFrame(columns=columns) tick_data_s2 = pd.DataFrame(columns=columns) tick_data_s4 = pd.DataFrame(columns=columns) tick_data_s5 = pd.DataFrame(columns=columns) now = datetime.now() price_base = 1 while starttime < now: tick_data_s1 = tick_data_s1.append(pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.5]])) tick_data_s2 = tick_data_s1.append(pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.1]])) tick_data_s4 = tick_data_s1.append(pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.25]])) tick_data_s5 = tick_data_s1.append(pd.DataFrame(columns=columns, data=[[starttime, price_base * -0.25]])) starttime = starttime + timedelta(milliseconds=10*random.randint(0, 100)) price_base += 1 # Patch it in mock.copy_ticks_range.side_effect = [tick_data_s1, tick_data_s2, tick_data_s4, tick_data_s5] # Start the monitor. Run every second. Use ~10 and ~5 seconds of data. Were not testing the overlap and price # data quality metrics here as that is set elsewhere so these can be set to not take effect. Set cache level # high and don't use autosave. Timer runs in a separate thread so test can continue after it has started. cor.start_monitor(interval=1, calculation_params=[{'from': 0.66, 'min_prices': 0, 'max_set_size_diff_pct': 0, 'overlap_pct': 0, 'max_p_value': 1}, {'from': 0.33, 'min_prices': 0, 'max_set_size_diff_pct': 0, 'overlap_pct': 0, 'max_p_value': 1}], cache_time=100, autosave=False) # Wait 2 seconds so timer runs twice time.sleep(2) # Stop the monitor cor.stop_monitor() # We should have 2 coefficients calculated for each symbol pair (6), for each date_from value (2), # for each run (2) so 24 in total. self.assertEqual(len(cor.coefficient_history.index), 24) # We should have 2 coefficients calculated for a single symbol pair and timeframe self.assertEqual(len(cor.get_coefficient_history({'Symbol 1': 'SYMBOL1', 'Symbol 2': 'SYMBOL2', 'Timeframe': 0.66})), 2, "We should have 2 history records for SYMBOL1:SYMBOL2 using the 0.66 min timeframe.") # The status should be DIVERGED for SYMBOL1:SYMBOL2 and CORRELATED for SYMBOL1:SYMBOL4 and SYMBOL2:SYMBOL4. self.assertTrue(cor.get_last_status('SYMBOL1', 'SYMBOL2') == correlation.STATUS_DIVERGED) self.assertTrue(cor.get_last_status('SYMBOL1', 'SYMBOL4') == correlation.STATUS_CORRELATED) self.assertTrue(cor.get_last_status('SYMBOL2', 'SYMBOL4') == correlation.STATUS_CORRELATED) # We are monitoring inverse correlations, status for SYMBOL1:SYMBOL5 should be DIVERGED self.assertTrue(cor.get_last_status('SYMBOL2', 'SYMBOL5') == correlation.STATUS_DIVERGED) @patch('mt5_correlation.mt5.MetaTrader5') def test_load_and_save(self, mock): """Calculate and run monitor for a few seconds. Store the data. Save it, load it then compare against stored data.""" # Correlation class cor = correlation.Correlation() # Patch symbol and price data, then calculate mock.symbols_get.return_value = self.mock_symbols mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices, self.mock_correlated_prices, self.mock_inverse_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) # Patch the tick data columns = ['time', 'ask'] starttime = datetime.now() - timedelta(seconds=10) tick_data_s1 = pd.DataFrame(columns=columns) tick_data_s3 = pd.DataFrame(columns=columns) tick_data_s4 = pd.DataFrame(columns=columns) now = datetime.now() price_base = 1 while starttime < now: tick_data_s1 = tick_data_s1.append(pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.5]])) tick_data_s3 = tick_data_s1.append(
pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.1]])
pandas.DataFrame
import datetime import numpy as np import pandas as pd import pandas.testing as pdt from cape_privacy.pandas import dtypes from cape_privacy.pandas.transformations import DateTruncation from cape_privacy.pandas.transformations import NumericRounding def _make_apply_numeric_rounding(input, expected_output, ctype, dtype): transform = NumericRounding(dtype=ctype, precision=1) df = pd.DataFrame({"amount": input}).astype(dtype) expected = pd.DataFrame({"amount": expected_output}).astype(dtype) df["amount"] = transform(df.amount) return df, expected def _make_apply_datetruncation(frequency, input_date, expected_date): transform = DateTruncation(frequency=frequency) df =
pd.DataFrame({"date": [input_date]})
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright 2017 The <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import csv import ffn from keras.callbacks import TensorBoard, ModelCheckpoint from windpuller import WindPuller from dataset import DataSet from feature import extract_from_file, extract_all_features def read_ultimate(path, input_shape): ultimate_features = np.load(path + "ultimate_feature." + str(input_shape[0]) +'.npy') ultimate_features = np.reshape(ultimate_features, [-1, input_shape[0], input_shape[1]]) ultimate_labels = np.load(path + "ultimate_label." + str(input_shape[0]) +'.npy') # ultimate_labels = np.reshape(ultimate_labels, [-1, 1]) train_set = DataSet(ultimate_features, ultimate_labels) test_features = np.load(path + "ultimate_feature.test." + str(input_shape[0]) +'.npy') test_features = np.reshape(test_features, [-1, input_shape[0], input_shape[1]]) test_labels = np.load(path + "ultimate_label.test." + str(input_shape[0]) +'.npy') # test_labels = np.reshape(test_labels, [-1, 1]) test_set = DataSet(test_features, test_labels) return train_set, test_set def read_feature(path, input_shape, prefix): ultimate_features = np.load("%s/%s_feature.%s.npy" % (path, prefix, str(input_shape[0]))) ultimate_features = np.reshape(ultimate_features, [-1, input_shape[0], input_shape[1]]) ultimate_labels = np.load("%s/%s_label.%s.npy" % (path, prefix, str(input_shape[0]))) # ultimate_labels = np.reshape(ultimate_labels, [-1, 1]) train_set = DataSet(ultimate_features, ultimate_labels) test_features = np.load("%s/%s_feature.test.%s.npy" % (path, prefix, str(input_shape[0]))) test_features = np.reshape(test_features, [-1, input_shape[0], input_shape[1]]) test_labels = np.load("%s/%s_label.test.%s.npy" % (path, prefix, str(input_shape[0]))) # test_labels = np.reshape(test_labels, [-1, 1]) test_set = DataSet(test_features, test_labels) return train_set, test_set def calculate_cumulative_return(labels, pred): cr = [] if len(labels) <= 0: return cr cr.append(1. * (1. + labels[0] * pred[0])) for l in range(1, len(labels)): cr.append(cr[l-1] * (1 + labels[l] * pred[l])) cap = np.array(cr) cr = cap - 1 return cr, cap def calculate_cumulative_return_cost(labels, pred, fee=0.0002): '''计算累积收益率, 初始资金为1 params: labels: 实际日收益率 pred: 预测的每日仓位[0, 1] returns: cr: 累计收益率序列 cap: 资金曲线 ''' n = len(labels) cap = np.ones(n+1) for i in range(1, n+1): cap[i] = cap[i-1] * (1 + labels[i-1] * pred[i-1] - np.abs(pred[i-1]) * fee) cr = cap - 1 return cr, cap def plot_returns(df, f, n, title, output_dir): '''画出资金曲线 ''' df.rename(columns={'Strategy':'策略', 'Benchmark':'指数'}).plot(figsize=(24, 16)) plt.xlabel('时间') plt.ylabel('累计收益率') plt.title('%s %s_%s择时做多策略vs买入持有策略累计收益率' % (title, f, n), fontsize=22) fig_dir = os.path.join(output_dir, '资金曲线') if not(os.path.exists(fig_dir)): os.mkdir(fig_dir) fig_path = os.path.join(output_dir, '资金曲线', '%s_%s' % (n, title)) plt.savefig(fig_path) plt.close() print(' 资金曲线画图结束\n') print('-'*30) def calc_perf(output, f, n, key, output_dir): '''统计各项表现,画出资金曲线,生成投资报告 ''' # 1. 数据预处理 # df = output.set_index(keys='date') df = output.copy(deep=False) df.index = pd.to_datetime(df.index) df.drop(['Close', 'Pct_change', 'Position'], axis=1, inplace=True) df['Strategy'] = df['Cum_return'] + 1 df['Benchmark'] = df['Buy_hold'] + 1 df.drop(['Cum_return', 'Buy_hold'], axis=1, inplace=True) if key == 'train': title = '训练集' else: title = '测试集' # 2. 画出资金曲线 plt.rcParams.update({'font.size': 18}) plot_returns(df, f, n, title, output_dir) # 3. 画出策略和指数的相关矩阵图 returns = df.to_returns().dropna() returns.rename(columns={'Strategy':'策略', 'Benchmark':'指数'}).plot_corr_heatmap() plt.title('%s相关系数热度图' % n) cor_plt_dir = os.path.join(output_dir, '相关系数') if not(os.path.exists(cor_plt_dir)): os.mkdir(cor_plt_dir) cor_plt_path = os.path.join(cor_plt_dir, '%s_%s' % (n, title)) plt.savefig(cor_plt_path) plt.close() print('相关系数画图结束') print('-'*30) # 4. 计算策略表现 perf = df.calc_stats() result = dict() result['天数'] = df.shape[0] - 1 result['起始日期'] = perf['Strategy'].start.strftime('%Y-%m-%d') result['截至日期'] = perf['Strategy'].end.strftime('%Y-%m-%d') result['收益率'] = perf['Strategy'].total_return result['年化收益率'] = perf['Strategy'].cagr result['今年收益率'] = perf['Strategy'].ytd result['最近6个月收益率'] = perf['Strategy'].six_month result['最近3个月收益率'] = perf['Strategy'].three_month result['当月收益率'] = perf['Strategy'].mtd result['最大回撤'] = perf['Strategy'].max_drawdown details = perf['Strategy'].drawdown_details if details is None: result['最大回撤周期数'] = 0 result['最长未创新高周期数'] = 0 result['平均回撤周期数'] = 0 else: result['最大回撤周期数'] = \ int(details[details['drawdown'] == result['最大回撤']]['days']) result['最长未创新高周期数'] = \ perf['Strategy'].drawdown_details['days'].max() result['平均回撤周期数'] = perf['Strategy'].avg_drawdown_days try: result['夏普比率'] = perf['Strategy'].daily_sharpe except ZeroDivisionError as e: print('夏普比率分母为0!') result['夏普比率'] = np.nan result['最好日收益率'] = perf['Strategy'].best_day result['最差日收益率'] = perf['Strategy'].worst_day result['最好月收益率'] = perf['Strategy'].best_month result['最差月收益率'] = perf['Strategy'].worst_month result['最好年收益率'] = perf['Strategy'].best_year result['最差年收益率'] = perf['Strategy'].worst_year if (output.Position != 0).sum() != 0: result['胜率'] = (output.Pct_change[output.Position != 0] > 0).sum() / ( (output.Position != 0).sum())# 做多 result['交易次数'] = (output.Position != 0).sum() result['满仓次数'] = (output.Position.abs() == 1).sum() result['平均仓位'] = np.abs(output.Position.mean()) result['交易频率'] = result['天数'] / result['交易次数'] result['满仓频率'] = result['天数'] / result['满仓次数'] else: result['胜率'] = np.nan result['交易次数'] = 0 result['满仓次数'] = 0 result['平均仓位'] = 0 result['交易频率'] = np.nan result['满仓频率'] = np.nan # 5. 将dict结果写入csv文件 result_dir = os.path.join(output_dir, '投资报告') if not(os.path.exists(result_dir)): os.mkdir(result_dir) result_path = os.path.join(result_dir, '%s_%s.csv' % (n, title)) with open(result_path, 'w') as csv_file: csv.writer(csv_file).writerows(result.items()) def evaluate_model(model_path, code, output_dir, input_shape=[30, 61]): extract_from_file("dataset/%s.csv" % code, output_dir, code) train_set, test_set = read_feature(output_dir, input_shape, code) saved_wp = WindPuller(input_shape).load_model(model_path) scores = saved_wp.evaluate(test_set.images, test_set.labels, verbose=0) print('Test loss:', scores[0]) print('test accuracy:', scores[1]) pred = saved_wp.predict(test_set.images, 1024) [cr, cap] = calculate_cumulative_return(test_set.labels, pred) # Output to a csv file # Read in the date, close from original data file. days_for_test = 700 tmp = pd.read_csv('dataset/%s.csv' % code, delimiter='\t') # tmp.columns = ['date', 'open', 'high', 'low', 'close', 'volume'] date = tmp['date'][-days_for_test:] close = tmp['close'][-days_for_test:] output = pd.DataFrame({'Return': test_set.labels, 'Position': pred.reshape(-1), 'Capital': cap.reshape(-1), 'Close': close.values}, index=date, columns=['Close', 'Return', 'Position', 'Capital']) output.to_csv('output/%s.csv' % code) def test_model(model_path="model.30.best", extract_all=True, days_for_test=False): ''' 1. 先对数据集中每一个品种提取特征; 2. 读取训练集和验证集; 3. 加载训练好的模型,预测在训练集和验证集上的结果; 4. 根据结果绘制相应的资金变化图,并保存。 ''' # 1. 特征提取 data_dir = './dataset/' output_dir = './output09/' feature_dir = './stock_features/' if not(os.path.exists(output_dir)): os.mkdir(output_dir) # 只提取测试集的特征 if days_for_test == False: # 测试集从2017-09-01开始 df = pd.read_csv('dataset/000001.csv', index_col='date', parse_dates=True) days_for_test = df.shape[0] - df.index.get_loc('2017-09-01') extract_all_features(data_dir, feature_dir, days_for_test) # 2. 读取特征 input_shape = [30, 61] file_list = os.listdir(data_dir) if extract_all == True: column_names = [s.split(sep='.')[0] for s in file_list] else: # 否则只测试3个指数 column_names = ['000016', '000300', '000905'] wp = WindPuller(input_shape).load_model(model_path) for f in column_names: train_set, test_set = read_feature(feature_dir, input_shape, f) data_set = {'train': train_set, 'test': test_set} tmp = pd.read_csv('dataset/%s.csv' % f) for key in data_set: # 3.分别给训练集/验证集预测并画图保存 print('当前处理 %s_%s\n' % (f, key)) val = data_set[key] pred = wp.predict(val.images, 1024) [cr, cap] = calculate_cumulative_return_cost(val.labels, pred) # 根据训练集/验证集来设置读取数据的范围 if key == 'train': index = range(input_shape[0]-1, input_shape[0] + pred.shape[0]) elif key == 'test': index = range(tmp.shape[0]-days_for_test-1, tmp.shape[0]) # 1). 保存资金曲线的数据 date = tmp['date'].iloc[index] close = tmp['close'].iloc[index] buy_hold = close / close.iloc[0] - 1 # DEBUG: #print('date shape:\t', date.shape) #print('close shape:\t', close.shape) #print('buy_hold shape:\t', buy_hold.shape) #print('Pct_change shape:\t', val.labels.shape) #print('Position shape:\t', pred.shape) output = pd.DataFrame({'Close': close.values, 'Pct_change': np.concatenate(([np.nan], val.labels)), 'Position': np.concatenate(([np.nan], pred.reshape(-1))), 'Cum_return': cr.reshape(-1), 'Buy_hold': buy_hold.values}, index=date, columns=['Close', 'Pct_change', 'Position', 'Cum_return', 'Buy_hold']) names = pd.read_csv('指数名称.csv', dtype={'code':np.str, 'name':np.str}, engine='python') names.set_index('code', inplace=True) names = names.to_dict()['name'] n = names[f] # 写入文件 cap_line_dir = os.path.join(output_dir, 'stocks') if not(os.path.exists(cap_line_dir)): os.mkdir(cap_line_dir) cap_line_f = os.path.join(cap_line_dir, '%s_%s.csv' % (n, key)) output.to_csv(cap_line_f) # 2). 统计各项表现,画出资金曲线,生成投资报告 print('开始计算策略表现 %s_%s_%s\n' % (f, n, key)) calc_perf(output, f, n, key, output_dir) print('计算完毕') print('='*50) def predict_tomorrow(model_path="model.30.best", extract_all=False): ''' 1. 先对3个数据集中每一个品种提取特征; 2. 读取只有一行数据的验证集; 3. 加载训练好的模型,预测在验证集上的信号结果; 4. 保存信号结果。 ''' # 1. 特征提取 data_dir = './newdata/' output_dir = './output09/' feature_dir = './stock_features/' if not(os.path.exists(output_dir)): os.mkdir(output_dir) # 测试集从2017-09-01开始 df = pd.read_csv('dataset/000300.csv', index_col='date', parse_dates=True) days_for_test = df.shape[0] - df.index.get_loc('2017-09-01') extract_all_features(data_dir, feature_dir, days_for_test, extract_all) # 2. 读取特征 input_shape = [30, 61] file_list = os.listdir(data_dir) if extract_all == True: column_names = [s.split(sep='.')[0] for s in file_list] else: # 否则只测试3个指数 column_names = ['000016', '000300', '000905'] # 加载模型 wp = WindPuller(input_shape).load_model(model_path) for f in column_names: _, test_set = read_feature(feature_dir, input_shape, f) tmp =
pd.read_csv('dataset/%s.csv' % f)
pandas.read_csv
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["PC1_cos2"] = loading_outlier_scale_df_covar["PC1"] ** 2 loading_outlier_scale_df_covar["PC2_cos2"] = loading_outlier_scale_df_covar["PC2"] ** 2 loading_outlier_scale_df_covar["PC1_contrib"] = \ (loading_outlier_scale_df_covar["PC1_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["PC2_contrib"] = \ (loading_outlier_scale_df_covar["PC2_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["contrib"] = loading_outlier_scale_df_covar["PC1_contrib"] + \ loading_outlier_scale_df_covar[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf_covar = pd.concat( [loading_outlier_scale_df_covar.iloc[:, 0:2], loading_outlier_scale_df_covar.iloc[:, 6]], axis=1) line_group_df_covar =
pd.DataFrame(data=features_outlier, columns=['line_group'])
pandas.DataFrame
import pandas as pd import numpy as np from time import perf_counter from utils import View, Rule class DataReader: def __init__(self, raw_data_path='data/unigram_freq.csv', data_path='data/data.csv'): # https://www.kaggle.com/rtatman/english-word-frequency # This dataset was well sorted by frequency self.raw_data_path = raw_data_path self.data_path = data_path def extract_5gram_words(self): """ Extract the 5-gram-words from the raw data :return: """ raw_data = pd.read_csv(self.raw_data_path) _5gram_word = [] _5gram_count = [] start = perf_counter() length = raw_data.__len__() View.title_bar('Extracting 5-Gram-Words...') for index, row in raw_data.iterrows(): if type(row['word']) == str and len(row['word']) == 5: _5gram_count.append(row['count']) _5gram_word.append(row['word']) View.progress_bar(index, length, start) df = pd.DataFrame({'word': _5gram_word, 'count': _5gram_count}) df.to_csv(self.data_path, index=False) return def get_sigmoid_frequency(self): """ Calculate the word frequency after sigmoid smoothing and save the result :return: """ data =
pd.read_csv(self.data_path)
pandas.read_csv
# -*- coding: utf-8 -*- """ This module contains the ReadSets class that is in charge of reading the sets files, reshaping them to be used in the build class, creating and reading the parameter files and checking the errors in the definition of the sets and parameters """ import itertools as it from openpyxl import load_workbook import pandas as pd from hypatia.error_log.Checks import ( check_nan, check_index, check_index_data, check_table_name, check_mapping_values, check_mapping_ctgry, check_sheet_name, check_tech_category, check_carrier_type, check_years_mode_consistency, ) from hypatia.error_log.Exceptions import WrongInputMode import numpy as np from hypatia.utility.constants import ( global_set_ids, regional_set_ids, technology_categories, carrier_types, ) from hypatia.utility.constants import take_trade_ids, take_ids, take_global_ids MODES = ["Planning", "Operation"] class ReadSets: """ Class that reads the sets of the model, creates the parameter files with default values and reads the filled parameter files Attributes ------------ mode: The mode of optimization including the operation and planning mode path: The path of the set files given by the user glob_mapping : dict A dictionary of the global set tables given by the user in the global.xlsx file mapping : dict A dictionary of the regional set tables given by the user in the regional set files connection_sheet_ids: dict A nested dictionary that defines the sheet names of the parameter file of the inter-regional links with their default values, indices and columns global_sheet_ids : dict A nested dictionary that defines the sheet names of the global parameter file with their default values, indices and columns regional_sheets_ids : dict A nested dictionary that defines the sheet names of the regional parameter files with their default values, indices and columns trade_data : dict A nested dictionary for storing the inter-regional link data global_data : dict A nested dictionary for storing the global data data : dict A nested dictionary for storing the regional data """ def __init__(self, path, mode="Planning"): self.mode = mode self.path = path self._init_by_xlsx() def _init_by_xlsx(self,): """ Reads and organizes the global and regional sets """ glob_mapping = {} wb_glob = load_workbook(r"{}/global.xlsx".format(self.path)) sets_glob = wb_glob["Sets"] set_glob_category = {key: value for key, value in sets_glob.tables.items()} for entry, data_boundary in sets_glob.tables.items(): data_glob = sets_glob[data_boundary] content = [[cell.value for cell in ent] for ent in data_glob] header = content[0] rest = content[1:] df = pd.DataFrame(rest, columns=header) glob_mapping[entry] = df self.glob_mapping = glob_mapping check_years_mode_consistency( mode=self.mode, main_years=list(self.glob_mapping["Years"]["Year"]) ) for key, value in self.glob_mapping.items(): check_table_name( file_name="global", allowed_names=list(global_set_ids.keys()), table_name=key, ) check_index(value.columns, key, "global", pd.Index(global_set_ids[key])) check_nan(key, value, "global") if key == "Technologies": check_tech_category(value, technology_categories, "global") if key == "Carriers": check_carrier_type(value, carrier_types, "global") self.regions = list(self.glob_mapping["Regions"]["Region"]) self.main_years = list(self.glob_mapping["Years"]["Year"]) if "Timesteps" in self.glob_mapping.keys(): self.time_steps = list(self.glob_mapping["Timesteps"]["Timeslice"]) self.timeslice_fraction = self.glob_mapping["Timesteps"][ "Timeslice_fraction" ].values else: self.time_steps = ["Annual"] self.timeslice_fraction = np.ones((1, 1)) # possible connections among the regions if len(self.regions) > 1: lines_obj = it.permutations(self.regions, r=2) self.lines_list = [] for item in lines_obj: if item[0] < item[1]: self.lines_list.append("{}-{}".format(item[0], item[1])) mapping = {} for reg in self.regions: wb = load_workbook(r"{}/{}.xlsx".format(self.path, reg)) sets = wb["Sets"] self._setbase_reg = [ "Technologies", "Carriers", "Carrier_input", "Carrier_output", ] set_category = {key: value for key, value in sets.tables.items()} reg_mapping = {} for entry, data_boundary in sets.tables.items(): data = sets[data_boundary] content = [[cell.value for cell in ent] for ent in data] header = content[0] rest = content[1:] df = pd.DataFrame(rest, columns=header) reg_mapping[entry] = df mapping[reg] = reg_mapping for key, value in mapping[reg].items(): check_table_name( file_name=reg, allowed_names=list(regional_set_ids.keys()), table_name=key, ) check_index(value.columns, key, reg, pd.Index(regional_set_ids[key])) check_nan(key, value, reg) if key == "Technologies": check_tech_category(value, technology_categories, reg) if key == "Carriers": check_carrier_type(value, carrier_types, reg) if key == "Carrier_input" or key == "Carrier_output": check_mapping_values( value, key, mapping[reg]["Technologies"], "Technologies", "Technology", "Technology", reg, ) check_mapping_values( mapping[reg]["Carrier_input"], "Carrier_input", mapping[reg]["Carriers"], "Carriers", "Carrier_in", "Carrier", reg, ) check_mapping_values( mapping[reg]["Carrier_output"], "Carrier_output", mapping[reg]["Carriers"], "Carriers", "Carrier_out", "Carrier", reg, ) check_mapping_ctgry( mapping[reg]["Carrier_input"], "Carrier_input", mapping[reg]["Technologies"], "Supply", reg, ) check_mapping_ctgry( mapping[reg]["Carrier_output"], "Carrier_output", mapping[reg]["Technologies"], "Demand", reg, ) self.mapping = mapping Technologies = {} for reg in self.regions: regional_tech = {} for key in list(self.mapping[reg]["Technologies"]["Tech_category"]): regional_tech[key] = list( self.mapping[reg]["Technologies"].loc[ self.mapping[reg]["Technologies"]["Tech_category"] == key ]["Technology"] ) Technologies[reg] = regional_tech self.Technologies = Technologies self._create_input_data() def _create_input_data(self): """ Defines the sheets, indices and columns of the parameter files """ if len(self.regions) > 1: # Create the columns of inter-regional links as a multi-index of the # pairs of regions and the transmitted carriers indexer = pd.MultiIndex.from_product( [self.lines_list, self.glob_mapping["Carriers_glob"]["Carrier"]], names=["Line", "Transmitted Carrier"], ) self.connection_sheet_ids = { "F_OM": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "V_OM": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Residual_capacity": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Capacity_factor_line": { "value": 1, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Line_efficiency": { "value": 1, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "AnnualProd_perunit_capacity": { "value": 1, "index": pd.Index( ["AnnualProd_Per_UnitCapacity"], name="Performance Parameter" ), "columns": indexer, }, } self.global_sheet_ids = { "Max_production_global": { "value": 1e30, "index": pd.Index(self.main_years, name="Years"), "columns": self.glob_mapping["Technologies_glob"].loc[ ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Demand" ) & ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Storage" ) ]["Technology"], }, "Min_production_global": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": self.glob_mapping["Technologies_glob"].loc[ ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Demand" ) & ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Storage" ) ]["Technology"], }, "Glob_emission_cap_annual": { "value": 1e30, "index": pd.Index(self.main_years, name="Years"), "columns": ["Global Emission Cap"], }, } if self.mode == "Planning": self.connection_sheet_ids.update( { "INV": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Decom_cost": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Min_totalcap": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Max_totalcap": { "value": 1e10, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Min_newcap": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Max_newcap": { "value": 1e10, "index":
pd.Index(self.main_years, name="Years")
pandas.Index
import numpy as np # We recommend to use numpy arrays import gc import pandas as pd import time from multiprocessing import Pool from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split #from gensim.models.word2vec import Word2Vec from sklearn.model_selection import KFold from sklearn.decomposition import TruncatedSVD def timmer(func): def warpper(*args,**kwargs): strat_time = time.time() r = func(*args, **kwargs) stop_time = time.time() print("[Success] Info: function: {}() done".format(func.__name__)) print("the func run time is %.2fs" %(stop_time-strat_time)) return r return warpper def left_merge(data1, data2, on): if type(on) != list: on = [on] if (set(on) & set(data2.columns)) != set(on): data2_temp = data2.reset_index() else: data2_temp = data2.copy() columns = [f for f in data2.columns if f not in on] result = data1.merge(data2_temp,on=on,how='left') result = result[columns] return result def universe_mp_generator(gen_func, feat_list): """ tools for multy thread generator """ pool = Pool(4) result = [pool.apply_async(gen_func, feats) for feats in feat_list] pool.close() pool.join() return [aresult.get() for aresult in result] def concat(L): """ tools for concat new dataframe """ result = None for l in L: if l is None: continue if result is None: result = l else: try: result[l.columns.tolist()] = l except Exception as err: print(err) print(l.head()) return result #################### UTILS for FE############################# def count_helper(df, i): """ tools for multy thread count generator """ df['count_' + i] = df.groupby(i)[i].transform('count') return df[['count_' + i]].fillna(-99999).astype(np.int32) def hash_helper(df, i): """ tools for multy thread hash generator """ df['hash_' + i] = df[i].apply(hash) return df[['hash_' + i]] def bi_count_helper(df, i, j): """ tools for multy thread bi_count """ df['bicount_{}_{}'.format(i,j)] = df.groupby([i,j])[i].transform('count') return df[['bicount_{}_{}'.format(i,j)]].fillna(-99999).astype(np.int32) def cross_count_helper(df, i): """ tools for multy thread bi_count """ name = "count_"+ '_'.join(i) df[name] = df.groupby(i)[i[0]].transform('count') return df[[name]].fillna(-99999).astype(np.int32) def fast_join(x): r = '' for i in x: r += str(i) + ' ' return r def agg_helper(main_df, df, num_col, col, table_name): agg_dict = {} agg_dict['AGG_min_{}_{}_{}'.format(table_name, num_col, col)] = 'min' agg_dict['AGG_max_{}_{}_{}'.format(table_name, num_col, col)] = 'max' agg_dict['AGG_mean_{}_{}_{}'.format(table_name, num_col, col)] = 'mean' agg_dict['AGG_median_{}_{}_{}'.format(table_name, num_col, col)] = 'median' #agg_dict['AGG_skew_{}_{}_{}'.format(table_name, num_col, col)] = 'skew' agg_dict['AGG_var_{}_{}_{}'.format(table_name, num_col, col)] = 'var' agg_result = df.groupby(col)[num_col].agg(agg_dict) merget_result = left_merge(main_df[[col]], agg_result, on = [col]) #merget_result = main_df[[col]].merge(agg_result, on = [col], how = 'left') return merget_result[[i for i in merget_result.columns if i != col]] #df[['ke_cnt_' + col]] def hist_helper(main_df, df, cat_col, key, table_name): nfrac = min(10000, len(df)) / len(df) #print(nfrac) df = df.sample(frac = nfrac) df[cat_col] = df[cat_col].cat.add_categories("NAN").fillna("NAN") #seq_all = df.groupby([key])[cat_col].apply(lambda x:' '.join([str(i) for i in list(x)])) seq_all = df.groupby([key])[cat_col].apply(lambda x: list(x)) #print(seq_all) seq_all_uid = seq_all.index cv = CountVectorizer(max_features = 4, analyzer= lambda xs:xs)#token_pattern='(?u)\\b\\w+\\b') #vectorizer.get_feature_names() seq_all_count = cv.fit_transform(seq_all.values) print(cv.get_feature_names()) seq_all_lad = seq_all_count seq_all_lad = pd.DataFrame(seq_all_lad.todense()) seq_all_lad.columns = ["TOP_HIST_FETURE_{}_{}_{}_{}".format(table_name, key, cat_col ,i) for i in seq_all_lad.columns] # print(seq_all_lad.head(5)) seq_all_lad[key] = list(seq_all_uid) #seq_all_lad[",".join(base_feat)] = list(seq_all_uid) result = seq_all_lad result = left_merge(main_df, result, on = [key]) return result def diff_num_helper(df, time_col, col, num_col): df['ke_cnt_' + col] = df.groupby(col)[time_col].rank(ascending=False,method = 'first') df2 = df[[col, 'ke_cnt_' + col, num_col]].copy() df2['ke_cnt_' + col] = df2['ke_cnt_' + col] - 1 df3 = pd.merge(df, df2, on=[col, 'ke_cnt_' + col], how='left') df['LAG_{}_{}'.format(col, num_col)] = df3[num_col +'_x'] - df3[num_col + '_y'] del df2,df3 gc.collect() return df[['DIFF_{}_{}'.format(col, num_col)]] def lag_id_helper(df, time_col, col): df['ke_cnt_' + col] = df.groupby(col)[time_col].rank(ascending=False,method = 'first') df2 = df[[col, 'ke_cnt_' + col, time_col]].copy() df2['ke_cnt_' + col] = df2['ke_cnt_' + col] - 1 df3 = pd.merge(df, df2, on=[col, 'ke_cnt_' + col], how='left') df['LAG_{}_{}'.format(col, time_col)] = (df3[time_col +'_x'] - df3[time_col + '_y']) df['LAG_{}_{}'.format(col, time_col)] = df['LAG_{}_{}'.format(col, time_col)] .values.astype(np.int64) // 10 ** 9 del df2,df3 gc.collect() return df[['LAG_{}_{}'.format(col, time_col)]] def base_embedding(x, model, size): vec = np.zeros(size) x = [item for item in x if model.wv.__contains__(item)] for item in x: vec += model.wv[str(item)] if len(x) == 0: return vec else: return vec / len(x) def embedding_helper(df, col): input_ = df[col].fillna('NA').apply(lambda x: str(x).split(' ')) model = Word2Vec(input_, size=12, min_count=2, iter=5, window=5, workers=4) data_vec = [] for row in input_: data_vec.append(base_embedding(row, model, size=12)) svdT = TruncatedSVD(n_components=6) data_vec = svdT.fit_transform(data_vec) column_names = [] for i in range(6): column_names.append('embedding_{}_{}'.format(col, i)) data_vec = pd.DataFrame(data_vec, columns=column_names) df =
pd.concat([df, data_vec], axis=1)
pandas.concat
# coding: utf-8 import logging import multiprocessing import os import pickle import sys import time from math import sqrt import enchant import numpy as np import codecs import simplejson import pandas as pd from glob import glob from nltk import word_tokenize from nltk.corpus import stopwords from nltk.tokenize import sent_tokenize from sklearn.metrics import f1_score, accuracy_score, recall_score, \ precision_score logging.basicConfig(filename='generate_lexicons_and_results.log') log = logging.getLogger() log.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) log.addHandler(ch) class GenerateLexicons(object): """ Class for automatic generation of the sentimenal lexicons and evaluating them based on provided dataset with star/scores or sentiment values. """ def __init__(self, sentiment_generation_method='frequentiment', levels=[1.43, 1.54, 0.19], lexicons_output=None, results_output='', output_name='', rerun=False, n_tries=10, n_domains=10, thresh=0.01, csv_path='/datasets/amazon-data/csv/', train_test_path=None, start_name='', end_name='', review_score_column='review/score', review_text_column='review/text'): """ Initialization Parameters ---------- sentiment_generation_method : str, from values ['frequentiment', 'potts'] Method of frequentiment generation. levels : tab of floats Threshold's level for ngrams rerun : bool If true then experiment will be rerun, otherwise if it is possile already counted values will be loaded. n_tries : int TODO n_domains : int Number of domain used in the experiment thresh : float, percetage point in range [0, 1] Threshold for word frequency in dataset, only word with frequency higher than this threshold will be used in the experiment csv_path : string path Path to the directory with amazon csv files with reviews. train_test_path : string path Path to the directory with Cross-Validation splits Returns ------- """ self.output_name = output_name self.lexicons_output = lexicons_output self.results_output = results_output self.sentiment_generation_method = sentiment_generation_method # TODO LSA and PMI self.tries = n_tries self.n_domains = n_domains # if None then all self.levels = levels # the best threshold for uni, bi and trigram's # frequentiment self.thresh = thresh self.rerun = rerun # file's path etc. self.csv_path = csv_path if train_test_path is not None: self.train_test_path = os.path.join(train_test_path) else: self.train_test_path = train_test_path self.start_name = start_name self.end_name = end_name self.review_text_column = review_text_column self.review_score_column = review_score_column self.lexicons_output = os.path.join(self.lexicons_output, '{}-lexicons.pkl'.format( output_name)) if os.path.isfile(self.lexicons_output) and not self.rerun: self.lexicon_exists = True else: self.lexicon_exists = False self.results_output = os.path.join(self.results_output, 'lexicons', '{}-results.pkl'.format( output_name)) if os.path.isfile(self.results_output) and not self.rerun: self.results_exists = True else: self.results_exists = False self.final_lexicons = {} # just initialize self.train_test_subsets = {} # review's dataset self.reviews = {} self.results = {} # TODO: przepisać z uyciem glob'a def get_reviews_and_train_test_subsets(self): """ Function for loading amazon review's data and train/test Cross-Validation splits into internal fields. Paths to these files should be specified in initialization of the object. """ if self.n_domains is not None: domains = os.listdir(self.train_test_path)[:self.n_domains] else: domains = os.listdir(self.train_test_path) for fn in domains: if fn.startswith(self.start_name): item = fn.replace(self.start_name, '').replace(self.end_name, '') log.debug('Set item: {}'.format(item)) with open(os.path.join(self.train_test_path, fn), 'r') as fp: self.train_test_subsets[item] = pickle.load(fp) # break for set_name in self.train_test_subsets: log.debug('Load reviews domain {}'.format(set_name)) self.reviews[set_name] = pd.read_csv( self.csv_path + set_name + '.txt.gz.csv', sep=';') def get_reviews(self, filter_str=None, file_type='csv', nrows=None, sep=';'): if file_type is None: datasets = glob(os.path.join(self.csv_path, '*')) else: datasets = glob( os.path.join(self.csv_path, '*{}*'.format(filter_str))) for dataset in datasets: try: log.debug('Start loading for {}'.format(dataset)) dataset_name = os.path.basename(dataset).split('.')[0] log.debug('Load reviews domain {}'.format(dataset_name)) if file_type in ['txt', 'csv']: log.debug('Load txt/csv file: {}'.format(dataset)) self.reviews[dataset_name] = pd.read_csv(dataset, sep=sep, nrows=nrows) elif file_type in ['json']: log.debug('Load JSON file: {}'.format(dataset)) d = {} with codecs.open(dataset, 'r') as f: for idx, line in enumerate(f): if idx < nrows or nrows is None: d[idx] = simplejson.loads(line) self.reviews[dataset_name] = pd.DataFrame.from_dict(d, orient='index') else: raise Exception('Unknown file type') except IOError: raise IOError('Problem with file: {}'.format(dataset)) def handle_ngram(self, ngram, grade, words_occured, sentiment_dict, count_dict): if ngram in words_occured: return # if sentiment_dict.has_key(ngram): if ngram in sentiment_dict: sentiment_dict[ngram][grade - 1] += 1 else: sentiment_dict[ngram] = [0, 0, 0, 0, 0] sentiment_dict[ngram][grade - 1] = 1 # if count_dict.has_key(ngram): if ngram in count_dict: count_dict[ngram] += 1 else: count_dict[ngram] = 1 words_occured.append(ngram) return def make_word_dict_unique_per_review(self, row, sentiment_dict, count_dict, d1, d2, stop): grade = int(float(row[self.review_score_column])) sentences = map(lambda x: filter(lambda y: y not in ['!', '?', '.'], word_tokenize(x.lower())), sent_tokenize(row[self.review_text_column]) ) words_occured = [[], [], []] for sentence in sentences: for word in sentence: if d1.check(word) and d2.check(word) and len(word) > 4: self.handle_ngram(word, grade, words_occured[0], sentiment_dict[0], count_dict[0]) for bigram in zip(sentence, sentence[1:]): if all(map(lambda x: d1.check(x) and d2.check(x), bigram)): self.handle_ngram(" ".join(bigram), grade, words_occured[1], sentiment_dict[1], count_dict[1]) for trigram in zip(sentence, sentence[1:], sentence[2:]): if all(map(lambda x: d1.check(x) and d2.check(x), trigram)): self.handle_ngram(" ".join(trigram), grade, words_occured[2], sentiment_dict[2], count_dict[2]) def get_count_by_rating(self, df): grouped_reviews = df.groupby(self.review_score_column) counted = grouped_reviews.count() cardinalities = [0, 0, 0, 0, 0] for gr in counted.index: gr_index = int(float(gr)) - 1 cardinalities[gr_index] = counted[self.review_text_column][gr] return (cardinalities) @staticmethod def frequentiment(w, train_dict, grade_weights, cardinalities): """ Counting sentiment lexicons based on frequetiment measure proposed by us Parameters ---------- w : Returns ------- """ return sum( [(sum(cardinalities) / cardinalities[gr]) * grade_weights[gr] * train_dict[w][gr] / sum(train_dict[w]) for gr in range(0, 5)]) @staticmethod def potts(w, train_dict, grade_weights): """ Generating sentiment lexicons base on Christophe Potts webpage http://sentiment.christopherpotts.net/lexicons.html#counts """ return sum( [grade_weights[gr] * train_dict[w][gr] / sum(train_dict[w]) for gr in range(0, 5)]) def create_single_sentiment(self, train_dict, cardinalities): sentiments = {} grade_weights = [(((x + 1) - 3) / 2.0) for x in range(0, 5)] # we will get stuff like 2.3*Exp[-16] which is just a numpy # numerical artifact, this should be zero, we have no data to # provide a sentiment of happening once in 16 millions because # we only have a sum(cardinalities) number of reviews # zero_thr = 1.0 / float(sum(cardinalities)) if self.sentiment_generation_method.lower() in ['frequentiment']: log.info('Frequentiment sentiment generation method is chosen') for w in train_dict: sentiments[w] = self.frequentiment(w, train_dict, grade_weights, cardinalities) elif self.sentiment_generation_method.lower() in ['potts']: log.info('Potts\' sentiment generation method is chosen') for w in train_dict: sentiments[w] = self.potts(w, train_dict, grade_weights) else: raise NameError( 'Wrong sentiment lexicon generation method was specified: {}!'.format( self.sentiment_generation_method)) return (sentiments) # tuple should be returned def prepare_unique_sentiment_dict(self, df, t=0.01): sentiment_dict = [{}, {}, {}] count_dict = [{}, {}, {}] us = enchant.Dict("en_US") en = enchant.Dict("en_GB") s = stopwords.words('english') l = len(df) df.apply( lambda x: self.make_word_dict_unique_per_review(x, sentiment_dict, count_dict, us, en, s), axis=1) for i in range(len(count_dict)): for w in count_dict[i]: if count_dict[i][w] < t * l or len(w) < 4 or ( i == 0 and w in s): del sentiment_dict[i][w] return sentiment_dict, count_dict def get_frequentidict(self, data_dict, cardinalities): sentiment_dict = [None for _ in range(len(data_dict))] for i in range(len(data_dict)): sentiments = self.create_single_sentiment(data_dict[i], cardinalities) if len(sentiments) == 0: sentiment_dict[i] = None continue sentiment_dict[i] = pd.DataFrame.from_dict(sentiments, orient='index') sentiment_dict[i].columns = ['sentiment'] sentiment_dict[i].sort('sentiment', inplace=True) return sentiment_dict @staticmethod def cosine_distance(u, v): """ Returns the cosine of the angle between vectors v and u. This is equal to u.v / |u||v|. """ return np.dot(u, v) / (sqrt(np.dot(u, u)) * sqrt(np.dot(v, v))) def cosentiment(self, w, tfidf, voc): positive = ['good', 'nice', 'excellent', 'positive', 'fortunate', 'correct', 'superior'] negative = ['bad', 'nasty', 'poor', 'negative', 'unfortunate', 'wrong', 'inferior'] pos = sum( [self.cosine_distance(tfidf.T[voc[w]].A[0], tfidf.T[voc[p]].A[0]) for p in positive if p in voc]) neg = sum( [self.cosine_distance(tfidf.T[voc[w]].A[0], tfidf.T[voc[p]].A[0]) for p in negative if p in voc]) return pos - neg # TODO LSA multiproc # def generate_LSA(self): # for set_name in sets: # final_lexicons[set_name] = [None for i in range(tries)] # # for set_name in sets: # for cross_validation in range(tries): # print("{}-{}".format(set_name, str(cross_validation))) # start = time.time() # df = reviews[set_name].iloc[sets[set_name][cross_validation][0]] # ziewak = TfidfVectorizer() # dane1 = ziewak.fit_transform(df['review/text']) # # svd = TruncatedSVD(150) # data1 = svd.inverse_transform(svd.fit_transform(dane1)) # # voc = ziewak.vocabulary_ # # fqdt = create_single_sentiment(dane1, voc) # # fqdt = create_single_sentiment(np.matrix(data1), voc) # # end = time.time() # final_lexicons[set_name][cross_validation] = [fqdt, end - start] # print(end-start) # # with open(self.csv_path + "/lexicons/lsalexicons-%s.pkl" % fn, "w") as fp: # pickle.dump(self.final_lexicons, fp) def generate_lexicons(self): """ Generate lexicons based on specified in initialization conditions with multiprocessing. """ if not self.lexicon_exists: log.info('New lexicons will be generated in {}'.format( self.lexicons_output)) for set_name in self.reviews: log.debug('CV folds: {}'.format(self.tries)) # log.debug([None for i in range(self.tries)]) self.final_lexicons[set_name] = [None for _ in range(self.tries)] log.info('Distributed code starts here') result_queue = multiprocessing.Queue() jobs = [] for set_name in self.reviews: log.info('Add process for {}'.format(set_name)) p = multiprocessing.Process(target=self.generate_lexicon, args=(set_name, result_queue)) p.start() jobs.append(p) # must be before join, otherwise it could create deadlock [self.final_lexicons.update(result_queue.get()) for j in jobs] # wait for all processes to end log.info('Waiting for all processes') [j.join() for j in jobs] log.info('All processes joined') # log.info(self.final_lexicons) # retrieve outputs from each Process log.info('End of parallel code!') with open(self.lexicons_output, "w") as fp: pickle.dump(self.final_lexicons, fp) log.info('Lexicon save in {}'.format(self.lexicons_output)) # return self.final_lexicons else: log.info( 'Lexicon has been already generate, it will be loaded from {}'.format( self.lexicons_output)) self.final_lexicons =
pd.read_pickle(self.lexicons_output)
pandas.read_pickle
# -------------------------------------------------- ML 02/10/2019 ----------------------------------------------------# # # This is the class for poisson process # # -------------------------------------------------------------------------------------------------------------------- # import numpy as np import pandas as pd import math from handles.data_hand import get_slotted_data from sklearn.linear_model import LinearRegression from scipy.stats import kstest import statsmodels.api as sm import statsmodels.formula.api as smf from modeling.stat.models import fit_neg_binom from scipy.stats import expon,gamma,nbinom import random random.seed( 30 ) class poisson_process: def __init__(self,events,x,slotmin=60,sesonality=24.00,x_meta=None,combine=None,variablity_lambda=True): # x is the numeric features lambda depends on. # x_meta are catagorical features that lambda depends on # Sesonality is when to loop the ts back. i.e. like 24 hours # x can be any factor levels. with _ in between each category. however, each catogory # should be defined by a numeric indicator self.x_names = np.array( x.columns ) self.ts = np.array(events) self.x = np.array(x) self.x_meta=x_meta self.slotmin = slotmin self.sesonality = float( sesonality ) self.processed_data = self.get_combined_ts_data(combine=combine) self.def_scale_multiplier() self._variablity_lambda = variablity_lambda def combine_timeslots(self,x,combine): p = x.copy() p[np.in1d(x, combine)] = combine[0] return p def poles_fun(self,d): return pd.DataFrame(d).apply(lambda x: 1/(x**3)) def def_scale_multiplier(self): # this is based on emperical data average_mat = pd.DataFrame({'2014':[0.237053898,0.23033784,0.22646637,0.224855127,0.22145071,0.22017719,0.219680942], '2015':[0.190591233,0.185363899,0.183113651,0.180825924,0.179276851,0.179478113,0.17919847]}).T average_mat.columns = [1000,1100,1200,1300,1400,1500,1600] average_mat=average_mat.reset_index() average_mat=average_mat.melt(id_vars=["index"],var_name="Poles",value_name="Value") cols = ['year','poles','scale'] average_mat.columns = cols average_mat[cols] = average_mat[cols].apply(pd.to_numeric, errors='coerce') average_mat['poles']=self.poles_fun(average_mat['poles']) regressor = LinearRegression() regressor.fit(average_mat[['year','poles']], average_mat['scale']) self.scale_multiplier_predictor = regressor self.reset_scale_multiplier() def reset_scale_multiplier(self): self._scale_multiplier = 1 def avg_scale_pred(self,year,poles): return self.scale_multiplier_predictor.predict(np.array([year, np.array(self.poles_fun([poles]))]).reshape(1, -1)) def get_processed_data(self): diff_col_name = 'Aarrival_diff' delta_t = np.diff(self.ts, n=1).reshape(-1, 1) fin_d = pd.DataFrame(np.concatenate((delta_t, self.x[:-1, :]), axis=1)) fin_d.columns = np.concatenate( (np.array(diff_col_name).reshape(-1, 1), np.array(self.x_names).reshape(-1, 1)), axis=0).flatten() fin_d[diff_col_name] = pd.to_numeric(fin_d[diff_col_name]) # split the values in the factor that was provided to us split = fin_d[self.x_names[0]].str.split("_", -1) n = [] for i in range(0, len(split[0])): fin_d['f' + str(i)] = split.str.get(i)#.astype(float) # update this if code breaks n.append('f' + str(i)) n.append(self.x_names[1]) self.all_names = n fin_d = fin_d.sort_values(by=n) return fin_d def get_combined_ts_data(self,combine): # combine timeslots # if given argument = combine -- array of time slots to combine. we will replace these with # the first element of the combine array # start time internal is the timeslots to model the data on self.processed_data = self.get_processed_data() self.combine = combine if combine is None: self.combined_slots = False combined_timeslots = self.processed_data[self.x_names[1]] else: self.combined_slots = True combined_timeslots = self.combine_timeslots(self.processed_data[self.x_names[1]], combine=combine) self.processed_data['Start_time_internal'] = combined_timeslots return self.processed_data def get_slotted_data(self,data, slot_secs): return get_slotted_data(data=data,slot_secs=slot_secs) # ------------------------------------------- FITTING -------------------------------------------------------------- def daywise_training_data(self,d,combine,fac1,fac2,f1,days,orignal_start_slot): # fac2 is out internal slots that are combined # it is also worth noting that we calculate the average for combined slots and then put them for # all the slots for that given duration if self.combined_slots: x = fac2[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) scale_val = model_d_temp[(model_d_temp[:, 0] == combine[0])].flatten()[1] add = [[i, scale_val, day_i] for i in combine[1:]] model_d_temp = np.concatenate((model_d_temp, add)) model_d.append(model_d_temp) model_d = np.vstack(model_d) else: x = orignal_start_slot[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) model_d.append(model_d_temp) model_d = np.vstack(model_d) return model_d def discreet_fit_model(self,data,x): data_gamma = pd.DataFrame({'days':data, 'arrivalslot':x,'indicator':1}) data_gamma = data_gamma.groupby(['days','arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot','count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] ks_t_D = pd.DataFrame() ks_t_pval = pd.DataFrame() t_t_pval = pd.DataFrame() exp_loc = pd.DataFrame() exp_scale = pd.DataFrame() exp_shape = pd.DataFrame() time_slot = pd.DataFrame() pos_l = pd.DataFrame() neg_bio_r = pd.DataFrame() neg_bio_p = pd.DataFrame() for f2 in np.unique(data_gamma['arrivalslot']): d = pd.to_numeric( data_gamma[data_gamma['arrivalslot'] == f2]['count'] ) # poission lam = np.mean(d) # gamma alpha,loc, beta = gamma.fit(d,loc=0) # ks test D , kspval = kstest(d,'gamma', args=(alpha,loc,beta)) # ttest - one sided # sample2 = gamma.rvs(a = alpha, loc=loc, scale=beta, size=d.shape[0]) val , pval = 0,0 #ttest_ind(d,sample2) # neg_binom r,p = fit_neg_binom(vec=np.array(d).flatten(),init=0.0000001) # if we have combined data then add same model to all combined timeslots if self.combined_slots and f2 == self.combine[0]: for var in self.combine: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(
pd.DataFrame([p])
pandas.DataFrame
"""This module contains auxiliary functions for the creation of tables in the main notebook.""" import json import scipy import numpy as np from numpy import nan import pandas as pd import pandas.io.formats.style import seaborn as sns import statsmodels as sm import statsmodels.formula.api as smf import statsmodels.api as sm_api import matplotlib as plt import matplotlib.pyplot as pltpy from IPython.display import HTML from stargazer.stargazer import Stargazer import math import linearmodels as lm from linearmodels import PanelOLS from auxiliary.auxiliary_plots import * from auxiliary.auxiliary_prepare_data import * def did_est(variable,df): ''' arguments:variable of interest, dataset return: 2x2 dif-in-dif table ''' # NJ Before and after NJ_before = round(df.loc[(df['state']==1) & (df['time']!=1),variable].mean(),2) NJ_after = round(df.loc[(df['state']==1) & (df['time']==1),variable].mean(),2) # PA Before and after PA_before = round(df.loc[(df['state']!=1) & (df['time']!=1),variable].mean(),2) PA_after = round(df.loc[(df['state']!=1) & (df['time']==1),variable].mean(),2) did= pd.DataFrame(data=np.array([[NJ_after, NJ_before,NJ_after - NJ_before], [PA_after, PA_before, PA_after - PA_before]]), index=['NJ','PA'],columns=['after','before','$\Delta$']) return did def table1(df): ''' replication Table 1 argument:dataset return: table1 from the paper ''' state_unique= df["state"].unique() status_unique= df["status2"].unique() table1 = pd.DataFrame() for i in state_unique: for j in status_unique: table1.at[j,i]= sum((df.state == i) & (df.status2 == j)) table1["All"]=table1[0]+table1[1] table1=table1.append(table1.sum(numeric_only=True), ignore_index=True) table1 = table1.rename({0: 'PA',1: 'NJ'}, axis=1) table1 = table1.rename({0: 'interviewed stores:',1: 'closed sores:',2:'temp closed -highway', 3:'under renovation:',4:'refusals:',5:'temp closed - fire',6:'total stores in sample:'}, axis=0) return table1 #table2 - panel 1 def distr_store_type(data_NJ,data_PA): ''' replication Table 2 - panel 1 argument:subset for New Jersey, subset for Pennsilvanya return:distribution of stores table2 from the paper ''' variables=['bk','kfc','roys','wendys','co_owned'] NJ=
pd.DataFrame()
pandas.DataFrame
"""Backtesting Controller Module""" __docformat__ = "numpy" import argparse import os from typing import List import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd from prompt_toolkit.completion import NestedCompleter from gamestonk_terminal import feature_flags as gtff from gamestonk_terminal.helper_funcs import ( check_positive, get_flair, parse_known_args_and_warn, try_except, ) from gamestonk_terminal.menu import session from gamestonk_terminal.stocks.stocks_helper import load # This code below aims to fix an issue with the fnn module, used by bt module # which forces matplotlib backend to be 'agg' which doesn't allow to plot # Save current matplotlib backend default_backend = mpl.get_backend() # pylint: disable=wrong-import-position from gamestonk_terminal.stocks.backtesting import bt_view # noqa: E402 # Restore backend matplotlib used mpl.use(default_backend) class BacktestingController: """Backtesting Class""" CHOICES = ["?", "cls", "help", "q", "quit", "load"] CHOICES_COMMANDS = ["ema", "ema_cross", "rsi"] CHOICES += CHOICES_COMMANDS def __init__(self, ticker: str, stock: pd.DataFrame): self.ticker = ticker self.stock = stock self.bt_parser = argparse.ArgumentParser(add_help=False, prog="bt") self.bt_parser.add_argument( "cmd", choices=self.CHOICES, ) def print_help(self): """Print help""" help_text = f""" Backtesting: cls clear screen ?/help show this menu again q quit this menu, and shows back to main menu quit quit to abandon program load load new ticker to analyze Current Ticker: {self.ticker.upper()} ema buy when price exceeds EMA(l) ema_cross buy when EMA(short) > EMA(long) rsi buy when RSI < low and sell when RSI > high """ print(help_text) def switch(self, an_input: str): """Process and dispatch input Returns ------- True, False or None False - quit the menu True - quit the program None - continue in the menu """ # Empty command if not an_input: print("") return None (known_args, other_args) = self.bt_parser.parse_known_args(an_input.split()) # Help menu again if known_args.cmd == "?": self.print_help() return None # Clear screen if known_args.cmd == "cls": os.system("cls||clear") return None return getattr( self, "call_" + known_args.cmd, lambda: "Command not recognized!" )(other_args) def call_help(self, _): """Process Help command""" self.print_help() def call_q(self, _): """Process Q command - quit the menu""" return False def call_quit(self, _): """Process Quit command - quit the program""" return True def call_load(self, other_args: List[str]): """Process load command""" self.ticker, _, _, self.stock = load( other_args, self.ticker, "", "1440",
pd.DataFrame()
pandas.DataFrame
import os import sys import argparse import pandas as pd from utils import simplify_string_for_hdf5 parser = argparse.ArgumentParser(description='S-PrediXcan results processor.') parser.add_argument('--spredixcan-hdf5-folder', required=True, type=str) parser.add_argument('--spredixcan-hdf5-file-template', required=False, type=str, default='spredixcan-{tissue}-{column}.h5') parser.add_argument('--tissue-id', required=True, type=int) parser.add_argument('--phenotype-id', required=True, type=int) parser.add_argument('--phenotypes-info-file', required=True, type=str) parser.add_argument('--tissues-info-file', required=True, type=str) parser.add_argument('--genes-info-file', required=True, type=str) parser.add_argument('--no-header', required=False, action='store_true') args = parser.parse_args() # pheno info pheno_info =
pd.read_csv(args.phenotypes_info_file, sep='\t', index_col='pheno_id')
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import pickle import os import yaml from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import r2_score # from .utils import Boba_Utils as u # from ._03_Modeling import Boba_Modeling as m class Boba_Sys_Diagnostics(): def __init__(self): pass def run_sys_scoring(self, model, target,prod): if prod == True: pass elif (self.position_group == 'hitters' and target in ['BABIP','BB%','K%']): pass elif (self.position_group == 'SP' and target in ['OBP','SLG','ShO_per_GS','CG_per_GS']): pass elif (self.position_group == 'RP' and target in ['OBP','SLG','HLD_per_G']): pass else: master_df = pd.read_csv('data/processed/'+self.position_group+'/master_df.csv',index_col=0) path = 'data/scoring/evaluation_'+self.position_group+'_'+str(self.year-1)+'.csv' if os.path.exists(path): print('does exist') evaluation_df = pd.read_csv(path,index_col=0) else: print('does not exist') data_group = 'hitters' if self.position_group == 'hitters' else 'pitchers' zips_df = pd.read_csv('data/raw/'+data_group+'/projection_systems/zips/'+str(self.year-1)+'.csv') atc_df = pd.read_csv('data/raw/'+data_group+'/projection_systems/atc/'+str(self.year-1)+'.csv') bat_df = pd.read_csv('data/raw/'+data_group+'/projection_systems/thebat/'+str(self.year-1)+'.csv') stmr_df = pd.read_csv('data/raw/'+data_group+'/projection_systems/steamer/'+str(self.year-1)+'.csv') zips_df = zips_df.rename(columns={"K/9": "K_per_9", "BB/9": "BB_per_9"}) atc_df = atc_df.rename(columns={"K/9": "K_per_9", "BB/9": "BB_per_9"}) bat_df = bat_df.rename(columns={"K/9": "K_per_9", "BB/9": "BB_per_9"}) stmr_df = stmr_df.rename(columns={"K/9": "K_per_9", "BB/9": "BB_per_9"}) evaluation_df = master_df[master_df['Season']==(self.year-1)] evaluation_df['playerID'] = evaluation_df['playerID'].astype('str') if self.position_group == 'hitters': evaluation_df = evaluation_df[self.information_cols+[self.pt_metric]+self.model_targets+self.counting_stats] zips_df = zips_df[['playerid']+[self.pt_metric]+[x for x in zips_df.columns if x in self.model_targets]+[x for x in zips_df.columns if x in self.counting_stats]] atc_df = atc_df[['playerid']+[self.pt_metric]+[x for x in atc_df.columns if x in self.model_targets]+[x for x in atc_df.columns if x in self.counting_stats]] bat_df = bat_df[['playerid']+[self.pt_metric]+[x for x in bat_df.columns if x in self.model_targets]+[x for x in bat_df.columns if x in self.counting_stats]] stmr_df = stmr_df[['playerid']+[self.pt_metric]+[x for x in stmr_df.columns if x in self.model_targets]+[x for x in stmr_df.columns if x in self.counting_stats]] else: evaluation_df = evaluation_df[self.information_cols+[self.pt_metric]+[self.per_metric]+self.model_targets+self.counting_stats] zips_df = zips_df[['playerid']+[self.pt_metric]+[self.per_metric]+[x for x in zips_df.columns if x in self.model_targets]+[x for x in zips_df.columns if x in self.counting_stats]] atc_df = atc_df[['playerid']+[self.pt_metric]+[self.per_metric]+[x for x in atc_df.columns if x in self.model_targets]+[x for x in atc_df.columns if x in self.counting_stats]] bat_df = bat_df[['playerid']+[self.pt_metric]+[self.per_metric]+[x for x in bat_df.columns if x in self.model_targets]+[x for x in bat_df.columns if x in self.counting_stats]] stmr_df = stmr_df[['playerid']+[self.pt_metric]+[self.per_metric]+[x for x in stmr_df.columns if x in self.model_targets]+[x for x in stmr_df.columns if x in self.counting_stats]] evaluation_df = pd.merge(evaluation_df,zips_df,how='left',left_on='playerID', right_on='playerid',suffixes=('','_zips')).drop('playerid',axis=1) evaluation_df = pd.merge(evaluation_df,atc_df,how='left',left_on='playerID', right_on='playerid',suffixes=('','_atc')).drop('playerid',axis=1) evaluation_df = pd.merge(evaluation_df,bat_df,how='left',left_on='playerID', right_on='playerid',suffixes=('','_bat')).drop('playerid',axis=1) evaluation_df = pd.merge(evaluation_df,stmr_df,how='left',left_on='playerID', right_on='playerid',suffixes=('','_stmr')).drop('playerid',axis=1) evaluation_df.to_csv(path) temp_df = master_df[master_df['Season']==(self.year-1)] temp_df['Season'] = (self.year-2) temp_df = self.isolate_relevant_columns(modeling_df = temp_df,target = target) temp_df = temp_df.drop([target],axis=1) pipeline = pickle.load(open('data/modeling/'+self.position_group+'/'+target+'/preprocessing_pipeline_eval.sav', 'rb')) temp_df_2 = pipeline.transform(temp_df) with open(r'data/modeling/'+self.position_group+'/'+target+'/model_features_eval.yaml') as file: yaml_data = yaml.load(file, Loader=yaml.FullLoader) model_features = yaml_data[target] temp_df = pd.DataFrame(temp_df_2, columns = model_features,index=temp_df.index) temp_df[target+'_Boba'] = model.predict(temp_df) temp_df = temp_df[[target+'_Boba']] evaluation_df = evaluation_df.drop([target+'_Boba'],axis=1,errors='ignore') new_df =
pd.merge(evaluation_df,temp_df,left_index=True,right_index=True)
pandas.merge
import pandas as pd from pandas import DataFrame import sys #-------- # Imports medi dataset with icd9 and rxcui descriptions to .csv file # PARAMETERS: # medi = medi spreadsheet # icd9_desc = contains icd9 codes and their descriptions # rxcui_desc = contains rxcui codes and their descriptions def add_info_to_medi(medi, icd9_desc, rxcui_desc): # adding in icd9 descriptions df_icd9_desc = pd.read_table(icd9_desc, sep=' ', header=None, usecols=[0, 1]) df_icd9_desc.columns = ['ICD9', 'ICD9_DESC'] # adding in rxcui descriptions into the medi spreadsheet df_rxcui_desc = pd.read_csv(rxcui_desc, encoding='latin-1').drop_duplicates().groupby('RXCUI_IN')['STR'].apply('; '.join) rxcui_desc = pd.DataFrame({'RXCUI_IN': df_rxcui_desc.index, 'STR': df_rxcui_desc.values}) df_medi = pd.read_csv(medi) df_medi_desc = pd.merge(df_medi, rxcui_desc, how='left', on='RXCUI_IN') df_rxcui_icd9 = pd.merge(df_medi_desc, df_icd9_desc, how='left', on='ICD9') df_rxcui_icd9 = df_rxcui_icd9[['RXCUI_IN', 'STR', 'DRUG_DESC', 'ICD9', 'ICD9_DESC', 'INDICATION_DESCRIPTION', 'MENTIONEDBYRESOURCES', 'HIGHPRECISIONSUBSET', 'POSSIBLE_LABEL_USE']] df_rxcui_icd9.to_csv('medi_with_icd9_rxcui.csv', index=False) #-------- # Imports medi_rxcui_icd9 dataset with icd9-phecode mappings to .csv file # Maps drug (rxcui codes) with clinical phenotype (phecode) through icd9 codes # PARAMETERS: # medi_rxcui_icd9 = medi spreadsheet (created from add_info_to_medi function above) with rxcui + icd9 descriptions # phecode_icd9_mapping = maps phecodes to icd9 codes def drug_phenotype(phecode_icd9_mapping, medi_rxcui_icd9): df_rxcui_icd9 = pd.read_csv(medi_rxcui_icd9) df_phecode_icd9 = pd.read_csv(phecode_icd9_mapping, usecols=['ICD9', 'PheCode']) result = pd.merge(df_rxcui_icd9, df_phecode_icd9, how='left', on='ICD9').drop_duplicates().sort_values('RXCUI_IN') result.to_csv('drug_phenotype.csv', index=False) #print (result) #-------- # Imports medi_rxcui_icd9 dataset with drug-targeted gene mappings to .csv file # Maps drugs (rxcui codes) with corresponding targeted genes (HuGOIDs) through unii codes and DrugBank drug IDs # PARAMETERS: # unii_rxcui = contains mapping of unii codes to rxcui codes # unii_drug = contains mapping of unii codes to HuGOIDs (DrugBank), needs to be .txt file # medi_rxcui_icd9 = medi spreadsheet (created from add_info_to_medi function above) with rxcui + icd9 descriptions # drug_gene = for each gene, contains list of drugs that target said gene def drug_gene(unii_rxcui, unii_drug, drug_gene, medi_rxcui_icd9): df_unii_rxcui = pd.read_csv(unii_rxcui) df_unii_drug = pd.read_table(unii_drug, header=0, sep=':', usecols=['unii', 'drug_id']) df_rxcui_icd9 = pd.read_csv(medi_rxcui_icd9) # drugbank id and rxcui mapping data1 = pd.merge(df_unii_drug, df_unii_rxcui, how='left', on='unii').drop('unii', axis=1).drop_duplicates() # splits drugs for each gene in individual cell data2 = pd.read_csv(drug_gene, usecols=['Drug IDs', 'Gene Name']) df_drugbank_gene = DataFrame(data2['Drug IDs'].str.split('; ').tolist(), index=data2['Gene Name']).stack().reset_index()[[0, 'Gene Name']] # var1 variable is currently labeled 0 df_drugbank_gene.columns = ['drug_id', 'Gene Name'] df_drugbank_gene = df_drugbank_gene.dropna(how='any', axis=0) # for each drug combines all targeted genes into one cell data3 = df_drugbank_gene.drop_duplicates().groupby('drug_id')['Gene Name'].apply('; '.join) data4 = pd.DataFrame({'drug_id': data3.index, 'Gene Name': data3.values}) drug_rxcui = pd.merge(data1, data4, how='left', on='drug_id').drop_duplicates() result =
pd.merge(df_rxcui_icd9, drug_rxcui, how='left', on='RXCUI_IN')
pandas.merge
# coding: utf-8 import json import pandas as pd import numpy as np import glob import ast from modlamp.descriptors import * import re import cfg import os def not_in_range(seq): if seq is None or len(seq) < 1 or len(seq) > 80: return True return False def bad_terminus(peptide): if peptide.nTerminus[0] is not None or peptide.cTerminus[0] is not None: return True return False def is_valid(peptide): try: seq = peptide.seq[0] if not seq.isupper(): return False if bad_terminus(peptide): return False if not_in_range(seq): return False if seq.find("X") != -1: return False return True except: return False def get_valid_sequences(): peptides = pd.DataFrame() all_file_names = [] for j_file in glob.glob(os.path.join(cfg.DATA_ROOT, "dbaasp/*.json")): filename = j_file[j_file.rfind("/") + 1:] with open(j_file, encoding='utf-8') as train_file: try: dict_tmp = json.load(train_file) dict_tmp["seq"] = dict_tmp.pop("sequence") dict_train = {} dict_train["peptideCard"] = dict_tmp except: print(f'jsonLoad error!:{filename}') continue if dict_train["peptideCard"].get("unusualAminoAcids") != []: continue peptide = pd.DataFrame.from_dict(dict_train, orient='index') if is_valid(peptide): peptides = pd.concat([peptides, peptide]) all_file_names.append(filename) peptides["filename"] = all_file_names peptides.to_csv("./data/valid_sequences.csv") return peptides def add_activity_list(peptides): activity_list_all = [] for targets in peptides.targetActivities: # one seq has a list of targets try: activity_list = [] for target in targets: if target['unit']['name'] == 'µM': # µg/ml try: con = target['concentration'] activity_list.append(target['concentration']) except: continue activity_list_all.append(activity_list) except: activity_list_all.append([]) continue peptides["activity_list"] = activity_list_all return peptides def add_toxic_list(peptides): toxic_list_all = [] for targets in peptides.hemoliticCytotoxicActivities: # one seq has a list of targets try: toxic_list = [] for target in targets: if target['unit']['name'] == 'µM': # µg/ml try: toxic_list.append(target['concentration']) except: continue toxic_list_all.append(toxic_list) except: toxic_list_all.append([]) continue peptides["toxic_list"] = toxic_list_all return peptides def add_molecular_weights(peptides): seqs = [doc for doc in peptides["seq"]] mws = [] for seq in seqs: try: desc = GlobalDescriptor(seq.strip()) desc.calculate_MW(amide=True) mw = desc.descriptor[0][0] mws.append(mw) except: mws.append(None) peptides["molecular_weight"] = mws return peptides def convert_units(peptides): converted_activity_all = [] converted_toxic_all = [] for activity_list, toxic_list, molecular_weight in zip(peptides.activity_list, peptides.toxic_list, peptides.molecular_weight): converted_activity_list = [] converted_toxic_list = [] for item in activity_list: item = item.replace(">", "") # '>10' => 10 item = item.replace("<", "") # '<1.25' => 1.25 item = item.replace("=", "") # '=2' => 2 if item == "NA": continue if item.find("±") != -1: item = item[:item.find("±")] # 10.7±4.6 => 10.7 if item.find("-") != -1: item = item[:item.find("-")] # 12.5-25.0 => 12.5 item = item.strip() try: converted_activity_list.append(float(item) * molecular_weight / 1000) except: pass for item in toxic_list: item = item.replace(">", "") # '>10' => 10 item = item.replace("<", "") # '<1.25' => 1.25 item = item.replace("=", "") # '=2' => 2 if item == "NA": continue if item.find("±") != -1: item = item[:item.find("±")] # 10.7±4.6 => 10.7 if item.find("-") != -1: item = item[:item.find("-")] # 12.5-25.0 => 12.5 item = item.strip() try: converted_toxic_list.append(float(item) * molecular_weight / 1000) except: pass converted_activity_all.append(converted_activity_list) converted_toxic_all.append(converted_toxic_list) peptides["converted_activity"] = converted_activity_all peptides["converted_toxic"] = converted_toxic_all print('--> Writing valid sequences with molecular weights converted to valid_sequences_with_mw_converted.csv') peptides.to_csv("./data/valid_sequences_with_mw_converted.csv") return peptides # Starting process print('Dataset Creation process begins ... ') # AMP data print('**** Creating AMP datasets ****') # Get Valid Sequences peptide_all = get_valid_sequences() print ('1. Getting all valid peptide sequences from DBAASP, number of seqs extracted = ', len(peptide_all)) print('--> Sequences stored in valid_sequences.csv') # Add molecular weights print('2. Converting Molecular weights') peptide_all_with_mw = add_molecular_weights(peptide_all) # Extract list of anti-microbial activities and list of toxicities peptide_all_with_activity = add_activity_list(peptide_all) peptide_all_with_activity_toxicity = add_toxic_list(peptide_all_with_activity) # Add the converted units to activity list and toxicity list peptide_all_converted = convert_units(peptide_all_with_activity_toxicity) # Statistics def get_stats(): peptides = pd.DataFrame() all_file_names = [] total = 0 unusual_amino_acids = 0 for j_file in glob.glob(os.path.join(cfg.DATA_ROOT, "dbaasp/*.json")): total += 1 filename = j_file[j_file.rfind("/") + 1:] with open(j_file, encoding='utf-8') as train_file: try: dict_tmp = json.load(train_file) dict_tmp["seq"] = dict_tmp.pop("sequence") dict_train = {} dict_train["peptideCard"] = dict_tmp except: print(f'jsonLoad error!:{filename}') continue if dict_train["peptideCard"].get("unusualAminoAcids") != []: unusual_amino_acids += 1 continue peptide = pd.DataFrame.from_dict(dict_train, orient='index') peptides = pd.concat([peptides, peptide]) all_file_names.append(filename) peptides["filename"] = all_file_names print ("--> For DBAASP:") print ("Total number of sequences:", total) print ("Total number of unusual AminoAcids:", unusual_amino_acids) return peptides print('3. Some Statistics of collected valid sequences') peptide_all = get_stats() not_valid_count = len([seq for seq in peptide_all.seq if not_in_range(seq)]) print ("--> Number of not in range sequences:", not_valid_count) print ("--> Number of valid sequences:", len(peptide_all_converted)) has_activity = [item for item in peptide_all_converted.activity_list if item != []] print ("--> Number of valid sequences with antimicrobial activity:", len(has_activity)) has_toxicity = [item for item in peptide_all_converted.toxic_list if item != []] print ("--> Number of valid sequences with toxicity:", len(has_toxicity)) ################################################################ df = pd.read_csv("./data/valid_sequences_with_mw_converted.csv") print (len(df)) # df.head() # default df: is dbaasp def add_min_max_mean(df_in): min_col = [min(ast.literal_eval(li_str)) if li_str != '[]' else '' for li_str in list(df_in.converted_activity)] max_col = [max(ast.literal_eval(li_str)) if li_str != '[]' else '' for li_str in list(df_in.converted_activity)] mean_col = [np.mean(ast.literal_eval(li_str)) if li_str != '[]' else '' for li_str in list(df_in.converted_activity)] df_in["min_activity"] = min_col df_in["max_activity"] = max_col df_in["avg_activity"] = mean_col return df_in def all_activity_more_than_30(x_str): x = ast.literal_eval(x_str) for i in range(len(x)): if x[i] < 30: return False # all of them # just for negative (pos: any item < 10, neg: all of them > 30) return True def all_activity_more_than_str(x_str, num): x = ast.literal_eval(x_str) if len(x) == 0: return False for i in range(len(x)): if x[i] < num: return False return True def all_activity_more_than(df, num): return df[df['converted_activity'].apply(lambda x: all_activity_more_than_str(x, num))] def all_toxic_more_than(df, num): return df[df['converted_toxic'].apply(lambda x: all_activity_more_than_str(x, num))] def all_activity_less_than_str(x_str, num): x = ast.literal_eval(x_str) if len(x) == 0: return False for i in range(len(x)): if x[i] > num: return False return True def all_toxic_less_than(df, num): return df[df['converted_toxic'].apply(lambda x: all_activity_less_than_str(x, num))] def has_activity_less_than_10(x_str): x = ast.literal_eval(x_str) for i in range(len(x)): if x[i] < 10: return True return False def has_activity_less_than_str(x_str, num): x = ast.literal_eval(x_str) for i in range(len(x)): if x[i] < num: return True return False def has_activity_less_than(df, num): return df[df['converted_activity'].apply(lambda x: has_activity_less_than_str(x, num))] def get_seq_len_less_than(df, seq_length): df_short = df[df['seq'].apply(lambda x: len(x) <= seq_length)] return df_short def remove_df(df1, df2): return pd.concat([df1, df2, df2]).drop_duplicates(keep=False) # add min, max, mean to all dbaasp df = add_min_max_mean(df) df_dbaasp = df[["seq", "activity_list", "converted_activity", "min_activity", "max_activity", "avg_activity"]] df_dbaasp.to_csv("./data/all_valid_dbaasp.csv") # 3) Overlapping sequences between DBAASP and Satpdb with AMP activity <10 ug/ml print('4. Finding overlapping sequences between DBAASP and Satpdb with AMP activity <10 ug/ml ...') def get_satpdb(train_file): for line in train_file.readlines(): if "Peptide ID" in line: record = {} line = re.sub(u"\\<.*?\\>", "", line) peptideId = line.split('Peptide ID')[1].split('Sequence')[0] record['Peptide.ID'] = peptideId record['Sequence'] = line.split('Sequence')[1].split('C-terminal modification')[0] record['C.terminal.modification'] = line.split('C-terminal modification')[1].split('N-terminal modification')[0] record['N.terminal.modification'] = line.split('N-terminal modification')[1].split('Peptide Type')[0] record['Peptide.Type'] = line.split('Peptide Type')[1].split('Type of Modification')[0] record['Type.of.Modification'] = line.split('Type of Modification')[1].split('Source (Databases)')[0] record['Source..Databases.'] = line.split('Source (Databases)')[1].split('Link to Source')[0] record['Link.to.Source'] = line.split('Link to Source')[1].split('Major Functions')[0] record['Major.Functions'] = line.split('Major Functions')[1].split('Sub-functions')[0] record['Sub.functions'] = line.split('Sub-functions')[1].split('Additional Info')[0] record['Additional.Info'] = line.split('Additional Info')[1].split('Helix (%)')[0] record['Helix'] = line.split('Helix (%)')[1].split('Strand (%)')[0] record['Strand'] = line.split('Strand (%)')[1].split('Coil (%)')[0] record['Coil'] = line.split('Coil (%)')[1].split('Turn (%)')[0] record['Turn'] = line.split('Turn (%)')[1].split('DSSP states')[0] record['DSSP.states'] = line.split('DSSP states')[1].split('Tertiary Structure')[0] return peptideId, record def get_satpdbs(): dict_train = {} for j_file in glob.glob(os.path.join(cfg.DATA_ROOT, "satpdb/source/*.html")): with open(j_file, encoding='utf-8') as train_file: try: name, record = get_satpdb(train_file) dict_train[name] = record except: print(f'error loading html:{j_file}') peptides = pd.DataFrame.from_dict(dict_train, orient='index') peptides.to_csv(os.path.join(cfg.DATA_ROOT,"satpdb/satpdb.csv")) return peptides df_satpdb = get_satpdbs() #df_satpdb = pd.read_csv("./data/satpdb/satpdb.csv") df_satpdb = df_satpdb.rename(index=str, columns={"Sequence": "seq", "C.terminal.modification": "cterminal", "N.terminal.modification": "nterminal", "Peptide.Type": "Peptide_Type", "Type.of.Modification": "modi"}) valid_df_satpdb = df_satpdb[(df_satpdb.cterminal == "Free") & (df_satpdb.nterminal == "Free") & (df_satpdb.Peptide_Type == "Linear") & (df_satpdb.modi == "None")] print ("--> Number of valid satpdb = ", len(valid_df_satpdb)) df_overlap = pd.merge(df, valid_df_satpdb, on='seq', how='inner') print ("--> Number of overlap sequences = ", len(df_overlap)) min_col = [min(ast.literal_eval(li_str)) if li_str != '[]' else '' for li_str in list(df_overlap.converted_activity)] max_col = [max(ast.literal_eval(li_str)) if li_str != '[]' else '' for li_str in list(df_overlap.converted_activity)] mean_col = [np.mean(ast.literal_eval(li_str)) if li_str != '[]' else '' for li_str in list(df_overlap.converted_activity)] df_overlap["min_activity"] = min_col df_overlap["max_activity"] = max_col df_overlap["avg_activity"] = mean_col df_overlap_all = df_overlap[["seq", "activity_list", "converted_activity", "min_activity", "max_activity", "avg_activity"]] print('5. Writing the overlap sequences to all_overlap.csv') df_overlap_all.to_csv("./data/all_overlap.csv") # length for all <=50 # # overlap_neg: satpdb all activity greater than 100 : negative # ** satpdb_pos: satpdb (the same as uniprot1) - overlap_neg # dbaasp < 25 -> pos anything # ** amp_pos = dbassp < 25 + satpdb_pos # select sequences dbaasp, satpdb, and overlap(dbaasp, satpdb) of len <=50 print('6. Selecting sequences dbaasp, satpdb, and overlap(dbaasp, satpdb) of len <=50') df = get_seq_len_less_than(df, 50) df_overlap = get_seq_len_less_than(df_overlap, 50) valid_df_satpdb = get_seq_len_less_than(valid_df_satpdb, 50) print('7. Selecting negative and positive sequences for AMP activity') overlap_neg = all_activity_more_than(df_overlap, 100) print ("--> Number of negative seq in satpdb", len(overlap_neg)) print ("--> Number of unique seq in satpdb", len(valid_df_satpdb["seq"].drop_duplicates())) satpdb_pos = remove_df(valid_df_satpdb["seq"].drop_duplicates(), overlap_neg["seq"]) satpdb_pos1 = pd.DataFrame({'seq': satpdb_pos.values}) # amp_pos[["seq"]] satpdb_pos1["source"] = ["satpdb_pos"] * len(satpdb_pos1) satpdb_pos1 = satpdb_pos1[["seq", "source"]] print ("--> Number of positive seq in satpdb", len(satpdb_pos)) satpdb_pos1.seq = satpdb_pos1.seq.apply(lambda x: "".join(x.split())) # remove the space from the seq satpdb_pos1 = satpdb_pos1.drop_duplicates('seq') print('--> Writing to satpdb_pos.csv') satpdb_pos1.to_csv("./data/satpdb_pos.csv", index=False, header=False) def get_ampep(path): ampeps = {} ampeps['seq'] = [] for line in open(path).readlines(): if not line.startswith('>'): ampeps['seq'].append(line.strip()) return pd.DataFrame.from_dict(ampeps) # combine all positive sequences print('8. Combining all positive sequences for AMP activity') # col_Names = ["seq", "label"] # print('--> Parsing ampep sequences') # ampep_pos = pd.read_csv("./data_processing/data/ampep/pos_ampep_l1-80.csv", names=col_Names) # ampep_pos = ampep_pos.drop(columns=['label']) # ampep_pos.seq = ampep_pos.seq.apply(lambda x: "".join(x.split())) # remove the space from the seq ampep_pos = get_ampep(os.path.join(cfg.DATA_ROOT, "ampep/train_AMP_3268.fasta")) ampep_pos = get_seq_len_less_than(ampep_pos, 50) ampep_pos["source"] = ["ampep_pos"]*len(ampep_pos) ampep_pos = ampep_pos[["seq", "source"]] print('--> Writing to ampep_pos.csv') print ("--> Number of ampep_pos", len(ampep_pos)) ampep_pos.to_csv("./data/ampep_pos.csv", index=False, header=False) print('--> Writing dbaasp sequences') print ("--> Number of all seqs dbaasp", len(df)) dbaasp_pos = has_activity_less_than(df, 25)["seq"] dbaasp_pos1 = pd.DataFrame({'seq': dbaasp_pos.values}) dbaasp_pos1["source"] = ["dbaasp_pos"] * len(dbaasp_pos1) dbaasp_pos1 = dbaasp_pos1[["seq", "source"]] print ("--> Number of dbaasp_less_than_25:", len(dbaasp_pos), "number of satpdb_pos:", len(satpdb_pos)) amp_pos = pd.concat([dbaasp_pos1, satpdb_pos1, ampep_pos]).drop_duplicates('seq') print ("--> Number of amp_pos", len(amp_pos)) amp_pos.columns = ['seq', 'source'] amp_pos['source2'] = amp_pos['source'] amp_pos['source'] = amp_pos['source'].map({'dbaasp_pos': 'amp_pos', 'ampep_pos': 'amp_pos', 'satpdb_pos': 'amp_pos'}) amp_pos = amp_pos[amp_pos['seq'].str.contains('^[A-Z]+')] amp_pos = amp_pos[~amp_pos.seq.str.contains("B")] amp_pos = amp_pos[~amp_pos.seq.str.contains("J")] amp_pos = amp_pos[~amp_pos.seq.str.contains("O")] amp_pos = amp_pos[~amp_pos.seq.str.contains("U")] amp_pos = amp_pos[~amp_pos.seq.str.contains("X")] amp_pos = amp_pos[~amp_pos.seq.str.contains("Z")] amp_pos = amp_pos[~amp_pos.seq.str.contains('[a-z]')] amp_pos = amp_pos[~amp_pos.seq.str.contains("-")] amp_pos = amp_pos[~amp_pos.seq.str.contains(r'[0-9]')] #amp_pos.seq = amp_pos.seq.apply(lambda x: " ".join(x)) # remove the space from the seq print('--> Writing amp_pos.csv combined from dbaasp, ampep, satpdb positive sequences') amp_pos.to_csv("./data/amp_pos.csv", index=False, header=False) dbaasp_more_than_100 = pd.DataFrame() dbaasp_more_than_100["seq"] = all_activity_more_than(df, 100)["seq"] #print ("dbaasp_more_than_100", len(dbaasp_more_than_100)) #print(all_activity_more_than(df, 100).head()) # ampep negative and uniprot sequences print('9. Collecting uniprot sequences as unknown label') col_Names = ["seq"] uniprot_unk1 = pd.read_csv(os.path.join(cfg.DATA_ROOT,"uniprot/uniprot_reviewed_yes_l1-80.txt"), names=col_Names) col_Names = ["seq"] uniprot_unk2 = pd.read_csv(os.path.join(cfg.DATA_ROOT,"uniprot/uniprot_reviewed_no_l1-80.txt"), names=col_Names) uniprot_unk = pd.concat([uniprot_unk1, uniprot_unk2]).drop_duplicates() uniprot_unk = get_seq_len_less_than(uniprot_unk, 50) print ("--> uniprot_unk", len(uniprot_unk)) uniprot_unk["source"] = ["uniprot"] * len(uniprot_unk) uniprot_unk["source2"] = uniprot_unk["source"] uniprot_unk['source'] = uniprot_unk['source'].map({'uniprot': 'unk'}) print('--> Writing uniprot_unk.csv ') uniprot_unk.to_csv("./data/uniprot_unk.csv", index=False, header=False) print('10. Collecting negative sequences for AMP activity ...') # col_Names = ["seq", "label"] # ampep_neg = pd.read_csv("./data/ampep/neg_ampep_l1-80.csv", names=col_Names) # ampep_neg.seq = ampep_neg.seq.apply(lambda x: "".join(x.split())) # remove the space from the seq # #ampep_neg.columns = [''] # ampep_neg = ampep_neg.drop(columns=['label']) ampep_neg = get_ampep(os.path.join(cfg.DATA_ROOT, "ampep/train_nonAMP_9777.fasta")) ampep_neg = get_seq_len_less_than(ampep_neg, 50) #print ("----------") print ("--> Parsing ampep negative sequences, number of ampep_neg = ", len(ampep_neg)) # dbaasp_neg = dbaasp > 100 -> neg (how many you loose) # Combined_NEG: 10*(dbaasp > 100) + UNIPROT_0 # Combined_POS = Satpdb_pos + ampep_pos + dbaasp_pos dbaasp_more_than_100["source"] = ["dbaasp_neg"] * len(dbaasp_more_than_100) # remove duplicates between ampep negative and dbaasp negative ampep_neg["source"] = ["ampep_neg"] * len(ampep_neg) ampep_neg = ampep_neg[["seq", "source"]] print ("--> dbaasp_more_than_100:", len(dbaasp_more_than_100), "ampep_neg:", len(ampep_neg)) # combined_neg = remove_df(pd.concat([dbaasp_more_than_100, uniprot_neg]).drop_duplicates, amp_pos1) combined_neg = pd.concat([dbaasp_more_than_100, ampep_neg]).drop_duplicates('seq') # satpdb_pos = remove_df(valid_df_satpdb["seq"].drop_duplicates(), overlap_neg["seq"]) print ("--> combined_neg number = ", len(combined_neg)) combined_neg.to_csv("./data/dbaasp_more_than100_combined_ampep_neg.csv", index=False, header=False) # not multiplied the samples. common = amp_pos.merge(combined_neg, on=['seq']) # print(common.head()) combined_neg1 = pd.concat([combined_neg, common]).drop_duplicates('seq') # print(combined_neg1.head()) combined_neg1['source2'] = combined_neg1['source'] combined_neg1['source'] = combined_neg1['source'].map({'dbaasp_neg': 'amp_negc', 'ampep_neg': 'amp_negnc'}) combined_neg1 = combined_neg1.drop(columns=['source_x', 'source_y']) # print(combined_neg1.head()) combined_neg1 = combined_neg1[combined_neg1['seq'].str.contains('^[A-Z]+')] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains("B")] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains("J")] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains("O")] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains("U")] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains("X")] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains("Z")] combine_neg1 = combined_neg1[~combined_neg1.seq.str.contains("-")] combine_neg1 = combined_neg1[~combined_neg1.seq.str.contains('[a-z]')] #combined_neg1=combined_neg1[~combined_neg1.seq.str.contains("*")] combined_neg1 = combined_neg1[~combined_neg1.seq.str.contains(r'[0-9]')] print('--> Writing combined negative sequences collected from DBAASP and AMPEP to amp_neg.csv') combined_neg1.to_csv("./data/amp_neg.csv", index=False, header=False) # not multiplied the samples. # Toxicity data print('**** Creating Toxicity datasets ****') # don't need toxinpred_pos as satpdb takes care of it # toxinpred is already len <=35. col_Names = ["seq"] print('1. Collecting Toxicity negative samples') toxinpred_neg1 = pd.read_csv(os.path.join(cfg.DATA_ROOT,"toxicity/nontoxic_trembl_toxinnpred.txt"), names=col_Names) print ("--> toxinpred_neg1 number = ", len(toxinpred_neg1)) toxinpred_neg1["source2"] = ["toxinpred_neg_tr"] * len(toxinpred_neg1) toxinpred_neg1 = toxinpred_neg1[["seq", "source2"]] toxinpred_neg2 = pd.read_csv(os.path.join(cfg.DATA_ROOT,"toxicity/nontoxic_swissprot_toxinnpred.txt"), names=col_Names) print ("--> toxinpred_neg2 number = ", len(toxinpred_neg2)) toxinpred_neg2["source2"] = ["toxinpred_neg_sp"] * len(toxinpred_neg2) toxinpred_neg2 = toxinpred_neg2[["seq", "source2"]] toxinpred_neg = pd.concat([toxinpred_neg1, toxinpred_neg2]).drop_duplicates('seq') print('--> toxinpred_neg number = ', len(toxinpred_neg)) # valid_df_satpdb toxic = valid_df_satpdb[valid_df_satpdb['Major.Functions'].str.contains("toxic")] toxic = valid_df_satpdb[valid_df_satpdb['Major.Functions'].str.contains("toxic") | valid_df_satpdb['Sub.functions'].str.contains("toxic")] print ('--> Valid toxicity sequences from Satpdb = ', len(toxic)) # for toxicity: # dbassp # all of them > 250 -> dbaap_neg # all of them < 200-> dbaap_pos # # combined_toxic_pos = satpdb_pos + dbaap_pos # # combined_toxic_neg = 10*(dbaap_neg) + UNiprot0 # df from dbaasp, toxic from satpdb print('2. Collecting Toxicity positive samples') df_overlap_tox = pd.merge(df, toxic, on='seq', how='inner')[["seq", "toxic_list", "converted_toxic"]] combined_toxic_pos = all_toxic_less_than(df_overlap_tox, 200) dbaasp_toxic_pos = all_toxic_less_than(df, 200) dbaasp_toxic_pos["source2"] = ["dbaasp"] * len(dbaasp_toxic_pos) dbaasp_toxic_pos = dbaasp_toxic_pos[["seq", "source2"]] toxic["source2"] = ["satpdb"]*len(toxic) toxic = toxic[["seq", "source2"]] combined_toxic_pos = pd.concat([dbaasp_toxic_pos, toxic]).drop_duplicates('seq') combined_toxic_pos['source'] = 'tox_pos' #combined_toxic_pos = combined_toxic_pos[["seq", "source", "tox"]] combined_toxic_pos = combined_toxic_pos[["seq", "source", "source2"]] combined_toxic_pos = combined_toxic_pos[combined_toxic_pos['seq'].str.contains('^[A-Z]+')] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("B")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("J")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("O")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("U")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("X")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("Z")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains('[a-z]')] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains("-")] #combined_toxic_pos=combined_toxic_pos[~combined_toxic_pos.seq.str.contains("*")] combined_toxic_pos = combined_toxic_pos[~combined_toxic_pos.seq.str.contains(r'[0-9]')] combined_toxic_pos.to_csv("./data/toxic_pos.csv", index=False, header=False) print ('--> combined_toxic_pos number = ', len(combined_toxic_pos)) dbaasp_neg = all_toxic_more_than(df, 250) dbaasp_neg["source2"] = ["dbaasp"] * len(dbaasp_neg) dbaasp_neg['source'] = 'tox_negc' dbaasp_neg = dbaasp_neg[["seq", "source", "source2"]] dbaasp_neg.head() toxinpred_neg['source'] = 'tox_negnc' toxinpred_neg = toxinpred_neg[["seq", "source", "source2"]] combined_toxic_neg = pd.concat([dbaasp_neg, toxinpred_neg]).drop_duplicates('seq') combined_toxic_neg = combined_toxic_neg[["seq", "source", "source2"]] combined_toxic_neg.to_csv("./data/toxic_neg_nofilter.csv", index=False, header=False) print ('--> combined_toxic_neg number = ', len(combined_toxic_neg)) commont = combined_toxic_pos.merge(combined_toxic_neg, on=['seq']) combined_negt1 =
pd.concat([combined_toxic_neg, commont])
pandas.concat
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2011-2020, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The ``py2neo.database.work`` package contains classes pertaining to the execution of Cypher queries and transactions. """ from __future__ import absolute_import, print_function, unicode_literals from collections import deque, OrderedDict from functools import reduce from io import StringIO from operator import xor as xor_operator from warnings import warn from py2neo.collections import iter_items from py2neo.client import Connection from py2neo.compat import Mapping, numeric_types, ustr, xstr from py2neo.cypher import cypher_repr, cypher_str class Transaction(object): """ Logical context for one or more graph operations. Transaction objects are typically constructed by the :meth:`.Graph.auto` and :meth:`.Graph.begin` methods. User applications should not generally need to create these objects directly. Each transaction has a lifetime which ends by a call to either :meth:`.commit` or :meth:`.rollback`. In the case of an error, the server can also prematurely end transactions. The :meth:`.finished` method can be used to determine whether or not any of these cases have occurred. The :meth:`.run` and :meth:`.evaluate` methods are used to execute Cypher queries within the transactional context. The remaining methods operate on :class:`.Subgraph` objects, including derivatives such as :class:`.Node` and :class:`.Relationship`. """ _finished = False def __init__(self, graph, autocommit=False, # readonly=False, after=None, metadata=None, timeout=None ): self._graph = graph self._autocommit = autocommit self._entities = deque() self._connector = self.graph.service.connector if autocommit: self._transaction = None else: self._transaction = self._connector.begin(self._graph.name, # readonly, after, metadata, timeout ) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is None: self.commit() else: self.rollback() def _assert_unfinished(self, message): if self._finished: raise TypeError(message) @property def graph(self): return self._graph @property def entities(self): return self._entities def finished(self): """ Indicates whether or not this transaction has been completed or is still open. """ return self._finished def run(self, cypher, parameters=None, **kwparameters): """ Send a Cypher query to the server for execution and return a :py:class:`.Cursor` for navigating its result. :param cypher: Cypher query :param parameters: dictionary of parameters :returns: :py:class:`.Cursor` object """ self._assert_unfinished("Cannot run query in finished transaction") try: entities = self._entities.popleft() except IndexError: entities = {} try: hydrant = Connection.default_hydrant(self._connector.profile, self.graph) parameters = dict(parameters or {}, **kwparameters) if self._transaction: result = self._connector.run_in_tx(self._transaction, cypher, parameters, hydrant) else: result = self._connector.auto_run(self.graph.name, cypher, parameters, hydrant) return Cursor(result, hydrant, entities) finally: if not self._transaction: self.finish() def finish(self): self._assert_unfinished("Transaction already finished") self._finished = True def commit(self): """ Commit the transaction. """ self._assert_unfinished("Cannot commit finished transaction") try: return self._connector.commit(self._transaction) finally: self._finished = True def rollback(self): """ Roll back the current transaction, undoing all actions previously taken. """ self._assert_unfinished("Cannot rollback finished transaction") try: return self._connector.rollback(self._transaction) finally: self._finished = True def evaluate(self, cypher, parameters=None, **kwparameters): """ Execute a single Cypher statement and return the value from the first column of the first record. :param cypher: Cypher statement :param parameters: dictionary of parameters :returns: single return value or :const:`None` """ return self.run(cypher, parameters, **kwparameters).evaluate(0) def create(self, subgraph): """ Create remote nodes and relationships that correspond to those in a local subgraph. Any entities in *subgraph* that are already bound to remote entities will remain unchanged, those which are not will become bound to their newly-created counterparts. For example:: >>> from py2neo import Graph, Node, Relationship >>> g = Graph() >>> tx = g.begin() >>> a = Node("Person", name="Alice") >>> tx.create(a) >>> b = Node("Person", name="Bob") >>> ab = Relationship(a, "KNOWS", b) >>> tx.create(ab) >>> tx.commit() >>> g.exists(ab) True :param subgraph: a :class:`.Node`, :class:`.Relationship` or other creatable object """ try: create = subgraph.__db_create__ except AttributeError: raise TypeError("No method defined to create object %r" % subgraph) else: create(self) def delete(self, subgraph): """ Delete the remote nodes and relationships that correspond to those in a local subgraph. To delete only the relationships, use the :meth:`.separate` method. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: delete = subgraph.__db_delete__ except AttributeError: raise TypeError("No method defined to delete object %r" % subgraph) else: delete(self) def exists(self, subgraph): """ Determine whether one or more entities all exist within the graph. Note that if any nodes or relationships in *subgraph* are not bound to remote counterparts, this method will return ``False``. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` :returns: ``True`` if all entities exist remotely, ``False`` otherwise """ try: exists = subgraph.__db_exists__ except AttributeError: raise TypeError("No method defined to check existence of object %r" % subgraph) else: return exists(self) def merge(self, subgraph, primary_label=None, primary_key=None): """ Create or update the nodes and relationships of a local subgraph in the remote database. Note that the functionality of this operation is not strictly identical to the Cypher MERGE clause, although there is some overlap. Each node and relationship in the local subgraph is merged independently, with nodes merged first and relationships merged second. For each node, the merge is carried out by comparing that node with a potential remote equivalent on the basis of a single label and property value. If no remote match is found, a new node is created; if a match is found, the labels and properties of the remote node are updated. The label and property used for comparison are determined by the `primary_label` and `primary_key` arguments but may be overridden for individual nodes by the of `__primarylabel__` and `__primarykey__` attributes on the node itself. For each relationship, the merge is carried out by comparing that relationship with a potential remote equivalent on the basis of matching start and end nodes plus relationship type. If no remote match is found, a new relationship is created; if a match is found, the properties of the remote relationship are updated. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` object :param primary_label: label on which to match any existing nodes :param primary_key: property key(s) on which to match any existing nodes """ try: merge = subgraph.__db_merge__ except AttributeError: raise TypeError("No method defined to merge object %r" % subgraph) else: merge(self, primary_label, primary_key) def pull(self, subgraph): """ Update local entities from their remote counterparts. For any nodes and relationships that exist in both the local :class:`.Subgraph` and the remote :class:`.Graph`, pull properties and node labels into the local copies. This operation does not create or delete any entities. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: pull = subgraph.__db_pull__ except AttributeError: raise TypeError("No method defined to pull object %r" % subgraph) else: return pull(self) def push(self, subgraph): """ Update remote entities from their local counterparts. For any nodes and relationships that exist in both the local :class:`.Subgraph` and the remote :class:`.Graph`, push properties and node labels into the remote copies. This operation does not create or delete any entities. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: push = subgraph.__db_push__ except AttributeError: raise TypeError("No method defined to push object %r" % subgraph) else: return push(self) def separate(self, subgraph): """ Delete the remote relationships that correspond to those in a local subgraph. This leaves any nodes untouched. :param subgraph: a :class:`.Node`, :class:`.Relationship` or other :class:`.Subgraph` """ try: separate = subgraph.__db_separate__ except AttributeError: raise TypeError("No method defined to separate object %r" % subgraph) else: separate(self) class Cursor(object): """ A `Cursor` is a navigator for a stream of records. A cursor can be thought of as a window onto an underlying data stream. All cursors in py2neo are "forward-only", meaning that navigation starts before the first record and may proceed only in a forward direction. It is not generally necessary for application code to instantiate a cursor directly as one will be returned by any Cypher execution method. However, cursor creation requires only a :class:`.DataSource` object which contains the logic for how to access the source data that the cursor navigates. Many simple cursor use cases require only the :meth:`.forward` method and the :attr:`.current` attribute. To navigate through all available records, a `while` loop can be used:: while cursor.forward(): print(cursor.current["name"]) If only the first record is of interest, a similar `if` structure will do the job:: if cursor.forward(): print(cursor.current["name"]) To combine `forward` and `current` into a single step, use the built-in py:func:`next` function:: print(next(cursor)["name"]) Cursors are also iterable, so can be used in a loop:: for record in cursor: print(record["name"]) For queries that are expected to return only a single value within a single record, use the :meth:`.evaluate` method. This will return the first value from the next record or :py:const:`None` if neither the field nor the record are present:: print(cursor.evaluate()) """ def __init__(self, result, hydrant=None, entities=None): self._result = result self._hydrant = hydrant self._entities = entities self._current = None self._closed = False def __del__(self): try: self.close() except OSError: pass def __repr__(self): return repr(self.preview(3)) def __next__(self): if self.forward(): return self._current else: raise StopIteration() # Exists only for Python 2 iteration compatibility next = __next__ def __iter__(self): while self.forward(): yield self._current def __getitem__(self, key): return self._current[key] @property def current(self): """ Returns the current record or :py:const:`None` if no record has yet been selected. """ return self._current def close(self): """ Close this cursor and free up all associated resources. """ if not self._closed: self._result.buffer() # force consumption of remaining data self._closed = True def keys(self): """ Return the field names for the records in the stream. """ return self._result.fields() def summary(self): """ Return the result summary. """ self._result.buffer() metadata = self._result.summary() return CypherSummary(**metadata) def plan(self): """ Return the plan returned with this result, if any. """ self._result.buffer() metadata = self._result.summary() if "plan" in metadata: return CypherPlan(**metadata["plan"]) elif "profile" in metadata: return CypherPlan(**metadata["profile"]) else: return None def stats(self): """ Return the query statistics. This contains details of the activity undertaken by the database kernel for the query, such as the number of entities created or deleted. Specifically, this returns a :class:`.CypherStats` object. >>> from py2neo import Graph >>> g = Graph() >>> g.run("CREATE (a:Person) SET a.name = 'Alice'").stats() constraints_added: 0 constraints_removed: 0 contained_updates: True indexes_added: 0 indexes_removed: 0 labels_added: 1 labels_removed: 0 nodes_created: 1 nodes_deleted: 0 properties_set: 1 relationships_created: 0 relationships_deleted: 0 """ self._result.buffer() metadata = self._result.summary() return CypherStats(**metadata.get("stats", {})) def forward(self, amount=1): """ Attempt to move the cursor one position forward (or by another amount if explicitly specified). The cursor will move position by up to, but never more than, the amount specified. If not enough scope for movement remains, only that remainder will be consumed. The total amount moved is returned. :param amount: the amount to move the cursor :returns: the amount that the cursor was able to move """ if amount == 0: return 0 if amount < 0: raise ValueError("Cursor can only move forwards") amount = int(amount) moved = 0 v = self._result.protocol_version while moved != amount: values = self._result.fetch() if values is None: break else: keys = self._result.fields() # TODO: don't do this for every record if self._hydrant: values = self._hydrant.hydrate(keys, values, entities=self._entities, version=v) self._current = Record(zip(keys, values)) moved += 1 return moved def preview(self, limit=1): """ Construct a :class:`.Table` containing a preview of upcoming records, including no more than the given `limit`. :param limit: maximum number of records to include in the preview :returns: :class:`.Table` containing the previewed records """ if limit < 0: raise ValueError("Illegal preview size") v = self._result.protocol_version records = [] keys = self._result.fields() for values in self._result.peek_records(int(limit)): if self._hydrant: values = self._hydrant.hydrate(keys, values, entities=self._entities, version=v) records.append(values) return Table(records, keys) def evaluate(self, field=0): """ Return the value of the first field from the next record (or the value of another field if explicitly specified). This method attempts to move the cursor one step forward and, if successful, selects and returns an individual value from the new current record. By default, this value will be taken from the first value in that record but this can be overridden with the `field` argument, which can represent either a positional index or a textual key. If the cursor cannot be moved forward or if the record contains no values, :py:const:`None` will be returned instead. This method is particularly useful when it is known that a Cypher query returns only a single value. :param field: field to select value from (optional) :returns: value of the field or :py:const:`None` Example: >>> from py2neo import Graph >>> g = Graph() >>> g.run("MATCH (a) WHERE a.email=$x RETURN a.name", x="<EMAIL>").evaluate() '<NAME>' """ if self.forward(): try: return self[field] except IndexError: return None else: return None def data(self, *keys): """ Consume and extract the entire result as a list of dictionaries. :: >>> from py2neo import Graph >>> graph = Graph() >>> graph.run("MATCH (a:Person) RETURN a.name, a.born LIMIT 4").data() [{'a.born': 1964, 'a.name': '<NAME>'}, {'a.born': 1967, 'a.name': '<NAME>'}, {'a.born': 1961, 'a.name': '<NAME>'}, {'a.born': 1960, 'a.name': '<NAME>'}] :param keys: indexes or keys of the items to include; if none are provided, all values will be included :returns: list of dictionary of values, keyed by field name :raises IndexError: if an out-of-bounds index is specified """ return [record.data(*keys) for record in self] def to_table(self): """ Consume and extract the entire result as a :class:`.Table` object. :return: the full query result """ return Table(self) def to_subgraph(self): """ Consume and extract the entire result as a :class:`.Subgraph` containing the union of all the graph structures within. :return: :class:`.Subgraph` object """ s = None for record in self: s_ = record.to_subgraph() if s_ is not None: if s is None: s = s_ else: s |= s_ return s def to_ndarray(self, dtype=None, order='K'): """ Consume and extract the entire result as a `numpy.ndarray <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html>`_. .. note:: This method requires `numpy` to be installed. :param dtype: :param order: :warns: If `numpy` is not installed :returns: `ndarray <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html>`__ object. """ try: # noinspection PyPackageRequirements from numpy import array except ImportError: warn("Numpy is not installed.") raise else: return array(list(map(list, self)), dtype=dtype, order=order) def to_series(self, field=0, index=None, dtype=None): """ Consume and extract one field of the entire result as a `pandas.Series <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#series>`_. .. note:: This method requires `pandas` to be installed. :param field: :param index: :param dtype: :warns: If `pandas` is not installed :returns: `Series <http://pandas.pydata.org/pandas-docs/stable/dsintro.html#series>`__ object. """ try: # noinspection PyPackageRequirements from pandas import Series except ImportError: warn("Pandas is not installed.") raise else: return
Series([record[field] for record in self], index=index, dtype=dtype)
pandas.Series
# Copyright 2021 AI Singapore. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import os import pandas as pd from rarity.data_loader import CSVDataLoader, DataframeLoader # add this in the conftest.py under tests folder from selenium.webdriver.chrome.options import Options def pytest_setup_options(): options = Options() # added mainly for integration test in gitlab-ci to resolve # (unknown error: DevToolsActivePort file doesn't exist) # (The process started from chrome location /usr/bin/google-chrome is no longer running, # so ChromeDriver is assuming that Chrome has crashed.) # solution reference => https://github.com/plotly/dash/issues/1420 options.add_argument('--no-sandbox') return options @pytest.fixture def csv_loader_single_modal_reg(): SAMPLE_DATA_DIR = './tests/sample_data/regression/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelA.csv') MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Regression' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_single_modal_cls(): SAMPLE_DATA_DIR = './tests/sample_data/classification/binary/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelA.csv') MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_reg(): SAMPLE_DATA_DIR = './tests/sample_data/regression/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Regression' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_cls(): SAMPLE_DATA_DIR = './tests/sample_data/classification/binary/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_cls_multi(): SAMPLE_DATA_DIR = './tests/sample_data/classification/multiclass/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'multiclass_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Multiclass-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_single_modal_reg(): DF_FEATURES =
pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6]], columns=['x1', 'x2', 'x3'])
pandas.DataFrame
################################################################################ # Module: schedule.py # Description: Functions for handling conversion of EnergyPlus schedule objects # License: MIT, see full license in LICENSE.txt # Web: https://github.com/samuelduchesne/archetypal ################################################################################ import functools import io import logging as lg from datetime import datetime, timedelta import archetypal import numpy as np import pandas as pd from archetypal import log class Schedule(object): """An object designed to handle any EnergyPlys schedule object""" def __init__(self, sch_name, idf=None, start_day_of_the_week=0, strict=False, base_year=2018, schType=None, **kwargs): """ Args: idf (IDF): IDF object sch_name (str): The schedule name in the idf file start_day_of_the_week (int): 0-based day of week (Monday=0) strict (bool): if True, schedules that have the Field-Sets such as Holidays and CustomDay will raise an error if they are absent from the IDF file. If False, any missing qualifiers will be ignored. base_year (int): The base year of the schedule. Defaults to 2018 since the first day of that year is a Monday. """ super(Schedule, self).__init__(**kwargs) self.strict = strict self.idf = idf self.schName = sch_name self.startDayOfTheWeek = self.get_sdow(start_day_of_the_week) self.year = base_year self.startDate = self.start_date() self.count = 0 self.startHOY = 1 self.endHOY = 24 self.unit = "unknown" self.index_ = None self.values = None self.schType = schType _type = kwargs.get('Type', None) if _type is None: self.schTypeLimitsName = self.get_schedule_type_limits_name( sch_type=self.schType) else: self.schTypeLimitsName = _type @classmethod def constant_schedule(cls, hourly_value=1, Name='AlwaysOn', **kwargs): idftxt = "VERSION, 8.9;" # Not an emplty string. has just the # version number # we can make a file handle of a string fhandle = io.StringIO(idftxt) # initialize the IDF object with the file handle idf_scratch = archetypal.IDF(fhandle) idf_scratch.add_object(ep_object='Schedule:Constant'.upper(), **dict(Name=Name, Schedule_Type_Limits_Name='', Hourly_Value=hourly_value), save=False) sched = Schedule(sch_name=Name, idf=idf_scratch, **kwargs) return sched @property def all_values(self): """returns the values array""" if self.values is None: self.values = self.get_schedule_values(sch_name=self.schName, sch_type=self.schType) return self.values else: return self.values @property def max(self): return max(self.all_values) @property def min(self): return min(self.all_values) @property def mean(self): return np.mean(self.all_values) @property def series(self): """Returns the schedule values as a pd.Series object with a DateTimeIndex""" index = pd.date_range(start=self.startDate, periods=len( self.all_values), freq='1H') return pd.Series(self.all_values, index=index) def get_schedule_type_limits_name(self, sch_name=None, sch_type=None): """Return the Schedule Type Limits name associated to a schedule name""" if sch_name is None: sch_name = self.schName if sch_type is None: schedule_values = self.idf.get_schedule_data_by_name(sch_name, sch_type=sch_type) try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: return 'unknown' else: return schedule_limit_name def get_schedule_type_limits_data(self, sch_name=None): """Returns Schedule Type Limits data from schedule name""" if sch_name is None: sch_name = self.schName schedule_values = self.idf.get_schedule_data_by_name(sch_name) try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: # this schedule is probably a 'Schedule:Week:Daily' which does # not have a Schedule_Type_Limits_Name field return '', '', '', '' else: lower_limit, upper_limit, numeric_type, unit_type = \ self.idf.get_schedule_type_limits_data_by_name( schedule_limit_name) self.unit = unit_type if self.unit == "unknown": self.unit = numeric_type return lower_limit, upper_limit, numeric_type, unit_type def get_schedule_type(self, sch_name=None): """Return the schedule type""" if sch_name is None: sch_name = self.schName schedule_values = self.idf.get_schedule_data_by_name(sch_name) sch_type = schedule_values.fieldvalues[0] return sch_type def start_date(self): """The start date of the schedule. Satisfies `startDayOfTheWeek`""" import calendar c = calendar.Calendar(firstweekday=self.startDayOfTheWeek) start_date = c.monthdatescalendar(self.year, 1)[0][0] return datetime(start_date.year, start_date.month, start_date.day) def plot(self, slice=None, **kwargs): hourlyvalues = self.all_values index = pd.date_range(self.startDate, periods=len( hourlyvalues), freq='1H') series = pd.Series(hourlyvalues, index=index, dtype=float) if slice is None: slice = pd.IndexSlice[:] elif len(slice) > 1: slice = pd.IndexSlice[slice[0]:slice[1]] ax = series.loc[slice].plot(**kwargs, label=self.schName) return ax def get_interval_day_ep_schedule_values(self, sch_name=None): """'Schedule:Day:Interval""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('Schedule:Day:Interval'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) number_of_day_sch = int((len(values.fieldvalues) - 3) / 2) hourly_values = np.arange(24) start_hour = 0 for i in range(number_of_day_sch): value = float(values['Value_Until_Time_{}'.format(i + 1)]) until_time = [int(s.strip()) for s in values['Time_{}'.format(i + 1)].split(":") if s.strip().isdigit()] end_hour = int(until_time[0] + until_time[1] / 60) for hour in range(start_hour, end_hour): hourly_values[hour] = value start_hour = end_hour if numeric_type.strip().lower() == "discrete": hourly_values = hourly_values.astype(int) return hourly_values def get_hourly_day_ep_schedule_values(self, sch_name=None): """'Schedule:Day:Hourly'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('Schedule:Day:Hourly'.upper(), sch_name) fieldvalues_ = np.array(values.fieldvalues[3:]) return fieldvalues_ def get_compact_weekly_ep_schedule_values(self, sch_name=None, start_date=None, index=None): """'schedule:week:compact'""" if start_date is None: start_date = self.startDate if index is None: idx = pd.date_range(start=start_date, periods=168, freq='1H') slicer_ = pd.Series([False] * (len(idx)), index=idx) else: slicer_ = pd.Series([False] * (len(index)), index=index) if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:week:compact'.upper(), sch_name) weekly_schedules = pd.Series([0] * len(slicer_), index=slicer_.index) # update last day of schedule if self.count == 0: self.schType = values.key self.endHOY = 168 num_of_daily_schedules = int(len(values.fieldvalues[2:]) / 2) for i in range(num_of_daily_schedules): day_type = values['DayType_List_{}'.format(i + 1)].lower() how = self.field_set(day_type, slicer_) if not weekly_schedules.loc[how].empty: # Loop through days and replace with day:schedule values days = [] for name, day in weekly_schedules.loc[how].groupby(pd.Grouper( freq='D')): if not day.empty: ref = values.get_referenced_object( "ScheduleDay_Name_{}".format(i + 1)) day.loc[:] = self.get_schedule_values( sch_name=ref.Name, sch_type=ref.key) days.append(day) new = pd.concat(days) slicer_.update( pd.Series([True] * len(new.index), index=new.index)) slicer_ = slicer_.apply(lambda x: x == True) weekly_schedules.update(new) else: return weekly_schedules.values return weekly_schedules.values def get_daily_weekly_ep_schedule_values(self, sch_name=None): """'schedule:week:daily'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:week:daily'.upper(), sch_name) # 7 list for 7 days of the week hourly_values = [] for day in ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']: ref = values.get_referenced_object( '{}_ScheduleDay_Name'.format(day)) h = self.get_schedule_values(sch_name=ref.Name, sch_type=ref.key) hourly_values.append(h) hourly_values = np.array(hourly_values) # shift days earlier by self.startDayOfTheWeek hourly_values = np.roll(hourly_values, -self.startDayOfTheWeek, axis=0) return hourly_values.ravel() def get_list_day_ep_schedule_values(self, sch_name=None): """'schedule:day:list'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:day:list'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) import pandas as pd freq = int(values['Minutes_per_Item']) # Frequency of the values num_values = values.fieldvalues[5:] # List of values method = values['Interpolate_to_Timestep'] # How to resample # fill a list of available values and pad with zeros (this is safer # but should not occur) all_values = np.arange(int(24 * 60 / freq)) for i in all_values: try: all_values[i] = num_values[i] except: all_values[i] = 0 # create a fake index to help us with the resampling index = pd.date_range(start=self.startDate, periods=(24 * 60) / freq, freq='{}T'.format(freq)) series = pd.Series(all_values, index=index) # resample series to hourly values and apply resampler function series = series.resample('1H').apply(_how(method)) return series.values def get_constant_ep_schedule_values(self, sch_name=None): """'schedule:constant'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:constant'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) hourly_values = np.arange(8760) value = float(values['Hourly_Value']) for hour in hourly_values: hourly_values[hour] = value if numeric_type.strip().lower() == 'discrete': hourly_values = hourly_values.astype(int) return hourly_values def get_file_ep_schedule_values(self, sch_name=None): """'schedule:file'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:file'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) filename = values['File_Name'] column = values['Column_Number'] rows = values['Rows_to_Skip_at_Top'] hours = values['Number_of_Hours_of_Data'] sep = values['Column_Separator'] interp = values['Interpolate_to_Timestep'] import pandas as pd import os idfdir = os.path.dirname(self.idf.idfname) file = os.path.join(idfdir, filename) delimeter = _separator(sep) skip_rows = int(rows) - 1 # We want to keep the column col = [int(column) - 1] # zero-based values = pd.read_csv(file, delimiter=delimeter, skiprows=skip_rows, usecols=col) return values.iloc[:, 0].values def get_compact_ep_schedule_values(self, sch_name=None): """'schedule:compact'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:compact'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) field_sets = ['through', 'for', 'interpolate', 'until', 'value'] fields = values.fieldvalues[3:] index = pd.date_range(start=self.startDate, periods=8760, freq='H') zeros = np.zeros(len(index)) slicer_ = pd.Series([False] * len(index), index=index) series = pd.Series(zeros, index=index) from_day = self.startDate ep_from_day = datetime(self.year, 1, 1) from_time = '00:00' how_interpolate = None for field in fields: if any([spe in field.lower() for spe in field_sets]): f_set, hour, minute, value = self.field_interpreter(field) if f_set.lower() == 'through': # main condition. All sub-conditions must obey a # `Through` condition # First, initialize the slice (all False for now) through_conditions = self.invalidate_condition(series) # reset from_time from_time = '00:00' # Prepare ep_to_day variable ep_to_day = self.date_field_interpretation(value) + \ timedelta(days=1) # Calculate Timedelta in days days = (ep_to_day - ep_from_day).days # Add timedelta to start_date to_day = from_day + timedelta(days=days) + timedelta( hours=-1) # slice the conditions with the range and apply True through_conditions.loc[from_day:to_day] = True from_day = to_day + timedelta(hours=1) ep_from_day = ep_to_day elif f_set.lower() == 'for': # slice specific days # reset from_time from_time = '00:00' for_condition = self.invalidate_condition(series) values = value.split() if len(values) > 1: # if multiple `For`. eg.: For: Weekends Holidays, # Combine both conditions for value in values: if value.lower() == 'allotherdays': # Apply condition to slice how = self.field_set(value, slicer_) # Reset though condition through_conditions = how for_condition = how else: how = self.field_set(value, slicer_) for_condition.loc[how] = True elif value.lower() == 'allotherdays': # Apply condition to slice how = self.field_set(value, slicer_) # Reset though condition through_conditions = how for_condition = how else: # Apply condition to slice how = self.field_set(value) for_condition.loc[how] = True # Combine the for_condition with all_conditions all_conditions = through_conditions & for_condition # update in memory slice # self.sliced_day_.loc[all_conditions] = True elif 'interpolate' in f_set.lower(): # we need to upsample to series to 8760 * 60 values new_idx = pd.date_range(start=self.startDate, periods=525600, closed='left', freq='T') series = series.resample('T').pad() series = series.reindex(new_idx) series.fillna(method='pad', inplace=True) through_conditions = through_conditions.resample('T').pad() through_conditions = through_conditions.reindex(new_idx) through_conditions.fillna(method='pad', inplace=True) for_condition = for_condition.resample('T').pad() for_condition = for_condition.reindex(new_idx) for_condition.fillna(method='pad', inplace=True) how_interpolate = value.lower() elif f_set.lower() == 'until': until_condition = self.invalidate_condition(series) if series.index.freq.name == 'T': # until_time = str(int(hour) - 1) + ':' + minute until_time = timedelta(hours=int(hour), minutes=int(minute)) - timedelta( minutes=1) else: until_time = str(int(hour) - 1) + ':' + minute until_condition.loc[until_condition.between_time(from_time, str( until_time)).index] = True all_conditions = for_condition & through_conditions & \ until_condition from_time = str(int(hour)) + ':' + minute elif f_set.lower() == 'value': # If the therm `Value: ` field is used, we will catch it # here. # update in memory slice slicer_.loc[all_conditions] = True series[all_conditions] = value else: # Do something here before looping to the next Field pass else: # If the term `Value: ` is not used; the variable is simply # passed in the Field value = float(field) series[all_conditions] = value # update in memory slice slicer_.loc[all_conditions] = True if how_interpolate: return series.resample('H').mean().values else: return series.values def field_interpreter(self, field): """dealing with a Field-Set (Through, For, Interpolate, # Until, Value) and return the parsed string""" if 'through' in field.lower(): # deal with through if ':' in field.lower(): # parse colon f_set, statement = field.split(':') hour = None minute = None value = statement.strip() else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'for' in field.lower(): if ':' in field.lower(): # parse colon f_set, statement = field.split(':') value = statement.strip() hour = None minute = None else: # parse without a colon msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'interpolate' in field.lower(): msg = 'The schedule "{sch}" contains sub-hourly values (' \ 'Field-Set="{field}"). The average over the hour is ' \ 'taken'.format(sch=self.schName, field=field) log(msg, lg.WARNING) f_set, value = field.split(':') hour = None minute = None elif 'until' in field.lower(): if ':' in field.lower(): # parse colon try: f_set, hour, minute = field.split(':') hour = hour.strip() # remove trailing spaces minute = minute.strip() # remove trailing spaces value = None except: f_set = 'until' hour, minute = field.split(':') hour = hour[-2:].strip() minute = minute.strip() value = None else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'value' in field.lower(): if ':' in field.lower(): # parse colon f_set, statement = field.split(':') value = statement.strip() hour = None minute = None else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) else: # deal with the data value f_set = field hour = None minute = None value = field[len(field) + 1:].strip() return f_set, hour, minute, value @staticmethod def invalidate_condition(series): index = series.index periods = len(series) return
pd.Series([False] * periods, index=index)
pandas.Series
# author: DSCI-522 Group-21 # date: 2021-11-26 """Score the model with the test set and generate a confusion matrix Usage: scoring.py --input=<input> --output=<output> Options: --input=<input> The directory where the data and model is --output=<output> Directory specifying where to store output figure(s)/table(s) """ import pandas as pd from docopt import docopt import pickle from sklearn.metrics import confusion_matrix, get_scorer opt = docopt(__doc__) def main(input, output): # Get optimized model model = pickle.load(open(f"{output}final_model.rds", "rb")) # Get test data test_df = ( pd.read_csv(f"{input}test.csv", low_memory=False) .set_index("index") .rename_axis(None) ) X_test = test_df.drop(columns=["FATALITY"]) y_test = test_df["FATALITY"] # Import training scores df results_df = ( pd.read_csv(f"{output}final_training_scores.csv", index_col=0) ) # Create list of desired scoring metrics scoring_metrics = ["accuracy", "f1", "recall", "precision", "average_precision"] # Score the test data scores = { scorer: [ round(get_scorer(scorer)(model, X_test, y_test), 3) ] for scorer in scoring_metrics } scores =
pd.DataFrame(scores, index=["test_scores"])
pandas.DataFrame
#!/usr/bin/env python3 import cv2 # from cv2 import aruco from tqdm import trange import numpy as np import os, os.path from glob import glob from collections import defaultdict import pandas as pd ## TODO: rewrite this whole file with aniposelib from .common import \ get_calibration_board, get_board_type, \ find_calibration_folder, make_process_fun, \ get_cam_name, get_video_name, load_intrinsics, load_extrinsics from .triangulate import triangulate_optim, triangulate_simple, \ reprojection_error, reprojection_error_und from .calibrate_extrinsics import detect_aruco, estimate_pose, fill_points def expand_matrix(mtx): z = np.zeros((4,4)) z[0:3,0:3] = mtx[0:3,0:3] z[3,3] = 1 return z def process_trig_errors(config, fname_dict, cam_intrinsics, extrinsics, skip=20): minlen = np.inf caps = dict() for cam_name, fname in fname_dict.items(): cap = cv2.VideoCapture(fname) caps[cam_name] = cap length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) minlen = min(length, minlen) cam_names = sorted(fname_dict.keys()) board = get_calibration_board(config) cam_mats = [] cam_mats_dist = [] for cname in cam_names: mat = np.array(extrinsics[cname]) left = np.array(cam_intrinsics[cname]['camera_mat']) cam_mats.append(mat) cam_mats_dist.append(left) cam_mats = np.array(cam_mats) cam_mats_dist = np.array(cam_mats_dist) go = skip all_points = [] framenums = [] all_rvecs = [] all_tvecs = [] for framenum in trange(minlen, desc='detecting', ncols=70): row = [] rvecs = [] tvecs = [] for cam_name in cam_names: intrinsics = cam_intrinsics[cam_name] cap = caps[cam_name] ret, frame = cap.read() if framenum % skip != 0 and go <= 0: continue gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # corners, ids = detect_aruco(gray, intrinsics) detected, stuff = estimate_pose(gray, intrinsics, board) if detected: corners, ids, rvec, tvec = stuff rvec = rvec.flatten() tvec = tvec.flatten() else: corners = ids = None rvec = np.zeros(3)*np.nan tvec = np.zeros(3)*np.nan points = fill_points(corners, ids, board) points_flat = points.reshape(-1, 1, 2) points_new = cv2.undistortPoints( points_flat, np.array(intrinsics['camera_mat']), np.array(intrinsics['dist_coeff'])) row.append(points_new.reshape(points.shape)) rvecs.append(rvec) tvecs.append(tvec) if ~np.all(np.isnan(row)): all_points.append(row) all_tvecs.append(tvecs) all_rvecs.append(rvecs) framenums.append(framenum) go = skip go = max(0, go-1) all_points_raw = np.array(all_points) all_rvecs = np.array(all_rvecs) all_tvecs = np.array(all_tvecs) framenums = np.array(framenums) shape = all_points_raw.shape all_points_3d = np.zeros((shape[0], shape[2], 3)) all_points_3d.fill(np.nan) num_cams = np.zeros((shape[0], shape[2])) num_cams.fill(np.nan) errors = np.zeros((shape[0], shape[2])) errors.fill(np.nan) for i in trange(all_points_raw.shape[0], desc='triangulating', ncols=70): for j in range(all_points_raw.shape[2]): pts = all_points_raw[i, :, j, :] good = ~np.isnan(pts[:, 0]) if np.sum(good) >= 2: # p3d = triangulate_optim(pts, cam_mats) p3d = triangulate_simple(pts[good], cam_mats[good]) all_points_3d[i, j] = p3d[:3] errors[i,j] = reprojection_error_und(p3d, pts[good], cam_mats[good], cam_mats_dist[good]) num_cams[i,j] = np.sum(good) ## all_tvecs # framenum, camera num, axis dout =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) 2016 The UUV Simulator Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import rospy import numpy as np import matplotlib.pyplot as plt import os from simulation_data import SimulationData, COLOR_RED, COLOR_GREEN, COLOR_BLUE class FinsData(SimulationData): LABEL = 'fins' def __init__(self, bag): super(FinsData, self).__init__() for x in bag.get_type_and_topic_info(): for k in x: if self._prefix is None: if 'fins' in k: rospy.loginfo('Fins topic prefix found <%s>' % k) i = len('fins') i_max = k.find('fins') + i self._prefix = k[:i_max] break if self._prefix is not None: break try: # Find all fins input topics if self._prefix is not None: for i in range(16): for topic, msg, time in bag.read_messages('%s/%d/input' % (self._prefix, i)): if i not in self._recorded_data: self._recorded_data[i] = dict(input=dict(time=list(), values=list())) t = msg.header.stamp.to_sec() self._recorded_data[i]['input']['time'].append(t) self._recorded_data[i]['input']['values'].append(float(msg.data)) if i in self._recorded_data: self._logger.info('%s/%d/input=loaded' % (self._prefix, i)) except Exception as e: self._logger.error('Error retrieving fin input data from rosbag, message=' + str(e)) try: # Find all fins output topics if self._prefix is not None: for i in range(16): for topic, msg, time in bag.read_messages('%s/%d/output' % (self._prefix, i)): if 'output' not in self._recorded_data[i]: self._recorded_data[i]['output'] = dict(time=list(), values=list()) t = msg.header.stamp.to_sec() self._recorded_data[i]['output']['time'].append(t) self._recorded_data[i]['output']['values'].append(float(msg.data)) if i in self._recorded_data: self._logger.info('%s/%d/output=loaded' % (self._prefix, i)) except Exception as e: self._logger.error('Error retrieving fin output data from rosbag, message=' + str(e)) try: # Find all fin wrench topics if self._prefix is not None: for i in range(16): for topic, msg, time in bag.read_messages('%s/%d/wrench_topic' % (self._prefix, i)): if 'wrench' not in self._recorded_data[i]: self._recorded_data[i]['wrench'] = dict(time=list(), force=list(), torque=list()) time = msg.header.stamp.to_sec() self._recorded_data[i]['wrench']['time'].append(time) self._recorded_data[i]['wrench']['force'].append( [msg.wrench.force.x, msg.wrench.force.y, msg.wrench.force.z]) self._recorded_data[i]['wrench']['torque'].append( [msg.wrench.torque.x, msg.wrench.torque.y, msg.wrench.torque.z]) if i in self._recorded_data: self._logger.info('%s/%d/wrench_topic=loaded' % (self._prefix, i)) except Exception as e: self._logger.error('Error retrieving fin wrench data from rosbag, message=' + str(e)) def get_as_dataframe(self, add_group_name=None): try: import pandas data = dict() for i in self._recorded_data: data[self.LABEL + '_id'] = [i for _ in range(self._recorded_data[i]['output']['time'])] if add_group_name is not None: data['group'] = [add_group_name for _ in range(self._recorded_data[i]['output']['time'])] data[self.LABEL + '_output_time'] = self._recorded_data[i]['output']['time'] data[self.LABEL + '_output_values'] = self._recorded_data[i]['output']['values'] df_output = pandas.DataFrame(data) data = dict() for i in self._recorded_data: data[self.LABEL + '_id'] = [i for _ in range(self._recorded_data[i]['input']['time'])] if add_group_name is not None: data['group'] = [add_group_name for _ in range(self._recorded_data[i]['input']['time'])] data[self.LABEL + '_input_time'] = self._recorded_data[i]['input']['time'] data[self.LABEL + '_input_values'] = self._recorded_data[i]['input']['values'] df_input = pandas.DataFrame(data) data = dict() for i in self._recorded_data: data[self.LABEL + '_id'] = [i for _ in range(self._recorded_data[i]['wrench']['time'])] if add_group_name is not None: data['group'] = [add_group_name for _ in range(self._recorded_data[i]['wrench']['time'])] data[self.LABEL + '_wrench_force_x'] = [x[0] for x in self._recorded_data[i]['wrench']['force']] data[self.LABEL + '_wrench_force_y'] = [x[1] for x in self._recorded_data[i]['wrench']['force']] data[self.LABEL + '_wrench_force_z'] = [x[2] for x in self._recorded_data[i]['wrench']['force']] data[self.LABEL + '_wrench_torque_x'] = [x[0] for x in self._recorded_data[i]['wrench']['torque']] data[self.LABEL + '_wrench_torque_y'] = [x[1] for x in self._recorded_data[i]['wrench']['torque']] data[self.LABEL + '_wrench_torque_z'] = [x[2] for x in self._recorded_data[i]['wrench']['torque']] if len(data) == 0: return None df_wrench = pandas.DataFrame(data) return
pandas.concat([df_input, df_output, df_wrench], ignore_index=True)
pandas.concat
#!/usr/bin/env python # -- coding: utf-8 -- # PAQUETES PARA CORRER OP. import netCDF4 import pandas as pd import numpy as np import datetime as dt import json import wmf.wmf as wmf import hydroeval import glob import MySQLdb #modulo pa correr modelo import hidrologia from sklearn.linear_model import LinearRegression import math import os #spatial import cartopy.crs as crs import geopandas as gpd import pyproj from pyproj import transform from cartopy.feature import ShapelyFeature import cartopy.crs as ccrs from cartopy.io.shapereader import Reader from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import seaborn as sns sns.set(style="whitegrid") sns.set_context('notebook', font_scale=1.13) #FORMATO # fuente import matplotlib matplotlib.use('Agg') import pylab as pl #avoid warnings import warnings warnings.filterwarnings('ignore') #--------------- #Funciones base. #--------------- def get_rutesList(rutas): ''' Abre el archivo de texto en la ruta: rutas, devuelve una lista de las lineas de ese archivo. Funcion base. #Argumentos rutas: string, path indicado. ''' f = open(rutas,'r') L = f.readlines() f.close() return L def set_modelsettings(ConfigList): ruta_modelset = get_ruta(ConfigList,'ruta_proj')+get_ruta(ConfigList,'ruta_modelset') # model settings Json with open(ruta_modelset, 'r') as f: model_set = json.load(f) # Model set wmf.models.max_aquifer = wmf.models.max_gravita * 10 wmf.models.retorno = model_set['retorno'] wmf.models.show_storage = model_set['show_storage'] wmf.models.separate_fluxes = model_set['separate_fluxes'] wmf.models.dt = model_set['dt'] def round_time(date = dt.datetime.now(),round_mins=5): ''' Rounds datetime object to nearest 'round_time' minutes. If 'dif' is < 'round_time'/2 takes minute behind, else takesminute ahead. Parameters ---------- date : date to round round_mins : round to this nearest minutes interval Returns ---------- datetime object rounded, datetime object ''' dif = date.minute % round_mins if dif <= round_mins/2: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) else: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) + dt.timedelta(minutes=round_mins) def get_credentials(ruta_credenciales): credentials = json.load(open(ruta_credenciales)) #creds para consultas mysqlServer = credentials['MySql_Siata'] for key in np.sort(list(credentials['MySql_Siata'].keys()))[::-1]: #1:hal, 2:sal try: connection = MySQLdb.connect(host=mysqlServer[key]['host'], user=mysqlServer[key]['user'], password=mysqlServer[key]['password'], db=mysqlServer[key]['db']) print('SERVER_CON: Succesful connection to %s'%(key)) host=mysqlServer[key]['host'] user=mysqlServer[key]['user'] password=mysqlServer[key]['password'] db=mysqlServer[key]['db'] break #si conecta bien a SAL para. except: print('SERVER_CON: No connection to %s'%(key)) pass #creds para copiar a var user2copy2var = credentials['cred_2copy2var']['user']; host2copy2var = credentials['cred_2copy2var']['host'] return host,user,password,db,user2copy2var,host2copy2var def coord2hillID(ruta_nc, df_coordxy): #lee simubasin pa asociar tramos, saca topologia basica cu = wmf.SimuBasin(rute= ruta_nc) cu.GetGeo_Cell_Basics() cu.GetGeo_Parameters() #saca coordenadas de todo el simubasin y las distancias entre ellas coordsX = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[0] coordsY = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[1] disty = np.unique(np.diff(np.unique(np.sort(coordsY)))) distx = np.unique(np.diff(np.unique(np.sort(coordsX)))) df_ids = pd.DataFrame(index = df_coordxy.index,columns=['id']) #identifica el id de la ladera donde caen los ptos for index in df_coordxy.index: df_ids.loc[index]=cu.hills_own[np.where((coordsY+disty[0]/2>df_coordxy.loc[index].values[1]) & (coordsY-disty[0]/2<df_coordxy.loc[index].values[1]) & (coordsX+distx[0]/2>df_coordxy.loc[index].values[0]) & (coordsX-distx[0]/2<df_coordxy.loc[index].values[0]))[0]].data return df_ids #----------------------------------- #----------------------------------- #Funciones de lectura del configfile #----------------------------------- #----------------------------------- def get_ruta(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega rutas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i.split(' ')[-1][:-1] else: return 'Aviso: no existe linea con el key especificado' def get_line(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega lineas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i[:-1].split(' ')[2:] else: return 'Aviso: no existe linea con el key especificado' def get_modelPlot(RutesList, PlotType = 'Qsim_map'): ''' #Devuelve un diccionario con la informacion de la tabla Plot en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - PlotType= boolean, tipo del plot? . Default= 'Qsim_map'. ''' for l in RutesList: key = l.split('|')[1].rstrip().lstrip() if key[3:] == PlotType: EjecsList = [i.rstrip().lstrip() for i in l.split('|')[2].split(',')] return EjecsList return key def get_modelPars(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in RutesList: c = [float(i) for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c}) return DCalib def get_modelPaths(List): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in List: c = [i for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c[0]}) return DCalib def get_modelStore(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Store en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStore = {} for l in RutesList: l = l.split('|') DStore.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'Actualizar': l[3].rstrip().lstrip(), 'Tiempo': float(l[4].rstrip().lstrip()), 'Condition': l[5].rstrip().lstrip(), 'Calib': l[6].rstrip().lstrip(), 'BackSto': l[7].rstrip().lstrip(), 'Slides': l[8].rstrip().lstrip()}}) return DStore def get_modelStoreLastUpdate(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Update en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStoreUpdate = {} for l in RutesList: l = l.split('|') DStoreUpdate.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'LastUpdate': l[3].rstrip().lstrip()}}) return DStoreUpdate def get_ConfigLines(RutesList, key, keyTable = None, PlotType = None): ''' #Devuelve un diccionario con la informacion de las tablas en el configfile: Calib, Store, Update, Plot. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - key= string, palabra clave de la tabla que se quiere leer. Puede ser: -s,-t. - Calib_Storage= string, palabra clave de la tabla que se quiere leer. Puede ser: Calib, Store, Update, Plot. - PlotType= boolean, tipo del plot? . Default= None. ''' List = [] for i in RutesList: if i.startswith('|'+key) or i.startswith('| '+key): List.append(i) if len(List)>0: if keyTable == 'Pars': return get_modelPars(List) if keyTable == 'Paths': return get_modelPaths(List) if keyTable == 'Store': return get_modelStore(List) if keyTable == 'Update': return get_modelStoreLastUpdate(List) if keyTable == 'Plot': return get_modelPlot(List, PlotType=PlotType) return List else: return 'Aviso: no se encuentran lineas con el key de inicio especificado.' #----------------------------------- #----------------------------------- #Funciones generacion de radar #----------------------------------- #----------------------------------- def file_format(start,end): ''' Returns the file format customized for siata for elements containing starting and ending point Parameters ---------- start : initial date end : final date Returns ---------- file format with datetimes like %Y%m%d%H%M Example ---------- ''' start,end = pd.to_datetime(start),pd.to_datetime(end) format = '%Y%m%d%H%M' return '%s-%s'%(start.strftime(format),end.strftime(format)) def hdr_to_series(path): ''' Reads hdr rain files and converts it into pandas Series Parameters ---------- path : path to .hdr file Returns ---------- pandas time Series with mean radar rain ''' s = pd.read_csv(path,skiprows=5,usecols=[2,3]).set_index(' Fecha ')[' Lluvia'] s.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],s.index))) return s def hdr_to_df(path): ''' Reads hdr rain files and converts it into pandas DataFrame Parameters ---------- path : path to .hdr file Returns ---------- pandas DataFrame with mean radar rain ''' if path.endswith('.hdr') != True: path = path+'.hdr' df = pd.read_csv(path,skiprows=5).set_index(' Fecha ') df.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],df.index))) df = df.drop('IDfecha',axis=1) df.columns = ['record','mean_rain'] return df def bin_to_df(path,ncells,start=None,end=None,**kwargs): ''' Reads rain fields (.bin) and converts it into pandas DataFrame Parameters ---------- path : path to .hdr and .bin file start : initial date end : final date Returns ---------- pandas DataFrame with mean radar rain Note ---------- path without extension, ejm folder_path/file not folder_path/file.bin, if start and end is None, the program process all the data ''' start,end = pd.to_datetime(start),pd.to_datetime(end) records = df['record'].values rain_field = [] for count,record in enumerate(records): if record != 1: rain_field.append(wmf.models.read_int_basin('%s.bin'%path,record,ncells)[0]/1000.0) count = count+1 # format = (count*100.0/len(records),count,len(records)) else: rain_field.append(np.zeros(ncells)) return pd.DataFrame(np.matrix(rain_field),index=df.index) def get_radar_rain(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, mask=None,meanrain_ALL=True,path_masks_csv=None,complete_naninaccum=False,save_bin=False, save_class = False,path_res=None,umbral=0.005, verbose=True, zero_fill = None): start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de rutas y la de las fechas a las que corresponde cada ruta. ListRutas.sort() ListDatesinNC.sort()#con estas fechas se asignaran los barridos a cada timestep. #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. #Saca una lista con las pos de los barridos por cada timestep, y las pega en PosDates #Si el limite de completar faltantes con barrido anterior es de 10 min, solo se completa si dt=300s #limite de autocompletar : 10m es decir, solo repito un barrido. PosDates = [] pos1 = [] pos_completed = [] lim_completed = 3 #ultimos 3 barridos - 15min for ind,d1,d2 in zip(np.arange(datesDt[:-1].size),datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() # si no hay barridos en el dt de inicio sellena con zero - lista vacia #y no esta en los primero 3 pasos : 15min. # si se puede completar # y si en el los lim_completed pasos atras no hubo más de lim_completed-1 pos con pos_completed=2, lim_completed-1 para que deje correr sólo hasta el lim_completed. #asi solo se pueded completar y pos_completed=2 una sola vez. if len(pos2) == 0 and ind not in np.arange(lim_completed) and complete_naninaccum == True and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : #+1 porque coge los ultimos n-1 posiciones. pos2 = pos1 pos_completed.append(2) elif len(pos2) == 0: pos2=[] pos_completed.append(0) else: pos_completed.append(1) #si se quiere completar y hay barridos en este dt, guarda esta pos para si es necesario completar las pos de dt en el sgte paso if complete_naninaccum == True and len(pos2) != 0 and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : pos1 = pos2 else: pos1 = [] PosDates.append(pos2) # si se asigna, se agregas dates y PosDates para barridos en cero al final. if zero_fill is not None: #se redefinen datesDt luego que los PosDates fueron asignados final = (pd.to_datetime(final) + pd.Timedelta('%ss'%Dt*zero_fill)).strftime('%Y-%m-%d %H:%M') datesDt = pd.date_range(inicio,final,freq = textdt+'s') # se agrega a PosDates pasos del futuro con barridos en cero, y se cambia end. end = end + pd.Timedelta('%ss'%Dt*zero_fill) #pasos de tiempo:steps, independiente del Dt for steps in np.arange(zero_fill): PosDates.append([]) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #mascara con shp a parte de wmf if mask is not None: #se abre un barrido para sacar la mascara g = netCDF4.Dataset(ListRutas[PosDates[0][0]]) field = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0)#g['Rain'][:]# RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] g.close() longs=np.array([RadProp[2]+0.5*RadProp[4]+i*RadProp[4] for i in range(RadProp[0])]) lats=np.array([RadProp[3]+0.5*RadProp[5]+i*RadProp[5] for i in range(RadProp[1])]) x,y = np.meshgrid(longs,lats) #mask as a shp if type(mask) == str: #boundaries shp = gpd.read_file(mask) poly = shp.geometry.unary_union shp_mask = np.zeros([len(lats),len(longs)]) for i in range(len(lats)): for j in range(len(longs)): if (poly.contains(Point(longs[j],lats[i])))==True: shp_mask[i,j] = 1# Rain_mask es la mascara l = x[shp_mask==1].min() r = x[shp_mask==1].max() d = y[shp_mask==1].min() a = y[shp_mask==1].max() #mask as a list with coordinates whithin the radar extent elif type(mask) == list: l = mask[0] ; r = mask[1] ; d = mask[2] ; a = mask[3] x,y = x.T,y.T #aun tengo dudas con el recorte, si en nc queda en la misma pos que los lats,longs. #boundaries position x_wh,y_wh = np.where((x>l)&(x<r)&(y>d)&(y<a)) #se redefine sfield con size que corresponde field = field[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] if save_bin and len(codigos)==1 and path_res is not None: #open nc file f = netCDF4.Dataset(path_res,'w', format='NETCDF4') #'w' stands for write tempgrp = f.createGroup('rad_data') # as folder for saving files lon = longs[np.unique(x_wh)[0]:np.unique(x_wh)[-1]] lat = lats[np.unique(y_wh)[0]:np.unique(y_wh)[-1]] #set name and leght of dimensions tempgrp.createDimension('lon', len(lon)) tempgrp.createDimension('lat', len(lat)) tempgrp.createDimension('time', None) #building variables longitude = tempgrp.createVariable('longitude', 'f4', 'lon') latitude = tempgrp.createVariable('latitude', 'f4', 'lat') rain = tempgrp.createVariable('rain', 'f4', (('time', 'lat', 'lon'))) time = tempgrp.createVariable('time', 'i4', 'time') #adding globalattributes f.description = "Radar rainfall dataset containing one group" f.history = "Created " + dt.datetime.now().strftime("%d/%m/%y") #Add local attributes to variable instances longitude.units = 'degrees east - wgs4' latitude.units = 'degrees north - wgs4' time.units = 'minutes since 2020-01-01 00:00' rain.units = 'mm/h' #passing data into variables # use proper indexing when passing values into the variables - just like you would a numpy array. longitude[:] = lon #The "[:]" at the end of the variable instance is necessary latitude[:] = lat else: # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) #accumulated in basin if accum: if mask is not None: rvec_accum = np.zeros(field.shape) dfaccum = pd.DataFrame(index = rng) #este producto no da con mask. else: rvec_accum = np.zeros(cu.ncells) # rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #ITERA SOBRE LOS BARRIDOS DEL PERIODO Y SE SACAN PRODUCTOS # print ListRutas for ind,dates,pos in zip(np.arange(len(datesDt[1:])),datesDt[1:],PosDates): #escoge como definir el size de rvec if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells, dtype = int) rStra = np.zeros(cu.ncells, dtype = int) try: #se lee y agrega lluvia de los nc en el intervalo. for c,p in enumerate(pos): #lista archivo leido if verbose: print (ListRutas[p]) #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(ListRutas[p]) rainfield = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0) RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #if all extent if all_radextent: radmatrix += rainfield #if mask if mask is not None and type(mask) == str: rvec += (rainfield*shp_mask)[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] elif mask is not None and type(mask) == list: rvec += rainfield[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] # on WMF. else: #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(rainfield,RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 Conv[rvec == 0] = 0 Stra[rvec == 0] = 0 #Cierra el netCDF g.close() #muletilla path = 'bla' except: print ('error - no field found ') path = '' if accum: if mask is not None: rvec += np.zeros(shape = field.shape) rvec = np.zeros(shape = field.shape) else: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec if mask is None: #esto para mask no sirve dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' #subbasins defined for WMF if meanrain_ALL and mask is None: mean = [] df_posmasks = pd.read_csv(path_masks_csv,index_col=0) for codigo in codigos: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec*df_posmasks['%s'%codigo])/float(df_posmasks['%s'%codigo][df_posmasks['%s'%codigo]==1].size)) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: mean = [] #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #si guarda nc de ese timestep guarda clasificados if dentro == 0: hagalo = True else: hagalo = False #mira si guarda o no los clasificados if save_class: #Escribe el binario convectivo aa = cuConv.rain_radar2basin_from_array(vec = rConv, ruta_out = path_res+'_conv', fecha = dates, dt = Dt, doit = hagalo) #Escribe el binario estratiforme aa = cuStra.rain_radar2basin_from_array(vec = rStra, ruta_out = path_res+'_stra', fecha = dates, dt = Dt, doit = hagalo) #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean elif mask is None and save_bin == True and len(codigos)==1 and path_res is None: #si es una cuenca pero no se quiere guardar binarios. mean = [] #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean #guardar .nc con info de recorte de radar: mask. if mask is not None and save_bin and len(codigos)==1 and path_res is not None: mean = [] #https://pyhogs.github.io/intro_netcdf4.html rain[ind,:,:] = rvec.T time[ind] = int((dates - pd.to_datetime('2010-01-01 00:00')).total_seconds()/60) #min desde 2010 if ind == np.arange(len(datesDt[1:]))[-1]: f.close() print ('.nc saved') #guarda en df meanrainfall. if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec)/float(shp_mask[shp_mask==1].size)) #save df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') pass #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True and mask is not None: return df,rvec_accum elif accum == True and mask is None: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_radar_rain_OP(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, meanrain_ALL=True,complete_naninaccum=False, evs_hist=False,save_bin=False,save_class = False, path_res=None,umbral=0.005,include_escenarios = None, verbose=True): ''' Read .nc's file forn rutaNC:101Radar_Class within assigned period and frequency. Por ahora solo sirve con un barrido por timestep, operacional a 5 min, melo. 0. It divides by 1000.0 and converts from mm/5min to mm/h. 1. Get mean radar rainfall in basins assigned in 'codigos' for finding masks, if the mask exist. 2. Write binary files if is setted. - Cannot do both 1 and 2. - To saving binary files (2) set: meanrain_ALL=False, save_bin=True, path_res= path where to write results, len('codigos')=1, nc_path aims to the one with dxp and simubasin props setted. Parameters ---------- start: string, date&time format %Y-%m%-d %H:%M, local time. end: string, date&time format %Y-%m%-d %H:%M, local time. Dt: float, timedelta in seconds. For this function it should be lower than 3600s (1h). cuenca: string, simubasin .nc path with dxp and format from WMF. It should be 260 path if whole catchment analysis is needed, or any other .nc path for saving the binary file. codigos: list, with codes of stage stations. Needed for finding the mask associated to a basin. rutaNC: string, path with .nc files from radar meteorology group. Default in amazonas: 101Radar_Class Optional Parameters ---------- accum: boolean, default False. True for getting the accumulated matrix between start and end. Change returns: df,rvec (accumulated) path_tif: string, path of tif to write accumlated basin map. Default None. all_radextent:boolean, default False. True for getting the accumulated matrix between start and end in the whole radar extent. Change returns: df,radmatrix. meanrain_ALL: boolean, defaul True. True for getting the mean radar rainfall within several basins which mask are defined in 'codigos'. save_bin: boolean, default False. True for saving .bin and .hdr files with rainfall and if len('codigos')=1. save_class: boolean,default False. True for saving .bin and .hdr for convective and stratiform classification. Applies if len('codigos')=1 and save_bin = True. path_res: string with path where to write results if save_bin=True, default None. umbral: float. Minimum umbral for writing rainfall, default = 0.005. Returns ---------- - df whith meanrainfall of assiged codes in 'codigos'. - df,rvec if accum = True. - df,radmatrix if all_radextent = True. - save .bin and .hdr if save_bin = True, len('codigos')=1 and path_res=path. ''' #### FECHAS Y ASIGNACIONES DE NC#### start,end =
pd.to_datetime(start)
pandas.to_datetime
""" Creates a new Database """ import re from app import APPLOG import pandas as pd from core.settings import ( DB_MOD, DB_DIR, ARTLIST_DIR, SQL_T_ARTLIST, SQL_T_BOM, SQL_CONN, ) from sqlalchemy import create_engine def createBomDB(bom_df: pd.DataFrame, items_df: pd.DataFrame) -> tuple: """Save DB to directory data, either SQLITE or CSV format.""" if bom_df.empty or items_df.empty: return pd.DataFrame(), pd.DataFrame() unwanted_columns = [ # "Father Name", "Father No of pairs", "Father Qty", "Child Name", "Item No._x", "Item No._y", ] try: bom_df["brand"] = bom_df.apply( lambda x: getBrandName(x.get("Process Order"), x.get("Father Name")), axis=1 ) bom_df = bom_df.merge( items_df[ ["Item No.", "FOREIGN NAME", "INVENTORY UOM", "Last Purchase Price"] ], how="left", left_on="Child", right_on="Item No.", ) bom_df = bom_df.merge( items_df[["Item No.", "Item MRP", "Product Type"]], how="left", left_on="Father", right_on="Item No.", ) bom_df.drop(unwanted_columns, axis=1, inplace=True, errors="ignore") bom_df.columns = [changeColumnName(name) for name in bom_df.columns.values] bom_df["childtype"] = bom_df.apply( lambda x: getMaterialType(x.father, x.child), axis=1 ) except Exception as e: APPLOG.append(f">> ERROR: {e}") return pd.DataFrame(), pd.DataFrame() # MC, SC bom_df["application"] = bom_df.apply( lambda x: getApplication(x.father, x.processorder), axis=1 ) bom_df["childqty"] =
pd.to_numeric(bom_df["childqty"], errors="coerce")
pandas.to_numeric
r"""Submodule frequentist_statistics.py includes the following functions: <br> - **normal_check():** compare the distribution of numeric variables to a normal distribution using the Kolmogrov-Smirnov test <br> - **correlation_analysis():** Run correlations for numerical features and return output in different formats <br> - **correlations_as_sample_increases():** Run correlations for subparts of the data to check robustness <br> - **multiple_univariate_OLSs():** Tmp <br> - **potential_for_change_index():** Calculate the potential for change index based on either variants of the r-squared (from linear regression) or the r-value (pearson correlation) <br> - **correct_pvalues():** function to correct for multiple testing <br> - **partial_correlation():** function to calculate the partial correlations whilst correcting for other variables <br> """ from itertools import combinations from itertools import product from typing import Tuple from typing import Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm from matplotlib.lines import Line2D from scipy import stats from sklearn.linear_model import LinearRegression from statsmodels.stats.multitest import multipletests from .utils import apply_scaling def normal_check(data: pd.DataFrame) -> pd.DataFrame: r"""Compare the distribution of numeric variables to a normal distribution using the Kolmogrov-Smirnov test Wrapper for `scipy.stats.kstest`: the empircal data is compared to a normally distributed variable with the same mean and standard deviation. A significant result (p < 0.05) in the goodness of fit test means that the data is not normally distributed. Parameters ---------- data: pandas.DataFrame Dataframe including the columns of interest Returns ---------- df_normality_check: pd.DataFrame Dataframe with column names, p-values and an indication of normality Examples ---------- >>> tips = sns.load_dataset("tips") >>> df_normality_check = normal_check(tips) """ # Select numeric columns only num_features = data.select_dtypes(include="number").columns.tolist() # Compare distribution of each feature to a normal distribution with given mean and std df_normality_check = data[num_features].apply( lambda x: stats.kstest( x.dropna(), stats.norm.cdf, args=(np.nanmean(x), np.nanstd(x)), N=len(x) )[1], axis=0, ) # create a label that indicates whether a feature has a normal distribution or not df_normality_check =
pd.DataFrame(df_normality_check)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'),
Timestamp('20130103 9:01:01')
pandas.tseries.index.Timestamp
import pandas as pd import psycopg2 import pickle import numpy as np # counterS = 0 # global counterS # global valGlob # from sqlalchemy import create_engine # -*- coding: utf-8 -*- import os import sys import copy # fileName = '/Users/alessandro/Documents/PhD/OntoHistory/WDTaxo_October2014.csv' # connection parameters def get_db_params(): params = { 'database': 'wikidb', 'user': 'postgres', 'password': '<PASSWORD>', 'host': 'localhost', 'port': '5432' } conn = psycopg2.connect(**params) return conn def queryexecutor(): # dictStats = {} # conn = get_db_params() # cur = conn.cursor() npCoso = np.load('/data/wikidata-project/WDOntoHistory/automated_revs.npy') setCoso = set(npCoso) for i in range(13, 18): for j in range(1, 7): date = "20" + str(i) + "-0" + str(j) + "-01" if j == 1: mt = "12" datePrev = "20" + str(i-1) + "-" + mt + "-01" else: datePrev = "20" + str(i) + "-0" + str(j-1) + "-01" print(date) try: queryStart = """SELECT item_id AS itemid, rev_id AS revid, time_stamp AS timestamp, user_name AS username, automated_tool FROM revision_history_201710 WHERE (time_stamp > '"""+ datePrev + """ 00:00:00' AND time_stamp < '"""+ date + """ 00:00:00');""" conn = get_db_params() cur = conn.cursor() cur.execute(queryStart) cur.close() conn.commit() # print(query) timetable_temp = pd.DataFrame() for chunk in pd.read_sql(queryStart, con=conn, chunksize=10000): timetable_temp = timetable_temp.append(chunk) #columns: itemid revid parid timestamp username noEdits = timetable_temp['username'].value_counts() noEdits = noEdits.reset_index() noEdits.columns = ['username', 'noEdits'] noItems = timetable_temp.groupby('username')['itemid'].nunique() noItems = noItems.reset_index() noItems.columns = ['username', 'noItems'] noEdits = noEdits.merge(noItems, how='left') timetable_temp.loc[timetable_temp['rev_id'].isin(setCoso),] = 'TRUE' noBatchEdits = timetable_temp['username'].loc[timetable_temp['automated_tool'] == 'TRUE', ].value_counts() if ~noBatchEdits.empty: noBatchEdits = noBatchEdits.reset_index() noBatchEdits.columns = ['username', 'noBatchEdits'] noEdits = noEdits.merge(noBatchEdits, how='left') else: noEdits['noBatchEdits'] = 0 print('batch edits') classesDataQuery = """SELECT statvalue FROM tempData WHERE ts < '"""+ date + """ 00:00:00';""" dfClasses =
pd.read_sql(classesDataQuery, con=conn)
pandas.read_sql
""" test get/set & misc """ from datetime import timedelta import re import numpy as np import pytest from pandas import ( DataFrame, IndexSlice, MultiIndex, Series, Timedelta, Timestamp, date_range, period_range, timedelta_range, ) import pandas._testing as tm def test_basic_indexing(): s = Series(np.random.randn(5), index=["a", "b", "a", "a", "b"]) msg = "index 5 is out of bounds for axis 0 with size 5" with pytest.raises(IndexError, match=msg): s[5] with pytest.raises(IndexError, match=msg): s[5] = 0 with pytest.raises(KeyError, match=r"^'c'$"): s["c"] s = s.sort_index() with pytest.raises(IndexError, match=msg): s[5] msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$" with pytest.raises(IndexError, match=msg): s[5] = 0 def test_basic_getitem_with_labels(datetime_series): indices = datetime_series.index[[5, 10, 15]] result = datetime_series[indices] expected = datetime_series.reindex(indices) tm.assert_series_equal(result, expected) result = datetime_series[indices[0] : indices[2]] expected = datetime_series.loc[indices[0] : indices[2]] tm.assert_series_equal(result, expected) def test_basic_getitem_dt64tz_values(): # GH12089 # with tz for values ser = Series( date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"] ) expected = Timestamp("2011-01-01", tz="US/Eastern") result = ser.loc["a"] assert result == expected result = ser.iloc[0] assert result == expected result = ser["a"] assert result == expected def test_getitem_setitem_ellipsis(): s = Series(np.random.randn(10)) np.fix(s) result = s[...] tm.assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() @pytest.mark.parametrize( "result_1, duplicate_item, expected_1", [ [ Series({1: 12, 2: [1, 2, 2, 3]}), Series({1: 313}), Series({1: 12}, dtype=object), ], [ Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), Series({1: [1, 2, 3]}), Series({1: [1, 2, 3]}), ], ], ) def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) tm.assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_setitem_integers(): # caused bug without test s = Series([1, 2, 3], ["a", "b", "c"]) assert s.iloc[0] == s["a"] s.iloc[0] = 5 tm.assert_almost_equal(s["a"], 5) def test_series_box_timestamp(): rng = date_range("20090415", "20090519", freq="B") ser = Series(rng) assert isinstance(ser[0], Timestamp) assert isinstance(ser.at[1], Timestamp) assert isinstance(ser.iat[2], Timestamp) assert isinstance(ser.loc[3], Timestamp) assert isinstance(ser.iloc[4], Timestamp) ser = Series(rng, index=rng) assert isinstance(ser[0], Timestamp) assert isinstance(ser.at[rng[1]], Timestamp) assert isinstance(ser.iat[2], Timestamp) assert isinstance(ser.loc[rng[3]], Timestamp) assert isinstance(ser.iloc[4], Timestamp) def test_series_box_timedelta(): rng = timedelta_range("1 day 1 s", periods=5, freq="h") ser = Series(rng) assert isinstance(ser[0], Timedelta) assert isinstance(ser.at[1], Timedelta) assert isinstance(ser.iat[2], Timedelta) assert isinstance(ser.loc[3], Timedelta) assert isinstance(ser.iloc[4], Timedelta) def test_getitem_ambiguous_keyerror(indexer_sl): ser = Series(range(10), index=list(range(0, 20, 2))) with pytest.raises(KeyError, match=r"^1$"): indexer_sl(ser)[1] def test_getitem_dups_with_missing(indexer_sl): # breaks reindex, so need to use .loc internally # GH 4246 ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"]) with pytest.raises(KeyError, match=re.escape("['bam'] not in index")): indexer_sl(ser)[["foo", "bar", "bah", "bam"]] def test_setitem_ambiguous_keyerror(indexer_sl): s = Series(range(10), index=list(range(0, 20, 2))) # equivalent of an append s2 = s.copy() indexer_sl(s2)[1] = 5 expected = s.append(Series([5], index=[1])) tm.assert_series_equal(s2, expected) def test_setitem(datetime_series, string_series): datetime_series[datetime_series.index[5]] = np.NaN datetime_series[[1, 2, 17]] = np.NaN datetime_series[6] = np.NaN assert np.isnan(datetime_series[6]) assert np.isnan(datetime_series[2]) datetime_series[np.isnan(datetime_series)] = 5 assert not np.isnan(datetime_series[2]) def test_setslice(datetime_series): sl = datetime_series[5:20] assert len(sl) == len(sl.index) assert sl.index.is_unique is True # FutureWarning from NumPy about [slice(None, 5). @pytest.mark.filterwarnings("ignore:Using a non-tuple:FutureWarning") def test_basic_getitem_setitem_corner(datetime_series): # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2] msg = "key of type tuple not found and not a MultiIndex" with pytest.raises(KeyError, match=msg): datetime_series[:, 2] with pytest.raises(KeyError, match=msg): datetime_series[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices with tm.assert_produces_warning(FutureWarning): # GH#31299 result = datetime_series[[slice(None, 5)]] expected = datetime_series[:5] tm.assert_series_equal(result, expected) # OK msg = r"unhashable type(: 'slice')?" with pytest.raises(TypeError, match=msg): datetime_series[[5, slice(None, None)]] with pytest.raises(TypeError, match=msg): datetime_series[[5, slice(None, None)]] = 2 def test_slice(string_series, object_series): numSlice = string_series[10:20] numSliceEnd = string_series[-10:] objSlice = object_series[10:20] assert string_series.index[9] not in numSlice.index assert object_series.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == string_series.index[11] assert tm.equalContents(numSliceEnd, np.array(string_series)[-10:]) # Test return view. sl = string_series[10:20] sl[:] = 0 assert (string_series[10:20] == 0).all() def test_timedelta_assignment(): # GH 8209 s = Series([], dtype=object) s.loc["B"] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"])) s = s.reindex(s.index.insert(0, "A")) tm.assert_series_equal(s, Series([np.nan,
Timedelta("1 days")
pandas.Timedelta
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np import pandas as pd import mars.dataframe as md from mars.config import option_context from mars.dataframe import DataFrame from mars.deploy.local.core import new_cluster from mars.session import new_session from mars.tests.core import TestBase try: import vineyard except ImportError: vineyard = None try: import sqlalchemy except ImportError: sqlalchemy = None try: import pyarrow as pa except ImportError: pa = None try: import fastparquet except ImportError: fastparquet = None class Test(TestBase): def setUp(self): super().setUp() self.ctx, self.executor = self._create_test_context() def testToCSVExecution(self): index = pd.RangeIndex(100, 0, -1, name='index') raw = pd.DataFrame({ 'col1': np.random.rand(100), 'col2': np.random.choice(['a', 'b', 'c'], (100,)), 'col3': np.arange(100) }, index=index) df = DataFrame(raw, chunk_size=33) with tempfile.TemporaryDirectory() as base_path: # DATAFRAME TESTS # test one file with dataframe path = os.path.join(base_path, 'out.csv') r = df.to_csv(path) self.executor.execute_dataframe(r) result = pd.read_csv(path, dtype=raw.dtypes.to_dict()) result.set_index('index', inplace=True) pd.testing.assert_frame_equal(result, raw) # test multi files with dataframe path = os.path.join(base_path, 'out-*.csv') r = df.to_csv(path) self.executor.execute_dataframe(r) dfs = [pd.read_csv(os.path.join(base_path, f'out-{i}.csv'), dtype=raw.dtypes.to_dict()) for i in range(4)] result = pd.concat(dfs, axis=0) result.set_index('index', inplace=True)
pd.testing.assert_frame_equal(result, raw)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- import sys import os import random import pdb import glob import numpy as np import pandas as pd from skimage import io from skimage.color import rgba2rgb from . import util from .util import kconfig from .transformers import resize_image #----------------------------------------------------------------------------Train/Val- iminfo generation def save_multi_sources_train_val_imgs(img_dirpath, train_sources_dict, labels_dict, train_frac=0.9): # Structure #{'source_origin': {'class_name': img_name}} columns = ['img_relpath', 'class_label', 'source_label'] train_info = [] val_info = [] # pdb.set_trace() for src_id, source in train_sources_dict.items(): full_img_dirpath_src = os.path.join(img_dirpath, source) store_img_relpath_src = os.path.join(source) for lbl_id, label in labels_dict.items(): full_img_dirpath_label = os.path.join(full_img_dirpath_src, label) store_img_relpath_label = os.path.join(store_img_relpath_src, label) # Load all the images imgs_relpath = [os.path.join(store_img_relpath_label, img) for img in os.listdir(full_img_dirpath_label) if not img.startswith('.')] random.shuffle(imgs_relpath) train_len = int(len(imgs_relpath) * train_frac) src_lb_train_data = [[img_relpath, lbl_id, src_id] for img_relpath in imgs_relpath[:train_len]] src_lb_val_data = [[img_relpath, lbl_id, src_id] for img_relpath in imgs_relpath[train_len:]] train_info += src_lb_train_data val_info += src_lb_val_data # pdb.set_trace() random.shuffle(train_info) df_train_info = pd.DataFrame(data=train_info, columns=columns) df_val_info = pd.DataFrame(data=val_info, columns=columns) df_train_info.to_csv(util.get_train_info_datapath(), index=False) df_val_info.to_csv(util.get_val_info_datapath(), index=False) return df_train_info, df_val_info #----------------------------------------------------------------------------Test- iminfo generation def save_multi_sources_test_imgs(img_dirpath, test_sources_dict, labels_dict): # Structure #{'source_origin': {'class_name': img_name}} columns = ['img_relpath', 'class_label', 'source_label'] test_info = [] # pdb.set_trace() for src_id, source in test_sources_dict.items(): full_img_dirpath_src = os.path.join(img_dirpath, source) store_img_relpath_src = os.path.join(source) for lbl_id, label in labels_dict.items(): full_img_dirpath_label = os.path.join(full_img_dirpath_src, label) store_img_relpath_label = os.path.join(store_img_relpath_src, label) # Load all the images imgs_relpath = [os.path.join(store_img_relpath_label, img) for img in os.listdir(full_img_dirpath_label) if not img.startswith('.')] imgs_relpath = [[img_relpath, lbl_id, src_id] for img_relpath in imgs_relpath] test_info += imgs_relpath # pdb.set_trace() df_test_info =
pd.DataFrame(data=test_info, columns=columns)
pandas.DataFrame
#=============================================== # PROJETO <NAME> # funcoes para preprocessamento e visualizacao # # @claudioalvesmonteiro #=============================================== # funcao para gerar dummies com base em threshold def categoryToDummyThreshold(dataframe, data, column, threshold): import pandas as pd # capturar distribuicao da CID cont = count_porcent(data, column) # combinar com base de ambulatorio data = data.merge(cont, on=column) # criar coluna CID > 1% data[('SIG_'+column)] = [data[column][x] if data['porcent'][x] >= threshold else 'OUTROS' for x in range(len(data))] # selecionar casos unicos do cod integracao e cid uni = data[['Cod Integração', ('SIG_'+column)]].drop_duplicates() # combinar com base alvo dataframe = dataframe.merge(uni, on='Cod Integração', how='left') # criar variaveis dummy para CID > %1 e combinar com a base dummies =
pd.get_dummies(dataframe[('SIG_'+column)], prefix=column)
pandas.get_dummies
import sys import click import requests, requests_cache import configparser import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pathlib import Path from datetime import datetime from mpl_toolkits.axes_grid1 import make_axes_locatable from pynance.auth import signed_params from pynance.utils import create_session, create_datetime, to_milliseconds from utils import WIDTH, GOLDEN_RATIO, pt_to_in def create_trades_frame(trades_list): trades = pd.DataFrame(trades_list) return trades.assign(time=
pd.to_datetime(trades.time, unit="ms")
pandas.to_datetime
import matplotlib.pyplot as plt import seaborn as sns import pdb import requests import re import threading import concurrent.futures import numpy as np import pandas as pd from functools import reduce from collections import Counter from sklearn.preprocessing import normalize, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler import networkx as nx # import signal import warnings warnings.filterwarnings("ignore") from url_utils import * from wiki_scrapper import WikiScrapper from WikiMultiQuery import wiki_multi_query from graph_helpers import create_dispersion_df, dict_values_to_df, sort_dict_values, format_categories, compare_categories, rank_order, similarity_rank ################ # GraphCreator # ################ class GraphCreator: """ Retrieves data from the Wikipedia API and constructs a graph network of article relations. Allows for the fast creation of a graph based recommender system. Input: ------ entry (required, string) A string containing the title of a Wikipedia article or a valid Wikipedia URL. include_see_also (defaul: True, bool) If True, marks any see also links as important and related to the main topic (default). If False, does nothing to the see also links. Mark as False if validating recommendations max_recursive_requests (default: 50, int) The maximum number of times an API call will repeat to get all information. This can be an important parameter to set if efficiency is an issue. Lower values will be more efficient, but may miss important information. Higher values are less efficient, but gather more data. """ def __init__(self, entry, include_see_also=True, max_recursive_requests=50): self.graph = nx.DiGraph() self.entry = get_title(entry) # from url_utils self.max_requests = max_recursive_requests ws = WikiScrapper(f"https://en.wikipedia.org/wiki/{self.entry}") ws.parse_intro_links() self.primary_nodes = {title : True for title in ws.get_primary_links(include_see_also=include_see_also)} # see also articles to be used as targets for evaluation self.see_also_articles = ws.see_also_link_titles self.visited = {self.entry} self.next_links = [] self.categories = {} self.redirect_targets = [] self.redirect_sources = {} self.query_articles([self.entry]) # setup timeout function # def handle_alarm(signum, frame): # raise RuntimeError # signal.signal(signal.SIGALRM, handle_alarm) ###################################### # GRAPH SETUP & MAINTAINANCE METHODS # ###################################### def _add_edges(self, articles): """ Given a list of articles, adds nodes and connections (edges) to the network. It can be called manually, but the expected use is within an internal graph update call. """ for article in articles: self.categories[article['title']] = format_categories([category.split("Category:")[1] for category in article['categories'] if not bool(re.findall(r"(articles)|(uses)|(commons)|(category\:use)", category, re.I))]) self.graph.add_edges_from( [(article['title'], link) for link in article['links']]) self.graph.add_edges_from( [(linkhere, article['title']) for linkhere in article['linkshere']]) def update_edge_weights(self): """ Edges are weighted by the number of categories two connect nodes share. This method will look at each node and its neighbors and adjust in and outbound edge weights as needed. """ for edge in self.graph.out_edges: weight = compare_categories(edge[0], edge[1], self.categories) self.graph.add_edge(edge[0], edge[1], weight=weight) for edge in self.graph.in_edges: weight = compare_categories(edge[0], edge[1], self.categories) self.graph.add_edge(edge[0], edge[1], weight=weight) def get_edge_weights(self): """ A getter method to view the edge weights of each node (in and outbound). """ edge_weights = [] for edge in self.graph.edges: edge_weights.append((edge[0], edge[1], self.graph.get_edge_data(edge[0], edge[1])['weight'])) return
pd.DataFrame(edge_weights, columns=["source_node", "target_node", "edge_weight"])
pandas.DataFrame
from binance.client import Client import keys from pandas import DataFrame as df from datetime import datetime import trading_key client=Client(api_key=keys.Pkeys, api_secret=keys.Skeys) #get candle data def candle_data(symbols, intervals): candles=client.get_klines(symbol=symbols, interval=intervals) #create (date) dataframe candles_data_frame=df(candles) candles_data_frame_date=candles_data_frame[0] #create the empty date list final_date=[] #convert timestamp to readable date and append it to the list for time in candles_data_frame_date.unique(): readable=datetime.fromtimestamp(int(time/1000)) final_date.append(readable) #drop the first and last columns of the dateframe candles_data_frame.pop(0) candles_data_frame.pop(len(candles_data_frame.columns)) dataframe_final_date=
df(final_date)
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import math import itertools import pandas as pd import datetime from fclib.dataset.retail.benchmark_paths import DATA_DIR import fclib.dataset.retail.benchmark_settings as bs # Utility functions def week_of_month(dt): """Get the week of the month for the specified date. Args: dt (Datetime): Input date Returns: wom (Integer): Week of the month of the input date """ from math import ceil first_day = dt.replace(day=1) dom = dt.day adjusted_dom = dom + first_day.weekday() wom = int(ceil(adjusted_dom / 7.0)) return wom def lagged_features(df, lags): """Create lagged features based on time series data. Args: df (Dataframe): Input time series data sorted by time lags (List): Lag lengths Returns: fea (Dataframe): Lagged features """ df_list = [] for lag in lags: df_shifted = df.shift(lag) df_shifted.columns = [x + "_lag" + str(lag) for x in df_shifted.columns] df_list.append(df_shifted) fea = pd.concat(df_list, axis=1) return fea def moving_averages(df, start_step, window_size=None): """Compute averages of every feature over moving time windows. Args: df (Dataframe): Input features as a dataframe Returns: fea (Dataframe): Dataframe consisting of the moving averages """ if window_size is None: # Use a large window to compute average over all historical data window_size = df.shape[0] fea = df.shift(start_step).rolling(min_periods=1, center=False, window=window_size).mean() fea.columns = fea.columns + "_mean" + str(window_size) return fea if __name__ == "__main__": for submission_round in range(1, bs.NUM_ROUNDS + 1): print("creating features for round {}...".format(submission_round)) # read in data train_file = os.path.join(DATA_DIR, "train/train_round_{}.csv".format(submission_round)) aux_file = os.path.join(DATA_DIR, "train/aux_round_{}.csv".format(submission_round)) train_df = pd.read_csv(train_file, index_col=False) aux_df = pd.read_csv(aux_file, index_col=False) # calculate move train_df["move"] = train_df["logmove"].apply(lambda x: round(math.exp(x))) train_df = train_df[["store", "brand", "week", "profit", "move", "logmove"]] # merge train_df with aux_df all_df = pd.merge(train_df, aux_df, how="right", on=["store", "brand", "week"]) # fill missing datetime gaps store_list = all_df["store"].unique() brand_list = all_df["brand"].unique() week_list = range(bs.TRAIN_START_WEEK, bs.TEST_END_WEEK_LIST[submission_round - 1] + 1) item_list = list(itertools.product(store_list, brand_list, week_list)) item_df =
pd.DataFrame.from_records(item_list, columns=["store", "brand", "week"])
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- """ Created on Mon Oct 12 16:44:24 2020 @author: Borja """ import os import pandas as pd import numpy as np import matplotlib.pyplot as plt """ - Ultra Trail Mont Blanc. Clasificación desde 2003 hasta 2017. https://www.kaggle.com/ceruleansea/ultratrail-du-montblanc-20032017?select=utmb_2017.csv -Ultra Trail Mont Blanc, Clasificación desde 2017 hasta 2019. https://www.kaggle.com/purpleyupi/utmb-results Datos guardados en 'Data/csv/*.csv' """ utmb_2003 = pd.read_csv('Data/csv/utmb_2003.csv', sep=',', decimal='.') utmb_2004 = pd.read_csv('Data/csv/utmb_2004.csv', sep=',', decimal='.') utmb_2005 = pd.read_csv('Data/csv/utmb_2005.csv', sep=',', decimal='.') utmb_2006 = pd.read_csv('Data/csv/utmb_2006.csv', sep=',', decimal='.') utmb_2007 = pd.read_csv('Data/csv/utmb_2007.csv', sep=',', decimal='.') utmb_2008 =
pd.read_csv('Data/csv/utmb_2008.csv', sep=',', decimal='.')
pandas.read_csv
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ from __future__ import division from datetime import datetime from sklearn import linear_model import pandas as pd import numpy as np import scipy.stats as st import statsmodels.distributions.empirical_distribution as edis import seaborn as sns; sns.set(color_codes=True) import matplotlib.pyplot as plt ######################################################################### # This purpose of this script is to use historical temperature and streamflow data # to calculate synthetic time series of daily flows at each of the stream gages # used in the hydropower production models. # Regression and vector-autoregressive errors are used to simulate total annual # streamflows, and these are then paired with daily streamflow fractions tied # to daily temperature dynamics ######################################################################### # Import historical tmeperature data df_temp = pd.read_excel('Synthetic_streamflows/hist_temps_1953_2007.xlsx') his_temp_matrix = df_temp.values # Import calender calender=pd.read_excel('Synthetic_streamflows/BPA_hist_streamflow.xlsx',sheet_name='Calender',header= None) calender=calender.values julian=calender[:,2] ############################### # Synthetic HDD CDD calculation # Simulation data sim_weather=
pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # This will create plots for institutions of universities in THE WUR univs only and for the period of 2007-2017. The input dataset contains info of THE WUR univs only but for any period of time. # #### The unpaywall dump used was from (April or June) 2018; hence analysis until 2017 only is going to be included. # ## Question : What is the distribution of incoming citation counts for OA and non-OA papers published by THE WUR univ within each country? # In[1]: # standard path wrangling to be able to import project config and sources import os import sys from os.path import join root = os.path.dirname(os.getcwd()) sys.path.append(root) print('Project root: {}'.format(root)) # In[2]: sys.path.append(join(root,"spark/shared/")) from MAG_utils import * # In[ ]: # In[3]: # Built-in import json # Installed import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib import rc,rcParams from matplotlib.patches import Rectangle import unicodedata import re from statistics import mean # In[4]: cfg = None with open(join(root,"spark/config.json")) as fp: cfg = json.load(fp) # In[5]: # cfg # In[6]: cnames_for_plot = { "austria" : "Austria", "brazil" : "Brazil", "germany" : "Germany", "india" : "India", "portugal" : "Portugal", "russia" : "Russia", "uk" : "UK", "usa" : "USA" } # In[7]: output_dir = join(root,"documents/analysis/dataset_selection_question5") # In[ ]: # Create a new directory to save results os.makedirs(output_dir) # In[8]: study_years = [2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017] # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # # Extraction of Citation Counts of OA and unknown papers for each university # In[9]: def get_univ_papers_citation_counts(country_papers_OA_df, univs_name): ''' Get the plot of count of citations for both OA and non-OA papers for each university in the input country ''' univs_info = {} univs_not_found = [] univs_found = [] for org_univ_name in set(univs_name): # remove duplicate univ names in the THE list, if any # print(org_univ_name) THE_univ_name_normalised = mag_normalisation_institution_names(org_univ_name) ''' The dataframe that will be selected for the current univ is either : 1. When the MAG normalizedname column matches to THE_univ_name_normalised or 2. When the MAG normalised(wikiname) matches to THE_univ_name_normalised -- this matches English names (in MAG wiki links as well as THE) of non English name (in MAG normalisedname or displayname) universities. ''' univ_papers_df_set1 = country_papers_OA_df[country_papers_OA_df['normalizedname']==THE_univ_name_normalised] univ_papers_df_set2 = country_papers_OA_df[country_papers_OA_df['normalizedwikiname']==THE_univ_name_normalised] # The records in two sets can be the excatly the same # Concat and remove exact duplicates -- https://stackoverflow.com/a/21317570/530399 univ_papers_df =
pd.concat([univ_papers_df_set1, univ_papers_df_set2])
pandas.concat
""" Created on Mon Mar 23 17:06:41 2020 @author: diego """ from mip import * import os import pandas as pd import numpy as np import subprocess # from .Configurations import Gurobi_license_path # os.environ['GRB_LICENSE_FILE'] = Gurobi_license_path #list_of_inputs # # P : number of working shifts # T : time horizon partitioned in time shifts [int] # C : hourly cost of each operator [int] # sigma_t : working hours for time t determined by the corresponding shift p [..list..] # C_t = C*sigma_t : cost of each operator at time t [..list..] # f_j : set-up cost of sorting stage j [..list..] # a_t : quantity of material in kg unloaded from trucks at time t [..list..] # alpha_j : percentage of waste processed in stage j-1, received in input by buffer j [..list..] # S_j : maximum inventory capacity of the sorting stage buffer j [..list..] # LC_j : critical stock level threshold of buffer j [..list..] # rho_j : fraction of material allowed to be left at buffer j at the end of time horizon [..list..] # K_j : single operator hourly production capacity [kg/h] of sorting stage j [..list..] # SK_{j,t} = K_j*\sigma_t : operator sorting capacity in sorting stage j, at time t [..list..] # M : maximum number of operators available in each time shift [int] # E_j : minimum number of operators to be employed in each time shift of stage j [..list..] # h_j^i : slope of the i-th part of linearization of the buffer j stock cost curve [..list..] def sorting_model(input_app,arrivals): GapTol = 1e-3 TimeLimit = 600 deltadays = (input_app.horizon_UB - input_app.horizon_LB).days + 1 J = 2 #two default sorting stages P = input_app.dailyshifts TH = deltadays * P sigma = [input_app.shift_1_hours,input_app.shift_2_hours,input_app.shift_3_hours] sigma = sigma[:P] T = [[]] * P for p in range(P): T[p] = np.arange(p, TH, P) p = p + 1 alpha = [1,input_app.firstTO2nd_sort/100] S = [input_app.sort1_maxstock,input_app.sort2_maxstock] K = [input_app.sort1_capacity,input_app.sort2_capacity] SK = np.zeros((J,P)) #Selection single worker's shiftly productive capacity for j in range(J): for p in range(P): SK[j,p] = K[j] * sigma[p] ro = [input_app.finalstock_treshold] * J LC = [] for j in range(J): LC.append((input_app.overfill_treshold/100) * S[j]) C = input_app.operator_wage # single worker's hourly cost (euro/h) C_t = np.zeros(TH) # single worker's cost for the whole shift p (euro/shift) for t in range(TH): if t in T[0]: C_t[t] = C * sigma[0] else: C_t[t] = C * sigma[1] E = [input_app.min_op_sort1,input_app.min_op_sort2] M = input_app.max_operators setup_cost = [input_app.setup_sort1,input_app.setup_sort1] # Arrivals a = np.zeros(TH) i = 0 j = 0 for t in range(TH): if t in T[0]: a[t] = arrivals[0][i] i += 1 if t in T[1]: a[t] = arrivals[1][j] j += 1 base = 20 prec = 2 def rounding(a, prec, base): return base * (a / base).round().round(prec) a = rounding(a, prec, base) a = dict(enumerate(a)) # Storage costs cost_labels = ['null', 'under balance', 'balanced', 'over balance'] dh = np.zeros((J, 2)) dh[0, 0] = 0.009 # over the balance point between production and storage costs dh[0, 1] = 0.4 dh[1, 0] = 0.005 dh[1, 1] = 0.2 for j in range(2, J): dh[j, 0] = 0.005 dh[j, 1] = 0.2 C_prod = True C_stock = True ######## Model ########################################################### # Gurobi_cl_path in Configurations.py obtained by "which gurobi_cl" in terminal prompt. from .Configurations import Gurobi_cl_path solver = 'GRB' if solver == 'GRB': try: # gurobi_cl path to include in Configurations.py can be retrieved # by entering "which gurobi_cl" in a command/terminal prompt. Please take a look to Configurations.py subprocess.run(Gurobi_cl_path, stdout=subprocess.PIPE).stdout.decode('utf-8') m = Model("WFA", sense=MINIMIZE, solver_name=solver) except Exception as e: print(e) solver = 'CBC' m = Model("WFA", sense=MINIMIZE, solver_name=solver) else: solver = 'CBC' m = Model("WFA", sense=MINIMIZE, solver_name=solver) # VARIABLES # workforce to be employed on selection stag j if C_prod == True: x = {(j, t): m.add_var(lb=0, var_type=INTEGER, obj=C_t[t], name="x_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} else: x = {(j, t): m.add_var(lb=0, var_type=INTEGER, name="x_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # quantity preoccesed in a shift u = {(j, t): m.add_var(lb=0, var_type=CONTINUOUS, name="u_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # selection stage start if C_prod == True: y = {(j, t): m.add_var(lb=0, ub=1, obj=setup_cost[j], var_type=BINARY, name="y_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} else: y = {(j, t): m.add_var(lb=0, ub=1, var_type=BINARY, name="y_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # These are the stock variables regarding the j-th selection stage if C_stock == True: I = {(j, t): m.add_var(lb=0, ub=S[j], var_type=CONTINUOUS, name="I_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # stock quantity I_1 = {(j, t): m.add_var(lb=0, ub=LC[j], var_type=CONTINUOUS, obj=dh[j, 0], name="I_1_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # stock quantity below critical level I_2 = {(j, t): m.add_var(lb=0, var_type=CONTINUOUS, obj=dh[j, 1], name="I_2_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # stock quantity above critical level else: I = {(j, t): m.add_var(lb=0, ub=S[j], var_type=CONTINUOUS, name="I_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # stock quantity # binary variable concerning the overcoming of critical level if C_stock == True: w = {(j, t): m.add_var(lb=0, ub=1, var_type=BINARY, name="w_{}_{}".format(j, t)) for j in range(J) for t in range(TH)} # CONSTRAINTS # ( 2 ) ####################################################################################### for j in range(J): for t in range(TH): # Planned workforce must not exceed the maximum number of available workforce m += x[j, t] <= M * y[j, t], "bigM_{}_{}".format(j, t) # For each period there is a minimum fixed number of workers for selection stage j m += x[j, t] >= E[j] * y[j, t], 'minWF_{}_{}'.format(j, t) ############################################################################################### # ( 3 ) ####################################################################################### for t in range(TH): m += xsum(x[j, t] for j in range(J)) <= M, "Wforce_bound_{}".format(t) ############################################################################################### # ( 4 ) ####################################################################################### # These constraints bound the processed quantity to the maximum production capacity # over the corresponding shift as a function of the workforce allocation for j in range(J): for t in range(TH): if t in T[0]: m += u[j, t] <= SK[j, 0] * x[j, t], "prod_{}_{}".format(j, t) if t in T[1]: m += u[j, t] <= SK[j, 1] * x[j, t], "prod_{}_{}".format(j, t) ############################################################################################### # not included in paper formulation ########################################################### # Starting level of the first storage for j in range(J): if j == 0: m += I[j, 0] == a[0] - u[0, 0], "initializzation_{}".format(j) else: m += I[j, 0] == alpha[j] * u[j - 1, 0], "initializzation_{}".format(j) ############################################################################################### # ( 5 ) & ( 6 ) ################################################################################ # Flow balance equation for 1st and 2nd selection for j in range(J): for t in range(1, TH): if j == 0: m += I[j, t] == I[j, t - 1] + a[t] - u[j, t], "balance_{}_{}".format(j, t) else: m += I[j, t] == I[j, t - 1] + alpha[j] * u[j - 1, t] - u[j, t], "balance_{}_{}".format(j, t) ############################################################################################### if C_stock == True: # ( 7 ) ####################################################################################### # The constraints below are needed to linearize the stock costs relating to selection stages for j in range(J): for t in range(TH): m += I[j, t] == I_1[j, t] + I_2[j, t], "linear_stock_{}_{}".format(j, t) ############################################################################################### # ( 8 ) & ( 9 ) ############################################################################### for t in range(TH): m += I_1[j, t] >= LC[j] * w[j, t], "v1_{}_{}".format(j, t) m += I_2[j, t] <= (S[j] - LC[j]) * w[j, t], "v2_{}_{}".format(j, t) ############################################################################################### # ( 10 ) ###################################################################################### # These two constraints set the stock level over the last period below a decided level both for the first and second stock level for j in range(J): m += I[j, TH - 1] <= np.floor(ro[j] * LC[j]), "end_{}_{}".format(j, TH - 1) ############################################################################################### m.objective = minimize(xsum(C_t[t] * x[j, t] for j in range(J) for t in range(TH)) + xsum(setup_cost[j] * y[j, t] for j in range(J) for t in range(TH)) + xsum(dh[j, 0] * I_1[j, t] + dh[j, 1] * I_2[j, t] for j in range(J) for t in range(TH))) m.max_gap = GapTol status = m.optimize(max_seconds=TimeLimit) var_results = [] y_opt = [] x_opt = [] u_opt = [] if status == OptimizationStatus.NO_SOLUTION_FOUND: status = "infeasible" performances = [m.objective_value, m.objective_bound, m.gap] if status == OptimizationStatus.OPTIMAL or status == OptimizationStatus.FEASIBLE: status = "optimal" performances = [m.objective_value, m.objective_bound, m.gap] for v in m.vars: var_results.append([v.name, v.x]) var_results = pd.DataFrame.from_records(var_results, columns=["variable", "value"]) y_opt = var_results[var_results['variable'].str.contains("y", na=False)] x_opt = var_results[var_results['variable'].str.contains("x", na=False)] u_opt = var_results[var_results['variable'].str.contains("u", na=False)] y_opt['value'] = y_opt['value'].apply(pd.to_numeric).astype(int) x_opt['value'] = x_opt['value'].apply(pd.to_numeric).astype(int) u_opt['value'] = u_opt['value'].apply(pd.to_numeric).astype(int) y_opt_1t = y_opt[y_opt['variable'].str.contains("y_0", na=False)]['value'].tolist() y_opt_2t = y_opt[y_opt['variable'].str.contains("y_1", na=False)]['value'].tolist() y_opt =
pd.DataFrame.from_records([y_opt_1t,y_opt_2t])
pandas.DataFrame.from_records
#!/usr/bin/env python """ analyse Elasticsearch query """ import json from elasticsearch import Elasticsearch from elasticsearch import logger as es_logger from collections import defaultdict, Counter import re import os from datetime import datetime # Preprocess terms for TF-IDF import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer # progress bar from tqdm import tqdm # ploting import matplotlib.pyplot as plt # LOG import logging from logging.handlers import RotatingFileHandler # Word embedding for evaluation from sentence_transformers import SentenceTransformer from sklearn.manifold import TSNE import seaborn as sns from sklearn.cluster import KMeans, AgglomerativeClustering from sklearn.metrics.pairwise import cosine_similarity from scipy import sparse import scipy.spatial as sp # Spatial entity as descriptor : from geopy.geocoders import Nominatim from geopy.extra.rate_limiter import RateLimiter # venn from matplotlib_venn_wordcloud import venn2_wordcloud, venn3_wordcloud import operator # Global var on Levels on spatial and temporal axis spatialLevels = ['city', 'state', 'country'] temporalLevels = ['day', 'week', 'month', 'period'] def elasticsearch_query(query_fname, logger): """ Build a ES query and return a default dict with resuls :return: tweetsByCityAndDate """ # Elastic search credentials client = Elasticsearch("http://localhost:9200") es_logger.setLevel(logging.WARNING) index = "twitter" # Define a Query query = open(query_fname, "r").read() result = Elasticsearch.search(client, index=index, body=query, scroll='2m', size=5000) # Append all pages form scroll search : avoid the 10k limitation of ElasticSearch results = avoid10kquerylimitation(result, client, logger) # Initiate a dict for each city append all Tweets content tweetsByCityAndDate = defaultdict(list) for hits in results: # parse Java date : EEE MMM dd HH:mm:ss Z yyyy inDate = hits["_source"]["created_at"] parseDate = datetime.strptime(inDate, "%a %b %d %H:%M:%S %z %Y") try:# geodocing may be bad geocoding = hits["_source"]["rest"]["features"][0]["properties"] except: continue # skip this iteraction if "country" in hits["_source"]["rest"]["features"][0]["properties"]: # locaties do not necessarily have an associated stated try: cityStateCountry = str(hits["_source"]["rest"]["features"][0]["properties"]["city"]) + "_" + \ str(hits["_source"]["rest"]["features"][0]["properties"]["state"]) + "_" + \ str(hits["_source"]["rest"]["features"][0]["properties"]["country"]) except: # there is no state in geocoding try: logger.debug(hits["_source"]["rest"]["features"][0]["properties"]["city"] + " has no state") cityStateCountry = str(hits["_source"]["rest"]["features"][0]["properties"]["city"]) + "_" + \ str("none") + "_" + \ str(hits["_source"]["rest"]["features"][0]["properties"]["country"]) except: # there is no city as well : only country # print(json.dumps(hits["_source"], indent=4)) try: # cityStateCountry = str("none") + "_" + \ str("none") + "_" + \ str(hits["_source"]["rest"]["features"][0]["properties"]["country"]) except: cityStateCountry = str("none") + "_" + \ str("none") + "_" + \ str("none") try: tweetsByCityAndDate[cityStateCountry].append( { "tweet": preprocessTweets(hits["_source"]["full_text"]), "created_at": parseDate } ) except: print(json.dumps(hits["_source"], indent=4)) # biotexInputBuilder(tweetsByCityAndDate) # pprint(tweetsByCityAndDate) return tweetsByCityAndDate def avoid10kquerylimitation(result, client, logger): """ Elasticsearch limit results of query at 10 000. To avoid this limit, we need to paginate results and scroll This method append all pages form scroll search :param result: a result of a ElasticSearcg query :return: """ scroll_size = result['hits']['total']["value"] logger.info("Number of elasticsearch scroll: " + str(scroll_size)) results = [] # Progress bar pbar = tqdm(total=scroll_size) while (scroll_size > 0): try: scroll_id = result['_scroll_id'] res = client.scroll(scroll_id=scroll_id, scroll='60s') results += res['hits']['hits'] scroll_size = len(res['hits']['hits']) pbar.update(scroll_size) except: pbar.close() logger.error("elasticsearch search scroll failed") break pbar.close() return results def preprocessTweets(text): """ 1 - Clean up tweets text cf : https://medium.com/analytics-vidhya/basic-tweet-preprocessing-method-with-python-56b4e53854a1 2 - Detection lang 3 - remove stopword ?? :param text: :return: list : texclean, and langue detected """ ## 1 clean up twetts # remove URLs textclean = re.sub('((www\.[^\s]+)|(https?://[^\s]+)|(http?://[^\s]+))', '', text) textclean = re.sub(r'http\S+', '', textclean) # remove usernames # textclean = re.sub('@[^\s]+', '', textclean) # remove the # in #hashtag # textclean = re.sub(r'#([^\s]+)', r'\1', textclean) return textclean def matrixOccurenceBuilder(tweetsofcity, matrixAggDay_fout, matrixOccurence_fout, save_intermediaire_files, logger): """ Create a matrix of : - line : (city,day) - column : terms - value of cells : TF (term frequency) Help found here : http://www.xavierdupre.fr/app/papierstat/helpsphinx/notebooks/artificiel_tokenize_features.html https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-e8b9d00e7e76 :param tweetsofcity: :param matrixAggDay_fout: file to save :param matrixOccurence_fout: file to save :return: """ # initiate matrix of tweets aggregate by day # col = ['city', 'day', 'tweetsList', 'bow'] col = ['city', 'day', 'tweetsList'] matrixAggDay = pd.DataFrame(columns=col) cityDayList = [] logger.info("start full_text concatenation for city & day") pbar = tqdm(total=len(tweetsofcity)) for city in tweetsofcity: # create a table with 2 columns : tweet and created_at for a specific city matrix = pd.DataFrame(tweetsofcity[city]) # Aggregate list of tweets by single day for specifics cities ## Loop on days for a city period = matrix['created_at'].dt.date period = period.unique() period.sort() for day in period: # aggregate city and date document document = '. \n'.join(matrix.loc[matrix['created_at'].dt.date == day]['tweet'].tolist()) # Bag of Words and preprocces # preproccesFullText = preprocessTerms(document) tweetsOfDayAndCity = { 'city': city, 'day': day, 'tweetsList': document } cityDayList.append(city + "_" + str(day)) try: matrixAggDay = matrixAggDay.append(tweetsOfDayAndCity, ignore_index=True) except: print("full_text empty after pre-process: "+document) continue pbar.update(1) pbar.close() if save_intermediaire_files: logger.info("Saving file: matrix of full_text concatenated by day & city: "+str(matrixAggDay_fout)) matrixAggDay.to_csv(matrixAggDay_fout) # Count terms with sci-kit learn cd = CountVectorizer( stop_words='english', #preprocessor=sklearn_vectorizer_no_number_preprocessor, #min_df=2, # token at least present in 2 cities : reduce size of matrix max_features=25000, ngram_range=(1, 1), token_pattern='[a-zA-Z0-9#@]+', #remove user name, i.e term starting with @ for personnal data issue # strip_accents= "ascii" # remove token with special character (trying to keep only english word) ) cd.fit(matrixAggDay['tweetsList']) res = cd.transform(matrixAggDay["tweetsList"]) countTerms = res.todense() # create matrix ## get terms : # voc = cd.vocabulary_ # listOfTerms = {term for term, index in sorted(voc.items(), key=lambda item: item[1])} listOfTerms = cd.get_feature_names() ##initiate matrix with count for each terms matrixOccurence = pd.DataFrame(data=countTerms[0:, 0:], index=cityDayList, columns=listOfTerms) # save to file if save_intermediaire_files: logger.info("Saving file: occurence of term: "+str(matrixOccurence_fout)) matrixOccurence.to_csv(matrixOccurence_fout) return matrixOccurence def spatiotemporelFilter(matrix, listOfcities='all', spatialLevel='city', period='all', temporalLevel='day'): """ Filter matrix with list of cities and a period :param matrix: :param listOfcities: :param spatialLevel: :param period: :param temporalLevel: :return: matrix filtred """ if spatialLevel not in spatialLevels or temporalLevel not in temporalLevels: print("wrong level, please double check") return 1 # Extract cities and period ## cities if listOfcities != 'all': ### we need to filter ###Initiate a numpy array of False filter = np.zeros((1, len(matrix.index)), dtype=bool)[0] for city in listOfcities: ### edit filter if index contains the city (for each city of the list) filter += matrix.index.str.startswith(str(city) + "_") matrix = matrix.loc[filter] ##period if str(period) != 'all': ### we need a filter on date datefilter = np.zeros((1, len(matrix.index)), dtype=bool)[0] for date in period: datefilter += matrix.index.str.contains(date.strftime('%Y-%m-%d')) matrix = matrix.loc[datefilter] return matrix def HTFIDF(matrixOcc, matrixHTFIDF_fname, biggestHTFIDFscore_fname, listOfcities='all', spatialLevel='city', period='all', temporalLevel='day'): """ Aggregate on spatial and temporel and then compute TF-IDF :param matrixOcc: Matrix with TF already compute :param listOfcities: filter on this cities :param spatialLevel: city / state / country / world :param period: Filter on this period :param temporalLevel: day / week (month have to be implemented) :return: """ matrixOcc = spatiotemporelFilter(matrix=matrixOcc, listOfcities=listOfcities, spatialLevel='state', period=period) # Aggregate by level ## Create 4 new columns : city, State, Country and date def splitindex(row): return row.split("_") matrixOcc["city"], matrixOcc["state"], matrixOcc["country"], matrixOcc["date"] = \ zip(*matrixOcc.index.map(splitindex)) if temporalLevel == 'day': ## In space if spatialLevel == 'city': # do nothing pass elif spatialLevel == 'state' and temporalLevel == 'day': matrixOcc = matrixOcc.groupby("state").sum() elif spatialLevel == 'country' and temporalLevel == 'day': matrixOcc = matrixOcc.groupby("country").sum() elif temporalLevel == "week": matrixOcc.date = pd.to_datetime((matrixOcc.date)) - pd.to_timedelta(7, unit='d')# convert date into datetime ## in space and time if spatialLevel == 'country': matrixOcc = matrixOcc.groupby(["country", pd.Grouper(key="date", freq="W")]).sum() elif spatialLevel == 'state': matrixOcc = matrixOcc.groupby(["state", pd.Grouper(key="date", freq="W")]).sum() elif spatialLevel == 'city': matrixOcc = matrixOcc.groupby(["city",
pd.Grouper(key="date", freq="W")
pandas.Grouper
#---------------------------------------------------------------------------------------------- #################### # IMPORT LIBRARIES # #################### import streamlit as st import pandas as pd import numpy as np import plotly as dd import plotly.express as px import seaborn as sns import matplotlib.pyplot as plt import matplotlib.font_manager import plotly.graph_objects as go import functions as fc import os import altair as alt import statsmodels.api as sm from scipy import stats from sklearn.metrics import make_scorer, mean_squared_error, r2_score, mean_absolute_error, explained_variance_score, roc_auc_score, max_error, log_loss, average_precision_score, precision_recall_curve, auc, roc_curve, confusion_matrix, recall_score, precision_score, f1_score, accuracy_score, balanced_accuracy_score, cohen_kappa_score from sklearn.model_selection import train_test_split import scipy import sys import platform import base64 from io import BytesIO from linearmodels import PanelOLS from linearmodels import RandomEffects from linearmodels import PooledOLS #---------------------------------------------------------------------------------------------- def app(): # Clear cache st.legacy_caching.clear_cache() # Hide traceback in error messages (comment out for de-bugging) sys.tracebacklimit = 0 # Show altair tooltip when full screen st.markdown('<style>#vg-tooltip-element{z-index: 1000051}</style>',unsafe_allow_html=True) # workaround for Firefox bug- hide the scrollbar while keeping the scrolling functionality st.markdown(""" <style> .ReactVirtualized__Grid::-webkit-scrollbar { display: none; } .ReactVirtualized__Grid { -ms-overflow-style: none; /* IE and Edge */ scrollbar-width: none; /* Firefox */ } </style> """, unsafe_allow_html=True) #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # RESET INPUT #Session state if 'key' not in st.session_state: st.session_state['key'] = 0 reset_clicked = st.sidebar.button("Reset all your input") if reset_clicked: st.session_state['key'] = st.session_state['key'] + 1 st.sidebar.markdown("") #++++++++++++++++++++++++++++++++++++++++++++ # DATA IMPORT # File upload section df_dec = st.sidebar.radio("Get data", ["Use example dataset", "Upload data"], key = st.session_state['key']) uploaded_data=None if df_dec == "Upload data": #st.subheader("Upload your data") #uploaded_data = st.sidebar.file_uploader("Make sure that dot (.) is a decimal separator!", type=["csv", "txt"]) separator_expander=st.sidebar.expander('Upload settings') with separator_expander: a4,a5=st.columns(2) with a4: dec_sep=a4.selectbox("Decimal sep.",['.',','], key = st.session_state['key']) with a5: col_sep=a5.selectbox("Column sep.",[';', ',' , '|', '\s+', '\t','other'], key = st.session_state['key']) if col_sep=='other': col_sep=st.text_input('Specify your column separator', key = st.session_state['key']) a4,a5=st.columns(2) with a4: thousands_sep=a4.selectbox("Thousands x sep.",[None,'.', ' ','\s+', 'other'], key = st.session_state['key']) if thousands_sep=='other': thousands_sep=st.text_input('Specify your thousands separator', key = st.session_state['key']) with a5: encoding_val=a5.selectbox("Encoding",[None,'utf_8','utf_8_sig','utf_16_le','cp1140','cp1250','cp1251','cp1252','cp1253','cp1254','other'], key = st.session_state['key']) if encoding_val=='other': encoding_val=st.text_input('Specify your encoding', key = st.session_state['key']) # Error handling for separator selection: if dec_sep==col_sep: st.sidebar.error("Decimal and column separators cannot be identical!") elif dec_sep==thousands_sep: st.sidebar.error("Decimal and thousands separators cannot be identical!") elif col_sep==thousands_sep: st.sidebar.error("Column and thousands separators cannot be identical!") uploaded_data = st.sidebar.file_uploader("Default separators: decimal '.' | column ';'", type=["csv", "txt"]) if uploaded_data is not None: df = pd.read_csv(uploaded_data, decimal=dec_sep, sep = col_sep,thousands=thousands_sep,encoding=encoding_val, engine='python') df_name=os.path.splitext(uploaded_data.name)[0] st.sidebar.success('Loading data... done!') elif uploaded_data is None: df = pd.read_csv("default data/Grunfeld.csv", sep = ";|,|\t",engine='python') df_name="Grunfeld" else: df = pd.read_csv("default data/Grunfeld.csv", sep = ";|,|\t",engine='python') df_name="Grunfeld" st.sidebar.markdown("") #Basic data info n_rows = df.shape[0] n_cols = df.shape[1] #++++++++++++++++++++++++++++++++++++++++++++ # SETTINGS settings_expander=st.sidebar.expander('Settings') with settings_expander: st.caption("**Precision**") user_precision=int(st.number_input('Number of digits after the decimal point',min_value=0,max_value=10,step=1,value=4, key = st.session_state['key'])) st.caption("**Help**") sett_hints = st.checkbox('Show learning hints', value=False, key = st.session_state['key']) st.caption("**Appearance**") sett_wide_mode = st.checkbox('Wide mode', value=False, key = st.session_state['key']) sett_theme = st.selectbox('Theme', ["Light", "Dark"], key = st.session_state['key']) #sett_info = st.checkbox('Show methods info', value=False) #sett_prec = st.number_input('Set the number of diggits for the output', min_value=0, max_value=8, value=2) st.sidebar.markdown("") # Check if wide mode if sett_wide_mode: fc.wide_mode_func() # Check theme if sett_theme == "Dark": fc.theme_func_dark() if sett_theme == "Light": fc.theme_func_light() fc.theme_func_dl_button() #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # DATA PREPROCESSING & VISUALIZATION st.header("**Panel data**") st.markdown("Get your data ready for powerfull methods! Let STATY do data cleaning, variable transformations, visualizations and deliver you the stats you need. Specify your data processing preferences and start exploring your data stories right below... ") # Check if enough data is available if n_cols >= 2 and n_rows > 0: st.empty() else: st.error("ERROR: Not enough data!") return # Specify entity and time st.markdown("**Panel data specification**") col1, col2 = st.columns(2) with col1: entity_na_warn = False entity_options = df.columns entity = st.selectbox("Select variable for entity", entity_options, key = st.session_state['key']) with col2: time_na_warn = False time_options = df.columns time_options = list(time_options[time_options.isin(df.drop(entity, axis = 1).columns)]) time = st.selectbox("Select variable for time", time_options, key = st.session_state['key']) if np.where(df[entity].isnull())[0].size > 0: entity_na_warn = "ERROR: The variable selected for entity has NAs!" st.error(entity_na_warn) if np.where(df[time].isnull())[0].size > 0: time_na_warn = "ERROR: The variable selected for time has NAs!" st.error(time_na_warn) if df[time].dtypes != "float64" and df[time].dtypes != "float32" and df[time].dtypes != "int64" and df[time].dtypes != "int32": time_na_warn = "ERROR: Time variable must be numeric!" st.error(time_na_warn) run_models = False if time_na_warn == False and entity_na_warn == False: data_empty_container = st.container() with data_empty_container: st.empty() st.empty() st.empty() st.empty() st.empty() st.empty() st.empty() st.empty() # Make sure time is numeric df[time] = pd.to_numeric(df[time]) data_exploration_container2 = st.container() with data_exploration_container2: st.header("**Data screening and processing**") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # DATA SUMMARY # Main panel for data summary (pre) #---------------------------------- dev_expander_dsPre = st.expander("Explore raw panel data info and stats", expanded = False) st.empty() with dev_expander_dsPre: # Default data description: if uploaded_data == None: if st.checkbox("Show data description", value = False, key = st.session_state['key']): st.markdown("**Data source:**") st.markdown("This is the original 11-firm data set from Grunfeld’s Ph.D. thesis (*Grunfeld, 1958, The Determinants of Corporate Investment, Department of Economics, University of Chicago*). For more details see online complements for the article [The Grunfeld Data at 50] (https://www.zeileis.org/grunfeld/).") st.markdown("**Citation:**") st.markdown("<NAME>, <NAME> (2010). “The Grunfeld Data at 50,” German Economic Review, 11(4), 404-417. [doi:10.1111/j.1468-0475.2010.00513.x] (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0475.2010.00513.x)") st.markdown("**Variables in the dataset:**") col1,col2=st.columns(2) col1.write("invest") col2.write("Gross investment, defined as additions to plant and equipment plus maintenance and repairs in millions of dollars deflated by the implicit price deflator of producers’ durable equipment (base 1947)") col1,col2=st.columns(2) col1.write("value") col2.write("Market value of the firm, defined as the price of common shares at December 31 (or, for WH, IBM and CH, the average price of December 31 and January 31 of the following year) times the number of common shares outstanding plus price of preferred shares at December 31 (or average price of December 31 and January 31 of the following year) times number of preferred shares plus total book value of debt at December 31 in millions of dollars deflated by the implicit GNP price deflator (base 1947)") col1,col2=st.columns(2) col1.write("capital") col2.write("Stock of plant and equipment, defined as the accumulated sum of net additions to plant and equipment deflated by the implicit price deflator for producers’ durable equipment (base 1947) minus depreciation allowance deflated by depreciation expense deflator (10 years moving average of wholesale price index of metals and metal products, base1947)") col1,col2=st.columns(2) col1.write("firm") col2.write("General Motors (GM), US Steel (US), General Electric (GE), Chrysler (CH), Atlantic Refining (AR), IBM, Union Oil (UO), Westinghouse (WH), Goodyear (GY), Diamond Match (DM), American Steel (AS)") col1,col2=st.columns(2) col1.write("year") col2.write("Year ranging from 1935 to 1954") st.markdown("") # Show raw data & data info df_summary = fc.data_summary(df) if st.checkbox("Show raw data", value = False, key = st.session_state['key']): st.write(df) #st.info("Data shape: "+ str(n_rows) + " rows and " + str(n_cols) + " columns") st.write("Data shape: ", n_rows, " rows and ", n_cols, " columns") if df[df.duplicated()].shape[0] > 0 or df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: check_nasAnddupl=st.checkbox("Show duplicates and NAs info", value = False, key = st.session_state['key']) if check_nasAnddupl: if df[df.duplicated()].shape[0] > 0: st.write("Number of duplicates: ", df[df.duplicated()].shape[0]) st.write("Duplicate row index: ", ', '.join(map(str,list(df.index[df.duplicated()])))) if df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: st.write("Number of rows with NAs: ", df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0]) st.write("Rows with NAs: ", ', '.join(map(str,list(pd.unique(np.where(df.isnull())[0]))))) # Show variable info if st.checkbox('Show variable info', value = False, key = st.session_state['key']): st.write(df_summary["Variable types"]) # Show summary statistics (raw data) if st.checkbox('Show summary statistics (raw data)', value = False, key = st.session_state['key']): st.write(df_summary["ALL"].style.set_precision(user_precision)) # Download link for summary statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_summary["Variable types"].to_excel(excel_file, sheet_name="variable_info") df_summary["ALL"].to_excel(excel_file, sheet_name="summary_statistics") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Summary statistics__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download summary statistics</a> """, unsafe_allow_html=True) st.write("") if fc.get_mode(df).loc["n_unique"].any(): st.caption("** Mode is not unique.") if sett_hints: st.info(str(fc.learning_hints("de_summary_statistics"))) dev_expander_anovPre = st.expander("ANOVA for raw panel data", expanded = False) with dev_expander_anovPre: if df.shape[1] > 2: # Target variable target_var = st.selectbox('Select target variable ', df.drop([entity, time], axis = 1).columns, key = st.session_state['key']) if df[target_var].dtypes == "int64" or df[target_var].dtypes == "float64": class_var_options = df.columns class_var_options = class_var_options[class_var_options.isin(df.drop(target_var, axis = 1).columns)] clas_var = st.selectbox('Select classifier variable ', [entity, time], key = st.session_state['key']) # Means and sd by entity col1, col2 = st.columns(2) with col1: df_anova_woTime = df.drop([time], axis = 1) df_grouped_ent = df_anova_woTime.groupby(entity) st.write("Mean based on entity:") st.write(df_grouped_ent.mean()[target_var]) st.write("") with col2: st.write("SD based on entity:") st.write(df_grouped_ent.std()[target_var]) st.write("") # Means and sd by time col3, col4 = st.columns(2) with col3: df_anova_woEnt= df.drop([entity], axis = 1) df_grouped_time = df_anova_woEnt.groupby(time) counts_time = pd.DataFrame(df_grouped_time.count()[target_var]) counts_time.columns = ["count"] st.write("Mean based on time:") st.write(df_grouped_time.mean()[target_var]) st.write("") with col4: st.write("SD based on time:") st.write(df_grouped_time.std()[target_var]) st.write("") col9, col10 = st.columns(2) with col9: st.write("Boxplot grouped by entity:") box_size1 = st.slider("Select box size", 1, 50, 5, key = st.session_state['key']) # Grouped boxplot by entity grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data[time] = df[time] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var] = df[target_var] grouped_boxchart_ent = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size1, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(entity, scale = alt.Scale(zero = False)), y = alt.Y(target_var, scale = alt.Scale(zero = False)), tooltip = [target_var, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_ent, use_container_width=True) with col10: st.write("Boxplot grouped by time:") box_size2 = st.slider("Select box size ", 1, 50, 5, key = st.session_state['key']) # Grouped boxplot by time grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data[time] = df[time] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var] = df[target_var] grouped_boxchart_time = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size2, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(time, scale = alt.Scale(domain = [min(df[time]), max(df[time])])), y = alt.Y(target_var, scale = alt.Scale(zero = False)), tooltip = [target_var, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_time, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_boxplot"))) st.write("") # Count for entity and time col5, col6 = st.columns(2) with col5: st.write("Number of observations per entity:") counts_ent = pd.DataFrame(df_grouped_ent.count()[target_var]) counts_ent.columns = ["count"] st.write(counts_ent.transpose()) with col6: st.write("Number of observations per time:") counts_time = pd.DataFrame(df_grouped_time.count()[target_var]) counts_time.columns = ["count"] st.write(counts_time.transpose()) if sett_hints: st.info(str(fc.learning_hints("de_anova_count"))) st.write("") # ANOVA calculation df_grouped = df[[target_var,clas_var]].groupby(clas_var) overall_mean = (df_grouped.mean()*df_grouped.count()).sum()/df_grouped.count().sum() dof_between = len(df_grouped.count())-1 dof_within = df_grouped.count().sum()-len(df_grouped.count()) dof_tot = dof_between + dof_within SS_between = (((df_grouped.mean()-overall_mean)**2)*df_grouped.count()).sum() SS_within = (df_grouped.var()*(df_grouped.count()-1)).sum() SS_total = SS_between + SS_within MS_between = SS_between/dof_between MS_within = SS_within/dof_within F_stat = MS_between/MS_within p_value = scipy.stats.f.sf(F_stat, dof_between, dof_within) anova_table=pd.DataFrame({ "DF": [dof_between, dof_within.values[0], dof_tot.values[0]], "SS": [SS_between.values[0], SS_within.values[0], SS_total.values[0]], "MS": [MS_between.values[0], MS_within.values[0], ""], "F-statistic": [F_stat.values[0], "", ""], "p-value": [p_value[0], "", ""]}, index = ["Between", "Within", "Total"],) st.write("ANOVA:") st.write(anova_table) if sett_hints: st.info(str(fc.learning_hints("de_anova_table"))) st.write("") #Anova (OLS) codes = pd.factorize(df[clas_var])[0] ano_ols = sm.OLS(df[target_var], sm.add_constant(codes)) ano_ols_output = ano_ols.fit() residuals = ano_ols_output.resid col7, col8 = st.columns(2) with col7: # QQ-plot st.write("Normal QQ-plot:") st.write("") st.write("") st.write("") st.write("") st.write("") st.write("") qq_plot_data = pd.DataFrame() qq_plot_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() qq_plot_data["Index"] = df.index qq_plot_data[entity] = df[entity] qq_plot_data[time] = df[time] qq_plot_data = qq_plot_data.sort_values(by = ["StandResiduals"]) qq_plot_data["Theoretical quantiles"] = stats.probplot(residuals, dist="norm")[0][0] qq_plot = alt.Chart(qq_plot_data, height = 300).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals", "Theoretical quantiles", entity, time, "Index"] ) line = alt.Chart( pd.DataFrame({"Theoretical quantiles": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])], "StandResiduals": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]})).mark_line(size = 2, color = "darkred").encode( alt.X("Theoretical quantiles"), alt.Y("StandResiduals"), ) st.altair_chart(qq_plot + line, use_container_width = True) with col8: # Residuals histogram st.write("Residuals histogram:") residuals_hist = pd.DataFrame(residuals) residuals_hist.columns = ["residuals"] binNo_res = st.slider("Select maximum number of bins ", 5, 100, 25, key = st.session_state['key']) hist_plot_res = alt.Chart(residuals_hist, height = 300).mark_bar().encode( x = alt.X("residuals", title = "residuals", bin = alt.BinParams(maxbins = binNo_res), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip("residuals", bin = alt.BinParams(maxbins = binNo_res))] ) st.altair_chart(hist_plot_res, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_residuals"))) # Download link for ANOVA statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_grouped_ent.mean()[target_var].to_excel(excel_file, sheet_name="entity_mean") df_grouped_ent.std()[target_var].to_excel(excel_file, sheet_name="entity_sd") df_grouped_time.mean()[target_var].to_excel(excel_file, sheet_name="time_mean") df_grouped_time.std()[target_var].to_excel(excel_file, sheet_name="time_sd") counts_ent.transpose().to_excel(excel_file, sheet_name="entity_obs") counts_time.transpose().to_excel(excel_file, sheet_name="time_obs") anova_table.to_excel(excel_file, sheet_name="ANOVA table") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "ANOVA statistics__" + target_var + "__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download ANOVA statistics</a> """, unsafe_allow_html=True) st.write("") else: st.error("ERROR: The target variable must be a numerical one!") else: st.error("ERROR: No variables available for ANOVA!") #++++++++++++++++++++++ # DATA PROCESSING # Settings for data processing #------------------------------------- dev_expander_dm_sb = st.expander("Specify data processing preferences", expanded = False) with dev_expander_dm_sb: n_rows_wNAs = df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] n_rows_wNAs_pre_processing = "No" if n_rows_wNAs > 0: n_rows_wNAs_pre_processing = "Yes" a1, a2, a3 = st.columns(3) else: a1, a3 = st.columns(2) sb_DM_dImp_num = None sb_DM_dImp_other = None sb_DM_delRows=None sb_DM_keepRows=None group_by_num = None group_by_other = None with a1: #-------------------------------------------------------------------------------------- # DATA CLEANING st.markdown("**Data cleaning**") # Delete rows delRows =st.selectbox('Delete rows with index ...', options=['-', 'greater', 'greater or equal', 'smaller', 'smaller or equal', 'equal', 'between'], key = st.session_state['key']) if delRows!='-': if delRows=='between': row_1=st.number_input('Lower limit is', value=0, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) row_2=st.number_input('Upper limit is', value=2, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) if (row_1 + 1) < row_2 : sb_DM_delRows=df.index[(df.index > row_1) & (df.index < row_2)] elif (row_1 + 1) == row_2 : st.warning("WARNING: No row is deleted!") elif row_1 == row_2 : st.warning("WARNING: No row is deleted!") elif row_1 > row_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif delRows=='equal': sb_DM_delRows = st.multiselect("to...", df.index, key = st.session_state['key']) else: row_1=st.number_input('than...', step=1, value=1, min_value = 0, max_value=len(df)-1, key = st.session_state['key']) if delRows=='greater': sb_DM_delRows=df.index[df.index > row_1] if row_1 == len(df)-1: st.warning("WARNING: No row is deleted!") elif delRows=='greater or equal': sb_DM_delRows=df.index[df.index >= row_1] if row_1 == 0: st.error("ERROR: All rows are deleted!") return elif delRows=='smaller': sb_DM_delRows=df.index[df.index < row_1] if row_1 == 0: st.warning("WARNING: No row is deleted!") elif delRows=='smaller or equal': sb_DM_delRows=df.index[df.index <= row_1] if row_1 == len(df)-1: st.error("ERROR: All rows are deleted!") return if sb_DM_delRows is not None: df = df.loc[~df.index.isin(sb_DM_delRows)] no_delRows=n_rows-df.shape[0] # Keep rows keepRows =st.selectbox('Keep rows with index ...', options=['-', 'greater', 'greater or equal', 'smaller', 'smaller or equal', 'equal', 'between'], key = st.session_state['key']) if keepRows!='-': if keepRows=='between': row_1=st.number_input('Lower limit is', value=0, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) row_2=st.number_input('Upper limit is', value=2, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) if (row_1 + 1) < row_2 : sb_DM_keepRows=df.index[(df.index > row_1) & (df.index < row_2)] elif (row_1 + 1) == row_2 : st.error("ERROR: No row is kept!") return elif row_1 == row_2 : st.error("ERROR: No row is kept!") return elif row_1 > row_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif keepRows=='equal': sb_DM_keepRows = st.multiselect("to...", df.index, key = st.session_state['key']) else: row_1=st.number_input('than...', step=1, value=1, min_value = 0, max_value=len(df)-1, key = st.session_state['key']) if keepRows=='greater': sb_DM_keepRows=df.index[df.index > row_1] if row_1 == len(df)-1: st.error("ERROR: No row is kept!") return elif keepRows=='greater or equal': sb_DM_keepRows=df.index[df.index >= row_1] if row_1 == 0: st.warning("WARNING: All rows are kept!") elif keepRows=='smaller': sb_DM_keepRows=df.index[df.index < row_1] if row_1 == 0: st.error("ERROR: No row is kept!") return elif keepRows=='smaller or equal': sb_DM_keepRows=df.index[df.index <= row_1] if sb_DM_keepRows is not None: df = df.loc[df.index.isin(sb_DM_keepRows)] no_keptRows=df.shape[0] # Delete columns sb_DM_delCols = st.multiselect("Select columns to delete", df.drop([entity, time], axis = 1).columns, key = st.session_state['key']) df = df.loc[:,~df.columns.isin(sb_DM_delCols)] # Keep columns sb_DM_keepCols = st.multiselect("Select columns to keep", df.drop([entity, time], axis = 1).columns, key = st.session_state['key']) if len(sb_DM_keepCols) > 0: df = df.loc[:,df.columns.isin([entity, time] + sb_DM_keepCols)] # Delete duplicates if any exist if df[df.duplicated()].shape[0] > 0: sb_DM_delDup = st.selectbox("Delete duplicate rows", ["No", "Yes"], key = st.session_state['key']) if sb_DM_delDup == "Yes": n_rows_dup = df[df.duplicated()].shape[0] df = df.drop_duplicates() elif df[df.duplicated()].shape[0] == 0: sb_DM_delDup = "No" # Delete rows with NA if any exist n_rows_wNAs = df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] if n_rows_wNAs > 0: sb_DM_delRows_wNA = st.selectbox("Delete rows with NAs", ["No", "Yes"], key = st.session_state['key']) if sb_DM_delRows_wNA == "Yes": df = df.dropna() elif n_rows_wNAs == 0: sb_DM_delRows_wNA = "No" # Filter data st.markdown("**Data filtering**") filter_var = st.selectbox('Filter your data by a variable...', list('-')+ list(df.columns), key = st.session_state['key']) if filter_var !='-': if df[filter_var].dtypes=="int64" or df[filter_var].dtypes=="float64": if df[filter_var].dtypes=="float64": filter_format="%.8f" else: filter_format=None user_filter=st.selectbox('Select values that are ...', options=['greater','greater or equal','smaller','smaller or equal', 'equal','between'], key = st.session_state['key']) if user_filter=='between': filter_1=st.number_input('Lower limit is', format=filter_format, value=df[filter_var].min(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = st.session_state['key']) filter_2=st.number_input('Upper limit is', format=filter_format, value=df[filter_var].max(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = st.session_state['key']) #reclassify values: if filter_1 < filter_2 : df = df[(df[filter_var] > filter_1) & (df[filter_var] < filter_2)] if len(df) == 0: st.error("ERROR: No data available for the selected limits!") return elif filter_1 >= filter_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif user_filter=='equal': filter_1=st.multiselect('to... ', options=df[filter_var].values, key = st.session_state['key']) if len(filter_1)>0: df = df.loc[df[filter_var].isin(filter_1)] else: filter_1=st.number_input('than... ',format=filter_format, value=df[filter_var].min(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = st.session_state['key']) #reclassify values: if user_filter=='greater': df = df[df[filter_var] > filter_1] elif user_filter=='greater or equal': df = df[df[filter_var] >= filter_1] elif user_filter=='smaller': df= df[df[filter_var]< filter_1] elif user_filter=='smaller or equal': df = df[df[filter_var] <= filter_1] if len(df) == 0: st.error("ERROR: No data available for the selected value!") return elif len(df) == n_rows: st.warning("WARNING: Data are not filtered for this value!") else: filter_1=st.multiselect('Filter your data by a value...', (df[filter_var]).unique(), key = st.session_state['key']) if len(filter_1)>0: df = df.loc[df[filter_var].isin(filter_1)] if n_rows_wNAs_pre_processing == "Yes": with a2: #-------------------------------------------------------------------------------------- # DATA IMPUTATION # Select data imputation method (only if rows with NA not deleted) if sb_DM_delRows_wNA == "No" and n_rows_wNAs > 0: st.markdown("**Data imputation**") sb_DM_dImp_choice = st.selectbox("Replace entries with NA", ["No", "Yes"], key = st.session_state['key']) if sb_DM_dImp_choice == "Yes": # Numeric variables sb_DM_dImp_num = st.selectbox("Imputation method for numeric variables", ["Mean", "Median", "Random value"], key = st.session_state['key']) # Other variables sb_DM_dImp_other = st.selectbox("Imputation method for other variables", ["Mode", "Random value"], key = st.session_state['key']) group_by_num = st.selectbox("Group imputation by", ["None", "Entity", "Time"], key = st.session_state['key']) group_by_other = group_by_num df = fc.data_impute_panel(df, sb_DM_dImp_num, sb_DM_dImp_other, group_by_num, group_by_other, entity, time) else: st.markdown("**Data imputation**") st.write("") st.info("No NAs in data set!") with a3: #-------------------------------------------------------------------------------------- # DATA TRANSFORMATION st.markdown("**Data transformation**") # Select columns for different transformation types transform_options = df.drop([entity, time], axis = 1).select_dtypes([np.number]).columns numCat_options = df.drop([entity, time], axis = 1).columns sb_DM_dTrans_log = st.multiselect("Select columns to transform with log", transform_options, key = st.session_state['key']) if sb_DM_dTrans_log is not None: df = fc.var_transform_log(df, sb_DM_dTrans_log) sb_DM_dTrans_sqrt = st.multiselect("Select columns to transform with sqrt", transform_options, key = st.session_state['key']) if sb_DM_dTrans_sqrt is not None: df = fc.var_transform_sqrt(df, sb_DM_dTrans_sqrt) sb_DM_dTrans_square = st.multiselect("Select columns for squaring", transform_options, key = st.session_state['key']) if sb_DM_dTrans_square is not None: df = fc.var_transform_square(df, sb_DM_dTrans_square) sb_DM_dTrans_cent = st.multiselect("Select columns for centering ", transform_options, key = st.session_state['key']) if sb_DM_dTrans_cent is not None: df = fc.var_transform_cent(df, sb_DM_dTrans_cent) sb_DM_dTrans_stand = st.multiselect("Select columns for standardization", transform_options, key = st.session_state['key']) if sb_DM_dTrans_stand is not None: df = fc.var_transform_stand(df, sb_DM_dTrans_stand) sb_DM_dTrans_norm = st.multiselect("Select columns for normalization", transform_options, key = st.session_state['key']) if sb_DM_dTrans_norm is not None: df = fc.var_transform_norm(df, sb_DM_dTrans_norm) sb_DM_dTrans_numCat = st.multiselect("Select columns for numeric categorization ", numCat_options, key = st.session_state['key']) if sb_DM_dTrans_numCat: if not df[sb_DM_dTrans_numCat].columns[df[sb_DM_dTrans_numCat].isna().any()].tolist(): sb_DM_dTrans_numCat_sel = st.multiselect("Select variables for manual categorization ", sb_DM_dTrans_numCat, key = st.session_state['key']) if sb_DM_dTrans_numCat_sel: for var in sb_DM_dTrans_numCat_sel: if df[var].unique().size > 5: st.error("ERROR: Selected variable has too many categories (>5): " + str(var)) return else: manual_cats = pd.DataFrame(index = range(0, df[var].unique().size), columns=["Value", "Cat"]) text = "Category for " # Save manually selected categories for i in range(0, df[var].unique().size): text1 = text + str(var) + ": " + str(sorted(df[var].unique())[i]) man_cat = st.number_input(text1, value = 0, min_value=0, key = st.session_state['key']) manual_cats.loc[i]["Value"] = sorted(df[var].unique())[i] manual_cats.loc[i]["Cat"] = man_cat new_var_name = "numCat_" + var new_var = pd.DataFrame(index = df.index, columns = [new_var_name]) for c in df[var].index: if pd.isnull(df[var][c]) == True: new_var.loc[c, new_var_name] = np.nan elif pd.isnull(df[var][c]) == False: new_var.loc[c, new_var_name] = int(manual_cats[manual_cats["Value"] == df[var][c]]["Cat"]) df[new_var_name] = new_var.astype('int64') # Exclude columns with manual categorization from standard categorization numCat_wo_manCat = [var for var in sb_DM_dTrans_numCat if var not in sb_DM_dTrans_numCat_sel] df = fc.var_transform_numCat(df, numCat_wo_manCat) else: df = fc.var_transform_numCat(df, sb_DM_dTrans_numCat) else: col_with_na = df[sb_DM_dTrans_numCat].columns[df[sb_DM_dTrans_numCat].isna().any()].tolist() st.error("ERROR: Please select columns without NAs: " + ', '.join(map(str,col_with_na))) return else: sb_DM_dTrans_numCat = None sb_DM_dTrans_mult = st.number_input("Number of variable multiplications ", value = 0, min_value=0, key = st.session_state['key']) if sb_DM_dTrans_mult != 0: multiplication_pairs = pd.DataFrame(index = range(0, sb_DM_dTrans_mult), columns=["Var1", "Var2"]) text = "Multiplication pair" for i in range(0, sb_DM_dTrans_mult): text1 = text + " " + str(i+1) text2 = text + " " + str(i+1) + " " mult_var1 = st.selectbox(text1, transform_options, key = st.session_state['key']) mult_var2 = st.selectbox(text2, transform_options, key = st.session_state['key']) multiplication_pairs.loc[i]["Var1"] = mult_var1 multiplication_pairs.loc[i]["Var2"] = mult_var2 fc.var_transform_mult(df, mult_var1, mult_var2) sb_DM_dTrans_div = st.number_input("Number of variable divisions ", value = 0, min_value=0, key = st.session_state['key']) if sb_DM_dTrans_div != 0: division_pairs = pd.DataFrame(index = range(0, sb_DM_dTrans_div), columns=["Var1", "Var2"]) text = "Division pair" for i in range(0, sb_DM_dTrans_div): text1 = text + " " + str(i+1) + " (numerator)" text2 = text + " " + str(i+1) + " (denominator)" div_var1 = st.selectbox(text1, transform_options, key = st.session_state['key']) div_var2 = st.selectbox(text2, transform_options, key = st.session_state['key']) division_pairs.loc[i]["Var1"] = div_var1 division_pairs.loc[i]["Var2"] = div_var2 fc.var_transform_div(df, div_var1, div_var2) data_transform=st.checkbox("Transform data in Excel?", value=False) if data_transform==True: st.info("Press the button to open your data in Excel. Don't forget to save your result as a csv or a txt file!") # Download link output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="data",index=False) excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Data_transformation__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Transform your data in Excel</a> """, unsafe_allow_html=True) st.write("") #-------------------------------------------------------------------------------------- # PROCESSING SUMMARY if st.checkbox('Show a summary of my data processing preferences', value = False, key = st.session_state['key']): st.markdown("Summary of data changes:") #-------------------------------------------------------------------------------------- # DATA CLEANING # Rows if sb_DM_delRows is not None and delRows!='-' : if no_delRows > 1: st.write("-", no_delRows, " rows were deleted!") elif no_delRows == 1: st.write("-",no_delRows, " row was deleted!") elif no_delRows == 0: st.write("- No row was deleted!") else: st.write("- No row was deleted!") if sb_DM_keepRows is not None and keepRows!='-' : if no_keptRows > 1: st.write("-", no_keptRows, " rows are kept!") elif no_keptRows == 1: st.write("-",no_keptRows, " row is kept!") elif no_keptRows == 0: st.write("- All rows are kept!") else: st.write("- All rows are kept!") # Columns if len(sb_DM_delCols) > 1: st.write("-", len(sb_DM_delCols), " columns were manually deleted:", ', '.join(sb_DM_delCols)) elif len(sb_DM_delCols) == 1: st.write("-",len(sb_DM_delCols), " column was manually deleted:", str(sb_DM_delCols[0])) elif len(sb_DM_delCols) == 0: st.write("- No column was manually deleted!") if len(sb_DM_keepCols) > 1: st.write("-", len(sb_DM_keepCols), " columns are kept:", ', '.join(sb_DM_keepCols)) elif len(sb_DM_keepCols) == 1: st.write("-",len(sb_DM_keepCols), " column is kept:", str(sb_DM_keepCols[0])) elif len(sb_DM_keepCols) == 0: st.write("- All columns are kept!") # Duplicates if sb_DM_delDup == "Yes": if n_rows_dup > 1: st.write("-", n_rows_dup, " duplicate rows were deleted!") elif n_rows_dup == 1: st.write("-", n_rows_dup, "duplicate row was deleted!") else: st.write("- No duplicate row was deleted!") # NAs if sb_DM_delRows_wNA == "Yes": if n_rows_wNAs > 1: st.write("-", n_rows_wNAs, "rows with NAs were deleted!") elif n_rows_wNAs == 1: st.write("-", n_rows - n_rows_wNAs, "row with NAs was deleted!") else: st.write("- No row with NAs was deleted!") # Filter if filter_var != "-": if df[filter_var].dtypes=="int64" or df[filter_var].dtypes=="float64": if isinstance(filter_1, list): if len(filter_1) == 0: st.write("-", " Data was not filtered!") elif len(filter_1) > 0: st.write("-", " Data filtered by:", str(filter_var)) elif filter_1 is not None: st.write("-", " Data filtered by:", str(filter_var)) else: st.write("-", " Data was not filtered!") elif len(filter_1)>0: st.write("-", " Data filtered by:", str(filter_var)) elif len(filter_1) == 0: st.write("-", " Data was not filtered!") else: st.write("-", " Data was not filtered!") #-------------------------------------------------------------------------------------- # DATA IMPUTATION if sb_DM_delRows_wNA == "No" and n_rows_wNAs > 0: st.write("- Data imputation method for numeric variables:", sb_DM_dImp_num) st.write("- Data imputation method for other variable types:", sb_DM_dImp_other) st.write("- Imputation grouped by:", group_by_num) #-------------------------------------------------------------------------------------- # DATA TRANSFORMATION # log if len(sb_DM_dTrans_log) > 1: st.write("-", len(sb_DM_dTrans_log), " columns were log-transformed:", ', '.join(sb_DM_dTrans_log)) elif len(sb_DM_dTrans_log) == 1: st.write("-",len(sb_DM_dTrans_log), " column was log-transformed:", sb_DM_dTrans_log[0]) elif len(sb_DM_dTrans_log) == 0: st.write("- No column was log-transformed!") # sqrt if len(sb_DM_dTrans_sqrt) > 1: st.write("-", len(sb_DM_dTrans_sqrt), " columns were sqrt-transformed:", ', '.join(sb_DM_dTrans_sqrt)) elif len(sb_DM_dTrans_sqrt) == 1: st.write("-",len(sb_DM_dTrans_sqrt), " column was sqrt-transformed:", sb_DM_dTrans_sqrt[0]) elif len(sb_DM_dTrans_sqrt) == 0: st.write("- No column was sqrt-transformed!") # square if len(sb_DM_dTrans_square) > 1: st.write("-", len(sb_DM_dTrans_square), " columns were squared:", ', '.join(sb_DM_dTrans_square)) elif len(sb_DM_dTrans_square) == 1: st.write("-",len(sb_DM_dTrans_square), " column was squared:", sb_DM_dTrans_square[0]) elif len(sb_DM_dTrans_square) == 0: st.write("- No column was squared!") # centering if len(sb_DM_dTrans_cent) > 1: st.write("-", len(sb_DM_dTrans_cent), " columns were centered:", ', '.join(sb_DM_dTrans_cent)) elif len(sb_DM_dTrans_cent) == 1: st.write("-",len(sb_DM_dTrans_cent), " column was centered:", sb_DM_dTrans_cent[0]) elif len(sb_DM_dTrans_cent) == 0: st.write("- No column was centered!") # standardize if len(sb_DM_dTrans_stand) > 1: st.write("-", len(sb_DM_dTrans_stand), " columns were standardized:", ', '.join(sb_DM_dTrans_stand)) elif len(sb_DM_dTrans_stand) == 1: st.write("-",len(sb_DM_dTrans_stand), " column was standardized:", sb_DM_dTrans_stand[0]) elif len(sb_DM_dTrans_stand) == 0: st.write("- No column was standardized!") # normalize if len(sb_DM_dTrans_norm) > 1: st.write("-", len(sb_DM_dTrans_norm), " columns were normalized:", ', '.join(sb_DM_dTrans_norm)) elif len(sb_DM_dTrans_norm) == 1: st.write("-",len(sb_DM_dTrans_norm), " column was normalized:", sb_DM_dTrans_norm[0]) elif len(sb_DM_dTrans_norm) == 0: st.write("- No column was normalized!") # numeric category if sb_DM_dTrans_numCat is not None: if len(sb_DM_dTrans_numCat) > 1: st.write("-", len(sb_DM_dTrans_numCat), " columns were transformed to numeric categories:", ', '.join(sb_DM_dTrans_numCat)) elif len(sb_DM_dTrans_numCat) == 1: st.write("-",len(sb_DM_dTrans_numCat), " column was transformed to numeric categories:", sb_DM_dTrans_numCat[0]) elif sb_DM_dTrans_numCat is None: st.write("- No column was transformed to numeric categories!") # multiplication if sb_DM_dTrans_mult != 0: st.write("-", "Number of variable multiplications: ", sb_DM_dTrans_mult) elif sb_DM_dTrans_mult == 0: st.write("- No variables were multiplied!") # division if sb_DM_dTrans_div != 0: st.write("-", "Number of variable divisions: ", sb_DM_dTrans_div) elif sb_DM_dTrans_div == 0: st.write("- No variables were divided!") st.write("") st.write("") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # UPDATED DATA SUMMARY # Show only if changes were made if any(v for v in [sb_DM_delCols, sb_DM_dImp_num, sb_DM_dImp_other, sb_DM_dTrans_log, sb_DM_dTrans_sqrt, sb_DM_dTrans_square, sb_DM_dTrans_cent, sb_DM_dTrans_stand, sb_DM_dTrans_norm, sb_DM_dTrans_numCat ] if v is not None) or sb_DM_delDup == "Yes" or sb_DM_delRows_wNA == "Yes" or sb_DM_dTrans_mult != 0 or sb_DM_dTrans_div != 0 or filter_var != "-" or delRows!='-' or keepRows!='-' or len(sb_DM_keepCols) > 0: dev_expander_dsPost = st.expander("Explore cleaned and transformed panel data info and stats", expanded = False) with dev_expander_dsPost: if df.shape[1] > 2 and df.shape[0] > 0: # Show cleaned and transformed data & data info df_summary_post = fc.data_summary(df) if st.checkbox("Show cleaned and transformed data", value = False): n_rows_post = df.shape[0] n_cols_post = df.shape[1] st.dataframe(df) st.write("Data shape: ", n_rows_post, "rows and ", n_cols_post, "columns") # Download transformed data: output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="Clean. and transf. data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "CleanedTransfData__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned and transformed data</a> """, unsafe_allow_html=True) st.write("") if df[df.duplicated()].shape[0] > 0 or df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: check_nasAnddupl2 = st.checkbox("Show duplicates and NAs info (processed)", value = False) if check_nasAnddupl2: index_c = [] for c in df.columns: for r in df.index: if pd.isnull(df[c][r]): index_c.append(r) if df[df.duplicated()].shape[0] > 0: st.write("Number of duplicates: ", df[df.duplicated()].shape[0]) st.write("Duplicate row index: ", ', '.join(map(str,list(df.index[df.duplicated()])))) if df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: st.write("Number of rows with NAs: ", len(pd.unique(sorted(index_c)))) st.write("Rows with NAs: ", ', '.join(map(str,list(pd.unique(sorted(index_c)))))) # Show cleaned and transformed variable info if st.checkbox("Show cleaned and transformed variable info", value = False): st.write(df_summary_post["Variable types"]) # Show summary statistics (cleaned and transformed data) if st.checkbox('Show summary statistics (cleaned and transformed data)', value = False): st.write(df_summary_post["ALL"].style.set_precision(user_precision)) # Download link for cleaned data statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="cleaned_data") df_summary_post["Variable types"].to_excel(excel_file, sheet_name="cleaned_variable_info") df_summary_post["ALL"].to_excel(excel_file, sheet_name="cleaned_summary_statistics") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Cleaned data summary statistics_panel_" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned data summary statistics</a> """, unsafe_allow_html=True) st.write("") if fc.get_mode(df).loc["n_unique"].any(): st.caption("** Mode is not unique.") if sett_hints: st.info(str(fc.learning_hints("de_summary_statistics"))) else: st.error("ERROR: No data available for preprocessing!") return dev_expander_anovPost = st.expander("ANOVA for cleaned and transformed panel data", expanded = False) with dev_expander_anovPost: if df.shape[1] > 2 and df.shape[0] > 0: # Target variable target_var2 = st.selectbox('Select target variable', df.drop([entity, time], axis = 1).columns) if df[target_var2].dtypes == "int64" or df[target_var2].dtypes == "float64": class_var_options = df.columns class_var_options = class_var_options[class_var_options.isin(df.drop(target_var2, axis = 1).columns)] clas_var2 = st.selectbox('Select classifier variable', [entity, time],) # Means and sd by entity col1, col2 = st.columns(2) with col1: df_anova_woTime = df.drop([time], axis = 1) df_grouped_ent = df_anova_woTime.groupby(entity) st.write("Mean based on entity:") st.write(df_grouped_ent.mean()[target_var2]) st.write("") with col2: st.write("SD based on entity:") st.write(df_grouped_ent.std()[target_var2]) st.write("") # Means and sd by time col3, col4 = st.columns(2) with col3: df_anova_woEnt= df.drop([entity], axis = 1) df_grouped_time = df_anova_woEnt.groupby(time) counts_time = pd.DataFrame(df_grouped_time.count()[target_var2]) counts_time.columns = ["count"] st.write("Mean based on time:") st.write(df_grouped_time.mean()[target_var2]) st.write("") with col4: st.write("SD based on time:") st.write(df_grouped_time.std()[target_var2]) st.write("") col9, col10 = st.columns(2) with col9: st.write("Boxplot grouped by entity:") box_size1 = st.slider("Select box size ", 1, 50, 5) # Grouped boxplot by entity grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data[time] = df[time] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var2] = df[target_var2] grouped_boxchart_ent = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size1, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(entity, scale = alt.Scale(zero = False)), y = alt.Y(target_var2, scale = alt.Scale(zero = False)), tooltip = [target_var2, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_ent, use_container_width=True) with col10: st.write("Boxplot grouped by time:") box_size2 = st.slider("Select box size ", 1, 50, 5) # Grouped boxplot by time grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[time] = df[time] grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var2] = df[target_var2] grouped_boxchart_time = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size2, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(time, scale = alt.Scale(domain = [min(df[time]), max(df[time])])), y = alt.Y(target_var2, scale = alt.Scale(zero = False)), tooltip = [target_var2, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_time, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_boxplot"))) st.write("") # Count for entity and time col5, col6 = st.columns(2) with col5: st.write("Number of observations per entity:") counts_ent = pd.DataFrame(df_grouped_ent.count()[target_var2]) counts_ent.columns = ["count"] st.write(counts_ent.transpose()) with col6: st.write("Number of observations per time:") counts_time = pd.DataFrame(df_grouped_time.count()[target_var2]) counts_time.columns = ["count"] st.write(counts_time.transpose()) if sett_hints: st.info(str(fc.learning_hints("de_anova_count"))) st.write("") # ANOVA calculation df_grouped = df[[target_var2,clas_var2]].groupby(clas_var2) overall_mean = (df_grouped.mean()*df_grouped.count()).sum()/df_grouped.count().sum() dof_between = len(df_grouped.count())-1 dof_within = df_grouped.count().sum()-len(df_grouped.count()) dof_tot = dof_between + dof_within SS_between = (((df_grouped.mean()-overall_mean)**2)*df_grouped.count()).sum() SS_within = (df_grouped.var()*(df_grouped.count()-1)).sum() SS_total = SS_between + SS_within MS_between = SS_between/dof_between MS_within = SS_within/dof_within F_stat = MS_between/MS_within p_value = scipy.stats.f.sf(F_stat, dof_between, dof_within) anova_table=pd.DataFrame({ "DF": [dof_between, dof_within.values[0], dof_tot.values[0]], "SS": [SS_between.values[0], SS_within.values[0], SS_total.values[0]], "MS": [MS_between.values[0], MS_within.values[0], ""], "F-statistic": [F_stat.values[0], "", ""], "p-value": [p_value[0], "", ""]}, index = ["Between", "Within", "Total"],) st.write("ANOVA:") st.write(anova_table) if sett_hints: st.info(str(fc.learning_hints("de_anova_table"))) st.write("") #Anova (OLS) codes = pd.factorize(df[clas_var2])[0] ano_ols = sm.OLS(df[target_var2], sm.add_constant(codes)) ano_ols_output = ano_ols.fit() residuals = ano_ols_output.resid col7, col8 = st.columns(2) with col7: # QQ-plot st.write("Normal QQ-plot:") st.write("") st.write("") st.write("") st.write("") st.write("") st.write("") qq_plot_data = pd.DataFrame() qq_plot_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() qq_plot_data["Index"] = df.index qq_plot_data[entity] = df[entity] qq_plot_data[time] = df[time] qq_plot_data = qq_plot_data.sort_values(by = ["StandResiduals"]) qq_plot_data["Theoretical quantiles"] = stats.probplot(residuals, dist="norm")[0][0] qq_plot = alt.Chart(qq_plot_data, height = 300).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals", "Theoretical quantiles", entity, time, "Index"] ) line = alt.Chart( pd.DataFrame({"Theoretical quantiles": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])], "StandResiduals": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]})).mark_line(size = 2, color = "darkred").encode( alt.X("Theoretical quantiles"), alt.Y("StandResiduals"), ) st.altair_chart(qq_plot + line, use_container_width = True) with col8: # Residuals histogram st.write("Residuals histogram:") residuals_hist = pd.DataFrame(residuals) residuals_hist.columns = ["residuals"] binNo_res2 = st.slider("Select maximum number of bins ", 5, 100, 25) hist_plot = alt.Chart(residuals_hist, height = 300).mark_bar().encode( x = alt.X("residuals", title = "residuals", bin = alt.BinParams(maxbins = binNo_res2), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip("residuals", bin = alt.BinParams(maxbins = binNo_res2))] ) st.altair_chart(hist_plot, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_residuals"))) # Download link for ANOVA statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_grouped_ent.mean()[target_var2].to_excel(excel_file, sheet_name="entity_mean") df_grouped_ent.std()[target_var2].to_excel(excel_file, sheet_name="entity_sd") df_grouped_time.mean()[target_var2].to_excel(excel_file, sheet_name="time_mean") df_grouped_time.std()[target_var2].to_excel(excel_file, sheet_name="time_sd") counts_ent.transpose().to_excel(excel_file, sheet_name="entity_obs") counts_time.transpose().to_excel(excel_file, sheet_name="time_obs") anova_table.to_excel(excel_file, sheet_name="ANOVA table") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Cleaned ANOVA statistics__" + target_var2 + "__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned ANOVA statistics</a> """, unsafe_allow_html=True) st.write("") else: st.error("ERROR: The target variable must be a numerical one!") else: st.error("ERROR: No data available for ANOVA!") return #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # DATA VISUALIZATION data_visualization_container = st.container() with data_visualization_container: #st.write("") st.write("") st.write("") st.header("**Data visualization**") dev_expander_dv = st.expander("Explore visualization types", expanded = False) with dev_expander_dv: if df.shape[1] > 2 and df.shape[0] > 0: st.write('**Variable selection**') varl_sel_options = df.columns varl_sel_options = varl_sel_options[varl_sel_options.isin(df.drop([entity, time], axis = 1).columns)] var_sel = st.selectbox('Select variable for visualizations', varl_sel_options, key = st.session_state['key']) if df[var_sel].dtypes == "float64" or df[var_sel].dtypes == "float32" or df[var_sel].dtypes == "int64" or df[var_sel].dtypes == "int32": a4, a5 = st.columns(2) with a4: st.write('**Scatterplot with LOESS line**') yy_options = df.columns yy_options = yy_options[yy_options.isin(df.drop([entity, time], axis = 1).columns)] yy = st.selectbox('Select variable for y-axis', yy_options, key = st.session_state['key']) if df[yy].dtypes == "float64" or df[yy].dtypes == "float32" or df[yy].dtypes == "int64" or df[yy].dtypes == "int32": fig_data = pd.DataFrame() fig_data[yy] = df[yy] fig_data[var_sel] = df[var_sel] fig_data["Index"] = df.index fig_data[entity] = df[entity] fig_data[time] = df[time] fig = alt.Chart(fig_data).mark_circle().encode( x = alt.X(var_sel, scale = alt.Scale(domain = [min(fig_data[var_sel]), max(fig_data[var_sel])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y(yy, scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [yy, var_sel, entity, time, "Index"] ) st.altair_chart(fig + fig.transform_loess(var_sel, yy).mark_line(size = 2, color = "darkred"), use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_scatterplot"))) else: st.error("ERROR: Please select a numeric variable for the y-axis!") with a5: st.write('**Histogram**') binNo = st.slider("Select maximum number of bins", 5, 100, 25, key = st.session_state['key']) fig2 = alt.Chart(df).mark_bar().encode( x = alt.X(var_sel, title = var_sel + " (binned)", bin = alt.BinParams(maxbins = binNo), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip(var_sel, bin = alt.BinParams(maxbins = binNo))] ) st.altair_chart(fig2, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_histogram"))) a6, a7 = st.columns(2) with a6: st.write('**Boxplot**') # Boxplot boxplot_data = pd.DataFrame() boxplot_data[var_sel] = df[var_sel] boxplot_data["Index"] = df.index boxplot_data[entity] = df[entity] boxplot_data[time] = df[time] boxplot = alt.Chart(boxplot_data).mark_boxplot(size = 100, color = "#1f77b4", median = dict(color = "darkred")).encode( y = alt.Y(var_sel, scale = alt.Scale(zero = False)), tooltip = [var_sel, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(boxplot, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_boxplot"))) with a7: st.write("**QQ-plot**") var_values = df[var_sel] qqplot_data = pd.DataFrame() qqplot_data[var_sel] = var_values qqplot_data["Index"] = df.index qqplot_data[entity] = df[entity] qqplot_data[time] = df[time] qqplot_data = qqplot_data.sort_values(by = [var_sel]) qqplot_data["Theoretical quantiles"] = stats.probplot(var_values, dist="norm")[0][0] qqplot = alt.Chart(qqplot_data).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qqplot_data["Theoretical quantiles"]), max(qqplot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y(var_sel, title = str(var_sel), scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [var_sel, "Theoretical quantiles", entity, time, "Index"] ) st.altair_chart(qqplot + qqplot.transform_regression('Theoretical quantiles', var_sel).mark_line(size = 2, color = "darkred"), use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("dv_qqplot"))) else: st.error("ERROR: Please select a numeric variable!") else: st.error("ERROR: No data available for Data Visualization!") # Check again after processing if np.where(df[entity].isnull())[0].size > 0: entity_na_warn = "WARNING: The variable selected for entity has NAs!" else:entity_na_warn = False if np.where(df[time].isnull())[0].size > 0: time_na_warn = "WARNING: The variable selected for time has NAs!" else:time_na_warn = False #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # PANEL DATA MODELLING data_modelling_container = st.container() with data_modelling_container: #st.write("") #st.write("") #st.write("") st.write("") st.write("") st.header("**Panel data modelling**") st.markdown("Go for creating predictive models of your panel data using panel data modelling! STATY will take care of the modelling for you, so you can put your focus on results interpretation and communication! ") PDM_settings = st.expander("Specify model", expanded = False) with PDM_settings: if time_na_warn == False and entity_na_warn == False: # Initial status for running models model_full_results = None do_modval = "No" model_val_results = None model_full_results = None panel_model_fit = None if df.shape[1] > 2 and df.shape[0] > 0: #-------------------------------------------------------------------------------------- # GENERAL SETTINGS st.markdown("**Variable selection**") # Variable categories df_summary_model = fc.data_summary(df) var_cat = df_summary_model["Variable types"].loc["category"] # Response variable response_var_options = df.columns response_var_options = response_var_options[response_var_options.isin(df.drop(entity, axis = 1).columns)] if time != "NA": response_var_options = response_var_options[response_var_options.isin(df.drop(time, axis = 1).columns)] response_var = st.selectbox("Select response variable", response_var_options, key = st.session_state['key']) # Check if response variable is numeric and has no NAs response_var_message_num = False response_var_message_na = False response_var_message_cat = False if var_cat.loc[response_var] == "string/binary" or var_cat.loc[response_var] == "bool/binary": response_var_message_num = "ERROR: Please select a numeric response variable!" elif var_cat.loc[response_var] == "string/categorical" or var_cat.loc[response_var] == "other" or var_cat.loc[response_var] == "string/single": response_var_message_num = "ERROR: Please select a numeric response variable!" elif var_cat.loc[response_var] == "categorical": response_var_message_cat = "WARNING: Categorical variable is treated as continuous variable!" if response_var_message_num != False: st.error(response_var_message_num) if response_var_message_na != False: st.error(response_var_message_na) if response_var_message_cat != False: st.warning(response_var_message_cat) # Continue if everything is clean for response variable if response_var_message_num == False and response_var_message_na == False: # Select explanatory variables expl_var_options = response_var_options[response_var_options.isin(df.drop(response_var, axis = 1).columns)] expl_var = st.multiselect("Select explanatory variables", expl_var_options, key = st.session_state['key']) var_list = list([entity]) + list([time]) + list([response_var]) + list(expl_var) # Check if explanatory variables are numeric expl_var_message_num = False expl_var_message_na = False if any(a for a in df[expl_var].dtypes if a != "float64" and a != "float32" and a != "int64" and a != "int64"): expl_var_not_num = df[expl_var].select_dtypes(exclude=["int64", "int32", "float64", "float32"]).columns expl_var_message_num = "ERROR: Please exclude non-numeric variables: " + ', '.join(map(str,list(expl_var_not_num))) # Check if NAs are present and delete them automatically (delete before run models button) if np.where(df[var_list].isnull())[0].size > 0: st.warning("WARNING: Your modelling data set includes NAs. Rows with NAs are automatically deleted!") if expl_var_message_num != False: st.error(expl_var_message_num) elif expl_var_message_na != False: st.error(expl_var_message_na) # Continue if everything is clean for explanatory variables and at least one was selected elif expl_var_message_num == False and expl_var_message_na == False and len(expl_var) > 0: #-------------------------------------------------------------------------------------- # ALGORITHMS st.markdown("**Specify modelling algorithm**") # Algorithms selection col1, col2 = st.columns(2) algorithms = ["Entity Fixed Effects", "Time Fixed Effects", "Two-ways Fixed Effects", "Random Effects", "Pooled"] with col1: PDM_alg = st.selectbox("Select modelling technique", algorithms) # Covariance type with col2: PDM_cov_type = st.selectbox("Select covariance type", ["homoskedastic", "heteroskedastic", "clustered"]) PDM_cov_type2 = None if PDM_cov_type == "clustered": PDM_cov_type2 = st.selectbox("Select cluster type", ["entity", "time", "both"]) #-------------------------------------------------------------------------------------- # VALIDATION SETTINGS st.markdown("**Validation settings**") do_modval= st.selectbox("Use model validation", ["No", "Yes"]) if do_modval == "Yes": col1, col2 = st.columns(2) # Select training/ test ratio with col1: train_frac = st.slider("Select training data size", 0.5, 0.95, 0.8) # Select number for validation runs with col2: val_runs = st.slider("Select number for validation runs", 5, 100, 10) #-------------------------------------------------------------------------------------- # PREDICTION SETTINGS st.markdown("**Model predictions**") do_modprednew = st.selectbox("Use model prediction for new data", ["No", "Yes"]) if do_modprednew == "No": df_new = pd.DataFrame() if do_modprednew == "Yes": # Upload new data new_data_pred = st.file_uploader(" ", type=["csv", "txt"]) if new_data_pred is not None: # Read data if uploaded_data is not None: df_new = pd.read_csv(new_data_pred, decimal=dec_sep, sep = col_sep,thousands=thousands_sep,encoding=encoding_val, engine='python') else: df_new = pd.read_csv(new_data_pred, sep = ";|,|\t",engine='python') st.success('Loading data... done!') # Transform columns if any were transformed # Log-transformation if sb_DM_dTrans_log is not None: # List of log-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_log: if "log_"+tv in expl_var: tv_list.append(tv) # Check if log-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for log-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_log(df_new, tv_list) # Sqrt-transformation if sb_DM_dTrans_sqrt is not None: # List of sqrt-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_sqrt: if "sqrt_"+tv in expl_var: tv_list.append(tv) # Check if sqrt-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for sqrt-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_sqrt(df_new, tv_list) # Square-transformation if sb_DM_dTrans_square is not None: # List of square-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_square: if "square_"+tv in expl_var: tv_list.append(tv) # Check if square-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for square-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_square(df_new, tv_list) # Standardization if sb_DM_dTrans_stand is not None: # List of standardized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_stand: if "stand_"+tv in expl_var: tv_list.append(tv) # Check if standardized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for standardization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use mean and standard deviation of original data for standardization for tv in tv_list: if df_new[tv].dtypes == "float64" or df_new[tv].dtypes == "int64" or df_new[tv].dtypes == "float32" or df_new[tv].dtypes == "int32": if df[tv].std() != 0: new_var_name = "stand_" + tv new_var = (df_new[tv] - df[tv].mean())/df[tv].std() df_new[new_var_name] = new_var else: st.error("ERROR: " + str(tv) + " is not numerical and cannot be standardized!") return # Normalization if sb_DM_dTrans_norm is not None: # List of normalized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_norm: if "norm_"+tv in expl_var: tv_list.append(tv) # Check if normalized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for normalization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use min and max of original data for normalization for tv in tv_list: if df_new[tv].dtypes == "float64" or df_new[tv].dtypes == "int64" or df_new[tv].dtypes == "float32" or df_new[tv].dtypes == "int32": if (df[tv].max()-df[tv].min()) != 0: new_var_name = "norm_" + tv new_var = (df_new[tv] - df[tv].min())/(df[tv].max()-df[tv].min()) df_new[new_var_name] = new_var else: st.error("ERROR: " + str(tv) + " is not numerical and cannot be normalized!") return # Categorization if sb_DM_dTrans_numCat is not None: # List of categorized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_numCat: if "numCat_"+tv in expl_var: tv_list.append(tv) # Check if categorized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for categorization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use same categories as for original data for tv in tv_list: new_var_name = "numCat_" + tv new_var = pd.DataFrame(index = df_new.index, columns = [new_var_name]) for r in df_new.index: if df.loc[df[tv] == df_new[tv][r]].empty == False: new_var.loc[r, new_var_name] = df["numCat_" + tv][df.loc[df[tv] == df_new[tv][r]].index[0]] else: st.error("ERROR: Category is missing for the value in row: "+ str(r) + ", variable: " + str(tv)) return df_new[new_var_name] = new_var.astype('int64') # Multiplication if sb_DM_dTrans_mult != 0: # List of multiplied variables that are included as explanatory variables tv_list = [] for tv in range(0, sb_DM_dTrans_mult): mult_name = "mult_" + str(multiplication_pairs.loc[tv]["Var1"]) + "_" + str(multiplication_pairs.loc[tv]["Var2"]) if mult_name in expl_var: tv_list.append(str(multiplication_pairs.loc[tv]["Var1"])) tv_list.append(str(multiplication_pairs.loc[tv]["Var2"])) # Check if multiplied explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for multiplication in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data for var in range(0, sb_DM_dTrans_mult): df_new = fc.var_transform_mult(df_new, multiplication_pairs.loc[var]["Var1"], multiplication_pairs.loc[var]["Var2"]) # Division if sb_DM_dTrans_div != 0: # List of divided variables that are included as explanatory variables tv_list = [] for tv in range(0, sb_DM_dTrans_div): mult_name = "div_" + str(division_pairs.loc[tv]["Var1"]) + "_" + str(division_pairs.loc[tv]["Var2"]) if mult_name in expl_var: tv_list.append(str(division_pairs.loc[tv]["Var1"])) tv_list.append(str(division_pairs.loc[tv]["Var2"])) # Check if multiplied explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for division in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data for var in range(0, sb_DM_dTrans_div): df_new = fc.var_transform_div(df_new, division_pairs.loc[var]["Var1"], division_pairs.loc[var]["Var2"]) # Check if explanatory variables are available as columns as well as entity and time expl_list = [] for expl_incl in expl_var: if expl_incl not in df_new.columns: expl_list.append(expl_incl) if expl_list: st.error("ERROR: Some variables are missing in new data: "+ ', '.join(expl_list)) return if any(a for a in df_new.columns if a == entity) and any(a for a in df_new.columns if a == time): st.info("All variables are available for predictions!") elif any(a for a in df_new.columns if a == entity) == False: st.error("ERROR: Entity variable is missing!") return elif any(a for a in df_new.columns if a == time) == False: st.error("ERROR: Time variable is missing!") return # Check if NAs are present if df_new.iloc[list(pd.unique(np.where(df_new.isnull())[0]))].shape[0] == 0: st.empty() else: df_new = df_new[list([entity]) + list([time]) + expl_var].dropna() st.warning("WARNING: Your new data set includes NAs. Rows with NAs are automatically deleted!") df_new = df_new[list([entity]) + list([time]) + expl_var] # Modelling data set df = df[var_list] # Check if NAs are present and delete them automatically if np.where(df[var_list].isnull())[0].size > 0: df = df.dropna() #-------------------------------------------------------------------------------------- # SETTINGS SUMMARY st.write("") # Show modelling data if st.checkbox("Show modelling data"): st.write(df) st.write("Data shape: ", df.shape[0], " rows and ", df.shape[1], " columns") # Download link for modelling data output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="modelling_data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "Modelling data__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download modelling data</a> """, unsafe_allow_html=True) st.write("") # Show prediction data if do_modprednew == "Yes": if new_data_pred is not None: if st.checkbox("Show new data for predictions"): st.write(df_new) st.write("Data shape: ", df_new.shape[0], " rows and ", df_new.shape[1], " columns") # Download link for forecast data output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_new.to_excel(excel_file, sheet_name="new_data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "New data for predictions__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download new data for predictions</a> """, unsafe_allow_html=True) st.write("") # Show modelling settings if st.checkbox('Show a summary of modelling settings', value = False): #-------------------------------------------------------------------------------------- # ALOGRITHMS st.write("Algorithms summary:") st.write("- ",PDM_alg) st.write("- Covariance type: ", PDM_cov_type) if PDM_cov_type2 is not None: st.write("- Cluster type: ", PDM_cov_type2) st.write("") #-------------------------------------------------------------------------------------- # SETTINGS # General settings summary st.write("General settings summary:") # Modelling formula if expl_var != False: st.write("- Modelling formula:", response_var, "~", ' + '.join(expl_var)) st.write("- Entity:", entity) st.write("- Time:", time) if do_modval == "Yes": # Train/ test ratio if train_frac != False: st.write("- Train/ test ratio:", str(round(train_frac*100)), "% / ", str(round(100-train_frac*100)), "%") # Validation runs if val_runs != False: st.write("- Validation runs:", str(val_runs)) st.write("") st.write("") #-------------------------------------------------------------------------------------- # RUN MODELS # Models are run on button click st.write("") run_models = st.button("Run model") st.write("") # Run everything on button click if run_models: # Check if new data available if do_modprednew == "Yes": if new_data_pred is None: st.error("ERROR: Please upload new data for additional model predictions or select 'No'!") return # Define clustered cov matrix "entity", "time", "both" cluster_entity = True cluster_time = False if PDM_cov_type == "clustered": if PDM_cov_type2 == "entity": cluster_entity = True cluster_time = False if PDM_cov_type2 == "time": cluster_entity = False cluster_time = True if PDM_cov_type2 == "both": cluster_entity = True cluster_time = True # Prepare data data = df.set_index([entity, time]) Y_data = data[response_var] X_data1 = data[expl_var] # for efe, tfe, twfe X_data2 = sm.add_constant(data[expl_var]) # for re, pool # Model validation if do_modval == "Yes": # Progress bar st.info("Validation progress") my_bar = st.progress(0.0) progress1 = 0 # Model validation # R² model_eval_r2 = pd.DataFrame(index = range(val_runs), columns = [response_var]) # MSE model_eval_mse = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # RMSE model_eval_rmse = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # MAE model_eval_mae = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # MaxERR model_eval_maxerr = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # EVRS model_eval_evrs = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # SSR model_eval_ssr = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # Model validation summary model_eval_mean = pd.DataFrame(index = ["% VE", "MSE", "RMSE", "MAE", "MaxErr", "EVRS", "SSR"], columns = ["Value"]) model_eval_sd = pd.DataFrame(index = ["% VE", "MSE", "RMSE", "MAE", "MaxErr", "EVRS", "SSR"], columns = ["Value"]) # Collect all residuals in test runs resdiuals_allruns = {} for val in range(val_runs): # Split data into train/ test data if PDM_alg != "Pooled" and PDM_alg != "Random Effects": X_data = X_data1.copy() if PDM_alg == "Pooled" or PDM_alg == "Random Effects": X_data = X_data2.copy() X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, train_size = train_frac, random_state = val) # Train selected panel model # efe if PDM_alg == "Entity Fixed Effects": panel_model_efe_val = PanelOLS(Y_train, X_train, entity_effects = True, time_effects = False) panel_model_fit_efe_val = panel_model_efe_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # tfe if PDM_alg == "Time Fixed Effects": panel_model_tfe_val = PanelOLS(Y_train, X_train, entity_effects = False, time_effects = True) panel_model_fit_tfe_val = panel_model_tfe_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # twfe if PDM_alg == "Two-ways Fixed Effects": panel_model_twfe_val = PanelOLS(Y_train, X_train, entity_effects = True, time_effects = True) panel_model_fit_twfe_val = panel_model_twfe_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # re if PDM_alg == "Random Effects": panel_model_re_val = RandomEffects(Y_train, X_train) panel_model_fit_re_val = panel_model_re_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # pool if PDM_alg == "Pooled": panel_model_pool_val = PooledOLS(Y_train, X_train) panel_model_fit_pool_val = panel_model_pool_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # save selected model if PDM_alg == "Entity Fixed Effects": panel_model_fit_val = panel_model_fit_efe_val if PDM_alg == "Time Fixed Effects": panel_model_fit_val = panel_model_fit_tfe_val if PDM_alg == "Two-ways Fixed Effects": panel_model_fit_val = panel_model_fit_twfe_val if PDM_alg == "Random Effects": panel_model_fit_val = panel_model_fit_re_val if PDM_alg == "Pooled": panel_model_fit_val = panel_model_fit_pool_val # Extract effects if PDM_alg != "Pooled": comb_effects = panel_model_fit_val.estimated_effects ent_effects = pd.DataFrame(index = X_train.reset_index()[entity].drop_duplicates(), columns = ["Value"]) time_effects = pd.DataFrame(index = sorted(list(X_train.reset_index()[time].drop_duplicates())), columns = ["Value"]) # Use LSDV for estimating effects if PDM_alg == "Entity Fixed Effects": X_train_mlr = pd.concat([X_train.reset_index(drop = True), pd.get_dummies(X_train.reset_index()[entity])], axis = 1) Y_train_mlr = Y_train.reset_index(drop = True) model_mlr_val = sm.OLS(Y_train_mlr, X_train_mlr) model_mlr_fit_val = model_mlr_val.fit() for e in ent_effects.index: ent_effects.loc[e]["Value"] = model_mlr_fit_val.params[e] for t in time_effects.index: time_effects.loc[t]["Value"] = 0 if PDM_alg == "Time Fixed Effects": X_train_mlr = pd.concat([X_train.reset_index(drop = True), pd.get_dummies(X_train.reset_index()[time])], axis = 1) Y_train_mlr = Y_train.reset_index(drop = True) model_mlr_val = sm.OLS(Y_train_mlr, X_train_mlr) model_mlr_fit_val = model_mlr_val.fit() for e in ent_effects.index: ent_effects.loc[e]["Value"] = 0 for t in time_effects.index: time_effects.loc[t]["Value"] = model_mlr_fit_val.params[t] if PDM_alg == "Two-ways Fixed Effects": X_train_mlr = pd.concat([X_train.reset_index(drop = True), pd.get_dummies(X_train.reset_index()[entity]), pd.get_dummies(X_train.reset_index()[time])], axis = 1) Y_train_mlr = Y_train.reset_index(drop = True) model_mlr_val = sm.OLS(Y_train_mlr, X_train_mlr) model_mlr_fit_val = model_mlr_val.fit() for e in ent_effects.index: ent_effects.loc[e]["Value"] = model_mlr_fit_val.params[e] for t in time_effects.index: time_effects.loc[t]["Value"] = model_mlr_fit_val.params[t] if PDM_alg == "Random Effects": for e in ent_effects.index: ent_effects.loc[e]["Value"] = comb_effects.loc[e,].reset_index(drop = True).iloc[0][0] # Prediction for Y_test (without including effects) Y_test_pred = panel_model_fit_val.predict(X_test) # Add effects for predictions for p in range(Y_test_pred.size): entity_ind = Y_test_pred.index[p][0] time_ind = Y_test_pred.index[p][1] # if effects are available, add effect if PDM_alg == "Entity Fixed Effects": if any(a for a in ent_effects.index if a == entity_ind): effect = ent_effects.loc[entity_ind][0] Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect if PDM_alg == "Time Fixed Effects": if any(a for a in time_effects.index if a == time_ind): effect = time_effects.loc[time_ind][0] Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect if PDM_alg == "Two-ways Fixed Effects": if any(a for a in time_effects.index if a == time_ind): effect_time = time_effects.loc[time_ind][0] else: effect_time = 0 if any(a for a in ent_effects.index if a == entity_ind): effect_entity = ent_effects.loc[entity_ind][0] else: effect_entity = 0 Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect_entity + effect_time if PDM_alg == "Random Effects": if any(a for a in ent_effects.index if a == entity_ind): effect = ent_effects.loc[entity_ind][0] Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect # Adjust format Y_test_pred = Y_test_pred.reset_index()["predictions"] Y_test = Y_test.reset_index()[response_var] # Save R² for test data model_eval_r2.iloc[val][response_var] = r2_score(Y_test, Y_test_pred) # Save MSE for test data model_eval_mse.iloc[val]["Value"] = mean_squared_error(Y_test, Y_test_pred, squared = True) # Save RMSE for test data model_eval_rmse.iloc[val]["Value"] = mean_squared_error(Y_test, Y_test_pred, squared = False) # Save MAE for test data model_eval_mae.iloc[val]["Value"] = mean_absolute_error(Y_test, Y_test_pred) # Save MaxERR for test data model_eval_maxerr.iloc[val]["Value"] = max_error(Y_test, Y_test_pred) # Save explained variance regression score for test data model_eval_evrs.iloc[val]["Value"] = explained_variance_score(Y_test, Y_test_pred) # Save sum of squared residuals for test data model_eval_ssr.iloc[val]["Value"] = ((Y_test-Y_test_pred)**2).sum() # Save residual values for test data res = Y_test-Y_test_pred resdiuals_allruns[val] = res progress1 += 1 my_bar.progress(progress1/(val_runs)) # Calculate mean performance statistics # Mean model_eval_mean.loc["% VE"]["Value"] = model_eval_r2[response_var].mean() model_eval_mean.loc["MSE"]["Value"] = model_eval_mse["Value"].mean() model_eval_mean.loc["RMSE"]["Value"] = model_eval_rmse["Value"].mean() model_eval_mean.loc["MAE"]["Value"] = model_eval_mae["Value"].mean() model_eval_mean.loc["MaxErr"]["Value"] = model_eval_maxerr["Value"].mean() model_eval_mean.loc["EVRS"]["Value"] = model_eval_evrs["Value"].mean() model_eval_mean.loc["SSR"]["Value"] = model_eval_ssr["Value"].mean() # Sd model_eval_sd.loc["% VE"]["Value"] = model_eval_r2[response_var].std() model_eval_sd.loc["MSE"]["Value"] = model_eval_mse["Value"].std() model_eval_sd.loc["RMSE"]["Value"] = model_eval_rmse["Value"].std() model_eval_sd.loc["MAE"]["Value"] = model_eval_mae["Value"].std() model_eval_sd.loc["MaxErr"]["Value"] = model_eval_maxerr["Value"].std() model_eval_sd.loc["EVRS"]["Value"] = model_eval_evrs["Value"].std() model_eval_sd.loc["SSR"]["Value"] = model_eval_ssr["Value"].std() # Residuals residuals_collection = pd.DataFrame() for x in resdiuals_allruns: residuals_collection = residuals_collection.append(pd.DataFrame(resdiuals_allruns[x]), ignore_index = True) residuals_collection.columns = [response_var] # Collect validation results model_val_results = {} model_val_results["mean"] = model_eval_mean model_val_results["sd"] = model_eval_sd model_val_results["residuals"] = residuals_collection model_val_results["variance explained"] = model_eval_r2 # Full model # Progress bar st.info("Full model progress") my_bar_fm = st.progress(0.0) progress2 = 0 # efe panel_model_efe = PanelOLS(Y_data, X_data1, entity_effects = True, time_effects = False) panel_model_fit_efe = panel_model_efe.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # tfe panel_model_tfe = PanelOLS(Y_data, X_data1, entity_effects = False, time_effects = True) panel_model_fit_tfe = panel_model_tfe.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # twfe panel_model_twfe = PanelOLS(Y_data, X_data1, entity_effects = True, time_effects = True) panel_model_fit_twfe = panel_model_twfe.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # re panel_model_re = RandomEffects(Y_data, X_data2) panel_model_fit_re = panel_model_re.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # pool panel_model_pool = PooledOLS(Y_data, X_data2) panel_model_fit_pool = panel_model_pool.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # save selected model if PDM_alg == "Entity Fixed Effects": panel_model_fit = panel_model_fit_efe if PDM_alg == "Time Fixed Effects": panel_model_fit = panel_model_fit_tfe if PDM_alg == "Two-ways Fixed Effects": panel_model_fit = panel_model_fit_twfe if PDM_alg == "Random Effects": panel_model_fit = panel_model_fit_re if PDM_alg == "Pooled": panel_model_fit = panel_model_fit_pool # Entity information ent_inf = pd.DataFrame(index = ["No. entities", "Avg observations", "Median observations", "Min observations", "Max observations"], columns = ["Value"]) ent_inf.loc["No. entities"] = panel_model_fit.entity_info["total"] ent_inf.loc["Avg observations"] = panel_model_fit.entity_info["mean"] ent_inf.loc["Median observations"] = panel_model_fit.entity_info["median"] ent_inf.loc["Min observations"] = panel_model_fit.entity_info["min"] ent_inf.loc["Max observations"] = panel_model_fit.entity_info["max"] # Time information time_inf = pd.DataFrame(index = ["No. time periods", "Avg observations", "Median observations", "Min observations", "Max observations"], columns = ["Value"]) time_inf.loc["No. time periods"] = panel_model_fit.time_info["total"] time_inf.loc["Avg observations"] = panel_model_fit.time_info["mean"] time_inf.loc["Median observations"] = panel_model_fit.time_info["median"] time_inf.loc["Min observations"] = panel_model_fit.time_info["min"] time_inf.loc["Max observations"] = panel_model_fit.time_info["max"] # Regression information reg_inf = pd.DataFrame(index = ["Dep. variable", "Estimator", "Method", "No. observations", "DF residuals", "DF model", "Covariance type"], columns = ["Value"]) reg_inf.loc["Dep. variable"] = response_var reg_inf.loc["Estimator"] = panel_model_fit.name if PDM_alg == "Entity Fixed Effects" or PDM_alg == "Time Fixed Effects" or "Two-ways Fixed": reg_inf.loc["Method"] = "Within" if PDM_alg == "Random Effects": reg_inf.loc["Method"] = "Quasi-demeaned" if PDM_alg == "Pooled": reg_inf.loc["Method"] = "Least squares" reg_inf.loc["No. observations"] = panel_model_fit.nobs reg_inf.loc["DF residuals"] = panel_model_fit.df_resid reg_inf.loc["DF model"] = panel_model_fit.df_model reg_inf.loc["Covariance type"] = panel_model_fit._cov_type # Regression statistics fitted = df[response_var]-panel_model_fit.resids.values obs = df[response_var] reg_stats = pd.DataFrame(index = ["R²", "R² (between)", "R² (within)", "R² (overall)", "Log-likelihood", "SST", "SST (overall)"], columns = ["Value"]) reg_stats.loc["R²"] = panel_model_fit._r2 reg_stats.loc["R² (between)"] = panel_model_fit._c2b**2 reg_stats.loc["R² (within)"] = panel_model_fit._c2w**2 reg_stats.loc["R² (overall)"] = panel_model_fit._c2o**2 reg_stats.loc["Log-likelihood"] = panel_model_fit._loglik reg_stats.loc["SST"] = panel_model_fit.total_ss reg_stats.loc["SST (overall)"] = ((obs-obs.mean())**2).sum() # Overall performance metrics (with effects) reg_overall = pd.DataFrame(index = ["% VE", "MSE", "RMSE", "MAE", "MaxErr", "EVRS", "SSR"], columns = ["Value"]) reg_overall.loc["% VE"] = r2_score(obs, fitted) reg_overall.loc["MSE"] = mean_squared_error(obs, fitted, squared = True) reg_overall.loc["RMSE"] = mean_squared_error(obs, fitted, squared = False) reg_overall.loc["MAE"] = mean_absolute_error(obs, fitted) reg_overall.loc["MaxErr"] = max_error(obs, fitted) reg_overall.loc["EVRS"] = explained_variance_score(obs, fitted) reg_overall.loc["SSR"] = ((obs-fitted)**2).sum() # ANOVA if PDM_alg == "Pooled": Y_data_mlr = df[response_var] X_data_mlr = sm.add_constant(df[expl_var]) full_model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) full_model_fit = full_model_mlr.fit() reg_anova = pd.DataFrame(index = ["Regression", "Residual", "Total"], columns = ["DF", "SS", "MS", "F-statistic"]) reg_anova.loc["Regression"]["DF"] = full_model_fit.df_model reg_anova.loc["Regression"]["SS"] = full_model_fit.ess reg_anova.loc["Regression"]["MS"] = full_model_fit.ess/full_model_fit.df_model reg_anova.loc["Regression"]["F-statistic"] = full_model_fit.fvalue reg_anova.loc["Residual"]["DF"] = full_model_fit.df_resid reg_anova.loc["Residual"]["SS"] = full_model_fit.ssr reg_anova.loc["Residual"]["MS"] = full_model_fit.ssr/full_model_fit.df_resid reg_anova.loc["Residual"]["F-statistic"] = "" reg_anova.loc["Total"]["DF"] = full_model_fit.df_resid + full_model_fit.df_model reg_anova.loc["Total"]["SS"] = full_model_fit.ssr + full_model_fit.ess reg_anova.loc["Total"]["MS"] = "" reg_anova.loc["Total"]["F-statistic"] = "" # Coefficients if PDM_alg == "Entity Fixed Effects" or PDM_alg == "Time Fixed Effects" or "Two-ways Fixed Effects": reg_coef = pd.DataFrame(index = expl_var, columns = ["coeff", "std err", "t-statistic", "p-value", "lower 95%", "upper 95%"]) for c in expl_var: reg_coef.loc[c]["coeff"] = panel_model_fit.params[expl_var.index(c)] reg_coef.loc[c]["std err"] = panel_model_fit.std_errors.loc[c] reg_coef.loc[c]["t-statistic"] = panel_model_fit.tstats.loc[c] reg_coef.loc[c]["p-value"] = panel_model_fit.pvalues.loc[c] reg_coef.loc[c]["lower 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["lower"] reg_coef.loc[c]["upper 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["upper"] if PDM_alg == "Random Effects" or PDM_alg == "Pooled": reg_coef = pd.DataFrame(index = ["const"]+ expl_var, columns = ["coeff", "std err", "t-statistic", "p-value", "lower 95%", "upper 95%"]) for c in ["const"] + expl_var: reg_coef.loc[c]["coeff"] = panel_model_fit.params[(["const"]+ expl_var).index(c)] reg_coef.loc[c]["std err"] = panel_model_fit.std_errors.loc[c] reg_coef.loc[c]["t-statistic"] = panel_model_fit.tstats.loc[c] reg_coef.loc[c]["p-value"] = panel_model_fit.pvalues.loc[c] reg_coef.loc[c]["lower 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["lower"] reg_coef.loc[c]["upper 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["upper"] # Effects reg_ent_effects = pd.DataFrame(index = df[entity].drop_duplicates(), columns = ["Value"]) reg_time_effects = pd.DataFrame(index = sorted(list(df[time].drop_duplicates())), columns = ["Value"]) reg_comb_effects = panel_model_fit.estimated_effects reg_comb_effects.columns = ["Value"] # Use LSDV for estimating effects Y_data_mlr = df[response_var] if PDM_alg == "Pooled" or PDM_alg == "Random Effects": X_data_mlr = sm.add_constant(df[expl_var]) else: X_data_mlr = df[expl_var] if PDM_alg == "Entity Fixed Effects": X_data_mlr = pd.concat([X_data_mlr, pd.get_dummies(df[entity])], axis = 1) model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) model_mlr_fit = model_mlr.fit() for e in reg_ent_effects.index: reg_ent_effects.loc[e]["Value"] = model_mlr_fit.params[e] for t in reg_time_effects.index: reg_time_effects.loc[t]["Value"] = 0 if PDM_alg == "Time Fixed Effects": X_data_mlr = pd.concat([X_data_mlr, pd.get_dummies(df[time])], axis = 1) model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) model_mlr_fit = model_mlr.fit() for e in reg_ent_effects.index: reg_ent_effects.loc[e]["Value"] = 0 for t in reg_time_effects.index: reg_time_effects.loc[t]["Value"] = model_mlr_fit.params[t] if PDM_alg == "Two-ways Fixed Effects": X_data_mlr = pd.concat([X_data_mlr, pd.get_dummies(df[entity]), pd.get_dummies(df[time])], axis = 1) model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) model_mlr_fit = model_mlr.fit() for e in reg_ent_effects.index: reg_ent_effects.loc[e]["Value"] = model_mlr_fit.params[e] for t in reg_time_effects.index: reg_time_effects.loc[t]["Value"] = model_mlr_fit.params[t] if PDM_alg == "Random Effects": for e in reg_ent_effects.index: reg_ent_effects.loc[e]["Value"] = reg_comb_effects.loc[e,].reset_index(drop = True).iloc[0][0] for t in reg_time_effects.index: reg_time_effects.loc[t]["Value"] = 0 # New predictions if df_new.empty == False: data_new = df_new.set_index([entity, time]) X_data1_new = data_new[expl_var] # for efe, tfe, twfe X_data2_new = sm.add_constant(data_new[expl_var]) # for re, pool if PDM_alg != "Pooled" and PDM_alg != "Random Effects": X_data_new = X_data1_new.copy() if PDM_alg == "Pooled" or PDM_alg == "Random Effects": X_data_new = X_data2_new.copy() # Prediction for new prediction data (without including effects) Y_pred_new = panel_model_fit.predict(X_data_new) # Add effects for new predictions for p in range(Y_pred_new.size): entity_ind = Y_pred_new.index[p][0] time_ind = Y_pred_new.index[p][1] # if effects are available, add effect if PDM_alg == "Entity Fixed Effects": if any(a for a in reg_ent_effects.index if a == entity_ind): effect = reg_ent_effects.loc[entity_ind][0] Y_pred_new["predictions"].loc[entity_ind, time_ind] = Y_pred_new["predictions"].loc[entity_ind, time_ind] + effect if PDM_alg == "Time Fixed Effects": if any(a for a in reg_time_effects.index if a == time_ind): effect = reg_time_effects.loc[time_ind][0] Y_pred_new["predictions"].loc[entity_ind, time_ind] = Y_pred_new["predictions"].loc[entity_ind, time_ind] + effect if PDM_alg == "Two-ways Fixed Effects": if any(a for a in reg_time_effects.index if a == time_ind): effect_time = reg_time_effects.loc[time_ind][0] else: effect_time = 0 if any(a for a in reg_ent_effects.index if a == entity_ind): effect_entity = reg_ent_effects.loc[entity_ind][0] else: effect_entity = 0 Y_pred_new["predictions"].loc[entity_ind, time_ind] = Y_pred_new["predictions"].loc[entity_ind, time_ind] + effect_entity + effect_time if PDM_alg == "Random Effects": if any(a for a in reg_ent_effects.index if a == entity_ind): effect = reg_ent_effects.loc[entity_ind][0] Y_pred_new["predictions"].loc[entity_ind, time_ind] = Y_pred_new["predictions"].loc[entity_ind, time_ind] + effect # Variance decomposition if PDM_alg == "Random Effects": reg_var_decomp = pd.DataFrame(index = ["idiosyncratic", "individual"], columns = ["variance", "share"]) reg_theta = pd.DataFrame(index = ["theta"], columns = df[entity].drop_duplicates()) reg_var_decomp.loc["idiosyncratic"]["variance"] = panel_model_fit.variance_decomposition["Residual"] reg_var_decomp.loc["individual"]["variance"] = panel_model_fit.variance_decomposition["Effects"] reg_var_decomp.loc["idiosyncratic"]["share"] = panel_model_fit.variance_decomposition["Residual"]/(panel_model_fit.variance_decomposition["Residual"]+panel_model_fit.variance_decomposition["Effects"]) reg_var_decomp.loc["individual"]["share"] = panel_model_fit.variance_decomposition["Effects"]/(panel_model_fit.variance_decomposition["Residual"]+panel_model_fit.variance_decomposition["Effects"]) reg_theta.loc["theta"] = list(panel_model_fit.theta.values) for j in reg_theta.columns: reg_theta.loc["theta"][j] = reg_theta.loc["theta"][j][0] # Statistical tests if PDM_alg == "Entity Fixed Effects": if PDM_cov_type == "homoskedastic": reg_test = pd.DataFrame(index = ["test statistic", "p-value", "distribution"], columns = ["F-test (non-robust)", "F-test (robust)", "F-test (poolability)", "Hausman-test"]) else: reg_test = pd.DataFrame(index = ["test statistic", "p-value", "distribution"], columns = ["F-test (non-robust)", "F-test (robust)", "F-test (poolability)"]) else: reg_test = pd.DataFrame(index = ["test statistic", "p-value", "distribution"], columns = ["F-test (non-robust)", "F-test (robust)", "F-test (poolability)"]) if PDM_alg == "Pooled" or PDM_alg == "Random Effects": reg_test = pd.DataFrame(index = ["test statistic", "p-value", "distribution"], columns = ["F-test (non-robust)", "F-test (robust)"]) reg_test.loc["test statistic"]["F-test (non-robust)"] = panel_model_fit.f_statistic.stat reg_test.loc["p-value"]["F-test (non-robust)"] = panel_model_fit.f_statistic.pval reg_test.loc["distribution"]["F-test (non-robust)"] = "F(" + str(panel_model_fit.f_statistic.df) + ", " + str(panel_model_fit.f_statistic.df_denom) + ")" reg_test.loc["test statistic"]["F-test (robust)"] = panel_model_fit.f_statistic_robust.stat reg_test.loc["p-value"]["F-test (robust)"] = panel_model_fit.f_statistic_robust.pval reg_test.loc["distribution"]["F-test (robust)"] = "F(" + str(panel_model_fit.f_statistic_robust.df) + ", " + str(panel_model_fit.f_statistic_robust.df_denom) + ")" if PDM_alg != "Pooled" and PDM_alg != "Random Effects" : reg_test.loc["test statistic"]["F-test (poolability)"] = panel_model_fit.f_pooled.stat reg_test.loc["p-value"]["F-test (poolability)"] = panel_model_fit.f_pooled.pval reg_test.loc["distribution"]["F-test (poolability)"] = "F(" + str(panel_model_fit.f_pooled.df) + ", " + str(panel_model_fit.f_pooled.df_denom) + ")" if PDM_alg == "Entity Fixed Effects": if PDM_cov_type == "homoskedastic": reg_test.loc["test statistic"]["Hausman-test"] = fc.hausman_test(panel_model_fit, panel_model_fit_re)[0] reg_test.loc["p-value"]["Hausman-test"] = fc.hausman_test(panel_model_fit, panel_model_fit_re)[2] reg_test.loc["distribution"]["Hausman-test"] = "Chi²(" + str(fc.hausman_test(panel_model_fit, panel_model_fit_re)[1]) + ")" # Heteroskedasticity tests reg_het_test = pd.DataFrame(index = ["test statistic", "p-value"], columns = ["Breusch-Pagan test", "White test (without int.)", "White test (with int.)"]) if PDM_alg == "Pooled": # Create datasets Y_data_mlr = df[response_var] X_data_mlr = sm.add_constant(df[expl_var]) # Create MLR models full_model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) full_model_fit = full_model_mlr.fit() # Breusch-Pagan heteroscedasticity test bp_result = sm.stats.diagnostic.het_breuschpagan(full_model_fit.resid, full_model_fit.model.exog) reg_het_test.loc["test statistic"]["Breusch-Pagan test"] = bp_result[0] reg_het_test.loc["p-value"]["Breusch-Pagan test"] = bp_result[1] # White heteroscedasticity test with interaction white_int_result = sm.stats.diagnostic.het_white(full_model_fit.resid, full_model_fit.model.exog) reg_het_test.loc["test statistic"]["White test (with int.)"] = white_int_result[0] reg_het_test.loc["p-value"]["White test (with int.)"] = white_int_result[1] # White heteroscedasticity test without interaction X_data_mlr_white = X_data_mlr for i in expl_var: X_data_mlr_white[i+ "_squared"] = X_data_mlr_white[i]**2 white = sm.OLS(full_model_fit.resid**2, X_data_mlr_white) del X_data_mlr_white white_fit = white.fit() white_statistic = white_fit.rsquared*data.shape[0] white_p_value = stats.chi2.sf(white_statistic,len(white_fit.model.exog_names)-1) reg_het_test.loc["test statistic"]["White test (without int.)"] = white_statistic reg_het_test.loc["p-value"]["White test (without int.)"] = white_p_value # Residuals distribution reg_resid = pd.DataFrame(index = ["min", "25%-Q", "median", "75%-Q", "max"], columns = ["Value"]) reg_resid.loc["min"]["Value"] = panel_model_fit.resids.min() reg_resid.loc["25%-Q"]["Value"] = panel_model_fit.resids.quantile(q = 0.25) reg_resid.loc["median"]["Value"] = panel_model_fit.resids.quantile(q = 0.5) reg_resid.loc["75%-Q"]["Value"] = panel_model_fit.resids.quantile(q = 0.75) reg_resid.loc["max"]["Value"] = panel_model_fit.resids.max() # Save full model results model_full_results = {} model_full_results["Entity information"] = ent_inf model_full_results["Time information"] = time_inf model_full_results["Regression information"] = reg_inf model_full_results["Regression statistics"] = reg_stats model_full_results["Overall performance"] = reg_overall if PDM_alg == "Pooled": model_full_results["ANOVA"] = reg_anova model_full_results["Coefficients"] = reg_coef model_full_results["Entity effects"] = reg_ent_effects model_full_results["Time effects"] = reg_time_effects model_full_results["Combined effects"] = reg_comb_effects if PDM_alg == "Random Effects": model_full_results["Variance decomposition"] = reg_var_decomp model_full_results["Theta"] = reg_theta model_full_results["tests"] = reg_test model_full_results["hetTests"] = reg_het_test model_full_results["Residuals"] = reg_resid progress2 += 1 my_bar_fm.progress(progress2/1) # Success message st.success('Model run successfully!') else: st.error("ERROR: No data available for Modelling!") #++++++++++++++++++++++ # PDM OUTPUT # Show only if model was run (no further widgets after run models or the full page reloads) if run_models: st.write("") st.write("") st.header("**Model outputs**") #-------------------------------------------------------------------------------------- # FULL MODEL OUTPUT full_output = st.expander("Full model output", expanded = False) with full_output: if model_full_results is not None: st.markdown("**Correlation Matrix & 2D-Histogram**") # Define variable selector var_sel_cor = alt.selection_single(fields=['variable', 'variable2'], clear=False, init={'variable': response_var, 'variable2': response_var}) # Calculate correlation data corr_data = df[[response_var] + expl_var].corr().stack().reset_index().rename(columns={0: "correlation", 'level_0': "variable", 'level_1': "variable2"}) corr_data["correlation_label"] = corr_data["correlation"].map('{:.2f}'.format) # Basic plot base = alt.Chart(corr_data).encode( x = alt.X('variable2:O', sort = None, axis = alt.Axis(title = None, labelFontSize = 12)), y = alt.Y('variable:O', sort = None, axis = alt.Axis(title = None, labelFontSize = 12)) ) # Correlation values to insert text = base.mark_text().encode( text='correlation_label', color = alt.condition( alt.datum.correlation > 0.5, alt.value('white'), alt.value('black') ) ) # Correlation plot corr_plot = base.mark_rect().encode( color = alt.condition(var_sel_cor, alt.value('#86c29c'), 'correlation:Q', legend = alt.Legend(title = "Bravais-Pearson correlation coefficient", orient = "top", gradientLength = 350), scale = alt.Scale(scheme='redblue', reverse = True, domain = [-1,1])) ).add_selection(var_sel_cor) # Calculate values for 2d histogram value_columns = df[[response_var] + expl_var] df_2dbinned = pd.concat([fc.compute_2d_histogram(var1, var2, df) for var1 in value_columns for var2 in value_columns]) # 2d binned histogram plot scat_plot = alt.Chart(df_2dbinned).transform_filter( var_sel_cor ).mark_rect().encode( alt.X('value2:N', sort = alt.EncodingSortField(field='raw_left_value2'), axis = alt.Axis(title = "Horizontal variable", labelFontSize = 12)), alt.Y('value:N', axis = alt.Axis(title = "Vertical variable", labelFontSize = 12), sort = alt.EncodingSortField(field='raw_left_value', order = 'descending')), alt.Color('count:Q', scale = alt.Scale(scheme='reds'), legend = alt.Legend(title = "Count", orient = "top", gradientLength = 350)) ) # Combine all plots correlation_plot = alt.vconcat((corr_plot + text).properties(width = 400, height = 400), scat_plot.properties(width = 400, height = 400)).resolve_scale(color = 'independent') correlation_plot = correlation_plot.properties(padding = {"left": 50, "top": 5, "right": 5, "bottom": 50}) st.altair_chart(correlation_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_cor"))) st.write("") #------------------------------------------------------------- # Regression output st.markdown("**Regression output**") full_out_col1, full_out_col2 = st.columns(2) with full_out_col1: # Entity information st.write("Entity information:") st.table(model_full_results["Entity information"].style.set_precision(user_precision)) with full_out_col2: # Time information st.write("Time period information:") st.table(model_full_results["Time information"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_information"))) st.write("") full_out_col3, full_out_col4 = st.columns(2) with full_out_col3: # Regression information st.write("Regression information:") st.table(model_full_results["Regression information"].style.set_precision(user_precision)) with full_out_col4: # Regression statistics st.write("Regression statistics:") st.table(model_full_results["Regression statistics"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_regression"))) st.write("") # Overall performance (with effects) full_out_col_op1, full_out_col_op2 = st.columns(2) with full_out_col_op1: if PDM_alg != "Pooled": st.write("Overall performance (with effects):") if PDM_alg == "Pooled": st.write("Overall performance :") st.table(model_full_results["Overall performance"].style.set_precision(user_precision)) # Residuals with full_out_col_op2: st.write("Residuals:") st.table(model_full_results["Residuals"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_overallPerf"))) st.write("") # Coefficients st.write("Coefficients:") st.table(model_full_results["Coefficients"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_coef"))) st.write("") # Effects if PDM_alg != "Pooled": full_out_col5, full_out_col6 = st.columns(2) with full_out_col5: st.write("Entity effects:") st.write(model_full_results["Entity effects"].style.set_precision(user_precision)) with full_out_col6: st.write("Time effects:") st.write(model_full_results["Time effects"].style.set_precision(user_precision)) full_out_col7, full_out_col8 = st.columns(2) with full_out_col7: st.write("Combined effects:") st.write(model_full_results["Combined effects"]) with full_out_col8: st.write("") if sett_hints: st.info(str(fc.learning_hints("mod_pd_effects"))) st.write("") # ANOVA if PDM_alg == "Pooled": st.write("ANOVA:") st.table(model_full_results["ANOVA"].style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_anova"))) st.write("") # Statistical tests if PDM_alg == "Random Effects": full_out_col_re1, full_out_col_re2 = st.columns(2) with full_out_col_re1: st.write("Variance decomposition:") st.table(model_full_results["Variance decomposition"].style.set_precision(user_precision)) with full_out_col_re2: st.write("Theta:") st.table(model_full_results["Theta"].transpose().style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_varDecRE"))) st.write("") st.write("F-tests:") st.table(model_full_results["tests"].transpose().style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_pd_testRE"))) st.write("") if PDM_alg == "Entity Fixed Effects": if PDM_cov_type == "homoskedastic": st.write("F-tests and Hausman-test:") else: st.write("F-tests:") st.table(model_full_results["tests"].transpose().style.set_precision(user_precision)) if PDM_cov_type == "homoskedastic": if sett_hints: st.info(str(fc.learning_hints("mod_pd_testEFE_homosk"))) else: if sett_hints: st.info(str(fc.learning_hints("mod_pd_testEFE"))) st.write("") if PDM_alg != "Entity Fixed Effects" and PDM_alg != "Random Effects": st.write("F-tests:") st.table(model_full_results["tests"].transpose().style.set_precision(user_precision)) if PDM_alg == "Pooled": if sett_hints: st.info(str(fc.learning_hints("mod_pd_test_pooled"))) else: if sett_hints: st.info(str(fc.learning_hints("mod_pd_test"))) st.write("") # Heteroskedasticity tests if PDM_alg == "Pooled": st.write("Heteroskedasticity tests:") st.table(model_full_results["hetTests"].transpose().style.set_precision(user_precision)) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_hetTest"))) st.write("") # Graphical output full_out_col10, full_out_col11 = st.columns(2) fitted_withEff = df[response_var]-panel_model_fit.resids.values with full_out_col10: st.write("Observed vs Fitted:") observed_fitted_data = pd.DataFrame() observed_fitted_data["Observed"] = df[response_var] observed_fitted_data["Fitted"] = list(fitted_withEff) observed_fitted_data["Index"] = df.index observed_fitted = alt.Chart(observed_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(observed_fitted_data["Fitted"]), max(observed_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Observed", title = "observed", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Observed", "Fitted", "Index"] ) observed_fitted_plot = observed_fitted + observed_fitted.transform_regression("Fitted", "Observed").mark_line(size = 2, color = "darkred") st.altair_chart(observed_fitted_plot, use_container_width = True) with full_out_col11: st.write("Residuals vs Fitted:") residuals_fitted_data = pd.DataFrame() residuals_fitted_data["Residuals"] = panel_model_fit.resids.values residuals_fitted_data["Fitted"] = list(fitted_withEff) residuals_fitted_data["Index"] = df.index residuals_fitted = alt.Chart(residuals_fitted_data, height = 200).mark_circle(size=20).encode( x = alt.X("Fitted", title = "fitted", scale = alt.Scale(domain = [min(residuals_fitted_data["Fitted"]), max(residuals_fitted_data["Fitted"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("Residuals", title = "residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["Residuals", "Fitted", "Index"] ) residuals_fitted_plot = residuals_fitted + residuals_fitted.transform_loess("Fitted", "Residuals", bandwidth = 0.5).mark_line(size = 2, color = "darkred") st.altair_chart(residuals_fitted_plot, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_obsResVsFit"))) st.write("") if PDM_alg == "Pooled": full_out_col12, full_out_col13 = st.columns(2) with full_out_col12: st.write("Normal QQ-plot:") residuals = panel_model_fit.resids.values qq_plot_data = pd.DataFrame() qq_plot_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() qq_plot_data["Index"] = df.index qq_plot_data = qq_plot_data.sort_values(by = ["StandResiduals"]) qq_plot_data["Theoretical quantiles"] = stats.probplot(residuals, dist="norm")[0][0] qq_plot = alt.Chart(qq_plot_data, height = 200).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals", "Theoretical quantiles", "Index"] ) line = alt.Chart( pd.DataFrame({"Theoretical quantiles": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])], "StandResiduals": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]})).mark_line(size = 2, color = "darkred").encode( alt.X("Theoretical quantiles"), alt.Y("StandResiduals"), ) st.altair_chart(qq_plot + line, use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("mod_md_MLR_qqplot"))) st.write("") with full_out_col13: st.write("Scale-Location:") scale_location_data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal @pytest.fixture def df_checks(): """fixture dataframe""" return pd.DataFrame( { "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3], "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3], "ht1": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], "ht2": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9], } ) @pytest.fixture def df_multi(): """MultiIndex dataframe fixture.""" return pd.DataFrame( { ("name", "a"): {0: "Wilbur", 1: "Petunia", 2: "Gregory"}, ("names", "aa"): {0: 67, 1: 80, 2: 64}, ("more_names", "aaa"): {0: 56, 1: 90, 2: 50}, } ) def test_column_level_wrong_type(df_multi): """Raise TypeError if wrong type is provided for column_level.""" with pytest.raises(TypeError): df_multi.pivot_longer(index="name", column_level={0}) @pytest.mark.xfail(reason="checking is done within _select_columns") def test_type_index(df_checks): """Raise TypeError if wrong type is provided for the index.""" with pytest.raises(TypeError): df_checks.pivot_longer(index=2007) @pytest.mark.xfail(reason="checking is done within _select_columns") def test_type_column_names(df_checks): """Raise TypeError if wrong type is provided for column_names.""" with pytest.raises(TypeError): df_checks.pivot_longer(column_names=2007) def test_type_names_to(df_checks): """Raise TypeError if wrong type is provided for names_to.""" with pytest.raises(TypeError): df_checks.pivot_longer(names_to={2007}) def test_subtype_names_to(df_checks): """ Raise TypeError if names_to is a sequence and the wrong type is provided for entries in names_to. """ with pytest.raises(TypeError, match="1 in names_to.+"): df_checks.pivot_longer(names_to=[1]) def test_duplicate_names_to(df_checks): """Raise error if names_to contains duplicates.""" with pytest.raises(ValueError, match="y is duplicated in names_to."): df_checks.pivot_longer(names_to=["y", "y"], names_pattern="(.+)(.)") def test_both_names_sep_and_pattern(df_checks): """ Raise ValueError if both names_sep and names_pattern is provided. """ with pytest.raises( ValueError, match="Only one of names_pattern or names_sep should be provided.", ): df_checks.pivot_longer( names_to=["rar", "bar"], names_sep="-", names_pattern="(.+)(.)" ) def test_name_pattern_wrong_type(df_checks): """Raise TypeError if the wrong type provided for names_pattern.""" with pytest.raises(TypeError, match="names_pattern should be one of.+"): df_checks.pivot_longer(names_to=["rar", "bar"], names_pattern=2007) def test_name_pattern_no_names_to(df_checks): """Raise ValueError if names_pattern and names_to is None.""" with pytest.raises(ValueError): df_checks.pivot_longer(names_to=None, names_pattern="(.+)(.)") def test_name_pattern_groups_len(df_checks): """ Raise ValueError if names_pattern and the number of groups differs from the length of names_to. """ with pytest.raises( ValueError, match="The length of names_to does not match " "the number of groups in names_pattern.+", ): df_checks.pivot_longer(names_to=".value", names_pattern="(.+)(.)") def test_names_pattern_wrong_subtype(df_checks): """ Raise TypeError if names_pattern is a list/tuple and wrong subtype is supplied. """ with pytest.raises(TypeError, match="1 in names_pattern.+"): df_checks.pivot_longer( names_to=["ht", "num"], names_pattern=[1, "\\d"] ) def test_names_pattern_names_to_unequal_length(df_checks): """ Raise ValueError if names_pattern is a list/tuple and wrong number of items in names_to. """ with pytest.raises( ValueError, match="The length of names_to does not match " "the number of regexes in names_pattern.+", ): df_checks.pivot_longer( names_to=["variable"], names_pattern=["^ht", ".+i.+"] ) def test_names_pattern_names_to_dot_value(df_checks): """ Raise Error if names_pattern is a list/tuple and .value in names_to. """ with pytest.raises( ValueError, match=".value is not accepted in names_to " "if names_pattern is a list/tuple.", ): df_checks.pivot_longer( names_to=["variable", ".value"], names_pattern=["^ht", ".+i.+"] ) def test_name_sep_wrong_type(df_checks): """Raise TypeError if the wrong type is provided for names_sep.""" with pytest.raises(TypeError, match="names_sep should be one of.+"): df_checks.pivot_longer(names_to=[".value", "num"], names_sep=["_"]) def test_name_sep_no_names_to(df_checks): """Raise ValueError if names_sep and names_to is None.""" with pytest.raises(ValueError): df_checks.pivot_longer(names_to=None, names_sep="_") def test_values_to_wrong_type(df_checks): """Raise TypeError if the wrong type is provided for `values_to`.""" with pytest.raises(TypeError, match="values_to should be one of.+"): df_checks.pivot_longer(values_to={"salvo"}) def test_values_to_wrong_type_names_pattern(df_checks): """ Raise TypeError if `values_to` is a list, and names_pattern is not. """ with pytest.raises( TypeError, match="values_to can be a list/tuple only " "if names_pattern is a list/tuple.", ): df_checks.pivot_longer(values_to=["salvo"]) def test_values_to_names_pattern_unequal_length(df_checks): """ Raise ValueError if `values_to` is a list, and the length of names_pattern does not match the length of values_to. """ with pytest.raises( ValueError, match="The length of values_to does not match " "the number of regexes in names_pattern.+", ): df_checks.pivot_longer( values_to=["salvo"], names_pattern=["ht", r"\d"], names_to=["foo", "bar"], ) def test_values_to_names_seq_names_to(df_checks): """ Raise ValueError if `values_to` is a list, and intersects with names_to. """ with pytest.raises( ValueError, match="salvo in values_to already exists in names_to." ): df_checks.pivot_longer( values_to=["salvo"], names_pattern=["ht"], names_to="salvo" ) def test_sub_values_to(df_checks): """Raise error if values_to is a sequence, and contains non strings.""" with pytest.raises(TypeError, match="1 in values_to.+"): df_checks.pivot_longer( names_to=["x", "y"], names_pattern=[r"ht", r"\d"], values_to=[1, "salvo"], ) def test_duplicate_values_to(df_checks): """Raise error if values_to is a sequence, and contains duplicates.""" with pytest.raises(ValueError, match="salvo is duplicated in values_to."): df_checks.pivot_longer( names_to=["x", "y"], names_pattern=[r"ht", r"\d"], values_to=["salvo", "salvo"], ) def test_values_to_exists_in_columns(df_checks): """ Raise ValueError if values_to already exists in the dataframe's columns. """ with pytest.raises(ValueError): df_checks.pivot_longer(index="birth", values_to="birth") def test_values_to_exists_in_names_to(df_checks): """ Raise ValueError if values_to is in names_to. """ with pytest.raises(ValueError): df_checks.pivot_longer(values_to="num", names_to="num") def test_column_multiindex_names_sep(df_multi): """ Raise ValueError if the dataframe's column is a MultiIndex, and names_sep is present. """ with pytest.raises(ValueError): df_multi.pivot_longer( column_names=[("names", "aa")], names_sep="_", names_to=["names", "others"], ) def test_column_multiindex_names_pattern(df_multi): """ Raise ValueError if the dataframe's column is a MultiIndex, and names_pattern is present. """ with pytest.raises(ValueError): df_multi.pivot_longer( index=[("name", "a")], names_pattern=r"(.+)(.+)", names_to=["names", "others"], ) def test_index_tuple_multiindex(df_multi): """ Raise ValueError if index is a tuple, instead of a list of tuples, and the dataframe's column is a MultiIndex. """ with pytest.raises(ValueError): df_multi.pivot_longer(index=("name", "a")) def test_column_names_tuple_multiindex(df_multi): """ Raise ValueError if column_names is a tuple, instead of a list of tuples, and the dataframe's column is a MultiIndex. """ with pytest.raises(ValueError): df_multi.pivot_longer(column_names=("names", "aa")) def test_sort_by_appearance(df_checks): """Raise error if sort_by_appearance is not boolean.""" with pytest.raises(TypeError): df_checks.pivot_longer( names_to=[".value", "value"], names_sep="_", sort_by_appearance="TRUE", ) def test_ignore_index(df_checks): """Raise error if ignore_index is not boolean.""" with pytest.raises(TypeError): df_checks.pivot_longer( names_to=[".value", "value"], names_sep="_", ignore_index="TRUE" ) def test_names_to_index(df_checks): """ Raise ValueError if there is no names_sep/names_pattern, .value not in names_to and names_to intersects with index. """ with pytest.raises( ValueError, match=r".+in names_to already exist as column labels.+", ): df_checks.pivot_longer( names_to="famid", index="famid", ) def test_names_sep_pattern_names_to_index(df_checks): """ Raise ValueError if names_sep/names_pattern, .value not in names_to and names_to intersects with index. """ with pytest.raises( ValueError, match=r".+in names_to already exist as column labels.+", ): df_checks.pivot_longer( names_to=["dim", "famid"], names_sep="_", index="famid", ) def test_dot_value_names_to_columns_intersect(df_checks): """ Raise ValueError if names_sep/names_pattern, .value in names_to, and names_to intersects with the new columns """ with pytest.raises( ValueError, match=r".+in names_to already exist in the new dataframe\'s columns.+", ): df_checks.pivot_longer( index="famid", names_to=(".value", "ht"), names_pattern="(.+)(.)" ) def test_values_to_seq_index_intersect(df_checks): """ Raise ValueError if values_to is a sequence, and intersects with the index """ match = ".+values_to already exist as column labels assigned " match = match + "to the dataframe's index parameter.+" with pytest.raises(ValueError, match=rf"{match}"): df_checks.pivot_longer( index="famid", names_to=("value", "ht"), names_pattern=["ht", r"\d"], values_to=("famid", "foo"), ) def test_dot_value_names_to_index_intersect(df_checks): """ Raise ValueError if names_sep/names_pattern, .value in names_to, and names_to intersects with the index """ match = ".+already exist as column labels assigned " match = match + "to the dataframe's index parameter.+" with pytest.raises( ValueError, match=rf"{match}", ): df_checks.rename(columns={"famid": "ht"}).pivot_longer( index="ht", names_to=(".value", "num"), names_pattern="(.+)(.)" ) def test_names_pattern_list_empty_any(df_checks): """ Raise ValueError if names_pattern is a list, and not all matches are returned. """ with pytest.raises( ValueError, match="No match was returned for the regex.+" ): df_checks.pivot_longer( index=["famid", "birth"], names_to=["ht"], names_pattern=["rar"], ) def test_names_pattern_no_match(df_checks): """Raise error if names_pattern is a regex and returns no matches.""" with pytest.raises( ValueError, match="Column labels .+ could not be matched with any .+" ): df_checks.pivot_longer( index="famid", names_to=[".value", "value"], names_pattern=r"(rar)(.)", ) def test_names_pattern_incomplete_match(df_checks): """ Raise error if names_pattern is a regex and returns incomplete matches. """ with pytest.raises( ValueError, match="Column labels .+ could not be matched with any .+" ): df_checks.pivot_longer( index="famid", names_to=[".value", "value"], names_pattern=r"(ht)(.)", ) def test_names_sep_len(df_checks): """ Raise error if names_sep, and the number of matches returned is not equal to the length of names_to. """ with pytest.raises(ValueError): df_checks.pivot_longer(names_to=".value", names_sep="(\\d)") def test_pivot_index_only(df_checks): """Test output if only index is passed.""" result = df_checks.pivot_longer( index=["famid", "birth"], names_to="dim", values_to="num", ) actual = df_checks.melt( ["famid", "birth"], var_name="dim", value_name="num" ) assert_frame_equal(result, actual) def test_pivot_column_only(df_checks): """Test output if only column_names is passed.""" result = df_checks.pivot_longer( column_names=["ht1", "ht2"], names_to="dim", values_to="num", ignore_index=False, ) actual = df_checks.melt( ["famid", "birth"], var_name="dim", value_name="num", ignore_index=False, ) assert_frame_equal(result, actual) def test_pivot_sort_by_appearance(df_checks): """Test output if sort_by_appearance is True.""" result = df_checks.pivot_longer( column_names="ht*", names_to="dim", values_to="num", sort_by_appearance=True, ) actual = ( df_checks.melt( ["famid", "birth"], var_name="dim", value_name="num", ignore_index=False, ) .sort_index() .reset_index(drop=True) )
assert_frame_equal(result, actual)
pandas.testing.assert_frame_equal
import re from unittest.mock import Mock, call, patch import numpy as np import pandas as pd import pytest from rdt.transformers.categorical import ( CategoricalFuzzyTransformer, CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___setstate__(self): """Test the ``__set_state__`` method. Validate that the ``__dict__`` attribute is correctly udpdated when Setup: - create an instance of a ``CategoricalTransformer``. Side effect: - it updates the ``__dict__`` attribute of the object. """ # Setup transformer = CategoricalTransformer() # Run transformer.__setstate__({ 'intervals': { None: 'abc' } }) # Assert assert transformer.__dict__['intervals'][np.nan] == 'abc' def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test_is_transform_deterministic(self): """Test the ``is_transform_deterministic`` method. Validate that this method returs the opposite boolean value of the ``fuzzy`` parameter. Setup: - initialize a ``CategoricalTransformer`` with ``fuzzy = True``. Output: - the boolean value which is the opposite of ``fuzzy``. """ # Setup transformer = CategoricalTransformer(fuzzy=True) # Run output = transformer.is_transform_deterministic() # Assert assert output is False def test_is_composition_identity(self): """Test the ``is_composition_identity`` method. Since ``COMPOSITION_IS_IDENTITY`` is True, just validates that the method returns the opposite boolean value of the ``fuzzy`` parameter. Setup: - initialize a ``CategoricalTransformer`` with ``fuzzy = True``. Output: - the boolean value which is the opposite of ``fuzzy``. """ # Setup transformer = CategoricalTransformer(fuzzy=True) # Run output = transformer.is_composition_identity() # Assert assert output is False def test__get_intervals(self): """Test the ``_get_intervals`` method. Validate that the intervals for each categorical value are correct. Input: - a pandas series containing categorical values. Output: - a tuple, where the first element describes the intervals for each categorical value (start, end). """ # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, 'bar': 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', 'bar', 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert result[0] == expected_intervals pd.testing.assert_series_equal(result[1], expected_means) pd.testing.assert_frame_equal(result[2], expected_starts) def test__get_intervals_nans(self): """Test the ``_get_intervals`` method when data contains nan's. Validate that the intervals for each categorical value are correct, when passed data containing nan values. Input: - a pandas series cotaining nan values and categorical values. Output: - a tuple, where the first element describes the intervals for each categorical value (start, end). """ # Setup data = pd.Series(['foo', np.nan, None, 'foo', 'foo', 'tar']) # Run result = CategoricalTransformer._get_intervals(data) # Assert expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), np.nan: ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, np.nan: 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', np.nan, 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert result[0] == expected_intervals pd.testing.assert_series_equal(result[1], expected_means) pd.testing.assert_frame_equal(result[2], expected_starts) def test__fit_intervals(self): # Setup transformer = CategoricalTransformer() # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer._fit(data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, 'bar': 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', 'bar', 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert transformer.intervals == expected_intervals pd.testing.assert_series_equal(transformer.means, expected_means) pd.testing.assert_frame_equal(transformer.starts, expected_starts) def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), np.nan: (0.5, 1.0, 0.75, 0.5 / 6), } # Run result_foo = transformer._get_value('foo') result_nan = transformer._get_value(np.nan) # Asserts assert result_foo == 0.25 assert result_nan == 0.75 @patch('rdt.transformers.categorical.norm') def test__get_value_fuzzy(self, norm_mock): # setup norm_mock.rvs.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test__reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer._fit(data) result = transformer._reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows. Output: - the output of `_transform_by_category`. Side effects: - `_transform_by_category` will be called once. """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer._transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows. Ouptut: - the transformed data. """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_category_nans(self): """Test the ``_transform_by_category`` method with data containing nans. Validate that the data is transformed correctly when it contains nan's. Setup: - the categorical transformer is instantiated, and the appropriate ``intervals`` attribute is set. Input: - a pandas series containing nan's. Output: - a numpy array containing the transformed data. """ # Setup data = pd.Series([np.nan, 3, 3, 2, np.nan]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), np.nan: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() @patch('rdt.transformers.categorical.norm') def test__transform_by_category_fuzzy_true(self, norm_mock): """Test the ``_transform_by_category`` method when ``fuzzy`` is True. Validate that the data is transformed correctly when ``fuzzy`` is True. Setup: - the categorical transformer is instantiated with ``fuzzy`` as True, and the appropriate ``intervals`` attribute is set. - the ``intervals`` attribute is set to a a dictionary of intervals corresponding to the elements of the passed data. - set the ``side_effect`` of the ``rvs_mock`` to the appropriate function. Input: - a pandas series. Output: - a numpy array containing the transformed data. Side effect: - ``rvs_mock`` should be called four times, one for each element of the intervals dictionary. """ # Setup def rvs_mock_func(loc, scale, **kwargs): return loc norm_mock.rvs.side_effect = rvs_mock_func data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Assert expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() norm_mock.rvs.assert_has_calls([ call(0.125, 0.041666666666666664, size=0), call(0.375, 0.041666666666666664, size=2), call(0.625, 0.041666666666666664, size=1), call(0.875, 0.041666666666666664, size=2), ]) def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer._transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transform_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform_by_matrix(transformed) # Assert pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_category_called(self, psutil_mock): """Test that the `_reverse_transform_by_category` method is called. When there is not enough virtual memory and the number of rows is greater than the number of categories, expect that the `_reverse_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 5 rows Output: - the output of `_reverse_transform_by_category` Side effects: - `_reverse_transform_by_category` will be called once """ # Setup transform_data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = transform_data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform( categorical_transformer_mock, transform_data) # Asserts categorical_transformer_mock._reverse_transform_by_category.assert_called_once_with( transform_data) assert reverse == categorical_transformer_mock._reverse_transform_by_category.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_category(self, psutil_mock): """Test the _reverse_transform_by_category method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 5 rows Ouptut: - the original data """ data = pd.Series([1, 3, 3, 2, 1]) transformed = pd.Series([0.875, 0.375, 0.375, 0.625, 0.875]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory reverse = transformer._reverse_transform_by_category(transformed) pd.testing.assert_series_equal(data, reverse) def test__get_category_from_start(self): """Test the ``_get_category_from_start`` method. Setup: - instantiate a ``CategoricalTransformer``, and set the attribute ``starts`` to a pandas dataframe with ``set_index`` as ``'start'``. Input: - an integer, an index from data. Output: - a category from the data. """ # Setup transformer = CategoricalTransformer() transformer.starts = pd.DataFrame({ 'start': [0.0, 0.5, 0.7], 'category': ['a', 'b', 'c'] }).set_index('start') # Run category = transformer._get_category_from_start(2) # Assert assert category == 'c' @patch('psutil.virtual_memory') def test__reverse_transform_by_row_called(self, psutil_mock): """Test that the `_reverse_transform_by_row` method is called. When there is not enough virtual memory and the number of rows is less than or equal to the number of categories, expect that the `_reverse_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_row` Side effects: - `_reverse_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock.starts = pd.DataFrame( [0., 0.25, 0.5, 0.75], index=[4, 3, 2, 1], columns=['category']) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_row.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_row.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_row(self, psutil_mock): """Test the _reverse_transform_by_row method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means, starts, and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means =
pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1])
pandas.Series
import pandas as pd df_ab = pd.DataFrame({'a': ['a_1', 'a_2', 'a_3'], 'b': ['b_1', 'b_2', 'b_3']}) df_ac = pd.DataFrame({'a': ['a_1', 'a_2', 'a_4'], 'c': ['c_1', 'c_2', 'c_4']}) print(df_ab) # a b # 0 a_1 b_1 # 1 a_2 b_2 # 2 a_3 b_3 print(df_ac) # a c # 0 a_1 c_1 # 1 a_2 c_2 # 2 a_4 c_4 print(pd.merge(df_ab, df_ac)) # a b c # 0 a_1 b_1 c_1 # 1 a_2 b_2 c_2 print(df_ab.merge(df_ac)) # a b c # 0 a_1 b_1 c_1 # 1 a_2 b_2 c_2 print(pd.merge(df_ab, df_ac, on='a')) # a b c # 0 a_1 b_1 c_1 # 1 a_2 b_2 c_2 df_ac_ = df_ac.rename(columns={'a': 'a_'}) print(df_ac_) # a_ c # 0 a_1 c_1 # 1 a_2 c_2 # 2 a_4 c_4 print(pd.merge(df_ab, df_ac_, left_on='a', right_on='a_')) # a b a_ c # 0 a_1 b_1 a_1 c_1 # 1 a_2 b_2 a_2 c_2 print(pd.merge(df_ab, df_ac_, left_on='a', right_on='a_').drop(columns='a_')) # a b c # 0 a_1 b_1 c_1 # 1 a_2 b_2 c_2 print(pd.merge(df_ab, df_ac, on='a', how='inner')) # a b c # 0 a_1 b_1 c_1 # 1 a_2 b_2 c_2 print(
pd.merge(df_ab, df_ac, on='a', how='left')
pandas.merge
import pandas as pd import numpy as np from data import Data import pickle class Stats(): def __init__(self, data): '''Enter dataclass of pandas dataframe''' if isinstance(data, Data): self.df = data.df elif isinstance(data, pd.DataFrame): self.df = data self.totalsparsity = self.calc_sparsity() self.featuresparsity = self.calc_featuresparsity() self.constants = self.constantvalues() self.corrfeatures = self.correlation() self.mean = self.calc_mean() self.nonzero = self.calc_nonzero() self.zero = self.calc_zero() self.min = self.calc_min() self.max = self.calc_max() self.stddv = self.calc_stddv() self.q1 = self.calc_q1() self.median = self.calc_median() self.q3 = self.calc_q3() def calc_sparsity(self): '''Calculate the sparsity of the selected data''' zeroes = 0 for column in self.df.columns: zeroes += np.count_nonzero(self.df[column] == 0) return zeroes / (self.df.shape[0] * self.df.shape[1]) def calc_featuresparsity(self): '''Calculate sparsity per feature''' df = self.df result = pd.DataFrame() result['sparsity'] = df.apply(lambda x: np.count_nonzero(x == 0)/len(x)) return result def constantvalues(self): '''Collect the variables which have a contant value''' constant_columns = [column for column in self.df.columns if len(self.df[column].unique()) < 2] return constant_columns def correlation(self): '''Collect the high correlation variables (> 0.90)''' corr = self.df.corr(method='pearson').abs() upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) high_correlations = [column for column in upper.columns if any(upper[column] > 0.90)] return high_correlations def calc_mean(self): df = self.df result = pd.DataFrame() result['mean'] = df.apply(lambda x: np.mean(x)) return result def calc_nonzero(self): df = self.df result = pd.DataFrame() result['nonzero'] = df.apply(lambda x: (np.count_nonzero(x))) return result def calc_zero(self): df = self.df result =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import pandas.rpy.common as rcom import rpy2.robjects as robjects from rpy2.robjects.vectors import SexpVector, ListVector, StrSexpVector import rpy2.robjects.numpy2ri as numpy2ri import trtools.rpy.conversion as rconv import trtools.rpy.tools as rtools from trtools.rpy.rmodule import get_func, RPackage import trtools.rpy.rplot as rplot rplot.patch_call() def pd_py2ri(o): """ """ res = None if isinstance(o, pd.Series): o =
pd.DataFrame(o, index=o.index)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) tm.assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) tm.assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box_df_fail): # GH#18849 box = box_df_fail box2 = Series if box in [pd.Index, tm.to_array] else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps: # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # TODO: Moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize("m", [1, 3, 10]) @pytest.mark.parametrize("unit", ['D', 'h', 'm', 's', 'ms', 'us', 'ns']) def test_timedelta64_conversions(self, m, unit): startdate = Series(pd.date_range('2013-01-01', '2013-01-03')) enddate = Series(pd.date_range('2013-03-01', '2013-03-03')) ser = enddate - startdate ser[2] = np.nan # op expected = Series([x / np.timedelta64(m, unit) for x in ser]) result = ser / np.timedelta64(m, unit) tm.assert_series_equal(result, expected) # reverse op expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in ser]) result = np.timedelta64(m, unit) / ser tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array): rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng * two_hours def test_tdi_mul_int_array_zerodim(self, box_with_array): rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_with_array): rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_with_array): box = box_with_array xbox = pd.Series if box in [pd.Index, tm.to_array] else box idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, xbox) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_with_array): box = box_with_array xbox = pd.Series if box in [pd.Index, tm.to_array] else box idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 1.0)) expected = tm.box_expected(expected, xbox) result = idx * Series(rng5f + 1.0) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_with_array): box = box_with_array xbox = get_upcast_box(box, other) tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') expected._data.freq = None tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, xbox) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__, __rdiv__ def test_td64arr_div_nat_invalid(self, box_with_array): # don't allow division by NaT (maybe could in the future) rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError, match="'?true_divide'? cannot use operands"): rng / pd.NaT with pytest.raises(TypeError, match='Cannot divide NaTType by'): pd.NaT / rng def test_td64arr_div_td64nat(self, box_with_array): # GH#23829 rng = timedelta_range('1 days', '10 days',) rng = tm.box_expected(rng, box_with_array) other = np.timedelta64('NaT') expected = np.array([np.nan] * 10) expected = tm.box_expected(expected, box_with_array) result = rng / other tm.assert_equal(result, expected) result = other / rng tm.assert_equal(result, expected) def test_td64arr_div_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx / 1 tm.assert_equal(result, idx) with pytest.raises(TypeError, match='Cannot divide'): # GH#23829 1 / idx def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array): # GH#20088, GH#22163 ensure DataFrame returns correct dtype rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng / two_hours tm.assert_equal(result, expected) result = two_hours / rng expected = 1 / expected tm.assert_equal(result, expected) def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array): rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng / two_hours tm.assert_equal(result, expected) result = two_hours / rng expected = 1 / expected tm.assert_equal(result, expected) def test_td64arr_div_td64_ndarray(self, box_with_array): # GH#22631 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days']) expected = pd.Float64Index([12, np.nan, 24]) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) other = np.array([2, 4, 2], dtype='m8[h]') result = rng / other tm.assert_equal(result, expected) result = rng / tm.box_expected(other, box_with_array) tm.assert_equal(result, expected) result = rng / other.astype(object) tm.assert_equal(result, expected) result = rng / list(other) tm.assert_equal(result, expected) # reversed op expected = 1 / expected result = other / rng tm.assert_equal(result, expected) result = tm.box_expected(other, box_with_array) / rng tm.assert_equal(result, expected) result = other.astype(object) / rng tm.assert_equal(result, expected) result = list(other) / rng tm.assert_equal(result, expected) def test_tdarr_div_length_mismatch(self, box_with_array): rng = TimedeltaIndex(['1 days', pd.NaT, '2 days']) mismatched = [1, 2, 3, 4] rng = tm.box_expected(rng, box_with_array) for obj in [mismatched, mismatched[:2]]: # one shorter, one longer for other in [obj, np.array(obj), pd.Index(obj)]: with pytest.raises(ValueError): rng / other with pytest.raises(ValueError): other / rng # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = td1 // scalar_td tm.assert_equal(result, expected) def test_td64arr_rfloordiv_tdscalar(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = scalar_td // td1 tm.assert_equal(result, expected) def test_td64arr_rfloordiv_tdscalar_explicit(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) def test_td64arr_floordiv_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) result = idx // 1 tm.assert_equal(result, idx) pattern = ('floor_divide cannot use operands|' 'Cannot divide int by Timedelta*') with pytest.raises(TypeError, match=pattern): 1 // idx def test_td64arr_floordiv_tdlike_scalar(self, two_hours, box_with_array): tdi = timedelta_range('1 days', '10 days', name='foo') expected = pd.Int64Index((np.arange(10) + 1) * 12, name='foo') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi // two_hours tm.assert_equal(result, expected) # TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar? @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=10, seconds=7), Timedelta('10m7s'), Timedelta('10m7s').to_timedelta64() ], ids=lambda x: type(x).__name__) def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_with_array): # GH#19125 tdi = TimedeltaIndex(['00:05:03', '00:05:03', pd.NaT], freq=None) expected = pd.Index([2.0, 2.0, np.nan]) tdi = tm.box_expected(tdi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) res = tdi.__rfloordiv__(scalar_td) tm.assert_equal(res, expected) expected = pd.Index([0.0, 0.0, np.nan]) expected = tm.box_expected(expected, box_with_array, transpose=False) res = tdi // (scalar_td) tm.assert_equal(res, expected) # ------------------------------------------------------------------ # mod, divmod # TODO: operations with timedelta-like arrays, numeric arrays, # reversed ops def test_td64arr_mod_tdscalar(self, box_with_array, three_days): tdi = timedelta_range('1 Day', '9 days') tdarr = tm.box_expected(tdi, box_with_array) expected = TimedeltaIndex(['1 Day', '2 Days', '0 Days'] * 3) expected = tm.box_expected(expected, box_with_array) result = tdarr % three_days tm.assert_equal(result, expected) if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(tdarr, three_days) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], tdarr // three_days) def test_td64arr_mod_int(self, box_with_array): tdi = timedelta_range('1 ns', '10 ns', periods=10) tdarr = tm.box_expected(tdi, box_with_array) expected = TimedeltaIndex(['1 ns', '0 ns'] * 5) expected = tm.box_expected(expected, box_with_array) result = tdarr % 2 tm.assert_equal(result, expected) with pytest.raises(TypeError): 2 % tdarr if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(tdarr, 2) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], tdarr // 2) def test_td64arr_rmod_tdscalar(self, box_with_array, three_days): tdi = timedelta_range('1 Day', '9 days') tdarr = tm.box_expected(tdi, box_with_array) expected = ['0 Days', '1 Day', '0 Days'] + ['3 Days'] * 6 expected = TimedeltaIndex(expected) expected = tm.box_expected(expected, box_with_array) result = three_days % tdarr tm.assert_equal(result, expected) if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(three_days, tdarr) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], three_days // tdarr) # ------------------------------------------------------------------ # Operations with invalid others def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box_with_array) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = 'operate|unsupported|cannot|not supported' with pytest.raises(TypeError, match=pattern): td1 * scalar_td with pytest.raises(TypeError, match=pattern): scalar_td * td1 def test_td64arr_mul_too_short_raises(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx * idx[:3] with pytest.raises(ValueError): idx * np.array([1, 2]) def test_td64arr_mul_td64arr_raises(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx * idx # ------------------------------------------------------------------ # Operations with numeric others @pytest.mark.parametrize('one', [1, np.array(1), 1.0, np.array(1.0)]) def test_td64arr_mul_numeric_scalar(self, box_with_array, one): # GH#4521 # divide/multiply by integers tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') expected = Series(['-59 Days', '-59 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser * (-one) tm.assert_equal(result, expected) result = (-one) * tdser tm.assert_equal(result, expected) expected = Series(['118 Days', '118 Days', 'NaT'], dtype='timedelta64[ns]') expected = tm.box_expected(expected, box_with_array) result = tdser * (2 * one) tm.assert_equal(result, expected) result = (2 * one) * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('two', [2, 2.0, np.array(2), np.array(2.0)]) def test_td64arr_div_numeric_scalar(self, box_with_array, two): # GH#4521 # divide/multiply by integers tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') expected = Series(['29.5D', '29.5D', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser / two tm.assert_equal(result, expected) with pytest.raises(TypeError, match='Cannot divide'): two / tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_rmul_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser * vector tm.assert_equal(result, expected) result = vector * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_div_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') vector = vector.astype(dtype) expected = Series(['2.95D', '1D 23H 12m', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser / vector tm.assert_equal(result, expected) pattern = ('true_divide cannot use operands|' 'cannot perform __div__|' 'cannot perform __truediv__|' 'unsupported operand|' 'Cannot divide') with pytest.raises(TypeError, match=pattern): vector / tdser if not isinstance(vector, pd.Index): # Index.__rdiv__ won't try to operate elementwise, just raises result = tdser / vector.astype(object) if box_with_array is pd.DataFrame: expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))] else: expected = [tdser[n] / vector[n] for n in range(len(tdser))] expected =
tm.box_expected(expected, xbox)
pandas.util.testing.box_expected
from bapiw.api import API from datetime import datetime, date import pandas as pd import numpy as np bapiw = API() class DataParser: # intervals used when calling kline data # https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#enum-definitions INTERVAL_1MIN = '1m' INTERVAL_3MIN = '3m' INTERVAL_5MIN = '5m' INTERVAL_15MIN = '15m' INTERVAL_30MIN = '30m' INTERVAL_1HR = '1h' INTERVAL_2HR = '2h' INTERVAL_4HR = '4h' INTERVAL_6HR = '6h' INTERVAL_8HR = '8h' INTERVAL_12HR = '12h' INTERVAL_1DAY = '1d' INTERVAL_3DAY = '3d' INTERVAL_1WEEK = '1w' INTERVAL_1MONTH = '1M' def getSymbols(self, onlyTrading=True, includes=''): # pulls all exchange info exchange = bapiw.get_exchangeInfo() # by default onlyTrading is set True which will only shows symbols # with a status of TRADING on binance. Anything else shows # all symbols. # look for symbols in exchanges data, check the status for TRADING and # add those symbols to a list symbol_list = [] if onlyTrading: for zd in exchange['symbols']: if zd['status'] == 'TRADING': symbol_list.append(zd['symbol']) else: for zd in exchange['symbols']: symbol_list.append(zd['symbol']) # create a dataframe with the symbols and rename the column from 0 to symbols symbols = pd.DataFrame(symbol_list) symbols = symbols.rename(columns={0: 'symbols'}) # if includes isn't null it will only list symbols that include that string if includes: # searches for the symbols that contain string 'includes' and puts them in mysymbols var mysymbols = symbols[symbols['symbols'].str.contains(includes)] # replace those symbols in a Dataframe, reset the index # and delete the old unaccurate index mysymbols = pd.DataFrame(mysymbols['symbols']) mysymbols = mysymbols.reset_index() mysymbols = mysymbols.drop(columns=['index']) symbols = mysymbols return symbols def getKlines(self, symbol, interval, startTime='', endTime='', limit=500, data='ohlcv'): # pull data from api kdata = bapiw.get_klines(symbol=symbol, interval=interval, startTime=startTime, endTime=endTime, limit=limit) # put data into dataframe and remove columns that aren't needed df =
pd.DataFrame.from_dict(kdata)
pandas.DataFrame.from_dict
#%% """Combine article data from json file into a single dataframe. """ import json import pandas as pd combined_df = pd.DataFrame() #columns=["Index_str", "Article_text"]) df = pd.read_csv("~/repo/StatMachLearn/NewsArticleClassification/data_to_group_copy.csv", header=0) domain_list = list(set(df['domain'].values)) domain_list.remove("wsj.com") for domain in domain_list: print(domain) with open(f"backup_data/{domain.rsplit('.', 1)[0]}.json") as f: obj_json = json.load(f) for article_dict in obj_json: print(article_dict.keys()) try: #combined_df.append({"Index_str": article_dict[0], "Article_text": article_dict[1] }) #combined_df = combined_df.append(article_dict, ignore_index=True) new_df =
pd.DataFrame.from_dict(article_dict, orient="index")
pandas.DataFrame.from_dict
import nose import warnings import os import datetime import numpy as np import sys from distutils.version import LooseVersion from pandas import compat from pandas.compat import u, PY3 from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, period_range, Index, Categorical) from pandas.core.common import PerformanceWarning from pandas.io.packers import to_msgpack, read_msgpack import pandas.util.testing as tm from pandas.util.testing import (ensure_clean, assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, patch) from pandas.tests.test_panel import assert_panel_equal import pandas from pandas import Timestamp, NaT, tslib nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True _multiprocess_can_split_ = False def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, Panel): assert_panel_equal(a, b) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) elif isinstance(a, Categorical): # Temp, # Categorical.categories is changed from str to bytes in PY3 # maybe the same as GH 13591 if PY3 and b.categories.inferred_type == 'string': pass else: tm.assert_categorical_equal(a, b) elif a is NaT: assert b is NaT elif isinstance(a, Timestamp): assert a == b assert a.freq == b.freq else: assert(a == b) class TestPackers(tm.TestCase): def setUp(self): self.path = '__%s__.msg' % tm.rands(10) def tearDown(self): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10, 2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(compat.BytesIO(s)) tm.assert_frame_equal(result, df) s = to_msgpack(None, df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() fh = open(p, 'wb') fh.write(s) fh.close() result = read_msgpack(p) tm.assert_frame_equal(result, df) def test_iterator_with_string_io(self): dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)] s = to_msgpack(None, *dfs) for i, result in enumerate(read_msgpack(s, iterator=True)): tm.assert_frame_equal(result, dfs[i]) def test_invalid_arg(self): # GH10369 class A(object): def __init__(self): self.read = 0 tm.assertRaises(ValueError, read_msgpack, path_or_buf=None) tm.assertRaises(ValueError, read_msgpack, path_or_buf={}) tm.assertRaises(ValueError, read_msgpack, path_or_buf=A()) class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, 'complex128'): raise nose.SkipTest('numpy cant handle complex128') x = [np.float32(np.random.rand()) for i in range(5)] + \ [np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + \ [(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_dict_float(self): x = {'foo': 1.0, 'bar': 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_dict_numpy_float(self): x = {'foo': np.float32(1.0), 'bar': np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ['float32', 'float64']: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) self.assertTrue(all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype) def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), u('foo')] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) class TestBasic(TestPackers): def test_timestamp(self): for i in [Timestamp( '20130101'), Timestamp('20130101', tz='US/Eastern'), Timestamp('201301010501')]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_nat(self): nat_rec = self.encode_decode(NaT) self.assertIs(NaT, nat_rec) def test_datetimes(self): # fails under 2.6/win32 (np.datetime64 seems broken) if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('2.6 with np.datetime64 is broken') for i in [datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15))]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_timedeltas(self): for i in [datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000)]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) class TestIndex(TestPackers): def setUp(self): super(TestIndex, self).setUp() self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(
bdate_range('2013-01-02', periods=10)
pandas.bdate_range
import copy import pandas as pd from bokeh.plotting import figure, show, output_notebook from bokeh.models import Legend, Span # from bokeh.models import HoverTool from ..utils import in_ipynb from .plotobj import BasePlot from .plotutils import get_color _INITED = False class BokehPlot(BasePlot): def __init__(self, size=None, theme=None): global _INITED if not _INITED: if in_ipynb(): output_notebook(hide_banner=True) size = size or (800, 500) self.width = size[0] self.height = size[1] self.figure = figure(toolbar_location="below", toolbar_sticky=False, x_axis_type='datetime', plot_width=self.width, plot_height=self.height) # TODO remove self.legend = [] def show(self, title='', xlabel='', ylabel='', xaxis=True, yaxis=True, xticks=True, yticks=True, legend=True, grid=True, **kwargs): # self.figure.add_tools(*[HoverTool( # tooltips=[('x', '@x{%F}'), ('y', '@y')], # formatters={'x': 'datetime'}, # mode='vline' # ) for _ in data]) self.figure.outline_line_color = None # vline = Span(location=0, dimension='height', line_color='red', line_width=3) hline = Span(location=0, dimension='width', line_color='black', line_width=1) self.figure.renderers.append(hline) if xlabel: self.figure.xaxis.axis_label = kwargs.get('xlabel') if ylabel: self.figure.yaxis.axis_label = kwargs.get('ylabel') if title: self.figure.title.text = kwargs.get('title') if legend: self.figure.legend.location = (self.width + 10, self.height + 10) legend = Legend(items=self.legend, location=(10, 100)) legend.items = self.legend legend.click_policy = "mute" self.figure.add_layout(legend, 'right') else: self.figure.legend.location = None if not grid: self.figure.xgrid.grid_line_color = None self.figure.ygrid.grid_line_color = None # FIXME if not yaxis: for ax in self.figure.yaxis: ax.axis_line_color = 'white' if not xaxis: for ax in self.figure.xaxis: ax.axis_line_color = 'white' # Turn off labels: # self.figure.xaxis.major_label_text_font_size = '0pt' show(self.figure) return self.figure def area(self, data, color=None, y_axis='left', stacked=False, **kwargs): data2 = data.append(data.iloc[-1] * 0) data2 = data2.append(data2.iloc[0] * 0) data2 = data2.sort_index() data2 = data2.sort_index() x, y = copy.deepcopy(data2.iloc[0]), copy.deepcopy(data2.iloc[1]) data2.iloc[0], data2.iloc[1] = y, x for i, col in enumerate(data): c = get_color(i, col, color) fig = self.figure.patch(x=data2.index, y=data2[col].values, legend=col, fill_alpha=.2, color=c, **kwargs) self.legend.append((col, [fig])) # for stacked: https://bokeh.pydata.org/en/latest/docs/gallery/brewer.html # p.patches([x2] * areas.shape[1], [areas[c].values for c in areas], color=colors, alpha=0.8, line_color=None) def _stacked(df): df_top = df.cumsum(axis=1) df_bottom = df_top.shift(axis=1).fillna({'y0': 0})[::-1] df_stack =
pd.concat([df_bottom, df_top], ignore_index=True)
pandas.concat
import itertools import pathlib import numpy as np import pandas as pd import os from statistics import median_low import click import re # Unimod parsing import xml.etree.cElementTree as ET from xml.etree.cElementTree import iterparse # mzXML parsing import pyopenms as po class pepxml: def __init__(self, pepxml_file, unimod, base_name, exclude_range): self.pepxml_file = pepxml_file self.base_name = base_name self.psms = self.parse_pepxml() self.exclude_range = exclude_range self.match_unimod(unimod) def get(self): return(self.psms) def match_unimod(self, unimod): def match_modifications(um, peptide): monomeric_masses = {"A": 71.03711, "R": 156.10111, "N": 114.04293, "D": 115.02694, "C": 103.00919, "E": 129.04259, "Q": 128.05858, "G": 57.02146, "H": 137.05891, "I": 113.08406, "L": 113.08406, "K": 128.09496, "M": 131.04049, "F": 147.06841, "P": 97.05276, "S": 87.03203, "T": 101.04768, "W": 186.07931, "Y": 163.06333, "V": 99.06841} modified_peptide = peptide['peptide_sequence'] # parse terminal modifications nterm_modification = "" if peptide['nterm_modification'] is not "": nterm_modification = peptide['nterm_modification'] - 1.0078 cterm_modification = "" if peptide['cterm_modification'] is not "": cterm_modification = peptide['cterm_modification'] # parse closed modifications modifications = {} if "M|" in peptide['modifications']: for modification in peptide['modifications'].split('|')[1:]: site, mass = modification.split('$') delta_mass = float(mass) - monomeric_masses[peptide['peptide_sequence'][int(site)-1]] modifications[int(site)] = delta_mass massdiff = float(peptide['massdiff']) if massdiff < self.exclude_range[0] or massdiff > self.exclude_range[1]: # parse open modifications oms_sequence = peptide['peptide_sequence'] for site in modifications.keys(): oms_sequence = oms_sequence[:site-1] + "_" + oms_sequence[site:] oms_modifications, nterm_modification, cterm_modification = um.get_oms_id(oms_sequence, peptide['massdiff'], nterm_modification, cterm_modification) modifications = {**modifications, **oms_modifications} peptide_sequence = peptide['peptide_sequence'] peptide_length = len(peptide_sequence) for site in sorted(modifications, reverse=True): positions = ('Anywhere', 'Any N-term', 'Protein N-term') if site == 1 else \ ('Anywhere', 'Any C-term', 'Protein C-term') if site == peptide_length else \ 'Anywhere' record_id0 = um.get_id(peptide_sequence[site - 1], positions, modifications[site]) if isinstance(record_id0, tuple): record_id, position = record_id0 else: record_id = record_id0 is_N_term = isinstance(record_id0, tuple) and position in ('Any N-term', 'Protein N-term') if record_id == -1: raise click.ClickException("Error: Could not annotate site %s (%s) from peptide %s with delta mass %s." % (site, peptide['peptide_sequence'][site-1], peptide['peptide_sequence'], modifications[site])) modified_peptide = "(UniMod:" + str(record_id) + ")" + modified_peptide \ if is_N_term else \ modified_peptide[:site] + "(UniMod:" + str(record_id) + ")" + modified_peptide[site:] if nterm_modification is not "": record_id_nterm = um.get_id("N-term", 'Any N-term', nterm_modification) if record_id_nterm == -1: record_id_nterm = um.get_id("N-term", 'Protein N-term', nterm_modification) if record_id_nterm == -1: raise click.ClickException("Error: Could not annotate N-terminus from peptide %s with delta mass %s." % (peptide['peptide_sequence'], nterm_modification)) modified_peptide = ".(UniMod:" + str(record_id_nterm) + ")" + modified_peptide if cterm_modification is not "": record_id_cterm = um.get_id("C-term", 'Any C-term', cterm_modification) if record_id_cterm == -1: record_id_cterm = um.get_id("C-term", 'Protein C-term', cterm_modification) if record_id_cterm == -1: raise click.ClickException("Error: Could not annotate C-terminus from peptide %s with delta mass %s." % (peptide['peptide_sequence'], cterm_modification)) modified_peptide = modified_peptide + ".(UniMod:" + str(record_id_cterm) + ")" return modified_peptide if self.psms.shape[0] > 0: self.psms['modified_peptide'] = self.psms[['peptide_sequence','modifications','nterm_modification','cterm_modification','massdiff']].apply(lambda x: match_modifications(unimod, x), axis=1) def parse_pepxml(self): peptides = [] namespaces = {'pepxml_ns': "http://regis-web.systemsbiology.net/pepXML"} ET.register_namespace('', "http://regis-web.systemsbiology.net/pepXML") context = iterparse(self.pepxml_file, events=("end",)) for event, elem in context: if elem.tag == "{http://regis-web.systemsbiology.net/pepXML}msms_run_summary": base_name = os.path.basename(elem.attrib['base_name']) # only proceed if base_name matches if base_name == self.base_name: # find decoy prefix decoy_prefix = "" for search_summary in elem.findall('.//pepxml_ns:search_summary', namespaces): for parameter in search_summary.findall('.//pepxml_ns:parameter', namespaces): if parameter.attrib['name'] == 'decoy_prefix': decoy_prefix = parameter.attrib['value'] # go through all spectrum queries for spectrum_query in elem.findall('.//pepxml_ns:spectrum_query', namespaces): index = spectrum_query.attrib['index'] start_scan = spectrum_query.attrib['start_scan'] end_scan = spectrum_query.attrib['end_scan'] assumed_charge = spectrum_query.attrib['assumed_charge'] retention_time_sec = spectrum_query.attrib['retention_time_sec'] ion_mobility = np.nan if 'ion_mobility' in spectrum_query.attrib: ion_mobility = spectrum_query.attrib['ion_mobility'] for search_result in spectrum_query.findall(".//pepxml_ns:search_result", namespaces): for search_hit in search_result.findall(".//pepxml_ns:search_hit", namespaces): hit_rank = search_hit.attrib['hit_rank'] massdiff = search_hit.attrib['massdiff'] # parse peptide and protein information peptide = search_hit.attrib['peptide'] unprocessed_proteins = [search_hit.attrib['protein']] for alternative_protein in search_hit.findall('.//pepxml_ns:alternative_protein', namespaces): unprocessed_proteins.append(alternative_protein.attrib['protein']) # remove decoy results from mixed target/decoy hits has_targets = False has_decoys = False for prot in unprocessed_proteins: if decoy_prefix in prot: has_decoys = True else: has_targets = True processed_proteins = [] for prot in unprocessed_proteins: if has_targets and has_decoys: if decoy_prefix not in prot: processed_proteins.append(prot) else: processed_proteins.append(prot) num_tot_proteins = len(processed_proteins) is_decoy = False if has_decoys and not has_targets: is_decoy = True proteins = {} for prot in processed_proteins: # Remove UniProt prefixes if necessary if decoy_prefix + "sp|" in prot: proteins[decoy_prefix + prot.split("|")[1]] = "" elif "sp|" in prot: proteins[prot.split("|")[1]] = prot.split("|")[2].split(" ")[0].split("_")[0] else: proteins[prot] = prot protein = "" gene = "" for key in sorted(proteins): if protein == "": protein = key else: protein = protein + ";" + key if gene == "": gene = proteins[key] else: gene = gene + ";" + proteins[key] # parse PTM information modifications = "M" nterm_modification = "" cterm_modification = "" for modification_info in search_hit.findall('.//pepxml_ns:modification_info', namespaces): if 'mod_nterm_mass' in modification_info.attrib: nterm_modification = float(modification_info.attrib['mod_nterm_mass']) if 'mod_cterm_mass' in modification_info.attrib: cterm_modification = float(modification_info.attrib['mod_cterm_mass']) for mod_aminoacid_mass in modification_info.findall('.//pepxml_ns:mod_aminoacid_mass', namespaces): modifications = modifications + "|" + mod_aminoacid_mass.attrib['position'] + "$" + mod_aminoacid_mass.attrib['mass'] # parse search engine score information scores = {} for search_score in search_hit.findall('.//pepxml_ns:search_score', namespaces): scores["var_" + search_score.attrib['name']] = float(search_score.attrib['value']) # parse PeptideProphet or iProphet results if available for analysis_result in search_hit.findall('.//pepxml_ns:analysis_result', namespaces): if analysis_result.attrib['analysis'] == 'interprophet': for interprophet_result in analysis_result.findall('.//pepxml_ns:interprophet_result', namespaces): scores["pep"] = 1.0 - float(interprophet_result.attrib['probability']) prev_pep = scores["pep"] elif analysis_result.attrib['analysis'] == 'peptideprophet': for peptideprophet_result in analysis_result.findall('.//pepxml_ns:peptideprophet_result', namespaces): scores["pep"] = 1.0 - float(peptideprophet_result.attrib['probability']) prev_pep = scores["pep"] if "pep" not in scores: # If 2 search hits have the same rank only the first one has the analysis_result explicitly written out. scores["pep"] = prev_pep peptides.append({**{'run_id': base_name, 'scan_id': int(start_scan), 'hit_rank': int(hit_rank), 'massdiff': float(massdiff), 'precursor_charge': int(assumed_charge), 'retention_time': float(retention_time_sec), 'ion_mobility': float(ion_mobility), 'peptide_sequence': peptide, 'modifications': modifications, 'nterm_modification': nterm_modification, 'cterm_modification': cterm_modification, 'protein_id': protein, 'gene_id': gene, 'num_tot_proteins': num_tot_proteins, 'decoy': is_decoy}, **scores}) elem.clear() df = pd.DataFrame(peptides) return(df) class idxml: def __init__(self, idxml_file, base_name): self.idxml_file = idxml_file self.base_name = base_name self.psms = self.parse_idxml() #self.exclude_range = exclude_range #self.match_unimod(unimod) def get(self): return(self.psms) def parse_idxml(self): peptides = [] proteins = [] scores = {} parsed_peptides = [] po.IdXMLFile().load(self.idxml_file, proteins, peptides) for p in peptides: #search engine scores scores["var_MS:1002252_Comet:XCorr"] = float(p.getHits()[0].getMetaValue('MS:1002252')) scores["var_MS:1002253_Comet:DeltCn"] = float(p.getHits()[0].getMetaValue('MS:1002253')) #percolator probability scores["q_value"] = float(p.getHits()[0].getMetaValue('MS:1001491')) scores["pep"] = float(p.getHits()[0].getMetaValue('MS:1001491')) parsed_peptides.append({**{'run_id': self.base_name, 'scan_id': int(str(p.getMetaValue("spectrum_reference")).split('scan=')[-1].strip("'")), 'hit_rank': int(p.getHits()[0].getRank()), 'massdiff': float(0), 'precursor_charge': int(p.getHits()[0].getCharge()), 'retention_time': float(p.getRT()), 'modified_peptide': p.getHits()[0].getSequence().toUniModString().decode("utf-8"), 'peptide_sequence': p.getHits()[0].getSequence().toUnmodifiedString().decode("utf-8"), 'modifications': '-', 'nterm_modification': '-', 'cterm_modification': '-', 'protein_id': ','.join([prot.getProteinAccession().decode("utf-8") for prot in p.getHits()[0].getPeptideEvidences()]), 'gene_id': '-', 'num_tot_proteins': len([prot.getProteinAccession() for prot in p.getHits()[0].getPeptideEvidences()]), 'decoy': p.getHits()[0].getMetaValue('target_decoy').decode("utf-8")=='decoy'}, **scores}) df = pd.DataFrame(parsed_peptides) return (df) class unimod: def __init__(self, unimod_file, max_delta): self.unimod_file = unimod_file self.max_delta = max_delta self.ptms = self.parse_unimod() def parse_unimod(self): namespaces = {'umod': "http://www.unimod.org/xmlns/schema/unimod_2"} ET.register_namespace('', "http://www.unimod.org/xmlns/schema/unimod_2") tree = ET.parse(self.unimod_file) root = tree.getroot() ptms = {} sites = ['A','R','N','D','C','E','Q','G','H','O','I','L','K','M','F','P','U','S','T','W','Y','V','N-term','C-term'] positions = ['Anywhere','Any N-term','Any C-term','Protein N-term','Protein C-term'] for site in sites: ptms[site] = {} for position in positions: for site in sites: ptms[site][position] = {} for modifications in root.findall('.//umod:modifications', namespaces): for modification in modifications.findall('.//umod:mod', namespaces): for specificity in modification.findall('.//umod:specificity', namespaces): ptms[specificity.attrib['site']][specificity.attrib['position']][int(modification.attrib['record_id'])] = float(modification.findall('.//umod:delta', namespaces)[0].attrib['mono_mass']) return ptms def get_id(self, site, position, delta_mass): candidates = {} min_id = -1 ptms_site = self.ptms[site] search_multiple_positions = isinstance(position, (list, tuple)) kvs = itertools.chain.from_iterable((((k, p), v) for k,v in ptms_site[p].items()) for p in position) \ if search_multiple_positions else \ ptms_site[position].items() for key, value in kvs: delta_mod = abs(value - float(delta_mass)) if delta_mod < self.max_delta: if key in candidates.keys(): if delta_mod < candidates[key]: candidates[key] = delta_mod else: candidates[key] = delta_mod if len(candidates) > 0: min_id = min(candidates, key=candidates.get) return(min_id) def get_oms_id(self, sequence, massdiff, nterm_modification, cterm_modification): record_ids = {} for site, aa in enumerate(sequence): if aa != "_": record_id_site = self.get_id(aa, 'Anywhere', massdiff) if record_id_site != -1: record_ids[site+1] = record_id_site record_id_nterm = -1 if nterm_modification == "": record_id_nterm = self.get_id("N-term", 'Any N-term', massdiff) if record_id_nterm == -1: record_id_nterm = self.get_id("N-term", 'Protein N-term', massdiff) record_id_cterm = -1 if cterm_modification == "": record_id_cterm = self.get_id("C-term", 'Any C-term', massdiff) if record_id_cterm == -1: record_id_cterm = self.get_id("C-term", 'Protein C-term', massdiff) # prefer residual over N-term over C-term modifications aamod = {} if len(record_ids) > 0: aasite = median_low(list(record_ids.keys())) aamod[aasite] = massdiff elif record_id_nterm != -1: nterm_modification = massdiff elif record_id_cterm != -1: cterm_modification = massdiff return aamod, nterm_modification, cterm_modification def read_mzml_or_mzxml_impl(path, psms, theoretical, max_delta_ppm, filetype): assert filetype in ('mzml', 'mzxml') fh = po.MzMLFile() if filetype=='mzml' else po.MzXMLFile() fh.setLogType(po.LogType.CMD) input_map = po.MSExperiment() fh.load(path, input_map) peaks_list = [] for ix, psm in psms.iterrows(): scan_id = psm['scan_id'] ionseries = theoretical[psm['modified_peptide']][psm['precursor_charge']] spectrum = input_map.getSpectrum(scan_id - 1) fragments = [] product_mzs = [] intensities = [] for peak in spectrum: fragment, product_mz = annotate_mass(peak.getMZ(), ionseries, max_delta_ppm) if fragment is not None: fragments.append(fragment) product_mzs.append(product_mz) intensities.append(peak.getIntensity()) peaks = pd.DataFrame({'fragment': fragments, 'product_mz': product_mzs, 'intensity': intensities}) peaks['scan_id'] = scan_id peaks['precursor_mz'] = po.AASequence.fromString(po.String(psm['modified_peptide'])).getMonoWeight(po.Residue.ResidueType.Full, psm['precursor_charge']) / psm['precursor_charge']; peaks['modified_peptide'] = psm['modified_peptide'] peaks['precursor_charge'] = psm['precursor_charge'] # Baseline normalization to highest annotated peak max_intensity = np.max(peaks['intensity']) if max_intensity > 0: peaks['intensity'] = peaks['intensity'] * (10000 / max_intensity) peaks_list.append(peaks) if len(peaks_list) > 0: transitions =
pd.concat(peaks_list)
pandas.concat
import inspect import os import sys import time import unittest import warnings from concurrent.futures.process import ProcessPoolExecutor from contextlib import contextmanager from glob import glob from runpy import run_path from tempfile import NamedTemporaryFile, gettempdir from unittest import TestCase from unittest.mock import patch import numpy as np import pandas as pd from backtesting import Backtest, Strategy from backtesting.lib import ( OHLCV_AGG, barssince, cross, crossover, quantile, SignalStrategy, TrailingStrategy, resample_apply, plot_heatmaps, random_ohlc_data, ) from backtesting.test import GOOG, EURUSD, SMA from backtesting._util import _Indicator, _as_str, _Array, try_ SHORT_DATA = GOOG.iloc[:20] # Short data for fast tests with no indicator lag @contextmanager def _tempfile(): with NamedTemporaryFile(suffix='.html') as f: if sys.platform.startswith('win'): f.close() yield f.name @contextmanager def chdir(path): cwd = os.getcwd() os.chdir(path) try: yield finally: os.chdir(cwd) class SmaCross(Strategy): # NOTE: These values are also used on the website! fast = 10 slow = 30 def init(self): self.sma1 = self.I(SMA, self.data.Close, self.fast) self.sma2 = self.I(SMA, self.data.Close, self.slow) def next(self): if crossover(self.sma1, self.sma2): self.position.close() self.buy() elif crossover(self.sma2, self.sma1): self.position.close() self.sell() class TestBacktest(TestCase): def test_run(self): bt = Backtest(EURUSD, SmaCross) bt.run() def test_run_invalid_param(self): bt = Backtest(GOOG, SmaCross) self.assertRaises(AttributeError, bt.run, foo=3) def test_run_speed(self): bt = Backtest(GOOG, SmaCross) start = time.process_time() bt.run() end = time.process_time() self.assertLess(end - start, .3) def test_data_missing_columns(self): df = GOOG.copy(deep=False) del df['Open'] with self.assertRaises(ValueError): Backtest(df, SmaCross).run() def test_data_nan_columns(self): df = GOOG.copy() df['Open'] = np.nan with self.assertRaises(ValueError): Backtest(df, SmaCross).run() def test_data_extra_columns(self): df = GOOG.copy(deep=False) df['P/E'] = np.arange(len(df)) df['MCap'] = np.arange(len(df)) class S(Strategy): def init(self): assert len(self.data.MCap) == len(self.data.Close) assert len(self.data['P/E']) == len(self.data.Close) def next(self): assert len(self.data.MCap) == len(self.data.Close) assert len(self.data['P/E']) == len(self.data.Close) Backtest(df, S).run() def test_data_invalid(self): with self.assertRaises(TypeError): Backtest(GOOG.index, SmaCross).run() with self.assertRaises(ValueError): Backtest(GOOG.iloc[:0], SmaCross).run() def test_assertions(self): class Assertive(Strategy): def init(self): self.sma = self.I(SMA, self.data.Close, 10) self.remains_indicator = np.r_[2] * np.cumsum(self.sma * 5 + 1) * np.r_[2] self.transpose_invalid = self.I(lambda: np.column_stack((self.data.Open, self.data.Close))) resampled = resample_apply('W', SMA, self.data.Close, 3) resampled_ind = resample_apply('W', SMA, self.sma, 3) assert np.unique(resampled[-5:]).size == 1 assert np.unique(resampled[-6:]).size == 2 assert resampled in self._indicators, "Strategy.I not called" assert resampled_ind in self._indicators, "Strategy.I not called" assert 1 == try_(lambda: self.data.X, 1, AttributeError) assert 1 == try_(lambda: self.data['X'], 1, KeyError) assert self.data.pip == .01 assert float(self.data.Close) == self.data.Close[-1] def next(self, FIVE_DAYS=pd.Timedelta('3 days')): assert self.equity >= 0 assert isinstance(self.sma, _Indicator) assert isinstance(self.remains_indicator, _Indicator) assert self.remains_indicator.name assert isinstance(self.remains_indicator._opts, dict) assert not np.isnan(self.data.Open[-1]) assert not np.isnan(self.data.High[-1]) assert not np.isnan(self.data.Low[-1]) assert not np.isnan(self.data.Close[-1]) assert not np.isnan(self.data.Volume[-1]) assert not np.isnan(self.sma[-1]) assert self.data.index[-1] self.position self.position.size self.position.pl self.position.pl_pct self.position.is_long if crossover(self.sma, self.data.Close): self.orders.cancel() # cancels only non-contingent price = self.data.Close[-1] sl, tp = 1.05 * price, .9 * price n_orders = len(self.orders) self.sell(size=.21, limit=price, stop=price, sl=sl, tp=tp) assert len(self.orders) == n_orders + 1 order = self.orders[-1] assert order.limit == price assert order.stop == price assert order.size == -.21 assert order.sl == sl assert order.tp == tp assert not order.is_contingent elif self.position: assert not self.position.is_long assert self.position.is_short assert self.position.pl assert self.position.pl_pct assert self.position.size < 0 trade = self.trades[0] if self.data.index[-1] - self.data.index[trade.entry_bar] > FIVE_DAYS: assert not trade.is_long assert trade.is_short assert trade.size < 0 assert trade.entry_bar > 0 assert isinstance(trade.entry_time, pd.Timestamp) assert trade.exit_bar is None assert trade.exit_time is None assert trade.entry_price > 0 assert trade.exit_price is None assert trade.pl / 1 assert trade.pl_pct / 1 assert trade.value > 0 assert trade.sl assert trade.tp # Close multiple times self.position.close(.5) self.position.close(.5) self.position.close(.5) self.position.close() self.position.close() bt = Backtest(GOOG, Assertive) with self.assertWarns(UserWarning): stats = bt.run() self.assertEqual(stats['# Trades'], 145) def test_broker_params(self): bt = Backtest(GOOG.iloc[:100], SmaCross, cash=1000, commission=.01, margin=.1, trade_on_close=True) bt.run() def test_dont_overwrite_data(self): df = EURUSD.copy() bt = Backtest(df, SmaCross) bt.run() bt.optimize(fast=4, slow=[6, 8]) bt.plot(plot_drawdown=True, open_browser=False) self.assertTrue(df.equals(EURUSD)) def test_strategy_abstract(self): class MyStrategy(Strategy): pass self.assertRaises(TypeError, MyStrategy, None, None) def test_strategy_str(self): bt = Backtest(GOOG.iloc[:100], SmaCross) self.assertEqual(str(bt.run()._strategy), SmaCross.__name__) self.assertEqual(str(bt.run(fast=11)._strategy), SmaCross.__name__ + '(fast=11)') def test_compute_drawdown(self): dd = pd.Series([0, 1, 7, 0, 4, 0, 0]) durations, peaks = Backtest._compute_drawdown_duration_peaks(dd) np.testing.assert_array_equal(durations, pd.Series([3, 2], index=[3, 5]).reindex(dd.index)) np.testing.assert_array_equal(peaks, pd.Series([7, 4], index=[3, 5]).reindex(dd.index)) def test_compute_stats(self): stats = Backtest(GOOG, SmaCross).run() expected = pd.Series({ # NOTE: These values are also used on the website! '# Trades': 66, 'Avg. Drawdown Duration': pd.Timedelta('41 days 00:00:00'), 'Avg. Drawdown [%]': -5.925851581948801, 'Avg. Trade Duration': pd.Timedelta('46 days 00:00:00'), 'Avg. Trade [%]': 2.531715975158555, 'Best Trade [%]': 53.59595229490424, 'Buy & Hold Return [%]': 703.4582419772772, 'Calmar Ratio': 0.4414380935608377, 'Duration': pd.Timedelta('3116 days 00:00:00'), 'End':
pd.Timestamp('2013-03-01 00:00:00')
pandas.Timestamp
import glob import os import random import soundfile as sf import torch import yaml import json import argparse import pandas as pd from tqdm import tqdm from pprint import pprint from asteroid.metrics import get_metrics from model import load_best_model from local.preprocess_dns import make_wav_id_dict parser = argparse.ArgumentParser() parser.add_argument( "--test_dir", type=str, required=True, help="Test directory including wav files" ) parser.add_argument( "--use_gpu", type=int, default=0, help="Whether to use the GPU for model execution" ) parser.add_argument("--exp_dir", default="exp/tmp", help="Experiment root") parser.add_argument( "--n_save_ex", type=int, default=50, help="Number of audio examples to save, -1 means all" ) ALL_METRICS = ["si_sdr", "sdr", "sir", "sar", "stoi"] COMPUTE_METRICS = ALL_METRICS def main(conf): # Get best trained model model = load_best_model(conf["train_conf"], conf["exp_dir"]) if conf["use_gpu"]: model = model.cuda() # Evaluate performances separately w/ and w/o reverb for subdir in ["with_reverb", "no_reverb"]: dict_list = get_wavs_dict_list(os.path.join(conf["test_dir"], subdir)) save_dir = os.path.join(conf["exp_dir"], subdir + "examples/") os.makedirs(save_dir, exist_ok=True) all_metrics_df = evaluate(dict_list, model, conf=conf, save_dir=save_dir) all_metrics_df.to_csv(os.path.join(conf["exp_dir"], "all_metrics_{}.csv".format(subdir))) # Print and save summary metrics final_results = {} for metric_name in COMPUTE_METRICS: input_metric_name = "input_" + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + "_imp"] = ldf.mean() print("Overall metrics {} :".format(subdir)) pprint(final_results) filename = os.path.join(conf["exp_dir"], "final_metrics_{}.json".format(subdir)) with open(filename, "w") as f: json.dump(final_results, f, indent=0) def get_wavs_dict_list(test_dir): """Creates a list of example pair dictionaries. Args: test_dir (str): Directory where clean/ and noisy/ subdirectories can be found. Returns: List[dict] : list of noisy/clean pair dictionaries. Each dict looks like : {'clean': clean_path, 'noisy': noisy_path, 'id': 3} """ # Find all clean files and make an {id: filepath} dictionary clean_wavs = glob.glob(os.path.join(test_dir, "clean/*.wav")) clean_dic = make_wav_id_dict(clean_wavs) # Same for noisy files noisy_wavs = glob.glob(os.path.join(test_dir, "noisy/*.wav")) noisy_dic = make_wav_id_dict(noisy_wavs) assert clean_dic.keys() == noisy_dic.keys() # Combine both dictionaries dict_list = [dict(clean=clean_dic[k], noisy=noisy_dic[k], id=k) for k in clean_dic.keys()] return dict_list def evaluate(dict_list, model, conf, save_dir=None): model_device = next(model.parameters()).device # Randomly choose the indexes of sentences to save. if save_dir is None: conf["n_save_ex"] = 0 if conf["n_save_ex"] == -1: conf["n_save_ex"] = len(dict_list) save_idx = random.sample(range(len(dict_list)), conf["n_save_ex"]) series_list = [] for idx, wav_dic in enumerate(tqdm(dict_list)): # Forward the network on the mixture. noisy_np, clean_np, fs = load_wav_dic(wav_dic) with torch.no_grad(): net_input = torch.tensor(noisy_np)[None, None].to(model_device) est_clean_np = model.denoise(net_input).squeeze().cpu().data.numpy() utt_metrics = get_metrics( mix=noisy_np, clean=clean_np, estimate=est_clean_np, sample_rate=fs, metrics_list=COMPUTE_METRICS, ) utt_metrics["noisy_path"] = wav_dic["noisy"] utt_metrics["clean_path"] = wav_dic["clean"] series_list.append(
pd.Series(utt_metrics)
pandas.Series
import pathlib import yaml import pandas as pd from clumper import Clumper from parse import compile as parse_compile def nlu_path_to_dataframe(path): """ Converts a single nlu file with intents into a dataframe. Usage: ```python from taipo.common import nlu_path_to_dataframe df = nlu_path_to_dataframe("path/to/nlu/nlu.yml") ``` """ res = ( Clumper.read_yaml(path) .explode("nlu") .keep(lambda d: "intent" in d["nlu"].keys()) .mutate( examples=lambda d: d["nlu"]["examples"].split("\n"), intent=lambda d: d["nlu"]["intent"], ) .drop("nlu", "version") .explode(text="examples") .mutate(text=lambda d: d["text"][2:]) .keep(lambda d: d["text"] != "") .collect() ) return
pd.DataFrame(res)
pandas.DataFrame
import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt import matplotlib.dates as date import seaborn as sns from scipy import stats sns.set_context('talk') data_crime_raw = pd.read_csv('.\\NYPD_Complaint_Data_Historic.csv', usecols=['CMPLNT_FR_DT', 'OFNS_DESC', 'LAW_CAT_CD', 'Latitude', 'Longitude', 'BORO_NM'], dtype={'OFNS_DESC':'category', 'LAW_CAT_CD':'category', 'BORO_NM':'category', 'Latitude':float, 'Longitude':float}) data_crime_raw['CMPLNT_FR_DT'] =
pd.to_datetime(data_crime_raw['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce')
pandas.to_datetime
from time import time import pandas as pd from numpy import arange results_df = pd.read_csv('../data/botbrnlys-rand.csv') def extract_best_vals_index(results_df, df, classifier, hp): final_df = pd.DataFrame() temp_df = results_df[results_df.model == classifier] temp_df_f = temp_df[temp_df.hp.round(3) == hp] if len(temp_df_f) < 1: return final_df for i in temp_df_f.index: new_df = df[df.cols == results_df.cols[i]] final_df = final_df.append( new_df[new_df.df_len == results_df.df_len[i]]) final_df.reset_index(inplace=True) final_df.drop(columns='index', inplace=True) print(len(final_df)) return final_df def ein_best_vals(results_df, classifier, lor=0, ini_hyp=0, fin_hyp=0, incr=0): final_df = pd.DataFrame() st = time() if ini_hyp != 0: StP = fin_hyp + incr lor = arange(ini_hyp, StP, incr) elif lor == 0 and ini_hyp == 0 and fin_hyp == 0: cl_df =
pd.read_csv('../data/' + classifier + '0_results-nb.csv')
pandas.read_csv
""" Script that contains the functions to perform sensitivity analysis. """ import itertools import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error ##### GLOBAL VARIABLES ##### legs = ['LF', 'LM', 'LH', 'RF', 'RM', 'RH'] joints = [ 'Coxa', 'Coxa_yaw', 'Coxa_roll', 'Femur', 'Femur_roll', 'Tibia', 'Tarsus1'] ##### CALCULATE STATISTICS ##### def calculate_forces(leg, k_value, *args): """ Computes the ground reaction force on one single leg. Parameters ---------- leg: <string> Name of the leg, e.g., 'LF' 'RM'. k_value: <string> Value of the gain, e.g. 'kp1.0_kv0.9'. args: Dictionary containing the measured forces. Returns ------- force_vector: <np.array> Array containing GRF forces in x, y, z. force_norm: <np.array> Array containing the norm of the GRF forces. """ force = {'x': 0, 'y': 0, 'z': 0} for key in args[0][k_value].keys(): for ax in ['x', 'y', 'z']: if leg in key and ax in key: force[ax] += sum(f[k_value][key] for f in args if f is not None) force_vector = np.vstack([force[ax] for ax in force.keys()]) force_norm = np.linalg.norm(force_vector, axis=0) return force_vector, force_norm def calculate_stack_array( *args, force_calc, leg=None, constant='kv0.9', scaling_factor=1 ): """ Concatenates and scales physical quantities. Parameters ---------- args: arrays to be concatenated. force_cal: <bool> If true, then calculates the norm of the vector. leg: <string> Name of the leg, e.g., 'LF' 'RM'. constant: <string> Value of the constant gain, i.e. 'kv0.9'. scaling_factor: <float> Scales the force and torque measurements, used for unit changes. Returns ------- stack_array: <np.array> array of values that have the same constant gain (kp or kv). """ first_iteration = True for k_value in args[0].keys(): if constant in k_value: if force_calc: _, data_stack = calculate_forces(leg, k_value, *args) else: data_stack = np.array(args[0][k_value][leg]) if first_iteration: stack_array = data_stack first_iteration = False else: stack_array = np.vstack( (stack_array, data_stack) ) return stack_array * scaling_factor def calculate_statistics_joints( *args, scaling_factor=1, constant='kv0.9', force_calculation=False, joints=[ 'Coxa', 'Coxa_yaw', 'Coxa_roll', 'Femur', 'Femur_roll', 'Tibia', 'Tarsus1']): """ Calculates statistical properties of joint physical quantities. Parameters ---------- scaling_factor: <int> Scales the force and torque measurements, used for unit changes. constant: <str> Used for fixing one of two independent variables. E.g. 'kv0.9'. force_calculation: <bool> True-> calculates force, false->calculates torque, angles, velocity. joints: <list> If GRF then ['LF', 'LM', 'LH', 'RF', 'RM', 'RH']. Returns ------- stat_joints: <dict> Dictionary containing mean, standard deviaton and standard error of the given data. """ stat_joints = {} for leg, joint in itertools.product(legs, joints): name = leg if force_calculation else 'joint_' + leg + joint stack_array = calculate_stack_array( *args, force_calc=force_calculation, leg=name, constant=constant, scaling_factor=scaling_factor) stat_joints[name] = calculate_stats(stack_array) return stat_joints def calculate_stats(data): """ Calculates, std, mean, and stderror of a given data. Parameters ---------- data: <np.array> Physical quantities of different gain values. Returns ------- stat_dict: <dict> Dictionary containing mean, standard deviaton and standard error of the given data """ stat_dict = {} stat_dict['mu'] = np.mean(data, axis=0) stat_dict['stderr'] = np.std(data, ddof=1, axis=0) / np.sqrt(data.shape[0]) stat_dict['std'] = np.std(data, axis=0) return stat_dict def calculate_mse_joints( joint_data, ground_truth, starting_time, time_step, ): """ Calculates MSE between the ground truth and given data. Parameters ---------- joint_data: <dict> Dictionary containing the joint information (angle or velocity). ground_truth: <dict> Dictionary containing the ground truth angle or velocity data. beg: <int> Beginning of the process. Defaults to 100. Returns ------- error_df: <pd.DataFrame> Mean squared error between the baseline and the simulation values. error_dict: <dictionary> Mean squared error between the baseline and the simulation values. """ import matplotlib.pyplot as plt leg_mse = [] error_dict = {leg: {} for leg in legs} beg = int(np.round(starting_time / time_step)) for gain_name in joint_data.keys(): for leg in legs: mse = 0 for joint in joints: key_name = 'joint_' + leg + joint joint_baseline = ground_truth[key_name] joint_comparison = joint_data[gain_name][key_name][beg:] assert len(joint_baseline) == len(joint_comparison), "Two arrays should be of the same length {} and {}".format( len(joint_baseline), len(joint_comparison)) mse += mean_squared_error(joint_baseline, joint_comparison) error_dict[leg][gain_name] = mse / len(joints) leg_mse.append([leg, float(gain_name[2:5]), float(gain_name[-3:]), mse / len(joints)]) error_df =
pd.DataFrame(leg_mse, columns=['Leg', 'Kp', 'Kv', 'MSE'])
pandas.DataFrame
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for USEquityPricingLoader and related classes. """ from parameterized import parameterized import sys import numpy as np from numpy.testing import ( assert_allclose, assert_array_equal, ) import pandas as pd from pandas.testing import assert_frame_equal from toolz.curried.operator import getitem from zipline.lib.adjustment import Float64Multiply from zipline.pipeline.domain import US_EQUITIES from zipline.pipeline.loaders.synthetic import ( NullAdjustmentReader, make_bar_data, expected_bar_values_2d, ) from zipline.pipeline.loaders.equity_pricing_loader import ( USEquityPricingLoader, ) from zipline.errors import WindowLengthTooLong from zipline.pipeline.data import USEquityPricing from zipline.testing import ( seconds_to_timestamp, str_to_seconds, MockDailyBarReader, ) from zipline.testing.fixtures import ( WithAdjustmentReader, ZiplineTestCase, ) import pytest # Test calendar ranges over the month of June 2015 # June 2015 # Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 # 15 16 17 18 19 20 21 # 22 23 24 25 26 27 28 # 29 30 TEST_CALENDAR_START = pd.Timestamp("2015-06-01", tz="UTC") TEST_CALENDAR_STOP = pd.Timestamp("2015-06-30", tz="UTC") TEST_QUERY_START = pd.Timestamp("2015-06-10", tz="UTC") TEST_QUERY_STOP = pd.Timestamp("2015-06-19", tz="UTC") # One asset for each of the cases enumerated in load_raw_arrays_from_bcolz. EQUITY_INFO = pd.DataFrame( [ # 1) The equity's trades start and end before query. {"start_date": "2015-06-01", "end_date": "2015-06-05"}, # 2) The equity's trades start and end after query. {"start_date": "2015-06-22", "end_date": "2015-06-30"}, # 3) The equity's data covers all dates in range. {"start_date": "2015-06-02", "end_date": "2015-06-30"}, # 4) The equity's trades start before the query start, but stop # before the query end. {"start_date": "2015-06-01", "end_date": "2015-06-15"}, # 5) The equity's trades start and end during the query. {"start_date": "2015-06-12", "end_date": "2015-06-18"}, # 6) The equity's trades start during the query, but extend through # the whole query. {"start_date": "2015-06-15", "end_date": "2015-06-25"}, ], index=np.arange(1, 7), columns=["start_date", "end_date"], ).astype(np.datetime64) EQUITY_INFO["symbol"] = [chr(ord("A") + n) for n in range(len(EQUITY_INFO))] EQUITY_INFO["exchange"] = "TEST" TEST_QUERY_SIDS = EQUITY_INFO.index # ADJUSTMENTS use the following scheme to indicate information about the value # upon inspection. # # 1s place is the equity # # 0.1s place is the action type, with: # # splits, 1 # mergers, 2 # dividends, 3 # # 0.001s is the date SPLITS = pd.DataFrame( [ # Before query range, should be excluded. { "effective_date": str_to_seconds("2015-06-03"), "ratio": 1.103, "sid": 1, }, # First day of query range, should be excluded. { "effective_date": str_to_seconds("2015-06-10"), "ratio": 3.110, "sid": 3, }, # Third day of query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 3.112, "sid": 3, }, # After query range, should be excluded. { "effective_date": str_to_seconds("2015-06-21"), "ratio": 6.121, "sid": 6, }, # Another action in query range, should have last_row of 1 { "effective_date": str_to_seconds("2015-06-11"), "ratio": 3.111, "sid": 3, }, # Last day of range. Should have last_row of 7 { "effective_date": str_to_seconds("2015-06-19"), "ratio": 3.119, "sid": 3, }, ], columns=["effective_date", "ratio", "sid"], ) MERGERS = pd.DataFrame( [ # Before query range, should be excluded. { "effective_date": str_to_seconds("2015-06-03"), "ratio": 1.203, "sid": 1, }, # First day of query range, should be excluded. { "effective_date": str_to_seconds("2015-06-10"), "ratio": 3.210, "sid": 3, }, # Third day of query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 3.212, "sid": 3, }, # After query range, should be excluded. { "effective_date": str_to_seconds("2015-06-25"), "ratio": 6.225, "sid": 6, }, # Another action in query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 4.212, "sid": 4, }, # Last day of range. Should have last_row of 7 { "effective_date": str_to_seconds("2015-06-19"), "ratio": 3.219, "sid": 3, }, ], columns=["effective_date", "ratio", "sid"], ) DIVIDENDS = pd.DataFrame( [ # Before query range, should be excluded. { "declared_date": pd.Timestamp("2015-05-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-03", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-05", tz="UTC").to_datetime64(), "amount": 90.0, "sid": 1, }, # First day of query range, should be excluded. { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-10", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-15", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-17", tz="UTC").to_datetime64(), "amount": 80.0, "sid": 3, }, # Third day of query range, should have last_row of 2 { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-12", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-15", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-17", tz="UTC").to_datetime64(), "amount": 70.0, "sid": 3, }, # After query range, should be excluded. { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-25", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-28", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-30", tz="UTC").to_datetime64(), "amount": 60.0, "sid": 6, }, # Another action in query range, should have last_row of 3 { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-15", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-18", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-20", tz="UTC").to_datetime64(), "amount": 50.0, "sid": 3, }, # Last day of range. Should have last_row of 7 { "declared_date": pd.Timestamp("2015-06-01", tz="UTC").to_datetime64(), "ex_date": pd.Timestamp("2015-06-19", tz="UTC").to_datetime64(), "record_date": pd.Timestamp("2015-06-22", tz="UTC").to_datetime64(), "pay_date": pd.Timestamp("2015-06-30", tz="UTC").to_datetime64(), "amount": 40.0, "sid": 3, }, ], columns=[ "declared_date", "ex_date", "record_date", "pay_date", "amount", "sid", ], ) DIVIDENDS_EXPECTED = pd.DataFrame( [ # Before query range, should be excluded. { "effective_date": str_to_seconds("2015-06-01"), "ratio": 0.1, "sid": 1, }, # First day of query range, should be excluded. { "effective_date": str_to_seconds("2015-06-10"), "ratio": 0.20, "sid": 3, }, # Third day of query range, should have last_row of 2 { "effective_date": str_to_seconds("2015-06-12"), "ratio": 0.30, "sid": 3, }, # After query range, should be excluded. { "effective_date": str_to_seconds("2015-06-25"), "ratio": 0.40, "sid": 6, }, # Another action in query range, should have last_row of 3 { "effective_date": str_to_seconds("2015-06-15"), "ratio": 0.50, "sid": 3, }, # Last day of range. Should have last_row of 7 { "effective_date": str_to_seconds("2015-06-19"), "ratio": 0.60, "sid": 3, }, ], columns=["effective_date", "ratio", "sid"], ) class USEquityPricingLoaderTestCase(WithAdjustmentReader, ZiplineTestCase): START_DATE = TEST_CALENDAR_START END_DATE = TEST_CALENDAR_STOP asset_ids = 1, 2, 3 @classmethod def make_equity_info(cls): return EQUITY_INFO @classmethod def make_splits_data(cls): return SPLITS @classmethod def make_mergers_data(cls): return MERGERS @classmethod def make_dividends_data(cls): return DIVIDENDS @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader( dates=cls.calendar_days_between(cls.START_DATE, cls.END_DATE), ) @classmethod def make_equity_daily_bar_data(cls, country_code, sids): return make_bar_data( EQUITY_INFO, cls.equity_daily_bar_days, ) @classmethod def init_class_fixtures(cls): super(USEquityPricingLoaderTestCase, cls).init_class_fixtures() cls.sids = TEST_QUERY_SIDS cls.asset_info = EQUITY_INFO def test_input_sanity(self): # Ensure that the input data doesn't contain adjustments during periods # where the corresponding asset didn't exist. for table in SPLITS, MERGERS: for eff_date_secs, _, sid in table.itertuples(index=False): eff_date = pd.Timestamp(eff_date_secs, unit="s") asset_start, asset_end = EQUITY_INFO.loc[ sid, ["start_date", "end_date"] ] assert eff_date >= asset_start assert eff_date <= asset_end @classmethod def calendar_days_between(cls, start_date, end_date, shift=0): slice_ = cls.equity_daily_bar_days.slice_indexer(start_date, end_date) start = slice_.start + shift stop = slice_.stop + shift if start < 0: raise KeyError(start_date, shift) return cls.equity_daily_bar_days[start:stop] def expected_adjustments(self, start_date, end_date, tables, adjustment_type): price_adjustments = {} volume_adjustments = {} should_include_price_adjustments = ( adjustment_type == "all" or adjustment_type == "price" ) should_include_volume_adjustments = ( adjustment_type == "all" or adjustment_type == "volume" ) query_days = self.calendar_days_between(start_date, end_date) start_loc = query_days.get_loc(start_date) for table in tables: for eff_date_secs, ratio, sid in table.itertuples(index=False): eff_date = pd.Timestamp(eff_date_secs, unit="s", tz="UTC") # Ignore adjustments outside the query bounds. if not (start_date <= eff_date <= end_date): continue eff_date_loc = query_days.get_loc(eff_date) delta = eff_date_loc - start_loc # Pricing adjustments should be applied on the date # corresponding to the effective date of the input data. They # should affect all rows **before** the effective date. if should_include_price_adjustments: price_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta, first_col=sid - 1, last_col=sid - 1, value=ratio, ) ) # Volume is *inversely* affected by *splits only*. if table is SPLITS and should_include_volume_adjustments: volume_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta, first_col=sid - 1, last_col=sid - 1, value=1.0 / ratio, ) ) output = {} if should_include_price_adjustments: output["price_adjustments"] = price_adjustments if should_include_volume_adjustments: output["volume_adjustments"] = volume_adjustments return output @parameterized.expand( [ ([SPLITS, MERGERS, DIVIDENDS_EXPECTED], "all"), ([SPLITS, MERGERS, DIVIDENDS_EXPECTED], "price"), ([SPLITS, MERGERS, DIVIDENDS_EXPECTED], "volume"), ([SPLITS, MERGERS, None], "all"), ([SPLITS, MERGERS, None], "price"), ] ) def test_load_adjustments(self, tables, adjustment_type): query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, ) adjustments = self.adjustment_reader.load_adjustments( query_days, self.sids, should_include_splits=tables[0] is not None, should_include_mergers=tables[1] is not None, should_include_dividends=tables[2] is not None, adjustment_type=adjustment_type, ) expected_adjustments = self.expected_adjustments( TEST_QUERY_START, TEST_QUERY_STOP, [table for table in tables if table is not None], adjustment_type, ) if adjustment_type == "all" or adjustment_type == "price": expected_price_adjustments = expected_adjustments["price_adjustments"] for key in expected_price_adjustments: price_adjustment = adjustments["price"][key] for j, adj in enumerate(price_adjustment): expected = expected_price_adjustments[key][j] assert adj.first_row == expected.first_row assert adj.last_row == expected.last_row assert adj.first_col == expected.first_col assert adj.last_col == expected.last_col assert_allclose(adj.value, expected.value) if adjustment_type == "all" or adjustment_type == "volume": expected_volume_adjustments = expected_adjustments["volume_adjustments"] for key in expected_volume_adjustments: volume_adjustment = adjustments["volume"][key] for j, adj in enumerate(volume_adjustment): expected = expected_volume_adjustments[key][j] assert adj.first_row == expected.first_row assert adj.last_row == expected.last_row assert adj.first_col == expected.first_col assert adj.last_col == expected.last_col assert_allclose(adj.value, expected.value) @parameterized.expand([(True,), (False,)]) @pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows") def test_load_adjustments_to_df(self, convert_dts): reader = self.adjustment_reader adjustment_dfs = reader.unpack_db_to_component_dfs(convert_dates=convert_dts) name_and_raw = ( ("splits", SPLITS), ("mergers", MERGERS), ("dividends", DIVIDENDS_EXPECTED), ) def create_expected_table(df, name): expected_df = df.copy() if convert_dts: for colname in reader._datetime_int_cols[name]: expected_df[colname] = ( expected_df[colname] .astype("datetime64[s]") .dt.tz_localize("UTC") ) return expected_df def create_expected_div_table(df, name): expected_df = df.copy() for colname in reader._datetime_int_cols[name]: if not convert_dts: # todo: fix nanosecond hack expected_df[colname] = ( expected_df[colname] .astype("datetime64[s]") .view(int) .div(1000000000) .astype(int) ) else: expected_df[colname] = ( expected_df[colname] .astype("datetime64[s]") .dt.tz_localize("UTC") ) return expected_df for action_name, raw_tbl in name_and_raw: # todo: fix missing dividend value if action_name == "dividends": continue exp = create_expected_table(raw_tbl, action_name) assert_frame_equal(adjustment_dfs[action_name], exp) # DIVIDENDS is in the opposite form from the rest of the dataframes, so # needs to be converted separately. div_name = "dividend_payouts" exp = create_expected_div_table(DIVIDENDS, div_name) assert_frame_equal(adjustment_dfs[div_name].loc[:, exp.columns], exp) def test_read_no_adjustments(self): adjustment_reader = NullAdjustmentReader() columns = [USEquityPricing.close, USEquityPricing.volume] query_days = self.calendar_days_between(TEST_QUERY_START, TEST_QUERY_STOP) # Our expected results for each day are based on values from the # previous day. shifted_query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, shift=-1, ) adjustments = adjustment_reader.load_pricing_adjustments( [c.name for c in columns], query_days, self.sids, ) assert adjustments == [{}, {}] pricing_loader = USEquityPricingLoader.without_fx( self.bcolz_equity_daily_bar_reader, adjustment_reader, ) results = pricing_loader.load_adjusted_array( domain=US_EQUITIES, columns=columns, dates=query_days, sids=self.sids, mask=np.ones((len(query_days), len(self.sids)), dtype=bool), ) closes, volumes = map(getitem(results), columns) expected_baseline_closes = expected_bar_values_2d( shifted_query_days, self.sids, self.asset_info, "close", ) expected_baseline_volumes = expected_bar_values_2d( shifted_query_days, self.sids, self.asset_info, "volume", ) # AdjustedArrays should yield the same data as the expected baseline. for windowlen in range(1, len(query_days) + 1): for offset, window in enumerate(closes.traverse(windowlen)): assert_array_equal( expected_baseline_closes[offset : offset + windowlen], window, ) for offset, window in enumerate(volumes.traverse(windowlen)): assert_array_equal( expected_baseline_volumes[offset : offset + windowlen], window, ) # Verify that we checked up to the longest possible window. with pytest.raises(WindowLengthTooLong): closes.traverse(windowlen + 1) with pytest.raises(WindowLengthTooLong): volumes.traverse(windowlen + 1) def apply_adjustments(self, dates, assets, baseline_values, adjustments): min_date, max_date = dates[[0, -1]] # HACK: Simulate the coercion to float64 we do in adjusted_array. This # should be removed when AdjustedArray properly supports # non-floating-point types. orig_dtype = baseline_values.dtype values = baseline_values.astype(np.float64).copy() for eff_date_secs, ratio, sid in adjustments.itertuples(index=False): eff_date = seconds_to_timestamp(eff_date_secs) # Don't apply adjustments that aren't in the current date range. if eff_date not in dates: continue eff_date_loc = dates.get_loc(eff_date) asset_col = assets.get_loc(sid) # Apply ratio multiplicatively to the asset column on all rows less # than or equal adjustment effective date. values[: eff_date_loc + 1, asset_col] *= ratio return values.astype(orig_dtype) def test_read_with_adjustments(self): columns = [USEquityPricing.high, USEquityPricing.volume] query_days = self.calendar_days_between(TEST_QUERY_START, TEST_QUERY_STOP) # Our expected results for each day are based on values from the # previous day. shifted_query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP, shift=-1, ) pricing_loader = USEquityPricingLoader.without_fx( self.bcolz_equity_daily_bar_reader, self.adjustment_reader, ) results = pricing_loader.load_adjusted_array( domain=US_EQUITIES, columns=columns, dates=query_days, sids=pd.Int64Index(np.arange(1, 7)), mask=np.ones((len(query_days), 6), dtype=bool), ) highs, volumes = map(getitem(results), columns) expected_baseline_highs = expected_bar_values_2d( shifted_query_days, self.sids, self.asset_info, "high", ) expected_baseline_volumes = expected_bar_values_2d( shifted_query_days, self.sids, self.asset_info, "volume", ) # At each point in time, the AdjustedArrays should yield the baseline # with all adjustments up to that date applied. for windowlen in range(1, len(query_days) + 1): for offset, window in enumerate(highs.traverse(windowlen)): baseline = expected_baseline_highs[offset : offset + windowlen] baseline_dates = query_days[offset : offset + windowlen] expected_adjusted_highs = self.apply_adjustments( baseline_dates, self.sids, baseline, # Apply all adjustments.
pd.concat([SPLITS, MERGERS, DIVIDENDS_EXPECTED], ignore_index=True)
pandas.concat
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 18}) from textwrap import wrap def plot_metrics_bar(result_dirs, plot_dir, metrics="Acc", prefix="pancreas", groupby="features"): '''Plot Acc, ARI, macroF1 for different methods x-axis is different feature selection y-axis is different matrics' @result_dirs: given a list of result_dir @metrics: one of evaluation metrics Acc/ARI/macroF1 @groupby: - features: group by features and compare between differnt feature selections - methods: group by methods and compare between methods ''' res_dict = {} for result_dir in result_dirs: basename = os.path.basename(result_dir) res_dict[basename] = {} files = [x for x in os.listdir(result_dir) if x.endswith("_metrics.txt")] methods = [x.replace("_metrics.txt", "") for x in files] ## get all methods for method in methods: if method in ['MLP_GO', 'MLP_CP', 'MLP_focal', 'DFN']: continue res_dict[basename][method] = {} with open(result_dir+os.sep+method+"_metrics.txt", 'r') as fopen: for line in fopen: metric, value = line.split(":") if metric == metrics: res_dict[basename][method] = float(value) df = pd.DataFrame.from_dict(res_dict) df = df.reindex(sorted(df.columns), axis=1) #df.columns = ['\n'.join(wrap(x, 14)) for x in df.columns] ## cut into shorter ## line plot #df.T.plot.line(rot=45) ## === for all methods #level=["scmap", "CHETAH", "RF", "SVM_linear", "SVM_RBF", "MLP", "MLP_GO", "MLP_CP", "DFN", "GEDFN", "ItClust"] #df = df.reindex(level) fig = plt.figure(figsize=(10, 6), dpi=300) ax = plt.gca() ## bar plot if "features" == groupby: if metrics in ["Acc", "ARI", "macroF1"]: df.T.plot(ax=ax, kind="bar", rot=45) else: df.T.plot(ax=ax, kind="bar", rot=45, logy=True) plt.xlabel("Feature Selection") elif "methods" == groupby: if metrics in ["Acc", "ARI", "macroF1"]: df.plot(ax=ax, kind="bar", rot=90) else: df.plot(ax=ax, kind="bar", rot=90, logy=True) plt.xlabel("Classifiers") ## set y axis range global_min = np.nanmin(df.to_numpy()) global_max = np.nanmax(df.to_numpy()) if "Acc" == metrics or "macroF1" == metrics: min_y_axis = max(global_min*0.95, 0) max_y_axis = min(global_max*1.05, 1) plt.ylim([min_y_axis, max_y_axis]) elif "ARI" == metrics: min_y_axis = max(global_min*0.95, -1) max_y_axis = min(global_max*1.05, 1) plt.ylim([min_y_axis, max_y_axis]) plt.legend(loc="center left", bbox_to_anchor=(1.0, 0.5)) plt.ylabel(metrics) plt.tight_layout() plt.savefig(plot_dir+os.sep+prefix+metrics+'.png') def extract_sub_prediction(result_dirs, datatype="mousebrain"): ''' Extract prediction information from mousebrain sub-cell types @datatype: mousebrain/humanPBMC -> belongs to two-stage analysis mousebrain_sub/humanPBMC_sub -> belongs to directly prediction using sub cell types ''' if "mousebrain" == datatype: major_celltype_col = "mouse_celltypes" sub_celltype_col = "cell.type" pred_celltype_col = "pred_sub_celltypes" elif "mousebrain_sub" == datatype: major_celltype_col = "mouse_celltypes" sub_celltype_col = "cell.type" pred_celltype_col = "pred_celltypes" elif "humanPBMC" == datatype: major_celltype_col = "cell.type" sub_celltype_col = "subtypes" pred_celltype_col = "pred_sub_celltypes" elif "humanPBMC_sub" == datatype: major_celltype_col = "majortypes" sub_celltype_col = "cell.type" pred_celltype_col = "pred_celltypes" import json from sklearn import metrics for result_dir in result_dirs: basename = os.path.basename(result_dir) basename = basename.replace("result_"+prefix+'_', '') suffix="_predicted_obs.csv" files = [x for x in os.listdir(result_dir) if x.endswith(suffix)] methods = [x.replace(suffix, "") for x in files] ## get all methods for method in methods: json_list = [] df =
pd.read_csv(result_dir+os.sep+method+suffix)
pandas.read_csv
from operator import eq, ge from functools import partial import pandas as pd from microsetta_public_api.resources import resources ops = { 'equal': eq, 'greater_or_equal': ge, } conditions = { "AND": partial(pd.DataFrame.all, axis=1), "OR": partial(pd.DataFrame.any, axis=1) } def _is_rule(node): rule_fields = ["id", "operator", "value"] for field in rule_fields: if field not in node: return False op = node["operator"] if op not in ops: raise ValueError(f"Only operators in {ops} are supported. " f"Got {op}") return True class MetadataRepo: def __init__(self, metadata=None): if metadata is not None: self._metadata = metadata else: self._metadata = resources.get('metadata', pd.DataFrame()) @property def metadata(self): return self._metadata @property def categories(self): return list(self._metadata.columns) @property def samples(self): return list(self._metadata.index) def category_values(self, category, exclude_na=True): """ Parameters ---------- category : str Metadata category to return the values of exclude_na : bool If True, not a number (na) values will be dropped from the category values Returns ------- list Contains the unique values in the metadata category Raises ------ ValueError If `category` is not an existing category in the metadata """ if category not in self._metadata.columns: raise ValueError(f'No category with name `{category}`') category_values = self._metadata[category].unique() if exclude_na: category_values = category_values[~pd.isnull(category_values)] return list(category_values) def has_category(self, category): if isinstance(category, str): return category in self._metadata.columns else: cols = set(self._metadata.columns) return [cat in cols for cat in category] def has_sample_id(self, sample_id): if isinstance(sample_id, str): return sample_id in self._metadata.index else: index = set(self._metadata.index) return [id_ in index for id_ in sample_id] def get_metadata(self, categories, sample_ids=None, fillna=None): md = self._metadata[categories] if sample_ids is not None: md = md.reindex(sample_ids, fill_value=None) md = md.astype('object') md[pd.isna(md)] = fillna return md def sample_id_matches(self, query): """ Parameters ---------- query : dict Expects a jquerybuilder formatted query Returns ------- list The sample IDs that match the given `query` """ slice_ = self._process_query(query) return list(self._metadata.index[slice_]) def _process_query(self, query): group_fields = ["condition", "rules"] if _is_rule(query): category, op, value = query['id'], query['operator'], \ query['value'] return ops[op](self._metadata[category], value) else: for field in group_fields: if field not in query: raise ValueError(f"query=`{query}` does not appear to be " f"a rule or a group.") if query['condition'] not in conditions: raise ValueError(f"Only conditions in {conditions} are " f"supported. Got {query['condition']}.") else: condition = conditions[query['condition']] return condition(self._safe_concat([self._process_query(rule) for rule in query['rules']], axis=1)) def _safe_concat(self, list_of_df, **concat_kwargs): if len(list_of_df) > 0: return pd.concat(list_of_df, **concat_kwargs) return pd.DataFrame(
pd.Series(True, index=self._metadata.index)
pandas.Series
import numpy as np import pandas as pd from dateutil.parser import parse import tldextract def replace_basic_columns(dataframe): pd.set_option('mode.chained_assignment', None) dataframe["title"] = np.nan dataframe["description"] = np.nan dataframe["image"] = np.nan for index in dataframe.index: if(pd.isnull(dataframe['meta_title'][index])): dataframe['title'][index] = dataframe['cse_title'][index] else: dataframe['title'][index] = dataframe['meta_title'][index] if(pd.isnull(dataframe['meta_description'][index])): dataframe['description'][index] = dataframe['cse_description'][index] else: dataframe['description'][index] = dataframe['meta_description'][index] if(pd.isnull(dataframe['meta_site_name'][index])): dataframe['meta_site_name'][index] = tldextract.extract( dataframe['url'][index]).domain.capitalize() if(
pd.isnull(dataframe['meta_image'][index])
pandas.isnull
import functools import warnings import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import os from scipy.stats import poisson import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd from tensorflow_probability import bijectors as tfb from cplvm import CPLVM import socket from os.path import join as pjoin if socket.gethostname() == "andyjones": DATA_DIR = "../../data/mix_seq/data/nutlin/" else: DATA_DIR = "../data/mix_seq/" import matplotlib font = {"size": 30} matplotlib.rc("font", **font) matplotlib.rcParams["text.usetex"] = True NUM_SETS_TO_PLOT = 8 if __name__ == "__main__": # Load gene sets gene_sets = pd.read_csv( "../perturbseq_experiments/hallmark_genesets.csv", index_col=0 ) gene_sets_unique = gene_sets.gene_set.values gene_sets_for_plot = np.array( [" ".join(x.split("_")[1:]) for x in gene_sets_unique] ) control_bfs = [] latent_dim_shared = 2 latent_dim_target = 2 X_fname = pjoin(DATA_DIR, "data/nutlin/dmso_expt1.csv") Y_fname = pjoin(DATA_DIR, "data/nutlin/nutlin_expt1.csv") gene_fname = pjoin(DATA_DIR, "data/nutlin/gene_symbols.csv") # Read in data X = pd.read_csv(X_fname, index_col=0) Y = pd.read_csv(Y_fname, index_col=0) gene_names =
pd.read_csv(gene_fname, index_col=0)
pandas.read_csv
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import check_empty_nwp from Fuzzy_clustering.version2.dataset_manager.common_utils import rescale_mean from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_2d_dense from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d class DatasetCreatorDense: def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False, dates=None): self.projects = projects self.is_for_test = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = njobs self.variables = data_variables self.logger = create_logger(logger_name=__name__, abs_path=self.path_nwp, logger_path=f'log_{self.projects_group}.log', write_type='a') if not self.data is None: self.dates = self.check_dates() elif not dates is None: self.dates = dates def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates are checked. Number of time samples is %s', str(len(dates))) return pd.DatetimeIndex(dates) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def stack_by_sample(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, predictions): timestep = 60 x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: preds = predictions[project['_id']] hor = preds.columns[-1] + timestep p_dates = [t + pd.DateOffset(minutes=hor)] preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[project['_id']]) data_temp = pd.concat([data[project['_id']].iloc[np.where(data.index < t)].to_frame(), pred]) project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: date_nwp = date.round('H').strftime('%d%m%y%H%M') try: nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1))].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2))].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1)), project_id].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2)), project_id].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') for project in projects: if len(x_3d[project['_id']].shape) == 3: x_3d[project['_id']] = x_3d[project['_id']][np.newaxis, :, :, :] return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not self.is_for_test: inp['Obs_lag1'] = inp['Obs_lag1'] + np.random.normal(0, 0.05) * inp['Obs_lag1'] inp['Obs_lag2'] = inp['Obs_lag2'] + np.random.normal(0, 0.05) * inp['Obs_lag2'] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_rabbitmq(self, t, path_nwp, nwp_model, project, variables): x = dict() x_3d = dict() nwps = project['nwp'] p_dates = pd.date_range(t, t + pd.DateOffset(days=3) - pd.DateOffset(hours=1), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_rabbitmq(date, nwp, nwp_prev, nwp_next, project['static_data']['type']) x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_online(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='15min') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date -
pd.DateOffset(hours=1)
pandas.DateOffset
import os import numpy as np import pandas as pd import lightgbm as lgb from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression, RidgeClassifierCV, ElasticNetCV, LassoCV, LassoLarsCV from sklearn.svm import SVC from sklearn.model_selection import cross_val_score from sklearn.metrics import f1_score from scipy.sparse import hstack from HelperFunctions import get_now class_names = ['INFORMATIVE', 'UNINFORMATIVE'] train =
pd.read_table('../data/raw/train.tsv', sep='\t')
pandas.read_table
# -*- coding: utf-8 -*- from __future__ import print_function from distutils.version import LooseVersion from numpy import nan, random import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Timestamp, date_range) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData, _check_mixed_float def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') class TestDataFrameMissingData(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_dropEmptyRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) original = Series(mat, index=self.frame.index, name='foo') expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how='all') # check that original was preserved assert_series_equal(frame['foo'], original) inplace_frame1.dropna(how='all', inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame1['foo'], expected) smaller_frame = frame.dropna(how='all', subset=['foo']) inplace_frame2.dropna(how='all', subset=['foo'], inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame2['foo'], expected) def test_dropIncompleteRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) frame['bar'] = 5 original = Series(mat, index=self.frame.index, name='foo') inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() assert_series_equal(frame['foo'], original) inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=self.frame.index[5:], name='foo')
tm.assert_series_equal(smaller_frame['foo'], exp)
pandas.util.testing.assert_series_equal
import datetime import logging import pandas import sqlobject def get_last_values(currency, frecuency, count=None): """Get last values.""" logging.debug('nb_values: %d', count) result = Bollinger.select( Bollinger.q.currency == currency ).orderBy(Bollinger.q.date_time) if count: result = result[-count:] return result def insert_value(currency, frequency, values): kwargs = {'currency': currency, 'date_time': datetime.datetime.now(), 'frequency': frequency} if values is not None and len(values) >= frequency: mean = pandas.Series(values[-frequency:]).mean().item() std =
pandas.Series(values[-frequency:])
pandas.Series
import warnings import numpy as np def to_dataframe(result): with warnings.catch_warnings(): warnings.simplefilter("ignore") import pandas as pd def collection_to_dataframe(n, x): n = str(n).replace('[', '(').replace(']', ')') df =
pd.DataFrame()
pandas.DataFrame
import unittest import pickle import pathlib import cobra import pandas as pd from BFAIR.mfa.sampling import ( model_rxn_overlap, rxn_coverage, split_lumped_rxns, split_lumped_reverse_rxns, find_reverse_rxns, combine_split_rxns, cobra_add_split_rxns, add_constraints, add_feasible_constraints, find_biomass_reaction, get_min_solution_val, replace_biomass_rxn_name, bound_relaxation, ) current_dir = str(pathlib.Path(__file__).parent.absolute()) class test_methods(unittest.TestCase): maxDiff = None # Create method to compare dataframes def assertDataframeEqual(self, a, b, msg): try: pd.testing.assert_frame_equal(a, b) except AssertionError as e: raise self.failureException(msg) from e # Create method to compare Series def assertSeriesEqual(self, a, b, msg): try: pd.testing.assert_series_equal(a, b) except AssertionError as e: raise self.failureException(msg) from e def setUp(self): file_obj = open( current_dir + "/test_data/MFA_sampling/sampling_test_data.obj", "rb", ) ( fittedFluxes, unconstraint_bounds, biomass_rxn, adj_fittedFluxes, coverage, lumped_rxns, overlap, fittedFluxes_split_temp, lumped_reverse_rxns, reverse_df, fittedFluxes_split, fittedFluxes_split_combined, rxns_to_split, model_preproces_bounds, constrained_bounds, min_val, adj_fittedFluxes, problems, feasible_constrained_bounds, cons_table, relaxed_bounds, ) = pickle.load(file_obj) file_obj.close() self.simulation_info = pd.read_csv( current_dir + "/test_data/MFA_modelInputsData/experimentalMS_data_I.csv" ) self.simulation_id = "WTEColi_113C80_U13C20_01" self.model = cobra.io.load_json_model( current_dir + "/test_data/MFA_modelInputsData/iJO1366.json") self.constrained_model = add_constraints( self.model.copy(), adj_fittedFluxes ) self.fittedFluxes = fittedFluxes self.unconstraint_bounds = unconstraint_bounds self.biomass_rxn = biomass_rxn self.adj_fittedFluxes = adj_fittedFluxes self.coverage = coverage self.lumped_rxns = lumped_rxns self.overlap = overlap self.fittedFluxes_split_temp = fittedFluxes_split_temp self.lumped_reverse_rxns = lumped_reverse_rxns self.reverse_df = reverse_df self.fittedFluxes_split = fittedFluxes_split self.fittedFluxes_split_combined = fittedFluxes_split_combined self.rxns_to_split = rxns_to_split self.model_preproces_bounds = model_preproces_bounds self.constrained_bounds = constrained_bounds self.min_val = min_val self.adj_fittedFluxes = adj_fittedFluxes self.problems = problems self.feasible_constrained_bounds = feasible_constrained_bounds self.cons_table = cons_table self.relaxed_bounds = relaxed_bounds # Add the method to compare dataframes in the class self.addTypeEqualityFunc(pd.DataFrame, self.assertDataframeEqual) self.addTypeEqualityFunc(pd.Series, self.assertSeriesEqual) @staticmethod def get_bounds_df(model): # Helper function to have a way to compare the bounds bounds_temp = {} # Round to 5 decimal places to avoid issues in very low values for cnt, rxn in enumerate(model.reactions): bounds_temp[cnt] = { "rxn_id": rxn.id, "lb": rxn.lower_bound, "ub": rxn.upper_bound, } return pd.DataFrame.from_dict(bounds_temp, "index") def test_model_rxn_overlap(self): overlap = self.overlap overlap_ = model_rxn_overlap(self.adj_fittedFluxes, self.model) self.assertEqual(overlap, overlap_) def test_rxn_coverage(self): coverage_ = rxn_coverage(self.adj_fittedFluxes, self.model) self.assertEqual(self.coverage, coverage_) def test_split_lumped_rxns(self): lumped_rxns = self.lumped_rxns # Check the example notebook for details lumped_ids = [1, 21, 26, 27, 53, 54, 67, 74, 82] mask = [] overlap = model_rxn_overlap(self.adj_fittedFluxes, self.model) for i in overlap.iteritems(): if i[0] in lumped_ids: mask.append(True) else: mask.append(False) lumped_rxns_ = model_rxn_overlap( self.adj_fittedFluxes, self.model)[mask] self.assertEqual(lumped_rxns, lumped_rxns_) fittedFluxes_split_temp_ = split_lumped_rxns( lumped_rxns_, self.adj_fittedFluxes) self.assertEqual( self.fittedFluxes_split_temp, fittedFluxes_split_temp_) def test_split_lumped_reverse_rxns(self): lumped_reverse_rxns = self.lumped_reverse_rxns lumped_reverse_ids = [2, 28, 55, 68] mask_reverse = [] for i in model_rxn_overlap( self.fittedFluxes_split_temp, self.model).iteritems(): if i[0] in lumped_reverse_ids: mask_reverse.append(True) else: mask_reverse.append(False) lumped_reverse_rxns_ = model_rxn_overlap( self.fittedFluxes_split_temp, self.model)[mask_reverse] self.assertEqual(lumped_reverse_rxns, lumped_reverse_rxns_) fittedFluxes_split_ = split_lumped_reverse_rxns( lumped_reverse_rxns_, self.fittedFluxes_split_temp) self.assertEqual(self.fittedFluxes_split, fittedFluxes_split_) def test_find_reverse_rxns(self): reverse_df_ = find_reverse_rxns(self.fittedFluxes_split) self.assertEqual(self.reverse_df, reverse_df_) def test_combine_split_rxns(self): # Check the example notebook for details lumped_ids = [1, 21, 26, 27, 53, 54, 67, 74, 82] mask = [] overlap = model_rxn_overlap(self.adj_fittedFluxes, self.model) for i in overlap.iteritems(): if i[0] in lumped_ids: mask.append(True) else: mask.append(False) lumped_rxns = model_rxn_overlap( self.adj_fittedFluxes, self.model)[mask] fittedFluxes_split_temp = split_lumped_rxns( lumped_rxns, self.adj_fittedFluxes) lumped_reverse_ids = [2, 28, 55, 68] mask_reverse = [] for i in model_rxn_overlap( fittedFluxes_split_temp, self.model).iteritems(): if i[0] in lumped_reverse_ids: mask_reverse.append(True) else: mask_reverse.append(False) lumped_reverse_rxns = model_rxn_overlap( fittedFluxes_split_temp, self.model)[mask_reverse] fittedFluxes_split_ = split_lumped_reverse_rxns( lumped_reverse_rxns, fittedFluxes_split_temp) fittedFluxes_split_combined_, rxns_to_split_ = combine_split_rxns( fittedFluxes_split_) self.assertEqual(self.fittedFluxes_split_combined, fittedFluxes_split_combined_) self.assertEqual(self.rxns_to_split, rxns_to_split_) def test_cobra_add_split_rxns(self): model_split = self.model.copy() cobra_add_split_rxns(self.rxns_to_split, model_split) model_preproces_bounds_ = self.get_bounds_df(model_split) self.assertEqual(self.model_preproces_bounds, model_preproces_bounds_) def test_add_constraints(self): unconstraint_bounds = self.unconstraint_bounds constrained_bounds = self.constrained_bounds constrained_model = add_constraints( self.model.copy(), self.adj_fittedFluxes, ) constrained_bounds_ = self.get_bounds_df(constrained_model) self.assertFalse(unconstraint_bounds.equals(constrained_bounds_)) self.assertEqual(constrained_bounds, constrained_bounds_) def test_find_biomass_reaction(self): biomass_reaction_ids = find_biomass_reaction( self.constrained_model, biomass_string=["Biomass", "BIOMASS", "biomass"], ) # This one basically just checks if there is an output self.assertIsInstance(biomass_reaction_ids, list) # This one makes sure that the output list contains a reaction name self.assertIsInstance(biomass_reaction_ids[0], str) def test_get_min_solution_val(self): # Find in fittedFluxes fittedFluxes = self.fittedFluxes min_val = self.min_val min_val_ = get_min_solution_val( fittedFluxes, biomass_string="Biomass" ) self.assertEqual(min_val, min_val_) # Do not find in fake example (=0) fauxfittedFluxes = self.fittedFluxes fauxfittedFluxes.at[11, "rxn_id"] = "Removed_ID" no_BM_val = get_min_solution_val( fauxfittedFluxes, biomass_string="Biomass" ) self.assertEqual(no_BM_val, 0) def test_replace_biomass_rxn_name(self): # Replace in fittedFluxes adj_fittedFluxes = self.adj_fittedFluxes adj_fittedFluxes_ = replace_biomass_rxn_name( self.fittedFluxes, biomass_rxn_name="BIOMASS_Ec_iJO1366_core_53p95M", biomass_string="Biomass", ) self.assertEqual(adj_fittedFluxes, adj_fittedFluxes_) # Replace in a fake sample test_df =
pd.DataFrame({"rxn_id": "Biomass"}, index=[0])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # SW 1700 # In[2]: import numpy as np import os #import ipdb def connect_dataset(file_list, icond_file_list, outputdir, topodx=15, roi=2500, offset=5000,gclass_num=5,test_data_num=500): """ 複数のデータセットを連結する """ #ipdb.set_trace() #Reading and combining files Decide start and end points of the learning area and convert them to grid numbers H = np.loadtxt(file_list[0], delimiter = ',') icond = np.loadtxt(icond_file_list[0], delimiter = ',') #Reading and combining files if len(file_list) > 1: for i in range(1, len(file_list)): H_temp = np.loadtxt(file_list[i], delimiter = ',') icond_temp = np.loadtxt(icond_file_list[i], delimiter = ',') H = np.concatenate((H,H_temp),axis=0) icond = np.concatenate((icond,icond_temp),axis = 0) roi_grids = int(roi / topodx) num_grids = int(H.shape[1] / gclass_num) H_subset = np.zeros([H.shape[0], roi_grids * gclass_num]) for i in range(gclass_num): H_subset[:, i*roi_grids:(i+1)*roi_grids] = H[:, i*num_grids:(i*num_grids+roi_grids)] #Obtain the maximum and minimum values of data max_x = np.max(H_subset) min_x = np.min(H_subset) icond_max = np.max(icond, axis=0) icond_min = np.min(icond, axis=0) #Split the data into tests and training H_train = H_subset[0:-test_data_num,:] H_test = H_subset[H_subset.shape[0] - test_data_num:,:] icond_train = icond[0:-test_data_num,:] icond_test = icond[H.shape[0] - test_data_num:,:] #Save the data if not os.path.exists(outputdir): os.mkdir(outputdir) np.savetxt(outputdir + '/x_train.txt',H_train,delimiter = ',') np.savetxt(outputdir + '/x_test.txt',H_test,delimiter = ',') np.savetxt(outputdir + '/icond_train.txt',icond_train,delimiter = ',') np.savetxt(outputdir + '/icond_test.txt',icond_test,delimiter = ',') np.savetxt(outputdir + '/icond_min.txt',icond_min,delimiter = ',') np.savetxt(outputdir + '/icond_max.txt',icond_max,delimiter = ',') np.savetxt(outputdir + '/x_minmax.txt',[min_x, max_x],delimiter = ',') if __name__=="__main__": original_data_dir = "/home/rimali2009/Journal_2" parent_dir = "/home/rimali2009/Journal_2" if not os.path.exists(parent_dir): os.mkdir(parent_dir) outputdir = parent_dir + "/data_g6_j2_roi1700_thai" file_list = ['/home/rimali2009/Journal_2/eta_5000_g6_300grid_thai_g5.csv'] initial_conditions = ['/home/rimali2009/Journal_2/start_param_random_5000_thai_g5.csv'] connect_dataset(file_list, initial_conditions, outputdir, test_data_num=500, gclass_num=5, topodx=15., roi=1700) # In[3]: # -*- coding: utf-8 -*- """ Created on Tue Mar 7 15:43:18 2017 @author: hanar """ import time import numpy as np import os from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.optimizers import SGD from keras.optimizers import RMSprop from keras.optimizers import Adagrad from keras.optimizers import Adadelta from keras.optimizers import Adam from keras.optimizers import Adamax from keras.optimizers import Nadam from keras.callbacks import ModelCheckpoint from keras.callbacks import EarlyStopping from keras.callbacks import TensorBoard from keras.models import load_model #from keras.utils.visualize_util import plot import matplotlib.pyplot as plt import keras.callbacks import keras.backend.tensorflow_backend as KTF import tensorflow as tf #Global variables for normalizing parameters max_x = 1.0 min_x = 0.0 max_y = 1.0 min_y = 0.0 def deep_learning_tsunami(resdir, X_train_raw, y_train_raw, X_test_raw, y_test_raw, _lr=0.02, _decay=0, _validation_split=0.2, _batch_size=32, _momentum=0.9, _nesterov=True, num_layers=4, dropout=0.5, node_num = 2500, _epochs=2000): """ Creating the inversion model of turbidity currents by deep learning """ #Normalizing dataset X_train = get_normalized_data(X_train_raw, min_x, max_x) X_test = get_normalized_data(X_test_raw, min_x, max_x) y_train = get_normalized_data(y_train_raw, min_y, max_y) y_test = get_normalized_data(y_test_raw, min_y, max_y) #Generation of neural network model model = Sequential() model.add(Dense(node_num, input_dim=X_train.shape[1], activation='relu', kernel_initializer ='glorot_uniform'))#1st layer model.add(Dropout(dropout)) for i in range(num_layers - 2): model.add(Dense(node_num, activation='relu', kernel_initializer ='glorot_uniform'))#2nd layer model.add(Dropout(dropout)) model.add(Dense(y_train.shape[1], activation = 'relu', kernel_initializer ='glorot_uniform')) #last layer #Compiling the model model.compile(loss="mean_squared_error", optimizer=SGD(lr=_lr, decay=_decay, momentum=_momentum, nesterov=_nesterov), #optimizer=Adadelta(), metrics=["mean_squared_error"]) #Perform learning t = time.time() check = ModelCheckpoint("model3.hdf5") #es_cb = EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto') #tb_cb = TensorBoard(log_dir=resdir, histogram_freq=2, write_graph=True, write_images=True) history = model.fit(X_train, y_train, epochs=_epochs, validation_split=_validation_split, batch_size=_batch_size, callbacks=[check]) #Evaluate learning result loss_and_metrics = model.evaluate(X_test,y_test) print("\nloss:{} mse:{}".format(loss_and_metrics[0],loss_and_metrics[1])) print("Elapsed time: {:.1f} sec.".format(time.time()-t)) #Visualize learning result #plot(model, to_file="model.png", show_shapes=True, show_layer_names=True) # model The state of change when letting you learnplot plot_history(history) return model, history def apply_model(model, X, min_x, max_x, min_y, max_y): """ Apply model Maximum and minimum values ​​of X and Y are required to normalize """ X_norm = (X - min_x) / (max_x - min_x) Y_norm = model.predict(X_norm) Y = Y_norm*(max_y - min_y)+min_y return Y def plot_history(history): # Plot accuracy history plt.plot(history.history['mean_squared_error'],"o-",label="mse") plt.plot(history.history['val_mean_squared_error'],"o-",label="val mse") plt.title('model mse') plt.xlabel('epoch') plt.ylabel('mse') plt.legend(loc="upper right") plt.show() # # 損失の履歴をプロット # plt.plot(history.history['loss'],"o-",label="loss",) # plt.plot(history.history['val_loss'],"o-",label="val_loss") # plt.title('model loss') # plt.xlabel('epoch') # plt.ylabel('loss') # plt.legend(loc='upper right') # plt.show() def test_model(model, x_test): #Test the results x_test_norm = get_normalized_data(x_test, min_x, max_x) test_result_norm = model.predict(x_test_norm) test_result = get_raw_data(test_result_norm, min_y, max_y) return test_result def save_result(savedir, model, history, test_result): np.savetxt(savedir + 'test_result.txt',test_result,delimiter=',') np.savetxt(savedir+'loss.txt',history.history.get('loss'),delimiter=',') np.savetxt(savedir+'val_loss.txt',history.history.get('val_loss'),delimiter=',') #Serialize model and save print('save the model') model.save(savedir + 'model3.hdf5') def load_data(datadir): """ This function load training and test data sets, and returns variables """ global min_x, max_x, min_y, max_y x_train = np.loadtxt(datadir + 'x_train.txt',delimiter=',') x_test = np.loadtxt(datadir + 'x_test.txt',delimiter=',') y_train = np.loadtxt(datadir + 'icond_train.txt',delimiter=',') y_test = np.loadtxt(datadir + 'icond_test.txt',delimiter=',') min_y = np.loadtxt(datadir + 'icond_min.txt',delimiter=',') max_y = np.loadtxt(datadir + 'icond_max.txt',delimiter=',') [min_x, max_x] = np.loadtxt(datadir + 'x_minmax.txt',delimiter=',') return x_train, y_train, x_test, y_test def set_minmax_data(_min_x, _max_x, _min_y, _max_y): global min_x, max_x, min_y, max_y min_x, max_x, min_y, max_y = _min_x, _max_x, _min_y, _max_y return def get_normalized_data(x, min_val, max_val): """ Normalizing the training and test dataset """ x_norm = (x - min_val) / (max_val - min_val) return x_norm def get_raw_data(x_norm, min_val, max_val): """ Get raw data from the normalized dataset """ x = x_norm * (max_val - min_val) + min_val return x if __name__ == "__main__": #Reading data datadir = '/home/rimali2009/Journal_2/data_g6_j2_roi1700_thai/' resdir = '/home/rimali2009/Journal_2/result_g6_j2_roi1700_thai/' if not os.path.exists(resdir): os.mkdir(resdir) x_train, y_train, x_test, y_test = load_data(datadir) #Execution of learning testcases = [5000] for i in range(len(testcases)): resdir_case = resdir + '{}/'.format(testcases[i]) if not os.path.exists(resdir_case): os.mkdir(resdir_case) x_train_sub = x_train[0:testcases[i],:] y_train_sub = y_train[0:testcases[i],:] model, history = deep_learning_tsunami(resdir_case, x_train_sub, y_train_sub, x_test, y_test, num_layers=5) #Verify and save results result = test_model(model, x_test) save_result(resdir_case,model,history,result) # In[1]: import numpy as np import matplotlib.pyplot as plt import ipdb get_ipython().run_line_magic('matplotlib', 'inline') datadir = '/home/rimali2009/Journal_2/data_g6_j2_roi1700_thai/' resdir = '/home/rimali2009/Journal_2/result_g6_j2_roi1700_thai/5000/' test_result = np.loadtxt(resdir + 'test_result.txt',delimiter=',') icond = np.loadtxt(datadir + 'icond_test.txt',delimiter=',') print(icond.shape) loss = np.loadtxt(resdir+'loss.txt',delimiter=',') epoch = range(0,2000) vloss = np.loadtxt(resdir+'val_loss.txt',delimiter=',') resi = test_result - icond fig = plt.figure(num=None,dpi=250, facecolor='w', edgecolor='k') plt.plot(epoch, loss, 'bo',label='Loss') plt.plot(epoch, vloss, 'yo',label='Validation') plt.xlabel('Epoch') plt.ylabel('Mean Squared Error') plt.legend(loc="upper right") plt.savefig(resdir+ 'mse.pdf') plt.show() fig2 = plt.figure() hfont = {'fontname':'Century Gothic'} textcol = 'k' titlelabel = ['Max Inundation Length','Flow Velocity', 'Max. Flow Depth', '$C_1$', '$C_2$', '$C_3$', '$C_4$','$C_5$'] xymin=[1700,2.0,1.5,0.0001,0.0001,0.0001,0.0001,0.0001] xymax=[4500,10.0,12.0,0.02,0.02,0.02,0.02,0.02] xstep=[500,1.5,1.5,0.005,0.005,0.005,0.005,0.005] stepmin=[1700,1.0,2.0,0.000,0.0000,0.0000,0.0000,0.0000] stepmax=[4550,10.5,13.0,0.025,0.025,0.025,0.025,0.025] for i in range(len(titlelabel)): plt.figure(num=None,dpi=250, facecolor='w', edgecolor='k') plt.plot(icond[:,i],test_result[:,i],"o",markersize = 2.5) x=icond[:,i] y=test_result[:,i] max_value = np.max([x, y]) min_value = np.min([x, y]) y_lim = plt.ylim([min_value * 0.8, max_value * 1.1]) x_lim = plt.xlim([min_value * 0.8, max_value * 1.1]) plt.plot(x_lim, y_lim, 'k-', color = 'k') #plt.plot([xymin[i],xymax[i]],[xymin[i],xymax[i]],"-",color = 'k') plt.axes().set_aspect('equal') #plt.ylim(xymin[i],xymax[i]) #plt.xlim(xymin[i],xymax[i]) plt.xticks(np.arange(stepmin[i],stepmax[i], step=xstep[i])) plt.yticks(np.arange(stepmin[i],stepmax[i], step=xstep[i])) plt.xlabel('Original Value',color=textcol,size=14,**hfont) plt.ylabel('Estimated Value',color=textcol,size=14,**hfont) plt.title(titlelabel[i],color=textcol,size=14,**hfont) plt.tick_params(labelsize=14,colors=textcol) plt.savefig(resdir+titlelabel[i] + '.eps') plt.savefig(resdir+titlelabel[i] + '.pdf') #plt.show() for i in range(len(titlelabel)): plt.figure(num=None,dpi=250, facecolor='w', edgecolor='k') plt.hist(resi[:,i],bins=20) plt.title(titlelabel[i],color=textcol,size=14,**hfont) plt.xlabel('Deviation from true value',color=textcol,size=14,**hfont) plt.ylabel('Frequency',color=textcol,size=14,**hfont) plt.tick_params(labelsize=14,colors=textcol) plt.savefig(resdir+titlelabel[i] + 'hist' + '.eps') plt.savefig(resdir+titlelabel[i] + 'hist' + '.pdf') plt.show() # In[2]: from scipy.stats import variation import numpy as np import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') datadir = '/home/rimali2009/Journal_2/data_g6_j2_roi1700_thai/' resdir = '/home/rimali2009/Journal_2/result_g6_j2_roi1700_thai/5000/' test_result = np.loadtxt(resdir + 'test_result.txt',delimiter=',') icond = np.loadtxt(datadir + 'icond_test.txt',delimiter=',') print(icond.shape) resi = test_result - icond titlelabel = ['Max Inundation Length','Flow Velocity', 'Max. Flow Depth', 'C_1', 'C_2', 'C_3', 'C_4','C_5'] for i in range(len(titlelabel)): plt.figure(num=None,dpi=250, facecolor='w', edgecolor='k') plt.hist(resi[:,i],bins=20) print('Standard Deviation:', np.std(resi[:,i])) print('Standard Deviation sample:', np.std(resi[:,i],ddof=1)) print('Mean:', np.mean(resi[:,i])) print('CV:', np.std(resi[:,i],ddof=1)/np.mean(resi[:,i])) plt.title(titlelabel[i],color=textcol,size=14,**hfont) plt.xlabel('Deviation from true value',color=textcol,size=14,**hfont) plt.ylabel('Frequency',color=textcol,size=14,**hfont) plt.tick_params(labelsize=14,colors=textcol) plt.savefig(resdir+titlelabel[i] + 'hist' + '.eps') plt.savefig(resdir+titlelabel[i] + 'hist' + '.pdf') plt.show() # In[3]: import numpy as np get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt from tensorflow.keras.models import load_model from scipy import stats from scipy.interpolate import interp1d import pandas as pd from pykrige import OrdinaryKriging as OK import ipdb from scipy import stats #import ipdb #ipdb.set_trace() datadir = '/home/rimali2009/Journal_2/data_g6_j2_roi1700_thai/' resdir = '/home/rimali2009/Journal_2/result_g6_j2_roi1700_thai/5000/' #Initial setting if not "model" in locals(): model = load_model(resdir+'model3.hdf5') # Load test datasets X_test = np.loadtxt(datadir + 'x_test.txt',delimiter=',') y_test = np.loadtxt(datadir + 'icond_test.txt',delimiter=',') # Normalize the test datasets min_x, max_x = np.loadtxt(datadir + 'x_minmax.txt',delimiter=',') X_test_norm = (X_test - min_x) / (max_x - min_x) #gclass = 3 #gclass_label = ["500 $\mu$m","125 $\mu$m","63 $\mu$m"] gclass = 5 #gclass_label = ["615 ${\mu}m$","406 ${\mu}m$","268 ${\mu}m$","177 ${\mu}m$", "117 ${\mu}m$","77 ${\mu}m$"] gclass_label = ["659 ${\mu}m$","329 ${\mu}m$","164 ${\mu}m$","82 ${\mu}m$","41 ${\mu}m$"] topodx = 15.0 coord_num = int(model.layers[0].input_shape[1]/gclass) #Acquires a value for normalizing input data to [0, 1] y_min = np.loadtxt(datadir + 'icond_min.txt',delimiter=',') y_max = np.loadtxt(datadir + 'icond_max.txt',delimiter=',') # Load outcrop data outcrop = pd.read_csv('../Journal_2/Thai_gs5.csv') outcrop = outcrop.sort_values('distance') outcrop['distance'] = outcrop['distance'] - 0 outcrop_num = len(outcrop['distance']) print(outcrop) #Preparation under interpolation thick_interp_at_outcrop = np.zeros([X_test.shape[0],outcrop_num*gclass]) thick_interp = np.zeros([X_test.shape[0],coord_num*gclass])#Interpolated sample thickness data outcrop_x_id = np.round(outcrop['distance']/topodx).astype(np.int32) #Index number of sampling point in inverse analysis system x = np.arange(0,coord_num*topodx,topodx) # Interpolation of test datasets at the outcrop locations for i in range(X_test.shape[0]): for j in range(gclass): #f = interp1d(x,np.log10(X_test_norm[i,j * coord_num : (j+1) * coord_num]), kind="cubic",bounds_error=False,fill_value='extrapolate') f= interp1d(x,X_test_norm[i,j * coord_num : (j+1) * coord_num], kind="cubic",bounds_error=False,fill_value='extrapolate') thick_interp_at_outcrop[i,outcrop_num*j:outcrop_num*(j+1)] = f(outcrop['distance']) #Supplemented data # Interpolation of test datasets at the grids of the forward model for j in range(gclass): #f = interp1d(outcrop['distance'],np.log10(thick_interp_at_outcrop[i,j * outcrop_num : (j+1) * outcrop_num]), kind="cubic",bounds_error=False,fill_value='extrapolate') f = interp1d(outcrop['distance'],thick_interp_at_outcrop[i,j * outcrop_num : (j+1) * outcrop_num], kind="cubic",bounds_error=False,fill_value='extrapolate') thick_interp[i,coord_num*j:coord_num*(j+1)] = f(x) #Supplemented data #ipdb.set_trace() #Kriging Interpolation by #vparams = np.array([[0.035, 10000., 0.001],[0.006, 10000., 0.002],[0.005, 10000., 0.002],[0.035, 10000., 0.001]]) #for j in range(gclass): #okip = OK(outcrop['distance'],np.zeros(outcrop['distance'].shape),outcrop.iloc[:,j+1],variogram_model='linear',) #okip.display_variogram_model() #ipdata, ipstd = okip.execute('grid',x,np.array([0.])) #ipdata = np.squeeze(ipdata) #thick_interp[0,coord_num*j:coord_num*(j+1)] = ipdata #Assign complemented d #Normalize data thick_interp[thick_interp < 0] = 0 #Perform inverse analysis test_result_outcrop = model.predict(thick_interp) test_result_outcrop = test_result_outcrop * (y_max - y_min) + y_min print(test_result_outcrop) np.savetxt('outcrop_location_interp.txt',test_result_outcrop, delimiter=',') test_result=np.loadtxt('outcrop_location_interp.txt', delimiter=',') test_result_normal = np.loadtxt(resdir + 'test_result.txt',delimiter=',') resi=test_result-y_test titlelabel = ['Max Inundation Length','Flow Velocity', 'Max. Flow Depth', 'C_1', 'C_2', 'C_3', 'C_4','C_5'] hfont = {'fontname':'Century Gothic'} textcol = 'k' xymin=[1700,2.0,1.5,0.0001,0.0001,0.0001,0.0001,0.0001] xymax=[4500,10.0,12.0,0.02,0.02,0.02,0.02,0.02] xstep=[500,1.5,1.5,0.005,0.005,0.005,0.005,0.005] stepmin=[2500,1.0,2.0,0.000,0.0000,0.0000,0.0000,0.0000] stepmax=[4550,10.5,13.0,0.025,0.025,0.025,0.025,0.025] # Plot curve fitting for i in range(len(gclass_label)): plt.plot(x,thick_interp[0,coord_num * i:coord_num * (i+1)], label='estimated') for j in range(gclass): plt.plot(x,X_test_norm[0,j * coord_num : (j+1) * coord_num],'o',label='test') #plt.plot(outcrop['distance'], thick_interp_at_outcrop[0,outcrop_num*j:outcrop_num*(j+1)],'o',label='test') plt.plot() plt.legend() for i in range(len(titlelabel)): plt.figure(num=None,dpi=250, facecolor='w', edgecolor='k') plt.plot(y_test[:,i],test_result[:,i],"o", markersize=4.5) plt.plot(y_test[:,i],test_result_normal[:,i],"*",label='estimate',markersize=3.5) x=y_test[:,i] y=test_result_normal[:,i] max_value = np.max([x, y]) min_value = np.min([x, y]) y_lim = plt.ylim([min_value * 0.8, max_value * 1.1]) x_lim = plt.xlim([min_value * 0.8, max_value * 1.1]) plt.plot(x_lim, y_lim, 'k-', color = 'k') plt.title(titlelabel[i],color=textcol,size=14,**hfont) plt.xlabel('True values',color=textcol,size=14,**hfont) plt.ylabel('Estimated values',color=textcol,size=14,**hfont) plt.legend() plt.axes().set_aspect('equal') plt.xticks(np.arange(stepmin[i],stepmax[i], step=xstep[i])) plt.yticks(np.arange(stepmin[i],stepmax[i], step=xstep[i])) #plt.plot(x_lim, y_lim, color = 'k') plt.tick_params(labelsize=14,colors='k') plt.savefig(resdir+titlelabel[i] + 'outcrop_location' + '.pdf') plt.show() for i in range(len(titlelabel)): plt.figure(num=None,dpi=250, facecolor='w', edgecolor='k') plt.hist(resi[:,i],bins=20) print('Standard Deviation sample:', np.std(resi[:,i],ddof=1)) print('Mean:', np.mean(resi[:,i])) print('mode',stats.mode(resi[:,i])) print('m',np.median(resi[:,i])) plt.title(titlelabel[i],color=textcol,size=14,**hfont) plt.xlabel('Deviation from true value',color=textcol,size=14,**hfont) plt.ylabel('Frequency',color=textcol,size=14,**hfont) plt.tick_params(labelsize=14,colors=textcol) plt.savefig(resdir+titlelabel[i] + 'hist_outcrop_location' + '.eps') plt.savefig(resdir+titlelabel[i] + 'hist_outcrop_location' + '.pdf') plt.show() # In[1]: import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import load_model from scipy import stats from scipy.interpolate import interp1d import pandas as pd from pykrige import OrdinaryKriging as OK import ipdb datadir = '/home/rimali2009/Journal_2/data_g6_j2_roi1700_thai/' resdir = '/home/rimali2009/Journal_2/result_g6_j2_roi1700_thai/5000/' #Initial setting if not "model" in locals(): model = load_model(resdir+'model3.hdf5') gclass = 5 gclass_label = ["659 ${\mu}m$","329 ${\mu}m$","164 ${\mu}m$", "82 ${\mu}m$","41 ${\mu}m$"] topodx = 15.0 coord_num = int(model.layers[0].input_shape[1]/gclass) #Acquires a value for normalizing input data to [0, 1] min_x, max_x = np.loadtxt(datadir + 'x_minmax.txt',delimiter=',') y_min = np.loadtxt(datadir + 'icond_min.txt',delimiter=',') y_max = np.loadtxt(datadir + 'icond_max.txt',delimiter=',') #Read outcrop data #dist_max = 21700. #Distance of distal end of learning data outcrop =
pd.read_csv('../Journal_2/Thai_gs5.csv')
pandas.read_csv
import sys import pandas as pd import numpy as np import json from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' This function load the datasets messages and categories and merge based on id column. Params: messages_filepath (str): String that contain the path to messages file categories_filepath (str): String that contain the path to categories file Returns: df (pandas DataFrame): DataFrame with columns: id,message,original,genre,categories row: A single messages columns: id-->Id for each message messages--> Text of message categories --> A single column containing the categories marks for the message ''' messages = pd.read_csv(messages_filepath) categories =
pd.read_csv(categories_filepath)
pandas.read_csv
import sys import csv import pandas as pd import ctdcal.sbe_reader as sbe_rd import ctdcal.sbe_equations_dict as sbe_eq import gsw DEBUG = False #lookup table for sensor data ###DOUBLE CHECK TYPE IS CORRECT### short_lookup = { '55':{'short_name': 'CTDTMP', 'long_name':'SBE 3+ Temperature', 'units': 'ITS-90', 'type': 'float64'}, '45':{'short_name': 'CTDPRS', 'long_name':'SBE 9+ Pressure', 'units': 'DBAR', 'type': 'float64'}, '3':{'short_name': 'CTDCOND', 'long_name':'SBE 4 Conductivity', 'units': 'MSPCM', 'type':'float64'}, '38':{'short_name': 'CTDOXY', 'long_name':'SBE 43 Oxygen', 'units': 'MLPL', 'type':'float64'}, #'38':{'short_name': 'CTDOXYVOLTS', 'long_name':'SBE 43 Oxygen Volts', 'units': '0-5VDC', 'type':'float64'}, '11':{'short_name': 'FLUOR', 'long_name':'Seapoint Fluorometer', 'units': '0-5VDC', 'type':'float64'}, '27':{'short_name': 'FREE', 'long_name':'empty', 'units':'NA', 'type':'NA'}, '0':{'short_name': 'ALT', 'long_name':'Altitude', 'units':'M', 'type':'float64'}, '71':{'short_name': 'CTDXMISS', 'long_name':'CStar', 'units': '0-5VDC', 'type':'float64'}, '61':{'short_name': 'U_DEF', 'long_name':'user defined', 'units':'0-5VDC', 'type':'float64'}, '1000':{'short_name': 'CTDSAL', 'long_name':'Salinity (C1 T1)', 'units':'PSU', 'type':'float64'}, '20':{'short_name': 'CTDFLUOR', 'long_name':'WetlabECO_AFL_FL_Sensor', 'units':'0-5VDC', 'type':'float64'}, #check short_name later '42':{'short_name':'PAR', 'long_name':'PAR/Irradiance, Biospherical/Licor', 'units':'0-5VDC', 'type':'float64'}, '51':{'short_name':'REF_PAR', 'long_name':'Surface PAR/Irradiance, Biospherical/Licor', 'units':'0-5VDC', 'type':'float64'}, '70':{'short_name': 'CTDBACKSCATTER', 'long_name': 'WetlabECO_BB_Sensor', 'units':'0-5VDC', 'type':'float64'} } def debugPrint(*args, **kwargs): if DEBUG: errPrint(*args, **kwargs) def errPrint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def convertFromFiles(hex_file, xmlcon_file, debug=False): """Handler to convert engineering data to sci units automatically. Takes the full path and filename of the .hex and .XMLCON as arguments. Optionally takes a boolean debug flag to specify whether or not to display verbose messages to stderr """ global DEBUG DEBUG = debug sbeReader = sbe_rd.SBEReader.from_paths(hex_file, xmlcon_file) return convertFromSBEReader(sbeReader, DEBUG) def convertFromSBEReader(sbeReader, debug=False): """Handler to convert engineering data to sci units automatically. Takes SBEReader object that is already connected to the .hex and .XMLCON files. Optionally takes a boolean debug flag to specify whether or not to display verbose messages to stderr """ global DEBUG DEBUG = debug # Retrieve parsed scans rawData = sbeReader.parsed_scans # Convert raw data to dataframe raw_df = pd.DataFrame(rawData) raw_df.index.name = 'index' raw_df = raw_df.apply(pd.to_numeric, errors="ignore") #debugPrint("Raw Data Types:", raw_df.dtypes) #debugPrint("Raw Data:", raw_df.head) # Retrieve Config data rawConfig = sbeReader.parsed_config() # The meta data field needs to be processed seperately and then joined with the converted_df debugPrint("Building meta data dataframe... ", end='') metaArray = [line.split(',') for line in sbeReader._parse_scans_meta().tolist()] metaArrayheaders = sbeReader._breakdown_header() meta_df = pd.DataFrame(metaArray) #print(meta_df) #print(metaArrayheaders[0]) meta_df.columns = metaArrayheaders[0] meta_df.index.name = 'index' for i, x in enumerate(metaArrayheaders[0]): #debugPrint('Set', metaArrayheaders[0][i], 'to', metaArrayheaders[1][i]) if not metaArrayheaders[1][i] == 'bool_': meta_df[metaArrayheaders[0][i]] = meta_df[metaArrayheaders[0][i]].astype(metaArrayheaders[1][i]) else: meta_df[metaArrayheaders[0][i]] = meta_df[metaArrayheaders[0][i]].str.match('True', na=False) #debugPrint(meta_df[metaArrayheaders[0][i]].head()) debugPrint('Success!') pressure_temp = meta_df['pressure_temp_int'].tolist() #needs to search sensor dictionary, and compute in order: #temp, pressure, cond, salinity, oxygen, all aux. #run one loop that builds a queue to determine order of processing, must track which column to pull #process queue, store results in seperate arrays for reuse later #once queue is empty, attach results together according to format order or xmlcon order - structure to keep track queue_metadata = [] results = {} temp_counter = 0 cond_counter = 0 oxygen_counter = 0 u_def_counter = 0 empty_counter = 0 processed_data = [] #Temporary arrays to hold sci_data in order to compute following sci_data (pressure, cond, temp, etc) t_array = [] p_array = [] c_array = [] k_array = [] ###### # The following are definitions for every key in the dict below: # # sensor_id = number assigned by SBE for identification in XML # list_id = place in XML array by SBE for determining which sensor is which, alternatively channel number (freq+volt) # channel_pos = is it the first, second, third, etc sensor of its type in the data file, aux sensors default to 0 # ranking = data processing ranking - temp first, then pressure, then conductivity, then oxygen, then aux # column = column in the raw_df containing the engineering units to be converted to sci units # sensor_info = xml sensor info to convert from eng units to sci units ###### for i, x in enumerate(rawConfig['Sensors']): sensor_id = rawConfig['Sensors'][i]['SensorID'] #temp block if sensor_id == '55': temp_counter += 1 queue_metadata.append({'sensor_id': '55', 'list_id': i, 'channel_pos': temp_counter, 'ranking': 1, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #cond block elif str(sensor_id) == '3': cond_counter += 1 queue_metadata.append({'sensor_id': '3', 'list_id': i, 'channel_pos': cond_counter, 'ranking': 3, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #pressure block elif str(sensor_id) == '45': queue_metadata.append({'sensor_id': '45', 'list_id': i, 'channel_pos': '', 'ranking': 2, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #oxygen block elif str(sensor_id) == '38': oxygen_counter += 1 queue_metadata.append({'sensor_id': '38', 'list_id': i, 'channel_pos': oxygen_counter, 'ranking': 5, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #empty block elif str(sensor_id) == '27': empty_counter += 1 queue_metadata.append({'sensor_id': '27', 'list_id': i, 'channel_pos': empty_counter, 'ranking': 6, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #u_def block elif str(sensor_id) == '61': u_def_counter += 1 queue_metadata.append({'sensor_id': '61', 'list_id': i, 'channel_pos': u_def_counter, 'ranking': 6, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #aux block else: queue_metadata.append({'sensor_id': sensor_id, 'list_id': i, 'channel_pos': '', 'ranking': 7, 'column': i, 'sensor_info':rawConfig['Sensors'][i]}) #a temporary block in order to append basic salinity (t1, c1) to file. If additional salinity is needed (different combinations), it'll need a full reworking queue_metadata.append({'sensor_id': '1000', 'list_id': 1000, 'channel_pos':'', 'ranking': 4, 'column': '', 'sensor_info':''}) #queue sorting forces it to be in order, so we don't worry about order here #assumes first channel for each sensor is primary for computing following data, rework to accept file to determine which is primary queue_metadata = sorted(queue_metadata, key = lambda sensor: sensor['ranking']) #debugPrint("Queue Metadata:", json.dumps(queue_metadata, indent = 2)) #empty converted dataframs converted_df = pd.DataFrame() for temp_meta in queue_metadata: column_name = '{0}{1}'.format(short_lookup[temp_meta['sensor_id']]['short_name'], temp_meta['channel_pos']) ###Temperature block if temp_meta['sensor_id'] == '55': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = sbe_eq.temp_its90_dict(temp_meta['sensor_info'], raw_df[temp_meta['column']]) if temp_meta['list_id'] == 0: t_array = converted_df[column_name].astype(type('float', (float,), {})) k_array = [273.15+celcius for celcius in t_array] debugPrint('\tPrimary temperature first reading:', t_array[0], short_lookup[temp_meta['sensor_id']]['units']) #processed_data.append(temp_meta) ### Pressure block elif temp_meta['sensor_id'] == '45': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = sbe_eq.pressure_dict(temp_meta['sensor_info'], raw_df[temp_meta['column']], pressure_temp) if temp_meta['list_id'] == 2: p_array = converted_df[column_name].astype(type('float', (float,), {})) debugPrint('\tPressure first reading:', p_array[0], short_lookup[temp_meta['sensor_id']]['units']) #processed_data.append(temp_meta) ### Conductivity block elif temp_meta['sensor_id'] == '3': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = sbe_eq.cond_dict(temp_meta['sensor_info'], raw_df[temp_meta['column']], t_array, p_array) if temp_meta['list_id'] == 1: c_array = converted_df[column_name].astype(type('float', (float,), {})) debugPrint('\tPrimary cond first reading:', c_array[0], short_lookup[temp_meta['sensor_id']]['units']) #processed_data.append(temp_meta) ### Oxygen block elif temp_meta['sensor_id'] == '38': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = sbe_eq.oxy_dict(temp_meta['sensor_info'], p_array, k_array, t_array, c_array, raw_df[temp_meta['column']]) converted_df['CTDOXYVOLTS'] = raw_df[temp_meta['column']] #processed_data.append(temp_meta) ### Fluorometer Seapoint block elif temp_meta['sensor_id'] == '11': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = sbe_eq.fluoro_seapoint_dict(temp_meta['sensor_info'], raw_df[temp_meta['column']]) #processed_data.append(temp_meta) ###Salinity block elif temp_meta['sensor_id'] == '1000': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = gsw.SP_from_C(c_array, t_array, p_array) #processed_data.append(temp_meta) ###Altimeter block elif temp_meta['sensor_id'] == '0': debugPrint('Processing Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = sbe_eq.altimeter_voltage(temp_meta['sensor_info'], raw_df[temp_meta['column']]) ### Aux block else: debugPrint('Passing along Sensor ID:', temp_meta['sensor_id'] + ',', short_lookup[temp_meta['sensor_id']]['long_name']) converted_df[column_name] = raw_df[temp_meta['column']] #processed_data.append(temp_meta) # Set the column name for the index converted_df.index.name = 'index' debugPrint("Joining meta data dataframe with converted data... ", end='') converted_df = converted_df.join(meta_df) debugPrint('Success!') # return the converted data as a dataframe return converted_df def importConvertedFile(file_name, debug=False): """Handler to import converted data from a csv-formatted file created by run.py """ try: output_df = pd.read_pickle(file_name) except FileNotFoundError: global DEBUG DEBUG = debug debugPrint("Importing data from:", file_name + '... ', end='') output_df =
pd.read_csv(file_name, index_col=0, skiprows=[1], parse_dates=False)
pandas.read_csv
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import check_empty_nwp from Fuzzy_clustering.version2.dataset_manager.common_utils import rescale_mean from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_2d_dense from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d class DatasetCreatorDense: def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False, dates=None): self.projects = projects self.is_for_test = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = njobs self.variables = data_variables self.logger = create_logger(logger_name=__name__, abs_path=self.path_nwp, logger_path=f'log_{self.projects_group}.log', write_type='a') if not self.data is None: self.dates = self.check_dates() elif not dates is None: self.dates = dates def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates are checked. Number of time samples is %s', str(len(dates))) return pd.DatetimeIndex(dates) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def stack_by_sample(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, predictions): timestep = 60 x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: preds = predictions[project['_id']] hor = preds.columns[-1] + timestep p_dates = [t + pd.DateOffset(minutes=hor)] preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[project['_id']]) data_temp = pd.concat([data[project['_id']].iloc[np.where(data.index < t)].to_frame(), pred]) project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: date_nwp = date.round('H').strftime('%d%m%y%H%M') try: nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1))].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2))].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1)), project_id].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2)), project_id].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') for project in projects: if len(x_3d[project['_id']].shape) == 3: x_3d[project['_id']] = x_3d[project['_id']][np.newaxis, :, :, :] return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not self.is_for_test: inp['Obs_lag1'] = inp['Obs_lag1'] + np.random.normal(0, 0.05) * inp['Obs_lag1'] inp['Obs_lag2'] = inp['Obs_lag2'] + np.random.normal(0, 0.05) * inp['Obs_lag2'] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_rabbitmq(self, t, path_nwp, nwp_model, project, variables): x = dict() x_3d = dict() nwps = project['nwp'] p_dates = pd.date_range(t, t + pd.DateOffset(days=3) - pd.DateOffset(hours=1), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_rabbitmq(date, nwp, nwp_prev, nwp_next, project['static_data']['type']) x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_online(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t +
pd.DateOffset(hours=24)
pandas.DateOffset
import ibeis import six import vtool import utool import numpy as np import numpy.linalg as npl # NOQA import pandas as pd from vtool import clustering2 as clustertool from vtool import nearest_neighbors as nntool from plottool import draw_func2 as df2 np.set_printoptions(precision=2) pd.set_option('display.max_rows', 10) pd.set_option('display.max_columns', 10) pd.set_option('isplay.notebook_repr_html', True) ibeis.ensure_pz_mtest() #taids = ibs.get_valid_aids() #tvecs_list = ibs.get_annot_vecs(taids) #tkpts_list = ibs.get_annot_kpts(taids) #tvec_list = np.vstack(tvecs_list) #print(idx2_vec) #labels, words = vtool.clustering.cached_akmeans(tvec_list, 1000, 30, cache_dir='.') #tvecdf_list = [pd.DataFrame(vecs) for vecs in tvecs_list] #tvecs_df = pd.DataFrame(tvecdf_list, index=taids) #kpts_col = pd.DataFrame(tkpts_list, index=taids, columns=['kpts']) #vecs_col = pd.DataFrame(tvecs_list, index=taids, columns=['vecs']) #tvecs_dflist = [pd.DataFrame(vecs, index=np.arange(len(vecs))) for vecs in tvecs_list] #pd.concat(tvecs_dflist) ## Bui #taids = ibs.get_valid_aids() #tvecs_list = ibs.get_annot_vecs(taids) #tkpts_list = ibs.get_annot_kpts(taids) #orig_idx2_vec, orig_idx2_ax, orig_idx2_fx = vtool.nearest_neighbors.invertible_stack(tvecs_list, taids) #annots_df = pd.concat([vecs_col, kpts_col], axis=1) #annots_df #idx2_vec = np.vstack(annots_df['vecs'].values) ##idx2_ax = #idx2_vec, idx2_ax, idx2_fx = vtool.nearest_neighbors.invertible_stack(tvecs_list, taids) #labels, words = vtool.clustering2.cached_akmeans(tvec_list, 1000, 30) #words = centroids def display_info(ibs, invindex, annots_df): ################# #from ibeis.other import dbinfo #print(ibs.get_infostr()) #dbinfo.get_dbinfo(ibs, verbose=True) ################# #print('Inverted Index Stats: vectors per word') #print(utool.get_stats_str(map(len, invindex.wx2_idxs.values()))) ################# qfx2_vec = annots_df['vecs'][1] centroids = invindex.words num_pca_dims = 3 # 3 whiten = False kwd = dict(num_pca_dims=num_pca_dims, whiten=whiten,) #clustertool.rrr() def makeplot_(fnum, prefix, data, labels='centroids', centroids=centroids): return clustertool.plot_centroids(data, centroids, labels=labels, fnum=fnum, prefix=prefix + '\n', **kwd) #makeplot_(1, 'centroid vecs', centroids) #makeplot_(2, 'database vecs', invindex.idx2_vec) #makeplot_(3, 'query vecs', qfx2_vec) #makeplot_(4, 'database vecs', invindex.idx2_vec) #makeplot_(5, 'query vecs', qfx2_vec) ################# def make_annot_df(ibs): aid_list = ibs.get_valid_aids() _kpts_col = pd.DataFrame(ibs.get_annot_kpts(aid_list), index=aid_list, columns=['kpts']) _vecs_col = pd.DataFrame(ibs.get_annot_vecs(aid_list), index=aid_list, columns=['vecs']) annots_df = pd.concat([_vecs_col, _kpts_col], axis=1) return annots_df def learn_visual_words(annots_df, train_aids, nCentroids): vecs_list = annots_df['vecs'][train_aids].as_matrix() train_vecs = np.vstack(vecs_list) print('Training %d word vocabulary with %d annots and %d descriptors' % (nCentroids, len(train_aids), len(train_vecs))) words = clustertool.cached_akmeans(train_vecs, nCentroids, max_iters=100) return words def index_data_annots(annots_df, daids, words): vecs_list = annots_df['vecs'][daids] flann_params = {} wordflann = vtool.nearest_neighbors.flann_cache(words, flann_params=flann_params) ax2_aid = np.array(daids) idx2_vec, idx2_ax, idx2_fx = nntool.invertible_stack(vecs_list, np.arange(len(ax2_aid))) invindex = InvertedIndex(words, wordflann, idx2_vec, idx2_ax, idx2_fx, ax2_aid) invindex.compute_internals() return invindex @six.add_metaclass(utool.ReloadingMetaclass) class InvertedIndex(object): def __init__(invindex, words, wordflann, idx2_vec, idx2_ax, idx2_fx, ax2_aid): invindex.wordflann = wordflann invindex.words = words # visual word centroids invindex.ax2_aid = ax2_aid # annot index -> annot id invindex.idx2_vec = idx2_vec # stacked index -> descriptor vector invindex.idx2_ax = idx2_ax # stacked index -> annot index invindex.idx2_fx = idx2_fx # stacked index -> feature index invindex.idx2_wx = None # stacked index -> word index invindex.wx2_idxs = None # word index -> stacked indexes invindex.wx2_drvecs = None # word index -> residual vectors #invindex.compute_internals() def compute_internals(invindex): idx2_vec = invindex.idx2_vec wx2_idxs, idx2_wx = invindex.assign_to_words(idx2_vec) wx2_drvecs = invindex.compute_residuals(idx2_vec, wx2_idxs) invindex.idx2_wx = idx2_wx invindex.wx2_idxs = wx2_idxs invindex.wx2_drvecs = wx2_drvecs def assign_to_words(invindex, idx2_vec): idx2_wx, _idx2_wdist = invindex.wordflann.nn_index(idx2_vec, 1) if True: assign_df = pd.DataFrame(idx2_wx, columns=['wordindex']) grouping = assign_df.groupby('wordindex') wx2_idxs = grouping.wordindex.indices else: # TODO: replace with pandas groupby idx_list = list(range(len(idx2_wx))) wx2_idxs = utool.group_items(idx_list, idx2_wx.tolist()) return wx2_idxs, idx2_wx def compute_residuals(invindex, idx2_vec, wx2_idxs): """ returns mapping from word index to a set of residual vectors """ words = invindex.words wx2_rvecs = {} for word_index in wx2_idxs.keys(): # for each word idxs = wx2_idxs[word_index] vecs = np.array(idx2_vec[idxs], dtype=np.float64) word = np.array(words[word_index], dtype=np.float64) # compute residuals of all vecs assigned to this word residuals = np.array([word - vec for vec in vecs]) # normalize residuals residuals_n = vtool.linalg.normalize_rows(residuals) wx2_rvecs[word_index] = residuals_n return wx2_rvec #def smk_similarity(wx2_qrvecs, wx2_drvecs): # similarity_matrix = (rvecs1.dot(rvecs2.T)) def query_inverted_index(annots_df, qaid, invindex): qfx2_vec = annots_df['vecs'][qaid] wx2_qfxs, qfx2_wx = invindex.assign_to_words(qfx2_vec) wx2_qrvecs = invindex.compute_residuals(qfx2_vec, wx2_qfxs) daid = invindex.ax2_aid[0] def single_daid_similairty(invindex, daid): """ daid = 4 FIXME: Inefficient code """ ax = np.where(invindex.ax2_aid == daid)[0] wx2_dfxs = {} wx2_drvecs = {} for wx, idxs in invindex.wx2_idxs.items(): valid = (invindex.idx2_ax[idxs] == ax) dfxs = invindex.idx2_fx[idxs][valid] drvecs = invindex.wx2_drvecs[wx][valid] wx2_dfxs[wx] = dfxs wx2_drvecs[wx] = drvecs # Similarity to a single database annotation query_wxs = set(wx2_qrvecs.keys()) data_wxs = set(wx2_drvecs.keys()) total_score = 0 for wx in data_wxs.intersection(query_wxs): qrvecs = wx2_qrvecs[wx] drvecs = wx2_drvecs[wx] residual_similarity = qrvecs.dot(drvecs.T) scores = selectivity_function(residual_similarity) total_score += scores.sum() return total_score def selectivity_function(residual_similarity, alpha=3, thresh=0): """ sigma from SMK paper """ u = residual_similarity scores = (np.sign(u) * np.abs(u)) ** alpha scores[scores <= thresh] = 0 return scores # Entire database daid2_score = utool.ddict(lambda: 0) query_wxs = set(wx2_qrvecs.keys()) data_wxs = set(invindex.wx2_drvecs.keys()) qfx2_axs = [] qfx2_fm = [] qfx2_fs = [] aid_fm = [] aid_fs = [] idx2_daid =
pd.Series(invindex.ax2_aid[invindex.idx2_ax], name='daid')
pandas.Series
# --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.6.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Telecom Churn Case Study # With 21 predictor variables we need to predict whether a particular customer will switch to another telecom provider or not. In telecom terminology, this is referred to as churning and not churning, respectively. # ### Step 1: Importing and Merging Data # Suppressing Warnings import warnings warnings.filterwarnings('ignore') # Importing Pandas and NumPy import pandas as pd, numpy as np # Importing all datasets churn_data = pd.read_csv("churn_data.csv") churn_data.head() customer_data = pd.read_csv("customer_data.csv") customer_data.head() internet_data = pd.read_csv("internet_data.csv") internet_data.head() # #### Combining all data files into one consolidated dataframe # Merging on 'customerID' df_1 = pd.merge(churn_data, customer_data, how='inner', on='customerID') # Final dataframe with all predictor variables telecom = pd.merge(df_1, internet_data, how='inner', on='customerID') # ### Step 2: Inspecting the Dataframe telecom.OnlineBackup.value_counts() # Let's see the head of our master dataset telecom.head() # Let's check the dimensions of the dataframe telecom.shape # let's look at the statistical aspects of the dataframe telecom.describe() # Let's see the type of each column telecom.info() # ### Step 3: Data Preparation # #### Converting some binary variables (Yes/No) to 0/1 # + # List of variables to map varlist = ['PhoneService', 'PaperlessBilling', 'Churn', 'Partner', 'Dependents'] # Defining the map function def binary_map(x): return x.map({'Yes': 1, "No": 0}) # Applying the function to the housing list telecom[varlist] = telecom[varlist].apply(binary_map) # - telecom.head() # #### For categorical variables with multiple levels, create dummy features (one-hot encoded) # + # Creating a dummy variable for some of the categorical variables and dropping the first one. dummy1 = pd.get_dummies(telecom[['Contract', 'PaymentMethod', 'gender', 'InternetService']], drop_first=True) # Adding the results to the master dataframe telecom = pd.concat([telecom, dummy1], axis=1) # - telecom.head() # + # Creating dummy variables for the remaining categorical variables and dropping the level with big names. # Creating dummy variables for the variable 'MultipleLines' ml =
pd.get_dummies(telecom['MultipleLines'], prefix='MultipleLines')
pandas.get_dummies
"""Class to process raw TomTom MultiNet data into a network dataset. Copyright 2022 Esri Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.''' """ import pandas as pd import numpy as np import time import functools import datetime import os import uuid import enum from lxml import etree import arcpy CURDIR = os.path.dirname(os.path.abspath(__file__)) LNG_CODES = { "ALB": "sq", # Albanian "ALS": "", # Alsacian "ARA": "ar", # Arabic "BAQ": "eu", # Basque "BAT": "", # Baltic (Other) "BEL": "be", # Belarusian "BET": "be", # Belarusian (Latin) "BOS": "bs", # Bosnian "BRE": "br", # Breton "BUL": "bg", # Bulgarian "BUN": "bg", # Bulgarian (Latin) "BUR": "my", # Burmese "CAT": "ca", # Catalan "CEL": "", # Celtic (Other) "CHI": "zh", # Chinese, Han Simplified "CHL": "zh", # Chinese, Mandarin Pinyin "CHT": "zh", # Chinese, Han Traditional "CTN": "zh", # Chinese, Cantonese Pinyin "CZE": "cs", # Czech "DAN": "da", # Danish "DUT": "nl", # Dutch "ENG": "en", # English "EST": "et", # Estonian "FAO": "fo", # Faroese "FIL": "", # Filipino "FIN": "fi", # Finnish "FRE": "fr", # French "FRY": "fy", # Frisian "FUR": "", # Friulian "GEM": "", # Franco-Provencal "GER": "de", # German "GLA": "gd", # Gaelic (Scots) "GLE": "ga", # Irish "GLG": "gl", # Galician "GRE": "el", # Greek (Modern) "GRL": "el", # Greek (Latin Transcription) "HEB": "he", # Hebrew "HIN": "hi", # Hindi "HUN": "hu", # Hungarian "ICE": "is", # Icelandic "IND": "id", # Indonesian "ITA": "it", # Italian "KHM": "km", # Khmer "KOL": "ko", # Korean (Latin) "KOR": "ko", # Korean "LAD": "", # Ladin "LAO": "lo", # Lao "LAT": "la", # Latin "LAV": "lv", # Latvian "LIT": "lt", # Lithuanian "LTZ": "lb", # Letzeburgesch "MAC": "mk", # Macedonian "MAP": "", # Austronesian (Other) "MAT": "mk", # Macedonian (Latin Transcription) "MAY": "ms", # Malaysian "MLT": "mt", # Maltese "MOL": "mo", # Moldavian "MYN": "", # Mayan Languages "NOR": "no", # Norwegian "OCI": "oc", # Occitan "PAA": "", # Papuan-Australian (Other) "POL": "pl", # Polish "POR": "pt", # Portuguese "PRO": "", # Provencal "ROA": "", # Romance (Other) "ROH": "rm", # Raeto-Romance "ROM": "", # Romani "RUL": "ru", # Russian (Latin Transcription) "RUM": "ro", # Romanian "RUS": "ru", # Russian "SCC": "sh", # Serbian (Latin) "SCO": "gd", # Scots "SCR": "sh", # Croatian "SCY": "sh", # Serbian (Cyrillic) "SLA": "cu", # Slavic "SLO": "sk", # Slovak "SLV": "sv", # Slovenian "SMC": "", # Montenegrin (Cyrillic) "SMI": "se", # Lapp (Sami) "SML": "", # Montenegrin (Latin) "SPA": "es", # Spanish "SRD": "sc", # Sardinian "SWE": "sv", # Swedish "THA": "th", # Thai "THL": "th", # Thai (Latin) "TUR": "tr", # Turkish "UKL": "uk", # Ukranian (Latin) "UKR": "uk", # Ukranian "UND": "", # Undefined "VAL": "ca", # Valencian "VIE": "vi", # Vietnamese "WEL": "cy", # Welsh "WEN": "", # Sorbian (Other) } PRINT_TIMINGS = False # Set to True to log timings for various methods (primarily for debugging and development) def timed_exec(func): """Measure time in seconds to execute a function. This function is meant to be used as a decorator on a function. Args: func: The decorated function that is being timed """ @functools.wraps(func) def wrapper(*args, **kwargs): """Wrap the function to be run.""" # Using an inner function so the timing can happen directly around the function under test. def inner_func(): t0 = time.time() return_val = func(*args, **kwargs) if PRINT_TIMINGS: arcpy.AddMessage(f"Time to run {func.__name__}: {time.time() - t0}") return return_val return inner_func() return wrapper class TimeZoneType(enum.Enum): """Defines the time zone type to use.""" NoTimeZone = 1 Single = 2 Table = 3 class UnitType(enum.Enum): """Defines whether the units are imperial or metric.""" Imperial = 1 Metric = 2 class MultiNetInputData: """Defines a collection of MultiNet inputs to process.""" def __init__( self, network_geometry_fc, maneuvers_geometry_fc, maneuver_path_idx_table, sign_info_table, sign_path_table, restrictions_table, network_profile_link_table=None, historical_speed_profiles_table=None, rds_tmc_info_table=None, logistics_truck_routes_table=None, logistics_lrs_table=None, logistics_lvc_table=None ): """Initialize an input MultiNet dataset with all the appropriate feature classes and tables""" self.nw = network_geometry_fc self.mn = maneuvers_geometry_fc self.mp = maneuver_path_idx_table self.si = sign_info_table self.sp = sign_path_table self.rs = restrictions_table self.hsnp = network_profile_link_table self.hspr = historical_speed_profiles_table self.rd = rds_tmc_info_table self.ltr = logistics_truck_routes_table self.lrs = logistics_lrs_table self.lvc = logistics_lvc_table self.required_tables = [self.nw, self.mn, self.mp, self.si, self.sp, self.rs] self.required_traffic_tables = [self.hsnp, self.hspr] self.required_logistics_tables = [self.lrs, self.lvc] def validate_data(self, check_traffic, check_logistics): """Validate that the data exists and has the required fields.""" # Check that all tables that need to be specified are specified. for table in self.required_tables: if not table: arcpy.AddError("Required MultiNet input table not specified.") return False if check_traffic: for table in self.required_traffic_tables: if not table: arcpy.AddError("Required MultiNet traffic input table not specified.") return False if check_logistics: for table in self.required_logistics_tables: if not table: arcpy.AddError("Required MultiNet Logistics input table not specified.") return False # Verify existence of tables and appropriate schema required_fields = { self.nw: [ ("ID", "Double"), ("FEATTYP", "SmallInteger"), ("F_JNCTID", "Double"), ("T_JNCTID", "Double"), ("PJ", "SmallInteger"), ("METERS", "Double"), ("NET2CLASS", "SmallInteger"), ("NAME", "String"), ("FOW", "SmallInteger"), ("FREEWAY", "SmallInteger"), ("BACKRD", "SmallInteger"), ("TOLLRD", "SmallInteger"), ("RDCOND", "SmallInteger"), ("PRIVATERD", "SmallInteger"), ("CONSTATUS", "String"), ("ONEWAY", "String"), ("F_ELEV", "SmallInteger"), ("T_ELEV", "SmallInteger"), ("KPH", "SmallInteger"), ("MINUTES", "Single"), # Float ("NTHRUTRAF", "SmallInteger"), ("ROUGHRD", "SmallInteger"), ], self.mn: [ ("ID", "Double"), ("JNCTID", "Double"), ("FEATTYP", "SmallInteger") ], self.mp: [ ("ID", "Double"), ("TRPELID", "Double"), ("SEQNR", "Integer") ], self.si: [ ("ID", "Double"), ("INFOTYP", "String"), ("TXTCONT", "String"), ("TXTCONTLC", "String"), ("CONTYP", "SmallInteger"), ("SEQNR", "Integer"), ("DESTSEQ", "Integer"), ("RNPART", "SmallInteger") ], self.sp: [ ("ID", "Double"), ("TRPELID", "Double"), ("SEQNR", "Integer") ], self.rs: [ ("ID", "Double"), ("VT", "SmallInteger"), ("DIR_POS", "SmallInteger"), ("RESTRTYP", "String") ], self.hsnp: [ ("NETWORK_ID", "Double"), ("VAL_DIR", "SmallInteger"), ("SPFREEFLOW", "SmallInteger"), ("SPWEEKDAY", "SmallInteger"), ("SPWEEKEND", "SmallInteger"), ("SPWEEK", "SmallInteger"), ("PROFILE_1", "SmallInteger"), ("PROFILE_2", "SmallInteger"), ("PROFILE_3", "SmallInteger"), ("PROFILE_4", "SmallInteger"), ("PROFILE_5", "SmallInteger"), ("PROFILE_6", "SmallInteger"), ("PROFILE_7", "SmallInteger") ], self.hspr: [ ("PROFILE_ID", "SmallInteger"), ("TIME_SLOT", "Integer"), ("REL_SP", "Single") ], self.rd: [ ("ID", "Double"), ("RDSTMC", "String") ], self.ltr: [ ("ID", "Double"), ("PREFERRED", "SmallInteger"), ("RESTRICTED", "SmallInteger") ], self.lrs: [ ("ID", "Double"), ("SEQNR", "SmallInteger"), ("RESTRTYP", "String"), ("VT", "SmallInteger"), ("RESTRVAL", "SmallInteger"), ("LIMIT", "Double"), ("UNIT_MEAS", "SmallInteger") ], self.lvc: [ ("ID", "Double"), ("SEQNR", "SmallInteger") ] } for table in [t for t in required_fields if t]: if not arcpy.Exists(table): arcpy.AddError(f"Input table {table} does not exist.") return False actual_fields = {(f.name, f.type) for f in arcpy.ListFields(table)} if not set(required_fields[table]).issubset(actual_fields): arcpy.AddError( f"Input table {table} does not have the correct schema. Required fields: {required_fields[table]}") return False if int(arcpy.management.GetCount(table).getOutput(0)) == 0: arcpy.AddWarning(f"Input table {table} has no rows.") # Everything is valid return True class MultiNetProcessor: def __init__( self, out_folder: str, gdb_name: str, in_multinet: MultiNetInputData, unit_type: UnitType, include_historical_traffic: bool, include_logistics: bool, time_zone_type: TimeZoneType, time_zone_name: str = "", in_time_zone_table=None, time_zone_ft_field: str = None, time_zone_tf_field: str = None, build_network: bool = True ): """Initialize a class to process MultiNet data into a network dataset.""" self.in_multinet = in_multinet self.unit_type = unit_type self.include_historical_traffic = include_historical_traffic self.include_logistics = include_logistics self.time_zone_type = time_zone_type self.time_zone_name = time_zone_name self.in_time_zone_table = in_time_zone_table self.time_zone_ft_field = time_zone_ft_field self.time_zone_tf_field = time_zone_tf_field self.build_network = build_network self.out_folder = out_folder self.gdb_name = gdb_name if not self.gdb_name.endswith(".gdb"): self.gdb_name += ".gdb" self.feature_dataset = os.path.join(self.out_folder, self.gdb_name, "Routing") self.streets = os.path.join(self.feature_dataset, "Streets") self.turns = os.path.join(self.feature_dataset, "RestrictedTurns") self.road_splits = os.path.join(self.out_folder, self.gdb_name, "Streets_RoadSplits") self.signposts = os.path.join(self.feature_dataset, "Signposts") self.signposts_streets = os.path.join(self.out_folder, self.gdb_name, "Signposts_Streets") self.streets_profiles = os.path.join(self.out_folder, self.gdb_name, "Streets_DailyProfiles") self.profiles = os.path.join(self.out_folder, self.gdb_name, "DailyProfiles") self.streets_tmc = os.path.join(self.out_folder, self.gdb_name, "Streets_TMC") self.time_zone_table = os.path.join(self.out_folder, self.gdb_name, "TimeZones") self.network = os.path.join(self.feature_dataset, "Routing_ND") self.out_sr = arcpy.Describe(self.in_multinet.nw).spatialReference # Maps VT field codes to restriction names self.vt_field_map = { 0: "AllVehicles_Restricted", 11: "PassengerCars_Restricted", 12: "ResidentialVehicles_Restricted", 16: "Taxis_Restricted", 17: "PublicBuses_Restricted" } self.restriction_field_names = [self.vt_field_map[vt] for vt in sorted(self.vt_field_map)] # Historical traffic base field names self.historical_traffic_fields = ["Weekday", "Weekend", "AllWeek"] # Logistics Truck Routes field names self.ltr_fields = [ "NationalSTAARoute", "NationalRouteAccess", "DesignatedTruckRoute", "TruckBypassRoad", "NoCommercialVehicles", "ImmediateAccessOnly", "TrucksRestricted" ] # Global dataframes and variables used by multiple processes and initialized later self.r_df = None # Restrictions table indexed by ID for quick lookups self.mp_df = None # Maneuver paths table indexed by ID for quick lookups self.streets_df = None # Dataframe of output streets indexed by ID for quick lookups self.lrs_df = None # Dataframe of logistics LRS table self.unique_lrs_df = None # Dataframe holding unique combinations of logistics restriction data self.max_turn_edges = None # Maximum number of edges participating in a turn self.fc_id = None # Streets feature class dataset ID used in Edge#FCID fields def process_multinet_data(self): """Process multinet data into a network dataset.""" # Validate the input data if not self._validate_inputs(): return # Create the output location self._create_feature_dataset() # Read in some tables we're going to need to reference later in multiple places self._read_and_index_restrictions() self._read_and_index_maneuver_paths() self._read_and_index_logistics_tables() # Create the output Streets feature class and populate it self._copy_streets() self._detect_and_delete_duplicate_streets() self._populate_streets_fields() # We're now done with the Logistics restrictions table, so clear the variable to free up memory del self.lrs_df self.lrs_df = None # Read in output streets for future look-ups self._read_and_index_streets() # Create and populate the turn feature class self._create_turn_fc() self._generate_turn_features() # We're now done with the restrictions table, so clear the variable to free up memory del self.r_df self.r_df = None # Create and populate the road forks table self._create_road_forks_table() self._populate_road_forks() # We're now done with the maneuver path table, so clear the variable to free up memory del self.mp_df self.mp_df = None # Create and populate Signposts and Signposts_Streets self._create_signposts_fc() self._create_signposts_streets_table() self._populate_signposts_and_signposts_streets() # Create and populate historical traffic tables if self.include_historical_traffic: self._create_and_populate_streets_profiles_table() self._create_and_populate_profiles_table() self._create_and_populate_streets_tmc_table() # We're done with the streets table, so clear the variable to free up memory del self.streets_df self.streets_df = None # Handle time zone table if needed if self.time_zone_type != TimeZoneType.NoTimeZone: self._handle_time_zone() # Create the network dataset from a template and build it self._create_and_build_nd() @timed_exec def _validate_inputs(self): """Validate the input data.""" arcpy.AddMessage("Validating inputs...") # Do some simple checks if not os.path.exists(self.out_folder): arcpy.AddMessage(f"Output folder {self.out_folder} does not exist.") return False if os.path.exists(os.path.join(self.out_folder, self.gdb_name)): arcpy.AddMessage(f"Output geodatabase {os.path.join(self.out_folder, self.gdb_name)} already exists.") return False if self.out_sr.name == "Unknown": arcpy.AddError("The input data has an unknown spatial reference.") return False # Make sure the license is available. if arcpy.CheckExtension("network").lower() == "available": arcpy.CheckOutExtension("network") else: arcpy.AddError("The Network Analyst extension license is unavailable.") return False # Check the input data if not self.in_multinet.validate_data(self.include_historical_traffic, self.include_logistics): return False arcpy.AddMessage("Inputs validated successfully.") return True @timed_exec def _create_feature_dataset(self): """Create the output geodatabase and feature dataset.""" arcpy.AddMessage(f"Creating output geodatabase and feature dataset at {self.feature_dataset}...") arcpy.management.CreateFileGDB(self.out_folder, self.gdb_name) arcpy.management.CreateFeatureDataset( os.path.dirname(self.feature_dataset), os.path.basename(self.feature_dataset), self.out_sr ) @timed_exec def _copy_streets(self): """Copy the network geometry feature class to the target feature dataset and add fields.""" arcpy.AddMessage("Copying input network geometry feature class to target feature dataset...") # Filter out address area boundary elements nw_layer = arcpy.management.MakeFeatureLayer(self.in_multinet.nw, "NW layer", "FEATTYP <> 4165").getOutput(0) # Construct field mappings to use when copying the original data. field_mappings = arcpy.FieldMappings() # Add all the fields from the input data field_mappings.addTable(self.in_multinet.nw) # Add the TOLLRDDIR and restriction fields and historical traffic fields if relevant. field_mappings = field_mappings.exportToString() field_mappings += self._create_string_field_map("TOLLRDDIR", "Text", 2) for restr_field in self.restriction_field_names: field_mappings += self._create_string_field_map(f"FT_{restr_field}", "Text", 1) field_mappings += self._create_string_field_map(f"TF_{restr_field}", "Text", 1) if self.include_historical_traffic: for trf_fld in self.historical_traffic_fields: field_mappings += self._create_string_field_map(f"FT_{trf_fld}", "Short") field_mappings += self._create_string_field_map(f"TF_{trf_fld}", "Short") field_mappings += self._create_string_field_map(f"FT_{trf_fld}Minutes", "Float") field_mappings += self._create_string_field_map(f"TF_{trf_fld}Minutes", "Float") if self.in_multinet.ltr: for ltr_field in self.ltr_fields: field_mappings += self._create_string_field_map(ltr_field, "Text", 1) if self.include_logistics: # Derive a list of logistics restriction field names based on data from the LRS table for _, record in self.unique_lrs_df.iterrows(): field_mappings += self._create_string_field_map( record["FieldName"], record["FieldType"], record["FieldLength"]) # Copy the input network geometry feature class to the target feature dataset arcpy.conversion.FeatureClassToFeatureClass( nw_layer, self.feature_dataset, os.path.basename(self.streets), field_mapping=field_mappings) # Update the fc_id that will be used to relate back to this Streets feature class in Edge#FCID fields self.fc_id = arcpy.Describe(self.streets).DSID @timed_exec def _detect_and_delete_duplicate_streets(self): """Determine if there are duplicate street IDs, and if so, delete them.""" # Duplicate street features occur along tile boundaries. # Use Pandas to identify duplicate ID values and associated OIDs to delete. with arcpy.da.SearchCursor(self.streets, ["OID@", "ID"]) as cur: id_df = pd.DataFrame(cur, columns=["OID", "ID"]) duplicate_streets = id_df[id_df.duplicated(subset="ID")]["OID"].to_list() # If there are any duplicates, delete them. if duplicate_streets: duplicate_streets = [str(oid) for oid in duplicate_streets] oid_field = arcpy.Describe(self.streets).OIDFieldName arcpy.AddMessage("Duplicate streets were detected and will be removed.") where = f"{oid_field} IN ({', '.join(duplicate_streets)})" layer_name = "Temp_Streets" arcpy.management.MakeFeatureLayer(self.streets, layer_name, where) arcpy.management.DeleteRows(layer_name) @timed_exec def _create_turn_fc(self): """Create the turn feature class and add necessary fields.""" assert self.max_turn_edges is not None arcpy.AddMessage("Creating turn feature class...") arcpy.na.CreateTurnFeatureClass(self.feature_dataset, os.path.basename(self.turns), self.max_turn_edges) # Add restriction fields # The ID field is added to easily relate this back to the original data but is not required by the network. field_defs = [["ID", "DOUBLE"]] + [[field, "TEXT", "", 1] for field in self.restriction_field_names] arcpy.management.AddFields(self.turns, field_defs) @timed_exec def _create_road_forks_table(self): """Create the road forks table Streets_RoadSplits with the correct schema.""" arcpy.AddMessage("Creating road forks table...") arcpy.management.CreateTable(os.path.dirname(self.road_splits), os.path.basename(self.road_splits)) # Schema for the road forks table: # https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/add-fields.htm # The ID field is added to easily relate this back to the original data but is not required by the schema. field_defs = [ ["ID", "DOUBLE"], ["EdgeFCID", "LONG"], ["EdgeFID", "LONG"], ["EdgeFrmPos", "DOUBLE"], ["EdgeToPos", "DOUBLE"], ["Branch0FCID", "LONG"], ["Branch0FID", "LONG"], ["Branch0FrmPos", "DOUBLE"], ["Branch0ToPos", "DOUBLE"], ["Branch1FCID", "LONG"], ["Branch1FID", "LONG"], ["Branch1FrmPos", "DOUBLE"], ["Branch1ToPos", "DOUBLE"], ["Branch2FCID", "LONG"], ["Branch2FID", "LONG"], ["Branch2FrmPos", "DOUBLE"], ["Branch2ToPos", "DOUBLE"] ] arcpy.management.AddFields(self.road_splits, field_defs) @timed_exec def _create_signposts_fc(self): """Create the Signposts feature class with correct schema.""" arcpy.AddMessage("Creating Signposts feature class...") arcpy.management.CreateFeatureclass( os.path.dirname(self.signposts), os.path.basename(self.signposts), "POLYLINE", has_m="DISABLED", has_z="DISABLED" ) # Schema for the signposts feature class: # https://pro.arcgis.com/en/pro-app/latest/help/analysis/networks/signposts.htm field_defs = [ ["ExitName", "TEXT", "ExitName", 24], ] for i in range(10): field_defs += [ [f"Branch{i}", "TEXT", f"Branch{i}", 180], [f"Branch{i}Dir", "TEXT", f"Branch{i}Dir", 5], [f"Branch{i}Lng", "TEXT", f"Branch{i}Lng", 2], [f"Toward{i}", "TEXT", f"Toward{i}", 180], [f"Toward{i}Lng", "TEXT", f"Toward{i}Lng", 2], ] arcpy.management.AddFields(self.signposts, field_defs) @timed_exec def _create_signposts_streets_table(self): """Create the Signposts_Streets table with correct schema.""" arcpy.AddMessage("Creating Signposts_Streets table...") arcpy.management.CreateTable(os.path.dirname(self.signposts_streets), os.path.basename(self.signposts_streets)) # Schema for the Signposts_Streets table: # https://pro.arcgis.com/en/pro-app/latest/help/analysis/networks/signposts.htm field_defs = [ ["SignpostID", "LONG"], ["Sequence", "LONG"], ["EdgeFCID", "LONG"], ["EdgeFID", "LONG"], ["EdgeFrmPos", "DOUBLE"], ["EdgeToPos", "DOUBLE"] ] arcpy.management.AddFields(self.signposts_streets, field_defs) @timed_exec def _create_and_populate_streets_profiles_table(self): """Create the Streets_DailyProfiles table.""" if not self.include_historical_traffic: return arcpy.AddMessage("Creating and populating Streets_DailyProfiles table...") assert self.streets_df is not None # Sanity check # Create the table with desired schema arcpy.management.CreateTable( os.path.dirname(self.streets_profiles), os.path.basename(self.streets_profiles), self.in_multinet.hsnp # Template table used to define schema ) field_defs = [ ["EdgeFCID", "LONG"], ["EdgeFID", "LONG"], ["EdgeFrmPos", "DOUBLE"], ["EdgeToPos", "DOUBLE"] ] arcpy.management.AddFields(self.streets_profiles, field_defs) # Insert rows desc = arcpy.Describe(self.in_multinet.hsnp) input_fields = [f.name for f in desc.fields if f.name != desc.OIDFieldName] output_fields = input_fields + [f[0] for f in field_defs] network_id_idx = input_fields.index("NETWORK_ID") val_dir_idx = input_fields.index("VAL_DIR") with arcpy.da.InsertCursor(self.streets_profiles, output_fields) as cur: for row in arcpy.da.SearchCursor( self.in_multinet.hsnp, input_fields, "SPFREEFLOW > 0 And VAL_DIR IN (2, 3)" ): # Initialize the row to insert with all the values from the original table new_row = [val for val in row] # Calculate the additional, new fields: EdgeFCID, EdgeFID, EdgeFrmPos, EdgeToPos street_id = np.int64(row[network_id_idx]) try: # Find the street record associated with this street profile record edge_fid = self.streets_df.loc[street_id]["OID"] except KeyError: arcpy.AddWarning(( f"The Streets table is missing an entry with ID {row[network_id_idx]}, which is used in the " "network profile link historical traffic table.")) # Just skip this row and don't add it continue val_dir = row[val_dir_idx] if val_dir == 2: edge_from_pos = 0 edge_to_pos = 1 elif val_dir == 3: edge_from_pos = 1 edge_to_pos = 0 else: # This should never happen because of our where clause, but check just in case continue new_row += [self.fc_id, edge_fid, edge_from_pos, edge_to_pos] # Insert the row cur.insertRow(new_row) @timed_exec def _create_and_populate_profiles_table(self): """Create the DailyProfiles table.""" if not self.include_historical_traffic: return arcpy.AddMessage("Creating and populating DailyProfiles table...") # Create the table with correct schema arcpy.management.CreateTable(os.path.dirname(self.profiles), os.path.basename(self.profiles)) field_defs = [["ProfileID", "SHORT"]] added_minutes = 0 midnight = datetime.datetime(2021, 1, 1, 0, 0, 0) # Initialize midnight on an arbitrary date # Add a field for each 5-minute increment until 11:55 at night while added_minutes < 1440: current_time = midnight + datetime.timedelta(minutes=added_minutes) field_defs.append([f"SpeedFactor_{current_time.strftime('%H%M')}", "FLOAT"]) added_minutes += 5 arcpy.management.AddFields(self.profiles, field_defs) # Read the Historical Speed Profiles table into a temporary dataframe so we can quickly sort it. Normally we # could sort it using the da.SearchCursor's sql clause, but the ORDER BY option doesn't work with shapefile # tables. fields = ["PROFILE_ID", "TIME_SLOT", "REL_SP"] with arcpy.da.SearchCursor(self.in_multinet.hspr, fields) as cur: hspr_df = pd.DataFrame(cur, columns=fields) hspr_df = hspr_df.sort_values("PROFILE_ID").groupby(["PROFILE_ID"]) # Insert the rows output_fields = [f[0] for f in field_defs] with arcpy.da.InsertCursor(self.profiles, output_fields) as cur: # Loop through the records in the HSPR table and calculate the SpeedFactor fields accordingly for profile_id, group in hspr_df: # Initialize a new row with the ProfileID and defaulting all the SpeedFactor fields to None. new_row = [profile_id] + [None] * (len(output_fields) - 1) # Iterate through the records in this group and populate the SpeedFactor fields for _, record in group.iterrows(): # Figure out which SpeedFactor field this record is for based on the TIME_SLOT field value # The TIME_SLOT field indicates the time of day as measured in seconds since midnight. Since the # granularity is 5 minutes, the TIME_SLOT values are all multiples of 300 (e.g., TIME_SLOT=0 # represents 12:00am, TIME_SLOT=300 represents 12:05am, TIME_SLOT=600 represents 12:10am, etc.). # Add 1 to the index because ProfileID is the first field in the row time_slot_index = int((record['TIME_SLOT'] / 300)) + 1 new_row[time_slot_index] = record["REL_SP"] / 100 # Check if the row is missing any values, and if so, default them to 1 and add a warning. if None in new_row: arcpy.AddWarning(( "The Historical Speed Profiles table has incomplete TIME_SLOT records for PROFILE_ID " f"{profile_id}. The missing values have been filled in with a value of 1." )) new_row = [val if val is not None else 1 for val in new_row] # Finally, insert the row cur.insertRow(new_row) @timed_exec def _create_and_populate_streets_tmc_table(self): if not self.include_historical_traffic or not self.in_multinet.rd: return arcpy.AddMessage("Creating and populating Streets_TMC table...") assert self.streets_df is not None # Sanity check arcpy.management.CreateTable(os.path.dirname(self.streets_tmc), os.path.basename(self.streets_tmc)) field_defs = [ ["ID", "DOUBLE"], ["TMC", "TEXT", "TMC", 9], ["EdgeFCID", "LONG"], ["EdgeFID", "LONG"], ["EdgeFrmPos", "DOUBLE"], ["EdgeToPos", "DOUBLE"] ] arcpy.management.AddFields(self.streets_tmc, field_defs) with arcpy.da.InsertCursor(self.streets_tmc, [f[0] for f in field_defs]) as cur: for row in arcpy.da.SearchCursor(self.in_multinet.rd, ["ID", "RDSTMC"]): id = row[0] # The TMC field value comes from the last 9 characters of the RDSTMC field of the RD table. rdstmc = row[1] tmc = rdstmc[-9:] try: # Find the street record associated with this street profile record edge_fid = self.streets_df.loc[np.int64(row[0])]["OID"] except KeyError: arcpy.AddWarning(( f"The Streets table is missing an entry with ID {id}, which is used in the RDS-TMC Information " "(RD) historical traffic table.")) # Just skip this row and don't add it continue if rdstmc[0] == "+": edge_from_pos = 0 edge_to_pos = 1 elif rdstmc[0] == "-": edge_from_pos = 1 edge_to_pos = 0 else: arcpy.AddWarning(( "The RDS-TMC Information (RD) historical traffic table has an invalid RDSTMC field value for " f"ID {id}." )) continue cur.insertRow([id, tmc, self.fc_id, edge_fid, edge_from_pos, edge_to_pos]) @timed_exec def _read_and_index_restrictions(self): """Read in the restrictions table and index it for quick lookups.""" arcpy.AddMessage("Reading and grouping restrictions table...") where = f"VT IN ({', '.join([str(vt) for vt in self.vt_field_map])})" fields = ["ID", "VT", "DIR_POS", "RESTRTYP"] with arcpy.da.SearchCursor(self.in_multinet.rs, fields, where) as cur: self.r_df = pd.DataFrame(cur, columns=fields) # Cast the ID column from its original double to an explicit int64 so we can use it for indexing and lookups self.r_df = self.r_df.astype({"ID": np.int64}) # Index the dataframe by ID for quick retrieval later, and sort the index to make those lookups even faster self.r_df.set_index("ID", inplace=True) self.r_df.sort_index(inplace=True) @timed_exec def _read_and_index_maneuver_paths(self): """Read in the maneuver paths table and index it for quick lookups.""" arcpy.AddMessage("Reading and grouping maneuver paths table...") fields = ["ID", "TRPELID", "SEQNR"] with arcpy.da.SearchCursor(self.in_multinet.mp, fields) as cur: # Explicitly read it in using int64 to convert the double-based ID field for easy indexing and lookups self.mp_df = pd.DataFrame(cur, columns=fields, dtype=np.int64) # Index the dataframe by ID for quick retrieval later, and sort the index to make those lookups even faster self.mp_df.set_index("ID", inplace=True) self.mp_df.sort_index(inplace=True) # Determine the max number of edges participating in a turn. This will be used when creating the turn feature # class to initialize the proper number of fields. self.max_turn_edges = int(self.mp_df["SEQNR"].max()) @timed_exec def _read_and_index_historical_traffic(self): """Read and index historical traffic tables.""" if not self.include_historical_traffic: # Sanity check return None fields = ["NETWORK_ID", "VAL_DIR", "SPWEEKDAY", "SPWEEKEND", "SPWEEK"] with arcpy.da.SearchCursor(self.in_multinet.hsnp, fields, "VAL_DIR IN (2, 3)") as cur: # Explicitly read it in using int64 to convert the double-based ID field for easy indexing and lookups hsnp_df = pd.DataFrame(cur, columns=fields, dtype=np.int64) # Index the dataframe by NETWORK_ID for quick retrieval later, # and sort the index to make those lookups even faster hsnp_df.set_index("NETWORK_ID", inplace=True) hsnp_df.sort_index(inplace=True) return hsnp_df @timed_exec def _read_and_index_logistics_tables(self): """Read and index MultiNet Logistics tables.""" if not self.include_logistics: # Sanity check return # Read in lookup tables restrtype_df = pd.read_csv( os.path.join(CURDIR, "LogisticsAttributeLookupTables", "RESTRTYP.csv"), index_col="RESTRTYP") vt_df = pd.read_csv(os.path.join(CURDIR, "LogisticsAttributeLookupTables", "VT.csv"), index_col="VT") restrval_df = pd.read_csv( os.path.join(CURDIR, "LogisticsAttributeLookupTables", "RESTRVAL.csv"), index_col="RESTRVAL") # Because restrictions that require additional caveats from the LVC table are quite complex and are difficult to # model accurately, these are not included in our output network dataset. Read the LVC table to weed out any # records in the LRS table that have a matching ID and SEQNR combination. fields = ["ID", "SEQNR"] with arcpy.da.SearchCursor(self.in_multinet.lvc, fields) as cur: # Explicitly read it in using int64 to convert the double-based ID field for easy indexing and lookups lvc_df = pd.DataFrame(cur, columns=fields, dtype=np.int64) # Add a field to use as a mask after joining lvc_df["DROP"] = True # Index the dataframe by ID and SEQNR for joining lvc_df.set_index(["ID", "SEQNR"], inplace=True) # Read the LRS table fields = ["ID", "SEQNR", "RESTRTYP", "VT", "RESTRVAL", "LIMIT", "UNIT_MEAS"] codes = [f"'{r}'" for r in restrtype_df.index.tolist()] where = f"RESTRTYP IN ({', '.join(codes)})" with arcpy.da.SearchCursor(self.in_multinet.lrs, fields, where) as cur: self.lrs_df =
pd.DataFrame(cur, columns=fields)
pandas.DataFrame
''' Create a csv with inspection report, permit_id, date, time, inspec type, critical violation count, non-crit violation count, crit violation corrected on site, non-crit violation corrected on site, crit violation to be resolved, non-crit violation to be resolved, critical violation repeat violation, and non-crit violation repeat violation. Create a second csv with inspection report, permit_id, critical violation count, non-crit violation count, lat, lon for mapping purposes. 20160623 <NAME> ''' import pandas as pd def map_list(): #business list bus = pd.read_csv('geo_master.csv') #restaurant_inspections insp = pd.read_csv('restaurant_inspections.csv') merged =pd.merge(left=insp, right=bus, left_on='permit_id', right_on='permit_id') merged.drop(['name', 'address', 'category', 'permit_url', 'map_url', 'phone_num', 'YelpID'], axis=1, inplace=True) merged.to_csv('mapping.csv', index=False) def insp_compilation(): #report details list rpt_list =
pd.read_csv('cleaned_report_results.csv')
pandas.read_csv
from typing import List, Any from itertools import chain from app_utils import AppFileHandler import pandas as pd import sqlite3 import logging import os import re pd.set_option('display.max_rows', None) class SansNotesApp(AppFileHandler): APP_FILES = os.path.join(os.getcwd(),'SansNotesAppFiles') APP_DATABASE_FILES = os.path.join(APP_FILES,'NotesAppDbFiles') CREATE_TABLE = """ CREATE TABLE IF NOT EXISTS {table_name_field} ( subject VARCHAR(50), topic VARCHAR(50), book VARCHAR(3), page VARCHAR(3), notes VARCHAR(1000) ); """ DROP_TABLE = """ DROP TABLE {table_name_field}; """ INSERT = """ INSERT INTO {table_name_field} ( subject, topic, book, page, notes ) VALUES ( {subject_}, {topic_}, {book_}, {page_}, {notes_} ); """ SEARCH = """ SELECT DISTINCT * FROM {table_name_field} WHERE {col_name} """ SHOW_TABLE_DATA = """ SELECT DISTINCT * FROM {table_name_field} """ DELETE_DATA = """ DELETE FROM {table_name_field} """ def __init__(self): super().__init__() if not os.path.exists(SansNotesApp.APP_FILES): os.mkdir(SansNotesApp.APP_FILES) logging.basicConfig( filename=os.path.join(SansNotesApp.APP_FILES,'NotesAppDb.log'), level=logging.DEBUG, filemode='w' ) logging.debug(SansNotesApp.APP_FILES) if not os.path.exists(SansNotesApp.APP_DATABASE_FILES): os.mkdir(SansNotesApp.APP_DATABASE_FILES) logging.debug(os.listdir(SansNotesApp.APP_FILES)) def __format_db_name(self,db_name_fmt:str) -> str: db_path = os.path.join(SansNotesApp.APP_DATABASE_FILES,'{}.db'.format(SansNotesApp.check_char_string(db_name_fmt))) logging.debug(db_path) return db_path @property def database_name(self) -> str: return self.__db_name @database_name.setter def database_name(self,db_name:str): """ Enter a string with no spaces or special characters as the database name """ self.__db_name = self.__format_db_name(db_name) logging.debug(self.__db_name) def db_connect_and_cursor(self) -> bool: """ This function will create a database if it doesn't exist. """ self.__con = sqlite3.connect(self.__db_name) logging.debug(self.__con) self.__cur = self.__con.cursor() logging.debug(self.__cur) return True def get_cursor(self): return self.__cur def check_db_file(self) -> bool: return os.path.exists(self.__db_name) def show_tables(self) -> List[str]: self.__cur.execute("SELECT name FROM sqlite_master WHERE type='table';") tables_normalized = list(chain.from_iterable(self.__cur.fetchall())) return tables_normalized def committ_and_close(self) -> bool: self.__con.commit() self.__con.close() return True def drop_table(self, table_to_drop) -> bool: clean_drp_tbl_nm = SansNotesApp.check_char_string(table_to_drop) self.__cur.execute( SansNotesApp.DROP_TABLE.format(table_name_field=clean_drp_tbl_nm) ) success = clean_drp_tbl_nm not in self.show_tables() logging.debug(f'{SansNotesApp.check_char_string(clean_drp_tbl_nm)} dropped:{success}') return success def create_table(self, table_name) -> bool: clean_crt_tbl_nm = SansNotesApp.check_char_string(table_name) self.__cur.execute( SansNotesApp.CREATE_TABLE.format(table_name_field=clean_crt_tbl_nm) ) success = clean_crt_tbl_nm in self.show_tables() logging.debug(f'{SansNotesApp.check_char_string(clean_crt_tbl_nm)} created:{success}') return success def insert_values( self, table_name, subject, topic, book, page, notes = '' )-> bool: values_list = list( map( lambda x: str(x), [ subject.replace("'","`"), topic.replace("'","`"), book.replace("'","`"), page.replace("'","`"), notes.replace("'","`") ] ) ) print(values_list) fmt_func = SansNotesApp.__format_values_string insert_value_query_string = SansNotesApp.INSERT.format( table_name_field=table_name, subject_=fmt_func(values_list[0]), topic_=fmt_func(values_list[1]), book_=fmt_func(values_list[2]), page_=fmt_func(values_list[3]), notes_=fmt_func(values_list[4]) ) logging.debug(insert_value_query_string) self.__cur.execute( insert_value_query_string ) return True def show_table_data(self,table_name) -> List[Any]: clean_table_name = SansNotesApp.check_char_string(table_name,strict=False) show_table_query_string = SansNotesApp.SHOW_TABLE_DATA.format(table_name_field = clean_table_name) logging.debug(show_table_query_string) table_data = [*self.__cur.execute( show_table_query_string )] table_data_df = pd.DataFrame( table_data , columns=[tuple[0] for tuple in self.__cur.description]) logging.debug(f'table_data: {[[tuple[0] for tuple in self.__cur.description]]+table_data}') return table_data_df def delete_data(self, table_name, subject = None, topic = None, book = None, page = None, notes = None, strict_search = True) -> bool: del_query_string = SansNotesApp.DELETE_DATA.format(table_name_field=SansNotesApp.check_char_string(table_name)) \ if not any({subject,topic,book,page,notes}) \ else SansNotesApp.DELETE_DATA.format(table_name_field=SansNotesApp.check_char_string(table_name)) + SansNotesApp.format_where_clause( subject, topic, book, page, notes, strict_search ) self.__cur.execute( del_query_string ) logging.debug(f'del_query_string: {del_query_string}') return True def search_data(self, table_name, subject = None, topic = None, book = None, page = None, notes = None, strict_search = True ) -> List[Any]: search_query_string = SansNotesApp.SHOW_TABLE_DATA.format(table_name_field=SansNotesApp.check_char_string(table_name)) \ if not any({subject,topic,book,page,notes}) \ else SansNotesApp.SHOW_TABLE_DATA.format(table_name_field=SansNotesApp.check_char_string(table_name)) + SansNotesApp.format_where_clause( subject, topic, book, page, notes, strict_search ) logging.debug(f'search_query_string: {search_query_string}') search_table_data = [*self.__cur.execute( search_query_string )] search_data_list =
pd.DataFrame(search_table_data,columns=[tuple[0] for tuple in self.__cur.description])
pandas.DataFrame
import inspect import re from functools import wraps from typing import Union, Any, List from uuid import uuid4 import pandas import sys from .six import string_types, integer_types from .fields import (FIELD_DATAFRAME, FIELD_TEXT, FIELD_NUMERIC, FIELD_NO_INPUT, FIELD_SELECT, FIELD_SELECT_MULTIPLE) from .utils import fn_name_to_pretty_label, float_to_decimal, vectorized_is_valid, vectorized_compare_dates, \ vectorized_is_complete_date, vectorized_len, vectorized_get_dict_key, vectorized_is_in, vectorized_case_insensitive_is_in from decimal import Decimal, Inexact, Context import operator import numpy as np import pandas as pd class BaseType(object): def __init__(self, value): self.value = self._assert_valid_value_and_cast(value) def _assert_valid_value_and_cast(self, value): raise NotImplemented() @classmethod def get_all_operators(cls): methods = inspect.getmembers(cls) return [{'name': m[0], 'label': m[1].label, 'input_type': m[1].input_type} for m in methods if getattr(m[1], 'is_operator', False)] def export_type(cls): """ Decorator to expose the given class to business_rules.export_rule_data. """ cls.export_in_rule_data = True return cls def type_operator(input_type, label=None, assert_type_for_arguments=True): """ Decorator to make a function into a type operator. - assert_type_for_arguments - if True this patches the operator function so that arguments passed to it will have _assert_valid_value_and_cast called on them to make type errors explicit. """ def wrapper(func): func.is_operator = True func.label = label \ or fn_name_to_pretty_label(func.__name__) func.input_type = input_type @wraps(func) def inner(self, *args, **kwargs): if assert_type_for_arguments: args = [self._assert_valid_value_and_cast(arg) for arg in args] kwargs = dict((k, self._assert_valid_value_and_cast(v)) for k, v in kwargs.items()) return func(self, *args, **kwargs) return inner return wrapper @export_type class StringType(BaseType): name = "string" def _assert_valid_value_and_cast(self, value): value = value or "" if not isinstance(value, string_types): raise AssertionError("{0} is not a valid string type.". format(value)) return value @type_operator(FIELD_TEXT) def equal_to(self, other_string): return self.value == other_string @type_operator(FIELD_TEXT) def not_equal_to(self, other_string): return self.value != other_string @type_operator(FIELD_TEXT, label="Equal To (case insensitive)") def equal_to_case_insensitive(self, other_string): return self.value.lower() == other_string.lower() @type_operator(FIELD_TEXT) def starts_with(self, other_string): return self.value.startswith(other_string) @type_operator(FIELD_TEXT) def ends_with(self, other_string): return self.value.endswith(other_string) @type_operator(FIELD_TEXT) def contains(self, other_string): return other_string in self.value @type_operator(FIELD_TEXT) def matches_regex(self, regex): return re.search(regex, self.value) @type_operator(FIELD_NO_INPUT) def non_empty(self): return bool(self.value) @export_type class NumericType(BaseType): EPSILON = Decimal('0.000001') name = "numeric" @staticmethod def _assert_valid_value_and_cast(value): if isinstance(value, float): # In python 2.6, casting float to Decimal doesn't work return float_to_decimal(value) if isinstance(value, integer_types): return Decimal(value) if isinstance(value, Decimal): return value else: raise AssertionError("{0} is not a valid numeric type.". format(value)) @type_operator(FIELD_NUMERIC) def equal_to(self, other_numeric): return abs(self.value - other_numeric) <= self.EPSILON @type_operator(FIELD_NUMERIC) def not_equal_to(self, other_numeric): return abs(self.value - other_numeric) > self.EPSILON @type_operator(FIELD_NUMERIC) def greater_than(self, other_numeric): return (self.value - other_numeric) > self.EPSILON @type_operator(FIELD_NUMERIC) def greater_than_or_equal_to(self, other_numeric): return self.greater_than(other_numeric) or self.equal_to(other_numeric) @type_operator(FIELD_NUMERIC) def less_than(self, other_numeric): return (other_numeric - self.value) > self.EPSILON @type_operator(FIELD_NUMERIC) def less_than_or_equal_to(self, other_numeric): return self.less_than(other_numeric) or self.equal_to(other_numeric) @export_type class BooleanType(BaseType): name = "boolean" def _assert_valid_value_and_cast(self, value): if type(value) != bool: raise AssertionError("{0} is not a valid boolean type". format(value)) return value @type_operator(FIELD_NO_INPUT) def is_true(self): return self.value @type_operator(FIELD_NO_INPUT) def is_false(self): return not self.value @export_type class SelectType(BaseType): name = "select" def _assert_valid_value_and_cast(self, value): if not hasattr(value, '__iter__'): raise AssertionError("{0} is not a valid select type". format(value)) return value @staticmethod def _case_insensitive_equal_to(value_from_list, other_value): if isinstance(value_from_list, string_types) and \ isinstance(other_value, string_types): return value_from_list.lower() == other_value.lower() else: return value_from_list == other_value @type_operator(FIELD_SELECT, assert_type_for_arguments=False) def contains(self, other_value): for val in self.value: if self._case_insensitive_equal_to(val, other_value): return True return False @type_operator(FIELD_SELECT, assert_type_for_arguments=False) def does_not_contain(self, other_value): for val in self.value: if self._case_insensitive_equal_to(val, other_value): return False return True @export_type class SelectMultipleType(BaseType): name = "select_multiple" def _assert_valid_value_and_cast(self, value): if not hasattr(value, '__iter__'): raise AssertionError("{0} is not a valid select multiple type". format(value)) return value @type_operator(FIELD_SELECT_MULTIPLE) def contains_all(self, other_value): select = SelectType(self.value) for other_val in other_value: if not select.contains(other_val): return False return True @type_operator(FIELD_SELECT_MULTIPLE) def is_contained_by(self, other_value): other_select_multiple = SelectMultipleType(other_value) return other_select_multiple.contains_all(self.value) @type_operator(FIELD_SELECT_MULTIPLE) def is_not_contained_by(self, other_value): return not self.is_contained_by(other_value) @type_operator(FIELD_SELECT_MULTIPLE) def shares_at_least_one_element_with(self, other_value): select = SelectType(self.value) for other_val in other_value: if select.contains(other_val): return True return False @type_operator(FIELD_SELECT_MULTIPLE) def shares_exactly_one_element_with(self, other_value): found_one = False select = SelectType(self.value) for other_val in other_value: if select.contains(other_val): if found_one: return False found_one = True return found_one @type_operator(FIELD_SELECT_MULTIPLE) def shares_no_elements_with(self, other_value): return not self.shares_at_least_one_element_with(other_value) @export_type class DataframeType(BaseType): name = "dataframe" def __init__(self, data): self.value: pd.DataFrame = self._assert_valid_value_and_cast(data["value"]) self.column_prefix_map = data.get("column_prefix_map", {}) self.relationship_data = data.get("relationship_data", {}) self.value_level_metadata = data.get("value_level_metadata", []) self.column_codelist_map = data.get("column_codelist_map", {}) self.codelist_term_maps = data.get("codelist_term_maps", []) def _assert_valid_value_and_cast(self, value): if not hasattr(value, '__iter__'): raise AssertionError("{0} is not a valid select multiple type". format(value)) return value def convert_string_data_to_lower(self, data): if isinstance(data, pd.core.series.Series): data = data.str.lower() else: data = data.lower() return data def replace_prefix(self, value: str) -> Union[str, Any]: if isinstance(value, str): for prefix, replacement in self.column_prefix_map.items(): if value.startswith(prefix): return value.replace(prefix, replacement, 1) return value def replace_all_prefixes(self, values: [str]) -> [str]: for i in range(len(values)): values[i] = self.replace_prefix(values[i]) return values def get_comparator_data(self, comparator, value_is_literal: bool = False) -> Union[str, pd.Series]: if value_is_literal: return comparator else: return self.value.get(comparator, comparator) def is_column_of_iterables(self, column): return isinstance(column, pandas.core.series.Series) and (isinstance(column.iloc[0], list) or isinstance(column.iloc[0], set)) @type_operator(FIELD_DATAFRAME) def exists(self, other_value) -> pd.Series: target_column = self.replace_prefix(other_value.get("target")) return pd.Series([target_column in self.value] * len(self.value)) @type_operator(FIELD_DATAFRAME) def not_exists(self, other_value): return ~self.exists(other_value) @type_operator(FIELD_DATAFRAME) def equal_to(self, other_value) -> pd.Series: target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) return self.value[target].eq(comparison_data) & ~self.value[target].isin(["", None]) @type_operator(FIELD_DATAFRAME) def equal_to_case_insensitive(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) comparison_data = self.convert_string_data_to_lower(comparison_data) return (self.value[target].str.lower() == comparison_data) & ~self.value[target].isin(["", None]) @type_operator(FIELD_DATAFRAME) def not_equal_to_case_insensitive(self, other_value): return ~self.equal_to_case_insensitive(other_value) @type_operator(FIELD_DATAFRAME) def not_equal_to(self, other_value): return ~self.equal_to(other_value) @type_operator(FIELD_DATAFRAME) def suffix_equal_to(self, other_value: dict) -> pd.Series: """ Checks if target suffix is equal to comparator. """ target: str = self.replace_prefix(other_value.get("target")) value_is_literal: bool = other_value.get("value_is_literal", False) comparator: Union[str, Any] = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data: Union[str, pd.Series] = self.get_comparator_data(comparator, value_is_literal) suffix: int = self.replace_prefix(other_value.get("suffix")) return self._check_equality_of_string_part(target, comparison_data, "suffix", suffix) @type_operator(FIELD_DATAFRAME) def suffix_not_equal_to(self, other_value: dict) -> pd.Series: """ Checks if target suffix is not equal to comparator. """ return ~self.suffix_equal_to(other_value) @type_operator(FIELD_DATAFRAME) def prefix_equal_to(self, other_value: dict) -> pd.Series: """ Checks if target prefix is equal to comparator. """ target: str = self.replace_prefix(other_value.get("target")) value_is_literal: bool = other_value.get("value_is_literal", False) comparator: Union[str, Any] = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data: Union[str, pd.Series] = self.get_comparator_data(comparator, value_is_literal) prefix: int = self.replace_prefix(other_value.get("prefix")) return self._check_equality_of_string_part(target, comparison_data, "prefix", prefix) @type_operator(FIELD_DATAFRAME) def prefix_not_equal_to(self, other_value: dict) -> pd.Series: """ Checks if target prefix is not equal to comparator. """ return ~self.prefix_equal_to(other_value) def _check_equality_of_string_part( self, target: str, comparison_data: Union[str, pd.Series], part_to_validate: str, length: int ) -> pd.Series: """ Checks if the given string part is equal to comparison data. """ if not self.value[target].apply(type).eq(str).all(): raise ValueError("The operator can't be used with non-string values") # compare if part_to_validate == "suffix": series_to_validate: pd.Series = self.value[target].str.slice(-length) elif part_to_validate == "prefix": series_to_validate: pd.Series = self.value[target].str.slice(start=0, step=length + 1) else: raise ValueError(f"Invalid part to validate: {part_to_validate}. Valid values are: suffix, prefix") return series_to_validate.eq(comparison_data) @type_operator(FIELD_DATAFRAME) def less_than(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) results = np.where(self.value[target] < comparison_data, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def less_than_or_equal_to(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) results = np.where(self.value[target] <= comparison_data, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def greater_than_or_equal_to(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) results = np.where(self.value[target] >= comparison_data, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def greater_than(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) results = np.where(self.value[target] > comparison_data, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def contains(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) if self.is_column_of_iterables(self.value[target]): results = vectorized_is_in(comparison_data, self.value[target]) elif isinstance(comparator, pandas.core.series.Series): results = np.where(comparison_data.isin(self.value[target]), True, False) else: results = np.where(self.value[target] == comparison_data, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def does_not_contain(self, other_value): return ~self.contains(other_value) @type_operator(FIELD_DATAFRAME) def contains_case_insensitive(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = self.replace_prefix(other_value.get("comparator")) if not value_is_literal else other_value.get("comparator") comparison_data = self.get_comparator_data(comparator, value_is_literal) comparison_data = self.convert_string_data_to_lower(comparison_data) if self.is_column_of_iterables(self.value[target]): results = vectorized_case_insensitive_is_in(comparison_data, self.value[target]) elif isinstance(comparator, pandas.core.series.Series): results = np.where(comparison_data.isin(self.value[target].str.lower()), True, False) else: results = np.where(self.value[target].str.lower() == comparison_data, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def does_not_contain_case_insensitive(self, other_value): return ~self.contains_case_insensitive(other_value) @type_operator(FIELD_DATAFRAME) def is_contained_by(self, other_value): target = self.replace_prefix(other_value.get("target")) value_is_literal = other_value.get("value_is_literal", False) comparator = other_value.get("comparator") if isinstance(comparator, str) and not value_is_literal: # column name provided comparator = self.replace_prefix(comparator) comparison_data = self.get_comparator_data(comparator, value_is_literal) if self.is_column_of_iterables(comparison_data): results = vectorized_is_in(self.value[target], comparison_data) else: results = self.value[target].isin(comparison_data) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def is_not_contained_by(self, other_value): return ~self.is_contained_by(other_value) @type_operator(FIELD_DATAFRAME) def is_contained_by_case_insensitive(self, other_value): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator", []) value_is_literal = other_value.get("value_is_literal", False) if isinstance(comparator, list): comparator = [val.lower() for val in comparator] elif isinstance(comparator, str) and not value_is_literal: # column name provided comparator = self.replace_prefix(comparator) comparison_data = self.get_comparator_data(comparator, value_is_literal) if self.is_column_of_iterables(comparison_data): results = vectorized_case_insensitive_is_in(self.value[target].str.lower(), comparison_data) return pd.Series(results) elif isinstance(comparison_data, pd.core.series.Series): results = self.value[target].str.lower().isin(comparison_data.str.lower()) else: results = self.value[target].str.lower().isin(comparison_data) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def is_not_contained_by_case_insensitive(self, other_value): return ~self.is_contained_by_case_insensitive(other_value) @type_operator(FIELD_DATAFRAME) def prefix_matches_regex(self, other_value): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") prefix = other_value.get("prefix") results = self.value[target].map(lambda x: re.search(comparator, x[:prefix]) is not None) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def not_prefix_matches_regex(self, other_value): return ~self.prefix_matches_regex(other_value) @type_operator(FIELD_DATAFRAME) def suffix_matches_regex(self, other_value): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") suffix = other_value.get("suffix") results = self.value[target].apply(lambda x: re.search(comparator, x[-suffix:]) is not None) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def not_suffix_matches_regex(self, other_value): return ~self.suffix_matches_regex(other_value) @type_operator(FIELD_DATAFRAME) def matches_regex(self, other_value): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") results = self.value[target].str.match(comparator) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def not_matches_regex(self, other_value): return ~self.matches_regex(other_value) @type_operator(FIELD_DATAFRAME) def starts_with(self, other_value): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") results = self.value[target].str.startswith(comparator) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def ends_with(self, other_value): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") results = self.value[target].str.endswith(comparator) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def has_equal_length(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") results = self.value[target].str.len().eq(comparator) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def has_not_equal_length(self, other_value: dict): return ~self.has_equal_length(other_value) @type_operator(FIELD_DATAFRAME) def longer_than(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") results = self.value[target].str.len().gt(comparator) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def longer_than_or_equal_to(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") results = self.value[target].str.len().ge(comparator) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def shorter_than(self, other_value: dict): return ~self.longer_than_or_equal_to(other_value) @type_operator(FIELD_DATAFRAME) def shorter_than_or_equal_to(self, other_value: dict): return ~self.longer_than(other_value) @type_operator(FIELD_DATAFRAME) def empty(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) results = np.where(self.value[target].isin(["", None]), True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def empty_within_except_last_row(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") # group all targets by comparator grouped_target = self.value.groupby(comparator)[target] # validate all targets except the last one results = grouped_target.apply(lambda x: x[:-1]).apply(lambda x: x in ["", None]) # extract values with corresponding indexes from results self.value[f"result_{uuid4()}"] = results.reset_index(level=0, drop=True) return True in results.values @type_operator(FIELD_DATAFRAME) def non_empty(self, other_value: dict): return ~self.empty(other_value) @type_operator(FIELD_DATAFRAME) def non_empty_within_except_last_row(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") # group all targets by comparator grouped_target = self.value.groupby(comparator)[target] # validate all targets except the last one results = ~grouped_target.apply(lambda x: x[:-1]).apply(lambda x: x in ["", None]) # extract values with corresponding indexes from results self.value[f"result_{uuid4()}"] = results.reset_index(level=0, drop=True) return not(False in results.values) @type_operator(FIELD_DATAFRAME) def contains_all(self, other_value: dict): target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") if isinstance(comparator, list): # get column as array of values values = comparator else: comparator = self.replace_prefix(comparator) values = self.value[comparator].unique() return set(values).issubset(set(self.value[target].unique())) @type_operator(FIELD_DATAFRAME) def not_contains_all(self, other_value: dict): return not self.contains_all(other_value) @type_operator(FIELD_DATAFRAME) def invalid_date(self, other_value): target = self.replace_prefix(other_value.get("target")) results = ~vectorized_is_valid(self.value[target]) return pd.Series(results) def date_comparison(self, other_value, operator): target = self.replace_prefix(other_value.get("target")) comparator = self.replace_prefix(other_value.get("comparator")) component = other_value.get("date_component") results = np.where(vectorized_compare_dates(component, self.value[target], self.value.get(comparator, comparator), operator), True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def date_equal_to(self, other_value): return self.date_comparison(other_value, operator.eq) @type_operator(FIELD_DATAFRAME) def date_not_equal_to(self, other_value): return self.date_comparison(other_value, operator.ne) @type_operator(FIELD_DATAFRAME) def date_less_than(self, other_value): return self.date_comparison(other_value, operator.lt) @type_operator(FIELD_DATAFRAME) def date_less_than_or_equal_to(self, other_value): return self.date_comparison(other_value, operator.le) @type_operator(FIELD_DATAFRAME) def date_greater_than_or_equal_to(self, other_value): return self.date_comparison(other_value, operator.ge) @type_operator(FIELD_DATAFRAME) def date_greater_than(self, other_value): return self.date_comparison(other_value, operator.gt) @type_operator(FIELD_DATAFRAME) def is_incomplete_date(self, other_value): return ~self.is_complete_date(other_value) @type_operator(FIELD_DATAFRAME) def is_complete_date(self, other_value): target = self.replace_prefix(other_value.get("target")) results = vectorized_is_complete_date(self.value[target]) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def is_unique_set(self, other_value): target = self.replace_prefix(other_value.get("target")) value = other_value.get("comparator") if isinstance(value, list): value.append(target) target_data = value else: target_data = [value, target] target_data = self.replace_all_prefixes(target_data) counts = self.value[target_data].groupby(target_data)[target].transform('size') results = np.where(counts <= 1, True, False) return pd.Series(results) @type_operator(FIELD_DATAFRAME) def is_not_unique_relationship(self, other_value) -> pd.Series: """ Validates one-to-one relationship between two columns (target and comparator) against a dataset. One-to-one means that a pair of columns can be duplicated but its integrity must not be violated: one value of target always corresponds to one value of comparator. Examples: Valid dataset: STUDYID STUDYDESC 1 A 2 B 3 C 1 A 2 B Invalid dataset: STUDYID STUDYDESC 1 A 2 A 3 C """ target = self.replace_prefix(other_value.get("target")) comparator = other_value.get("comparator") if isinstance(comparator, list): comparator = self.replace_all_prefixes(comparator) else: comparator = self.replace_prefix(comparator) # remove repeating rows df_without_duplicates: pd.DataFrame = self.value[[target, comparator]].drop_duplicates() # we need to check if ANY of the columns (target or comparator) is duplicated duplicated_comparator: pd.Series = df_without_duplicates[comparator].duplicated(keep=False) duplicated_target: pd.Series = df_without_duplicates[target].duplicated(keep=False) result = pd.Series([False] * len(self.value)) if duplicated_comparator.any(): duplicated_comparator_values = set(df_without_duplicates[duplicated_comparator][comparator]) result += self.value[comparator].isin(duplicated_comparator_values) if duplicated_target.any(): duplicated_target_values = set(df_without_duplicates[duplicated_target][target]) result += self.value[target].isin(duplicated_target_values) return result @type_operator(FIELD_DATAFRAME) def is_unique_relationship(self, other_value) -> pd.Series: return ~self.is_not_unique_relationship(other_value) @type_operator(FIELD_DATAFRAME) def is_not_unique_set(self, other_value): return ~self.is_unique_set(other_value) @type_operator(FIELD_DATAFRAME) def is_ordered_set(self, other_value): target = self.replace_prefix(other_value.get("target")) value = other_value.get("comparator") if isinstance(value, list): raise Exception('Comparator must be a single String value') return not (False in self.value.groupby(value).agg(lambda x : list(x))[target].map(lambda x: sorted(x) == x).tolist()) @type_operator(FIELD_DATAFRAME) def is_not_ordered_set(self, other_value): target = self.replace_prefix(other_value.get("target")) value = other_value.get("comparator") if isinstance(value, list): raise Exception('Comparator must be a single String value') return False in self.value.groupby(value).agg(lambda x : list(x))[target].map(lambda x: sorted(x) == x).tolist() @type_operator(FIELD_DATAFRAME) def is_valid_reference(self, other_value): target = self.replace_prefix(other_value.get("target")) context = self.replace_prefix(other_value.get("context")) if context: results = self.value.apply(lambda row: row[target] in self.relationship_data.get(row[context], {}), axis=1) else: results = self.value[target].isin(self.relationship_data) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def is_not_valid_reference(self, other_value): return ~self.is_valid_reference(other_value) @type_operator(FIELD_DATAFRAME) def is_valid_relationship(self, other_value): target = self.replace_prefix(other_value.get("target")) value_column = self.replace_prefix(other_value.get("comparator")) context = self.replace_prefix(other_value.get("context")) results = self.value.apply(lambda row: self.detect_reference(row, value_column, target, context), axis=1) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def is_not_valid_relationship(self, other_value): return ~self.is_valid_relationship(other_value) @type_operator(FIELD_DATAFRAME) def non_conformant_value_data_type(self, other_value): results = False for vlm in self.value_level_metadata: results |= self.value.apply(lambda row: vlm["filter"](row) and not vlm["type_check"](row), axis=1) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def non_conformant_value_length(self, other_value): results = False for vlm in self.value_level_metadata: results |= self.value.apply(lambda row: vlm["filter"](row) and not vlm["length_check"](row), axis=1) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def conformant_value_data_type(self, other_value): results = False for vlm in self.value_level_metadata: results |= self.value.apply(lambda row: vlm["filter"](row) and vlm["type_check"](row), axis=1) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def conformant_value_length(self, other_value): results = False for vlm in self.value_level_metadata: results |= self.value.apply(lambda row: vlm["filter"](row) and vlm["length_check"](row), axis=1) return pd.Series(results.values) @type_operator(FIELD_DATAFRAME) def has_next_corresponding_record(self, other_value: dict): """ The operator ensures that value of target in current row is the same as value of comparator in the next row. In order to achieve this, we just remove last row from target and first row from comparator and compare the resulting contents. The result is reported for target. """ target = self.replace_prefix(other_value.get("target")) comparator = self.replace_prefix(other_value.get("comparator")) group_by_column: str = self.replace_prefix(other_value.get("within")) order_by_column: str = self.replace_prefix(other_value.get("ordering")) ordered_df = self.value.sort_values(by=[order_by_column]) grouped_df = ordered_df.groupby(group_by_column) results = grouped_df.apply(lambda x: self.compare_target_with_comparator_next_row(x, target, comparator)) return pd.Series(results.explode().tolist()) @type_operator(FIELD_DATAFRAME) def does_not_have_next_corresponding_record(self, other_value: dict): return ~self.has_next_corresponding_record(other_value) def compare_target_with_comparator_next_row(self, df: pd.DataFrame, target: str, comparator: str): """ Compares current row of a target with the next row of comparator. We can't compare last row of target with the next row of comparator because there is no row after the last one. """ target_without_last_row = df[target].drop(df[target].tail(1).index) comparator_without_first_row = df[comparator].drop(df[comparator].head(1).index) results = np.where(target_without_last_row.values == comparator_without_first_row.values, True, False) return [*results, pandas.NA] # appending NA here to make the length of results list the same as length of df @type_operator(FIELD_DATAFRAME) def present_on_multiple_rows_within(self, other_value: dict): """ The operator ensures that the target is present on multiple rows within a group_by column. The dataframe is grouped by a certain column and the check is applied to each group. """ target = self.replace_prefix(other_value.get("target")) min_count: int = other_value.get("comparator") or 1 group_by_column = self.replace_prefix(other_value.get("within")) grouped = self.value.groupby(group_by_column) results = grouped.apply(lambda x: self.validate_series_length(x[target], min_count)) return pd.Series(results.explode().tolist()) def validate_series_length(self, ser: pd.Series, min_length: int): if len(ser) > min_length: return [True] * len(ser) else: return [False] * min_length @type_operator(FIELD_DATAFRAME) def not_present_on_multiple_rows_within(self, other_value: dict): return ~self.present_on_multiple_rows_within(other_value) def detect_reference(self, row, value_column, target_column, context=None): if context: target_data = self.relationship_data.get(row[context], {}).get(row[target_column], pd.Series([]).values) else: target_data = self.relationship_data.get(row[target_column], pd.Series([]).values) value = row[value_column] return (value in target_data) or (value in target_data.astype(int).astype(str)) or (value in target_data.astype(str)) @type_operator(FIELD_DATAFRAME) def additional_columns_empty(self, other_value: dict): """ The dataframe column might have some additional columns. If the next additional column exists, the previous one cannot be empty. Example: column - TSVAL additional columns - TSVAL1, TSVAL2, ... If TSVAL2 exists -> TSVAL1 cannot be empty. Original column (TSVAL) can be empty. The operator extracts these additional columns from the DF and ensures they are not empty. """ target: str = self.replace_prefix(other_value.get("target")) regex: str = rf"^{target}\d+$" # starting from target, ending with integers and nothing is between them df: pd.DataFrame = self.value.filter(regex=regex) # applying a function to each row result: pd.Series = df.apply(lambda row: self.next_column_exists_and_previous_is_null(row), axis=1) return result @type_operator(FIELD_DATAFRAME) def additional_columns_not_empty(self, other_value: dict): return ~self.additional_columns_empty(other_value) @type_operator(FIELD_DATAFRAME) def references_correct_codelist(self, other_value: dict): target: str = self.replace_prefix(other_value.get("target")) comparator = self.replace_prefix(other_value.get("comparator")) result: pd.Series = self.value.apply(lambda row: self.valid_codelist_reference(row[target], row[comparator]), axis=1) return result @type_operator(FIELD_DATAFRAME) def does_not_reference_correct_codelist(self, other_value: dict): return ~self.references_correct_codelist(other_value) @type_operator(FIELD_DATAFRAME) def uses_valid_codelist_terms(self, other_value: dict): target: str = self.replace_prefix(other_value.get("target")) comparator = self.replace_prefix(other_value.get("comparator")) result: pd.Series = self.value.apply(lambda row: self.valid_terms(row[target], row[comparator]), axis=1) return result @type_operator(FIELD_DATAFRAME) def does_not_use_valid_codelist_terms(self, other_value: dict): return ~self.uses_valid_codelist_terms(other_value) def next_column_exists_and_previous_is_null(self, row: pd.Series) -> bool: row.reset_index(drop=True, inplace=True) for index in row[row.isin([[], {}, "", None])].index: # leaving null values only next_position: int = index + 1 if next_position < len(row) and row[next_position] is not None: return True return False def valid_codelist_reference(self, column_name, codelist): if column_name in self.column_codelist_map: return codelist in self.column_codelist_map[column_name] elif self.column_prefix_map: # Check for generic versions of variables (i.e --DECOD) for key in self.column_prefix_map: if column_name.startswith(self.column_prefix_map[key]): generic_column_name = column_name.replace(self.column_prefix_map[key], key, 1) if generic_column_name in self.column_codelist_map: return codelist in self.column_codelist_map.get(generic_column_name) return True def valid_terms(self, codelist, terms_list): if not codelist: return True valid_term = False for codelist_term_map in self.codelist_term_maps: if codelist in codelist_term_map: valid_term = valid_term or (codelist_term_map[codelist].get("extensible") or set(terms_list).issubset(codelist_term_map[codelist].get("allowed_terms", []))) return valid_term @type_operator(FIELD_DATAFRAME) def has_different_values(self, other_value: dict): """ The operator ensures that the target columns has different values. """ target: str = self.replace_prefix(other_value.get("target")) is_valid: bool = len(self.value[target].unique()) > 1 return pandas.Series([is_valid] * len(self.value[target])) @type_operator(FIELD_DATAFRAME) def has_same_values(self, other_value: dict): return ~self.has_different_values(other_value) @type_operator(FIELD_DATAFRAME) def is_ordered_by(self, other_value: dict) -> pd.Series: """ Checking validity based on target order. """ target: str = self.replace_prefix(other_value.get("target")) sort_order: str =other_value.get("order","asc") if sort_order not in ["asc","dsc"]: raise ValueError ("invalid sorting order") sort_order_bool: bool = sort_order == "asc" return self.value[target].eq(self.value[target].sort_values(ascending=sort_order_bool, ignore_index=True)) @type_operator(FIELD_DATAFRAME) def is_not_ordered_by(self, other_value: dict) -> pd.Series: return ~self.is_ordered_by(other_value) @type_operator(FIELD_DATAFRAME) def value_has_multiple_references(self, other_value: dict) -> pd.Series: """ Requires a target column and a reference count column whose values are a dictionary containing the number of times that value appears. """ target: str = self.replace_prefix(other_value.get("target")) reference_count_column: str = self.replace_prefix(other_value.get("comparator")) result = np.where(vectorized_get_dict_key(self.value[reference_count_column], self.value[target]) > 1, True, False) return
pd.Series(result)
pandas.Series
import pytest from vetiver.vetiver_model import VetiverModel from vetiver.mock import get_mock_data, get_mock_model import pandas as pd from numpy import int64 # Load data, model X_df, y = get_mock_data() X_array =
pd.DataFrame(X_df)
pandas.DataFrame
#!/usr/bin/env python3 # Author: <NAME> import numpy as np import pandas as pd import scipy.stats as stats import warnings def normalize_quantiles(df): """ Quantile normalization to the average empirical distribution Note: replicates behavior of R function normalize.quantiles from library("preprocessCore") Reference: [1] Bolstad et al., Bioinformatics 19(2), pp. 185-193, 2003 Adapted from https://github.com/andrewdyates/quantile_normalize """ M = df.values.copy() Q = M.argsort(axis=0) m,n = M.shape # compute quantile vector quantiles = np.zeros(m) for i in range(n): quantiles += M[Q[:,i],i] quantiles = quantiles / n for i in range(n): # Get equivalence classes; unique values == 0 dupes = np.zeros(m, dtype=np.int) for j in range(m-1): if M[Q[j,i],i]==M[Q[j+1,i],i]: dupes[j+1] = dupes[j]+1 # Replace column with quantile ranks M[Q[:,i],i] = quantiles # Average together equivalence classes j = m-1 while j >= 0: if dupes[j] == 0: j -= 1 else: idxs = Q[j-dupes[j]:j+1,i] M[idxs,i] = np.median(M[idxs,i]) j -= 1 + dupes[j] assert j == -1 return
pd.DataFrame(M, index=df.index, columns=df.columns)
pandas.DataFrame
import pandas as pd from mfy_data_core.adapters.es_index_store import ESIndexStore from mfy_data_core_fakes.adapters.fake_storage import FakeIndexStore, FakeEsPandasClient, FakeObjectStore def test_fake_index_store(): index_store = FakeIndexStore() df =
pd.DataFrame([{"col1": "A", "col2": "B"}])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed May 16 12:39:55 2018 @author: malopez """ import math import numba import numpy as np import pandas as pd from collisionTimes import CollisionDetector from measure import MeasureClass n_particles = 50 class EventList(): def __init__(self, n_particles, particle_radius, size_X, size_Y, periodicWalls, periodicSideWalls): self.n_particles = n_particles self.particle_radius = particle_radius self.size_X = size_X self.size_Y = size_Y self.periodicWalls = periodicWalls self.periodicSideWalls = periodicSideWalls # We will init this attribute (the event times list itself) outside # the class definition, by calling the 'updateEventList' function self.eventTimesList = self.initEventList() def updateEventList(self, pos, vel): # We calculate collision times (from position and speed data) # and fill the list previously initialized (self.eventTimesList) evTimes = self.fillList(self.eventTimesList, pos, vel) # After that we order the list by 'dt' in ascending order evTimes = self.orderList(evTimes) # We save the list as an attribute of the class self.eventTimesList = evTimes def initEventList(self): part_i = pd.DataFrame(np.arange(self.n_particles, dtype=np.int32), columns=('first_element',)) wallLeft = pd.DataFrame(np.full((self.n_particles,), 'leftWall'), columns=('second_element',)) wallRight = pd.DataFrame(np.full((self.n_particles,), 'rightWall'), columns=('second_element',)) wallTop = pd.DataFrame(np.full((self.n_particles,), 'topWall'), columns=('second_element',)) wallBottom = pd.DataFrame(np.full((self.n_particles,), 'bottomWall'), columns=('second_element',)) dt = pd.DataFrame(np.zeros((self.n_particles, ), dtype=np.float64), columns=('dt',)) eventType = pd.DataFrame(np.full((self.n_particles,), 'particleWall_collision'), columns=('eventType',)) wallTimesList_left =
pd.concat((part_i, wallLeft, dt, eventType), axis=1)
pandas.concat
""" A warehouse for constant values required to initilize the PUDL Database. This constants module stores and organizes a bunch of constant values which are used throughout PUDL to populate static lists within the data packages or for data cleaning purposes. """ import pandas as pd import sqlalchemy as sa ###################################################################### # Constants used within the init.py module. ###################################################################### prime_movers = [ 'steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine' ] """list: A list of the types of prime movers""" rto_iso = { 'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'MISO': 'Midcontinent ISO', 'ISO-NE': 'ISO New England', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool' } """dict: A dictionary containing ISO/RTO abbreviations (keys) and names (values) """ us_states = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } """dict: A dictionary containing US state abbreviations (keys) and names (values) """ canada_prov_terr = { 'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NS': 'Nova Scotia', 'NL': 'Newfoundland and Labrador', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory', } """dict: A dictionary containing Canadian provinces' and territories' abbreviations (keys) and names (values) """ cems_states = {k: v for k, v in us_states.items() if v not in {'Alaska', 'American Samoa', 'Guam', 'Hawaii', 'Northern Mariana Islands', 'National', 'Puerto Rico', 'Virgin Islands'} } """dict: A dictionary containing US state abbreviations (keys) and names (values) that are present in the CEMS dataset """ # This is imperfect for states that have split timezones. See: # https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory # For states that are split, I went with where there seem to be more people # List of timezones in pytz.common_timezones # Canada: https://en.wikipedia.org/wiki/Time_in_Canada#IANA_time_zone_database state_tz_approx = { "AK": "US/Alaska", # Alaska; Not in CEMS "AL": "US/Central", # Alabama "AR": "US/Central", # Arkansas "AS": "Pacific/Pago_Pago", # American Samoa; Not in CEMS "AZ": "US/Arizona", # Arizona "CA": "US/Pacific", # California "CO": "US/Mountain", # Colorado "CT": "US/Eastern", # Connecticut "DC": "US/Eastern", # District of Columbia "DE": "US/Eastern", # Delaware "FL": "US/Eastern", # Florida (split state) "GA": "US/Eastern", # Georgia "GU": "Pacific/Guam", # Guam; Not in CEMS "HI": "US/Hawaii", # Hawaii; Not in CEMS "IA": "US/Central", # Iowa "ID": "US/Mountain", # Idaho (split state) "IL": "US/Central", # Illinois "IN": "US/Eastern", # Indiana (split state) "KS": "US/Central", # Kansas (split state) "KY": "US/Eastern", # Kentucky (split state) "LA": "US/Central", # Louisiana "MA": "US/Eastern", # Massachusetts "MD": "US/Eastern", # Maryland "ME": "US/Eastern", # Maine "MI": "America/Detroit", # Michigan (split state) "MN": "US/Central", # Minnesota "MO": "US/Central", # Missouri "MP": "Pacific/Saipan", # Northern Mariana Islands; Not in CEMS "MS": "US/Central", # Mississippi "MT": "US/Mountain", # Montana "NC": "US/Eastern", # North Carolina "ND": "US/Central", # North Dakota (split state) "NE": "US/Central", # Nebraska (split state) "NH": "US/Eastern", # New Hampshire "NJ": "US/Eastern", # New Jersey "NM": "US/Mountain", # New Mexico "NV": "US/Pacific", # Nevada "NY": "US/Eastern", # New York "OH": "US/Eastern", # Ohio "OK": "US/Central", # Oklahoma "OR": "US/Pacific", # Oregon (split state) "PA": "US/Eastern", # Pennsylvania "PR": "America/Puerto_Rico", # Puerto Rico; Not in CEMS "RI": "US/Eastern", # Rhode Island "SC": "US/Eastern", # South Carolina "SD": "US/Central", # South Dakota (split state) "TN": "US/Central", # Tennessee "TX": "US/Central", # Texas "UT": "US/Mountain", # Utah "VA": "US/Eastern", # Virginia "VI": "America/Puerto_Rico", # Virgin Islands; Not in CEMS "VT": "US/Eastern", # Vermont "WA": "US/Pacific", # Washington "WI": "US/Central", # Wisconsin "WV": "US/Eastern", # West Virginia "WY": "US/Mountain", # Wyoming # Canada (none of these are in CEMS) "AB": "America/Edmonton", # Alberta "BC": "America/Vancouver", # British Columbia (split province) "MB": "America/Winnipeg", # Manitoba "NB": "America/Moncton", # New Brunswick "NS": "America/Halifax", # Nova Scotia "NL": "America/St_Johns", # Newfoundland and Labrador (split province) "NT": "America/Yellowknife", # Northwest Territories (split province) "NU": "America/Iqaluit", # Nunavut (split province) "ON": "America/Toronto", # Ontario (split province) "PE": "America/Halifax", # Prince Edwards Island "QC": "America/Montreal", # Quebec (split province) "SK": "America/Regina", # Saskatchewan (split province) "YT": "America/Whitehorse", # Yukon Territory } """dict: A dictionary containing US and Canadian state/territory abbreviations (keys) and timezones (values) """ ferc1_power_purchase_type = { 'RQ': 'requirement', 'LF': 'long_firm', 'IF': 'intermediate_firm', 'SF': 'short_firm', 'LU': 'long_unit', 'IU': 'intermediate_unit', 'EX': 'electricity_exchange', 'OS': 'other_service', 'AD': 'adjustment' } """dict: A dictionary of abbreviations (keys) and types (values) for power purchase agreements from FERC Form 1. """ # Dictionary mapping DBF files (w/o .DBF file extension) to DB table names ferc1_dbf2tbl = { 'F1_1': 'f1_respondent_id', 'F1_2': 'f1_acb_epda', 'F1_3': 'f1_accumdepr_prvsn', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_5': 'f1_adit_190_detail', 'F1_6': 'f1_adit_190_notes', 'F1_7': 'f1_adit_amrt_prop', 'F1_8': 'f1_adit_other', 'F1_9': 'f1_adit_other_prop', 'F1_10': 'f1_allowances', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_20': 'f1_csscslc_pcsircs', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_33': 'f1_gnrt_plant', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_40': 'f1_mtrl_spply', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_43': 'f1_note_fin_stmnt', # 37% of DB 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', # 52% of DB 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_106_2009': 'f1_106_2009', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security' # 'F1_PINS': 'f1_pins', # private data, not publicized. # 'F1_FREEZE': 'f1_freeze', # private data, not publicized } """dict: A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension) (keys) to database table names (values). """ ferc1_huge_tables = { 'f1_footnote_tbl', 'f1_footnote_data', 'f1_note_fin_stmnt', } """set: A set containing large FERC Form 1 tables. """ # Invert the map above so we can go either way as needed ferc1_tbl2dbf = {v: k for k, v in ferc1_dbf2tbl.items()} """dict: A dictionary mapping database table names (keys) to FERC Form 1 DBF files(w / o .DBF file extension) (values). """ # This dictionary maps the strings which are used to denote field types in the # DBF objects to the corresponding generic SQLAlchemy Column types: # These definitions come from a combination of the dbfread example program # dbf2sqlite and this DBF file format documentation page: # http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm # Un-mapped types left as 'XXX' which should obviously make an error... dbf_typemap = { 'C': sa.String, 'D': sa.Date, 'F': sa.Float, 'I': sa.Integer, 'L': sa.Boolean, 'M': sa.Text, # 10 digit .DBT block number, stored as a string... 'N': sa.Float, 'T': sa.DateTime, '0': sa.Integer, # based on dbf2sqlite mapping 'B': 'XXX', # .DBT block number, binary string '@': 'XXX', # Timestamp... Date = Julian Day, Time is in milliseconds? '+': 'XXX', # Autoincrement (e.g. for IDs) 'O': 'XXX', # Double, 8 bytes 'G': 'XXX', # OLE 10 digit/byte number of a .DBT block, stored as string } """dict: A dictionary mapping field types in the DBF objects (keys) to the corresponding generic SQLAlchemy Column types. """ # This is the set of tables which have been successfully integrated into PUDL: ferc1_pudl_tables = ( 'fuel_ferc1', # Plant-level data, linked to plants_steam_ferc1 'plants_steam_ferc1', # Plant-level data 'plants_small_ferc1', # Plant-level data 'plants_hydro_ferc1', # Plant-level data 'plants_pumped_storage_ferc1', # Plant-level data 'purchased_power_ferc1', # Inter-utility electricity transactions 'plant_in_service_ferc1', # Row-mapped plant accounting data. # 'accumulated_depreciation_ferc1' # Requires row-mapping to be useful. ) """tuple: A tuple containing the FERC Form 1 tables that can be successfully integrated into PUDL. """ table_map_ferc1_pudl = { 'fuel_ferc1': 'f1_fuel', 'plants_steam_ferc1': 'f1_steam', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'purchased_power_ferc1': 'f1_purchased_pwr', # 'accumulated_depreciation_ferc1': 'f1_accumdepr_prvsn' } """dict: A dictionary mapping PUDL table names (keys) to the corresponding FERC Form 1 DBF table names. """ # This is the list of EIA923 tables that can be successfully pulled into PUDL eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923') """tuple: A tuple containing the EIA923 tables that can be successfully integrated into PUDL. """ epaipm_pudl_tables = ( 'transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm', ) """tuple: A tuple containing the EPA IPM tables that can be successfully integrated into PUDL. """ # List of entity tables entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm', ] """list: A list of PUDL entity tables. """ xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps' """string: The location of the xlsx maps within the PUDL package data.""" ############################################################################## # EIA 923 Spreadsheet Metadata ############################################################################## ############################################################################## # EIA 860 Spreadsheet Metadata ############################################################################## # This is the list of EIA860 tables that can be successfully pulled into PUDL eia860_pudl_tables = ( 'boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860' ) """tuple: A tuple enumerating EIA 860 tables for which PUDL's ETL works.""" # The set of FERC Form 1 tables that have the same composite primary keys: [ # respondent_id, report_year, report_prd, row_number, spplmnt_num ]. # TODO: THIS ONLY PERTAINS TO 2015 AND MAY NEED TO BE ADJUSTED BY YEAR... ferc1_data_tables = ( 'f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev') """tuple: A tuple containing the FERC Form 1 tables that have the same composite primary keys: [respondent_id, report_year, report_prd, row_number, spplmnt_num]. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 pages 204-207, Electric Plant in Service. # Descriptions from: https://www.law.cornell.edu/cfr/text/18/part-101 ferc_electric_plant_accounts = pd.DataFrame.from_records([ # 1. Intangible Plant (2, '301', 'Intangible: Organization'), (3, '302', 'Intangible: Franchises and consents'), (4, '303', 'Intangible: Miscellaneous intangible plant'), (5, 'subtotal_intangible', 'Subtotal: Intangible Plant'), # 2. Production Plant # A. steam production (8, '310', 'Steam production: Land and land rights'), (9, '311', 'Steam production: Structures and improvements'), (10, '312', 'Steam production: Boiler plant equipment'), (11, '313', 'Steam production: Engines and engine-driven generators'), (12, '314', 'Steam production: Turbogenerator units'), (13, '315', 'Steam production: Accessory electric equipment'), (14, '316', 'Steam production: Miscellaneous power plant equipment'), (15, '317', 'Steam production: Asset retirement costs for steam production\ plant'), (16, 'subtotal_steam_production', 'Subtotal: Steam Production Plant'), # B. nuclear production (18, '320', 'Nuclear production: Land and land rights (Major only)'), (19, '321', 'Nuclear production: Structures and improvements (Major\ only)'), (20, '322', 'Nuclear production: Reactor plant equipment (Major only)'), (21, '323', 'Nuclear production: Turbogenerator units (Major only)'), (22, '324', 'Nuclear production: Accessory electric equipment (Major\ only)'), (23, '325', 'Nuclear production: Miscellaneous power plant equipment\ (Major only)'), (24, '326', 'Nuclear production: Asset retirement costs for nuclear\ production plant (Major only)'), (25, 'subtotal_nuclear_produciton', 'Subtotal: Nuclear Production Plant'), # C. hydraulic production (27, '330', 'Hydraulic production: Land and land rights'), (28, '331', 'Hydraulic production: Structures and improvements'), (29, '332', 'Hydraulic production: Reservoirs, dams, and waterways'), (30, '333', 'Hydraulic production: Water wheels, turbines and generators'), (31, '334', 'Hydraulic production: Accessory electric equipment'), (32, '335', 'Hydraulic production: Miscellaneous power plant equipment'), (33, '336', 'Hydraulic production: Roads, railroads and bridges'), (34, '337', 'Hydraulic production: Asset retirement costs for hydraulic\ production plant'), (35, 'subtotal_hydraulic_production', 'Subtotal: Hydraulic Production\ Plant'), # D. other production (37, '340', 'Other production: Land and land rights'), (38, '341', 'Other production: Structures and improvements'), (39, '342', 'Other production: Fuel holders, producers, and accessories'), (40, '343', 'Other production: Prime movers'), (41, '344', 'Other production: Generators'), (42, '345', 'Other production: Accessory electric equipment'), (43, '346', 'Other production: Miscellaneous power plant equipment'), (44, '347', 'Other production: Asset retirement costs for other production\ plant'), (None, '348', 'Other production: Energy Storage Equipment'), (45, 'subtotal_other_production', 'Subtotal: Other Production Plant'), (46, 'subtotal_production', 'Subtotal: Production Plant'), # 3. Transmission Plant, (48, '350', 'Transmission: Land and land rights'), (None, '351', 'Transmission: Energy Storage Equipment'), (49, '352', 'Transmission: Structures and improvements'), (50, '353', 'Transmission: Station equipment'), (51, '354', 'Transmission: Towers and fixtures'), (52, '355', 'Transmission: Poles and fixtures'), (53, '356', 'Transmission: Overhead conductors and devices'), (54, '357', 'Transmission: Underground conduit'), (55, '358', 'Transmission: Underground conductors and devices'), (56, '359', 'Transmission: Roads and trails'), (57, '359.1', 'Transmission: Asset retirement costs for transmission\ plant'), (58, 'subtotal_transmission', 'Subtotal: Transmission Plant'), # 4. Distribution Plant (60, '360', 'Distribution: Land and land rights'), (61, '361', 'Distribution: Structures and improvements'), (62, '362', 'Distribution: Station equipment'), (63, '363', 'Distribution: Storage battery equipment'), (64, '364', 'Distribution: Poles, towers and fixtures'), (65, '365', 'Distribution: Overhead conductors and devices'), (66, '366', 'Distribution: Underground conduit'), (67, '367', 'Distribution: Underground conductors and devices'), (68, '368', 'Distribution: Line transformers'), (69, '369', 'Distribution: Services'), (70, '370', 'Distribution: Meters'), (71, '371', 'Distribution: Installations on customers\' premises'), (72, '372', 'Distribution: Leased property on customers\' premises'), (73, '373', 'Distribution: Street lighting and signal systems'), (74, '374', 'Distribution: Asset retirement costs for distribution plant'), (75, 'subtotal_distribution', 'Subtotal: Distribution Plant'), # 5. Regional Transmission and Market Operation Plant (77, '380', 'Regional transmission: Land and land rights'), (78, '381', 'Regional transmission: Structures and improvements'), (79, '382', 'Regional transmission: Computer hardware'), (80, '383', 'Regional transmission: Computer software'), (81, '384', 'Regional transmission: Communication Equipment'), (82, '385', 'Regional transmission: Miscellaneous Regional Transmission\ and Market Operation Plant'), (83, '386', 'Regional transmission: Asset Retirement Costs for Regional\ Transmission and Market Operation\ Plant'), (84, 'subtotal_regional_transmission', 'Subtotal: Transmission and Market\ Operation Plant'), (None, '387', 'Regional transmission: [Reserved]'), # 6. General Plant (86, '389', 'General: Land and land rights'), (87, '390', 'General: Structures and improvements'), (88, '391', 'General: Office furniture and equipment'), (89, '392', 'General: Transportation equipment'), (90, '393', 'General: Stores equipment'), (91, '394', 'General: Tools, shop and garage equipment'), (92, '395', 'General: Laboratory equipment'), (93, '396', 'General: Power operated equipment'), (94, '397', 'General: Communication equipment'), (95, '398', 'General: Miscellaneous equipment'), (96, 'subtotal_general', 'Subtotal: General Plant'), (97, '399', 'General: Other tangible property'), (98, '399.1', 'General: Asset retirement costs for general plant'), (99, 'total_general', 'TOTAL General Plant'), (100, '101_and_106', 'Electric plant in service (Major only)'), (101, '102_purchased', 'Electric plant purchased'), (102, '102_sold', 'Electric plant sold'), (103, '103', 'Experimental plant unclassified'), (104, 'total_electric_plant', 'TOTAL Electric Plant in Service')], columns=['row_number', 'ferc_account_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 pages 204 - 207, Electric Plant in Service. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 page 219, ACCUMULATED PROVISION FOR DEPRECIATION # OF ELECTRIC UTILITY PLANT (Account 108). ferc_accumulated_depreciation = pd.DataFrame.from_records([ # Section A. Balances and Changes During Year (1, 'balance_beginning_of_year', 'Balance Beginning of Year'), (3, 'depreciation_expense', '(403) Depreciation Expense'), (4, 'depreciation_expense_asset_retirement', \ '(403.1) Depreciation Expense for Asset Retirement Costs'), (5, 'expense_electric_plant_leased_to_others', \ '(413) Exp. of Elec. Plt. Leas. to Others'), (6, 'transportation_expenses_clearing',\ 'Transportation Expenses-Clearing'), (7, 'other_clearing_accounts', 'Other Clearing Accounts'), (8, 'other_accounts_specified',\ 'Other Accounts (Specify, details in footnote):'), # blank: might also be other charges like line 17. (9, 'other_charges', 'Other Charges:'), (10, 'total_depreciation_provision_for_year',\ 'TOTAL Deprec. Prov for Year (Enter Total of lines 3 thru 9)'), (11, 'net_charges_for_plant_retired', 'Net Charges for Plant Retired:'), (12, 'book_cost_of_plant_retired', 'Book Cost of Plant Retired'), (13, 'cost_of_removal', 'Cost of Removal'), (14, 'salvage_credit', 'Salvage (Credit)'), (15, 'total_net_charges_for_plant_retired',\ 'TOTAL Net Chrgs. for Plant Ret. (Enter Total of lines 12 thru 14)'), (16, 'other_debit_or_credit_items',\ 'Other Debit or Cr. Items (Describe, details in footnote):'), # blank: can be "Other Charges", e.g. in 2012 for PSCo. (17, 'other_charges_2', 'Other Charges 2'), (18, 'book_cost_or_asset_retirement_costs_retired',\ 'Book Cost or Asset Retirement Costs Retired'), (19, 'balance_end_of_year', \ 'Balance End of Year (Enter Totals of lines 1, 10, 15, 16, and 18)'), # Section B. Balances at End of Year According to Functional Classification (20, 'steam_production_end_of_year', 'Steam Production'), (21, 'nuclear_production_end_of_year', 'Nuclear Production'), (22, 'hydraulic_production_end_of_year',\ 'Hydraulic Production-Conventional'), (23, 'pumped_storage_end_of_year', 'Hydraulic Production-Pumped Storage'), (24, 'other_production', 'Other Production'), (25, 'transmission', 'Transmission'), (26, 'distribution', 'Distribution'), (27, 'regional_transmission_and_market_operation', 'Regional Transmission and Market Operation'), (28, 'general', 'General'), (29, 'total', 'TOTAL (Enter Total of lines 20 thru 28)')], columns=['row_number', 'line_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 page 219, Accumulated Provision for Depreciation of electric utility plant(Account 108). """ ###################################################################### # Constants from EIA From 923 used within init.py module ###################################################################### # From Page 7 of EIA Form 923, Census Region a US state is located in census_region = { 'NEW': 'New England', 'MAT': 'Middle Atlantic', 'SAT': 'South Atlantic', 'ESC': 'East South Central', 'WSC': 'West South Central', 'ENC': 'East North Central', 'WNC': 'West North Central', 'MTN': 'Mountain', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', } """dict: A dictionary mapping Census Region abbreviations (keys) to Census Region names (values). """ # From Page 7 of EIA Form923 # Static list of NERC (North American Electric Reliability Corporation) # regions, used for where plant is located nerc_region = { 'NPCC': 'Northeast Power Coordinating Council', 'ASCC': 'Alaska Systems Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'SERC': 'SERC Reliability Corporation', 'RFC': 'Reliability First Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'FRCC': 'Florida Reliability Coordinating Council', 'WECC': 'Western Electricity Coordinating Council' } """dict: A dictionary mapping NERC Region abbreviations (keys) to NERC Region names (values). """ # From Page 7 of EIA Form 923 EIA’s internal consolidated NAICS sectors. # For internal purposes, EIA consolidates NAICS categories into seven groups. sector_eia = { # traditional regulated electric utilities '1': 'Electric Utility', # Independent power producers which are not cogenerators '2': 'NAICS-22 Non-Cogen', # Independent power producers which are cogenerators, but whose # primary business purpose is the sale of electricity to the public '3': 'NAICS-22 Cogen', # Commercial non-cogeneration facilities that produce electric power, # are connected to the gird, and can sell power to the public '4': 'Commercial NAICS Non-Cogen', # Commercial cogeneration facilities that produce electric power, are # connected to the grid, and can sell power to the public '5': 'Commercial NAICS Cogen', # Industrial non-cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '6': 'Industrial NAICS Non-Cogen', # Industrial cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '7': 'Industrial NAICS Cogen' } """dict: A dictionary mapping EIA numeric codes (keys) to EIA’s internal consolidated NAICS sectors (values). """ # EIA 923: EIA Type of prime mover: prime_movers_eia923 = { 'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CC': 'Combined-Cycle, Total Unit', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'OT': 'Other', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'PV': 'Photovoltaic', 'WT': 'Wind Turbine, Onshore', 'WS': 'Wind Turbine, Offshore' } """dict: A dictionary mapping EIA 923 prime mover codes (keys) and prime mover names / descriptions (values). """ # EIA 923: The fuel code reported to EIA.Two or three letter alphanumeric: fuel_type_eia923 = { 'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.' } """dict: A dictionary mapping EIA 923 fuel type codes (keys) and fuel type names / descriptions (values). """ # Fuel type strings for EIA 923 generator fuel table fuel_type_eia923_gen_fuel_coal_strings = [ 'ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: The list of EIA 923 Generation Fuel strings associated with coal fuel. """ fuel_type_eia923_gen_fuel_oil_strings = [ 'dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: The list of EIA 923 Generation Fuel strings associated with oil fuel. """ fuel_type_eia923_gen_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: The list of EIA 923 Generation Fuel strings associated with gas fuel. """ fuel_type_eia923_gen_fuel_solar_strings = ['sun', ] """list: The list of EIA 923 Generation Fuel strings associated with solar power. """ fuel_type_eia923_gen_fuel_wind_strings = ['wnd', ] """list: The list of EIA 923 Generation Fuel strings associated with wind power. """ fuel_type_eia923_gen_fuel_hydro_strings = ['wat', ] """list: The list of EIA 923 Generation Fuel strings associated with hydro power. """ fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc', ] """list: The list of EIA 923 Generation Fuel strings associated with nuclear power. """ fuel_type_eia923_gen_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'] """list: The list of EIA 923 Generation Fuel strings associated with solid waste fuel. """ fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh', ] """list: The list of EIA 923 Generation Fuel strings associated with geothermal power. """ fuel_type_eia923_gen_fuel_simple_map = { 'coal': fuel_type_eia923_gen_fuel_coal_strings, 'oil': fuel_type_eia923_gen_fuel_oil_strings, 'gas': fuel_type_eia923_gen_fuel_gas_strings, 'solar': fuel_type_eia923_gen_fuel_solar_strings, 'wind': fuel_type_eia923_gen_fuel_wind_strings, 'hydro': fuel_type_eia923_gen_fuel_hydro_strings, 'nuclear': fuel_type_eia923_gen_fuel_nuclear_strings, 'waste': fuel_type_eia923_gen_fuel_waste_strings, 'other': fuel_type_eia923_gen_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # Fuel type strings for EIA 923 boiler fuel table fuel_type_eia923_boiler_fuel_coal_strings = [ 'ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type coal. """ fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type oil. """ fuel_type_eia923_boiler_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type gas. """ fuel_type_eia923_boiler_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type waste. """ fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type other. """ fuel_type_eia923_boiler_fuel_simple_map = { 'coal': fuel_type_eia923_boiler_fuel_coal_strings, 'oil': fuel_type_eia923_boiler_fuel_oil_strings, 'gas': fuel_type_eia923_boiler_fuel_gas_strings, 'waste': fuel_type_eia923_boiler_fuel_waste_strings, 'other': fuel_type_eia923_boiler_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # PUDL consolidation of EIA923 AER fuel type strings into same categories as # 'energy_source_eia923' plus additional renewable and nuclear categories. # These classifications are not currently used, as the EIA fuel type and energy # source designations provide more detailed information. aer_coal_strings = ['col', 'woc', 'pc'] """list: A list of EIA 923 AER fuel type strings associated with coal. """ aer_gas_strings = ['mlg', 'ng', 'oog'] """list: A list of EIA 923 AER fuel type strings associated with gas. """ aer_oil_strings = ['dfo', 'rfo', 'woo'] """list: A list of EIA 923 AER fuel type strings associated with oil. """ aer_solar_strings = ['sun'] """list: A list of EIA 923 AER fuel type strings associated with solar power. """ aer_wind_strings = ['wnd'] """list: A list of EIA 923 AER fuel type strings associated with wind power. """ aer_hydro_strings = ['hps', 'hyc'] """list: A list of EIA 923 AER fuel type strings associated with hydro power. """ aer_nuclear_strings = ['nuc'] """list: A list of EIA 923 AER fuel type strings associated with nuclear power. """ aer_waste_strings = ['www'] """list: A list of EIA 923 AER fuel type strings associated with waste. """ aer_other_strings = ['geo', 'orw', 'oth'] """list: A list of EIA 923 AER fuel type strings associated with other fuel. """ aer_fuel_type_strings = { 'coal': aer_coal_strings, 'gas': aer_gas_strings, 'oil': aer_oil_strings, 'solar': aer_solar_strings, 'wind': aer_wind_strings, 'hydro': aer_hydro_strings, 'nuclear': aer_nuclear_strings, 'waste': aer_waste_strings, 'other': aer_other_strings } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923: A partial aggregation of the reported fuel type codes into # larger categories used by EIA in, for example, # the Annual Energy Review (AER).Two or three letter alphanumeric. # See the Fuel Code table (Table 5), below: fuel_type_aer_eia923 = { 'SUN': 'Solar PV and thermal', 'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste' } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'] """list: A list of strings from EIA 860 associated with fuel type coal. """ fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'] """list: A list of strings from EIA 860 associated with fuel type oil. """ fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'] """list: A list of strings from EIA 860 associated with fuel type gas. """ fuel_type_eia860_solar_strings = ['sun', 'solar'] """list: A list of strings from EIA 860 associated with solar power. """ fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt'] """list: A list of strings from EIA 860 associated with wind power. """ fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro'] """list: A list of strings from EIA 860 associated with hydro power. """ fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear'] """list: A list of strings from EIA 860 associated with nuclear power. """ fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'] """list: A list of strings from EIA 860 associated with fuel type waste. """ fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'] """list: A list of strings from EIA 860 associated with fuel type other. """ fuel_type_eia860_simple_map = { 'coal': fuel_type_eia860_coal_strings, 'oil': fuel_type_eia860_oil_strings, 'gas': fuel_type_eia860_gas_strings, 'solar': fuel_type_eia860_solar_strings, 'wind': fuel_type_eia860_wind_strings, 'hydro': fuel_type_eia860_hydro_strings, 'nuclear': fuel_type_eia860_nuclear_strings, 'waste': fuel_type_eia860_waste_strings, 'other': fuel_type_eia860_other_strings, } """dict: A dictionary mapping EIA 860 fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923/860: Lumping of energy source categories. energy_source_eia_simple_map = { 'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'solar': ['SUN'], 'wind': ['WND'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'] } """dict: A dictionary mapping EIA fuel types (keys) to fuel codes (values). """ fuel_group_eia923_simple_map = { 'coal': ['coal', 'petroleum coke'], 'oil': ['petroleum'], 'gas': ['natural gas', 'other gas'] } """dict: A dictionary mapping EIA 923 simple fuel types("oil", "coal", "gas") (keys) to fuel types (values). """ # EIA 923: The type of physical units fuel consumption is reported in. # All consumption is reported in either short tons for solids, # thousands of cubic feet for gases, and barrels for liquids. fuel_units_eia923 = { 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)', 'barrels': 'Barrels (for liquids)' } """dict: A dictionary mapping EIA 923 fuel units (keys) to fuel unit descriptions (values). """ # EIA 923: Designates the purchase type under which receipts occurred # in the reporting month. One or two character alphanumeric: contract_type_eia923 = { 'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'N': 'New Contract - see NC code. This abbreviation existed only in 2008 before being replaced by NC.', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)' } """dict: A dictionary mapping EIA 923 contract codes (keys) to contract descriptions (values) for each month in the Fuel Receipts and Costs table. """ # EIA 923: The fuel code associated with the fuel receipt. # Defined on Page 7 of EIA Form 923 # Two or three character alphanumeric: energy_source_eia923 = { 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BM': 'Biomass', 'BIT': 'Bituminous Coal', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'OG': 'Other Gas', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.', } """dict: A dictionary mapping fuel codes (keys) to fuel descriptions (values) for each fuel receipt from the EIA 923 Fuel Receipts and Costs table. """ # EIA 923 Fuel Group, from Page 7 EIA Form 923 # Groups fossil fuel energy sources into fuel groups that are located in the # Electric Power Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke. fuel_group_eia923 = ( 'coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas' ) """tuple: A tuple containing EIA 923 fuel groups. """ # EIA 923: Type of Coal Mine as defined on Page 7 of EIA Form 923 coalmine_type_eia923 = { 'P': 'Preparation Plant', 'S': 'Surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground', 'SU': 'Both an underground and surface mine with most coal extracted from surface', } """dict: A dictionary mapping EIA 923 coal mine type codes (keys) to descriptions (values). """ # EIA 923: State abbreviation related to coal mine location. # Country abbreviations are also used in this category, but they are # non-standard because of collisions with US state names. Instead of using # the provided non-standard names, we convert to ISO-3166-1 three letter # country codes https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 coalmine_country_eia923 = { 'AU': 'AUS', # Australia 'CL': 'COL', # Colombia 'CN': 'CAN', # Canada 'IS': 'IDN', # Indonesia 'PL': 'POL', # Poland 'RS': 'RUS', # Russia 'UK': 'GBR', # United Kingdom of Great Britain 'VZ': 'VEN', # Venezuela 'OT': 'other_country', 'IM': 'unknown' } """dict: A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three letter country codes (values). """ # EIA 923: Mode for the longest / second longest distance. transport_modes_eia923 = { 'RR': 'Rail: Shipments of fuel moved to consumers by rail \ (private or public/commercial). Included is coal hauled to or \ away from a railroad siding by truck if the truck did not use public\ roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. \ Not included are shipments to Great Lakes coal loading docks, \ tidewater piers, or coastal ports.', 'GL': 'Great Lakes: Shipments of coal moved to consumers via \ the Great Lakes. These shipments are moved via the Great Lakes \ coal loading docks, which are identified by name and location as \ follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; \ NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; \ Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; \ KCBX Terminals Inc., Chicago, Illinois; \ Superior Midwest Energy Terminal, Superior, Wisconsin', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to \ Tidewater Piers and Coastal Ports for further shipments to consumers \ via coastal water or ocean. The Tidewater Piers and Coastal Ports \ are identified by name and location as follows: Dominion Terminal \ Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, \ Alabama; IC Railmarine Terminal, Convent, Louisiana; \ International Marine Terminals, Myrtle Grove, Louisiana; \ Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; \ Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, \ Inc., Los Angeles, California; Levin-Richmond Terminal Corp., \ Richmond, California; Baltimore Terminal, Baltimore, Maryland; \ Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; \ Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, \ Newport News, Virginia; Electro-Coal Transport Corp., Davant, \ Louisiana', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers \ by tramway or conveyor.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers \ by slurry pipeline.', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline' } """dict: A dictionary mapping primary and secondary transportation mode codes (keys) to descriptions (values). """ # we need to include all of the columns which we want to keep for either the # entity or annual tables. The order here matters. We need to harvest the plant # location before harvesting the location of the utilites for example. entities = { 'plants': [ # base cols ['plant_id_eia'], # static cols ['balancing_authority_code_eia', 'balancing_authority_name_eia', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'service_area', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], # annual cols ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'datum', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'nerc_region', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], # need type fixing {}, ], 'generators': [ # base cols ['plant_id_eia', 'generator_id'], # static cols ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], # annual cols ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'owned_by_non_utility', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'summer_capacity_estimate', 'winter_capacity_estimate', 'minimum_load_mw', 'distributed_generation', 'technology_description', 'reactive_power_output_mvar', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'energy_source_1_transport_1', 'energy_source_1_transport_2', 'energy_source_1_transport_3', 'energy_source_2_transport_1', 'energy_source_2_transport_2', 'energy_source_2_transport_3', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia', 'data_source'], # need type fixing {} ], # utilities must come after plants. plant location needs to be # removed before the utility locations are compiled 'utilities': [ # base cols ['utility_id_eia'], # static cols ['utility_name_eia'], # annual cols ['street_address', 'city', 'state', 'zip_code', 'entity_type', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', 'attention_line', 'address_2', 'zip_code_4', 'contact_firstname', 'contact_lastname', 'contact_title', 'contact_firstname_2', 'contact_lastname_2', 'contact_title_2', 'phone_extension_1', 'phone_extension_2', 'phone_number_1', 'phone_number_2'], # need type fixing {'utility_id_eia': 'int64', }, ], 'boilers': [ # base cols ['plant_id_eia', 'boiler_id'], # static cols ['prime_mover_code'], # annual cols [], # need type fixing {}, ] } """dict: A dictionary containing table name strings (keys) and lists of columns to keep for those tables (values). """ epacems_tables = ("hourly_emissions_epacems") """tuple: A tuple containing tables of EPA CEMS data to pull into PUDL. """ files_dict_epaipm = { 'transmission_single_epaipm': '*table_3-21*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', } """dict: A dictionary of EPA IPM tables and strings that files of those tables contain. """ epaipm_url_ext = { 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', 'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', } """dict: A dictionary of EPA IPM tables and associated URLs extensions for downloading that table's data. """ epaipm_region_names = [ 'ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK', ] """list: A list of EPA IPM region names.""" epaipm_region_aggregations = { 'PJM': [ 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC' ], 'NYISO': [ 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K' ], 'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': [ 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS' ], 'SPP': [ 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE' ], 'WECC_NW': [ 'WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY' ] } """ dict: A dictionary containing EPA IPM regions (keys) and lists of their associated abbreviations (values). """ epaipm_rename_dict = { 'transmission_single_epaipm': { 'From': 'region_from', 'To': 'region_to', 'Capacity TTC (MW)': 'firm_ttc_mw', 'Energy TTC (MW)': 'nonfirm_ttc_mw', 'Transmission Tariff (2016 mills/kWh)': 'tariff_mills_kwh', }, 'load_curves_epaipm': { 'day': 'day_of_year', 'region': 'region_id_epaipm', }, 'plant_region_map_epaipm': { 'ORIS Plant Code': 'plant_id_eia', 'Region Name': 'region', }, } glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn') """ dict: A dictionary of dictionaries containing EPA IPM tables (keys) and items for each table to be renamed along with the replacement name (values). """ data_sources = ( 'eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', 'ferc714', # 'pudl' ) """tuple: A tuple containing the data sources we are able to pull into PUDL.""" # All the years for which we ought to be able to download these data sources data_years = { 'eia860': tuple(range(2001, 2020)), 'eia861': tuple(range(1990, 2020)), 'eia923': tuple(range(2001, 2020)), 'epacems': tuple(range(1995, 2021)), 'epaipm': (None, ), 'ferc1': tuple(range(1994, 2020)), 'ferc714': (None, ), } """ dict: A dictionary of data sources (keys) and tuples containing the years that we expect to be able to download for each data source (values). """ # The full set of years we currently expect to be able to ingest, per source: working_partitions = { 'eia860': { 'years': tuple(range(2004, 2020)) }, 'eia860m': { 'year_month': '2020-11' }, 'eia861': { 'years': tuple(range(2001, 2020)) }, 'eia923': { 'years': tuple(range(2001, 2020)) }, 'epacems': { 'years': tuple(range(1995, 2021)), 'states': tuple(cems_states.keys())}, 'ferc1': { 'years': tuple(range(1994, 2020)) }, 'ferc714': {}, } """ dict: A dictionary of data sources (keys) and dictionaries (values) of names of partition type (sub-key) and paritions (sub-value) containing the paritions such as tuples of years for each data source that are able to be ingested into PUDL. """ pudl_tables = { 'eia860': eia860_pudl_tables, 'eia861': ( "service_territory_eia861", "balancing_authority_eia861", "sales_eia861", "advanced_metering_infrastructure_eia861", "demand_response_eia861", "demand_side_management_eia861", "distributed_generation_eia861", "distribution_systems_eia861", "dynamic_pricing_eia861", "energy_efficiency_eia861", "green_pricing_eia861", "mergers_eia861", "net_metering_eia861", "non_net_metering_eia861", "operational_data_eia861", "reliability_eia861", "utility_data_eia861", ), 'eia923': eia923_pudl_tables, 'epacems': epacems_tables, 'epaipm': epaipm_pudl_tables, 'ferc1': ferc1_pudl_tables, 'ferc714': ( "respondent_id_ferc714", "id_certification_ferc714", "gen_plants_ba_ferc714", "demand_monthly_ba_ferc714", "net_energy_load_ba_ferc714", "adjacency_ba_ferc714", "interchange_ba_ferc714", "lambda_hourly_ba_ferc714", "lambda_description_ferc714", "description_pa_ferc714", "demand_forecast_pa_ferc714", "demand_hourly_pa_ferc714", ), 'glue': glue_pudl_tables, } """ dict: A dictionary containing data sources (keys) and the list of associated tables from that datasource that can be pulled into PUDL (values). """ base_data_urls = { 'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'pudl': 'https://catalyst.coop/pudl/' } """ dict: A dictionary containing data sources (keys) and their base data URLs (values). """ need_fix_inting = { 'plants_steam_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_hydro_ferc1': ('construction_year', 'installation_year',), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa',), } """ dict: A dictionary containing tables (keys) and column names (values) containing integer - type columns whose null values need fixing. """ contributors = { "catalyst-cooperative": { "title": "Catalyst Cooperative", "path": "https://catalyst.coop/", "role": "publisher", "email": "<EMAIL>", "organization": "Catalyst Cooperative", }, "zane-selvans": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://amateurearthling.org/", "role": "wrangler", "organization": "Catalyst Cooperative" }, "christina-gosnell": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "steven-winter": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "alana-wilson": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "karl-dunkle-werner": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://karldw.org/", "role": "contributor", "organization": "UC Berkeley", }, 'greg-schivley': { "title": "<NAME>", "role": "contributor", }, } """ dict: A dictionary of dictionaries containing organization names (keys) and their attributes (values). """ data_source_info = { "eia860": { "title": "EIA Form 860", "path": "https://www.eia.gov/electricity/data/eia860/", }, "eia861": { "title": "EIA Form 861", "path": "https://www.eia.gov/electricity/data/eia861/", }, "eia923": { "title": "EIA Form 923", "path": "https://www.eia.gov/electricity/data/eia923/", }, "eiawater": { "title": "EIA Water Use for Power", "path": "https://www.eia.gov/electricity/data/water/", }, "epacems": { "title": "EPA Air Markets Program Data", "path": "https://ampd.epa.gov/ampd/", }, "epaipm": { "title": "EPA Integrated Planning Model", "path": "https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6", }, "ferc1": { "title": "FERC Form 1", "path": "https://www.ferc.gov/docs-filing/forms/form-1/data.asp", }, "ferc714": { "title": "FERC Form 714", "path": "https://www.ferc.gov/docs-filing/forms/form-714/data.asp", }, "ferceqr": { "title": "FERC Electric Quarterly Report", "path": "https://www.ferc.gov/docs-filing/eqr.asp", }, "msha": { "title": "Mining Safety and Health Administration", "path": "https://www.msha.gov/mine-data-retrieval-system", }, "phmsa": { "title": "Pipelines and Hazardous Materials Safety Administration", "path": "https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview", }, "pudl": { "title": "The Public Utility Data Liberation Project (PUDL)", "path": "https://catalyst.coop/pudl/", "email": "<EMAIL>", }, } """ dict: A dictionary of dictionaries containing datasources (keys) and associated attributes (values) """ contributors_by_source = { "pudl": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", "karl-dunkle-werner", ], "eia923": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", ], "eia860": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "ferc1": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "epacems": [ "catalyst-cooperative", "karl-dunkle-werner", "zane-selvans", ], "epaipm": [ "greg-schivley", ], } """ dict: A dictionary of data sources (keys) and lists of contributors (values). """ licenses = { "cc-by-4.0": { "name": "CC-BY-4.0", "title": "Creative Commons Attribution 4.0", "path": "https://creativecommons.org/licenses/by/4.0/" }, "us-govt": { "name": "other-pd", "title": "U.S. Government Work", "path": "http://www.usa.gov/publicdomain/label/1.0/", } } """ dict: A dictionary of dictionaries containing license types and their attributes. """ output_formats = [ 'sqlite', 'parquet', 'datapkg', ] """list: A list of types of PUDL output formats.""" keywords_by_data_source = { 'pudl': [ 'us', 'electricity', ], 'eia860': [ 'electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration' ], 'eia923': [ 'fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content' ], 'epacems': [ 'epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourly' 'environmental protection agency', 'ampd', 'air markets program data', ], 'ferc1': [ 'electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity' ], 'ferc714': [ 'electricity', 'electric', 'utility', 'planning area', 'form 714', 'balancing authority', 'demand', 'system lambda', 'ferc', 'federal energy regulatory commission', "hourly", "generation", "interchange", "forecast", "load", "adjacency", "plants", ], 'epaipm': [ 'epaipm', 'integrated planning', ] } """dict: A dictionary of datasets (keys) and keywords (values). """ ENTITY_TYPE_DICT = { 'M': 'Municipal', 'C': 'Cooperative', 'R': 'Retail Power Marketer', 'I': 'Investor Owned', 'P': 'Political Subdivision', 'T': 'Transmission', 'S': 'State', 'W': 'Wholesale Power Marketer', 'F': 'Federal', 'A': 'Municipal Mktg Authority', 'G': 'Community Choice Aggregator', 'D': 'Nonutility DSM Administrator', 'B': 'Behind the Meter', 'Q': 'Independent Power Producer', 'IND': 'Industrial', 'COM': 'Commercial', 'PR': 'Private', # Added by AES for OD table (Arbitrary moniker) 'PO': 'Power Marketer', # Added by AES for OD table 'U': 'Unknown', # Added by AES for OD table 'O': 'Other' # Added by AES for OD table } # Confirm these designations -- educated guess based on the form instructions MOMENTARY_INTERRUPTION_DEF = { # Added by AES for R table 'L': 'Less than 1 minute', 'F': 'Less than or equal to 5 minutes', 'O': 'Other', } # https://www.eia.gov/electricity/data/eia411/#tabs_NERC-3 RECOGNIZED_NERC_REGIONS = [ 'BASN', # ASSESSMENT AREA Basin (WECC) 'CALN', # ASSESSMENT AREA California (WECC) 'CALS', # ASSESSMENT AREA California (WECC) 'DSW', # ASSESSMENT AREA Desert Southwest (WECC) 'ASCC', # Alaska 'ISONE', # ISO New England (NPCC) 'ERCOT', # lumped under TRE in 2017 Form instructions 'NORW', # ASSESSMENT AREA Northwest (WECC) 'NYISO', # ISO (NPCC) 'PJM', # RTO 'ROCK', # ASSESSMENT AREA Rockies (WECC) 'ECAR', # OLD RE Now part of RFC and SERC 'FRCC', # included in 2017 Form instructions, recently joined with SERC 'HICC', # Hawaii 'MAAC', # OLD RE Now part of RFC 'MAIN', # OLD RE Now part of SERC, RFC, MRO 'MAPP', # OLD/NEW RE Became part of MRO, resurfaced in 2010 'MRO', # RE included in 2017 Form instructions 'NPCC', # RE included in 2017 Form instructions 'RFC', # RE included in 2017 Form instructions 'SERC', # RE included in 2017 Form instructions 'SPP', # RE included in 2017 Form instructions 'TRE', # RE included in 2017 Form instructions (included ERCOT) 'WECC', # RE included in 2017 Form instructions 'WSCC', # OLD RE pre-2002 version of WECC 'MISO', # ISO unclear whether technically a regional entity, but lots of entries 'ECAR_MAAC', 'MAPP_WECC', 'RFC_SERC', 'SPP_WECC', 'MRO_WECC', 'ERCOT_SPP', 'SPP_TRE', 'ERCOT_TRE', 'MISO_TRE', 'VI', # Virgin Islands 'GU', # Guam 'PR', # Puerto Rico 'AS', # American Samoa 'UNK', ] CUSTOMER_CLASSES = [ "commercial", "industrial", "direct_connection", "other", "residential", "total", "transportation" ] TECH_CLASSES = [ 'backup', # WHERE Is this used? because removed from DG table b/c not a real component 'chp_cogen', 'combustion_turbine', 'fuel_cell', 'hydro', 'internal_combustion', 'other', 'pv', 'steam', 'storage_pv', 'all_storage', # need 'all' as prefix so as not to confuse with other storage category 'total', 'virtual_pv', 'wind', ] REVENUE_CLASSES = [ 'retail_sales', 'unbundled', 'delivery_customers', 'sales_for_resale', 'credits_or_adjustments', 'other', 'transmission', 'total', ] RELIABILITY_STANDARDS = [ 'ieee_standard', 'other_standard' ] FUEL_CLASSES = [ 'gas', 'oil', 'other', 'renewable', 'water', 'wind', 'wood', ] RTO_CLASSES = [ 'caiso', 'ercot', 'pjm', 'nyiso', 'spp', 'miso', 'isone', 'other' ] ESTIMATED_OR_ACTUAL = {'E': 'estimated', 'A': 'actual'} TRANSIT_TYPE_DICT = { 'CV': 'conveyer', 'PL': 'pipeline', 'RR': 'railroad', 'TK': 'truck', 'WA': 'water', 'UN': 'unknown', } """dict: A dictionary of datasets (keys) and keywords (values). """ column_dtypes = { "ferc1": { # Obviously this is not yet a complete list... "construction_year": pd.Int64Dtype(), "installation_year": pd.Int64Dtype(), "plant_id_ferc1": pd.Int64Dtype(), "plant_id_pudl": pd.Int64Dtype(), "report_date": "datetime64[ns]", "report_year": pd.Int64Dtype(), "utility_id_ferc1": pd.Int64Dtype(), "utility_id_pudl": pd.Int64Dtype(), }, "ferc714": { # INCOMPLETE "demand_mwh": float, "demand_annual_mwh": float, "eia_code": pd.Int64Dtype(), "peak_demand_summer_mw": float, "peak_demand_winter_mw": float, "report_date": "datetime64[ns]", "respondent_id_ferc714": pd.Int64Dtype(), "respondent_name_ferc714": pd.StringDtype(), "respondent_type": pd.CategoricalDtype(categories=[ "utility", "balancing_authority", ]), "timezone": pd.CategoricalDtype(categories=[ "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "Pacific/Honolulu"]), "utc_datetime": "datetime64[ns]", }, "epacems": { 'state': pd.StringDtype(), 'plant_id_eia': pd.Int64Dtype(), # Nullable Integer 'unitid': pd.StringDtype(), 'operating_datetime_utc': "datetime64[ns]", 'operating_time_hours': float, 'gross_load_mw': float, 'steam_load_1000_lbs': float, 'so2_mass_lbs': float, 'so2_mass_measurement_code': pd.StringDtype(), 'nox_rate_lbs_mmbtu': float, 'nox_rate_measurement_code': pd.StringDtype(), 'nox_mass_lbs': float, 'nox_mass_measurement_code': pd.StringDtype(), 'co2_mass_tons': float, 'co2_mass_measurement_code': pd.StringDtype(), 'heat_content_mmbtu': float, 'facility_id': pd.Int64Dtype(), # Nullable Integer 'unit_id_epa': pd.Int64Dtype(), # Nullable Integer }, "eia": { 'actual_peak_demand_savings_mw': float, # Added by AES for DR table 'address_2': pd.StringDtype(), # Added by AES for 860 utilities table 'advanced_metering_infrastructure': pd.Int64Dtype(), # Added by AES for AMI table # Added by AES for UD misc table 'alternative_fuel_vehicle_2_activity': pd.BooleanDtype(), 'alternative_fuel_vehicle_activity': pd.BooleanDtype(), 'annual_indirect_program_cost': float, 'annual_total_cost': float, 'ash_content_pct': float, 'ash_impoundment': pd.BooleanDtype(), 'ash_impoundment_lined': pd.BooleanDtype(), # TODO: convert this field to more descriptive words 'ash_impoundment_status': pd.StringDtype(), 'associated_combined_heat_power': pd.BooleanDtype(), 'attention_line': pd.StringDtype(), 'automated_meter_reading': pd.Int64Dtype(), # Added by AES for AMI table 'backup_capacity_mw': float, # Added by AES for NNM & DG misc table 'balancing_authority_code_eia': pd.CategoricalDtype(), 'balancing_authority_id_eia': pd.Int64Dtype(), 'balancing_authority_name_eia': pd.StringDtype(), 'bga_source': pd.StringDtype(), 'boiler_id': pd.StringDtype(), 'bunded_activity': pd.BooleanDtype(), 'business_model': pd.CategoricalDtype(categories=[ "retail", "energy_services"]), 'buy_distribution_activity':
pd.BooleanDtype()
pandas.BooleanDtype